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Philosophy. We have proven Grothendieck-Serre duality in the setting of derived categories. The aim
of this talk is to give an impression how classical Serre duality arises from this machinery. In particular,
we want to show that in the case of smooth proper schemes, the dualizing complex "is" a sheaf and
that this sheaf coincides with the canonical sheaf. The goal is to prove the following:

Theorem 1. Let f : X → S be a proper smooth morphism of noetherian schemes of relative dimension
n with associated dualizing complex f !OS. Then H i(f !OS) = 0 whenever i 6= −n and H−n(f !OS) is
isomorphic to the relative canonical sheaf ωX/S.

1 Dualizing sheaf and canonical sheaf

Proposition 2. Let f : X → S be a proper smooth morphism of noetherian schemes of relative
dimension n with associated dualizing complex f !OS. Suppose that H i(f !OS) = 0 whenever i 6= −n and
assume further that H−n(f !OS) is a flat OX-module. Then the sheaf H−n(f !OS) is isomorphic to the
relative canonical sheaf ωX/S.

Application of Grothendieck-Serre duality. Consider the diagonal morphism ∆ : X → X ×S X and
the projection onto the first factor π : X ×S X → X. Then ∆ is a closed immersion and π ◦∆ = idX .
Furthermore, the morphism π satisfies all necessary conditions for Grothendieck-Serre duality. Hence:

If F ∈ D+(QCoh(X ×S X)) and G ∈ D+(QCoh(X)), then the natural map

Rπ∗RHomOX×SX
(F , π!G )→ RHomOX

(Rπ∗F ,G ).

is an isomorphism.

Applying the duality theorem for F = ∆∗OX [0] and G = OX [0], we obtain a natural isomorphism

Rπ∗RHomOX×SX
(∆∗OX [0], π!OX) ∼= RHomOX

(Rπ∗∆∗OX [0],OX [0]). (∗)

Computing the right-hand side of (∗). Let OX → J be an injective resolution. Since ∆∗ maps
flabby sheaves to flabby sheaves, ∆∗OX → ∆∗J is a π∗-acyclic resolution. Hence

(Riπ∗)∆∗OX = H i(π∗∆∗J ) = H i(J ) =

{
OX if i = 0,

0 if i 6= 0.
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Therefore Rπ∗∆∗OX [0] is supported in degree zero only, and the degree zero part is simply given by
OX . The right-hand side of (∗) reads now

RHomOX
(OX [0],OX [0]) = OX [0].

Left-hand side of (∗). We need a few lemmas.

Lemma 3. Let Y be an S-scheme, j : X → Y a regular closed immersion, and F ∈ QCoh(Y ) a flat
OY -module. If Y → S is of relative dimension m and X → S is of relative dimension n, then

ExtiOY
(j∗OX ,F ) ∼=

{
j∗j
∗F ⊗OY

∧k(IX/I
2
X)∨ if i = m− n,

0 if i 6= m− n.

Proof: Since j is a regular immersion, we can cover Y by affine opens where the ideal sheaf IX is
regular. Hence if U = SpecA is one of those, then the ideal I = H0(U,IX) ⊆ A is generated by an
A-regular sequence f1, . . . , fk, where k := m− n.

Let K denote the Koszul complex

0→
k∧
Ak →

k−1∧
Ak → · · · →

0∧
Ak → 0,

where the maps are given by

i∧
Ak →

i−1∧
Ak, ej1 ∧ · · · ∧ eji 7→

i∑
`=1

(−1)`+1fj` · ej1 ∧ · · · ∧ êj` ∧ · · · ∧ eji

In particular, the map Ak ∼=
∧1Ak →

∧0Ak ∼= A is given by (a1, . . . , ak) 7→
∑k

`=1 a`f`. As the
sequence f1, . . . , fk was regular, the Koszul complex is a free resolution. So all cohomology modules
vanish, except for the last one, which equals A/I.

Furthermore, Exti(A/I,−) is computed by H i(Hom(K,−)). But for an A-module M ,

HomA

(
i∧
Ak,M

)
∼=

(
i∧
Ak

)∨
⊗A M ∼=

k−i∧
Ak ⊗A M,

thus Exti(A/I,M) is isomorphic to the cohomology of the complex K ⊗A M at the (k − i)-th wedge
product. Hence we obtain isomorphisms

ψi
f1,...,fk

: Exti(A/I,M) = H i(Hom(K,M)) ∼= Hk−i(K ⊗A M),

and we can view ψk
f1,...,fk

as isomorphism Exti(A/I,M) ∼= M/IM .

The residue classes of f1, . . . , fk generate I/I2 as a free A/I-module of rank k. Thus the k-th exterior
power of I/I2 is free of rank one with generator f1 ∧ · · · ∧ fk. Consider the map

ϕ : ExtkA(A/I,M)→ HomA/I

(
k∧
I/I2,M/IM

)
, ϕ(x)(f1 ∧ · · · ∧ fk) := ψk

f1,...,fk
(x).
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This is well-defined: If g1, . . . , gk form another regular sequence, then inspecting the Koszul maps
implies that ψk

f1,...,fk
= detB · ψk

g1,...,gk
, where B is a base change matrix. Consequently, ϕ is an

isomorphism.

We take now M := H0(U,F ), which is a flat A-module. Hence K ⊗A M remains exact except for
the last spot, in particular, Exti(A/I,M) = 0 for i 6= k. Since I/I2 is a free A-module, we have an
isomorphism

HomA/I

(
k∧
I/I2,M/IM

)
∼=

k∧
(I/I2)∨ ⊗A M/IM.

Now gluing yields the sheafified version of ϕ :

ExtkOY
(j∗OX ,F ) ∼=

{
j∗OX ⊗OY

F ⊗OY

∧k(IX/I
2
X)∨ if i = k,

0 if i 6= k,

∼=

{
j∗j
∗F ⊗OY

∧k(IX/I
2
X)∨ if i = k,

0 if i 6= k,

where the last isomorphism is an application of the projection formula for the closed immersion j. �

Lemma 4 (Flat base change). Consider a Cartesian square of noetherian schemes

X̃
g̃−−−−→ X

f̃

y f

y
Ỹ

g−−−−→ Y

,

where f, f̃ are proper and g, g̃ are flat. Then there is a natural isomorphism

g̃∗f ! ∼= f̃ !g∗.

Proof: This was proved for g, g̃ open immersions in the last talk. The more general statement when
g, g̃ are flat is proven in [4, Theorem 4.4.1]. �

Finishing the proof of Proposition 2. Using the flat base change for dualizing complexes,

π∗f !OS = π!f∗OS = π!OX .

Since π is flat, π∗ is exact and we obtain a flat OX×SX -module ω := H−n(π!OX) = π∗H−n(f !OS). In
particular, since

H i(RHomOX×SX
(∆∗OX [0], ω[0])) = ExtiOX×SX

(∆∗OX , ω) for all i,

applying Lemma 3 (note that ∆ is a regular closed immersion) yields

RHomOX×SX
(∆∗OX [0], ω[0]) ∼=

(
∆∗∆

∗ω ⊗OX×SX

n∧
(IX/I

2
X)∨

)
[n].
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Using the canonical isomorphism
IX/I

2
X
∼= ∆∗ΩX/S ,

the left-hand side of (∗) transforms to

Rπ∗RHomOX×SX
(∆∗OX [0], ω[−n]) = Rπ∗RHomOX×SX

(∆∗OX [0], ω[0])[−n]

∼= Rπ∗

(
∆∗∆

∗ω ⊗OX×SX

n∧
(IX/I

2
X)∨

)
[0]

∼= (∆∗ω ⊗OX×SX
ω∨X/S)[0].

Note that ∆∗ω = ∆∗π∗H−n(f !OS) = H−n(f !OS). Since ωX/S is an invertible sheaf due to smoothness
of f , we finally arrive at an isomorphism

H−n(f !OS) ∼= ωX/S .

2 The dualizing complex becomes a sheaf

Projective space over a field. We need a little bit of classical theory:

Proposition 5. Let f : Pn
S → S be the structure morphism of projective space over a noetherian scheme

S. Then H i(f !OS) = 0 whenever i 6= −n and H−n(f !OS) is isomorphic to the canonical sheaf ωPn
S/S

.

Proof: [2, Theorem III.5.1] shows that the functor Rf∗− has the right adjoint ωPn
S/S
⊗OPn

S
f∗− . �

The Cohen-Macaulay case.

Definition (Cohen-Macaulay [5, 045Q]).

• A module M over a local ring (A,m) is Cohen-Macaulay if the projective dimension pdAM of M
over A equals the codimension codimAM of M in A.

• A morphism f : X → S of schemes is Cohen-Macaulay at x ∈ X if f is flat at x and the local
ring OXf(x),x is Cohen-Macaulay.

• A morphism f : X → S of schemes is Cohen-Macaulay if f is Cohen-Macaulay at all points of X.

Proposition 6. Let f : X → S be a flat morphism of noetherian schemes of relative dimension n

with associated dualizing complex f !OS. Assume that f factors as X j−→ Y
g−→ S, where j is a closed

immersion and g is separated and smooth. Then the following are equivalent:

(a) f is Cohen-Macaulay,

(b) H i(f !OS) = 0 whenever i 6= −n and H−n(f !OS) is flat over S.

Proof: We sketch the proof in the case that Y = Pm
S . For the general statement and the flatness

condition, see [1, Theorem 3.5.1].

By Grothendieck-Serre duality applied to j : X ↪→ Pm
S , we have

Rj∗RHomOX
(OX , f

!OS) = Rj∗RHomOX
(OX , j

!g!OS) ∼= RHomOPm
S

(Rj∗OX , g
!OS).
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Since j is a closed immersion, j∗ is exact. Taking the i-th cohomology and using duality for projective
space (Proposition 5),

H i(j∗RHomOX
(OX , f

!OS)) ∼= H i(RHomOPn
S

(j∗OX , g
!OS))

= H i+m(RHomOPm
S

(j∗OX , ωPm
S /S)

= Exti+m
OPm

S

(j∗OX , ωPm
S /S).

Pick a point x ∈ j(X), corresponding to a maximal ideal m ⊆ A, where A is the coordinate ring of a
suitable affine open subset in Pm

S . Since ωPm
K

is an invertible sheaf, we have thus an isomorphism

H i(j∗f
!OS)x ∼= Exti+m

Am
((A/I)m, Am),

In the following, we will write A instead of Am. Note that if P is a projective resolution of length ` of
A/I over A, then

Exti+m
A (A/I,A) = H i+m(HomA(P, A))

vanishes for i+m > `. Thus

Exti+m
A (A/I,A) = 0 whenever i+m > pdAA/I.

On the other hand, since A is a regular local ring, there is a local duality isomorphism [3, Theorem 4.4]

Exti+m
A (A/I,A) ∼= H−im (A/I)∨,

where the right-hand sied is the (−i)-th local cohomology of A/I at m, and ∨ denotes the so-called Matlis
dual. By the properties of local cohomology, H−im (A/I) = 0 for −i > dimA/I. Phrased differently,

Exti+m
A (A/I,A) = 0 whenever i+m < m− dimA = codimAA/I.

As a consequence, Exti+m
A (A/I,A) 6= 0 can occur only for m − n = codimAA/I ≤ i + m ≤ pdAA/I.

Hence the fact that only Extm−nA (A/I,A) is possibly non-zero is equivalent to A/I being a Cohen-
Macaulay module of codimension n over A. �

The Gorenstein case. For completeness, we mention the case of Gorenstein morphisms.

Definition (Gorenstein).

• A local ring (A,m) of dimension n is Gorenstein if ExtiA(A/m, A) = 0 whenever i 6= n and
ExtnA(A/m, A) ∼= A/m.

• A morphism f : X → S of schemes is Gorenstein at x ∈ X if f is flat at x and the local ring
OXf(x),x is Gorenstein.

• A morphism f : X → S of schemes is Gorenstein if f is Gorenstein at all points of X.

Proposition 7 ([1, Theorem 3.5.1]). With the same hypotheses as in Proposition 6, the following are
equivalent:

(a) f is Gorenstein,

(b) H i(f !OS) = 0 whenever i 6= −n and H−n(f !OS) is an invertible OX-module.

Remark. If A is a local ring, then

A regular local ring ⇒ A Gorenstein ⇒ A Cohen-Macaulay.

Thus Proposition 6 and Proposition 2 imply Theorem 1.
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The dualizing complex for general projective varieties. As a final application, we show that the
dualizing complex has at most dimX non-vanishing cohomology sheaves when X is projective over a
field.

Proposition 8. Let f : X → SpecK be projective of dimension n, K a field. Then H i(f !OSpecK) = 0
for i < −n and i > 0.

Proof: We apply Grothendieck-Serre to a closed immersion j : X ↪→ Pn
K and proceed as in the proof of

Proposition 6 to obtain
H i(j∗f

!OSpecK) ∼= Exti+m
OPm

K

(j∗OX , ωPm
K

).

Going local to some open affine SpecA, we have to consider Exti+m
A (A/I,A), since ωPm

K
is locally

free of rank one. Exti+m
A (A/I,A) 6= 0 means that the projective dimension of A/I over A is at least

i + m. But the projective dimension is always bounded from above by dimA, which equals m. Thus
Exti+m

A (A/I,A) 6= 0 implies i+m ≤ m and therefore i ≤ 0.

Since Exti+m
OPm

K

(j∗OX , ωPm
K

) is coherent on Pm
K , the sheaves Exti+m

OPm
K

(j∗OX , ωPm
K

)(d) are globally generated

for sufficiently large d� 0. To show that Exti+m
OPm

K

(j∗OX , ωPm
K

) vanishes, it is enough to show that

H0(Pm
K ,Ext

i+m
OPm

K

(j∗OX , ωPm
K

)(d)) = 0 for d� 0.

But now we know Serre duality for Pm
K :

H0(Pm
K ,Ext

i+m
OPm

K

(j∗OX , ωPm
K

)(d)) ∼= H0(Pm
K ,Ext

i+m
OPm

K

(j∗OX , ωPm
K

(d)))

= Exti+m(j∗OX , ωPm
K

(d))

∼= H−i(Pm
K , j∗OX(−d))∨

= H−i(X,OX(−d))∨

= 0 for − i > n.

So H i(j∗f
!OSpecK) 6= 0 can occur only for −n ≤ i ≤ 0. �
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