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1. Introduction

Theorem 1.1 (Serre duality). Let k be a field, X a smooth projective scheme over k of relative dimen-
sion n, and F a locally free OX-module of finite rank. Then for i ∈ Z there is a canonical isomorphism

Hi(X,HomOX (F , Ωn
X/k))

∼= Hn−i(X,F )∨. �

One goal of the coherent cohomology seminar is to state and prove a generalization of this
theorem. First, we drop the smoothness condition. We need to replace Ωn

X/k by the more
abstract dualizing sheaf ωX/k.

Also we make the situation relative and consider arbitrary proper morphisms X → Y. In
general there will no longer be a suitable notion of dualizing sheaf. To remedy the situation
we resort to cochain complexes and derived categories.

Theorem 1.2 (Grothendieck–Serre duality). Let f : X → Y be a proper morphism of locally noethe-
rian schemes. Let F be a coherent OX-module and G a coherent OY-module. Under suitable (weak)
conditions, there is a canonical isomorphism

R f∗RHomOX (F , f !G) ∼= RHomOY (R f∗F ),G). �

The main difficulty is the construction of f !. It will turn out to be a question of representability.
Compare Serre duality: for i = 0 the theorem states that Vec X → Set,F 7→ Hn(X,F )∨ is
represented by the sheaf of differentials Ωn

X/k.

2. Sheaves of modules

Let X be a ringed space. Recall the notions of
I OX-modules and their morphisms;
I free and locally free OX-modules, their rank;
I vector bundle: locally free OX-module of finite rank;
I line bundle: locally free OX-module of rank 1.

Some constructions:

tensor product F ⊗OX G :=
(

U 7→ F (U)⊗OX(U) G(U)
)#

,

direct sum
⊕
i∈I
Fi :=

(
U 7→

⊕
i∈I
Fi(U)

)#
,

sheaf hom HomOX (F ,G) :=
(

U 7→ HomOX |U (F|U ,G|U)
)

,

dual F∨ := HomOX (F ,OX).

The category OX-Mod is abelian.
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Definition 2.1. Let f : X → Y be a morphism of ringed spaces, F an OX-module and G an
OY-module. The direct image or pushforward of F is the sheaf of abelian groups

f∗F :=
(

U 7→ F ( f−1U)
)

with the OY-module structure from restriction of scalars OY → f∗OX . The inverse image or
pullback of G is the sheaf of abelian groups

f ∗G := OX ⊗ f−1OY
f−1G

with the OX-module structure by multiplication on the left. �

Despite the somewhat complicated definition, pullback is very well-behaved: for instance, we
have f ∗OY ∼= OX , and the stalk at x ∈ X is given by

( f ∗G)x ∼= OX,x ⊗OY, f (x)
G f (x).

Proposition 2.2. Let f : X → Y be a morphism of ringed spaces.
I Pullback and pushforward constitute adjoint functors

f ∗ : OY-Mod→ OX-Mod, f∗ : OX-Mod→ OY-Mod.

I Pullback is right exact and pushforward is left exact.
I If g : Y → Z is another morphism of ringed spaces, then (g f )∗ = g∗ f∗ and (g f )∗ ∼= f ∗g∗. �

See [Stacks 0094, 01AF] for more details.

3. Quasi-coherent modules

Let A be a ring and M an A-module. There is a unique sheaf of modules M∼ on Spec A such
that for all f ∈ A we have M∼(D( f )) = M f as A f -module, with the obvious restriction maps.
The construction M 7→ M∼ is a functor A-Mod → OSpec A-Mod, left adjoint to the global
sections functor Γ(Spec A, ·).

Definition 3.1. Let X be a scheme. An OX-module F is quasi-coherent if for every affine open
U ⊆ X we have F|U = F (U)∼. �

Definition 3.2. Let X be a locally noetherian scheme. An OX-module F is coherent if it is quasi-
coherent and for every affine open U ⊆ X the OX(U)-module F (U) is finitely generated. �

The category QCoh X contains all kernels, cokernels, extensions, direct sums, and tensor prod-
ucts. If X is locally noetherian, the same is true for Coh X (only finite direct sums). The cate-
gories QCoh X and Coh X are abelian.

Pullbacks of quasi-coherent modules are again quasi-coherent. In the locally noetherian
case the same is true for coherent modules. However, pushforwards of a quasi-coherent mod-
ule are not necessarily quasi-coherent.

Proposition 3.3. Let f : X → Y be a quasi-compact quasi-separated morphism of schemes and F a
quasi-coherent OX-module. Then f∗F is also quasi-coherent. �

We will see a similar statement for coherent modules later. See [Stacks 01I6, 01LA, 01XY] for
more details.
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4. Derived functors

Let A be an abelian category. An object I ∈ A is injective if the functor Hom(·, I) is exact. If
every object of A is a subobject of an injective object, then A has enough injectives. An injective
resolution of an object A ∈ A is a complex I• with a morphism A → I0, such that all Ii are
injective, Ii = 0 for i < 0, and

0 A I0 I1 . . .

is exact. If A has enough injectives, then every object has an injective resolution.

Lemma 4.1. Let A be an abelian category and f : A → B a morphism in A. Let I•, J• be injective
resolutions of A, B. Then there exists a morphism of complexes I• → J• that induces f on cohomology,
and such a morphism is unique up to homotopy. �

Definition 4.2. Let A,B be abelian categories, F : A → B a left exact functor, and suppose A
has enough injectives. The i-th right derived functor of F is RiF : A → B, A 7→ Hi(F(I•)) where
I• is an injective resolution of A. �

Dually there are projective resolutions and left derived functors. In a certain sense, derived functors
are ‘exact approximations’. This will be made precise in the language of derived categories.

We have a canonical isomorphism F ∼= R0F. Each short exact sequence

0 A B C 0

in A gives rise to a long exact sequence

0 R0F(A) R0F(B) R0F(C) R1F(A) R1F(B) R1F(C) . . . .

Proposition 4.3 (Leray acyclicity). Let A,B be abelian categories, F : A → B a left exact functor,
and suppose A has enough injectives. An object J ∈ A is acyclic for F if RiF(J) = 0 for all i > 0. Let
A ∈ A be an object and J• an acyclic resolution of A. Then RiF(A) ∼= Hi(F(J•)) for all i ∈ Z. �

Acyclic resolutions tend to be more available than injective ones, so they are useful for com-
putations. See [Stacks 0134, 0156, 05TB] for more details.

5. Sheaf cohomology

The category OX-Mod on a ringed space X has enough injectives.

Definition 5.1. Let X be a ringed space. The i-th cohomology functor of X is the right derived
functor Hi(X, ·) := Ri(Γ(X, ·)) : OX-Mod→ OX(X)-Mod. �

Definition 5.2. Let f : X → Y be a morphism of ringed spaces. The i-th higher direct image
functor of f is the right derived functor Ri f∗ : OX-Mod→ OY-Mod. �

Both versions of cohomology can also be computed on the level of abelian sheaves and abelian
groups; the result is the same.

The higher direct image functors are relative versions of the absolute cohomology functors
Hi(X, ·). If f : X → Y is a morphism of ringed spaces and F an OX-module, then

Ri f∗F ∼=
(

V 7→ Hi( f−1V,F )
)#

.
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For schemes we have the following nice relation. Let f : X → Y be a quasi-compact quasi-
separated morphism of schemes with Y affine. Let F be a quasi-coherent OX-module. Then
Ri f∗F ∼= Hi(X,F )∼.

Proposition 5.3. Let f : X → Y be an affine morphism of schemes and F a quasi-coherentOX-module.
Then for all i > 0 we have Ri f∗F = 0, and for all i ∈ Z we have Hi(X,F ) = Hi(Y, f∗F ). �

Theorem 5.4 (Grothendieck vanishing). Let X be a noetherian ringed space and F an OX-module.
Then Hi(X,F ) = 0 for all i > dim X. �

See [Stacks 01DH, 01DZ, 01E0, 01X8, 01XH, 02UU] for more details.

6. Čech cohomology

Definition 6.1. Let X be a ringed space and F an OX-module. Let U = (Ui)i∈I be an open
cover of X. Put

Cr(U ,F ) := ∏
i0,...,ir∈I

F (Ui0 ∩ . . . ∩Uir )

and define maps

Cr(U ,F )→ Cr+1(U ,F ), (ai0 ...ir )i0,...,ir 7→
(r+1

∑
j=0

(−1)jai0 ...ı̂j ...ir+1 |Ui0∩...∩Uir+1

)
i0,...,ir+1

.

The r-th Čech cohomology group of F relative to U , denoted Ȟr(U ,F ), is the r-th cohomology
group of the cochain complex C•(U ,F ). �

The purpose of Čech cohomology is to compute the ‘true’ cohomology. For simplification one
may endow I with a total ordering < and consider the ordered complex: define

Cr
<(U ,F ) := ∏

i0<...<ir∈I
F (Ui0 ∩ . . . ∩Uir )

and maps Cr
<(U ,F ) → Cr

<(U ,F ) as before. The cohomology of C•<(U ,F ) is canonically iso-
morphic to the usual Čech cohomology.

Theorem 6.2. Let X be a scheme and U = (Ui)i∈I an open cover of X such that Ui0 ∩ . . .∩Uir is affine
for all r ≥ 0. Then for all quasi-coherent OX-modules F and all r ∈ Z we have Ȟr(U ,F ) ∼= Hr(X,F )
as OX(X)-modules. �

An important application is the computation of the cohomology of projective space.

Theorem 6.3. Let A be a ring, n ≥ 0 and d ∈ Z. Then

Hi(Pn
A,O(d)) =


A[x0, . . . , xn]d if i = 0,( 1

x0···xn
A[ 1

x0
, . . . , 1

xn
]
)

d if i = n,
0 otherwise. �

This computation is a main ingredient in the proof of the following theorem. The remainder
of the proof will be given next week.

Theorem 6.4. Let f : X → Y be a proper morphism of locally noetherian schemes. Let F be a coherent
OX-module. Then Ri f∗F is a coherent OY-module for all i ∈ Z. �
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Yet another approach to cohomology computations is by a resolution in sheaves with known
cohomology. For instance, let A be a ring, n ≥ 2, and f ∈ A[x0, . . . , xn] a non-zero homoge-
neous polynomial of degree d ≥ 1. Let j : X → Pn

A be the closed subscheme defined by f . We
have an exact sequence

0 OPn
A
(−d) OPn

A
j∗OX 0.

The long exact sequence of higher direct images gives

Hi(X,OX) =


A if i = 0,( 1

x0···xn
A[ 1

x0
, . . . , 1

xn
]
)
−d if i = n− 1,

0 otherwise.

See [Stacks 01ED, 01FG, 01X8, 01XS, 0203] for more details.
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