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1. Introduction

Theorem 1.1 (Serre duality). Let k be a field, X a smooth projective scheme over k of relative dimen-
sion n, and F a locally free Ox-module of finite rank. Then for i € Z there is a canonical isomorphism

H' (X, Homo (F, Q% ) = H"(X, F)V. ¢

One goal of the coherent cohomology seminar is to state and prove a generalization of this
theorem. First, we drop the smoothness condition. We need to replace €0y , by the more
abstract dualizing sheaf wx /.

Also we make the situation relative and consider arbitrary proper morphisms X — Y. In
general there will no longer be a suitable notion of dualizing sheaf. To remedy the situation
we resort to cochain complexes and derived categories.

Theorem 1.2 (Grothendieck-Serre duality). Let f: X — Y be a proper morphism of locally noethe-
rian schemes. Let F be a coherent Ox-module and G a coherent Oy-module. Under suitable (weak)
conditions, there is a canonical isomorphism

Rf.RHomo, (F, f'G) = RHomo, (Rf.F),G). ¢

The main difficulty is the construction of f*. It will turn out to be a question of representability.
Compare Serre duality: for i = 0 the theorem states that Vec X — Set, F — H"(X, F)" is
represented by the sheaf of differentials O ;.

2. Sheaves of modules

Let X be a ringed space. Recall the notions of
» Ox-modules and their morphisms;
» free and locally free Ox-modules, their rank;
» vector bundle: locally free Ox-module of finite rank;
» line bundle: locally free Ox-module of rank 1.
Some constructions:

#
tensor product FRoy G = (U = F(U) ®oyx ) g(u)) ’
#
direct sum P F = (U = EB]:z(u)) /
icl icl
sheaf hom Homoy (F,G) = (U = Homox‘u(f|u,g|u)),
dual FY = Homp, (F, Ox).

The category Ox-Mod is abelian.



Definition 2.1. Let f: X — Y be a morphism of ringed spaces, 7 an Ox-module and G an
Oy-module. The direct image or pushforward of F is the sheaf of abelian groups

foF = (U= F(F)

with the Oy-module structure from restriction of scalars Oy — f.Ox. The inverse image or
pullback of G is the sheaf of abelian groups

f*g = OX ®f—1OY f71Q
with the Ox-module structure by multiplication on the left. ¢

Despite the somewhat complicated definition, pullback is very well-behaved: for instance, we
have f*Oy = Oy, and the stalk at x € X is given by

(f*G)x = Oxx ®Oy () G-

Proposition 2.2. Let f: X — Y be a morphism of ringed spaces.
» Pullback and pushforward constitute adjoint functors

f*: Oy-Mod — Ox-Mod, fi: Ox-Mod — Oy-Mod.

» Pullback is right exact and pushforward is left exact.
» If ¢ Y — Z is another morphism of ringed spaces, then (gf )« = g« f« and (gf)* = f*g*. ¢

See [Stacks 0094, 01AF] for more details.

3. Quasi-coherent modules

Let A be a ring and M an A-module. There is a unique sheaf of modules M™ on Spec A such
that for all f € A we have M™(D(f)) = My as Ag-module, with the obvious restriction maps.
The construction M +— M~ is a functor A-Mod — Ospec 4-Mod, left adjoint to the global
sections functor I'(Spec 4, -).

Definition 3.1. Let X be a scheme. An Ox-module F is quasi-coherent if for every affine open
U C X we have Fly = F(U)"™.

Definition 3.2. Let X be a locally noetherian scheme. An Ox-module F is coherent if it is quasi-
coherent and for every affine open U C X the Ox(U)-module F(U) is finitely generated. 4

The category QCoh X contains all kernels, cokernels, extensions, direct sums, and tensor prod-
ucts. If X is locally noetherian, the same is true for Coh X (only finite direct sums). The cate-
gories QCoh X and Coh X are abelian.

Pullbacks of quasi-coherent modules are again quasi-coherent. In the locally noetherian
case the same is true for coherent modules. However, pushforwards of a quasi-coherent mod-
ule are not necessarily quasi-coherent.

Proposition 3.3. Let f: X — Y be a quasi-compact quasi-separated morphism of schemes and F a
quasi-coherent Ox-module. Then f,F is also quasi-coherent. ¢

We will see a similar statement for coherent modules later. See [Stacks 0116, 01LA, 01XY] for
more details.



4. Derived functors

Let A be an abelian category. An object I € A is injective if the functor Hom(-, I) is exact. If
every object of A is a subobject of an injective object, then A has enough injectives. An injective
resolution of an object A € A is a complex I* with a morphism A — I°, such that all I’ are
injective, I i=0fori<0,and

0> A — 10 511 — .

is exact. If A has enough injectives, then every object has an injective resolution.

Lemma 4.1. Let A be an abelian category and f: A — B a morphism in A. Let I°,]* be injective
resolutions of A, B. Then there exists a morphism of complexes I1* — J*® that induces f on cohomology,
and such a morphism is unique up to homotopy. ¢

Definition 4.2. Let A, B be abelian categories, F: A — B a left exact functor, and suppose A
has enough injectives. The i-th right derived functor of F is R'F: A — B, A — H'(F(I*)) where
I® is an injective resolution of A. ¢

Dually there are projective resolutions and left derived functors. In a certain sense, derived functors
are ‘exact approximations’. This will be made precise in the language of derived categories.
We have a canonical isomorphism F 2 ROF. Each short exact sequence

0—A—B—C—20

in A gives rise to a long exact sequence
0 — RF(A) — R°F(B) — ROF(C) — R'F(A) — R'F(B) — R'F(C) — ... .

Proposition 4.3 (Leray acyclicity). Let A, B be abelian categories, F: A — B a left exact functor,
and suppose A has enough injectives. An object ] € A is acyclic for F if R'F(]) = 0 for all i > 0. Let
A € A be an object and ]* an acyclic resolution of A. Then R'F(A) = H'(F(J*)) foralli € Z. ¢

Acyclic resolutions tend to be more available than injective ones, so they are useful for com-
putations. See [Stacks 0134, 0156, 05TB] for more details.

5. Sheaf cohomology

The category Ox-Mod on a ringed space X has enough injectives.

Definition 5.1. Let X be a ringed space. The i-th cohomology functor of X is the right derived
functor H' (X, -) := R(T(X,-)): Ox-Mod — Ox(X)-Mod. ¢

Definition 5.2. Let f: X — Y be a morphism of ringed spaces. The i-th higher direct image
functor of f is the right derived functor R'f,.: Ox-Mod — Oy-Mod. ¢

Both versions of cohomology can also be computed on the level of abelian sheaves and abelian
groups; the result is the same.
The higher direct image functors are relative versions of the absolute cohomology functors
H(X,-).If f: X — Y is a morphism of ringed spaces and F an Ox-module, then
. . #
Rif, F = (v — H’(f”V,]-‘)) .



For schemes we have the following nice relation. Let f: X — Y be a quasi-compact quasi-
separated morphism of schemes with Y affine. Let F be a quasi-coherent Ox-module. Then

Rif, F = H(X,F)~.

Proposition 5.3. Let f: X — Y be an affine morphism of schemes and F a quasi-coherent Ox-module.
Then for all i > 0 we have R' f. F = 0, and for all i € Z we have H' (X, F) = H'(Y, f«.F). ¢

Theorem 5.4 (Grothendieck vanishing). Let X be a noetherian ringed space and F an Ox-module.
Then H (X, F) = 0 for all i > dim X. ¢

See [Stacks 01DH, 01DZ, 01EO, 01X8, 01XH, 02UU] for more details.
6. Cech cohomology
Definition 6.1. Let X be a ringed space and F an Ox-module. Let U = (U;);c; be an open

cover of X. Put

CY(Z/{,]-") = H .7-'(U,-0 ﬂ...ﬂuir)

ig,.‘.,irEI
and define maps
1 r+1 .
Cr(u’ ‘F) — C7+ (Z/{/ J_-.)/ (aio...iy)ig,...,i, = (Z(_l)]aio...fj...ir+1 |U,‘0Iﬁ|...ﬂul‘y+l )i ; .
j=0 07eerbr+1

The r-th Cech cohomology group of F relative to U, denoted H' (U, F), is the r-th cohomology
group of the cochain complex C*(U, F). ¢

The purpose of Cech cohomology is to compute the ‘true’ cohomology. For simplification one
may endow [ with a total ordering < and consider the ordered complex: define

C’<(Ll,]-') = H ]-'(Uioﬂ...ﬂui,)

ip<...<i€l

and maps C_ (U, F) — CL (U, F) as before. The cohomology of C2 (U, F) is canonically iso-
morphic to the usual Cech cohomology.

Theorem 6.2. Let X be a scheme and U = (U;);cy an open cover of X such that U;, N...NUj, is affine
forall v > 0. Then for all quasi-coherent Ox-modules F and all r € Z we have W' (U, F) = H' (X, F)
as Ox (X)-modules. ¢

An important application is the computation of the cohomology of projective space.

Theorem 6.3. Let Abearing, n > 0andd € Z. Then

A[Xo,...,xn]d zfz =0,
H (P, 0(d)) = { (1Al L)), fi=n,
0 otherwise. ¢

This computation is a main ingredient in the proof of the following theorem. The remainder
of the proof will be given next week.

Theorem 6.4. Let f: X — Y be a proper morphism of locally noetherian schemes. Let F be a coherent
Ox-module. Then R’ fy F is a coherent Oy-module for all i € Z. ¢



Yet another approach to cohomology computations is by a resolution in sheaves with known
cohomology. For instance, let A be a ring, n > 2, and f € Alxo,..., x| a non-zero homoge-
neous polynomial of degree d > 1. Let j: X — P’} be the closed subscheme defined by f. We
have an exact sequence

0— O]pnA(—d) — OIPZ — ]*OX — 0.

The long exact sequence of higher direct images gives

A ifi =0,
H(X,0x) = { (mig Al o))y ifi=n—1,
0 otherwise.

See [Stacks 01ED, 01FG, 01X8, 01XS, 0203] for more details.



