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Motivated by the study of physical structures such as crystals, grids of neurons and population patches,
an increasing interest has arisen in mathematical modelling techniques that reflect the underlying spatial
discreteness. The main goal of this project is to deepen our understanding of the differences and similarities
between such spatially discrete systems and their traditional continuous counterparts.

Lattice Differential Equations

In this project, we will consider the two dimensional Nagumo lattice differential equation (LDE), which is
given by

u̇ij = αij [ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij ] + g(uij ; a), (i, j) ∈ Z2, (1)

with prototypical cubic nonlinearity g(u; a) = u(1 − u)(u − a) for some a ∈ (0, 1). The Nagumo equation
is a phenomenological model in which two stable equilibria compete for dominance in a spatial domain. In
modelling contexts one often thinks of these equilibria as representing material phases or chemical or biological
species. Upon choosing αij = h−2 > 0, the LDE (1) can be seen as the discretization of the heavily studied
planar PDE

∂tu(x, y, t) = (∂2
x + ∂2

y)u(x, y, t) + g
(
u(x, y, t); a

)
, (x, y) ∈ R2, (2)

on a square lattice with internode distance h.

Travelling waves

A natural place to start the analysis of (1) is to assume that all the coefficients are equal (αij = α > 0) and to
look for planar travelling wave solutions that connect the two stable equilibria u ≡ 0 and u ≡ 1. Such waves
can be written as

uij(t) = Φ(i cos θ + j sin θ + ct); Φ(−∞) = 0, Φ(∞) = 1, (3)

in which the angle θ indicates the direction of propagation of the wave relative to the horizontal axis of Z2.
Substituting this Ansatz into (1), we find that the wave profile Φ : R→ R necessarily satisfies the system

cΦ′(ξ) = α
[
Φ(ξ + cos θ) + Φ(ξ − cos θ) + Φ(ξ + sin θ) + Φ(ξ − sin θ)− 4Φ(ξ)

]
+ g(Φ(ξ), a). (4)

It is known [3] that (4) admits solutions (c,Φ) for all 0 < a < 1 and θ ∈ [0, 2π]. In addition, the wave speed c
is unique once a and θ are fixed, but the profile Φ is only unique (up to translations) if c 6= 0.

Propogation Failure This condition on c reflects a crucial difference between the LDE (1) and its contin-
uous counterpart (2). Indeed, the wave speed c appears in travelling wave MFDE (4) in front of the highest
derivative, which should be contrasted to the travelling wave ODE

cΦ′(ξ) = Φ′′(ξ) + g(Φ(ξ); a) (5)

that is associated to the PDE (2).
Fig. 2 illustrates the far-reaching consequences that this singular dependence can have: upon fixing the

angle θ, the wave speed c may vanish for all parameter values a in some interval [a∗(θ), 1
2 ], with a∗(θ) < 1

2 .
This phenomenon is called propagation failure and is present throughout a wide range of discrete systems. It
can be interpreted as the consequence of an energy barrier caused by the gaps, which must be overcome in
order to allow propagation.



Fig. 1: Plotted are the pairs
(
c(θ, a) cos θ, c(θ, a) sin θ

)
for travelling wave solutions to the LDE (1) with αij = 1

and g(u; a) = 10u(1−u)(u−a) at different values of the detuning parameter a. In particular, these figures can
be seen as polar plots where the radial distance gives the wave speed for the angle under consideration. The
angular dependence becomes more and more pronounced as a → 1

2 . The spikes towards the center indicate
the presence of propagation failure in certain directions.

Fig. 2: Typical plot of the wave
speed c as a function of a for a fixed
value of θ.

Anistropy Embedding the square lattice Z2 into the continuous
space R2 necessarily breaks the spatial isotropy of R2 since two
preferred lattice directions are chosen. Indeed, in (4) the angle θ
appears explicitly, in contrast to (5).

As shown in Figure 1, the dependence of c on a and θ can be
rather delicate, which is a direct consequence of the rotational sym-
metry that one breaks when embedding the square lattice Z2 into
the continuous space R2. Indeed, the corresponding polar plots for
the PDE (2) are all circles as c no longer depends on the direction
θ.

Obstacles

In this project we intend to investigate the impact of lattice impu-
rities on the propagation of planar waves. In particular, we will study (1) with diffusion coefficients that are
homogeneous everywhere except at (0, 0), i.e., αij = α+ βδi0δj0 with α > 0 and β > 0. The main question is
in what sense the travelling wave for the ’pure’ system scatters when it ’hits’ the obstacle. In particular, does
the wave recover its shape after it has passed the obstacle and if so, how fast?

Results of this type for the Nagumo PDE (2) have only become available very recently [1]. For the LDE
(1) partial results have also been developed for general directions [2], but they are rather messy and require
that waves are able to travel in all directions (which in the context of Figure 1 means that the spikes are
not allowed.) In this project, we will focus on the special cases of waves travelling in horizontal, vertical and
diagonal directions. In these cases the analysis becomes much nicer and more concrete results can be expected.
In particular, it is very interesting to see if waves travel in diagonal directions survive the impact of the obstacle
if waves in the horizontal and vertical directions are blocked.
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