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1 Introduction

A binary form is a homogeneous polynomial in two variables, for example

F (X,Z) = (−345117947278637540− 557346201129601687i)X6

+ (139680088221948568187− 192851765030033352266i)X5Z

+ (35030008596671180091651 + 8472805989353978220340i)X4Z2

+ (441100941439317287969083 + 2875545097232627721377912i)X3Z3

+ (−113178621816373615442573605 + 68110084927367567172952422i)X2Z4

+ (−2566612050072240415858218695− 1909095637617069339428945974i)XZ5

+ (7985420264591669223302054474− 31272415652966492733776691049i)Z6,

and

G(X,Z) = X6 +X5Z +X4Z2 +X3Z3 +X2Z4 +XZ5 + Z6 ∈ Z[i][X,Z].

These binary forms are equivalent, because there exists an invertible change of coordinates trans-
forming one into the other:

G(X,Z) = F

((
703 + 588i −16769 + 52890i
79 + 43i −592 + 5413i

)
·
(
X
Z

))
.

This reduction of a binary form with big coefficients to a binary form with small coefficients has
applications to the study of hyperelliptic curves and cryptography.

Gaston Julia layed the foundation of the reduction of binary forms in his thesis in 1917 [6] using
earlier work of Charles Hermite [4]. Julia formulated a method for reducing square-free binary
forms with integer coefficients of degrees 3 and 4. Cremona gave a reformulation of these methods
in 2003, which were computationally more practical [2]. Stoll and Cremona generalised this to
complex binary forms of degree n ≥ 3, with some restrictions on the the multiplicities of their
zeros [10]. In a follow-up paper, Hutz and Stoll were able to give explicit bounds on the size of
the coefficients of a binary form after it is reduced, and used this to construct an algorithm to
find the binary form in the SL2(Z) orbit with the lowest possible coefficients [5].

In this Bachelor thesis we will cover the methods of Stoll and Cremona. We will extend these
methods to all discrete principal ideal domains that are subrings of C. In addition, we will also
cover the algorithm for optimal reduction of real binary forms over SL2(Z) from Hutz and Stoll,
and generalise this to binary forms with coefficients in discrete norm-Euclidean subrings of C.

Basic knowledge about linear algebra, group theory, ring theory and topology is required to read
this thesis.
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2 Binary forms and the special linear group

In the following section we let R be a subring of C and n a positive integer.

Definition 2.1. A binary form F = F (X,Z) over R is a homogeneous polynomial in two
variables over R. We will denote the set of all binary forms of degree n by R[X,Z]n.

There exists a right action of SL2(R) on R[X,Z]n, given by the following formula:

F (X,Z) ·
(
a b
c d

)
= F (aX + bZ, cX + dZ). (2.2)

One can simply view this as a composition of F (X,Z) with a linear map in SL2(R), It is then
clear that this defines a right action on R[X,Z]n.

The primary goal of this thesis will be to determine a matrix γ ∈ SL2(R) such that the coefficients
of F · γ are small, in the following sense:

Definition 2.3. Let F = a0X
n + a1X

n−1Z + · · ·+ anZ
n ∈ C[X,Z]n be a binary form of degree

n. We define

� the size of F to be ∥F∥ =
∑n

j=0 |aj |2,

� the height of F to be H(F ) = max0≤j≤n |aj |.

Given a binary form F over R, we want to find γ ∈ SL2(R) such that ∥F∥ is small relative
to the other binary forms in its orbit under the action of SL2(R). Because of the inequalities
n ·H(F )2 ≥ ∥F∥ ≥ H(F )2, the size ∥F∥ being small implies that the height H(F ) will also be
small. When trying to find a binary form in the SL2(R) orbit of F with the lowest size or height,
this distinction will be relevant, and we will describe a way to find both for square-free binary
forms over some suitable subrings of C.

2.1 The zeros of binary forms

Let F = F (X,Z) with coefficients in C. We call a pair of complex numbers (α, β) a zero of F
if F (α, β) = 0. If n is the degree of F and λ ∈ C∗ is a scalar, then F (λX, λZ) = λnF (X,Z).
Consequently, if (α, β) is a zero of F , then (λα, λβ) is also a zero of F . This gives motivation
for the following definition:

Definition 2.4. Let the equivalence relation ∼ on C2 \ {(0, 0)} be given by (z1, z2) ∼ (z′1, z
′
2) if

and only if there exists λ ∈ C∗ such that (z1, z2) = (z′1, z
′
2)λ. We define the complex projective

line P1(C) to be (C2 \ {(0, 0)})/ ∼. The equivalence class of (z1, z2) in P1(C) will be denoted by
(z1 : z2).

One can interpret P1(C) to be the set of complex lines through the origin in C2. If (α, β) is a
zero of F , then so is the entire equivalence class (α : β). We will therefore view the zeros of a
binary form F as points in P1(C). If (α : β) is a zero of F , then βX−αZ is an irreducible factor
of F . Using the fundamental theorem of algebra we also find that any binary form of degree
n ≥ 1 has at least one zero. Therefore if F is non-zero, then we can always find a decomposition
F into linear factors. When none of these factors repeat up to scaling with a constant λ ∈ C∗,
we call F square-free. We will denote the set of all square-free binary forms over R of degree n by
R[X,Z]′n. When whe act on a square-free binary form F ∈ R[X,Z]′n with a matrix γ ∈ SL2(R),
the binary form F · γ will also be square-free.
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There exists a natural embedding of C into P1(C), called the affine coordinate patch φ, given by

φ : C→ P1(C), z 7→ (z : 1). (2.5)

The image of φ is the entirety of P1(C) apart from the point (1 : 0). We will call this point
infinity. Because of this, the set P1(C) is also occasionaly written as C ∪ {∞}.

2.2 The action of SL2(C) on P1(C)
As {(0, 0)} is its own SL2(C)-orbit, we can restrict the action of SL2(C) on C2 to the complement
of {(0, 0)}, namely C2 \ {(0, 0)}. Then two elements of the same equivalence class are always
mapped to the same equivalence class. Therefore the action of SL2(C) on C2 \ {(0, 0)} induces
an action of SL2(C) on P1(C), given by(

a b
c d

)
(z1 : z2) = (az1 + bz2 : cz1 + dz2). (2.6)

Suppose that F is a binary form, and that (α : β) is a zero of F . Then for γ ∈ SL2(C), the point
γ−1 · (α : β) is a zero of F · γ.
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3 The hyperbolic upper half-plane and upper half-space

We will relate the action of SL2(C) on complex binary forms to the action of SL2(C) on another
set, the upper half-space. For real binary forms, we will consider a subset of this upper half-space,
namely the upper half-plane, which invariant under the action of SL2(R).

3.1 The upper half-plane

As we have seen in the previous section, there is an action of SL2(C) on P1(C). We define the
upper half-plane to be a subset of P1(C), as follows:

Definition 3.1. We define the upper half-plane to be H = {(z : 1) ∈ P1(C) | Im(z) > 0}

As SL2(R) is a subgroup of SL2(C), we also have an action of SL2(R) on P1(C) induced by
restriction. The action of SL2(R) on the subset H of P1(C) is given by(

a b
c d

)
(z : 1) = (az + b : cz + d) =

(
az + b

cz + d
: 1

)
. (3.2)

The following calculation shows that this still lies in H:

Im

(
az + b

cz + d

)
=

(ad− bc) · Im(z)

|cz + d|2
=

Im(z)

|cz + d|2
> 0. (3.3)

Therefore, the subset H of P1(C) is invariant under the action of SL2(R). Thus we have a well-
defined action of SL2(R) on H. As H lies entirely within the image of the affine coordinate patch
φ, we can also look at the inverse image of H under φ. We can write H = {z ∈ C : Im(z) > 0},
and the action of SL2(R) on H is given by(

a b
c d

)
z =

az + b

cz + d
. (3.4)

3.2 Correspondence with positive definite quadratic forms

We will see that there exists a correspondence between the upper half-space and positive definite
quadratic forms, where quadratic forms are real binary forms of degree 2. A general formula
for a quadratic form is Q(X,Z) = aX2 + 2bXZ + cZ2 for a, b, c ∈ R. We call a quadratic form
positive definitie if Q(x, z) > 0 for all x, z ∈ R not both equal to zero.

Definition 3.5. Let Q(X,Z) = aX2 + 2bXZ + cZ2 ∈ R[X,Z]2 be a quadratic form. We define
the discriminant disc(Q) as

disc(Q) = 4b2 − 4ac. (3.6)

A quadratic form Q always has two zeros in P1(C) when counted with multiplicity. When disc(Q)
is negative, one of its zeros will lie in H, and the other zero will be its complex conjugate.

Lemma 3.7. A quadratic form Q(X,Z) = aX2 + 2bXZ + cZ2 ∈ R[X,Z]2 is positive definite if
and only if a > 0 and disc(Q) < 0.

Proof. Suppose a > 0 and disc(Q) < 0. Then Q has two zeros: (α : 1) and (α : 1), where
α = −b/a +

√
disc(Q)/2a. Therefore Q can be written as a(X − αZ)(X − αZ) = a|X − αZ|2,

which is positive definite.

Conversely, if a ≤ 0, then Q(1, 0) ≤ 0. Secondly if disc(Q) ≥ 0 and a > 0 both hold, then we
have Q(−b, a) = −a

4 disc(Q) ≤ 0. So Q is not positive definite if a ≤ 0 or disc(Q) ≥ 0
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Now let Q(X,Z) be a positive definite quadratic form. Then Q(X,Z) has the zero (α : 1) ∈ H,
with α as in the proof of Lemma 3.7. Furthermore, for all λ > 0, the quadratic form λQ(X,Z)
is still positive definite, and it has the same zero in the upper half-space. So the following map,
called the zero map, is well-defined:

ξ : {positive definite quadratic forms}/R∗
>0 → H,

aX2 + 2bXZ + cZ2 7→
−2b+

√
disc(Q)

2a
.

(3.8)

We have a right action of SL2(R) on quadratic forms given by function composition. If γ ∈ SL2(R)
is a matrix, then (Q ·γ)(x, z) = Q(γ · (x, z)⊤), so Q ·γ is still positive definite. Secondly, we have
λ · (Q · γ) = (λ ·Q) · γ for λ > 0, and therefore there is an action of SL2(R) on the set of positive
definite quadratic forms up to scaling by a positive constant.

Lemma 3.9. The zero map ξ is a one-to-one correspondence which respects the action of SL2(R).
More concretely, if γ ∈ SL2(R) and Q is a positive definite quadratic form, then ξ(Q · γ) =
γ−1 · ξ(Q).

Proof. We will first show that ξ is injective. Suppose two positive definite quadratic forms
Q,Q′ have the same zero α in the upper half-plane. Then we can write Q = a|X − αZ|2 and
Q′ = a′|X − αZ|2 for some a, a′ > 0. Therefore Q and Q′ differ by a positive constant, and are
equal in the quotient. To show surjectivity, let α ∈ H. Then (α : 1) is a zero of the positive
definite quadratic form |X − αZ|2 = X2 − 2Re(α) + |α|2Z2.

We have left to show that ξ respects the action of SL2(R). This follows from the fact that
γ−1ξ(Q) is a zero of the Q · γ, and every positive definite quadratic form has a unique zero in
the upper half-plane.

Because the zero map respects the action of SL2(R), we call ξ covariant.

3.3 The upper half-space as a subset of the projective quaternion line

For complex binary forms, we will relate the action of SL2(C), to an action of SL2(C) on a three-
dimensional analogy to the upper half-plane, the upper half-space. Lars Ahlfors describes a way
to view the upper half-space as a subset of the set of quaternions, in the same way that the upper
half-plane can be viewed as a subset of the complex numbers [1]. The action of SL2(C) on the
upper half-space can then be written in an elegant manner. First, we will define the quaternions.

Definition 3.10. The set of quaternions H is defined to be a real four-dimensional vector space
with basis 1, i, j, k, along with an R-bilinear multiplication given by

i2 = j2 = k2 = −1,
ij = −ji = k,

jk = −kj = i,

ki = −ik = j,

(3.11)

along with a · 1 = 1 · a = a for all a ∈ H.

The multiplication on H is associative, but not commutative. This makes H a four-dimensional
R-algebra. We define the conjugate of an element ω = a+bi+cj+dk ∈ H as ω = a−bi−cj−dk.
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For any two elements ω1, ω2 ∈ H we then have ω1 · ω2 = ω2 · ω1. Using this we can also define a
norm map | · | : H→ R≥0 such that

|ω|2 = ω · ω = a2 + b2 + c2 + d2. (3.12)

Using this, we see that H is a division ring, as ω · ω/|ω|2 = 1 for ω non-zero. To generalise the
real part and imaginary part functions on C, we define the following four projections:

Re(a+ bi+ cj + dk) = a,

πi(a+ bi+ cj + dk) = b,

πj(a+ bi+ cj + dk) = c,

πk(a+ bi+ cj + dk) = d.

(3.13)

We can view the set of complex numbers C as the subspace of H generated by 1 and i, such that
the group SL2(C) has a natural action on H2. As {(0, 0)} is its own orbit, the group SL2(C) also
acts on the subset H2 \ {(0, 0)}. Similarly to how we defined the upper half-plane to be a subset
of the complex projective line P1(C), we will also define the upper half-space to be a subset of
the quaternion projective line.

Definition 3.14. Define the equivalence relation ∼ on H2 \ {(0, 0)} as (τ1, τ2) ∼ (τ ′1, τ
′
2) if and

only if there exists λ ∈ H∗ such that (τ1, τ2) = (τ ′1, τ
′
2) · λ. Then the projective quaternion line

P1(H) is defined to be (H2 \ {(0, 0)})/ ∼. Equivalence classes in P1(H) are denoted by (τ1 : τ2).

By associativity of matrix multiplication, the action of SL2(C) on H2 \ {(0, 0)} respects this
equivalence relation. Therefore this action induces an action of SL2(C) on P1(H), given by(

a b
c d

)
(τ1 : τ2) = (aτ1 + bτ2 : cτ1 + dτ2). (3.15)

Similar to the way C is embedded into P1(C), there is a natural embedding of H into P1(H). We
again call this embedding the affine coordinate patch, defined as

φ : H→ P1(H), ω 7→ (ω : 1). (3.16)

Definition 3.17. We define the upper half-space H3 as the subset

{(a+ bi+ cj : 1) | a, b, c,∈ R, c > 0} ⊂ P1(H). (3.18)

The action of SL2(C) on the upper half-space can be written as(
a b
c d

)
(ω : 1) = (aω + b : cω + d) =

(
(aω + b)(cω + d)−1 : 1

)
. (3.19)

Using the following equations we find that H3 is invariant under the action of SL2(C):

πj((aω + b)(cω + d)−1) =
Re(ad− bc)πj(ω)
|cω + d|2

=
πj(ω)

|cω + d|2
> 0, (3.20)

πk((aω + b)(cω + d)−1) =
Im(ad− bc)πj(ω)
|cω + d|2

= 0, (3.21)
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where a, b, c, d are complex numbers with ad − bc = 1. As H3 is contained in the image of the
affine coordinate patch φ, we will often identify H3 with its inverse image under φ. The action
of SL2(C) on H3 can then be written as(

a b
c d

)
ω = (aω + b)(cω + d)−1. (3.22)

We can view the upper half-plane H as a subset of the upper half-space H3, using the map
a+ bi 7→ a+ bj. Then H can be identified with the subset of H3 consisting of all elements τ +uj
with Im(τ) = 0.

3.4 Correspondence to positive definite Hermitian forms

In the previous section we have seen that there exists a correspondence between the upper half-
plane and the set of positive definite quadratic forms up to scaling with a positive constant. We
can extend this correspondence to the upper half-space by extending positive definite quadratic
forms to their complex analogy: positive definite Hermitian forms. A Hermitian form can be
represented as Q(X,Z) = a|X|2 + bXZ + bXZ + c|Z|2, with a, c ∈ R and b ∈ C [10].

Definition 3.23. Let Q(X,Z) = a|X|2 + bXZ + bXZ + c|Z|2 be a Hermitian form. We define
the discriminant disc(Q) of Q to be 4|b|2 − 4ac.

A Hermitian form is called positive definite if Q(x, z) > 0 for all x, z ∈ C not both equal to zero.

Lemma 3.24. A Hermitian form Q(X,Z) = a|X|2+ bXZ+ bXZ+ c|Z|2 for a, c ∈ R and b ∈ C
is positive definite if and only if a > 0 and disc(Q) < 0.

Proof. Suppose a > 0 and disc(Q) < 0. We can write Q(X,Z) = a|X + b/aZ|2 − disc(Q)/a|Z|2,
which is clearly positive definite.

Now suppose a ≤ 0. Then we have Q(1, 0) = a ≤ 0. Otherwise if a > 0 and disc(Q) ≥ 0, then
we have Q(−b, a) = −a(|b|2 − ac) ≤ 0. So if either a ≤ 0 or disc(Q) ≥ 0 holds, the Hermitian
form Q is not positive definite.

We will define a correspondence between the upper half-space and the set of positive definite
Hermitian forms, up to scaling with a positive constant. First define

ψ : P1(H)→ {maps C2 → R≥0}/R∗
>0,

(α : β) 7→
[
(X,Z) 7→ |Xβ − Zα|2

]
.

(3.25)

If we multiply α, β ∈ H by some scalar λ ∈ H∗ on the right, then ψ(αλ : βλ) = ψ(α : β) · |λ|2. It
follows that this map is well-defined. When we restrict ψ to the upper half-plane, we can write
ψ(ω : 1) = |X −Zω|2 = |X −Zτ |2 + u2|Z|2 with ω = τ + uj, where we used that X and Z only
take values in C. This is a positive definite Hermitian form.

Proposition 3.26. The map ψ|H3
: H3 → {positive definite Hermitian forms}/R∗

>0 is a bijec-
tion, with inverse given by

a|X|2 + bXZ + bXZ + c|Z|2 7→

(
−2b+ j

√
−disc(Q)

2a
: 1

)
. (3.27)
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This proposition follows from quick calculation which we leave to the reader. We call the inverse
of ψ|H3

the zero map, denoted by ξ, and for all positive definite Hermitian forms Q we call ξ(Q)
the point in the upper half-space corresponding to Q.

There is a right action of SL2(C) on the set of maps C2 → R≥0 up to scaling with a pos-
itive constant given by function composition, and also a left action of SL2(C) on P1(H). If
γ =

(
a b
c d

)
∈ SL2(C) is a matrix, then we have

ψ(α : β) · γ = |(aX + bZ)β − (cX + dZ)α|2 = |X(−cα+ aβ)− Z(dα− bβ)|2 = ψ(γ−1 · (α : β)).

If we now restrict ψ to H3, we find that ξ is covariant, that is, ξ(Q ·γ) = γ−1ξ(Q) for any positive
definite Hermitian form Q.

We can embed the set of positive definite quadratic forms up to scaling with a positive constant
into the set of positive definite Hermitian forms up to scaling with a positive constant, with the
map aX2 + 2bXZ + cZ2 7→ a|X|2 + bXZ + bXZ + c|Z|2. With this embedding, the zero map
on quadratic forms agrees with the zero map on Hermitian forms.

3.5 Hyperbolic Geometry

The upper half-plane is often endowed with a hyperbolic geometry. This geometry can also be
extended to the upper half-space, which we will use to justify reduction algorithms. Hutz and
Stoll used this hyperbolic metric to give an explicit upper and lower bounds on the size of a
binary form [5]. We will also define a generalised notion of distance to the ideal boundary of
the upper half-space. This generalised distance was first given by Stoll and Cremona in order to
obtain geometric intuition for the reduction of complex binary forms [10].

In order to define the metric on H3, we need to consider paths in H3, defined as continuously
differentiable maps from [0, 1] to H3.

Definition 3.28. Let γ : [0, 1] → H3 be a path. Then the length L(γ) of γ is defined as the
integral

L(γ) =

∫ 1

0

|γ′(t)|
πj(γ(t))

dt. (3.29)

We define for any ω1, ω2 ∈ H

d(ω1, ω2) = inf{L(γ) : γ is a path from ω1 to ω2}. (3.30)

All of the maps induced by the action of SL2(C) are isometries using this metric. As we can
view the upper half-plane as a subset of the upper half-space, the upper half-plane inherits a
metric. This metric is the same as the usual hyperbolic metric on the upper half-plane, defined
analogously. The group SL2(R) acts on the upper half-plane using isometries in this metric [1].

We will now give a generalised notion of distance of points in the upper half-space, to points in
the ideal boundary. We will use this generalised distance to obtain some geometric intuition of
one of the maps from the set of binary forms to the upper half-space, which we will define in
the following section. This generalised notion of distance will not be necessary for our reduction
algorithms, so it can be skipped by the reader.

Recall that we can write H3 = {(ω : 1) | ω ∈ H, πj(ω) > 0, πk(ω) = 0}. We will define the ideal
boundary ∂H3 of H3 as {(τ : 1) | τ ∈ C} ∪ {(0 : 1)} ⊂ P1(H). We can identify this with the set
P1(C). The zeros of a binary form can now be viewed as elements of the ideal boundary ∂H3.
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∂H3

Figure 1: Geodesics in H3

Definition 3.31. Let ω = τ + uj ∈ H3 and z ∈ C ⊂ ∂H3. Then we define the generalised
distance d∂ between these points as

d∂(ω, z) = log

(
|ω − z|2

u

)
= log

(
|τ − z|2 + u2

u

)
. (3.32)

For z =∞, we define the generalised distance as

d∂(ω,∞) = log

(
1

u

)
. (3.33)

Note that these generalised distances can be negative.

We define geodesics to be locally length-minimizing curves. The geodesics of the upper half-
space using this metric, are either vertical lines or vertical half-circles, as shown in Firgur 1
Every geodesic intersects the ideal boundary ∂H3 = P1(C) exactly twice. Using these geodesics
we can express the distance between two points ω1, ω2 using the generalised distance.

Lemma 3.34. Let ω1, ω2 ∈ H3, and let z be one of the two points where the geodesic connecting
ω1 and ω2 intersects the ideal boundary ∂H3 = P1(C). Then the following equality holds:

d(ω1, ω2) = |d∂(ω1, z)− d∂(ω2, z)|. (3.35)

We will not be proving this here. This was first noted by Stoll and Cremona [10]. Elezi and
Shaska proved this using an alternative definition of the hyperbolic geometry on the upper half-
space [3]. Lars Ahlfors shows that these definitions agree [1].

The action of SL2(C) does not preserve distances between points in H3 and points on the edge.
The distance changes by an additive constant, depending on the matrix γ ∈ SL2(C) and the
point on the edge, but not on the point in H3 [10]. This constant cancels in equation 3.35.
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4 Covariant maps to the upper half-plane

For the reduction of binary forms, we will restrict ourselves to square-free binary forms of degree
n ≥ 3. We will need this restriction to define two maps from the set of complex square-free binary
forms to the upper half-space, as Stoll and Cremona give in their paper in 2003 [10]. These maps
will have the important property that they are covariant with respect to the action of SL2(C)
on both the set of binary forms and the upper half-space. Using this property we can relate the
action of SL2(C) on the set of binary forms to the action of SL2(C) on the upper half-space. In
a later paper, Hutz and Stoll give explicit bounds on the size of a binary form in terms of the
distance between the point j ∈ H3 and the image of F under one of these covariant maps [5].

4.1 The covariant z

Gaston Julia dealt with the reduction of binary forms with integer coefficients of degrees 3 and
4 in his thesis in 1917 [6]. Stoll and Cremona generalised his work to complex binary forms of
degree n ≥ 3, with some restrictions on the multiplicities on the zeros. Let F ∈ C[X,Z]′n be a
square-free binary form. Stoll and Cremona often assumed F has no zeros at infinity. We will
generalise their methods here so this assumption is not necessary. Write F =

∏n
j=1(βjX−αjZ).

We then assign the following class Hermitian forms up to sclaing to F :

Q(F )(X,Z) =

n∑
j=1

tj |βjX − αjZ|2, (4.1)

where the tj are positive real numbers chosen in such a way as to minimize

θ(t1, . . . , tn) =
|disc(Q(F ))|n/2

nnt1t2 · · · tn
. (4.2)

Note that θ(t1, . . . , tn) is invariant under simultaneous scaling of all of the ti with a positive
scalar. We will show later that the t = (t1, . . . , tn) is uniquely determined up to scaling, and
that Q(F ) is independent of the choice of factorisation of F .

Definition 4.3. Let F be a square-free binary form of degree n ≥ 3. Then z(F ) is defined as
the point in the upper half-plane corresponding to Q(F ).

We can assume without loss of generality that t1t2 · · · tn = 1 holds, as θ(t1, . . . , tn) is invari-
ant under scaling of t. Finding Q(F ) then comes down to minimizing |disc(Q(F ))| under this
constraint.

Using |βjX − αjZ|2 = |β|2|X|2 + βαXZ + βαXZ + |α|2|Z|2 we obtain the following equation:

Q =

n∑
j=1

tj |βj |2|X|2 +
n∑

j=1

tjβjαjXZ +

n∑
j=1

tjβjαjXZ +

n∑
j=1

tj |α|2|Z|2. (4.4)

We now find for disc(Q):

1
4 |disc(Q)| =

(
n∑

j=1

tj |βj |2
)(

n∑
j=1

tj |αj |2
)
−

∣∣∣∣∣
n∑

j=1

tjβjαj

∣∣∣∣∣
2

=

n∑
j=1

n∑
k=1

tjtk(|βj |2|αk|2 − βjβkαjαk)

=
∑
j<k

tjtk|βjαk − βkαj |2.

(4.5)
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We introduce the variables u1, . . . , un such that tj = expuj for all 1 ≤ j ≤ n, i.e. uj = log(tj).
This is possible because the tj are all positive. The constraint t1t2 · · · tn = 1 is then equivalent
to
∑

j uj = 0. Minimizing the discriminant is now reduced to minimizing the function

D(u) =
∑
j<k

|βjαk − βkαj |2 exp(uj + uk), (4.6)

on the subspace given by
∑

j uj = 0.

Lemma 4.7 (Lemma 4.2 in [10]). If F is a square-free binary form of degree n ≥ 3, then D is
strictly convex from below on Rn. Furthermore, D attains a unique minimum on the subspace V0
of Rn given by

∑
j uj = 0

Proof. This is a slight generalisation of Lemma 4.2 from Stoll and Cremona, as they assume F
has no zero at infinity. However, the proof is the analogous. See [10].

Let (u1, . . . , un) be the unique minimum of D|V0 . Then for the Hermitian form Q(F ) we find
Q(F ) =

∑n
j=1 exp(uj)|βjX − αjZ|2. Now z(F ) is the point in H3 corresponding to Q(F ). We

define the quantity θ(F ) to be the minimal value of θ(t1, . . . , tn).

Lemma 4.8. The Hermitian form Q(F ) is well-defined up to scaling, and the map F 7→ Q(F )
is covariant. Consequently, z(F ) is also well-defined and covariant. Furthermore, the map
F 7→ θ(F ) is invariant under the action of SL2(C).

Proof. First we will prove that Q(F ) is well-defined up to scaling. Given two factorisations∏n
j=1(βjX−αjZ) =

∏n
j=1(β

′
jX−α′

jZ) of F into linear factos, there exist constants cj ∈ C wich
c1c2 · · · cn = 1 and a permutation σ ∈ Sn such that (βj , αj) = cj(βσ(j), ασ(j)). As reordering has
no effect on the Hermitian form Q(F ), we can assume that σ is the identity map. The constants cj
correspond to multiplying tj with a factor of |cj |2 in (4.1). This is simply a reparametrisation of
the tj which leaves t1t2 . . . tn invariant, so this will have no effect on the quadratic form Q(F ).
Secondly by Lemma 4.7, the vector t is uniquely determined up to scaling by a positive constant.
Therefore Q(F ) is well-defined up to scaling. As a result the corresponding point z(F ) is also
well-defined.

To prove covariance, let α1, α2, β1, β2 ∈ C. Then we have

β1α2 − β2α1 =
(
α1 β1

)(0 −1
1 0

)(
α2

β2

)
. (4.9)

Now let γ ∈ SL2(C) and define α′
1, α

′
2, β

′
1, β

′
2 such that (α′

j , β
′
j)

⊤ = γ(α, β)⊤. We find

β′
1α

′
2 − β′

2α
′
1 =

(
α1 β1

)
γ⊤
(
0 −1
1 0

)
γ

(
α2

β2

)
=
(
α1 β1

)( 0 −det γ
det γ 0

)(
α2

β2

)
. (4.10)

Hence, β′
1α

′
2−β′

2α
′
1 = β1α2−β2α1. Let F be a complex square-free binary form of degree n ≥ 3.

Using this equality we find that the function D(u) is invariant under the action of SL2(C) on F .
Therefore, the same tj minimize θ in (4.2) for both F and F · γ. This implies that θ is an
invariant, and Q(F · γ) = Q(F ) · γ. Now z(F · γ) = γ−1z(F ) follows from the covariance of the
zero map.
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If F is complex binary form, then the zeros of its conjugate F are equal to the conjugates of the
zeros of F . Therefore the map D is invariant under conjugation of F , so the same ti minimize
θ(t1, . . . , tn). Using this we find Q(F )(X,Z) = Q(F )(X,Z). Therefore the corresponding point
z(F ) in the upper half-space is equal to z(F ) with its i-part multiplied by −1. If F is real,
then F = F . As a consequence the i-part of z(F ) is equal to 0, and z(F ) is an element of the
embedding of the upper half-space into the upper half-plane.

According to Lemma 4.7, computing z(F ) numerically comes down to finding the minimum of a
convex function. For this thesis I have implemented this into the program SageMath. There are
numerous algorithms to find this minimum, for example Newton iteration, gradient descent or the
Broyden-Fletcher-Goldfarb-Shanno algorithm, the latter of which is used in this implementation.
The SageMath code can be found in Appendix B.

Hutz and Stoll computed upper and lower bounds on ∥F∥, depending on the hyperbolic distance
between the covariant point z(F ) and j ∈ H3, and the value θ(F ). The main theorem from their
paper is as follows:

Theorem 4.11 (Theorem 4.7 from Hutz and Stoll [5]). Let F ∈ C[X,Z]n be a square-free binary
form of degree n ≥ 3 and let δ = cosh d(z(F ), j). There exists a constant ε(F ) ∈ R>0 such that
the following inequalities hold:

ε(F )δn−2 ≤ ∥F∥
θ(F )

≤ 2−n

(
2n
n

)
δn. (4.12)

This ε(F ) differs by a factor of 2n−1 from the definition used by Hutz and Stoll. In their
paper they give an explicit expression for ε(F ). Let F ∈ C[X,Z]′n be a square-free binary
form of degree n ≥ 3. Because SL2(C) acts transitively on the upper half-space, there exists a
matrix γ0 ∈ SL2(C) such that z(F0) = j, where F0 = F · γ0. The zeros αk of F0 are elements
of P1(C). We can view the set P1(C) as a sphere in R3 using the inverse of the stereographic
projection. The inverse images under the stereographic projection of the zeros αk are given by

ϕk =

{(
2Reαk

|αk|2+1 ,
2 Imαk

|αk|2+1 ,
|αk|2−1
|αk|2+1

)
, if αk ∈ C,

(0, 0, 1), if αk =∞.
(4.13)

Then ε(F0) is defined as follows:

ε(F0) = 2−n

(
1−max

k ̸=k′

√
⟨ϕk, ϕk′⟩+ 1

2

)n−1

. (4.14)

Now we define ε(F ) to be equal to ε(F0). This definition does not depend on the choice of γ0 [5].
As a result the map F 7→ ε(F ) is invariant under the action of SL2(C) on C[X,Z]′n. Because F
is square-free, all of the ϕk are different. Hence ⟨ϕk, ϕk′⟩ is strictly smaller than 1 for k ̸= k′.
This implies that ε(F ) > 0 for all square-free binary forms F .

As cosh is strictly increasing on R≥0, both the upper and lower bound on the size ∥F∥ of a binary
form F ∈ C[X,Z]′n are minimal when d(z(F ), j) is minimal. Since SL2(C) acts transitively on
H3, we can immediately define a reduction algorithm over SL2(C). If we determine γ ∈ SL2(C)
such that γ−1z(F ) = j, then F ·γ will have the lowest possible upper and lower bound on ∥F ·γ∥.
However, this is of course no guarantee that ∥F · γ∥ is minimal. Similarly, to reduce real binary
forms, which have their covariant point in the upper half-plane, over SL2(R), we can determine
γ ∈ SL2(R) such that z(F · γ) = i.
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For reduction of F over SL2(R), with R a discrete complex principal ideal domain, the strategy
will be the same. We will determine γ ∈ SL2(R) such that d(z(F · γ), j) is minimal, and then
∥F · γ∥ will have the lowest possible upper and lower bound.

Corollary 4.15. Let F ∈ C[X,Z]n be a square-free binary form of degree n ≥ 3, and let
γ ∈ SL2(C). If the inequality

cosh d(γ−1z(F ), j) >

(
∥F∥

ε(F )θ(F )

)1/(n−2)

(4.16)

holds, then ∥F · γ∥ > ∥F∥.

Proof. Define δ = cosh d(γ−1z(F ), j). Then (4.16) is equivalent to ε(F )θ(F )δn−2 > ∥F∥. The
implication ∥F ·γ∥ > ∥F∥ now immediately follows from the lower bound given in Theorem 4.11
applied to the binary form F · γ, and the invariance of θ and ε under SL2(C).

For discrete norm-Euclidean subrings R ⊂ C, we will be able to use this explicit condition to
determine the binary form with minimal size in the orbit of F . Let c be the right hand side in
equation (4.16). If we iterate over all matrices γ ∈ SL2(R) with d(z(F · γ), j) < c and check for
which matrix the size ∥F · γ∥ is minimal, then we have found the binary form with minimal size
in the entire SL2(R)-orbit of F . We will see later that there are indeed finitely many γ ∈ SL2(R)
for which d(z(F · γ)) < c holds.

To find the the binary form in the orbit of F with minimal height, we can use the inequalities
n · H(F )2 ≥ ∥F∥ ≥ H(F )2. If ∥F · γ∥ ≥ n · H(F )2, then H(F · γ) ≥ H(F ). Thus we need to
replace ∥F∥ with n ·H(F )2 in the right-hand side of equation (4.16), to obtain the inequality

cosh d(γ−1z(F ), j) >

(
n ·H(F )2

ε(F )θ(F )

)1/(n−2)

. (4.17)

If this inequality holds for a square-free binary form F and γ ∈ SL2(C), then H(F · γ) > H(F ).

Stoll and Cremona also give a reformulation of the covariant map z. Hutz and Stoll use this
alternative definition of the covariant z to prove Theorem 4.11. This reformlation also allows for
a geometric interpretation using the generalised notion of distance.

Let n ≥ 3 be an integer. Then we define the map R : C[X,Z]′n × H3 → R≥0 as follows. For
square-free binary form F we first write F =

∏n
j=1(βjX − αjZ). We define R(F, τ + uj) as

R(F, τ + uj) =

n∏
j=1

|αj − βjτ |2 + |βj |2u2

u
. (4.18)

For a binary form F , the covariant point z(F ) is the unique minimizer of R(F,−). Moreover,
the quantity R(F, z(F )) is equal to θ(F ) [10, Proposition 5.1].

For the geometric interpretation we will consider logR(F, ω). As the logarithm function is strictly
increasing, the value R(F, ω) is minimal in ω if and only if logR(F, ω) is minimal. We have

logR(F, ω) =

n∑
j=1

log

(
|αj − βjτ |2 + |βj |2u2

u

)
. (4.19)

Stoll and Cremona then note the following:
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Proposition 4.20 (Proposition 5.3 from Stoll and Cremona [10]). The representative point z(F )
is the unique point in the upper half-space such that the sum of its distances from all the roots
of F is minimal.

Proof. The point z(F ) is equal to the unique minimizer ω of R(F, ω) shown in equation 4.19.
For all zeros (αj : βj) of F , the term

log

(
|αj − βjτ |2 + |βj |2u2

u

)
is equal to d∂(τ +uj, (αj : βj)) up to some constant. This constant is equal to 2 log |αj | if βj = 0,
and and 2 log |βj | else. Hence logR(F, ω) is equal to the sum of the hyperbolic distances of ω
to the zeros of F , seen as points in the ideal boundary ∂H3 = P1(C), up to some constant only
dependent on F . Therefore they have the same unique minimizer z(F ).

4.2 The covariant z0

For real square-free binary forms of degrees n = 3 and n = 4, Julia gave an explicit solution
of the optimization problem of minimizing θ(t1, . . . , tn). Stoll and Cremona generalised this
solution to all complex square-free binary forms of degree n ≥ 3, giving a second map to the
upper half-space.

Definition 4.21. Let F ∈ C[X,Z]n be a square-free binary form of degree n ≥ 3 and write
F =

∏n
j=1(βjX − αjZ) for αj , βj ∈ C. We define the Hermitian form Q0(F ) as

Q0(F ) =

n∑
j=1

(
n∏

k=1
k ̸=j

|αjβk − αkβj |

) −2
n−2

|βjX − αjZ|2, (4.22)

and z0(F ) as the point in the upper half-space corresponding to Q0(F ).

Again this is a slight generalisation of the definition given by Stoll and Cremona, as they assumed
the binary form F had no zero at infinity. For n = 3, 4, this map agrees with the covariant z.
This is not necessarily the case if n > 4.

Lemma 4.23. The maps Q0 and z0 are well-defined and covariant.

Proof. Let F be a square-free binary form, and let (αj : βj) for 1 ≤ n ≤ j be it’s zeros. Because
F is square-free, we have (αj : βj) ̸= (αk : βk) for j ̸= k, which implies αjβk − βjαk ̸= 0. Thus,
we do not divide by zero in any of the terms of Q0(F ).

To show Q0 is well-defined, we have left to show that Q0(F ) is independent of the different ways of
factorising F into linear terms. When we scale αi, βi with a factor λ ∈ C∗, we scale the i-th term
in (4.22) with a factor of (|λ|n−1)−2/(n−2) · |λ|2 = |λ|(2−2n)/(n−2)+2 = |λ|−2/(n−2) and all other
terms also with a factor of |λ|−2/(n−2). Now suppose we have two different factorisations F =∏n

j=1(βjX −αjZ) and F =
∏n

j=1(β
′
jX −α′

jZ) of F . Then there exist constants c1, . . . , cn ∈ C
with c1c2 · · · cn = 1 and a permutation σ ∈ Sn such that (αj , βj) = cj(α

′
σ(j), β

′
σ(j)). If we

calculate Q0(F ) using the other factorisation, it differs by a factor of
∏n

j=1 |cj |−2/(n−2) = 1.
So Q0(F ) is well-defined, and so is z0(F ) Using equation (4.10) we find that the coefficients of
Q0(F ) and Q0(F ·γ) are the same. Hence Q0(F ) ·γ = Q0(F ·γ). The covariance of the zero map
now gives z(F · γ) = γ−1z(F ).
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If F is a complex square-free binary form of degree n ≥ 3, then the coefficients of Q(F ) are
equal to the coefficients of Q(F ). Using this we find Q(F )(X,Z) = Q(F )(X,Z). Thus the
corresponding point z0(F ) is equal to z0(F ) with its i-part multiplied by -1, and if F is real then
z(F ) will lie in the embedding of the upper half-plane into the upper half-space.

For the numerical computation of z0(F ), we need to numerically approximate the zeros of F .
After this we can directly compute z0(F ). For this thesis I have also implemented the numerical
computation of z0(F ) into SageMath. See the appendix for this implementation.

It is much faster to compute z0(F ) than it is to compute z(F ), which makes this second map
useful when reducing binary forms of degree n = 3 or n = 4. Also for binary forms of higher
degrees, the point z0(F ) is a good approximation of z(F ). Therefore it can be faster to use the
map z0(F ) in the first steps of the reduction.
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5 Reduction over Z
The covariant maps z and z0 both map real binary forms to the embedding of the upper half-plane
into the upper half-space. We will use this fact to reduce real binary forms over SL2(Z). Theorem
4.11 tells us that we want to minimize the hyperbolic distance of the covariant point z(F ) of a
binary form to the point j. In the embedding H ↪→ H3, the point j ∈ H3 corresponds to i ∈ H.
Therefore, we want to minimize the distance to i.

Consider the region FZ given by

FZ = {z ∈ H : |Re(z)| ≤ 1
2 , |z| ≥ 1}. (5.1)

We will show that FZ is a fundamental domain for the action of SL2(Z) on H.

Definition 5.2. Let X be a topological space and G a group that acts on X. A subset F ⊂ X
is called a fundamental domain if:

� for all x ∈ X, there exists g ∈ G such that gx ∈ F ,

� if x is an element of the interior F◦, then x is the unique point in its orbit contained in F .

To show that FZ is a fundamental domain, we will first need the following lemma.

Lemma 5.3. Let z ∈ H. Then the set {Im(γz) : Im(γz) ≥ Im(z), γ ∈ SL2(Z)} is finite.

Proof. Let γ =
(
a b
c d

)
∈ SL2(Z) and suppose Im(γz) ≥ Im(z). Using equation 3.3 we find that

Im(γz) ≥ Im(z) holds if and only if |cz + d|2 ≤ 1. There are only finitely many pairs c, d for
which this is the case, which proves the statement.

Proposition 5.4. The set FZ consists of all points in H that have maximal imaginary part
for their SL2(Z)-orbit and have real part between − 1

2 and 1
2 . Furthermore, it is a fundamental

domain for the action of SL2(Z) on H.

Proof. Let z ∈ FZ and γ =
(
a b
c d

)
∈ SL2(Z). The inequality Im(γz) > Im(z) is equivalent to

|cz+d| < 1. We will show that there do not exist pairs c, d ∈ Z with (c, d) ̸= (0, 0) for which this

strict inequality holds. As |Re(z)| ≤ 1
2 and |z|2 = |Re(z)|2 + | Im(z)|2 ≥ 1, we find Im(z) ≥

√
3
2 .

Therefore if |cz + d| < 1, then the only possible values for c are −1, 0, 1. If c = 0 then d is also
equal to zero which is against our assumption. If c = ±1 we find |cz + d| = |z ± d| ≥ 1, as the
real part of z cannot be reduced under translation with an integer. Therefore FZ does indeed
consist of points with maximal imaginary part.

Now suppose a point z ∈ H has maximal imaginary part with respect to its orbit and |Re(z)| ≤ 1
2 .

Then in particular we have Im(z) ≥ Im(
(
0 −1
1 0

)
z) = Im(z)/|z|2. It follows that |z| ≥ 1, and that

z is an of FZ.

To show that FZ is a fundamental domain, let z ∈ H. according to Lemma 5.3, the set
{Im(γz) : Im(γz) ≥ Im(z), γ ∈ SL2(Z)} is finite. As a result there exists a matrix γ such
that γz has maximal imaginary part. Let n be equal to Re(γz) rounded to a nearest integer.
Then |Re(γz − n)| ≤ 1

2 and the point
(
1 −n
0 1

)
γz will also have maximal imaginary part in its

orbit. Hence
(
1 −n
0 1

)
γz ∈ FZ. To show uniqueness let z be an element of the interior F◦

Z and

suppose γz ∈ FZ for some matrix γ =
(
a b
c d

)
∈ SL2(Z). As FZ consists of points with maximal

imaginary part, we find Im(z) = Im(γz) = Im(z)/|cz+d|2, which gives |cz+d|2 = 1. As z ∈ F◦
Z ,

there is a strict inequality |z| > 1, and because |Re(z)| ≤ 1
2 , we also have |z+n| > 1 for all n ∈ Z.
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FZ

0 1−1

i

Figure 2: Fundamental domain FZ for the action of SL2(Z) on H

Therefore c = 0, and we find γ =
(±1 b

0 ±1

)
. However, if b is non-zero, then |Re(z+ b)| > 1

2 . This
gives γ = ±I2. As I2 and −I2 both act trivially on H we find γz = z.

The proof of lemma 5.4 tells us that for all z ∈ H, there exists γ ∈ SL2(Z) such that γz ∈ H.
However, it does not tell us how to find γ. To do that, we have the following algorithm.

Algorithm 5.5 Given z ∈ H, find γ ∈ SL2(Z) such that γz ∈ FZ.

1: Let γ = I2
2: while z /∈ F do
3: Determine n ∈ Z such that |Re(z + n)| ≤ 1

2

4: Replace γ ←
(
1 n
0 1

)
· γ

5: Replace z ← z + n
6: if |z| < 1 then

7: Replace γ ←
(
0 −1
1 0

)
· γ

8: Replace z ← −z−1

9: end if
10: end while

Proof. By Lemma 5.3 there exists only finitely many possible imaginary values of points in the
orbit of z that are larger than Im(z). In line 8 of the algorithm, the imaginary part of z strictly
increases, because Im(

(
0 −1
1 0

)
z) = Im(z)/|z|2 > Im(z). Therefore the if statement in line 6 can

only be passed finitely many times, and if |z| ≥ 1 holds in this step, then z lies in FZ.

This algorithm will be very useful in the reduction of binary forms over Z.

Corollary 5.6. The group SL2(Z) is generated by the matrices

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Proof. Let γ ∈ SL2(Z) be a matrix. We can use Algorithm 5.5 to determine γ′ ∈ SL2(Z) such
that γ′ · γ · (2i) ∈ FZ. The matrix γ′ is then the product of matrices of the form Tn = ( 1 n

0 1 )
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and S. Hence γ′ ∈ ⟨S, T ⟩. Since 2i lies in the interior of FZ, the matrix γ′ · γ is an alement of
the stabilizer of 2i, which is equal to {±I}. This implies that γ′ · γ = ±I2. Using S2 = −I2 and
γ = −γ′−1 we find γ ∈ ⟨S, T ⟩.

Proposition 5.7. For all z ∈ FZ, the distance d(z, i) is minimal in the orbit of z.

Proof. Let z ∈ H3 and write z = a + bi. Then cosh d(z, i) = |a|2+b2+1
2b [5]. If |a + n| < |a|,

then d(z + n, i) < d(z, i). as cosh is strictly increasing on R≥0. Secondly d(z, i) = d(Sz, i) for
S =

(
0 −1
1 0

)
because S is an isometry of H which fixes i. Therefore in every step in Algorithm 5.5

the distance to i does not increase. Now if z lies in the interior F◦
Z , and γ ∈ SL2(Z), then we can

use Algorithm 5.5 to find γ′ such that γ′γz ∈ FZ. By the previous argument, d(γ′γz, i) ≤ d(γz, i),
and because FZ is a fundamental domain we know z = γ′γz.

The interior F◦
Z is dense in FZ, so if z lies in the edge ∂FZ, there exists a sequence {zn}n≥1 ⊂ F◦

Z
converging to z. For all γ ∈ SL2(Z), we have d(zn, i) ≤ d(γzn, i). By continuity of γ and the
metric d, we have

d(z, i) = lim
n→∞

d(zn, i) ≤ lim
n→∞

d(γzn, i) = d(γz, i).

So given a real square-free binary form F , Algorithm 5.5 gives us a way to determine γ ∈ SL2(Z)
such that d(γ−1z(F ), i) is minimal. We then expect ∥F · γ∥ to be small, because the upper and
lower bound obtained from Theorem 4.11 are minimal. We can also use the lower bound on
∥F∥ to find γ ∈ SL2(Z) for which ∥F · γ∥ is optimal. We do this by first determining an upper
bound c > 0 such that if d(z(F · γ), i) > i, then ∥F · γ∥ > ∥F∥, where F is binary form with
z(F ) ∈ FZ. We can then iterate over all γ ∈ SL2(Z) with d(z(F · γ), i) ≤ c and check which
one has the smallest size. First however we want to know wheter there are finitly many γ with
d(z(F · γ), i) ≤ c.

Lemma 5.8. Let M > 0 and let z ∈ FZ. Then there exist only finitely many γ ∈ SL2(Z) such
that d(γz, i) ≤M .

Proof. The distance d(γz, i) is given by cosh−1
( |z|2+1
2 Im(γz)

)
[5]. Suppose d(γω, j) ≤ M . Then, as

cosh is strictly increasing and bijective on R≥0 to R≥1, we obtain a lower bound for Im(z). Let
m be this lower bound. Write γ =

(
a b
c d

)
. Then Im(z) ≥ m is equivalent to |cω+d|2 ≤ Im(z)/m.

By the proof of Lemma 5.3 there are only finitely many c, d ∈ R for which this is the case. In
particular there are finitely many coprime pairs c, d for which this holds.

For each coprime pair c, d ∈ SL2(R) we will show that there exist only finitely many a, b ∈ R
such that

(
a b
c d

)
∈ SL2(R) and d(

(
a b
c d

)
z, i) ≤ M . As c, d ∈ R are coprime, there exists at least

one pair a, b such that γ =
(
a b
c d

)
∈ SL2(R). Now let a′, b′ ∈ R be two different elements such

that γ′ =
(
a′ b′

c d

)
∈ SL2(R). Then we have

γγ′−1 =

(
ad− bc a′b− ab′

0 a′d− b′c

)
=

(
1 a′b− ab′
0 1

)
.

So, γ and γ′ differ by a translation and γ′z = γz + n. Only finitely many n ∈ Z have the

property that (x+n)2+y2+1
2y < cosh(M), which implies that there are finitely many pairs a, b ∈ R

with d(
(
a b
c d

)
z, i) ≤M . Combining this with the fact that the pair c, d can take on finitely many

values, we find that there are only finitely many γ ∈ SL2(R) such that d(γω, j) ≤M .
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Proposition 5.9. Let F ∈ R[X,Z]′n be a square-free binary form of degree n ≥ 3. Then there
exists γmin ∈ SL2(Z) such that ∥F · γmin∥ ≤ ∥F · γ∥ for all γ ∈ SL2(Z).

Proof. By Corollary 4.15 there exists a constant c > 0 such that if d(γ−1z(F ), i) > c, then
∥F · γ∥ > ∥F∥. By Lemma 5.8 there exist only finitely many γ such that d(γ−1z(F ), i) ≤ c. Of
these matrices, the matrix γmin that minimizes ∥F · γmin∥ satisfies the statement.

We can use the following algorithm to determine this matrix γmin:

Algorithm 5.10 Given a real square-free binary form F ∈ R[X,Z]′n of degree n ≥ 3 with
z(F ) ∈ FZ, find a matrix γmin ∈ SL2(Z) such that ∥F · γmin∥ is minimal.

1: Let γmin = I2
2: Let m = ∥F∥
3: Calculate ε(F ) and θ(F )

4: Let c = cosh−1

((
m

ε(F )θ(F )

)1/(n−2)
)

5: Define the list L = [(I2, start)]
6: for (γ, previous action) ∈ L in ascending order of d(γz(F ), j) do
7: if ∥F · γ−1∥ < m then
8: Update m← ∥F · γ−1∥
9: Update γmin ← γ−1

10: Let c = cosh−1

((
m

ε(F )θ(F )

)1/(n−2)
)

11: Throw out all elements γ′ of L for which d(γ′ · z(F ), i) > c
12: end if
13: if ‘previous action’ is ‘inversion’ or ‘start’ then
14: for all n ∈ Z \ {0} such that d(γ · z(F ) + n, i) < c do

15: Let Tn =

(
1 n
0 1

)
16: Add (Tn · γ, translation) to L
17: end for
18: end if
19: if ‘previous action’ is ‘translation’ or ‘start’ then

20: Let S =

(
0 −1
1 0

)
21: if |Sγ · 2j| < 1 and |Re(Sγ · 2j)| ≤ 1

2 then
22: Add (S · γ, inversion) to L
23: end if
24: end if
25: end for

Proof. Let F ∈ R[X,Z]′n be a square-free binary form of degree n ≥ 3 with z(F ) ∈ FZ. Proposi-
tion 5.9 states that there exists a matrix γmin ∈ SL2(Z) such that ∥F · γmin∥ is minimal. Let c′

be the upper bound for d(z(F · γ), i) obtained from Corollary 4.15 when applied to ∥F · γmin∥.
For any matrix γ considered in the for loop in this algorithm, we add all matrices γ′ such that
d(γ′ · z(F ), j) < c′ and such that they are reduced to γ in one step (translation or inversion) of
Algorithm 5.5 applied to the point γ′ · 2j. If γ is matrix such that d(γ · z(F ), j) < c′ then we can
use Algorithm 5.5 to find γ′ such that γ′γ · 2j ∈ FZ. If γ

′γ = I2, then we find inductively that γ
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is added to the list L at some point in this algorithm. Therefore we check all γ ∈ SL2(Z) with
d(γ · z(F ), j) < c′ up to sign, including ±γ−1

min.

The imaginary part of Sγ ·2j is smaller than the imaginary part of γ ·2j if |Sγ ·2j| < 1. Therefore
this algorithm cannot add the same matrix to L twice. Let c be the original upper bound defined
in line 4. Then we never add a matrix γ such that d(γ · z(F ), j) ≥ c to the list L. There are only
finitely many such γ, which implies that this algorithm will terminate at some point.

In line 21 of this algorithm, we look at the points Sγ · 2j instead of Sγ · z(F ). We do this so that
we can carry out exact calculations in the implementation of this algorithm. This ensures that
the algorithm cannot loop due to numerical error.

We can use the upper bound from equation 4.17 to find a matrix γ ∈ SL2(Z) such that the height
H(F · γ) is minimal, with an analogous algorithm. If we replace

cosh−1

((
m

ε(F )θ(F )

)1/(n−2)
)

(5.11)

on lines 4 and 10 with

cosh−1

((
n ·m2

ε(F )θ(F )

)1/(n−2)
)
, (5.12)

and consider the height instead of the size in lines 2, 7, 8, then we will find the matrix γ such
that H(F · γ) is minimal.
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6 Reduction over complex discrete norm-Euclidean rings

In this section we will generalise the reduction of real binary forms over Z, to complex binary
forms over some suitable subrings of C. Our reduction algorithm will again rely on determining
a matrix γ ∈ SL2(R) such that d(z(F · γ), j) is minimal, where R is a suitable subring of C, and
F is a square-free binary form. The upper and lower bounds on ∥F · γ∥ given by Theorem 4.11
are then also minimal. To make sure this γ exists, we constrain ourselves to discrete subrings of
C. Hence, we will first need some knowledge about discrete rings. Later in this section we will
give an algorithm for determining this γ if R is a discrete norm-Euclidean ring. We will also
define an algorithm for computing γ such that either ∥F∥ or H(F ) is minimal.

6.1 Discrete subrings of C
Let R ⊂ C be subring of C. We call R discrete if it is discrete as a subset of C using the
usual topology. We will give a complete characterisation of all complex discrete subrings in
Proposition 6.8. Leading up to this we will first formulate some lemmas and a definition.

Lemma 6.1. Let R ⊂ C be a subring. Then R is discrete if and only if |r| ≥ 1 holds for all
r ∈ R \ {0}. Furthermore, if R is discrete, then R is closed as a subset of C.

Proof. Suppose there exists r ∈ R\{0} such that |r| < 1. Then {rn}n≥1 is a sequence converging
to 0, and 0 is a limit point of R, so R is not discrete.

Now suppose |r| ≥ 1 does hold for all r ∈ R \ {0}. Then for any two points x, y ∈ R that are not
equal we have |x−y| ≥ 1, so R is discrete. This also gives us that R is closed, since any converging
sequence is eventually constant, which implies that R is closed under taking limits.

Corollary 6.2. Let R ⊂ C be a discrete ring. Then an element r ∈ R is a unit if and only if
|r| = 1.

Proof. Let r ∈ R and suppose r is a unit. Then there exists s ∈ R such that rs = 1. By the
previous lemma we find |r|, |s| ≥ 1, as neither can be equal to zero. By the multiplicativity of
the norm we find |r| · |s| = 1, and hence |r| = |s| = 1.

Conversely, suppose |r| = 1. Then the set {rn : n ∈ Z} is a closed and discrete subset of the unit
circle {z ∈ C : |z| = 1}, which is compact. Therefore, {rn : n ∈ Z} is a finite set, and there exist
m,n ∈ Z with m > n such that rm = rn. This implies rm−n = 1, so r is a unit.

Suppose R ⊂ C is a discrete subring of C. If we forget the multiplication of R, then we obtain
an discrete abelian subgroup of C. We can use the following lemma from Algebra 1 by Peter
Stevenhagen [9].

Lemma 6.3. Let n ≥ 1 and let A ⊂ Rn be a discrete supgroup. Then A is free of rank k ≤ n.

The terms free and rank are defined as follows:

Definition 6.4. An abelian group A is called free if A has a generating set S such that every
element a ∈ A can be written uniquely as a Z-linear combination of elements of S. In that case
S is called a basis for A and we call the cardinality of S the rank of A. [9]

If a free group A has a finite basis S = {s1, . . . , sn}, then there exists an isomorphism Zn ∼= A
given by (ni)

n
i=1 7→

∑n
i=1 nisi. Using Lemma 6.3 we obtain the following result:
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Corollary 6.5. Let R ⊂ C be a discrete ring. Then R = Z or R = Z+ zZ for some z ∈ C.

Proof. As an abelian group C is isomorphic to R2. If we forget the multiplication on R, then it
is a discrete subgroup of C. Therefore R is free of rank either 1 or 2 as an abelian group.

Suppose it has rank 1. Then R = aZ for some a ∈ C with |a| ≥ 1. Since 1 ∈ R, there exists
n ∈ Z such that na = 1. The inequality |a| ≥ 1 then gives n = ±1 and therefore a = ±1, so
R = Z.

Suppose R has rank 2. Then R = aZ+ bZ for some a, b ∈ C. Since 1 ∈ R, there exist m,n ∈ Z
such that ma+nb = 1. Suppose m,n are not coprime in Z. Then define m′ = m/ gcd(m,n) and
n′ = n/ gcd(m,n). We find that m′a+n′b = 1/ gcd(m,n) ∈ R. However R contains no non-zero
elements of norm smaller than 1. Therefore m,n are coprime in Z and there exist x, y ∈ Z such
that my − nx = 1. Define z ∈ C such that the following equality holds:(

m n
x y

)(
a
b

)
=

(
1
z

)
. (6.6)

Because my − nx = 1 holds, we find(
m n
x y

)−1(
1
z

)
=

(
y −n
−x m

)(
1
z

)
=

(
a
b

)
. (6.7)

Equations (6.6) and (6.7) together imply R = aZ+ bZ = Z+ zZ.

We can now give a complete characterisation of the discrete subrings of C. Let D < 0 be a

negative integer with D ≡ 0 or D ≡ 1 mod 4. If D ≡ 0 mod 4, define αD =
√
D
2 , and if D ≡ 1

mod 4, define αD = 1+
√
D

2 . In both cases let RD = Z[αD]. For example α−3 is equal to the sixth
root of unity ζ6, and α−4 = i.

Proposition 6.8. All discrete subrings R of C are equal to Z or RD for some negative integer
D with D ≡ 0, 1 mod 4.

Proof. Let R ̸= Z be a discrete subring of C. By Corollary 6.5 we find that R = Z + zZ holds
for some z ∈ C. Without loss of generality we may assume that Re(z) ∈ [0, 1), since we can
translate z with elements of Z. As R is closed under multiplication we find that z2 is an element
of R = Z + zZ, and thus that there exist integers b, c ∈ Z such that z2 + bz + c = 0. Using the

quadratic formula we find z = −b±
√
b2−4c
2 . Define D = b2 − 4c. The point z cannot be real, as

then R would be equal to Z. Thus z has non-zero imaginary part, and we have b2 − 4c < 0 and
Re(z) = −b/2. Since Re(z) ∈ [0, 1), the only possible values of b are b = 0 and b = −1. If b = 0

then z = ±
√
D/2 and R = Z[

√
D
2 ] with D = −4c ≡ 0 mod 4, and if b = −1, then z = 1

2 ±
1
2

√
D,

which implies R = Z[ 1+
√
D

2 ] and D = 1− 4c ≡ 1 mod 4.

Conversely suppose D is a negative integer congruent to 0 or 1 mod 4. If D ≡ 0 mod 4 then
α2
D = −D/4, where αD ∈ R is defined as above. If D ≡ 1 mod 4 then α2

D = αD+(D−1)/4 ∈ R.
In both cases we have RD = Z[αD] = Z + αDZ. This is discrete in C because αD has non-zero
imaginary part.

We continue with a lemma about the action of discrete rings on the upper half-space.
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Lemma 6.9. Let R ⊂ C be a discrete ring and let ω ∈ H3. Then the set

{πj(γω) : πj(γω) ≥ πj(ω), γ ∈ SL2(R)}

is finite.

Proof. Let γ =
(
a b
c d

)
∈ SL2(R). Then we have πj(γω) = πj(ω)/|cω + d|2. Thus an element

of this set corresponds to a pair of coprime elements c, d ∈ R with |cω + d|2 ≤ 1. If we write
ω = τ + uj for τ ∈ C and u > 0, then we have the equality

|cω + d|2 = |cτ + d|2 + u2|c|2. (6.10)

Since R is closed and discrete, there are at most finitely many c ∈ R such that |c| ≤ u−1. And
for each c, there are only finitely many d ∈ R such that |cτ + d| ≤ 1. Therefore, there are only
finitely many pairs c, d ∈ R such that |cω + d|2 ≤ 1.

6.2 Norm-Euclidean rings

For reduction over discrete subrings of C, the simplest case will be when R is norm-Euclidean.

Definition 6.11. We call a discrete ring R ⊂ C norm-Euclidean if it is Euclidean with respect
to the norm map on C. That is, for all a, b ∈ R with b ̸= 0, there exist q, r ∈ R with |r| < |b|
such that a = qb+ r.

With Proposition 6.8 we can determine exactly which discrete subrings are norm-Euclidean.

Proposition 6.12. The discrete subrings R ⊂ C that are norm-Euclidean are precisely the rings
RD for D = −3,−4,−7,−8,−11.

Proof. This proof is largely taken from Algebra II by Peter Stevenhagen [8, Stelling 12.19],
where he shows where he shows that Z[i] = R−4 is a principal ideal domain by showing it is
norm-Euclidean. We extend this proof to the rings RD for D = −3,−7,−8,−11.

Suppose R = RD for D = −3,−4,−7,−8,−11. Then in Figure 3 it can be seen that the open
unit discs centered around elements of RD cover the entire complex plane. So for all τ ∈ C there
exists r ∈ RD such that |τ + r| < 1. Now let a, b ∈ R with b ̸= 0. There exists q ∈ R such that
|a/b− q| < 1. Define r = a− qb ∈ R. We then find a = qb+ r ∈ R and |r| = |b| · |a/b− q| < |b|.

For D = −12 the element 1+
√
−3

2 ∈ Q(R−12) = Q[
√
−3] does not lie in any of the open unit

discs, only in the boundary. Therefore there do not exist q, r ∈ R with |r| < 2 such that
1 +
√
−3 = 2q + r holds, and thus R−12 is not norm-Euclidean.

For all D < −12, the unit discs will be spaced farther apart and they will leave gaps in the
complex plane with non-empty interior. As Q(RD) = Q[

√
−D] is dense in C, there exist a, b ∈ R

with b ̸= 0 and where a/b does not lie in any of the open unit discs. By the same argument as
for D = −12, we find that RD is not norm-Euclidean if D < −12.

In this proof we see that for all discrete norm-Euclidean rings R ⊂ C, and for all τ ∈ C, there
exists r ∈ R such that |τ − r| < 1. This property will make it so that we can fairly directly
generalise the reduction of real binary over SL2(Z), to the reduction of complex binary forms over
SL2(R). In order to generalise the fundamental domain FZ for the action of SL2(Z), consider
the following region in the upper half-space:

GR = {ω ∈ H3 : |ω| ≥ 1, |ω| ≤ |ω + r| for all r ∈ R}. (6.13)
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1

ζ3

(a) Unit circles centered around elements
of Z[ζ3] = R−3

1

i

(b) Unit circles centered around elements
of Z[i] = R−4

1

α−7

(c) Unit circles centered around elements
of R−7

1

√
−2

(d) Unit circles centered around elements
of R−8

1

α−11

(e) Unit circles centered around elements
of R−11

1

√
−3

(f) Unit circles centered around elements
of R−8

Figure 3: Unit circles centered around elements of RD for D = −3,−4,−7,−8,−11,−12. Inter-
sections of the dotted lines denote these elements.
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(a) GZ[ζ3]
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(b) GZ[i]

1
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(c) GR−7

1

i

j

(d) GZ[
√
−2]

1

i

j

(e) GR−11

Figure 4: The regions GRD
for D = −3,−4,−7,−8,−11

The regions GR for R = RD with D = −3,−4,−7,−8,−11 are portrayed in Figure 4. These
regions will not all be fundamental domains for the action of SL2(R), so we will denote them with
GR instead of FR to avoid confusion. If we write ω = τ + uj, then the condition |ω| ≤ |ω + r|
for all r ∈ R is equivalent to |τ | ≤ |τ + r| for all r ∈ R. As the ring R contains −1, 1, this
condition implies |Re(τ)| ≤ 1

2 . If R = RD for D < 0 with D ≡ 1 mod 4, then the region in
the complex plane for which |τ | ≤ |τ + r| holds for all r ∈ R is a hexagon. The sides of this
hexagon are perpendicular bisectors between 0 and the points −1, 1, αD, αD,−αD,−αD. The
corners of this hexagon are points which have equal distance to 0 and two of these elements. A
small exercise in geometry shows that the distance from the origin to one of the corners is equal
to (−D + 1)

√
−D/(−4D). Therefore |τ | ≤ (−D + 1)

√
−D/(−4D) for all τ + uj ∈ GRD

with
D ≡ 1 mod 4.

If on the other hand D ≡ 0 mod 4, then the region in C for which |τ | ≤ |τ+r| holds for all r ∈ R
is a rectangle. The edges are perpendicular bisectors between 0 and the points 1,−1, αD,−αD
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So two sides have length 1, and the other two have length |αD| = 1
2

√
−D. The distance from

the origin to one of the corners is equal to 1
2

√
1 +D. This is also the maximal value for |τ | in

this region.

Proposition 6.14. Let R be a discrete norm-Euclidean subring of C. Then we can rewrite GR
as follows:

GR = {ω ∈ H3 : πj(ω) ≥ πj(γω), |ω| ≤ |ω + r| for all γ ∈ SL2(R), r ∈ R}. (6.15)

Furthermore, for all ω ∈ H3, there exists γ ∈ SL2(R) such that γω ∈ GR.

Proof. For the first statement, let ω ∈ GR and γ =
(
a b
c d

)
∈ SL2(R). Then by equation (3.20) we

have πj(γω) = πj(ω)/|cω+ d|2. Now πj(γω) > πj(ω) is equivalent to |cω+ d|2 < 1 with c, d ∈ R
coprime. We will show that no coprime c, d with this property exist. For each norm-Euclidean
ring R we will reduce the possibilities to finitely many cases, and then check each case. First, by
definition of GR, we have |ω + r| ≥ |ω| ≥ 1 which covers the case of |c| = 1. For other cases, we
can rewrite |cω + d|2 as follows. Let τ ∈ C and u > 0 be such that ω = τ + uj. We than have

|cω + d|2 = |cτ + d|2 + |c|2u2 = |c|2|ω|2 + cτd+ cτd+ |d|2. (6.16)

Secondly, for all r ∈ R we have

|τ + r|2 ≥ |τ |2 =⇒ τr + τr ≥ −|r|2. (6.17)

The main idea to show that |cω+ d| ≥ 1 holds for all coprime pairs c, d ∈ R, is to first find some
bounds on |c| and |d|. Afterwards we will only have finitely many cases left. For these cases we
will apply |ω| ≥ 1 to equation (6.16), and then use equation (6.17) for suitable values of r. Due
to the amount of cases needed to be checked, this part of the proof is moved to Appendix A.

For the second statement, let ω ∈ H3. Then by Lemma 6.9 there exist only finitely many possible
values of πj(γω) such that πj(γω) ≥ πj(ω). Therefore there exists γ ∈ SL2(R) such that πj(γω)
is maximal in its orbit. Because R is discrete in C, the set {γω + r : r ∈ R} is discrete in H3

using the subspace topology obtained from the embedding H3 ↪→ R3. Therefore there exists
r ∈ R such that |γω + r| is minimal. Now define γ′ = Trγ, where Tr = ( 1 r

0 1 ). Then we have
γ′ω ∈ GR.

This proposition tells us that for all ω ∈ H3 there exists γ ∈ SL2(R) such that γω ∈ GR. However,
it does not give us a way to compute γ. The following algorithm can be used to do this:

Algorithm 6.18 Given ω ∈ H3 and a discrete complex norm-Euclidean ring R not equal to Z,
find γ ∈ SL2(R) such that γω ∈ GR.
1: Let γ = I2
2: while ω /∈ GR do
3: Determine r ∈ R such that |ω + r| ≤ |ω + r′| for all r′ ∈ R

4: Update γ ←
(
1 r
0 1

)
· γ

5: Update ω ← ω + r
6: if |ω| < 1 then

7: Update γ ←
(
0 −1
1 0

)
· γ

8: Update ω ← −ω−1

9: end if
10: end while
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Proof. Let ω ∈ H3. By Lemma 6.9 there exist only finitely many possible values of πj(γω) for
which πj(γω) ≥ πj(ω) holds, with γ ∈ SL2(R). In line 8 of the algorithm, the value of πj(ω)
increases to πj(ω)/|ω|2 > πj(ω). This can only be done finitely many times, so at some point
|ω| ≥ 1 holds at line 6 of the algorithm. In that case ω lies in GR. Note that this ω is equal to γ
multiplied by the original value of ω.

It is not immediately clear how to find r ∈ R such that |ω + r| ≤ |ω + r′| for all r′ ∈ R in line 3
of this algorithm. If R = RD with D < 0 and D ≡ 0 mod 4, this can be done as follows. First
write ω = τ +uj. Then |ω+ r| ≤ |ω+ r′| holds if and only if |τ + r| ≤ |τ + r′| holds for r, r′ ∈ R.
Let r = a + bαD with a and b be equal to −Re(τ) and −2 Im(τ)/

√
−D both rounded to the

nearest integer. Now for all r′ = c+ dαD we find by definition of a, b:

|τ + r′|2 = (Re τ + c)2 + (Im(τ) + d ·
√
−D/2)2 ≥ (Re τ + a)2 + (Im(τ) + b ·

√
−D/2)2 = |τ + r|2.

Otherwise if R = RD with D < 0 and D ≡ 1 mod 4 this process is slightly more involved.
Again using rounding we can find r ∈ R such that |Re(τ + r)| ≤ 1

2 and | Im(τ + r)| ≤ 1
4

√
−D.

This holds for r = a+ bαD with b being the nearest integer to − Im(τ)/ 1
2

√
−D and a being the

nearest integer to −Re(τ + bαD). For this value of r we know that |τ + r| ≤
√

(1−D)/2. Now

for all r′ ∈ R with |r′| ≥
√
1−D we have |τ + r + r′| ≥ |r′| − |τ + r| ≥

√
(1−D)/2 ≥ |τ + r|.

Therefore we only need to check finitely many values of r′ to find an element that minimizes the
value of |τ + r + r′|.

Algorithm 6.18 will be very useful in the reduction of binary forms over SL2(R), with R a discrete
complex norm-Euclidean domain. We will use this algorithm to find that GR consists of points
with minimal distance to j in their SL2(R) orbit, and to find generators of SL2(R). First we will
need the following proposition.

Proposition 6.19. Let R be a discrete norm-Euclidean ring and let ω be an element of the
interior G◦R of GR. Suppose γω ∈ GR for some γ ∈ SL2(R). Then we have

γ ∈
{(

r 0
0 r−1

)
: r ∈ R∗

}
. (6.20)

Proof. Let ω ∈ G◦R and let γ =
(
a b
c d

)
be such that γω ∈ GR. In the proof of Proposition 6.14 we

have seen that |cω + d|2 ≥ 1. Using the strict inequality |ω|2 > 1, we can use the same method
as in the proof of this proposition to find that the inequality |cω + d| > 1 is strict if c ̸= 0. As
both ω and γω are elements of GR, they have maximal j-part. Thus πj(ω) = πj(γω). This gives
|cω + d|2 = 1. Therefore c = 0 and |d| = 1 holds. Because det γ = 1, we find a = d−1. Then For
γ we have

γ =

(
d−1 b
0 d

)
=

(
1 d−1b
0 1

)(
d−1 0
0 d

)
.

If we write ω = τ + uj, then
(
d−1 0
0 d

)
ω = d−2τ + uj. This is also an element of G◦R, so if b ̸= 0

we have ∣∣∣∣(d−1 0
0 d

)
ω + d−1b

∣∣∣∣ > ∣∣∣∣(d−1 0
0 d

)
ω

∣∣∣∣ ,
which leads to a contradiction as γω ∈ GR. Therefore γ ∈ {

(
r 0
0 r−1

)
: r ∈ R∗}.

The only discrete rings with R∗ ̸= {±I2} are equal to Z[ζ3] = R−3 and Z[i] = R−4. For all other
discrete rings, their generator αD has norm strictly higher than one. Because the matrices ±I2
act trivially on H3 we get the following corollary.
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Corollary 6.21. The region GR is a fundamental domain for the action of SL2(R) on H3, with
R = RD for D = −7,−8,−11.

Proof. We have already seen that there exists γ ∈ SL2(R) such that γω ∈ GR for all ω ∈ H3.
Secondly, for these rings we have R∗ = {±1}, and the matrices I2,−I2 both act trivially on H3,
which implies using Proposition 6.19 that if ω is an element of the interior G◦R, then ω is the
unique point in its orbit that lies in GR. So, the region GR is a fundamental domain.

To obtain a fundamental domain for R = Z[i],Z[ζ3], we can do the following. If r ∈ R is a unit,
then the matrix

(
r 0
0 r−1

)
rotates the upper half-space by an angle of 2 arg(r) around the j-axis.

More precisely, if ω = τ + uj , then
(
r 0
0 r−1

)
ω = r2τ + uj. Thus for R = Z[i] we need to leave

out half of GR. For example the region {ω ∈ H3 : Re(ω) ≥ 0} ∩ GZ[i] is a fundamental domain.
For R = Z[ζ3], we need to leave one third of GZ[ζ3] to get a fundamental domain, for example

{ω = τ + uj ∈ H3 : − 1
6π ≤ arg(τ) ≤ 1

2π} ∩ GZ[ζ3].

We can use Algorithm 6.18 together with Proposition 6.19 to find generators for SL2(R).

Corollary 6.22. The groups SL2(RD) for D = −7,−8,−11 have the following set of generators:

S =

(
0 −1
1 0

)
, T1 =

(
1 1
0 1

)
and TαD

=

(
1 αD

0 1

)
. (6.23)

Secondly, the group SL2(Z[ζ3]) = SL2(R−3) is generated by

S =

(
0 −1
1 0

)
, Uζ6 =

(
ζ6 0
0 ζ−1

6

)
, T1 =

(
1 1
0 1

)
and Tζ3 =

(
1 ζ3
0 1

)
. (6.24)

Lastly, the group SL2(Z[i]) = SL2(R−4) is generated by

S =

(
0 −1
1 0

)
, Uζ3 =

(
i 0
0 −i

)
, T1 =

(
1 1
0 1

)
and Ti =

(
1 i
0 1

)
. (6.25)

Proof. Let γ ∈ SL2(R). Then use Algorithm 6.18 to find γ′ ∈ SL2(R) such that γ′γ · 2j ∈ GR.
Then γ′ is an element of ⟨S, Tr : r ∈ R⟩. Using the relation TrTs = Tr+s we can also write this set
as ⟨S, T1, TαD

⟩, because 1, αD generate R as an abelian group. We find γ′γ ∈ {
(
r 0
0 r−1

)
: r ∈ R∗},

since 2j is an element of the interior G◦R. For R = R−7, R−8, R−11, the goup R∗ is generated
by −1, so {

(
r 0
0 r−1

)
: r ∈ R∗} is generated by −I2 = S2. Therefore γ ∈ ⟨S, T1, TαD

⟩. If

R = R−3 = Z[ζ3], then ζ6 generates R∗, and Uζ6 = −U2
ζ3

generates {
(
r 0
0 r−1

)
: r ∈ Z[ζ3]∗}.

Therefore γ ∈ ⟨S, T1, Tζ3 , Uζ3⟩. For R = R−4 = Z[i], the group R∗ is generated by i. Thus the
matrix Ui generates {

(
r 0
0 r−1

)
: r ∈ Z[i]∗} and we have γ ∈ ⟨S, T1, Ti, Ui⟩.

We can also use Proposition 6.19 to prove the following result:

Theorem 6.26. Let R be a discrete norm-Euclidean domain. Then GR consists of points which
have minimal distance to j with respect to their SL2(R) orbits.

Proof. This is a generalisation of Proposition 5.8, and the proof will be analogous. Let ω ∈ H3.

Then the distance d(ω, j) is given by cosh−1
( |ω|2+1
2πj(ω)

)
[5]. If |ω+ r| ≥ |ω| for r ∈ R, then we also

have d(ω + r, j) ≥ d(ω, j). Let S =
(
0 −1
1 0

)
. Then d(Sω, j) = d(ω, j) because S is an isometry

that fixes j. Therefore in every step Algorithm 6.18 the distance does not increase.
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If ω is an element of the interior G◦R, and γ ∈ SL2(R) is a matrix, then we can use Algorithm 6.18
to find γ′ ∈ SL2(R) such that γ′γω ∈ GR. By the previous argument we find d(γ′γω, j) ≤ d(γω, j).
By Proposition 6.19 we find γ′γω ∈ {

(
r 0
0 r−1

)
: r ∈ R∗}. All of these matrices are isometries that

fix j. Hence d(ω, j) = d(γ′γω, j) ≤ d(γω, j).

Now let ω ∈ GR \ G◦R. The interior G◦R is dense in GR, so there exists a sequence {ωn}n≥1 ⊂ G◦R
converging to ω. For all γ ∈ SL2(R) we find

d(ω, j) = lim
n→∞

d(ωn, j) ≤ lim
n→∞

d(γωn, j) = d(γω, j).

This theorem gives the motivation for the following reduction algorithm. Let F ∈ C[X,Z]′n be
a square-free binary form of degree n ≥ 3. To find a representative in the SL2(R) orbit of F
with a small size, we use Algorithm 6.18 to find γ ∈ SL2(R) such that γ−1z(F ) ∈ GR. Then by
Theorem 6.26 the distance d(z(F ·γ), j) is minimal in its orbit. Hence, both the lower and upper
bound on ∥F · γ∥ obtained from Theorem 4.11 are as small as possible.

For this thesis I have implemented this reduction algorithm into SageMath for all discrete norm-
Euclidean subrings of C not equal to Z. See Appendix B.

6.3 Optimal reduction

For optimal reduction we will again use the lower bound ∥F∥ to calculate an upper bound c > 0
on the distance d(z(F · γ), j) such that d(z(F · γ), j) > c implies ∥F · γ∥ > ∥F∥. We can then
iterate over all matrices γ for which this the case.

Lemma 6.27. Let R be a discrete ring and let M > 0 and ω ∈ H3. Then there exist only finitely
many γ ∈ SL2(R) such that d(γω, j) ≤M .

Proof. The distance d(γω, j) is given by cosh−1
( |ω|2+1
2πj(γω)

)
[5]. Suppose d(γω, j) ≤ M . Then, as

cosh is strictly increasing and bijective on R≥0 to R≥1, we obtain a lower bound for πj(γω). Let
k be this lower bound. Write γ =

(
a b
c d

)
. Then πj(γω) ≥ k is equivalent to |cω + d|2 ≤ πj(ω)/k.

By the proof of Lemma 6.9 we find that there are only finitely many c, d ∈ R for which this is
the case. In particular there are finitely many coprime pairs c, d for which this holds.

For each coprime pair c, d ∈ SL2(R) we will show that there exist only finitely many a, b ∈ R
such that

(
a b
c d

)
∈ SL2(R) and d(

(
a b
c d

)
ω, j) ≤ M . As c, d ∈ R are coprime, there exists at least

one pair a, b such that γ =
(
a b
c d

)
∈ SL2(R). Now let a′, b′ ∈ R be two different elements such

that γ′ =
(
a′ b′

c d

)
∈ SL2(R). Then we have

γγ′−1 =

(
ad− bc a′b− ab′

0 a′d− b′c

)
=

(
1 a′b− ab′
0 1

)
.

It follows that γ and γ′ differ by a translation, and γ′ω = γω + r for some r ∈ R. The distance

d(γω + r, j) for r ∈ R is given by cosh−1 |τ+r|2+u2+1
2u . This distance being smaller than M gives

an upper bound N on |τ + r|2. Because R is discrete and closed in C, There exist only finitely
many r ∈ R such that |τ + r|2 ≤ N . This implies that there are finitely many pairs a, b ∈ R
such that d(

(
a b
c d

)
ω, j) ≤M . Combining this with the fact that the pair c, d can take on finitely

many values, we find that there are only finitely many γ ∈ SL2(R) such that d(γω, j) ≤M .

Proposition 6.28. Let R ⊂ C be a discrete subring and let F ∈ C[X,Z]′n be a square-free binary
form of degree n ≥ 3. Then there exists γmin ∈ SL2(R) such that ∥F · γmin∥ ≤ ∥F · γ∥ for all
γ ∈ SL2(R).
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Proof. This proof is analogous to the proof of Proposition 5.9.

To find this binary form in the orbit F with minimal norm, we do not actually need to check all
matrices γ with d(γz(F ), j) ≤ c. Firstly, both ∥F∥ and H(F ) are invariant under the action of
the matrix −I2, as it does not change the absolute values of the coefficients. The same holds for

the rotation matrices Uζ3 =
(

ζ3 0

0 ζ2
3

)
and Ui =

(
i 0
0 −i

)
. This leads to the following lemma.

Lemma 6.29. For R = Z[i] or R = Z[ζ3], let Γ be the subgroup of SL2(R) generated by S and
Tr for r ∈ R. Let F be a complex square-free binary form of degree n ≥ 3. Then

min
γ∈Γ
∥F · γ∥ = min

γ∈SL2(R)
∥F · γ∥. (6.30)

Proof. We know that there exists γmin ∈ SL2(R) such that ∥F · γmin∥ is minimal by Proposition
6.28. By Corollary 6.22 we can write γ as a product of matrices of the form S, Tr for r ∈ R and
U where U =

(
r 0
0 r−1

)
for r = ζ3 or r = i. Now using the relations SU = U−1S and UTs = Tsr2U

we can write γ using a matrix in ⟨U⟩ at most once, on the right. Removing this matrix on the
right has no effect on ∥F · γ∥, and then γ ∈ Γ holds.

To make use of this lemma to reduce the number of matrices we have to iterate over, we do the
following. Instead of looking at all matrices with d(γz(F ), j) ≤ c, we only look at the matrices γ
that get reduced to the identity matrix when Algorithm 6.18 is applied to the point γ · 2j. More
precisely, if γ′ is the matrix we obtain from this algorithm, then we iterate over the matrices
with γ′γ = I2, and d(γz(F ), j) small enough.
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Algorithm 6.31 Given a discrete norm-Euclidean subring R of C and a complex square-free
binary form F ∈ C[X,Z]′n of degree n ≥ 3 with z(F ) ∈ GR, determine a matrix γmin ∈ SL2(R)
such that ∥F · γmin∥ is minimal.

1: Let γmin = I2
2: Let m = ∥F∥
3: Calculate ε(F )

4: Let c = cosh−1

((
m

ε(F )θ(F )

)1/(n−2)
)

5: Define the list L = [(I2, start)]
6: for (γ,previous action) ∈ L in ascending order of d(γz(F ), j) do
7: if ∥F · γ−1∥ < m then
8: Update m← ∥F · γ−1∥
9: Update γmin ← γ−1

10: Update c← cosh−1

((
m

ε(F )θ(F )

)1/(n−2)
)

11: Throw out all elements γ′ of L for which d(γ′ · z(F ), j) > c
12: end if
13: if the previous action was inversion or start then
14: for all τ ∈ R \ {0} such that d(γ · z(F ) + τ, j) < c do

15: Let Tτ =

(
1 τ
0 1

)
16: Add (Tτ · γ, translation) to L
17: end for
18: end if
19: if the previous action was translation or start then

20: Let S =

(
0 −1
1 0

)
21: if |Sγ · 2j| < 1, and |Sγ · 2j| ≤ |Sγ · 2j + r| for all r ∈ R then
22: Add (S · γ, inversion) to L
23: end if
24: end if
25: end for

Proof. Let F ∈ C[X,Z]′n be a square-free binary form of degree n ≥ 3. By Proposition 6.28
there exists a matrix γmin that minimizes ∥F · γmin∥. Let c′ be the upper bound on d(γz(F ), j)
obtained from Corollary 4.15. If a matrix γ is considered in the for loop from line 6 to 25, we
add all matrices γ′ with d(γ′ · 2j, j) < c that get reduced to γ in one step of Algorithm 6.18,
where c is as defined in the algorithm. Let now γ be a matrix with d(γ · 2j, j) < c. If we apply
Algorithm 6.18 to the point γ · 2j, we find a matrix γ′ such that γ′γ ∈ GR. Inductively, we find
that if γ′γ = I2, then γ is added to the list L at some point in this algorithm.

Let γ be the matrix obtained from Algorithm 6.18 when applied to the point γ−1
min · 2j and let

n be the amount of times inversion is applied during the execution of this algorithm. Define
δ = (−1)n. Using Proposition 6.19 we find γγ−1

min · 2j =
(
r 0
0 r−1

)
for some r ∈ R∗. Let U be

this matrix. Now let γ′ be the matrix obtained from Algorithm 6.18 when applied to the point
U−δ · γ−1

min · 2j. If |ω| is minimal under translation, then so is |Uω|. Therefore if inversion would
be applied to some point ω in Algorithm 6.18, it would also be applied to Uω. Otherwise if
|ω + s| is minimal under translation for some non-zero s ∈ R, then |U(ω + s)| = |Uω + r2s| is
also minimal under translation. Now using the relations SU = U−1S and TsU = UTr2s, we find
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γ′U−δ = U−1γ, and hence
γ′ · U−δ = U−1γγ−1

min = I2.

So, at some point U−δγ−1
min is reached in this algorithm. Because |r| = 1, we find ∥F · γmin∥ =

∥F · γminU
δ∥. Therefore we have found a matrix that minimizes the size of its corresponding

binary form.

The j-part of Sγ · 2j is smaller than the j-part of γ · 2j if |Sγ · 2j| < 1. Therefore this algorithm
cannot loop. Furthermore, let c be the value of c as defined in line 4. The value of c cannot
increase during this algorithm, so we will never add a matrix γ to the list L such that d(γ ·
2j, j) > c. Because there are only finitely many matrices γ with d(γ · 2j, j) ≤ c, this algorithm
will at some terminate, at which point we have found a minimizer of ∥F · γ∥.

Just like for R = Z, we look at the point Sγ · 2j instead of Sγ · z(F ) in line 21 of the algorithm.
We do this so that we can carry out exact calculations, as we can only approximate the point
z(F ). This ensures that the algorithm does not loop due to numerical error.

For this thesis I have implemented this algorithm into SageMath for all norm-Euclidean subrings
of C not equal to Z. See Appendix B.

To find the binary form in the SL2(R)-orbit of F with minimal height, we can use the alternative
upper bound obtained from equation (4.17). We then need to replace m = ∥F∥ with m = H(F )
in lines 2 and 8, replace ∥F · γ−1∥ with H(F · γ−1) in line 7 and replace m with n ·m2 in lines 4
and 10.

6.4 Reduction over principal ideal domains

We will generalise the reduction algorithm to all discrete principal ideal domains. This will
turn out to be more complicated, and we will also not be able to give an explicit algorithm for
optimal reduction. There is a famous result stating which discrete subrings of C are principal
ideal domains.

Theorem 6.32 (Stark-Heegner). The discrete rings R ⊂ C not equal to Z that are principal
ideal domains are precisely the rings RD for D = −3,−4,−7,−8,−11,−19,−43,−67,−163.

We have already proven the case of D = −3,−4,−7,−8,−11, as all (norm-)Euclidean domains
are also principal ideal domains. Gauss was able to show that RD is also a principal ideal domain
if D = −19,−43,−67,−163. Heegner almost proved that these are the only values of D for which
RD is a principal ideal domain in 1952, but there was a gap in his proof. Stark filled this gap in
1967 [7].

Lemma 6.33. Let R ⊂ C be a discrete principal ideal domain not equal to Z. Then for all τ ∈ C
and K > 0 there exist coprime elements c, d ∈ R with c ̸= 0 such that |cτ + d| < K.

Proof. We can define an action of R on C given by addition. Then this action has a fundamental
domain given by the closed and filled parallelogram P with corners 0, 1, α, α+1, where α ∈ C is
such that R = Z+ αZ. This is a closed and bounded subset of C, and it is therefore compact.

Let τ ∈ C. For all integers n ≥ 0, there exists an element rn ∈ R with nτ+rn ∈ P . Consider the
sequence {nτ +rn}n≥0 ⊂ P . Because P is compact, this sequence has a convergent subsequence.
Let K > 0. As a convergent sequence is also Cauchy, there exist non-equal n1, n2 ≥ 0 with
|n1τ + rn1 −n2τ − rn2 | = |(n1−n2)τ +(rn1 − rn2)| < K. Let m = gcd(n1−n2, rn1 − rn2). Then
c = (n1 − n2)/m and d = (rn1

− rn2
)/m satisfy the condition.
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We can generalise the regions GR to all discrete subrings of C. For a discrete subring R ⊂ C not
equal to Z we define GR as follows:

GR = {ω ∈ H3 : |ω| ≤ |ω + r|, πj(ω) ≥ πj(γω) for all r ∈ R, γ ∈ SL2(R)}. (6.34)

Again the constraint |ω| ≤ |ω + r| for all r ∈ R is equivalent to |τ | ≤ |τ + r for all r ∈ R if we
write ω = τ +uj. The region of all τ ∈ C with this property is a hexagon if R = RD with D ≡ 1
mod 4, and a rectangle if D ≡ 0 mod 4.

This definition of GR is equal to our definition when R is norm-Euclidean by Proposition 6.14.
Just like in this proposition, the region GR also has the following property.

Lemma 6.35. Let R ⊂ C be a discrete ring. For all ω ∈ H3 there exists γ ∈ SL2(R) such that
γω ∈ GR.

Proof. This proof is the same as the second part of the proof of Proposition 6.14.

For discrete rings R ⊂ C that are principal ideal domains we will be able to use this region to
define a reduction algorithm. An element ω ∈ H3 has maximal height if there does not exist a
matrix γ ∈ SL2(R) such that πj(ω) < πj(γω), that is, there are no coprime c, d ∈ R such that
|cω + d| < 1. Therefore we can reformulate the definition for GR as follows:

GR = {ω ∈ H3 : |ω| ≤ |ω + r| for all r ∈ R} \
( ⋃

c,d∈R
coprime

{ω ∈ H3 : |cω + d| < 1}
)
. (6.36)

Lemma 6.37. Let R ⊂ C be a discrete principal ideal domain. Then there exists a finite set N
of coprime pairs (c, d) ∈ R2 such that the following equality holds:

GR = {ω ∈ H3 : |ω| ≤ |ω + r| for all r ∈ R} \
( ⋃

(c,d)∈N

{ω ∈ H3 : |cjω + dj | < 1}
)
. (6.38)

Proof. Let T ⊂ C be the set of all elements which have minimal norm under translation with R.
Then T is a bounded set. By Lemma 6.33 there exists a covering of T ⊂ C given by the open
discs of the form {τ ∈ C : |cτ + d| < 1

2} intersected with T for coprime elements c, d ∈ R with
c ̸= 0. As T is compact there exists a finite subcover. Note that circles of this form have radius
1/2|c|. Write Ñ for the set of pairs c, d ∈ R such that {τ ∈ C : |cτ + d| < 1

2} ∩ T appears in this
finite subcover. Now define the set G′R as

G′R = {ω ∈ H3 : |ω| ≤ |ω + r| for all r ∈ R} \
( ⋃

(c,d)∈Ñ

{ω ∈ H3 : |cω + d| < 1}
)
. (6.39)

The region GR is clearly a subset of G′R. Let ω = τ + uj be an element of G′R. Since τ is an
element of T , there exists a pair (c, d) ∈ Ñ such that |cτ + d| < 1

2 . For this pair (c, d) we find

u2 =
|cω + d|2 − |cτ + d|2

|c|2
≥

1− 1
2

2

|c|2
. (6.40)

Let c̃ be a value of c appearing in a pair (c, d) ∈ Ñ with maximal norm. Due to the inequality

(1− 1
2

2
)/|c|2 ≥ (1− 1

2

2
)/|c̃|2 we have the lower bound

√
3

2|c̃| for u. Let r =
√
3/2|c̃|.
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If R = RD for some D ≡ 0 mod 4, then define M = 1
2

√
1−D. Otherwise, if D ≡ 1 mod 4

define M = (1−D)
√
−D/(−4D). In both cases τ ∈ T implies |τ | ≤M . Now let N be the finite

set of coprime pairs (c, d) ∈ R2 such that |c| ≤ 1/r and |d| ≤ 1 +M/r. Note that Ñ is a subset
of N . We will show that this set satisfies the condition.

Let ω ∈ H3 and suppose |ω| ≤ |ω + r| for all r ∈ R, and |cω + d| ≥ 1 for all (c, d) ∈ N . Let
(c, d) be an arbitrary coprime pair in R. If (c, d) ∈ N , then |cω + d| ≥ 1. If (c, d) /∈ N , then
we either have |c| > 1

r or |d| ≥ 1 +M/r. Write ω = τ + uj. In the case of |c| > 1
r we find

|cω + d|2 ≥ |c|2u2 ≥ r2/r2 = 1. Otherwise if |d| ≥ 1 +M/r and |c| ≤ 1
r then we have

|cω + d| ≥ |cτ + d| ≥ |d| − |cτ | ≥ 1 +M/r − |c||τ | ≥ 1 +M/r −M/r = 1.

Therefore in both cases we find |cω + d| ≥ 1. Hence ω ∈ GR. The other inclusion is trivial.

We will use this property to generalise Algorithm 6.18, and we will therefore restrict ourselves
to discrete complex principal ideal domains.

Algorithm 6.41 Given ω ∈ H3 and a norm-Euclidean ring R find γ ∈ SL2(R) such that
γω ∈ GR.

1: Let γ =

(
1 0
0 1

)
2: while ω /∈ GR do
3: Determine r ∈ R such that |ω + r| ≤ |ω + r′| for all r′ ∈ R

4: Replace γ ←
(
1 r
0 1

)
· γ

5: Replace ω ← ω + r
6: if there exist coprime c, d ∈ R such that |cω + d| < 1 then
7: Determine coprime c, d ∈ R such that |cω + d| is minimal
8: Choose a, b ∈ R such that ad− bc = 1.

9: Let U =

(
a b
c d

)
10: Replace ω ← Uω
11: Replace γ ← Uγ
12: end if
13: end while

Proof. Let ω ∈ H3. By Lemma 6.9 there exist only finitely many possible values of πj(γω) for
which πj(γω) ≥ πj(ω) for γ ∈ SL2(R). In line 8 of the algorithm, the value of πj(ω) increases to
πj(ω)/|cω + d|2 > πj(ω). This can only be done finitely many times, so at some point at line 6,
there will not exist coprime c, d ∈ R such that |cω + d|2 < 1. At this point, |ω + r| ≥ |ω| for all
r ∈ R, so ω ∈ GR. Note that this ω is equal to γ multiplied by the original value of ω.

Note that determining r ∈ R such that |ω + r| ≤ |ω + r′| for all r′ ∈ R is done in the same way
as in the norm-Euclidean case.

It is no longer necessarily the case that the distance to j decreases in every step of Algorithm 6.41.
Thus we cannot immediately generalise Theorem 6.26 to all discrete complex principal ideal
domains. So, it is no longer clear that GR consists of points with minimal distance to j with
respect to their orbit. However, due to the formula cosh−1[(|ω|2+1)/2πj(ω)] giving the distance
between ω and j, we still expect this distance to be small relative to all other points in its
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orbit if πj(ω) is maximal, and |ω| is minimal under translation. Therefore we can still use this
algorithm to find γ such that z(F ·γ) is close to j, and the upper and lower bound obtained from
Theorem 4.11 will be small.

For optimal reduction, we would need to enumerate over all points in the orbit of z(F ) for some
binary form F , with bounded distance to j. In contrary to the case for norm-Eucldiean rings, the
distance to j can increase in some steps of algorithm 6.41. Therefore a point ω in a hyperbolic
spehere around j of radius c > 0 can exit this hyperbolic sphere during this algorithm. This
makes enumerating over all the points in this sphere more complicated. Hutz and Stoll note that
this should be workable [5], though they give no way of doing this.

If it is possible to determine an upper bound M on the distance to j of points leaving the
hyperbolic sphere in Algorithm 6.41, given that the starting point has distance to j smaller than
c, then an algorithm similar to Algorithm 6.31 can be constructed to find a binary form in the
orbit of F with minimal size. Note that this upper bound M is dependent on the choice of
a, b ∈ R in line 8 of Algorithm 6.41.

To construct this algorithm similar to Algorithm 6.31, we would need to add all translation
matrices ( 1 r

0 1 ) such that d(ω + r, j) < M instead of d(ω + r, j) < c in line 8 of Algorithm 6.31.
Furthermore we would also need to take into account the other inversion matrices U =

(
a b
c d

)
from line 9 of Algorithm 6.41, apart from only S =

(
0 −1
1 0

)
.
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Appendices

A Proof of Proposition 6.14

In the proof of Proposition 6.14 we have postponed the checking of cases to here. We will first
repeat the proposition and the first part of the proof.

Proposition A.1 (Proposition 6.14). Let R be a discrete norm-Euclidean subring of C. Then
we can rewrite GR as follows:

GR = {ω ∈ H3 : πj(ω) ≥ πj(γω), |ω| ≤ |ω + r| for all γ ∈ SL2(R), r ∈ R}. (A.2)

Furthermore, for all ω ∈ H3, there exists γ ∈ SL2(R) such that γω ∈ GR.

Proof. For the first statement, let ω ∈ GR and γ =
(
a b
c d

)
∈ SL2(R). Then by equation (3.20) we

have πj(γω) = πj(ω)/|cω+ d|2. Now πj(γω) > πj(ω) is equivalent to |cω+ d|2 < 1 with c, d ∈ R
coprime. We will show that no coprime c, d with this property exist. For each norm-Euclidean
ring R we will reduce the possibilities to finitely many cases, and then check each case. First, by
definition of GR, we have |ω + r| ≥ |ω| ≥ 1 which covers the case of |c| = 1. For other cases, we
can rewrite |cω + d|2 as follows. Let τ ∈ C and u > 0 be such that ω = τ + uj. We than have

|cω + d|2 = |cτ + d|2 + |c|2u2 = |c|2|ω|2 + cτd+ cτd+ |d|2. (A.3)

Secondly, for all r ∈ R we have

|τ + r|2 ≥ |τ |2 =⇒ τr + τr ≥ −|r|2. (A.4)

The main idea to show that |cω+ d| ≥ 1 holds for all coprime pairs c, d ∈ R, is to first find some
bounds on |c| and |d|. Afterwards we will only have finitely many cases left. For these cases we
will apply |ω| ≥ 1 to equation (6.16), and then use equation (6.17) for suitable values of r.

We will now continue the proof here. First we will cover some general cases. If we apply equation
(A.4) to the case of r = cd we find cτd+ cτd ≥ −|c|2|d|2. Combining this with |ω| ≥ 1 in (A.3)
we find |cω + d|2 ≥ |c|2 + |d|2 − |c|2|d|2. Therefore if |c| ≤ 1 or |d| ≤ 1 holds, and c, d are not
both zero, then |cω + d|2 ≥ 1 holds.

Denote T for the region of all τ ∈ C which are minimal under translation with elements of R.
Then if τ ∈ T , we also have −τ ∈ T and τ ∈ T . Using this we find that if |c|2+cτd+cτd+|d|2 ≥ 1
holds for some pair (c, d) and all τ ∈ T , then it also holds for the pairs (c, d), (−c, d), (d, c).

We will now cover all the discrete norm-Euclidean subring of C separately. First consider R =
R−3 = Z[ζ3]. We will calculate an upper bound for |c|. As potrayed in Figure 4, GZ[ζ3] is a
hexagonal cylinder with the unit ball taken out. The minimal possible j-part of an element
ω ∈ GZ[ζ3] is attained on the unit ball at one of the corners of the hexagon. If τ + uj is at one of
these corners, then τ has equal distance to the three nearest points in Z[ζ3]. By symmetry, each
of the corners is equally far from the origin. One of the corners is the unique point with equal

distance to 0, 1 and ζ6. This gives τ = 1
2 +

√
3
6 i, and therefore |τ |2 ≤ 1

3 , and u
2 ≥ 2

3 . Because
|cω+d|2 ≥ |c|2u2, we find |c|2 ≤ 3

2 if |cω+d|2 < 1. The only possible values of |c| are now |c| = 0
or |c| = 1, which we have both covered already.

For R = R−4 = Z[i], the maximal value of |τ |2 is 1
2 , so the minimal value of u2 is also 1

2 , and
therefore |cω + d|2 < 1 implies |c|2 < 1

2 , which also leaves |c| = 0 and |c| = 1 as the only
possibilities.
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For R = R−7 = Z[α−7] with α−7 = 1
2 +

√
7
2 i, the maximal value of |τ |2 is 4

7 . Therefore the
minimal value of u2 is 3

7 , and we find |c|2 < 7
3 . This leaves the options |c| = 0, |c| = 1,

and c = α, α,−α,−α, with α = α−7 = 1
2 +

√
−7
2 . If |c|2 = |α|2 = 2, we will find an upper

bound for |d|. Firstly we know |cω + d|2 = |cτ + d|2 + |c|2u2. Therefore if |cω + d|2 < 1 then
|cτ + d| <

√
1− |c|2u2. The triangle inequality applied to |d+ cτ − cτ | gives:

|d| ≤ |cτ + d|+ |cτ | ≤
√
1− 2 · 3

7
+
√
2

2√
7
.

The only values of d for which this holds are d = 0, 1,−1, αD, αD,−αD,−αD. By symmetry and
because c, d have to be coprime, we only have to check c = αD and d = αD. Applying (A.4) to
r = α−1 and r = −1 we find τ(α−1)+ τ(α−1) ≥ −2 and −τ − τ ≥ −1. Using this in equation
(A.3) we get:

|αω + α|2 = |α|2|ω|2 + τα2 + τα2 + |α|2

≥ 4 + τ(α− 1) + τ(α− 1)− τ − τ ≥ 4− 2− 1 = 1,

as α2 = α− 2 and α2 = α− 2.

For R = R−8 = Z[
√
−2] the maximal value of |τ |2 is 1

4 + 1
2 = 3

4 . Therefore the minimal value of

u2 is 1
4 . This gives |c|

2 < 4. The possible values for c are then c = 0, 1,
√
−2, 1+

√
−2 up to sign

and conjugation. If c =
√
−2, we get the following upper bound for |d|:

|d| ≤ |cτ + d|+ |cτ | ≤
√
1− 2 · 1

4
+
√
2
1

2

√
3.

This leaves the options d = 0, 1,
√
−2, 1+

√
−2,−1+

√
−2 up to sign. By symmetry and because

c, d have to be coprime, we only have the pair (
√
−2, 1 +

√
−2) left to check. If we apply (A.4)

to r = −
√
−2 we find τ

√
−2− τ

√
−2 ≥ −2. If we apply it to r = 1 we find τ + τ ≥ −1. We can

use these equalities in (A.3) to find:

|
√
−2ω +

√
−2 + 1|2 = 2|ω|2 + τ

√
−2− τ

√
−2 + 2(τ + τ) ≥ 5− 2− 2 = 1.

If c = 1 +
√
−2 we have the following upper bound for |d|:

|d| ≤ |cτ + d|+ |cτ | ≤
√
1− 3 · 1

4
+
√
3 · 1

2

√
3.

This leaves d = 0, 1,
√
−2, 1 +

√
−2,−1 +

√
−2 up to sign. By symmetry this leaves the pair

(1+
√
−2,−1+

√
−2). Using the inequalities τ + τ ≥ −1 and −

√
−2τ +

√
−2τ ≥ −2 in equation

(A.3) we find

|(1 +
√
−2)ω − 1 +

√
−2|2 ≥ 6 + (τ + τ) + 2(−

√
−2τ +

√
−2τ) ≥ 1.

For R = R−11 = Z[α] with α = 1/2 +
√
−11/2, the maximal value of |τ |2 is 9

11 . Therefore the
minimal value for u2 is 2

11 . Hence for c we find |c|2 < 11
2 . Up to sign and conjugation this leaves

c = 0, 1, 2, α, α + 1. We have already covered the case of c = 0, 1. First we will check all cases
for c = 2. We will first determine an upper bound for |d|.

|d| ≤ |cτ + d|+ |cτ | ≤
√
1− 4 · 2

11
+ 2 · 3√

11
.

40



Up to symmetry this leaves d = 0, 1, 2, α, α + 1 with α = α−11 = 1
2 +

√
−11
2 . We have already

covered the case of d = 0, 1, 2. For d = α we find

|2ω + α|2 ≥ 4 + 2(τα+ τα) + |α|2 ≥ 4− |α|2 = 1.

For d = α+ 1 we find

|2ω + α|2 ≥ 4 + (τα+ τ) + (τ + τ) + |α+ 1|2 = 9− 6− 1 = 2.

In the case of c = α we will again check an upper bound for |d|:

|d| ≤ |cτ + d|+ |cτ | ≤
√
1− 3 · 2

11
+
√
3 · 3√

11
.

This leaves up to sign d = 0, 1, 2, α − 2, α − 1, α, α + 1. By symmetry and earlier cases we have
already covered d = 0, 1, 2. For d = α− 2 we find

|αω + α− 2|2 ≥ 3 + 3(τ + τ)− 2(ατ + ατ) + |α− 2|2

= 8 + (τ + τ)− 2((α− 1)τ + (α− 1)τ) + |α− 2|2 ≥ 8− 1− 6.

For d = α− 1 we find

|αω + α− 1|2 ≥ 3 + 2(τ + τ)− ((α− 1)τ + (α− 1)τ) + |α− 1|2 ≥ 6− 2− 3 = 1.

For d = α+ 1 we find

|αω + α+ 1|2 ≥ 3 + 3(τ + τ) + (ατ + ατ) + |α+ 1|2 ≥ 8− 3− 3 = 2.

In the case of c = α+ 1 we get the following upper bound for |d|:

|d| ≤ |cτ + d|+ |cτ | ≤
√
1− 5 · 2

11
+
√
5 · 3√

11
.

Up to sign this leaves d = 0, 1, 2, α−2, α−1, α, α+1. Using symmetry and earlier cases we have
already coverd all of these except d = α− 2. We find

|(α+ 1)ω + (α− 2)|2 ≥ 10− 2τ(α− 1)− 2τ(α− 1) + τ(α− 1) + τ(α− 1) ≥ 10− 6− 3 = 1.

We have now covered all cases of coprime c, d ∈ R, for R = R−3, R−4, R−7, R−8, R−11. We omit
the proof of the second statement, as this has already been proven.
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B Implementation of algorithms into SageMath

def covariant_z0 (F):

’’’

Calculates the covariant z_0 defined by Stoll and Cremona

INPUT:

- ‘‘F‘‘ -- square-free Binary form, a polynomial in two variables

defined over a discrete norm-Euclidean subring of CC

OUTPUT: The point z0(F) in the upper half space, i.e. a tuple of a

complex number and a positive real number.

TODO:

Make it so that this also works for polynomials in one variable

Make sure that covariant_z0(F) outputs two real numbers if F is real

’’’

n = F.degree()

zeros = find_projective_zeros(F)

# determine Q_0, as a 2x2 matrix representing a hermitian quadratic form

MatCC = MatrixSpace(CC, 2, 2)

Q_0 = MatCC(0)

for j in range(n):

#determine the the coefficients of hermitian form

alphaj, betaj = zeros[j] # (alphaj : betaj) is the jth zero of F

factor = 1

for k in range(n):

if k != j:

alphak, betak = zeros[k]

factor *= norm(alphaj*betak - alphak*betaj)

factor = factor^(-1/(n-2))

# add the term |betaj X - alphaj Z|^2 to Q_0

add_to_Q_0 = factor * MatCC([norm(betaj), -alphaj*conjugate(betaj),

-conjugate(alphaj)*betaj, norm(alphaj)])

Q_0 += add_to_Q_0

# apply the zero map to convert Q_0 to z_0

disc = det(Q_0)

return (-Q_0[0, 1] / Q_0[0, 0] , sqrt(disc) / Q_0[0, 0])

def covariant_z (F):

’’’

Calculates the covariant z defined by Stoll and Cremona

INPUT:

- ‘‘F‘‘ -- square-free Binary form, a polynomial in two variables

defined over a discrete norm-Euclidean subring of CC
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OUTPUT: The point z(F) in the upper half space, i.e. a tuple of a

complex number and a positive real number.

TODO:

Make it so that this also works for polynomials in one variable

Make sure that covariant_z(F) outputs two real numbers if F is real

’’’

n = F.degree()

zeros = find_projective_zeros(F)

w = var(’,’.join(’w%s’%i for i in range(n-1))) #create (n-1) variables

# nth variable is -sum(other variables)

missing_w = sum(-w[i] for i in range(n-1))

w_total = [w[i] for i in range(n-1)]

w_total.append(missing_w)

# Define D

D = 0

for k in range(n):

for j in range(k):

#print(j, ", ", k)

#print(zeros[j], zeros[k])

# a zero (alpha : beta) corresponds to a factor (beta*X - alpha*Z)

(alphaj, betaj) = zeros[j]

(alphak, betak) = zeros[k]

D += norm(betaj*alphak - betak*alphaj)*exp(w_total[j] + w_total[k])

#make initial guess (doesn’t matter what, since D is convex)

w_initial = [0 for i in range(n-1)]

minimal = minimize(D, w_initial)

minimal = [wi for wi in minimal] #convert w to list

minimal.append(-sum(minimal)) # append the missing variable

t = [exp(wi) for wi in minimal]

# Create positive definite quadratic hermitian form with the ti

# A positive definite hermitian form

# a|X|^2 + bX conj(Z) + conj(b)conj(X)Z + c|Z|^2, with a, c > 0 and b in CC

# is represented by a 2x2 matrix with with coefficients a, b, conj(b), c

# then (-)disc(Q) is the determinant of the corresponding matrix

# (up to sign depending on definition)

MatCC = MatrixSpace(CC, 2, 2)

Q = MatCC(0)

for i in range(n):

root = zeros[i]

if root == (1, 0): # root is at infinity

add_to_Q = MatCC([0, 0, 0, t[i]])

else:
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add_to_Q = t[i] * MatCC([1, -root[0],

-conjugate(root[0]), norm(root[0])])

Q += add_to_Q

#convert Q to z

disc = det(Q)

return (-Q[0, 1] / Q[0, 0] , sqrt(disc) / Q[0, 0])

def z0_reduce(F):

’’’

Find matrix A such that z0(F*A) is in the region G_R

INPUT: square-free Binary form, a polynomial in two variables defined over

a discrete norm-Euclidean subring of CC

OUTPUT: - binary form G with z0(G) in the region G_R

- 2x2 matrix over R such that F*A = G

’’’

ring = F.coefficients()[0].parent()

generator = find_second_generator(ring)

M = MatrixSpace(ring, 2, 2)

z0 = covariant_z0(F)

keep_going = True

Ainv = M([1, 0, 0, 1])

A = M([1, 0, 0, 1])

S = M([0, -1, 1, 0])

while(keep_going):

z0 = covariant_z0(F)

# translate such that norm(tau) is minimal

translate = determine_minimal_translation(z0[0], generator)

T = M([1, translate, 0, 1])

Ainv = T*Ainv

Tinv = M([1, -translate, 0, 1])

A = A*Tinv

F = actb(F, Tinv)

z0 = acth(T, z0)

if( norm(z0[0]) + z0[1]^2 < 1):

z0 = acth(S, z0)

Ainv = S*Ainv

A = -A*S

F = actb(F, -S)

elif (translate == 0): #if both translate == 0 and norm(z) >= 1, z in F

keep_going = False

return F, A

def z_reduce(F):

’’’

Find matrix A such that z(F*A) is in the region G_R
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INPUT: square-free Binary form, a polynomial in two variables defined over

a discrete norm-Euclidean subring of CC

OUTPUT: - binary form G with z(G) in the region G_R

- 2x2 matrix over R such that F*A = G

’’’

ring = F.coefficients()[0].parent()

generator = find_second_generator(ring)

M = MatrixSpace(ring, 2, 2)

keep_going = True

Ainv = M([1, 0, 0, 1])

A = M([1, 0, 0, 1])

S = M([0, -1, 1, 0])

while(keep_going):

z = covariant_z(F)

# translate such that norm(tau) is minimal

translate = determine_minimal_translation(z[0], generator)

T = M([1, translate, 0, 1])

Ainv = T*Ainv

Tinv = M([1, -translate, 0, 1])

A = A*Tinv

F = actb(F, Tinv)

z = acth(T, z)

# invsersion if necessary

if( norm(z[0]) + z[1]^2 < 1):

z = acth(S, z)

Ainv = S*Ainv

A = -A*S

F = actb(F, -S)

elif (translate == 0): #if both translate == 0 and norm(z) >= 1, z in F

keep_going = False

return F, A

def optimal_red(F_start):

’’’

Find matrix A such that size(F_start * A) is minimal

Uses Algorithm 6.30 to find the binary form and corresponding matrix with

minimal size

INPUT: square-free Binary form, a polynomial in two variables defined over

a discrete norm-Euclidean subring of CC

OUTPUT: - the binary form F*A

- 2x2 matrix over the same ring such that size(F * A) is minimal

’’’

n = F_start.degree()

ring = F_start.coefficients()[0].parent()

generator = find_second_generator(ring)

M = MatrixSpace(ring, 2, 2)

(F_opt, A) = z0_reduce(F_start)

(F_opt, B) = z_reduce(F_opt)
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A = A*B

best_size = size(F_opt)

#compute epsilon and theta:

z = covariant_z(F_opt)

S = M([0, -1, 1, 0])

I = M([1, 0, 0, 1])

beginning_node = (F_opt, I, z, "start", cosh_distance_to_j(z))

# node[0] = binary form

# node[1] = matrix to get from f_start to f

# node[2] = sc_z(f)

# node[3] = previous action

# node[4] = distance from sc_z(f) to j

theta = calculate_theta(F_opt)

epsilon = calculate_epsilon(F_opt)

upper_bound_c = calculate_c(size(F_opt), epsilon, theta, n)

queue = [beginning_node]

B = I

for node in queue:

queue.pop(0)

# check if norm is smaller than the previous optimal

G = node[0]

if (size(G) < best_size):

F_opt = G

B = node[1]

best_size = size(G)

upper_bound_c = calculate_c(size(G), epsilon, theta, n)

# throw out all points with distance too high

laatste = -1

while (queue[laatste][4] < upper_bound_c):

laatste -= 1

if laatste < -1:

queue = queue[:laatste+1]

#add adjacent nodes:

if (node[3] in ["inversion", "start"]):

translations = determine_translations(node[2], upper_bound_c,

generator)

for r in translations:

Tr = M([1, -r, 0, 1])

add_to_queue(node, Tr, "translation", queue)

if (node[3] in ["translation", "start"]):

z = acth(S*node[1]^-1, (0, 2))
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if norm(z[0]) + z[1]^2 < 1

and minimal_under_translation(z[0], generator):

add_to_queue(node, S, "inversion", queue)

#done checking points

return (F_opt, A * B)

’’’

AUXILIARY FUNCTIONS

’’’

def height(F):

’’’

calculates the height H(F) of F

INPUT: polynomial in two variables

OUTPUT: maximal absolute value of the coefficients

’’’

return max(abs(ai) for ai in F.coefficients())

def size(F):

’’’

calculates the height H(F) of F

INPUT: polynomial in two variables

OUTPUT: sum of norm of the coefficients

’’’

return sum(norm(ai) for ai in F.coefficients())

def acth(A, z):

’’’

left action of matrix ring on upper half space H3

direct implementation of the formula on

https://www.lmfdb.org/knowledge/show/mf.bianchi.bianchimodularforms

INPUT:

- ‘‘A‘‘ -- 2x2 Matrix

- ‘‘z‘‘ -- tuple of complex number and positive real number

OUTPUT: A*z, a tuple of a complex number and a positive real number

’’’

a = A[0, 0]

b = A[0, 1]

c = A[1,0]

d = A[1,1]

tau = z[0]

u = z[1]

#action on the complex number:
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first_coordinate = (a*tau + b)*conjugate(c*tau+d) + a * conjugate(c)*u^2

first_coordinate /= norm(c*tau + d) + norm(c) * u^2 # norm(c) = |c|^2

second_coordinate = u/(norm(c*tau + d) + norm(c) * u^2)

return (first_coordinate, second_coordinate)

def actb(F, A):

’’’

right action of matrix ring on upper half space H3

INPUT:

- ‘‘F‘‘ -- Binary form, a polynomial in two variables

- ‘‘A‘‘ -- 2x2 Matrix

OUTPUT: F(aX + bZ, cX + dZ)

NOTE::

Make sure the binary form and matrix are defined over the same ring

’’’

a = A[0, 0]

b = A[0, 1]

c = A[1,0]

d = A[1,1]

X, Z = F.parent().gens()

return F.subs({X: a*X + b*Z, Z: c*X + d*Z})

def find_projective_zeros(F):

’’’

Given a binary form, gives the projective zeros of the homogenised version

of F

First it calculates the affine zeros. Then it checks

the multiplicity of the zero at infinity.

INPUT:

- ‘‘F‘‘ -- Binary form, a polynomial in two variables

OUTPUT: list of tuples of complex numbers (alpha, beta) that are zeros of F

’’’

n = F.degree()

X, Z = F.parent().gens()

C.<z> = PolynomialRing(CC) # create polynomial ring over CC in one variable

f = F.subs({X:z, Z:1})

roots = f.roots() # roots are represented as (root, multiplicity)

zeros = []

for root in roots:

# add root multiplicity times to zeros

zeros.extend([(root[0], CC(1)) for i in range(root[1])])

# find multiplicity of infinity

mult = 0

while F.coefficient(X^(n-mult)* Z^mult) == 0:
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zeros.append((CC(1), CC(0)))

mult += 1

return zeros

def determine_minimal_translation(tau, generator):

’’’

Finds r in ZZ + generator*ZZ such that |tau + r| is minimal

INPUT: - complex number tau

- complex number generator that is integral over ZZ

OUTPUT: complex number r such that |tau + r| <= |tau + r’|

for all r’ in ZZ + generator*ZZ

’’’

if generator == 0: #R = ZZ

return(round(-real(tau)))

m = -round(imag(tau)/imag(generator))

if real(generator) == 0: #R = ZZ[sqrt{D}] for D<0

n = -round(real(tau))

return(n + m*generator)

#R = ZZ[1/2 + 1/2sqrt(D)]

n = -round(real(tau + m*generator))

translate = n + m*generator

#it is still possible that the norm is not minimal, check four elements

if imag(tau + translate) > 0:

if norm(tau + translate - generator) < norm(tau + translate):

return (translate -generator)

if norm(tau + translate - generator+1) < norm(tau + translate):

return (translate -generator+1)

if norm(tau + translate + generator) < norm(tau + translate):

return (translate +generator)

if norm(tau + translate + generator-1) < norm(tau + translate):

return (translate +generator-1)

return (translate)

def find_second_generator(ring):

’’’

finds r in CC such that R = ZZ + r*ZZ and im(r) > 0 and re(z) in [0, 1/2]

INPUT: discrete subring of CC

OUTPUT: complex number r

’’’

generators = ring.gens()

if len(generators) == 1:

return(0)

else:
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generator = generators[1] #Ring = ZZ + generator* ZZ

if imag(generator) < 0:

generator *= -1

generator -= floor(real(generator))

return ring(generator)

’’’

Functions used in optimal_red:

’’’

def r(F, z):

’’’

The function R(F, z) as defined by Stoll and Cremona

function solely used to calculate theta(F)

INPUT: - Binary form, homogeneous polynomial in two variables

- point in the upper half-space, a tuple of a complex number and a

positive real number

OUTPUT: positive real number R(F, z)

’’’

r = 1

n = F.degree()

zeros = find_projective_zeros(F)

#F = prod (beta_i x - alpha_i Z) up to some scaling error

# with (alpha_i, beta_i) the zeros of F

for i in range(n):

(alphai, betai) = zeros[i]

r *= (norm(betai*z[0] - alphai) + norm(betai)*z[1]^2)

r = r / (z[1]^n)

#find a non-zero coefficient

x, y = F.parent().gens()

for i in range(n):

ai = F.coefficient(x^(n-i)*y^i)

if ai != 0:

first_nonzero_coeff = ai

first_nonzero_coeff_place = i

break

#check scaling error

scale = CC(first_nonzero_coeff)

r *= norm(scale)

return real(r)

def calculate_theta(f):

’’’

calculate theta(F) = R(F, z(F)

INPUT: stable binary form

Output: positive real number equal to theta(F)
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’’’

return r(f, covariant_z(f))

def inverse_stereographic(zero):

’’’

zero in PP^1(CC), output embedding of zero from Riemann spehere into R^3

Used in calculate_epsilon

INPUT: tuple of two complex numbers, not both equal to zero

OUTPUT: tuple of three real numbers in the unit sphere

’’’

alpha = zero[0]

beta = zero[1]

if beta == 0:

return ((0, 0, 1))

else:

tau = alpha/beta

first_coordinate = (2*real(tau))/(norm(tau) + 1)

second_coordinate = (2*imag(tau))/(norm(tau) + 1)

third_coordinate = (norm(tau)-1)/(norm(tau) + 1)

return ((first_coordinate, second_coordinate, third_coordinate))

def move_to_j(F):

’’’

Calculate binary form F0 in orbit of F with z(F0) = j

Used in the calculation of epsilon

INPUT: square-free binary form

OUTPUT: binary form in orbit of F with z(F0) = j

’’’

M = MatrixSpace(CC, 2, 2)

z = covariant_z(F)

translate = M([1, -z[0], 0, 1])

scale = M([z[1]^(-1/2), 0, 0, z[1]^(1/2)])

A = scale * translate

return actb(F, A^-1)

def calculate_epsilon(F):

’’’

Calculates epsilon(F) for square-free binary forms as defined by

Hutz and Stoll

INPUT: square-free binary form

OUTPUT: positive real number equal to epsilon(F)

’’’

F0 = move_to_j(F)

F0 = move_to_j(F0)

n = F.degree()

zeros = find_projective_zeros(F0)

#determine max_{i != j} <phi_i, phi_k>

max_inproduct = -2

for i in range(n):
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phi_i = inverse_stereographic(zeros[i])

for j in range(i):

phi_j = inverse_stereographic(zeros[j])

inproduct = 0

for k in range(3):

inproduct += phi_i[k] * phi_j[k]

if inproduct > max_inproduct:

max_inproduct = inproduct

eps = (max_inproduct + 1)/2

eps = (1 - eps)^(n-1)

eps /= 2

return eps

def calculate_c(size, epsilon, theta, n):

’’’

Calculates upper bound c for cosh dist(z(F), j)

Used in optimal_red

INPUT: - positive real number size

- positive real number epsilon

- positive real number theta

- positive integer n >= 3

OUTPUT: - positive real number

’’’

c = 2 * ((2 * size)/(epsilon * theta))^(1/(n-2))

return c

def cosh_distance_to_j(z):

’’’

calculates cosh of the hyperbolic distance between z and j

Used in optimal_red

INPUT: point in the upper halfspace - tuple of complex number and positive

real number

OUTPUT: positive real number

’’’

return (norm(z[0]) + z[1]^2 + 1)/(2*z[1])

def determine_translations(z, upper_bound, generator):

’’’

Determine all r in R not equal to 0 such that coshd(z + r, j) < c

Auxiliary function for optimal_red

INPUT: - point in upper half-space - tuple of complex number and positive

real number
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- positive real number upper_bound

- integral complex number such that ZZ + generator*ZZ is a discrete

norm euclidian subring of CC, and im(generator) > 0 and

re(generator) = 0, 1/2

OUTPUT: list of elements r such that cosh d(z + r, j) < upper_bound

’’’

tau = z[0]

u = z[1]

M = upper_bound*2*u + -u^2-1

translations = []

if generator == 0:

#R = ZZ

min_i = ceil(-tau-M)

max_i = floor(-tau+M)

for i in range(min_i, max_i+1):

if (i != 0):

translations.append(i)

else: #R = ZZ + generator* ZZ

max_i = floor((-imag(tau)+sqrt(M))/imag(generator))

min_i = ceil((-imag(tau)-sqrt(M))/imag(generator))

for i in range(min_i, max_i+1):

M2 = sqrt(M - imag(tau + i*generator)^2)

max_j = floor(-real(tau + i*generator)+ M2)

min_j = ceil(-real(tau + i*generator)- M2)

for j in range(min_j, max_j+1):

if i != 0 or j != 0:

translations.append(j + i*generator)

return (translations)

def minimal_under_translation(tau, generator):

’’’

Check whether a complex number is minimal under translation with elements

of ZZ + generator* ZZ

INPUT: - complex number

- integral complex number such that ZZ + generator*ZZ is a discrete

OUTPUT: boolean

’’’

if 2 * real(tau) > 1 or 2 * real(tau) < -1:

return False

if generator == 0:

return True
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if 2 * imag(tau) > imag(generator) or 2 * imag(tau) < -imag(generator):

return False

if real(generator) == 0:

return True

minimal = True

minimal = minimal and norm(tau) < norm(tau + generator)

minimal = minimal and norm(tau) < norm(tau + generator -1)

minimal = minimal and norm(tau) < norm(tau - generator)

minimal = minimal and norm(tau) < norm(tau - generator +1)

return minimal

def add_to_queue(previous_node, matrix, action_name, queue):

’’’

Auxiliary function to optimal_red that adds new nodes to list queue

Calculates the new values for the node, and puts it in the right spot

INPUT: - previous_node: node as described in optimal_red

- matrix: 2x2 matrix, action to be done on node

- action_name: string, name of the action, equal to "translation"

or "inversion"

- queue: current list of nodes to be considered

’’’

old_f = previous_node[0]

new_f = actb(old_f, matrix)

if (action_name == "inversion"):

#recalculate covariant point

z = covariant_z(new_f)

else:

z = covariant_z(new_f)

a = previous_node[1] * matrix

delta = cosh_distance_to_j(z)

new_node = (new_f, a, z, action_name, delta)

#check where to put new node

i = 0

while (i < len(queue) and queue[i][4] < delta):

i += 1

#add new node to queue

queue.insert(i, new_node)
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