Abstract: The path $W[0, t]$ of a Brownian motion on a d-dimensional torus \mathbb{T}^{d} run for time t is a random compact subset of \mathbb{T}^{d}. In this talk we look at the geometric properties of the complement $C(t)=\mathbb{T}^{d} \backslash W[0, t]$ as $t \rightarrow \infty$ for $d \geq 3$. Questions we address are the following:

1. What is the linear size of the largest region in $C(t)$?
2. What does $C(t)$ look like around this region?
3. Does $C(t)$ have some sort of 'component-structure'?
4. What are the largest capacity, largest volume and smallest principal Dirichlet eigenvalue of the components of $C(t)$?

We speculate about what happens for $d=2$, which is much harder to understand.

