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Hodge groups of K3 surfaces

By Yu. G. Zarhin at Pushchino

Dedicated to I. R. Shafarevich on the occasion of his 60. birthday

The purpose of this paper is to study the rational Hodge structure attached to the
second rational cohomology group H?(Y, Q) of a smooth irreducible projective surface
Y over the field C of complex numbers. We shall prove that the Hodge group of Y
acts irreducibly on the Q-lattice V' (Y) of transcendental cycles if the geometric genus
P, is one (§1). As a corollary, we get a geometric analogue of Tate’s conjecture (al-
gebraicity of invariant cycles) for families of surfaces with P,=1, whose global mono-
dromy group is infinite (§ 3) and for non-isotrivial families of K3 surfaces (§ 4). We shall
also prove that the action of the automorphism group of a surface on the lattice of
transcendental cycles T(Y) factors through a finite quotient group (§ 1). Besides, we
shall study the centralizer E, of the Hodge group in End V' (Y) (§§ 1, 2). For K3 surfaces
the algebra E, plays the same role as the endomorphism algebra for Abelian varieties.
We explicitly compute the Hodge group of a K3 surface Y in terms of E, (§ 2).

0. Notations, conventions, preliminaries

0.0. Let ¥V be a finite-dimensional vector space over Q. We write V, for the
R-space V,=V ® ,R and V, for the C-space V. =V ® ,C=V, ® ,C.

We have natural inclusions

VeV,cV, Aut(V)c Aut(V,) c Aut(V,),
End(V) < End(V,)=End ¥ ® ,R < End(V,)=End ¥ ® ,C=End(V,) ® ,C.

The group AutC of all automorphisms of the field C acts compatibly on V_ and
End (¥,). In particular,

o(uv)=u(ov), olu,v]l=[u,ov], &(zv)=(02z) (cv)

forue EndV, veEnd(V,), zeC, o€ AutC.
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We write x — x for the usual complex conjugation map of V.. We have
Ve={xeV_ |x=x}.
If W<V, is a C-subspace such that W=W then W=(W,).=W,® ,C for the
R-subspace Wy=W n V,.
0.1. Let 4 be a C-subspace of End(},), 4,=A4 N EndV. Then
ANEnd(Vy) o (4dg),=4, ® ,R.

If for some ueEndV, ud c A then ud, < 4,. If A is a complex Lie subalgebra of
End (V) then 4, is a Lie subalgebra of End V.

A=B_=B ® ,C for some Q-subspace B of End V iff 64 = A4 for all ¢ € AutC.
If so, B=A4, and 4 nEnd(V,)=(4,),=4, ® (R. If A=(A4,). is an algebraic Lie
algebra then A, is an algebraic Lie algebra (Chevalley [1], Ch. 2, §14). Notice that
if 4 is an arbitrary algebraic Lie algebra, then for all 6 € AutC, o4 is also an algebraic
Lie algebra (if 4 is the Lie algebra of an algebraic group G then o4 is the Lie algebra
of the algebraic group ¢G).

0.1.0 Lemma. Let feEnd(V,) be a semisimple endomorphism such that the
commutative Lie subalgebra Cf < End(V,) is algebraic. Let g, = End V be a minimal
algebraic Lie subalgebra such that (8,),=8, ® oR>f. Then:

1) The complex Lie subalgebra (g,). =8, ® oC < End(V,) is generated by the
endomorphisms of (06 € Aut C).

2) If ue EndV is an endomorphism such that
[u,f1=0 and wufeRf

then u commutes with g, and ug, < g,.

0.1.1Remark. The lemma was inspired by ideas of Serre and Sen [13], pp.
168—169, who treated Hodge-Tate modules.

0.1.2 Proof. The complex Lie algebra g=(g,). < End(V_) is a minimal
algebraic complex Lie subalgebra such that 6g < g for all 6 € AutC and g contains f.
Let us denote the complex Lie subalgebra generated by all of by g’ = End(V,). By
definition, g’ is a minimal complex Lie subalgebra of End (V) such that gg’ = g’ for
all 0 € AutC and g’ contains f. Clearly,

[u,6f1=0[u,f1=0 and u(cf)=ocf) c a(C)=C(cf) < g
This implies that ¥ commutes with g’ and ug’ < g’ (if for some v;, v, € g’
[u,v,]=[u,v,]=0 and wv,, w,eg’ then [u,[v,v,]]=0

and u[v,, v,]=[uv,,v,]=[v,, uv,]€g’). Therefore, one only has to prove the
equality g’=g. Since g’ < g, it would be sufficient to prove that g’ is algebraic (com-
pare the explicit descriptions of g’ and g given above).

Since Cf is an algebraic Lie subalgebra, C(cf)=0(Cf) is also an algebraic Lie
subalgebra. This means that g’ is generated by algebraic Lie subalgebras. It follows
(Chevalley [1], Ch. 2, § 14) that g’ is algebraic.
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0. 2. Every non-degenerate symmetric bilinear form : V' x ' — Q can be extended
by R and C-linearity to non-degenerate symmetric bilinear forms V, x V,— R and
V. x V. — C. We shall denote these forms by the same symbol y.

Let G be an algebraic subgroup of GL(V) defined over Q and g = End V its Lie
algebra. Then g is an algebraic Lie algebra, g, =g ® ,R < End(V,,) is the Lie algebra
of the real Lie group G (R),

8, =8® ,C=g, ® ,C < End (V)

the Lie algebra of the complex Lie group G(C). Notice that g, is a real algebraic
Lie algebra and g_ is a complex algebraic Lie algebra. We have G(R)=G(C) n AutV,,
GQ=GCR)NnAutV=G(C) n Aut V.

0.3. We write S for the real algebraic group obtained by the Weil restriction
of scalars of the multiplicative group G, from C to R (Deligne [3], Sect. 2.1):

$=I1G, S,=G, _xG, , S(R)=C*.

clr
The natural homomorphism of real algebraic groups
N:S—G,
([31, Sect. 2. 1) induces the norm map
N jp:C* > R*, zv>zZ
on R-points of the groups. Let us put
Ul={zeC*|zz=1} =« C*=S(R).

Then U'=(Ker N) (R) is a connected compact group.

Recall [2], [3] that a rational Hodge structure on ¥ is a homomorphism of
real algebraic groups

hy,:S — GL(V,).
Let us put
VPi={xe V.=V, ® ,Clh,(z) x=2Pz"x forall zeC*=S(R)}.

We have the Hodge decomposition

c c

VC — p@q VCp,q’ VPid=peP,

One says that (V, h;,) is a rational Hodge structure of weight n if V'?9=0 for p+qg=+n.

0. 3. 0 Example ([3], Section 2.1). V=Q(m)=(2ni)"Q has a rational Hodge
structure of weight (—2m). S acts on V, =(2ni)"R via the character N™™. This means
that z e C* = S(R) acts on R(m) by multiplication with (zz)™™.

0.3.1. Assume now that (V, h,) is a rational Hodge structure of weight n (for
some n). Then for any zeR* c C*=S(R), h,(z) acts on V, by multiplications
with z".
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The smallest algebraic subgroup MT=MT(V, h,) of GL(V) defined over Q
for which
h,(C*)=h,(S(R)) = MT(R)
is called the Mumford-Tate group of the rational Hodge structure [5].

The smallest algebraic subgroup Hdg= Hdg(V, h,) of GL(V) defined over Q for
which h,(U') = Hdg(R) is called the Hodge group or the special Mumford-Tate
group of the rational Hodge structure (compare with [9], [12]).

Evidently, MT and Hdg are connected algebraic groups, Hdg is a normal
subgroup of MT, and MT contains the homothety group G, of the Q-space V.

Let det,: GL(V,) — G, be the determinant homomorphism. Since det,h,(U")
is a connected compact subgroup of

R*=G,(R), det,(h,(U))=1 and h,(U") c SL(V,).

Then the definition of Hdg implies that Hdg < SL(V). Consider the natural multi-
plication map

mult: Hdg x G, — MT, u,v—uve MT < GL(V),

where G, is considered as the homothety group in GL(V). The homomorphism mult
is surjective because the image of R-points contains h, (C*). Since Hdg < SL(V), the
kernel of mult is finite. It follows that mult is an isogeny of algebraic groups and
dim MT=dim Hdg+1. If Hdg is reductive then MT is also reductive. Since
Hdg < SL(V) and MT contains the homothety group, simple dimension arguments
imply that Hdg is the connected identity component of MT n SL(V). In particular,
Hdg (C) is a subgroup of a finite index in MT(C) n SL(V).

0. 3. 1. 1. The definition of Hdg implies the following statements:
Let W be a Q-subspace of V. W is Hdg-invariant iff W,, is U'-invariant. We have
Ve =y Ay,

If for some subspace W = V, W, is S-invariant then W, is U'-invariant and conse-
quently, W is Hdg-invariant.

Let u be an endomorphism of V. Then u commutes with Hdg iff ¥ commutes
with A, (U"). In particular, if u commutes with Hdg then u preserves the Hodge de-
composition. Moreover, for any V%4 {0} there is a nontrivial homomorphism

End,,, ¥ — End, V.

If y:VxV—Q is a bilinear form such that the corresponding R-form
V. % V,— R is U'-invariant then y is Hdg-invariant.

0.3.1.2Remark. Let y: Vx ¥V — Q be a bilinear form such that the R-form
Y: V,xV,— R is U'-invariant. Recall that S(R)=C*=R*U" and any ze R* = S(R)
acts on ¥V, by multiplication with z". It follows that

¥ (hy(2) x, hy(2) y)=(22)"(x,y) for zeC*=S(R);x,y€V,.
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This means that if we consider the form
QCri)y™Y: VxV—-Q2ri) "Q=Q(—n),
the corresponding R-form
Qri)y™"Y: Vo x V,—>R(—n)
is C* = S(R)-equivariant, and, consequently, is S-equivariant.

Conversely, if ¢: V'x V— Q(—n) is a bilinear form such that the corresponding
R-form ¢: V, x V, — R(—n) is S-equivariant, then the R-form

Cri)'e: V,xV,—R

is Ul-invariant.

0. 3. 2. Recall [2], [3] that the automorphism
C=h,(i)eh,(U') = Hdg(R) = AutV,
is called the Weil operator. We have
Cx=iP"9x for xeVpPi.
Let y: VxV—Q be a bilinear form such that the R-form y: Vo xV,—R is
U'-invariant. Then  is Hdg-invariant (0. 3. 1. 1) and the R-form
Y'=Qnui)""Y: Vo xV,— R(—n)
is S-equivariant (0. 3. 1. 2).

Let us assume that
VexVe—= R, x,y ¥ (x, Cy)=Q2ri)"y'(x, y)

is a positive-definite symmetric form. Then the real algebraic group Hdg, is reductive
([2], Lemma 5. 2; [5], Lemma 2. 8). It follows that Hdg is reductive and, consequently,
MT is also reductive. Such a form y (or a form y'=Q2mni)™"y: Vx V— Q(—n)) is
called a polarization of the rational Hodge structure and a triple (V, h,, ) (or(V, by, ¥"))
is called a rational polarized Hodge structure of weight ».

Let T be a Z-lattice in ¥ such that the restriction of ¥ to T'x T takes values in
Z (i.e. the restriction of Y’ to Tx T takes values in Z(—n)=(2ni)""Z). Then the
triple (T, hy,,¥) (or (T, h,,y')) is called a polarized Hodge structure of weight n
(21, [3], [5)

0. 3. 3. Let f,, be a semisimple endomorphism of V,, defined as follows:

fyx=(p—q)ix=Q2p—n)ix for xe VP4

Rf, is the real Lie algebra of the real Lie group h,(U Y « Hdg(R) < AutV,. It is
easy to see that Cf;, is an algebraic subalgebra of End (V).

Journal fiir Mathematik. Band 341 2
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Since f, generates the Lie algebra of the connected Lie group h,(U"), it follows
from (0. 3. 1. 1) that:

a) Y Hdg — V:v(ux) NV={xc anfvx=0} NV
b) Let W be a Q-subspace of V. W is Hdg-invariant iff f, W, < W,.

©) An endomorphism u of V commutes with Hdg iff u commutes with f,; u
commutes with f, iff u preserves the Hodge decomposition.

Let hdg, — EndV be the Lie algebra of the algebraic group Hdg. Since
h,(UY) = Hdg(R) one has

Rf, < (hdg,),=hdg, ® R < End V.

By definition, hdg, is an algebraic Lie algebra. The biunique correspondence be-
tween connected algebraic groups and algebraic Lie algebras implies the following
description of hdg, .

The Lie algebra hdg, is a minimal algebraic subalgebra of End V' such that
fy € (hdgy),.

Applying Lemma 0. 1. 0 we obtain the following statement.

0.3.3.1Lemma. The complex Lie algebra (hdg,).=hdg, ® ,C < EndV_ is
generated by of,,, where o runs through AutC.

Let u be an endomorphism of V such that [u, f,]=0 and uf, =af, e Rf, for
some « € R. Then u commutes with hdg, and

u hdg, < hdg,.

0.3.4Lemma. Let I' be a subgroup of AutV. Let us denote by G the Zariski-
closure of T in AutV,_ and let G° be the connected identity component of G. Let us
assume that:

a) G° is semisimple,

b) I' contains a subgroup of finite index lying in MT(Q).
Then I' contains a subgroup of finite index lying in Hdg(Q).

0.3.5 Proof. Since G° is connected and semisimple, G° = SL(V,). It follows
that I' contains a subgroup of finite index lying in SL(V_). This means that
Iy=I'n SL(V.) n MT(C) is a subgroup of a finite index in I'. Since Hdg(C) is a
subgroup of finite index in SL(V,) n MT(C) (end of (0.3.1)), I,=TI, n Hdg(C) is a
subgroup of finite index in I', and, consequently, I, is a subgroup of finite index
in I'. By definition I, lies in the group

Hdg(C) n I' = Hdg(C) n Aut V= Hdg (Q).
This ends the proof.
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0.3.6 Lemma. Ler us assume that V=V" @ V,, where V, is a simple Hdg-
module. Let W < V be a Hdg-submodule. Then either W < V#4 or W > V.

0. 3.7 Proof. We have
VHY4 = {x e V|hdg,x=0}, hdg,V < V,.
Since W is a Hdg-submodule, hdg, W < W. ‘
If Wd VH then V, > hdg, W+{0}, ie. V,n W o V,n hdg, W= {0}.

Since V, is a simple Hdg-module, the Hodge submodule W contains V.

0. 4. Everywhere in this paper Y stands for a smooth irreducible projective surface
over C, H*(Y) is the image of the natural map H?(Y, Z) — H2(Y, Q). H?(Y) is a free
Z-module, whose rank is equal to

b,(Y)=dim, H?(Y, Q).

The natural map H*(Y) ® Q — H2(Y, Q) is an isomorphism. If we write V= H?(Y, Q)
then

V,= H2(Y,Q) ® R=H(¥,R),
V= H(Y,Q) ® ,C= H*(Y,R) ® ,C= H*(¥,C).
Let
(o> HY(Y,0) x HA (Y, ©) — H(Y, Q)= Q(—2) 25 @

be the intersection form [3] (Y has a canonical orientation). It is a non-degenerate
symmetric bilinear form, whose restriction to H?(Y) takes values in Z. We also denote
the corresponding nondegenerate symmetric bilinear intersection forms by

., >t H*(Y,Ryx H*(Y,R) >R,
(., ) H*(Y,CO)x H*(Y,C)—C.

1. Automorphisms of surfaces and endomorphisms of Hodge structures

1. 1. Let
H*(Y,C)=H*°(Y) ® H"'(Y) @ H>*(Y)

be the canonical Hodge decomposition [6], [2]. Then

HPM(Y)=H®™(Y) and h"(Y)=dim_ H(Y)=dim_ H(Y, QF)
=dim_ H? (Y, Q})=dim_ H?(Y)=h"(Y).
Let
H"' (Y, R)=H"'(Y) n H*(Y,R),
Vo(Y,R) =[H*°(Y)® H**(Y)] n H*(Y,R).

26*
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Then
H"'(Y)=H"'(Y,R) ® ,C,
H>*°(Y)® H**(Y)=V,(Y,R) ® ,C, dim, V,(Y,R)=2h"°(Y),
H*(Y,R)=H"'(Y,R) @ V,(Y, R).
The C-subspaces H*°(Y) and H®?(Y) are isotropic with respect to the intersection
form ¢, ). H"!(Y) is orthogonal to H*°(Y) ® H®?2(Y) with respect to ¢ , . It

follows that the restrictions of < , > to H"!'(Y) and H*°(Y) @ H*?2(Y) are non-
degenerate, since { , ) is non-degenerate. We also have

{x,x)>0 for xe H*°(Y) ® H*2(Y), x=+0.

Notice that H!(Y, R) and ¥, (Y, R) are orthogonal with respect to { , » and
H2(Y,Q) n H"'(Y)=H*(Y, Q) n H''(Y,R).
Let
A(Y) = H*(Y) n H*'(Y)=H*(Y) n H''(Y,R),
A(Y), = HX(Y, Q) n H"\(Y).
A(Y) is a Z-lattice in the Q-space A(Y),.

We have A(Y)=H?*(Y) and A(Y),= H?(Y, Q) if and only if
P=h*°(¥)=0.

A(Y) is called the lattice of algebraic cycles and 4(Y), is called the Q-lattice of algebraic
cycles. According to the Lefschetz theorem A(Y) consists of the first Chern classes of
invertible sheaves (divisors) on Y. Let us denote the rank of A(Y) by p(Y). p(Y) is
called the Picard number of Y.

Let V(Y) be the orthogonal complement of A(Y) in H?(Y, Q) with respect to
{ , ). The restriction of { , » to V(Y) is non-degenerate. This implies that

H>(Y,Q)=A(Y), ® V(Y)
and
dim, V(Y)=b,(Y)—p(Y).

In particular,
V(Y)=0< A(Y),= H*(Y, Q) < h*°(Y)=0.

Let T(Y)=H?(Y) n V(Y). The intersection T(Y) n A(Y) is not necessarily {0}
and A(Y)+ T(Y) is a subgroup of finite index of H?(Y).

Notice that V(Y), is an orthogonal complement of A(Y), and V(Y)_. is an
orthogonal complement of A(Y). with respect to { , >. It follows that

V(Y), > H*°(Y) ® H*>(Y), V(Y), 2 Vo(YR).
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Moreover,

VY),=V(,R)® V"' (Y, R),

VD) =H*°(Y) ® H**(Y) @ V"' (Y,R) ® ,C,
where VV!1(Y,R)=H"'(Y,R) n V(Y),.

T(Y) is called the lattice of transcendental cycles and V' (Y) is called the Q-lattice
of transcendental cycles.

Let GL(V(Y)) act trivially on A(Y), and consider GL(V(Y)) as an algebraic
subgroup of GL(A(Y), @ V(Y))=GL[H?(Y, Q)]. Similarly, we consider End V'(Y) as a
subalgebra of End(4(Y), ® V(Y))=End H*(Y, Q). (End V(Y) annihilates A(Y),).
The Lie subalgebra End V' (Y) is a Lie algebra of the algebraic subgroup

GL(V(Y)) = GL[H2(Y, Q)].

Let us denote the special orthogonal subgroup corresponding to the restriction of < , »
to V(Y) by

SO (V(Y)) = GL(V(Y)) = GL[H*(Y, Q)].

Further, let us denote the Lie algebra of the algebraic group SO (V(Y)) by so(V(Y)).
We have

so(V(Y)) =« End V(Y) « End H*(Y, Q).

1. 1. 0. The automorphism group Aut Y preserves the intersection form ¢ , ) and
the Hodge decomposition. This implies that Aut Y preserves A(Y), V(Y), T(Y). This
gives us the natural homomorphism

1 AutY — AutT(Y) < Aut V(Y).
Let us denote the image of y by U(Y). Clearly,
U(Y) = SO(V(Y))(Q) = Aut V(Y).
1. 1. 1 Theorem. U(Y) is a finite group.

1. 1.2 Theorem. Assume that h*°(Y)=1. Then U(Y) is a finite cyclic group.
Let n be the order of U(Y) and ¢ the Euler function. Then ¢ (n)|b,(Y)—p(Y).

1. 1. 3 Corollary ([10], Theorem 10. 1. 2, pp. 98—99). Let Y be a K3 surface.
Then U(Y) is a finite cyclic group of order n and ¢ (n)|22—p(Y).

The theorems will be proved in subsections 1. 3, 1. 6.

1. 2. Recall ([2], [3]) that there is a canonical rational Hodge structure of weight
2 on H*(Y, Q)

h: S — GL[H?*(Y,R)]=GL[H?*(Y,Q) ® ,R]
such that
h(z)x=2zPzix for zeC*=S(R),
xe HP(y) « H*(Y,C)=H*(Y,Q) ® ,C.
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It can be easily shown that h(U!) preserves the intersection form ¢ , > and
H*(Y, R""=H"!(Y) n H*(Y,R)=H"' (Y, R).

In the notations of (0. 3. 1)
H*(Y, Q)p%= HP(Y).
The Weil operator C € Aut H2(Y, R) acts as follows (0. 3. 1. 0):
Cx=i’x=(—i)?x=—x for xe H*°(Y) ® H*?(Y)
Cx=x for xe H"'(Y).
It follows that
Cx=—x for xeVy(Y,R), Cx=x for xe H"'(Y,R).
It can be easily shown that the bilinear form
H*(Y, R)x H* (Y, R) >R, x,y+>{x, Cy)
is symmetric (¥, (Y, R) is orthogonal to H"'(¥, R) with respect to { , > (1.1)).
The generator f, = f;. (Y, Q) of the Lie algebra of A(U") (0. 3. 3) acts as follows:
fux=0 for xe H"'(Y),
fux=Qi)x for xe H>°(Y), fyx=(—2i)x for xe H**(Y).

Notice that all non-zero eigenvalues of f, are non-real; they are (2i) and (—2i)
with multiplicity A% °(Y). f is a semisimple endomorphism of rank 2% °(Y). Since

H2(Y, R} = H"'(Y, R),
A(Y)=H(Y,Ry"™ ~ H*(Y), A(Y),=H?(Y,R)"") n H?(Y, Q).
This implies that A(U') acts trivially on A(Y),, and V(Y), is h(U')-invariant, since
h(U') preserves { , >. So we have an inclusion
h(UY) = SO(V(Y),)=S0 (V(Y))(R) = GLLH*(Y, R)].
In fact, we have the inclusion
h(UY) < Aut(V(Y),)=GL(V(Y))(R).

The h(U')-invariance of ¢ , > and the connectedness of A(U') imply that the image
lies in SO (V(Y)) (R). Since Rf, is the Lie algebra of h(U"),

fu€so(V(Y)),=50(V(Y)) ® (R < EndV(Y), = End H*(Y, R).

In particular, f, annihilates A(Y), and f V(Y), < V(Y),. If we consider f; as
an endomorphism of V(Y),, then its rank is equal to 2A*°(Y). The action of AutY
commutes with the action of S on H2(Y, R). In particular, Aut Y commutes with 2(U")
and the Weil operator C.

1.2.1. Let Hdg=Hdg, y<[GLH*(Y,Q)], MT=MT, y=GL[H*(Y,Q)] be
the Hodge group and the Mumford-Tate group of the rational Hodge structure on
H?(Y, Q) respectively.
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Since ¢ , ) is h(U')-invariant, the intersection form
C, > H*(Y,QxH*(Y,Q)—Q
is Hdg-invariant (0. 3. 1. 1).

Since h(U') = SO (V(Y)) (R), the definition of Hdg (0. 3. 1) implies that
Hdg = SO (V(Y)) = GL(V(Y)) = GL[H*(Y, Q)].
We have (0. 3.2, 0.3.3)
H*(Y, Q"= H*(Y, Ry""") n H*(Y, Q)= H"“' (Y, R) n H*(Y, Q)= A(Y),
and
{xe H (Y, R), fyx=0} n H*(Y, Q)= H*(Y, Q)" = A(Y),.

Let hdg = End H?(Y, Q) be the Lie algebra of the connected algebraic group Hdg
(0. 3. 3). Since Hdg = SO(V(Y)) we have hdg < so(V(Y)) = End V(Y).

Recall (0. 3. 3) that
fu€ehdg,=hdg ® ;R < s0(V(Y)), = End V(Y),.

1.2.1.0 Remark. Let HdgY < GL[H*(Y, Q)] be the Hodge group of Y [12].
Then Hdg= Hdg, , is the image of HdgY in GL [H*(Y,Q)]. If Y is a K3 surface
then

Hdg=Hdg Y.

1.2.2. The goal of this subsection is to present a polarization of the rational
Hodge structure on H?(Y, Q). Recall (0.3.2) that the existence of the polarization
implies the reductiveness of Hdg and MT.

Let /e A(Y) < A(Y), be a class of hyperplane sections of Y and let
P(Y), = H*(Y, Q) be the orthogonal complement of / in H?(Y, Q) with respect to
{, >. Since </, 1)>0,

P(Y),nQI={0} and H?*(Y,Q)=0QI@® P(Y),.

Since / and {,) are Hdg-invariant, P(Y), is also Hdg-invariant. Clearly, V(Y) < P(Y),.
Define

P(Y)=P(Y), n HX(Y).

Then P(Y) is the orthogonal of / in H*(Y) and P(Y),=P(Y) ® R=P(Y), ® (R is
the orthogonal complement of / in H?*(Y, R) with respect to { , ). P(Y) is called the
lattice of primitive cycles.

T(Y) =V(Y)n H*(Y), P(Y),n H*(Y)=P(Y),

V(Y),=V(Y) ®,R < P(Y),.
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Clearly, ZI+ P(Y) is a Z-lattice in H?*(Y, Q). Recall ([2], [6]) that the symmetric
bilinear form

P(Y)RXP(Y)Rq/R’ x’yH—<x3Cy>

is positive-definite (the Hodge-Riemann relations). Since V(Y), < P(Y),, the symmetric
bilinear form

Y: V)X V()= R, Y(xy)=—<x, Cy)

is positive-definite. Clearly, Aut Y preserves . Now, let
<L) H(Y,QxH*(Y,Q—Q

be the symmetric bilinear form defined as follows:
a) The restriction of { , )’ to QI coincides with < , .
b) The restriction of { , )’ to P(Y), coincides with —{ , >.
c¢) QI and P(Y), are orthogonal with respect to { , )"

Clearly, the form
H*(Y,R)x H*(Y,R) >R, x, y><{x, Cy)’

is a positive-defined symmetric bilinear form. This means (0.3.2) that {( , )’ is a
polarization of the rational Hodge structure on H?(Y, Q). In particular, the groups
Hdg and MT are reductive.

Notice that the polarization ¢ , )’ takes integral values on the lattive Z/+ P(Y).
It follows (0. 3.2) that the triple (Z/+ P(Y),h, { , )’) is a polarized Hodge structure
of weight 2.

1. 3 Proof of Theorem 1. 1. 1. The automorphism group Aut Y preserves the form
. It follows that the image U(Y) lies in the orthogonal group O(V(Y),, ) of the
positive-definite form y.

1. 3.0 Lemma. All elements of U(Y) are of finite order.
The lemma will be proved in subsection 1. 3. 2.

1.3.1. End of the proof of the Theorem 1.1.1 (modulo Lemma 1. 3. 0).

The kernel of the natural map
AutT(Y)— Aut(T(Y)/3T(Y))

does not contain elements of finite order (Serre [14], Part 2, Ch. 4, Appendix 3). It
follows that the composition

U(Y)— Aut T(Y) — Aut (T(Y)/3T(Y))
is an embedding. Since Aut(7(Y)/3T(Y)) is a finite group, U(Y) is also finite.
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1.3.2 Proof of Lemma 1. 3.0. Let ue U(Y). Then
ue AutT(Y) and ue OV (Y),, ¥).

Since u belongs to the orthogonal group of the positive-definite form, u is a semisimple
endomorphism of V(Y), and for all eigen values « of u, || =1. Since u preserves the
Z-lattice in V(Y), an eigen value a of u is an algebraic integer. Moreover, for each
automorphism ¢ of the algebraic closure Q of Q ca is also an eigen value of u, and,
consequently, |oa|=1. It follows that o is a root of unity ([17], Ch. 4, §4, Th. 8;
[2], Lemma 6. 4). This means that u is a semisimple endomorphism, whose eigen values
are all roots of unity. It follows that « is a periodic automorphism.

1.4. Let us decompose V(YY) into a direct sum of simple Hdg-modules

V) =W, @ - ® W,y,
The number r(Y) does not depend on the choice of the decomposition.

1. 4.1 Theorem. r(Y)<h>°(Y). In particular, if h*°(Y)=1 then the Hdg-module
V(Y) is simple.

1.4.2 Proof. fy does not annihilate W, ,=W, ® ,R for any j because
I’Vj ¢ HZ(Y, O)Hdg

(1. 2. 1). Therefore, fy has non-zero eigen-values in W, . Since all non-zero eigen values
of fy are non-real, f,; has at least one pair of non-zero complex conjugate eigen values
in W, ., namely 2i and —2i (1.2). It follows that the multiplicity of the eigen value
2i of fy is greater or equal to r(Y). But the multiplicity of 2i is equal to A*°(Y)
(1. 2). It follows that h>°(Y)=r(Y).

1.5. Let
E=E,=Endy, V(Y) c End V(Y) = End H*(Y, Q).
We have
U(Y) c E* E < Endy, H*(Y,Q), E=End,, V(Y),

E commutes with f. In particular, E preserves the Hodge decomposition. The re-
ductiveness of Hdg implies that E is a finite-dimensional semisimple algebra over Q.
The form { , ) defines the involution a — a’ of E as follows:

lax,yy=<x,a'yy) for aekFE;x,yeV(Y).
Let us extend the involution a + a’ by R-linearity to the R-algebra

E.,=E® ,R < End V(Y),.
We have

{ax,y>={x,a'y)y, {(ax,ayy=<{a'ax,y) for aeR.; x,yeV(Y),.
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In particular, an element a € E,, preserves { , ) iff a’'a=1. We have

Y(ax, y)= —<ax, Cyy=—<x,a'Cy) = —<x, Ca'y)=y(x,a'y)
(E, commutes with C € Hdg (R)). Since ¥ is a positive-definite symmetric form,

Yy@ax,y)=y(x,a’'ay) for aeE,; x,yeV,,
Yy(a'ax, x)=y(ax,ax)>0 for aeE,, xeV(Y),

such that ax 0.

This means that a’a is a positive symmetric operator with respect to ¥ for a non-
zero a € E,. In particular, all eigen values of a’a are real and non-negative. Let Tr,: £ — Q
be the trace map attached to the action of E on the Q-space V(Y). Extending Tr,
by R-linearity to E, we get the trace map Tr,: E, — R attached to the action of E,
on the R-space V(Y),. We have Tr,(a’a)>0 for a non-zero a € E,, since all eigen
values of a’a are non-negative. In order to study the algebra E with the involution “’”
we shall use the Albert classification ([8], § 21), which is usually applied to the endo-
morphism algebra of an Abelian variety with a Rosati involution. For the sake of
simplicity we restrict ourselves to the case of a commutative field E.

1.5.1Theorem. Let E=E, be a commutative field. Then one of the following
statements holds:

@’

I) E is a totally real number field and the involution is the identity map.

II) The subfield E,={uec E\u'=u} is a totally real number field and E is an
imaginary quadratic extension of E,. The involution “'” is the complex conjugation.

1. 5.2 Proof. Clearly, E is a number field. Notice that V(Y) is provided with the
natural structure of a finite-dimensional vector space over E. Let tr=try,: £— Q be
the canonical trace map attached to the number field E. If m = dim, V' (Y) then Tr, =mtr.

1
This means that tr(a’a)= - Tr, (a’a)> 0 for a non-zero a € E,,. One only has to apply

the first step of the Albert classification ([8], § 21, Appendix 1).
1. 5. 3 Remarks. a) We have

Endy,, ) V(Y)p=End, o V(Y)=E,.

In particular, the center Z(R) of Hdg(R) lies in E}. Since the elements of Hdg(R)
preserve { , ), Z(R) < {ae E}|apreserves  , )}={aecE |a’a=1}.

b) Let us assume that E is a totally real number field. Then the involution “’”
is the identity map and the set {ae E |a'a=1}={ae E,|a*=1} is finite. It follows
that the center Z(R) of the reductive group Hdg (R) is finite. This means that Hdg
is semisimple.

c) Let E be a commutative field and [E:Q]=dim, V(Y), i.e. dimzV(Y)=1.
Then Hdg is commutative and, therefore, E is an imaginary quadratic extension of a
totally real number field.
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d) If E is a commutative field then [E:Q]|dim, V(Y), i.e. [E: Q]|b,(Y)—p(Y).
In particular, if b,(Y)—p(Y) is odd then [E:Q] is also odd and E is a totally real
number field.

1. 6 Theorem. Let P,=h>°(Y)=1 (for example Y is a K3 surface). Then:

a) The Hdg-module V(Y) is simple and the algebra E=Ey is a commutative
field,

b) U(Y) < u, = E* where p, is the group of roots of unity in E.

1.6.1 Proof. a) By (1.5.1) the Hdg-module V(Y) is simple. It follows that F
is a division algebra. In order to prove that E is commutative let us consider the natural
non-trivial homomorphism

e: E—>End  H>°(Y)=C

(since H*»°(Y) = V(Y)., 1 goes to 1). Since E is a division algebra, ¢: E— C is an
embedding, and, consequently, E is a commutative field.

In order to prove the statement b) it is sufficient to recall that U(Y) is a finite group
(1.1.1) lying in E* (1.5).

1.6.2 Proof of Theorem 1.1.2. Let us denote the order of u, by m. Then E
contains the cyclotomic field Q(u;), whose degree over Q is equal to ¢ (m). It follows
that ¢ (m) divides [E: Q]. According to Theorem 1.6, U(Y) is a subgroup of u,. If n
is the order of U(Y) then n|m and U(Y) is cyclic of order n because pu, is a cyclic
group. Then we have ¢ (n)|e(m). Since

e(m)|[E:Q] and [E:Q]|b,(Y)—p(Y)(1.5.3d), @®m)[b,(Y)—p(Y).
1.7 Theorem. Let us assume that h>°(Y)=1. Let I’ be a subgroup of Aut H*(Y, Q)
satisfying the following conditions.

a) H*(Y, Q)" is a rational Hodge substructure of H*(Y, Q), i.e. H*(Y, Q) ® (R
is an S invariant subspace of H*(Y, R):

b) I' contains a subgroup of finite index lying in MT (Q).

¢) Let us denote the Zariski-closure of T' in AutH?*(Y,C) by G and let G° be
the connected identity component G. Then G° is semisimple.

Then one of the following statements holds.

1) I isa finite group;

2) H2(Y, Q) < H*(Y, Q" =A(Y),. If T = AutH*(Y) then
H*(Y)'=H*(Y)n H*(Y,Q) < A(Y).

1. 7.1 Proof. The conditions b) and c) imply that I' contains a subgroup of finite
index, lying in Hdg (Q) (0. 3.4). The condition a) implies that H*(Y, Q)" is a Hdg-
submodule (0. 3. 2). The simplicity of the Hdg-module V(Y) and the decomposition
H2(Y, Q)= H*(Y, Q"% @ V(Y) imply that either

H*(Y, Q) <« H*(Y,Q)"=A4(Y), or H*(Y,Q)" > V(Y) (0.3.6).

27+
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If H?(Y, Q) = H?(Y, Q)% then we have proven the theorem. Therefore, we have to
assume that H?(Y, Q)" contains V(Y). Let

I''=T n Hdg(Q).

I'’ is a subgroup of finite index in I'.
I claim that I''= {1} and, consequently, I" is a finite group. In fact,

H*(Y, Q" > H*(Y, Q"> V(Y), H*(Y,Q" > H*(Y,Q)"".
It follows that
H*(Y,Q) > H*(Y, Q" > H*(Y, Q" @ V(Y)=H*(Y, Q).

This means that I'' = {1}.

1.8. Let

F={u € E|there exists an « € R such that ux=ax for x e H*°(Y)}.

Clearly, F is a subalgebra of E.
1. 8. 1 Theorem. F hdg — hdg.

1.8.2 Proof. Choose an ue F. We have to prove that uhdg < hdg. Since
ue F < E, u commutes with f,,. Since H>?(Y)=H?*°(Y) and o is real,

ux=ox for xe H®2(Y).
This means that

ux=oax for xe H*°(Y)® H**(Y).

Recall that
H*(Y,C)=[H*°(Y) ® H**(Y)] ® H"'(Y)
is a fy-invariant decomposition and f,, annihilates H!(Y). It follows that
Ufy=ofy € Rfy.

Since u commutes with f;;, one only has to apply (0. 3. 3. 1).

1. 9 Corollary. Assume that h*°(Y)=1. Let E,={u€ E\u'=u}. Then E,hdg — hdg,
i.e. hdg is an Ey-Lie algebra. In particular, hdg is an E-Lie algebra if E is a totally real
number field.

1.9.1 Proof. E acts on H*°(Y) via the homomorphism
¢: E—End, H*°(Y)=C (1.6.1).

This means that

ax=¢(a)x for ae E,, xe H*°(Y).
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It is sufficient to prove that e(a)eR for ae€ E, and to apply (1.8.1). Recall
(1.5.1; 1.6.1) that E, is a totally real number field. This means that the image of
any homomorphism E, — C lies in R. In particular, ¢(E,) < R and a=¢(a) e R for
all a € E,,. This ends the proof.

1.9. 2 Remark. Let us decompose hdg into a direct sum (hdg is reductive)
hdg=hdg® @ c,
where hdg® is semisimple and ¢ is the center of hdg. Clearly, the center ¢ and
hdg’® = [hdg, hdg] = [hdg*®, hdg*]
are also E,-Lie algebras.

In particular, the Ejy-Lie algebra hdg is a reductive subalgebra of Endg V(Y)
Moreover, its centralizer is the field E and hdg is an irreducible subalgebra of
Endg V' (Y).

1. 9. 3 Remark. Let us put
V.(Y)={xeV(Y),lax=¢(@x for aecE,} < V(Y),,
hdg, = {uehdg,lau=¢e(@)u for aekE,} c hdg,.
Clearly, V,(Y) is hdg,-invariant and E-invariant, hdg, is an ideal in hdg,,
fu€hdg, < hdg,, hdg, V(Y), < V,(Y).

If
fehdg, = hdg, = End V(Y),

is a semisimple endomorphism of V(Y), then the restriction of fto V,(Y) is a semi-
simple endomorphism of V,(Y) of the same rank (fV(Y), < hdg, V(Y), = V,(Y)).

In particular, V,(Y) is fy-invariant and the restriction of f, to V,(Y) is a semi-
simple endomorphism, whose rank is equal to 242 °(Y)=2 (1. 2).

1.9. 4 Remark. Since E, is a totally real field, the algebra E; ,=E, ® (R, in
the usual way, becomes the direct sum of fields R, =R indexed by the embeddings
o: E; o R, where

R,={a€k, lea=a(e)a for eeE}=E, ® g ,R.

This implies that the E; ,-module V(Y),=V(Y) ® ;R=V(Y) ® g (E, ® oR), in the
usual way, becomes the direct sum of R(=R,)-vector space V,(Y) such that

V.(Y)=R, V(Y ),={xeV(Y)lex=0(e)x for eeE,}=V(Y)® g ,R
and dim,, V,(Y)=dim V(Y) for each o.

Similarly, the E, .-Lie algebra hdg,=hdg ® ,R < Endg V(Y) ® ,R becomes
the direct sum of R(=R,)-Lie algebras hdg, = End, V,(Y) such that

hdg,=R_hdg,={u c hdg,|eu=c(e)u for eeckE,}
=hdg ®  ,R and dimghdg,=dimg hdg.
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Moreover, the hdg,-module V(Y), is the direct sum of the faithful hdg,-modules V,(Y)
(hdg is the direct sum of hdg,) and (here we consider V(Y) as an E,-space)

End,,, V,(Y)=End,, V(¥)® , R=E® R

(R if E=E,,
~|C if E+E,

(if E+E, then E is an imaginary quadratic extension of E,). In particular, hdg, is an
irreducible subalgebra of End, V_(Y).

Since <{ax,y)=<x,ay) for aekE, V,(Y) and V,/(Y) are orthogonal with
respect to { , > if o+ 1. The non-degeneracy of { , ) implies that the restriction F,
of {, ), to V,(Y) is non-degenerate for each ¢. Since hdg, preserves { , >, hdg,
preserves F,.

1.9.5. Recall that we have the distinguished embedding ¢: E, o R (1.9. 1, 1.9. 3).
The statements above (1. 9. 4) give us an R-vector space V,(Y), a non-degenerate sym-
metric bilinear form F;: V,(Y)x V,(Y)— R, an irreducible Lie subalgebra hdg, of
End, V,(Y) satisfying the following conditions:

a) dim, V,(Y)=dim, V(Y), dim,,hdg, =dim,_hdg.

Rif E=E,
? End""”"V‘(Y)={c if E=|=35'0.

¢) hdg, contains a semisimple endomorphism f, of rank 2 (1.9. 3).

2. Surfaces with Pg =1

2.0. Everywhere in this section we assume that P,=h%*°(Y)=1. The main purpose
of this section is to compute explicitly the Hodge group Hdg in terms of the field E=E,.
We prove that Hdg is “as maximal as possible”.

2.1. Let
. V(Y)xV(Y)—E, x,y+—a
be the pairing defined by the formula
{ex,y)=trg,(ex) for all eekE.

The existence and uniqueness of such an o« follows from the non-degeneracy of the
pairing EXE— Q, e, e, trg,(ee,). It is easily checked that @ is non-degenerate,
D (ex, y)=e®(x,y) and ®(x, y)=[P(y, x)]' for all e€E.

This means the following (1. 5. 1, 1. 6). If E is a totally real number field then ¢
is a non-degenerate symmetric E-bilinear form. If E is an imaginary quadratic extension
of the totally real number field E, then @ is a non-degenerate Hermitian E-sesquilinear
form with respect to the complex conjugation “’”. Since Hdg commutes with £ and
preserves  , », Hdg preserves ®.
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Recall (1. 9) that hdg is an E,-Lie algebra. Let us put
m=dimg V(Y).

2. 2. Assume that E= E,. This means that @ is a non-degenerate symmetric bilinear
form. Consider the special orthogonal group

SO (V(Y), ®) = GL(V(Y))

of the E-vector space V(Y) relative to the symmetric form ®. Apriori SO (V(Y), @)

is an algebraic group over E, but we regard it as an algebraic Q-rational subgroup of
GL(V(Y)). Let

so(V(Y), @) = End V(Y)

be the Lie algebra of SO (V(Y), ®). Clearly, so(V(Y), @) is an E,-Lie algebra and

m?—m

dimg_so (V(Y), )= 5

Since Hdg is a connected algebraic group, which commutes with E and preserves @,
Hdg = SO (V(Y), @) and hdg < so (V(Y), ®).

2.2.1Theorem. Hdg=SO (V(Y), ®).

2.2.2 Remark. It is sufficient to prove that

m?—m

dimg, hdg ==

2.2.3 Example. If E=Qthen®=, ),

SO (V(Y), ®)=SO(V(Y)) and Hdg=SO (V(Y)).

2. 3. Assume that E is an imaginary quadratic extension of a totally real number
field E,. This means that & is a nondegenerate Hermitian E-sesquilinear form with
respect to the complex conjugation “’”. Consider the unitary group

U(V(Y), ®) = GL(V(Y))
of the E-vector space V(Y) relative to the Hermitian form ®. A priori U(V(Y), ®)

is an algebraic group over E,, but we regard it as an algebraic Q-rational subgroup
of GL(V(Y)). Let

u(V(Y), ) = End V(Y)

be the Lie algebra of U (V(Y), ®). Clearly, u(V(Y), @) is an E,-Lie algebra and

) m?
dimg,u (V(1),9)="—.
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Since Hdg is an algebraic group, which commutes with E and preserves &,
Hdg < U(V(Y), ®) and hdg < u(V(Y), D).

2.3.1 Theorem. Hdg=U(V(Y), ).

2. 3. 2 Remark. It is sufficient to prove that

2
) m
dim hdg = R

2. 4. In the course of the proof we shall use the following result [7].

2. 4.1 Theorem (of Kostant). Let W be an m-dimensional R-vector space,
@: Wx W— R a nondegenerate symmetric bilinear form, g — End W an irreducible Lie
algebra, which preserves @. Assume that g contains a semisimple endomorphism f of
rank 2.

Then one of the following statements is true.

I. End, W=R and g is the Lie algebra so(W, ¢) of the special orthogonal group
of W relative to the symmetric form ¢.

II. End, W= C and one can define on the C-space W a non-degenerate Hermitian
form

o WxW-—>C, x,y—a
by the formula
@ (bx, y)=tr_, (ba)=ba+ba for all be C.

Then g is the Lie algebra u(W, ¢') of the unitary group of W relative to the Hermitian
form ¢'.
2.4.2 Corollary. 1) If End, W=R then
m*—m
2 b

dim,g=

2) If End W=C then
2
dlmR g= —4- .
2.5 Proof of the theorems 2.2.1 and 2.3.1. According to (2.2.2, 2.3.2) it is
sufficient to prove that

2

m-—m

2
dimg hdg={ ,

m .
—Z— if E=’=E0

if E=E,,
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Applying (2.4.1; 2.4.2)to W=V, (Y), o=F,, g=hgd,, f=f, (1.9.5) we obtain
the following (2. 5; 2. 5. 1).

m?>—m
2
2

m-
T if E:*:EO’

if E=E,,
dim, hdg, =

where m=dim; V(Y)=dim, V,(Y) (1.9.5a).

But dimg hdg=dim,hdg, (1.9. 5a). This ends the proof.

2. 6 Remarks. a) One may generalize both theorems to hold for any rational
polarized Hodge structure of even weight n=2r with level 2, whose Hodge number
K*1r1=1, In particular, the statements of the theorems hold for the Hodge group
of the rational Hodge structure attached to the fourth rational cohomology group of a
cubic fourfold.

b) Let Y be a K3 surface. Then Hdg= Hdg Y. Using our theorems and classical
invariant theory one may explicitly define all Hodge classes on the products
Y x---x Y. In particular, if E= Q then all Hodge classes are algebraic.

c¢) Analogues of our theorems are true for Hodge-Tate modules. For example,
one may apply our methods to K3 surfaces and cubic fourfolds over local fields, if
the cohomology of the variety in question admits the Hodge-Tate decomposition. In
fact, our methods were inspired by ideas of Serre and Sen [13], who treated Hodge
modules of special type.

2.7 Proof of the theorem of Kostant. Since g is irreducible, D=End, W is a
division algebra. Since f€ g commutes with D, the R-subspace Imf of W is D-invariant
and we have a non-trivial homomorphism D — End, (Im f)~ M, (R). This implies that
D=R or D=C. If D=R then g is an absolutely irreducible subalgebra of End, W.
If D=C then Imfis a one-dimensional C-vector space.

Case I. Assume D=R and g to be absolutely irreducible. Then g. =g ®,C is an
irreducible subalgebra of End_ W_, where W=W ®,C. Extend ¢ to W_ (unique) as
a complex bilinear form. Of course, g. preserves ¢ and lies in the Lie algebra
so (W, )=s0 (W, ¢) ®, C of the corresponding special orthogonal group. Now, g,
is an irreducible subalgebra of End_ W, leaving invariant ¢ and containing a semisimple
endomorphism f of rank 2 (feg < g.). Hence, by [7], p. 116 g .=s0(W_, ¢)
and g=so (W, ¢).

Case II. Assume D=C and Imf to be a one-dimensional C-space. Regard W as
a C-space and define an Hermitian form ¢’ as in (2. 4. 1, II). Clearly, g < u(W, ¢).
To prove (2. 4. 1, II) it suffices to show that

2
dim,, g = dim,, u(W, q)’)=mT=dimc End,_ W.
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Let us consider the complex Lie algebra
g=Cg={u+ivlu,veg} < End_W.

Clearly, g’ > g>f and dim,g=dim_g" Since g’ contains an irreducible subalgebra g
of End, W, g’ is an irreducible subalgebra of End_ W, containing a semisimple endo-
morphism f of rank 1 (dim_(Imf)=1). Hence, by [7], p. 116

m2

g'=End . W and dim,g=dim_g'= v

3. Families of surfaces with P, =1

3. 0. In this paper a family of sufaces is a smooth projective morphism of relative
dimension 2

ffX—>S

of smooth connected schemes of finite type over C with connected geometric fibres.
For the sake of simplicity we assume that there exists a closed embedding (for
some n)

Xo P'x S

such that f is induced by the projection map P"x S — S. Let L be the invertible sheaf
on X which is the inverse image of O(1) on P". Then L is relatively ample for f. More-
over, L induces a very ample invertible sheaf L, on each geometric fibre X,=f"(s).
We call such an L a polarization. Notice that all geometric fibres X are irreducible
smooth projective surfaces.

Further, we consider only C-points of S, i.e. the points of a corresponding complex
variety S*". Notice that the Hodge numbers

hP4(X,) =dim HY(X,, Q3 )

do not depend upon the choice of s [4]. In particular, the validity of the statement
“h*°(X,)=1" does not depend upon the choice of s.

There is the locally constant sheaf (the local system) R? f,,Q on §™ [3]. Its fibre
at s is equal to H?(X,, Q). The sheaf is defined by the representations of the fundamental
group

7, (S, 5) = Aut H*(X,) = Aut H*(X,, Q).
Let us denote the image of the fundamental group in Aut H*(X,) by I's. I's is

called the global monodromy group of the family. Notice that I's preserves the lattice
H?(X,) and the intersection form { , » on H2(X,, Q).
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Let ¢ be another point of S. Then the path from s to ¢ defines the natural
isomorphisms

HX(X) > H*(X), H*(X, Q)™ H*(X, Q), Is3It,
compatible with the intersection forms, and the diagram

(S, 5) — 7n,(S,0)

I's —_—s It

! l
AutH*(X,) —=—— AutH?*(X)

! !

Aut H2(X,, Q) ——— Aut H*(X,, Q)

is commutative. The choice of another path from s to ¢ multiplies (from the right) the
isomorphism H?(X,, Q) =% H*(X,, Q) with the automorphism u e I't = Aut H*(X,, Q).
Here u is the image of the loop composed of the two paths. This implies the following
statements.

3.0.1. For all points s, ¢ of the base S the groups I's and I't are isomorphic.
In particular, the validity of the statements “I's=1”, “I's is finite” does not depend
upon the choice of s. There are natural isomorphisms (3. 0)

H2(X) > H2(X), H(X, Q)= H(X, Q)

compatible with the intersection forms and depending only on the choice of the path
from s to ¢.

3.0.2. Let us fix a polarization L on X and let [, e H?(X,, Q) be the class of the
very ample invertible sheaf L on X,. I goes to /, under the isomorphism H?(X,) < H?*(X,)
and the positive integer d= </, [ ) does not depend upon the choice of s. In particular,
Ie H*(X)"= H*(X,)"®9. As in (1. 2. 2) let us denote the orthogonal complement of
I, in H*(X,) with respect to < , > by P(X,). The =, (S, s)-invariance of /, and < , )
implies the (S, s)-invariance of P(X|). This implies the (S, s)-invariance of the
Z-lattice ZI + P(X,) in the Q-space H*(X,, Q). It follows that {ZI + P(X,)},.s is a
local system on S

3.0.3 Recall (1. 2.2) that /_ gives rise to the polarization of the rational Hodge
structure of weight 2 on H?(X,, Q) and also on the Z-lattice ZI + P(X,) in H*(X,, Q)
(1. 2. 2). Moreover, {ZI .+ P(X,)},.s gives us a holomorphic family of polarized Hodge
structures of weight 2, because this family is the direct sum of the holomorphic family
{P(X,)},.s and the constant family {Z/}

sesS*

Recall (1. 1) that
A, =AX)=H*(X,) n H"'(X,),
A o=AX),=H*(X,, Q) n H"' (X))

28*
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are the Z and Q-lattices of algebraic cycles. It is known ([3], Sect. 4. 1.2) that the
Q-subspace H?(X,, Q)"®9=H?*(X,, Q)" is a rational Hodge substructure of H2(X,, Q),
which does not depend on s. This means that the R-subspace H 2(Xs, O ®R is
S-invariant and the natural isomorphisms (3. 0. 1)

H*X, Q" ®R>HX, Q" ®R
commute with the action of S. It follows that the validity of the statements
“HZ(XS, O)m(s,s)= HZ(XS, O)Fs c Hl,l(Xs) A HZ(XS, D)=As,o”

and
“HZ(XS)R;(S,S): HZ(XS)FS = Hl,l(XS) A Hz(Xs)=As”

does not depend upon the choice of s e S.

3.1 Theorem (Algebraicity of invariant cycles, a geometric analogue of the Tate’s
conjecture). Let s be a point of S and h*°(X,)=1. If the global monodromy group TI's
is infinite then

2 m(S,s)
H*(X)" 9= H*(X)'s < A,

and
HZ(XS, O)nl(s,s)=H2(Xs’ O)Fs c As’O'

3. 1. 0 Remarks. a) The case of a noncomplete family with an infinite local mono-
dromy group was treated in [16]. Since any local monodromy group is imbedded in
the global one, the theorem 3. 1 implies the corresponding results of [16].

The case of a family of Abelian Surfaces was treated in [3].

b) In the statement of theorem 3.1 one may drop the assumption that f is a
family of surfaces. An analogue of the theorem holds for families of cubic fourfolds.

3.2 Proof. Recall (3.0, 3.0.1, 3.0.3) that the validity of the assumptions and
the statement of the theorem does not depend upon the choice of a point s. Let us
choose s such that I's contains a subgroup of finite index, lying in MT,(Q). Here
MT,= MT, ,_is the Mumford-Tate group of the rational Hodge structure on H?(X,, Q)
(1. 2). The existence of such a point s is a corollary of results of Déligne [5], pro-
position 7.5, p. 225, applied to the holomorphic family of polarized Hodge structures
{ZI+ P(X,)},.s of weight 2 (3. 0. 3).

Let us denote the Zarisky-closure of I's in Aut H2(S,, C) by G and let G° be the
connected identity component of G. It is known ([3], Sect. 4.2.9) that G° is semi-
simple. Applying the theorem 1. 7 to the surface Y= X, and the group I' =I's we obtain
that either I's is finite or

H*(X,, Q" c AX)o=4,,, H*X)" < A(X)=4,.

However by assumption I's is infinite.
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4. Families of K3 surfaces

4.0. Recall [1], ch. 8 that an irreducible smooth projective surface Y over C is
called a K3 surface if H'(Y, Oy)=0 and Q3~ O, If Y is a K3 surface then h?°(Y)=1.
The Hodge duality implies that there is no non-trivial vector field on Y ([1], Ch. 8). If
M is a very ample invertible sheaf on a K3 surface Y then the Kodaira vanishing
theorem and the Serre duality imply that

H'(Y, M)=0 for i>0

4. 1. Theorem. Let f> X — S be a family of K3 surfaces, i.e. for all s € S the fibres
X,=f""'(s) are K3 surfaces. Let us assume that for some te€ S the global monodromy
group It is finite.

Then the family f- X — S is isotrivial, i.e. there exists an étale morphism T — S
such that the T-scheme X x gT is isomorphic to the constant family Y x T, for Y=X,.

4.0.1. The theorems 3.1 and 4. 1 give us the following corollary.

4.1.1 Corollary. Let f: X — S be a non-isotrivial family of K3 surfaces. Then for
all seS.

HY (X, Q"9 < 4., HX(X)"S9 < 4,

4. 1. 2 Remarks. Simultaneously and independently the corollary 4. 1.1 was also
proved by G. A. Mustafin, who used different methods. Earlier, the case of a one-
dimensional non-complete family with stable reduction was treated in [16].

4.2 Proof of the theorem 4. 1. Replacing if necessary S by a finite etale covering
S’ and X by X x ¢S’ we may assume that I't=1. This implies that 's=1 for all s€ S
(3. 0. 1). It follows that the natural isomorphism

H*(X,, Q)= H*(X,, Q)" = H*(X,, Q" = H*(X,, Q)

is an isomorphism of rational Hodge structures, which does not depend on the choice
of a path from s to ¢. This gives us a natural isomorphism
H*(X) = H*(X)

compatible with the intersection form.

4.2.1. Let us fix an embedding X ¢, P"x S as in (3.0) and let the relatively
ample invertible sheaf on X be the corresponding polarization. Let / € H*(X,, Q) be a
class of the very ample invertible sheaf L, on X,. We know (3. 0. 2) that / goes to /,
under the isomorphism

H(X,, Q=H*(X,, Q"> H*(X,, Q)" = H*(X,, Q).

Applying the global Torelli theorem for polarized K3 surfaces [11] we obtain an
isomorphism between the polarized K3 surfaces (X, L) and (Y, M) for Y=X, and
M= L,. This means that there exists an isomorphism X, = Y such that L is isomorphic
to the inverse image of M. Let us put

m=dimI'(Y, M)=dimTI'(X,, L,).
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Since M = L, is very ample,
H(Y,M)=H'X,,L)=0 for i>0 (4.0).

Since f is a projective morphism, the direct image E=f, L is a coherent sheaf on S.
Replacing S by a non-empty affine open subscheme we may assume that E=f, L is free.
Recall that

I(f*(v), L)=T(¥,f,L)=T(V, E)

for any open subset ¥ of S. Since E is free, this implies the flatness of L because an
inductive limit of free modules is a flat module.

Recall that the function
s—>dimIM(X, L)=m

is constant on C-points of S. Since C-points are dense in any closed subset of S (Hilbert
Nullstellensatz), the base change theorems for cohomology of coherent sheaves ([8],
Ch. 2, §5) imply that Rif*L=0 for i>0 and that E=f, L is a free sheaf of rank m
with fibres I'(X;, L ) at s.

Since S is affine, I'(X, L)=TI'(S, f,L)=T(S, E) is a free I'(S, O,)-module of rank
m and the module of global sections I' (X, L)=I'(S, E) generates I'(X,, L,)=(f, L),= E,.
In particular, the sections of E=f, L have no common zeroes in X(C). It follows that
they have no common zeroes in X (Hilbert Nullstellensatz).

4.2.2. Let us fix an isomorphism E =5 OF'. This gives us a basis of the I'(S, O,)-
module I'(S, E)=T(X, L) and a closed embedding

X o P(E)yS P 1x§,
inducing the natural closed embedding
X, o P[I'(X,, L)]= P™1.
We shall identify X with its image in P~ x S and view all X, as subvarieties of P™~.
Let us fix a basis of I'(Y, M). This gives us a closed embedding
Y o PII(Y, M)]=s P L,

We shall identify Y with its image in P™"!,

4.2.3. Let G= PGL(m) be the projective linear group. There is a natural action
GxpPm 1t pmt

Since (X, L) and (¥, M) are isomorphic, there exists an ge G(C) such that
gY=X(Y, X, = P""1). Clearly, the set

K,={geG(C)|g¥=X,)

is a principal homogeneous space over the automorphism group Aut(Y, M) of polarized
K3 surface, which is finite ([11], § 2).
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Let us put Yg=Y x S. The action of G on P™"! gives rise to the action
(GxS)x(P"'xS)—P""'xS, (gp)rgp
of the S-group scheme Gg=G x S on P™ ™! x S.

Consider the functor F which assigns to every S-scheme T the set
{g€(GxS)(T)=Homy(T,Gx S)|gY;=X; = (P" ' xS)x4T},
where Y, =YX T=Y x T, X;=XxT.

For example, for any C-point s: SpecC — S
F(s)={geGC)|gY=X}=K..

Clearly, if for some T, F(T) is nonempty then the T-scheme X is isomorphic to Y.
Moreover, for any g,, g, € F(T) there exists exactly one automorphism u of Y such
that g, =g, u.

Notice that F(T)=F,(T) n F,(T) where F,, F, are the functors which assign to
every S-scheme T the sets

F(T)={ge(GxS)(T)|gY; = X},
E()={ge(GxS)(T)|g"' Xy = Y}

respectively. Clearly, the functors F,, F, are represented by the schemes T, T, respec-
tively, which are defined by the cartesian squares

T, —— (GxS)xgY; I,—— (GxS)xgX

N R

X — s pmixs, Y,—— > P" xS,

Here ¢ is the restriction of
(Gx8)x (P x S)> P""' xS, (g,p)r gp
and ¥ is the restriction of
(Gx S)x (P! xS)>P"" ' xS, (g,p)>g 'p.
Obviously, F is represented by
T,=T, X gsT;.

This means that the T-scheme X is isomorphic to Y, for any S-scheme T such
that Homg (7, T;)) is non-empty.

Let r: T,— S be the structure morphism. I claim that r is unramified. In order
to prove this it is sufficient to check only C-points (any morphism is unramified at
an open subset).
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Let s: SpecC — S be a C-point of S and s': Spec C [a]/(a*) — S be a “thickening”
of s, i.e. s is a composition of s* and the natural map SpecC — SpecC [a]/(a®). The
unramifiedness means that the natural map F(s') — F(s) is an injection. Let
81,8, €F(s'). Then g,=g,u for some ueAutY, =Aut(Y xC[a]/(a*). If g, and
g, go into the same element of F(s)= K| then u acts as the identity map on Y and may
be identified with a vector field on Y. But there is no non-trivial vector field on Y (4. 0).
This implies that u is the identity map and g,=g,.

Since F(s)=K, is non-empty for any C-point s— S, the map T,(C)— S(C)
is surjective. This implies that for any open nonempty subset ¥ in S the open subset
r (V) is also non-empty. Let us choose a non-empty open V in S such that the
restriction of r

rert(VN)y—-v

’

is a flat morphism. Clearly, r' is unramified and, consequently, étale. Let us put
T=r"'(V). Clearly, F(T)=Homg(T, T;) is non-empty and, consequently, X;=Xx T
is isomorphic to Y=Y x T.
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