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Introduction

In the first part of these notes (‘Number rings’), we proved the basic theorems on the arith-

metic of algebraic number fields. The first part of the theory, dealing with ideal factorization

in number rings, was completely algebraic, and used only ring theoretic arguments. The

second part made specific use of the fact that number rings allow embeddings in Euclidean

spaces, and the resulting theorems on the finiteness of the class group and the structure

of the unit group of the ring of integers are particular for number rings. Although the

terminology from commutative algebra we employed is of a more recent nature, the results

we have proved so far are mostly classical, going back to 19-th century mathematicians as

Kummer, Dirichlet, Kronecker and Dedekind.

The theory to be developed in this second half of the notes concerns some important

extensions of the theory that were obtained during the period 1895–1950. We start with

the valuation theory introduced by Hensel in the early 20-th century, which yields a more

‘topological’ or ‘analytic’ approach to the theory of ideal factorization. This leads in a

natural way to the notion of a complete field, and for number fields the process of com-

pletion gives rise to local fields like the field R of real numbers and the fields Qp of p-adic

numbers. As was shown by Hasse, it is often fruitful to develop the global theory from the

local case, since local fields are in many ways ‘easier’ than number fields, somewhat in the

same way as localized number rings tend to be ‘easier’ than general number rings. The

interplay between local and global fields finds its ultimate form in Chevalley’s definition

of adèles and idèles.

The power and esthetic impact of these more modern concepts is particularly visible

in the class field theory , which allows a classical ideal theoretic and a more recent idelic

formulation. Although it has its roots in the 19th century work of Kronecker, Weber

and Hilbert, it is a 20th century theory that was developed by Takagi, Artin, Hasse and

Chevalley during the period 1915–1945, and was reformulated once more in cohomological

terms, in the second half of the twentieth century. We will apply class field theory to very

classical problems such as the representation of integers by binary quadratic forms and the

derivation of higher (than quadratic) reciprocity laws.





1 Valued fields

Valuation theory provides an approach to the arithmetic of number fields by methods remi-

niscent of those in complex function theory, which describe functions by locally convergent

Laurent series expansions. More precisely, one considers the fieldM of meromorphic func-

tions on C obtained as the field of fractions of the ring O of holomorphic functions on C,

and writes f ∈M in the neighborhood of a point α ∈ C as a convergent series

f(z) =
∞∑

k≫−∞
ak(z − α)k

with complex coefficients ak that are zero for almost all k < 0. The ‘local variable’ z−α is

not unique in the sense that we can write f as a Laurent series in any variable w ∈M that

has a simple zero at α. If f is not identically zero, the lowest index k with ak 6= 0 does not

depend on the choice of the local variable and is known as the order ordα(f) of f at α. A

function f ∈M∗ is determined up to multiplication by a function without zeroes and poles

by the values ordα(f) for α ∈ C. These functions are precisely the units in O. One often

encounters subfields of M instead of M, such as the rational function field C(X) ⊂ M
consisting of those f ∈ M that allow a meromorphic extension to the Riemann sphere

P1(C). Finite extensions of C(X) insideM arise as function fields associated to algebraic

curves.

Exercise 1. Show that C(X) ⊂ M satisfies C(X) ∩ O = C[X] and C(X) ∩ O∗ = C∗.

In the early 20th century, the German mathematician Hensel observed that every non-

zero element of a number field K can be viewed in a similar way as a function on the set

of primes of the ring of integers OK of K, since every non-zero element x has an order

ordp(x) ∈ Z at each prime p. The subring of ‘holomorphic elements’ x ∈ K that have

ordp(x) ≥ 0 for all p is the ring of integers OK , and an element x ∈ K∗ is determined up

to multiplication by an element in O∗K by the values ordp(x). If π ∈ K is an element of

order 1 at p, we can try to write x like the function f above as a Laurent series

x =

∞∑

k≫−∞
akπ

k

that converges ‘locally at p’. Apart from the fact that we have to specify which coefficients

ak ∈ K can occur in this series, we need to define a notion of ‘convergence around p’ for

series in K in order for this statement to make sense.

◮ Valuations

Valuations, which can be thought of as ‘absolute values’ on arbitrary fields K, provide

a tool to introduce a metric topology on K. We will see in Theorem 2.7 that ‘p-adic

valuations’ on a number field K lead to p-adic expansions of elements in K, and in the

p-adic completions Kp of K.
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§1: Valued fields

1.1. Definition. A valuation on a field K is a function φ : K → R≥0 satisfying

(1) φ(x) = 0 if and only if x = 0;

(2) φ(xy) = φ(x)φ(y) for x, y ∈ K;

(3) there exists C ∈ R>0 such that φ(x+ y) ≤ Cmax{φ(x), φ(y)} for all x, y ∈ K.

Conditions (1) and (2) describe the absolute value φ as the extension of a homomorphism

K∗ → R>0 to all of K, obtained by putting φ(0) = 0. Condition (3) expresses its ‘conti-

nuity’ with respect to addition. The smallest possible constant C in (3) is the norm ||φ||
of the valuation φ. It cannot be smaller than 1, and by (2) it equals

||φ|| = sup
x: φ(x)≤1

φ(1 + x).

This supremum is actually a maximum and, as will become clear, it is actually assumed

for x ∈ {0, 1} (exercise 9). If φ is a valuation and r a positive real number, then x 7→ φ(x)r

defines a valuation of norm ||φ||r.
The valuations that are implicit in the two situations described above are the valuation

φα :M→ R≥0 defined by

φα(f) = cordα(f) for some c ∈ (0, 1)

for f 6= 0 and the valuation φp : K → R≥0 defined by

φp(x) = cordp(x) for some c ∈ (0, 1)

for x 6= 0. These definitions also make sense for f = 0 and x = 0 if we symbolically set

ordα(0) = ordp(0) = +∞. From the obvious identities

ordα(f1 + f2) ≥ min{ordα(f1), ordα(f2)}
ordp(x1 + x2) ≥ min{ordp(x1), ordp(x2)}

we see that the norm of φα and φp equals 1. The value of the constant c in their definition

is irrelevant for most purposes, and in 1.8 we will introduce a corresponding notion of

equivalence of valuations. A valuation φ of norm 1 satisfies the ultrametric inequality

(1.2) φ (
∑n
k=1 xi) ≤ maxk=1,2,...,n φ(xk)

and is called non-archimedean. If (1.2) holds, a sum of small elements will never be large, so

in this case the Archimedean postulate, which states that a ‘small but non-zero’ quantity

becomes arbitrarily large when repeatedly added to itself, does not hold. When quantities

of unequal size are added under a non-archimedean valuation, the ultrametric inequality

becomes an equality:

(1.3) φ(x1) 6= φ(x2)⇒ φ(x1 + x2) = max{φ(x1), φ(x2)}.

8 version 11 May 2017 9:57 p.m.



§1: Valued fields

To see this, one supposes φ(x1) > φ(x2) and concludes from the inequalities

φ(x1) = φ(x1 + x2 − x2) ≤ max{φ(x1 + x2), φ(−x2)} ≤ max{φ(x1), φ(x2)} = φ(x1)

that we have φ(x1 + x2) = φ(x1). The value φ(−1) = 1 used here is immediate from the

fact that its square equals φ(1) = 1. The ultrametric inequality is much stronger than the

more familiar triangle inequality

φ(
∑n
k=1 xi) ≤

∑n
k=1 φ(xi),

and this has amusing consequences for the geometry of the underlying space (exercise 8).

A trivial example of a non-archimedean valuation that exists on any field K is the trivial

valuation on K, obtained by extending the trivial homomorphism φ : K∗ → {1}.
Exercise 2. Show that every valuation on a finite field is trivial.

Valuations of norm larger than 1 are called archimedean. Characteristic examples are the

valuations φσ : K → R≥0 obtained from embeddings σ : K → C as

(1.4) φσ(x) = |σ(x)|.

Valuations of this form have norm 2 and satisfy the triangle inequality.

◮ Metrics and topology

Although valuations are not required to satisfy the triangle inequality, they do when raised

to a suitable power. This is a consequence of the following lemma.

1.5. Lemma. A valuation on a field K satisfies the triangle inequality if and only if its

norm does not exceed 2.

Proof. It is clear that a valuation satisfying the triangle inequality has norm at most 2.

Conversely, if φ has norm at most 2, we can repeatedly apply condition (3) in Definition

1.1 to obtain φ(
∑2m

i=1 xi) ≤ 2mmaxi φ(xi). Taking some of the xi in this inequality equal

to 0, we see that a sum of k terms can be bounded by φ(
∑k
i=1 xi) ≤ 2kmaxi φ(xi). In

particular, we have φ(k · 1) ≤ 2k for k ∈ Z≥1. We now use the multiplicativity of φ to

obtain the estimate

φ(x+ y)n = φ(

n∑

i=0

(
n

i

)
xiyn−i) ≤ 2(n+ 1)max

i
{φ(

(
n

i

)
xiyn−i)}

≤ 4(n+ 1)

n∑

i=0

(
n

i

)
φ(x)iφ(y)n−i = 4(n+ 1)(φ(x) + φ(y))n.

The resulting inequality φ(x + y) ≤ n
√

4(n+ 1)(φ(x) + φ(y)) is valid for all x, y ∈ K and

implies the triangle inequality if we let n tend to infinity. �

An argument similar to that given in the preceding proof shows that it is possible to decide

whether a valuation is non-archimedean by looking at its values on multiples of the unit

element only.
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§1: Valued fields

1.6. Proposition. A valuation on a fieldK is non-archimedean if and only if it is bounded

on the set {n · 1:n ∈ Z}.

Proof. It is clear from the ultrametric inequality 1.2 that we have φ(±n · 1) ≤ φ(1) = 1 if

φ is non-archimedean. For the converse, we assume that φ is a valuation that is bounded

by M on {n · 1:n ∈ Z} and—after replacing φ by a suitable power if necessary—that it

satisfies the triangle inequality. Taking n-th roots of both sides of the estimate

φ(x+ y)n = φ(

n∑

i=0

(
n

i

)
xiyn−i) ≤ (n+ 1)M max{φ(x), φ(y)}n

and letting n tend to infinity, we see that φ is non-archimedean. �

We see from 1.6 that we can always take the upper bound M = 1 for a valuation bounded

on Z. This is also immediate from the multiplicativity of valuations.

For a field K of positive characteristic, the set {n · 1:n ∈ Z} in 1.6 is finite set.

1.7. Corollary. A valuation on a field of positive characteristic is non-archimedean. �

Let φ be a valuation on a field K. Then there is a natural valuation topology Tφ on K in

which a basis of open neighborhoods of a point x ∈ K is given by the collection of open

balls

Uε(x) = {y ∈ K : φ(x− y) < ε} (ε ∈ R>0)

of radius ε around x. As all powers of φ induce the same topology, the topology Tφ is

metrizable by 1.5.

Exercise 3. Show that Tφ is the discrete topology on K if and only if φ is trivial.

Just as for the ordinary absolute value on R or C, one shows for the valuation topology

that the addition map (x, y) 7→ x+y and the multiplication map (x, y) 7→ xy are continuous

maps from K ×K to K, and that the inversion map x 7→ x−1 is continuous on K∗. These
continuity properties can be summarized by stating that the valuation topology Tφ on K

makes K into a topological field.

By the ultramatric property (1.3), a non-archimedean topological field K is topologi-

cally rather different from archimedean topological fields such as R and C. For instance,

given points x, y, z ∈ K for which x − y and y − z have different valuation, the sum

x− z = (x− y) + (y− z) has the same valuation as either x− y or y− z: every triangle in

K is isosceles. In the same vein, it follows from the fact that every two points x, y in an

open ball Uε(x0) have distance

φ(x− y) = φ(x− x0 + x0 − y) ≤ max{φ(x− x0), φ(x0 − y)} < ε

that every point in this open ball is a center: Uε(x) = Uε(x0) = Uε(y).
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§1: Valued fields

◮ Independence of valuations

Two valuations φ and ψ on a field K are said to be equivalent if they induce the same

topology on K. Equivalence can easily be decided using the following proposition.

1.8. Proposition. Let φ and ψ be two non-trivial valuations on a field K. Then the

following conditions are equivalent.

(1) φ = ψr for some constant r > 0;

(2) φ and ψ are equivalent;

(3) the topology Tφ is stronger than Tψ;
(4) φ(x) < 1 implies ψ(x) < 1 for all x ∈ K.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are clear. As the inequality φ(x) < 1

amounts to saying that the sequence {xn}n converges to 0 in the corresponding valuation

topology, we also have (3)⇒ (4).

In order to prove (4) ⇒ (1), we take an element a ∈ K with 0 < φ(a) < 1. Such an

element exists because φ is non-trivial. We claim that we actually have an equivalence

φ(x) < 1⇐⇒ ψ(x) < 1.

Indeed, take x ∈ K with ψ(x) < 1. If we had φ(x) > 1 then x−1 would violate (4), and if

we had φ(x) = 1 then ax−k would violate (4) for large k. Thus φ(x) < 1 as desired.

Next, let x ∈ K∗ be arbitrary and define α, β ∈ R by φ(x) = φ(a)α and ψ(x) =

ψ(a)β . We want to show that α = β, since this implies that r = log φ(x)/ logψ(x) =

log φ(a)/ logψ(a) does not depend on x, i.e. that we have φ = ψr for this r. The desired

equality follows from the fact that for m,n ∈ Z with n > 0 we have

m
n < α⇐⇒ φ(x) < φ(a)m/n ⇐⇒ φ(xna−m) < 1⇐⇒ ψ(xna−m) < 1⇐⇒ m

n < β.

This finishes the proof of the proposition. �

If φ and ψ are non-trivial valuations on K that are not equivalent, the proof of 1.8 shows

that we can find a ∈ K satisfying φ(a) < 1 and ψ(b) ≥ 1, and also b ∈ K satisfying

φ(a) ≥ 1 and ψ(b) < 1. The element x = a/b then satisfies φ(x) < 1 and ψ(x) > 1, and

this means that the elements

xk =
xk

1 + xk

converge for k → ∞ to 0 in Tφ, and to 1 in Tψ. For k → ∞ the limits are 1 and 0, re-

spectively. This ‘unrelated behavior’ leads to an independence of non-equivalent valuations

that can be phrased in the following way for any number n ≥ 2 of valuations.

1.9. Approximation theorem. Let φ1, φ2, . . . , φn be n non-trivial valuations on K, and

suppose that no two of them are equivalent. Write Ki for the field K equipped with the

topology Tφi , and ∆ = K · (1, 1, . . . , 1) for the image of K under the diagonal embedding

K −→∏n
i=1Ki. Then ∆ is dense in

∏n
i=1Ki.

Proof. We may and will assume n ≥ 2, the case n = 1 being trivial.
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§1: Valued fields

By the continuity of the field operations in the valuation topologies Tφi , the closure ∆

of ∆ is a K-vector subspace of the n-dimensional K-vector space
∏n
i=1Ki. For n = 2, we

observed just before the theorem that ∆ that contains the basis vectors (0, 1) and (1, 0) as

limits of elements xn/(1 + xn) · (1, 1) ∈ ∆. This implies ∆ = K1 ×K2, as desired.

In order to prove the general case by induction, we assume that the theorem holds

for n − 1 ≥ 2 valuations. This implies that we can find a ∈ K satisfying φ1(a) > 1 and

φi(a) < 1 for 2 ≤ i ≤ n− 1, and also b ∈ K satisfying φ1(b) > 1 and φn(b) < 1.

If we have φn(a) ≤ 1, then x = amb with m sufficiently large will be an element

for which xn/(1 + xn) · (1, 1, . . . , 1) converges to the basis vector (1, 0, . . . , 0). If we have

φn(a) > 1, then x = amb/(1 + am) with m sufficiently large has this property. Thus ∆

contains (1, 0, . . . , 0), and therefore all basis vectors, yielding ∆ =
∏n
i=1Ki. �

In less formal terms, the approximation theorem states that given φi as above and any

choice of elements ai ∈ K for 1 ≤ i ≤ n, there exists x ∈ K such that x is arbitrarily close

to ai in the topology Tφi for all i.

◮ Prime divisors

An equivalence class of non-trivial valuations on K is known as a place or prime divisor

of K, often shortened to prime of K. By the proposition, the prime divisor corresponding

to a non-trivial valuation φ is the equivalence class {φr : r > 0}. Depending on the type

of valuations it contains, a prime divisor is said to be archimedean or non-archimedean.

Archimedean prime divisors are also known as infinite primes, as opposed to the finite

primes denoting the non-archimedean prime divisors.

The terminology ‘prime’ to denote an equivalence class of valuations stems from the

fact that, at least in the non-archimedean case, they are closely related to the prime ideals

in subrings of K. The most classical case is the classification of the prime divisors of the

rational number field Q, due to Ostrowski.

1.10. Theorem. A non-trivial valuation on Q is either equivalent to the p-adic valuation

φp : Q→ R given by

φp(x) = p− ordp(x)

for a prime number p, or to the ordinary absolute value on Q given by

φ∞(x) = |x|.

Proof. Let φ be a non-archimedean valuation on Q. Then φ is bounded by 1 on Z, and

the set p = {x ∈ Z : φ(x) < 1} is easily seen to be a prime ideal of Z. It is non-zero as φ

is non-trivial, so we have p = pZ for some prime number p. As all elements in Z \ pZ have

valuation 1, the valuation φ assumes the value 1 on all fractions u = a
b with p ∤ab. Writing

arbitrary x ∈ Q∗ as x = upk with u as above and k = ordp(x) ∈ Z, we find that we have

φ(x) = cordp(x) with c = φ(p) ∈ (0, 1), and that φ is equivalent to φp.
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§1: Valued fields

Suppose now that φ is an archimedean valuation on Q. We may assume that it satisfies

the triangle inequality, implying φ(k) ≤ |k| for k ∈ Z. Given two integers m,n > 1, we can

write all powers of m in base n as mt =
∑s
i=0 ain

i with ai ∈ {0, 1, . . . , n− 1} and as 6= 0.

As the number of digits s is the entier of log(mt)/ log n, we have s/t ≤ logm/ log n. The

triangle inequality implies φ(m)t ≤ (s+ 1)nmax{1, φ(n)s}, so we can take t-th roots and

let t tend to infinity to obtain the estimate

φ(m) ≤ max{1, φ(n)}logm/ logn.
This shows that we must have φ(n) > 1, since otherwise φ would be bounded on Z and

therefore non-archimedean. The resulting inequality φ(m)1/ logm ≤ φ(n)1/ logn is in fact

an equality, as we can interchange the roles of m and n. Thus a = φ(n)1/ logn > 1 does

not depend on the value of n > 1, and we have φ(n) = |n|log a for all n ∈ Z. This implies

φ(x) = |x|log a for all x ∈ Q, showing φ to be equivalent to the ordinary absolute value φ∞
on Q. �

The normalization of the p-adic valuation φp in 1.10 is standard, and chosen in such a way

that we have have the product formula∏

p≤∞
φp(x) = 1 for x ∈ Q∗.

Here the product is taken over all prime divisors of Q, including the unique infinite prime.

It shows that the approximation theorem 1.9 does not necessarily hold for an infinite

collection of non-equivalent valuations.

Exercise 4. Show that Chinese remainder theorem for Z can be obtained as a special case of the approx-

imation theorem.

The argument used to classify the non-archimedean primes of Q can be used in more

general situations. For any non-archimedean valuation φ on a field K, the ultrametric

property of φ implies that

Aφ = {x ∈ K : φ(x) ≤ 1}
is a subring of K, the valuation ring of φ. We have x ∈ Aφ or x−1 ∈ Aφ for every x ∈ K∗.
In particular, Aφ has field of fractions K. The valuation ring Aφ is a local ring with unit

group A∗φ = {x ∈ K : φ(x) = 1} and maximal ideal

mφ = {x ∈ K : φ(x) < 1}.
The quotient kφ = Aφ/mφ is known as the residue class field of φ.

Exercise 5. Which possibilities are there for the pair (char(K), char(kφ)) of field characteristics?

Just as for K = Q, the finite primes of a number field ‘are’ the primes of its ring of integers.

1.11. Theorem. Every non-trivial non-archimedean valuation on a number field K is of

the form

φp(x) = cordp(x) with c ∈ (0, 1)

for some non-zero prime ideal p of the ring of integers OK of K. In this way, the finite

primes of K correspond bijectively to the non-zero prime ideals p ⊂ OK .
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§1: Valued fields

Proof. If φ is a non-archimedean valuation on a number field K, then the ring of integers

OK is contained in the valuation ring Aφ. To see this, one observes that every x ∈ OK
satisfies some equation xn =

∑n−1
i=0 aix

i with n ≥ 1 and coefficients ai ∈ Z. We have

φ(ai) ≤ 1, so φ(x) > 1 would imply φ(xn) > maxi=1,2···,n−1 φ(aixi), contradicting (1.2).

If φ is non-trivial, then mφ∩OK is a non-zero prime ideal p of OK , and φ is identically 1

on OK \ p. The local ring Op = OK,p is a discrete valuation ring, say with maximal ideal

pOp = πOp, and we have φ[O∗p] = 1. Writing x ∈ K∗ as x = uπk with u ∈ O∗p and

k = ordp(x), we find φp(x) = cordp(x) with c = φ(π) ∈ (0, 1).

As φp and φp′ are clearly inequivalent for p 6= p′, this shows that the finite primes

of K correspond bijectively to the non-zero prime ideals p ⊂ OK . �

The valuation ring corresponding to a prime p of OK is the ring

OK,p = {a
b
: a ∈ OK , b ∈ OK \ p}

defined in [Number rings, §2] by localizing the ring of integers OK at the prime p.

If K = F (X) is the field of rational functions over a field F , the argument used in

proving 1.11 yields the following.

1.12. Theorem. Let R = F [X] be the polynomial ring over a field F and φ a non-trivial

valuation on its field of fractions K = F (X) that is trivial on F . Then φ is either a P -adic

valuation φP given by

φP (x) = cordP (x) with c ∈ (0, 1)

for some non-constant monic irreducible polynomial P ∈ R, or the degree valuation φ∞
given by

φ∞(x) = c− deg(x) with c ∈ (0, 1)

for x 6= 0. Here deg is the multiplicative extension to K∗ of the degree map R \ {0} → Z.

Proof. As φ is trivial on F , it is non-archimedean by 1.6. Suppose first that we have

φ(X) ≤ 1. Then R = F [X] is a subring of the valuation ring Kφ, so so p = mφ is a prime

ideal of R = F [X]. It is non-zero as φ is non-trivial, so p = (P ) for some non-constant

monic irreducible polynomial P ∈ R. All elements in R\p have valuation 1, and φ assumes

the value 1 on all units of the localized ring Rp. As before, K is the field of fractions of

the discrete valuation ring Rp, and any x ∈ K∗ can be written as x = uP k with u ∈ R∗p
and k = ordP (x) ∈ Z. In this situation we have φ(x) = φ(P )k, so we find φ = φP with

constant c = φ(P ) ∈ (0, 1).

Suppose now that we have φ(X) > 1. Then we have φ(X−1) < 1, so the previous

argument can be repeated with the ring F [X−1] in the role of R. This time the prime ideal

p ⊂ F [X−1] contains X−1, so we have p = X−1F [X−1]. To finish the proof we note the

equality ordX−1(x) = − deg(x), which yields φ = φ∞ with constant c = φ(X−1). �
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§1: Valued fields

◮ Finite and infinite primes

If F is finite, then all valuations of F (X) are trivial on F and 1.12 provides all valuations

on F (X). If F is algebraically closed, then the monic irreducibles in F [X] are of the form

X − α with α ∈ F , and the primes φP in 1.12 correspond to the ‘points’ of F . One can

view − deg(x) as the order of the zero of x at the ‘point at infinity’∞ = 1/0. In geometric

terms, K = F (X) is the function field of the projective line P1(F ), and primes of K are

the points of P1(F ). This point of view is fundamental in the theory of algebraic curves,

as it neatly generalizes to arbitrary projective curves.

It is a standard fact from algebraic geometry that the most elegant and uniform results

are usually obtained for projective curves, which provide a ‘compactification’ of the more

familiar affine curves by the addition of finitely many ‘points at infinity’. In the same way

the consideration of all primes of a number field, not just the finite ones, is in many ways

the ‘right’ way to approach number fields. This point of view was introduced by Weil and

Chevalley, who incorporated it around 1940 in their construction of ideles. It was further

developed by Arakelov and others.

For projective curves, the notion of being a point ‘at infinity’ is not canonical, and

the degree valuation φ∞, which corresponds to the discrete valuation ring F [X−1](X−1),

is in no intrinsic way different from the valuation φX with valuation ring F [X](X): it also

corresponds to a finite prime of F (X). Number fields are different from function fields in

the sense that they have ‘intrinsically’ infinite primes, i.e., non-archimedean primes. We

will prove in 2.4 that the infinite primes of a number field are of the type given in (1.4),

and come from the finitely many complex embeddings of the field.

◮ Discrete valuation rings

The proofs of 1.10, 1.11 and 1.12 show that non-archimedean valuations on K often come

from discrete valuation rings R ⊂ K, and as their name indicates such rings provide

valuations on their field of fractions. In line with this terminology, we call a valuation

φ : K → R≥0 discrete if φ[K∗] is a discrete subgroup of R>0. An archimedean valuation

on a field K can not be discrete as it follows from 1.6 and 1.7 that we have Q ⊂ K with φ

non-trivial onQ, and then from 1.10 that φ[K∗] contains the dense subgroup φ[Q∗] ⊂ R>0.

As expected, discrete valuation rings are indeed the valuation rings coming from non-trivial

discrete valuations.

1.13. Proposition. Let φ be a non-trivial non-archimedean valuation on a field K and

Aφ the valuation ring of φ. Then φ is discrete if and only if Aφ is a discrete valuation ring.

Proof. Suppose that A is a discrete valuation ring and π a generator of its maximal ideal.

Then every x ∈ K∗ has a unique representation as x = uπk with u ∈ A∗ and k ∈ Z.

Units in A have valuation 1, so φ(x) = φ(π)k and φ[K∗] is the discrete subgroup of R>0

generated by φ(π).

Conversely, let φ[K∗] 6= {1} be discrete in R>0. Then φ[K∗] is infinite cyclic (cf.

exercise 11), so we can find π ∈ A such that φ[K∗] is generated by φ(π). For any x ∈ K∗
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there exists k ∈ Z with φ(x) = φ(π)k, so we have x = uπk for some u ∈ A∗. It follows that
A is a discrete valuation ring with maximal ideal πA. �

Let φ be a non-trivial discrete valuation on K with valuation ring A. If π ∈ A generates

the maximal ideal p of A, we say that π is a prime element for φ, or a uniformizer or local

parameter at the corresponding prime. The function ν : K → Z ∪ {∞} sending x ∈ K∗
to ordp(x) ∈ Z and 0 ∈ K to ∞ is the (normalized) exponential valuation corresponding

to φ. It is a homomorphism on K∗ that fits in a natural exact sequence

0→ A∗ −→ K∗
ν−→ Z→ 0.

Every choice of π leads to a splitting of this exact sequence, and an isomorphism

(1.14) K∗ = 〈π〉 ×A∗.

A fundamental system of neighborhoods of 0 ∈ K in the valuation topology Tφ is given

by the integral powers πkA of the maximal ideal of K. Note that these are additive sub-

groups of K. Analogously, the subgroups 1 + πkA ⊂ K∗ form a fundamental system of

neighborhoods of 1 inside A∗, when k ranges over the positive integers. Note that these

neighborhoods are both open and closed, and that the topological groups K and K∗ are

therefore totally disconnected. This shows that the topology of K is different from what

we are used to for the archimedean fields R and C.

Exercises

6. An exponential valuation on a field K is a map ν : K → R ∪ {∞} satisfying

(1) ν(x) = ∞ if and only if x = 0;

(2) ν(xy) = ν(x) + ν(y) for all x, y ∈ K;

(3) ν(x+ y) ≥ min{ν(x), ν(y)} for all x, y ∈ K.

Show that there is a natural bijective correspondence between exponential valuations and

non-archimedean valuations on K. What does it mean for exponential valuations to be ‘non-

trivial’, ‘discrete’ or ‘equivalent’?

7. Let L/K be an algebraic extension and φ a valuation on L. Show that φ is trivial if and only

if its restriction to K is trivial.

8. Show that the norm of a valuation φ on a field K equals max{φ(1), φ(2)}.

9. Let F be a field and H a subgroup of R>0. Recall that the group ring F [H] consists of

finite formal sums
∑

h∈H
fh[h] with fh ∈ F , with addition and multiplication being derived

from addition and multiplication in F and the relations [h1][h2] = [h1h2] for h1, h2 ∈ H. For

non-zero x ∈ F [H] we set

φ(
∑

h∈H

fh[h]) = max{h ∈ H : fh 6= 0}.
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Show that F [H] is a domain, and that φ induces a non-archimedean valuation on the field of

fractions K of F [H] with image φ[K∗] = H. What is the residue class field of this valuation?

10. Let φ be a valuation on a field K. Show that the value group φ[K∗] is either a discrete or a

dense subgroup of R>0, and that it is cyclic if and only if it is discrete.

11. Do there exist a field K and a non-trivial valuation φ on K for which we can strengthen the

implication (1.3) to an equivalence

φ(x+ y) = max{φ(x), φ(y)} ⇐⇒ φ(x) 6= φ(y)

valid for all x, y ∈ K∗?

12. Show that there is a unique valuation on C that extends the ordinary absolute value on R.

13. Let φ be a non-trivial discrete valuation, A its valuation ring, and kp = A/p its residue class

field. Write Uk = 1 + pk for k ∈ Z>0.

a. Show that pk/pk+1 is a 1-dimensional vector space over kp;

b. Show that the map x 7→ x− 1 induces a group isomorphism Uk/Uk+1
∼−→ pk/pk+1.

14. Let φ be a non-archimedean valuation on K. For c ∈ R>0, define ψc : K[X] → R>0 by

ψc(
∑

i
aiX

i) = maxi φ(ai)c
i.

a. Show that ψc gives rise to a valuation on the field of fractions K(X) of K[X] that

extends φ.

b. Show that ψc1 and ψc2 are not equivalent for φ non-trivial and c1 6= c2.

c. Which prime divisors are obtained when φ is trivial on K?

15. (Gauss’s lemma.) Let A be the valuation ring of a non-archimedean valuation on a field K.

Prove that if the product of two monic polynomials f, g ∈ K[X] is in A[X], then f and g are

in A[X]. How does the classical Gauss lemma (with A = Z and K = Q) follow from this?

[Hint: you can use the valuation ψ1 from the preceding exercise.]

16. Let K be a field and σ, τ : K → C two embeddings of K in the field of complex numbers.

Show that the induced archimedean valuations φσ and φτ on K are equivalent if and only if

we have σ = τ or σ = τ .

17. Let F be a finite field, and K = F (X) the rational functional field over F . Show every x ∈ K∗

satisfies a ‘sum formula’ ∑

ν

ν(x) = 0

analogous to the product formula for K = Q, when ν ranges over all suitably normalized

exponential valuations on K.
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2 Complete fields

In calculus, one learns that the right setting to study functions defined over the rational

number fieldQ is notQ itself: in order to obtain a satisfactory theory, one uses a completion

process to pass from Q to the real number field R, or the algebraic closure C of R. In the

same way, functions on a valued field K are studied most conveniently over the completion

of K with respect to the valuation, or an algebraic extension of this completion.

◮ Completions

A valued field K is said to be complete if every Cauchy sequence in K has a limit in K.

Given K with valuation φ, we can construct its completion with respect to φ. The con-

struction is similar to Cantor’s construction of R from Q, but uses the existence of the

complete field R containing the values of φ.

2.1. Theorem. Let φ be a valuation onK. Then there exists a field extensionK ⊂ Kφ and

an extension of φ to a valuation on Kφ such that Kφ is a complete valued field containing

K as a dense subfield.

For every field extension F of K that is complete with respect to a valuation extending φ,

there exists a unique continuous K-homomorphism Kφ → F .

Proof. Let R be the K-algebra of Cauchy sequences in K with componentwise addition

and multiplication, and extend φ to R by putting

φ((ai)
∞
i=1) = lim

i→∞
φ(ai).

The ideal m = {a ∈ R : φ(a) = 0} of null-sequences is a maximal R-ideal as a = (ai)
∞
i=1 /∈

m implies ai 6= 0 for i sufficiently large, making a invertible in R/m. The composition

K → R→ R/m = Kφ yields a field inclusion K ⊂ Kφ = R/m, and φ is descends to a map

Kφ → R≥0 that is easily checked to be a valuation on Kφ extending φ. The subfield K is

dense in Kφ, as the element (ai)
∞
i=1 mod m ∈ Kφ is the limit of the sequence (ai)

∞
i=1 in K.

Moreover, Kφ is complete as we can choose, for any given Cauchy sequence (xi)
∞
i=1 in Kφ,

a sequence of elements ai ∈ K ⊂ Kφ such that φ(xi − ai) < 1/i holds. Then x = (ai)
∞
i=1

is a Cauchy sequence in K, and x mod m ∈ Kφ is the limit of (xi)
∞
i=1.

Finally, if F ⊃ K is complete with respect to a valuation extending φ, the canonical

map R → F sending (ai)
∞
i=1 to limi→∞ ai gives rise to a topological embedding Kφ =

R/m→ F . As K is dense in Kφ, there can be at most one continuous K-homomorphism

Kφ → F , so this embedding is unique. �

◮ Complete archimedean fields

The last statement in theorem 2.1 implies that the completion Kφ is uniquely determined

up to topological isomorphism. It also implies that a complete archimedean field, which

contains the prime field Q on which the valuation is non-trivial by 1.6 and equal to a
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power of the ordinary absolute value by Ostrowski’s earlier theorem 1.10, contains the real

number field R as a topological subfield. The following lemma allows us to focus on the

case were K also contains the complex number field C as a topological subfield.

2.2. Lemma. LetK be a field that is complete with respect to a valuation φ, and L = K(i)

the extension ofK obtained by adjoining a root i ofX2+1. Then L is complete with respect

to the valuation ψ : L→ R≥0 defined by

ψ(x) = φ(NL/K(x))1/[L:K].

Proof. For i ∈ K, we have L = K(i) = K and ψ = φ, so there is nothing to prove.

Assume i /∈ K. Then the map ψ is multiplicative and non-zero on L∗, and on the

K-basis {1, i} of L we have ψ(a+ bi) = φ(a2+ b2)1/2 for a, b ∈ K. Replacing φ if necessary

by a power, we can assume that φ satisfies the triangle inequality. In order to show that

ψ is a valuation, we need to show that ψ(x) ≤ 1 implies ψ(1 + x) ≤ C for some C ∈ R>0.

Writing x = a + bi, we see that it suffices to show that φ(a) and φ(b) remain bounded

when a, b ∈ K satisfy the inequality φ(a2 + b2) ≤ 1.

We argue by contradiction, and assume that φ(a) is unbounded under the inequality

φ(1 + (b/a)2) < φ(a)−2. This yields elements xn ∈ K satisfying φ(1 + x2n) < 4−n, and
therefore, by the triangle inequality for φ,

φ(xn+1 − xn)φ(xn+1 + xn) = φ((1 + x2n+1)− (1 + x2n)) < 2 · 4−n.

Upon changing the sign of xn+1 where necessary, we obtain φ(xn+1 − xn) < 2−n for all

n ≥ 1, making (xn)n into a Cauchy sequence in the complete field K. Its limit x ∈ K

satisfies x2 + 1 = 0, contrary to the assumption i /∈ K.

The argument above also shows that if φ(a2+b2) tends to 0, then so do φ(a) and φ(b).

Indeed, if φ(a) would be bounded away from zero, then φ(1 + (b/a)2) = φ(a)−2φ(a2 + b2)

would tend to zero, leading to the same contradiction. This implies that L is complete

with respect to ψ, as convergence in L amounts to convergence of the coefficients on the

K-basis {1, i}. �

Lemma 2.2 does not assume that φ is archimedean, and the formula it gives to extend φ

to a finite extension is a generality that we will encounter again in 3.3.

We will now show that no complete archimedean fields exist beyond the familiar

examples R and C. This theorem, which goes by the name of Ostrowski in valuation

theory, is also known as the Gelfand-Mazur theorem in Banach algebras.

2.3. Theorem. A complete archimedean field is topologically isomorphic to eitherR orC.

Proof. We already saw that a complete archimedean field K contains R as a topolog-

ical subfield. By Lemma 2.2, the (possibly trivial) extension L = K(i) is a complete

archimedean field containing C as a topological subfield. It now suffices to show that L

equals C, as we then have R ⊂ K ⊂ L = C, leaving no further choice for K.
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Write ψ for the valuation on L, and scale it to satisfy the triangle inequality. Suppose

there exists α ∈ L \ C. Then the function C → R defined by z 7→ ψ(z − α) is positive

on all of C, and as ψ(z − α) ≥ ψ(z)(1 − ψ(α/z)) tends to infinity with ψ(z), there exists

an element z0 ∈ C where ψ(z − α) attains its minimum value r > 0. If z ∈ C satisfies

ψ(z − z0) < r, we can use Ostrowski’s identity

ψ(z − α) = ψ((z − z0)n − (α− z0)n)∏
ζn=1,ζ 6=1 ψ(ζ(z − z0)− (α− z0))

to obtain, for all integers n ≥ 1, an inequality

ψ(z − α) ≤ r1−nψ(z0 − α)nψ(1−
(z − z0)n
(α− z0)n

) ≤ r(1 + (
ψ(z − z0)

r
)n).

Letting n tend to infinity, we find ψ(z−α) = r for all z satisfying ψ(z−z0) < r. Repeating

the argument, we see that ψ(z − α) is constant on C. This contradiction shows that no

element α ∈ L \C exists, and finishes the proof. �

2.4. Corollary. Let φ be an archimedean valuation on K. Then there exist an embedding

σ : K → C and r ∈ R>0 such that φ(x) = |σ(x)|r holds for x ∈ K.

Proof. Theorems 2.1 and 2.3 show that we have an embedding σ : K → C of topological

fields, so the topology Tφ coincides with the topology of the valuation φσ from (1.4) that

is induced by σ. By 1.8, this implies φ = φrσ. �

If two embeddings σ1, σ2 : K → C induce the same valuation on K, there is by 2.1 an

induced topological isomorphism on the completions. As R has no automorphisms and C

no continuous automorphisms besides the identity and complex conjugation, we conclude

that σ1 and σ2 are either equal or complex conjugates of each other. This immediately

yields the following archimedean counterpart of theorem 1.11.

2.5. Corollary. The infinite primes of a number field K correspond bijectively to the

complex embeddings σ : K → C, when taken up to complex conjugation. �

An infinite prime of a number field K is called real if it comes from a real embedding

K → R, and complex if it comes from an embedding K → C with non-real image. We see

that in contrast to the situation for non-archimedean primes in 1.11, a number field has

only a finite number of archimedean prime divisors: for K of degree n, the number r of

real and s of complex primes satisfies the relation

r + 2s = n

that we already encountered in [NR, (5.3)].
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◮ Non-archimedean completions

For non-archimedean valued fields K, the residue class field K can be any field, and the

value group φ[K∗] any subgroup of R>0 (cf. exercise 1.10). The same is true for complete

archimedean fields, by the following lemma.

2.6. Lemma. Let Kφ be the completion of a field K with respect to a non-archimedean

valuation φ. Then we have φ[K∗] = φ[K∗φ] and K = Kφ.

For x ∈ K∗φ we can find a ∈ K∗ with φ(a− x) < φ(x), so the ultrametric inequality (1.3)

gives φ(a) = φ(a− x+ x) = φ(x), proving φ(x) ∈ φ[K] and φ[K] = φ[Kφ].

Similarly, if x ∈ K∗φ satisfies φ(x) ≤ 1 and a ∈ K is chosen satisfying φ(a − x) < 1,

then we have x = a ∈ K = Kφ. �

Given the large variety of complete non-archimedean fields, no classification result of the

simplicity of Theorem 2.3 exists for them. On the other hand, they all share ‘analytic

properties’ that are in some ways easier than those of R and C.

By the ultrametric inequality (1.2), which bounds finite sums by the maximum of

their terms, converging sums
∑
k≥0 ak in a complete non-archimedean field with valuation

φ can simply be characterized as sums for which φ(ak) tends to 0 for k →∞.

Exercise 1. Prove this, and show that the value of the sum is the same for each reordering of the terms.

In non-archimedean fields, all open balls Uε = {x ∈ K : φ(x) < ε} and closed balls

Bε = {x ∈ K : φ(x) ≤ ε} are additive subgroups of K. For ε = 1 we obtain the valuation

ring A = Aφ = B1 and its maximal ideal m = mφ = U1. Open and closed balls are the

same thing in case we are dealing with the discrete valuations from 1.13, which frequently

arise in number theory and geometry.

Let φ be non-trivial and discrete on K. Then the value group φ[K∗] is an infinite

cyclic group 〈φ(π)〉 ⊂ R>0 generated by the largest value φ(π) ∈ (0, 1) assumed by φ. A

uniformizer π ∈ K∗ for the corresponding prime divisor p, on which φ assumes this largest

value, is unique up to multiplication by units in the valuation ring A, and by (1.14) every

x ∈ K∗ can be written as

(2.7) x = u · πordp(x),

where u ∈ A∗ is a p-adic unit having φ(u) = 1 and ordp(x) ∈ Z denotes the valuation of x

at the prime p. We also write p for the maximal ideal πA of the valuation ring A.

In a complete discretely valued field K, with π a uniformizer for the prime p, every

element admits a p-adic expansion

(2.8) x =
∑

k≥ordp(x)

akπ
k,

with ak from some subset S ⊂ A of p-adic digits. For S one can pick any set of repre-

sentatives in A of the residue classes modulo p, where it is customary to pick 0 ∈ S for
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the representative of the class p itself. In view of the application in 3.7, we include in the

statement below a version in which the powers πk are replaced by arbitrary elements πk
that generate the same ideal as πk.

2.9. Theorem. Let K be a complete non-archimedean field, with A and p = πA as above.

Let πk ∈ K be a generator of pk, for k ≥ 1, and S ⊂ A a set of representatives of A/p

containing 0. Then we have

A = {
∞∑

k=0

akπk : ak ∈ S for k ≥ 0},

and every x ∈ K∗ has a unique p-adic expansion x =
∑
k≥ordp(x)

akπ
k.

Proof. If (ak)k≥0 is any sequence in S, the sum
∑
k≥0 akπk has terms tending to 0, and

is therefore convergent in K. Assume that not all ak are zero. As all non-zero terms have

different valuations, the value x =
∑
k akπk has valuation φ(x) = φ(πN ), with N = ordp(x)

the smallest k with ak 6= 0. This not only shows that the value lies in A, but also that any

difference
∑∞
k akπk −

∑∞
k bkπk of two distinct sums with coefficients in S is non-zero: it

has non-zero valuation φ(πN ) with N = min{k : ak 6= bk}.
Conversely, given x ∈ A, there exists a0 ∈ S with x ≡ a0 mod p. We have x = a0+π1x1

with x1 ∈ A, and taking a1 ∈ S satisfying x1 ≡ a1 mod p yields x− a0 − a1π1 ∈ π1p = p2.

Thus x = a0 + a1π1 + x2π2 for some x2 ∈ A, and continuing inductively we construct

elements ak for k ≥ 0 such that we have x ≡
∑n
k=0 akπn mod pn+1, and therefore x =∑∞

k=0 akπn. We already know that the expansion is unique, proving the first statement.

For the second statement, we use (2.7) to reduce to the case ordp(x) = 0, and then

apply the first statement with πk = πk. �

If the complete field K in the preceding theorem is obtained by completion of a subfield

K0 ⊂ K, the elements πk and the coefficients ak can be taken from K0 by Lemma 2.6.

This applies in particular to the completions of Q arising from the p-adic valuations in

Theorem 1.10.

◮ p-adic numbers

The p-adic number field Qp is the field obtained by completing the rational number field

Q under the p-adic valuation φp from 1.10. The valuation ring of Qp is denoted by Zp, and

its residue class field is the finite field Fp = Z/pZ = Zp/pZp. Making the obvious choices

π = p and S = {0, 1, 2, . . . , p− 1} for K = Qp in Theorem 2.9, we see that p-adic numbers

have a unique p-adic expansion

x =
∑

k

akp
k with ai ∈ {0, 1, 2, . . . , p− 1}.

These expansions are in many ways similar to the well known decimal expansions x =∑
k ak10

−k with ai ∈ {0, 1, 2, . . . , 9} that are used in the archimedean completion R of Q.
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Note that the ambiguity of decimal expansions (1=.9999999999...) does not occur in the

p-adic case.

Arithmetical operations in Qp are performed in almost the same way as operations on

real numbers given by a decimal expansion. An addition
∑
k akp

k +
∑
k bkp

k is performed

as an addition of formal power series in p followed by a transport of ‘carries’, for i ranging

from −∞ to ∞, from coefficients ai+ bi not in S to the next higher coefficient. A carry at

the i-th coefficient ai + bi 6∈ S gives a new i-th coefficient ai + bi − p ∈ S and replaces the

(i+1)-st coefficient by ai+1+ bi+1+1. Similar remarks can be made for the multiplication

of p-adic numbers, and for subtraction one transports ‘carries’ in the other direction. As

an example for the addition, one can consider the representation

−1 =
∑

k≥0
(p− 1)pk ∈ Qp

for −1 ∈ Zp: both sides yield 0 when 1 is added. As this example makes clear, the natural

(total) ordering on Z or Q has no natural extension to Zp or Qp.

Division in Qp can be treated in various ways. If one needs a = x/y ∈ Qp, one

can find the expansion of a by equating coefficients in a ‘power series identity’ ay = x.

However, one can also perform long division as for real numbers. In this case one obtains

the quotient a = x/y =
∑
k akp

k of two elements x, y ∈ Z∗p by successively subtracting

suitable multiples akp
ky (with ak ∈ S) of y from x that eliminate the lowest coefficient,

i.e. that leave a smaller remainder. As an example, one can check that the quotient 1
7 ∈ Z3

has a 3-adic expansion

7−1 = 1102120 102120 102120 . . . ∈ Q3

that is periodic with period length 6, just like the decimal expansion

7−1 = .142857 142857 142857 . . . ∈ R.

The equality of the period lengths is no coincidence, see exercise 6.

There are other convenient choices for the set S of digits in Qp, such as the multi-

plicatively closed set of Teichmüller representatives (exercise 7).

◮ Local fields

ForK as in theorem 2.9, the representation of elements of A by their expansions
∑
k≥0 akπk

establishes a bijection of A with a countable infinite product
∏
k≥0 S of ‘digit sets’ S that is

actually an isomorphism of topological spaces if we give S the discrete topology: elements

are close if their first N digits coincide for some large N . If the cardinality of S, which

equals the cardinality of the residue class field A/p, is finite, then Tychonoff’s theorem

from topology implies that
∏
k≥0 S, and therefore A and all open balls pn are compact,

making the valuation topology on K into a locally compact topology.

A field equipped K with a non-discrete valuation is said to be a local field if the

valuation topology on K is locally compact.
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2.10. Theorem. Let K be a local field. Then K is complete under the valuation topology,

and either

– K is archimedean, and topologically isomorphic to R or C, or

– K is non-archimedean, its valuation is discrete and its residue class field is finite.

Proof. If K is archimedean, its completion is topologically isomorphic to either R or C

by Theorem 2.3. As a locally compact subfield of R contains a closed interval [−ε, ε], and
a locally compact subfield of C a closed disk {z : |z| < ε}, we deduce that K is equal to

either R or C.

Suppose K is non-archimedean and locally compact for the topology Tφ of a non-

discrete valuation φ. Then 0 ∈ K has a compact neighborhood that contains the closed

ball πnA = {x ∈ K : φ(x) ≤ φ(πn) if we pick for π ∈ K∗ any element with φ(π) < 1,

and n a sufficiently large integer. It follows that the closed ball πnA, and therefore A

itself, is compact. As the cosets of the open unit ball U1 = m ⊂ A cover A, there are only

finitely many different cosets, and the residue class field A/m is finite. We also see that the

complement of m in the closed set A, and therefore in K, is open, and that m is therefore

closed and compact. As m = ∪n≥2U1−1/n is covered by finitely many open balls of radius

1 − 1/n, it is contained in U1−1/n for n sufficiently large, showing that the valuation is

discrete. �

Combining Theorem 1.11 with Lemma 2.6, we see that the completions of a number field

at its primes, both finite and infinite, are local fields.

Exercise 2. Let F be a finite field. Show that every completion of the rational function field F (X) at one

of its primes is a local field.

◮ Hensel’s lemma

In complete fields, one can often ‘refine’ approximate solutions to polynomial equations to

actual solutions. There are several results of this nature that all go under the same name.

2.11. Hensel’s lemma. Let K be complete with respect to a non-archimedean valuation

and A the valuation ring of K. Suppose that f ∈ A[X] is a primitive polynomial that

factors over the residue class field K as

f = g · h ∈ K[X]

with g, h ∈ K[X] coprime. Then there is a factorization f = g · h of f in K[X] such that

deg(g) = deg(g) and g, h ∈ A[X] have reduction g and h in K[X].

Proof. The required polynomials g and h are obtained by an inductive refinement of initial

lifts of g and h to A[X]. More precisely, set r = deg f and s = deg(g) and suppose we have

π ∈ p and polynomials g0, h0, a0 and b0 in A[X] such that

deg(g0) = s f ≡ g0h0 mod πA[X]

deg(h0) ≤ r − s a0g0 + b0h0 ≡ 1 mod πA[X].
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By assumption, such polynomials can be found when π is taken to be a generator of p. We

will show how to construct g1, h1, a1 and b1 in A[X] that are congruent to g0, h0, a0 and

b0 modulo πA[X] and satisfy

deg(g1) = deg(g0) f ≡ g1h1 mod π2A[X]

deg(h1) = deg(h0) a1g1 + b1h1 ≡ 1 mod π2A[X].

Once we can do this, it suffices to iterate the construction. One obtains sequences (gk)k and

(hk)k of polynomials in A[X] that satisfy deg(gk) = deg(g) and f ≡ gkhk mod π2kA[X].

Moreover, these sequences converge quadratically to polynomials g, h ∈ A[X] as we have

congruences

gk ≡gk−1 mod π2kA[X]

hk ≡hk−1 mod π2kA[X],

and their limit yields the factorization f = gh in K[X].

We now construct polynomials u, v ∈ A[X] of degree deg(u) < s and deg(v) ≤ r − s
such that g1 = g0 + πu and h1 = h0 + πv provide a factorization f ≡ g1h1 mod π2A[X].

Writing f = g0h0 + πr0 for some r0 ∈ A[X], we need to achieve the congruence

vg0 + uh0 ≡ r0 mod πA[X].

By assumption we have a0g0 + b0h0 ≡ 1 mod πA[X], and we take u ∈ A[X] to be the

polynomial of degree smaller than s = deg(g0) that satisfies u ≡ b0r0 mod g0A[X]. Then

the congruence uh0 ≡ r0 mod πA[X] + g0A[X] shows that we can find v ∈ A[X] of degree

at most r − s satisfying uh0 ≡ r0 − vg0 mod πA[X], as desired.

The polynomials g1 and h1 satisfy a0g1 + b0h1 = 1 + πt for some t ∈ A[X], so

we can define a1 = (1 − πt)a0 and b1 = (1 − πt)b0 to achieve the desired congruence

a1g1 + b1h1 = (1− πt)(1 + πt) ≡ 1 mod π2A[X]. �

In the special case that ḡ is a simple linear factor of f̄ , the proof reduces to the itera-

tive approximation of a root of f by a process known as Newton iteration (exercise 8).

As this special case will be used frequently, we state it separately. For some immediate

consequences of the result we refer to the exercises.

2.12. Corollary. Let f ∈ A[X] be a polynomial. Then every simple zero of the polynomial

f = f mod p[X] in A/p can be lifted to a zero of f in A. �

A more general version of the lifting of zeroes from K to K is given in exercise 9.
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Exercises

3. LetK be a field that is locally compact in some valuation topology Tφ and E a finite extension

of K. Show that the function ψ on E given by

ψ(x) = φ(NE/K(x))1/[E:K] (x ∈ E)

is a valuation on E, and that E is complete with respect to this valuation. Deduce that C is

the algebraic closure of R.

[Hint: Define an appropriate vector norm ||.|| on the K-vector space E and use the continuity

of ψ on the norm-compact unit ball in E to show that there are positive constants c1, c2 such

that c1||x|| ≤ ψ(x) ≤ c2||x|| for all x ∈ E.]

4. Show that the completion of the rational function field C(X) with respect to the discrete

valuation φα corresponding to α ∈ C is the field

C((X − α)) = {
∑∞

i≫−∞
ci(X − α)i : ci ∈ C}

of Laurent series in X − α.

5. Show that Qp is transcendental over Q. What is its transcendence degree?

6. (Periodic expansions.) Show that a p-adic number x ∈ Qp is rational if and only if its p-adic

expansion x =
∑

i
aip

i is periodic, i.e. if there exists an integer N > 0 such that ai+N = ai
for all sufficiently large i. The smallest such N is called the period of x. Determine how the

period of x depends on x, and find all x ∈ Qp having period 1. State and prove analogous

results for x ∈ Q∞ = R in terms of the decimal expansion of x.

7. (Teichmüller representatives.) Let p be a prime number. Show that Qp contains a primitive

(p− 1)-st root of unity ζp−1 and that there is a natural isomorphism

Z
∗
p
∼= 〈ζp−1〉 × (1 + pZp).

Deduce that S = 〈ζp−1〉∪{0} is a set of representatives of Fp in Zp in the sense of theorem 2.6

that is closed under multiplication. Generalize to non-archimedean completions of arbitrary

number fields.

The next two exercises deal with the approximation of zeroes of a differentiable function f known

as Newton iteration. If f is a differentiable function on R we define for arbitrary x0 ∈ R the

sequence of Newton iterates {xn}∞n=1 ⊂ R by

xn+1 = xn − f(xn)

f ′(xn)
(n ≥ 0).

This is well defined provided that f ′(xn) 6= 0 for each xn. For K an arbitrary field and f ∈ K[X]

a polynomial the Newton iterates of x0 ∈ K are defined by the same formula, with f ′ the (formal)

derivative of f .

8. (Newton iteration in R.) Suppose that f is twice continuously differentiable on R and x ∈ R

a zero of f for which f ′(x) 6= 0.

26 version 11 May 2017 9:57 p.m.



§2: Complete fields

a. Show that there is an open neighborhood of x in R such that limn→∞ xn = x for each

initial value x0 6= x in this neighborhood. Determine how large these neighborhoods can

be taken for each of the zeroes of f = X3 −X.

b. Show that there exists a constant C = C(f) > 0 and a neighborhood U of x such that

the resulting sequence satisfies |xn+1 − x| < C|xn − x|2 for all starting values x0 ∈ U .

(This is called quadratic convergence.)

9. (Hensel’s lemma on polynomial zeroes.) Suppose that K is complete with respect to a non-

archimedean valuation φ. Let A be the valuation ring of K and f ∈ A[X] a polynomial. Let

x0 ∈ A be an element for which φ(f(x0)) < φ(f ′(x0))
2. Show that the Newton iterates of

x0 converge to a zero x ∈ A of f satisfying φ(x− x0) ≤ φ(f(x0)/f
′(x0)). Show also that we

have φ(xn − x) ≤ C2nφ(f ′(x0)) with C = φ(f(x0)/f
′(x0)

2) < 1 for all n.

10. Let p be a prime number and n > 0 an integer. Show thatQ∗p/Q
∗
p
n is a finite group. Determine

its order if p does not divide n. (For the general case see exercise 12.)

11. Show that Qp has exactly 3 non-isomorphic quadratic extensions if p is odd. What is the

corresponding statement for p = 2?

12. Let K be a field of characteristic zero that is complete with respect to a non-archimedean

valuation φ. We define C as the open disk around the origin in K with radius 1 if φ|Q is

trivial, and with radius φ(p)1/p−1 if φ|Q is p-adic. Show that the power series

log(1 + x) = −
∑

k≥1

(−x)k
k

and exp(x) =
∑

k≥0

xk

k!

define continuous group homomorphisms

log : U1 = 1 + p → K and exp : C → K∗

such that log ◦ exp and exp ◦ log are the identity maps on C and 1 + C. Show that log is

injective on U1 if φ|Q is trivial, and consists of the p-power roots of unity in K if φ|Q is

p-adic.

13. Let p be a prime number and set q = p if p is odd and q = 4 if p = 2. Show that the closure

of the subgroup of Z∗p generated by 1 + q equals 1 + qZp, and that the map Z → Z∗p sending

x → (1 + q)x can be extended to an isomorphism Zp
∼−→ 1 + qZp of topological groups

that maps pnZp onto 1 + qpnZp for n ≥ 1. Use this to compute the order of Q∗p/Q
∗
p
n for

arbitrary n.

14. Determine for each prime p (including ∞) the order of the group of roots of unity in Qp.

Prove that Qp and Qp′ are not isomorphic (as fields) when p 6= p′.

15. (Product formula.) For p a finite prime of a number field K, we let the normalized p-adic
valuation φp be the valuation satisfying φp[K

∗] = 〈NK/Q(p)〉, i.e. the subgroup of R∗ gen-

erated by the ideal norm of the corresponding prime ideal. For an infinite prime p we set

φp(x) = |NKp/R(x)|. Show that with this normalization, the formula
∏

p prime
φp(x) = 1

holds for all x ∈ K∗.
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A coefficient field for a local ring A with maximal ideal p is a subring k ⊂ A for which the natural

map k → A/p is an isomorphism. A field K with a non-archimedean valuation φ is said to have

a coefficient field if its valuation ring has.

16. LetK be a field of positive characteristic that is complete with respect to a discrete valuation.

Suppose that K is perfect. Show that K has a coefficient field.

[Hint: for x ∈ K there exists xn ∈ A such that xp
n

n has residue x. Show that the map K → K

sending x to limxp
n

n is well defined and yields the required field.]

17. Show that every complete non-archimedean fieldK with residue class fieldK of characteristic

zero has a coefficient field.

[Hint: the valuation ring A contains a maximal subfield.]

18. Let K be a field that is complete with respect to a non-trivial discrete valuation, and suppose

that the residue class field K is perfect and of the same characteristic as K. Show that K is

isomorphic (as a topological field) to the field K((X)) of Laurent series over K. Deduce that

a local field of characteristic p > 0 is of the form F ((X)) with F finite.

19. Let F be a field and P ∈ F [X] an irreducible separable polynomial with residue class field

E = F [X]/(P ). Show that the completion of the function field F (X) with respect to the

valuation φP defined in 1.12 is topologically isomorphic to the field E((Y )) of Laurent series

over E.

20. Let K be a field with a non-archimedean valuation ϕ. Denote the valuation ring and its

maximal ideal by A and p.
a. Let S be the set of those x ∈ K for which 1+x has an nth root in K for infinitely many

positive integers n. Prove: if K is complete with respect to ϕ then p ⊂ S, and if ϕ is

discrete than S ⊂ A.

b. Suppose that ϕ is non-trivial and that K is complete with respect to ϕ. Prove that any

discrete valuation on K is equivalent to ϕ.

c. For i = 0, 1, let Ki be a field that is complete with respect to a discrete valuation.

Prove that any field homomorphism K0 → K1 of which the image is not contained in

the valuation ring of K1 is continuous.

d. Show that the fields Qp for p prime or p = ∞ have no field automorphism except the

identity.
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3 Extending valuations

In this section, we will see how to extend a valuation φ on a field K to a finite extension

L of K. If K is complete with respect to φ, the extension valuation is unique (Theorem

3.3), and the general case follows from this by considering L ‘over the completion Kφ’

in the tensor product L ⊗K Kφ (Theorem 3.8). In the case where φ is non-archimedean,

this yields a ‘topological approach’ to the factorization of ideals of Dedekind domains in

extension rings that was treated in [ANT, §2 and 3].

If L/K is purely inseparable, the extension of valuations is automatic as we have

x[L:K] ∈ K for every x ∈ L, and therefore an extension ψ of φ to L must be given by

ψ(x) = φ(x[L:K])1/[L:K].

It is easily seen that this is indeed a valuation on L.

◮ Vector spaces over complete fields

Let φ be a non-trivial valuation on K, and assume that φ satisfies the triangle inequality.

A vector norm on a finite dimensional K-vector space V is a function ||.|| : V → R≥0 that

is positive outside the origin 0 ∈ V and satisfies

||x+ y|| ≤ ||x||+ ||y|| and ||kx|| = φ(k)||x||

for x, y ∈ V and k ∈ K. It defines a metric topology on V under which the vector space

operations of addition and scalar multiplication are continuous.

Two vector norms || · ||1 and || · ||2 on V are said to be equivalent if there are constants

C1, C2 ∈ R>0 such that

C1||x||1 ≤ ||x||2 ≤ C2||x||1
holds for all x ∈ V . In other words, they define the same topology on V .

For every basis {ωi}i of V over K, there is an associated vector norm on V defined by

||
∑

i

kiωi||0 = max
i
φ(ki).

If K is complete, this is up to equivalence the only one.

3.1. Lemma. Let V be a finite dimensional vector space over a complete field K. Then

all vector norms on V are equivalent, and V is complete with respect to these norms.

Proof. Choose a basis {ωi}i for V overK, and let ||·||0 be the associated vector norm. AsK

is complete with respect to φ, we see that V is complete with respect to this norm. Any

norm || · || on V is continuous with respect the norm || · ||0, as we have, with n = dimK V ,

inequalities

||
∑

i

aiωi|| ≤ nmax
i
||aiωi|| ≤ nmax

i
||ωi||max

i
φ(ai) = C2||

∑

i

aiωi||0.
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An inequality of the type C1||x||0 ≤ ||x|| for such a norm can be derived by induction on

n = dimK V . In the case that K is locally compact, which will usually be the case for us,

there is an even shorter proof based on the observation that the unit ball B = {x ∈ V :

||x||0 ≤ 1} and therefore the unit sphere S = {x ∈ V : ||x||0 = 1} are || · ||0-compact in V . If

C1 > 0 denotes the minimum of the continuous function ||.|| on S, we have ||x|| ≥ C1||x||0
on S and therefore on all of V , as every x ∈ V can be written as x = ks with k ∈ K and

s ∈ S. �

In the case where L is a finite field extension of the complete field K and φ satisfies the

triangle inequality on K, every extension valuation ψ of φ to V also satisfies the triangle

inequality, so it is a vector norm on V . By the preceding lemma, the topology on L induced

by ψ does not depend on a choice of ψ. By Proposition 1.8, it follows that there can be at

most one extension ψ of φ to L.

◮ Extending valuations: complete case

If L/K is separable and M a normal closure of L over K, the uniqueness of a hypothetical

extension ψ of φ to M implies that we must have ψ ◦ σ = ψ for every σ ∈ Gal(M/K). If

we apply this for x ∈ L and σ ranging over the cosets of Gal(M/L) in Gal(M/K), we find

ψ(x)[L:K] = ψ(NL/K(x)) = φ(NL/K(x)), so ψ is given on L by the formula

(3.2) ψ(x) = φ(NL/K(x))1/[L:K].

we already encountered in the special case of Lemma 2.2. Note that this formula is also

correct for purely inseparable extensions as in that case the norm raises to the power

[L : K]. In the important special case that K is a local field, there is a simple topological

argument that shows that 3.2 defines an extension valuation (exercise 2.3). This argument

can be extended to the general case, but it is easier to use the fact that the complete

archimedean case follows from Ostrowski’s theorem 2.2 and treat the non-archimedean

case separately.

3.3. Theorem. Let K be complete with respect to a valuation φ and L a finite extension

of K. Then φ has a unique extension to a valuation ψ on L. One has

ψ(x) = φ(NL/K(x))1/[L:K]

for x ∈ L, and L is complete with respect to ψ.

Proof. In the non-archimedean case the only non-trivial extension is C/R, and for this

extension the theorem is obviously correct.

Assume now that φ is non-archimedean. As the function ψ is multiplicative on L

and non-zero for x 6= 0, we only have to show that ψ(x + y) ≤ max{ψ(x), ψ(y)} holds

for x, y ∈ L. Dividing by max{ψ(x), ψ(y)} shows that this is equivalent to showing that

we have ψ(1 + x) ≤ 1 if ψ(x) ≤ 1. As the norm NL/K(x) is the constant coefficient
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of the characteristic polynomial of x, which is a power of the irreducible polynomial fxK
of x, we have to show that we have φ(fxK(−1)) ≤ 1 if we know that φ(fxK(0)) ≤ 1. It

therefore suffices to show that for each monic irreducible polynomial f ∈ K[X], we have

the remarkable implication

(3.4) f(0) ∈ Aφ ⇒ f ∈ Aφ[X].

This implication follows from Hensel’s lemma 2.7: if f is not in Aφ[X], we can find t ∈ K∗
with φ(t) < 1 such that tf is a primitive polynomial in Aφ[X]. The highest and the

lowest coefficient of tf are in the maximal ideal of Aφ, so X
k
divides tf in K[X] for some

k ≥ 1, and if we take k to be maximal we have k = degXk < deg f . This contradicts the

irreducibility of f , since Hensel’s lemma implies that the factor X
k ∈ K[X] lifts to a factor

of degree k of tf (and therefore of f) in K[X]. �

As the valuation on a complete field K can uniquely be extended to every finite exten-

sion, it has a unique extension ψ to the algebraic closure Kac of K. We have ψ(x) =

φ(NK(x)/K(x))1/[K(x):K] for any x ∈ Kac.

We see from the implication 3.4 that the valuation ring Aψ ⊂ L consists exactly of

the elements x ∈ L that have irreducible polynomial fxK ∈ Aφ[X]. We can phrase this as

follows.

3.5. Corollary. Suppose that the valuation φ in 3.3 is non-archimedean. Then the valu-

ation ring of the extension valuation ψ is the integral closure of the valuation ring Aφ in

the extension L. �

◮ e and f

If L/K is a finite field extension and ψ a valuation on L that extends a non-archimedean

valuation φ on K, we define the ramification index e(ψ/φ) of ψ over φ as the group index

e(ψ/φ) = [ψ[L∗] : φ[K∗]]

and the residue class degree f(ψ/φ) of ψ over φ as the degree of the extension of residue

fields

f(ψ/φ) = [L : K].

Note that these quantities are multiplicative in towers of extensions.

If A is a Dedekind domain with field of fractions K and L a finite extension of K,

we have defined [ANT, §3] quantities e(q/p) and f(q/p) carrying the same name for every

extension q of a prime p ⊂ A to the integral closure B of A in L. This is of course

no coincidence: if ψ is a q-adic valuation on L and φ its restriction to K then we have

e(ψ/φ) = e(q/p) because ordq(x) = e(q/p) · ordp(x) for all x ∈ K∗ and f(ψ/φ) = f(q/p)

because the residue class fields L and K of ψ and φ are simply the residue class fields of

the primes q and p. Led by the analogy, we say that a non-archimedean valuation ψ is

unramified over φ if e(ψ/φ) = 1 and the residue class field extension L/K is separable.

(In many situations, the field K will be perfect and the second condition is automatically

satisfied.) Similarly, ψ is said to be totally ramified over φ if e(ψ/φ) = [L : K].
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3.6. Theorem. Let φ be a non-archimedean valuation on a field K and ψ an extension

of φ to a finite extension L of K. Then e(ψ/φ) and f(ψ/φ) are finite and satisfy

e(ψ/φ)f(ψ/φ) ≤ [L : K].

Proof. Let R ⊂ Aψ be a set of elements whose residue classes in L are linearly independent

over K, and S ⊂ L∗ a set of elements whose ψ-images are in different cosets of φ[K∗] in
ψ[L∗]. We are done if we can show that the elements rs ∈ L with r ∈ R and s ∈ S are

linearly independent overK, since in that case R and S are finite and satisfy #R·#S ≤ [L :

K]. As R and S can have order e(ψ/φ) and f(ψ/φ), the theorem then follows immediately.

Suppose that we have a sum
∑
r,s ar,srs = 0 in which almost all ar,s equal zero. Then

all non-zero elements αs =
∑
r ar,sr have valuation ψ(αs) = maxr φ(ar,s) ∈ φ[K∗], as one

can pick for such αs a coefficient ar,s of maximal valuation and observe that a−1r,sαs ∈ Aψ is

by definition of R in A∗ψ. It follows that all non-zero terms αss have distinct valuation, so

the ultra-metric inequality becomes an equality 0 = ψ(
∑
s αss) = maxs ψ(αss) that shows

that all terms in our sum are zero. �

Even when K is complete with respect to φ, the inequality in the previous theorem can

be strict (exercise 7). However, in the important case that K is complete with respect to

a discrete valuation, the theorem can be strengthened in the following way.

3.7. Theorem. Let L be a finite extension of a field K that is complete with respect to

a discrete valuation φ and ψ the extension of φ to L. Then we have an equality

e(ψ/φ)f(ψ/φ) = [L : K].

Moreover, if π is a prime element for ψ and the residue classes of r1, r2, . . . , rf(ψ/φ) ∈ Aψ
form a basis for L over K, then we have an integral basis

Aψ =
⊕

1≤i≤f(ψ/φ)
1≤j≤e(ψ/φ)

Aφ · riπj .

Proof. As every integral basis for Aψ over Aφ is also a basis for L as a vector space over

K, the first statement is implied by the second.

For the second statement, we can apply theorem 2.6. More precisely, let S0 ⊂ Aφ be

a set of representatives of Aφ modulo its maximal ideal pφ that contains 0. Choosing the

elements ri as in the theorem, we easily see that

S =

f(ψ/φ)∑

i=1

S0 · ri = {
f(ψ/φ)∑

i=1

siri : si ∈ S0 for all i}

is a set of representatives of Aψ modulo its maximal ideal pψ that contains 0. As e(ψ/φ)

is finite and φ is discrete, ψ is again discrete. Let πK and πL be corresponding prime
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elements, then we have ψ(πL)
e(ψ/φ) = φ(πK) and any power pnψ is generated by an element

of the form πjLπ
k
K with 0 ≤ j < e(ψ/φ). Theorem 2.6 shows that any x ∈ Aψ has a unique

representation

x =
∑

1≤i≤f(ψ/φ)
1≤j≤e(ψ/φ)

( ∞∑

k=0

sijkπ
k
K

)
riπ

j
L,

as was to be shown. �

If the extension L/K in 3.7 is either totally ramified or unramified, one deduces easily

that we can find α ∈ Aψ such that Aψ = Aφ[α]. Such an element α is said to generate a

primitive integral basis. If the residue class extension L/K is separable, such an element α

can always be found (exercise 13). Note that this is not in general the case for an extension

OK ⊂ OL of rings of integers, not even when K = Q (exercise 15).

◮ Extending valuations: general case

We continue with the general problem of extending a valuation φ on K to a finite exten-

sion L. As valuations extend uniquely in purely inseparable extensions, it is no essential

restriction to assume L/K to be separable, and we will do so for convenience.

3.8. Theorem. Let φ be a valuation on K, and L a finite separable field extension of K.

Then there are only finitely many valuations ψ on L extending φ, and the canonical map

Kφ ⊗K L −→
∏

ψ|φ
Lψ

is an isomorphism of Kφ-algebras.

Proof. Note first that that there are canonical K-homomorphisms of L and Kφ into every

completion Lψ at an extension ψ of φ, so that we have a map on the tensor product as

stated.

As L/K is separable, we can find α ∈ L such that L = K(α). Let f be the irreducible

polynomial of α over K. Then we have L = K[X]/(f), and if f =
∏t
i=1 gi is the factor-

ization of the separable polynomial f into (distinct) monic irreducibles in Kφ[X], we can

apply the Chinese remainder theorem to write the tensor product

Kφ ⊗K L = Kφ[X]/(f) ∼=
t∏

i=1

Kφ[X]/(gi)

as a product of finite extensions of Kφ. If Lψ is the completion of L with respect to a

valuation ψ that extends φ, the image of the induced K-homomorphism hψ : Kφ ⊗K L→
Lψ is closed by 3.1 as it is of finite dimension over Kφ and dense as it contains L. It follows

that hψ is surjective and factors as a projection of Kφ ⊗K L on a component Kφ[X]/(gi)

followed by an isomorphism Kφ[X]/(gi)
∼−→ Lψ.
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Conversely, every component Kφ[X]/(gi) of the tensor product is a finite extension

of the complete field Kφ, so it comes by 3.3 with an extension valuation ψ of φ under

which it is complete. The composition of the embedding L→ Kφ⊗K L with the projection

Kφ ⊗K L → Kφ[X]/(gi) yields a K-homomorphism L → Kφ[X]/(gi) that maps α to the

residue class of X, so ψ induces a valuation on L via this map. As the image of L in

Kφ[X]/(gi) is dense, we obtain an isomorphism of complete fields Lψ
∼−→ Kφ[X]/(gi) by

2.1. Thus, the extensions ψ of φ to L correspond bijectively to a factor gi of f in Kφ[X]

in the sense that there is an isomorphism Kφ[X]/(gi) ∼= Lψ. The theorem follows. �

3.9. Corollary. Suppose that L = K(α) for some separable α ∈ L and fαK the irreducible

polynomial of α overK. For each extension ψ of φ to L, let gψ be the irreducible polynomial

of α ∈ L ⊂ Lψ over Kφ. Then the map ψ 7→ gψ induces a bijection of finite sets

{ψ|φ} ↔ {monic irreducible factors of f in Kφ[X]}.

This shows that extending valuations is essentially the same thing as factoring polyno-

mials over complete fields. Such factorizations can be found using Hensel’s lemma from

sufficiently accurate approximate factorizations. For discrete valuations φ, it is very often

sufficient to factor the irreducible polynomial of a suitable element α ∈ L over the residue

class field K. When we phrase this in terms of the ideals in the valuation rings, we find

that this observation is in fact nothing but a rewording of the Kummer-Dedekind theorem

[ANT, theorem 3.1]. For the details we refer to exercise 10.

3.10. Example. Let K = Q(α) be the extension of Q that is obtained by adjoining a root

α of the irreducible polynomial X4−17, and suppose we want to determine the extensions

of the 2-adic valuation φ = | · |2 on Q to K. We need to factor the polynomial f = X4−17,

which has a bad reduction over F2, over the field Q2. The approximate zero 3 ∈ Z2 satisfies

|f(3)|2 = |64|2 < |f ′(3)|22 = |4|22, so the refined version of Hensel’s lemma in exercise 2.9

shows that f has a zero a ∈ Z2 with a ≡ 3 mod 16. As Z2 does not contain the 4-th root of

unity i =
√
−1, we conclude that f factors over Q2 as X4−17 = (X−a)(X+a)(X2+a2).

This yields an isomorphism

Q2 ⊗Q Q(α)
∼−→ Q2 ×Q2 ×Q2(i)

ofQ2-algebras that maps the element x⊗h(α) to (xh(a), xh(−a), xh(ia)) for any h ∈ Q[X].

We conclude that φ has two extensions ψ1, ψ2 to K with e(ψ1/φ) = e(ψ2/φ) = 1 and

f(ψ1/φ) = f(ψ2/φ) = 1 and a single extension ψ3 with e(ψ3/φ) = 2 and f(ψ3/φ) = 1.

They are given by

ψ1(h(α)) = |h(a)|2 ψ2(h(α)) = |h(−a)|2 ψ3(h(α)) = |h(ia)|2

for h ∈ Q[X], i.e. they are the composition of an embedding of K in Q2 or Q2(i) with

the unique 2-adic valuation on these complete fields. In terms of ideals, this means that
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we have a factorization 2OK = p2q2r
2
2 of the rational prime 2. The ideals p, q, r ⊂ OK

are obtained by intersecting the ring OK , which becomes a subring of Z2 or Z2[i] after an

embedding, with the maximal ideal 2Z2 or (1 + i)Z2[i]. As 2 divides [OK : Z[x]] for every

x ∈ K (exercise 15), we cannot apply the Kummer-Dedekind theorem directly here.

Theorem 3.8 has another direct corollary that was already familiar to us [ANT, Theorem

3.4] from the theory of extensions of Dedekind rings. The separability assumption cannot

be omitted here.

3.11. Corollary. For L/K finite separable and φ a non-archimedean valuation on K, we

have an inequality ∑

ψ|φ
e(ψ/φ)f(ψ/φ) ≤ [L : K]

that is an equality when φ is discrete.

Proof. Counting Kφ-dimensions for the tensor product in 3.8, we find that [L : K] =∑
ψ|φ[Lψ : Kφ], and 3.6 and 3.7 imply that we have [Lψ : Kφ] ≥ e(ψ/φ)f(ψ/φ) with

equality for discrete φ. �

In the archimedean case we put f(ψ/φ) = 1 and e(ψ/φ) = [Lψ : Kφ], such that equality

holds as for discrete φ. In line with this choice, we say that an extension ψ|φ of archimedean

valuations (or primes) is ramified if φ is real and ψ is complex.

A final consequence of the basic theorem 3.8 is the following relation between global

and local norms and traces.

3.12. Corollary. For L/K finite separable and φ a valuation on K we have identities

NL/K(x) =
∏

ψ|φ
NLψ/Kφ(x) and TrL/K(x) =

∑

ψ|φ
TrLψ/Kφ(x)

for every element x ∈ L.

Proof. The matrix Mx of multiplication by x ∈ L is the same for the K-vector space L

and the Kφ-vector space Kφ⊗KL, and computing its trace or norm using the isomorphism

in 3.8 gives the desired result. �
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Exercises

1. Let K be a field. Show that there exists a non-trivial valuation on K if and only if K is not

an algebraic extension of a finite field.

[Hint: use exercise 1.15.]

2. Let K be complete with respect to a discrete valuation φ and ψ the extension of φ to an

algebraic extension L of K. Show that e(ψ/φ) and f(ψ/φ) are finite if and only if the degree

[L : K] is finite.

3. Prove that a local field of characteristic 0 is a finite extension of Qp for some p (possibly

p = ∞).

4. Let L be a field that is complete with respect to a discrete valuation ψ, and let K be a

subfield of L for which K ⊂ L is finite and separable. Prove that K is complete with respect

to the restriction of ψ to K.

5. Let K be a field, ϕ a non-archimedean valuation on K, and n a positive integer. Denote by

Sh the set of those non-zero vectors (x1, x2, . . . , xn) ∈ Kn with the property that h is the

smallest of the subscripts i for which ϕ(xi) = max{ϕ(xj) : 1 ≤ j ≤ n}.
a. Prove that any sequence v1, v2, . . . , vn of vectors in Kn satisfying vi ∈ Si for each i

forms a basis for Kn over K.

b. Prove that the two-dimensional Euclidean plane can be written as the union of three

dense subsets with the property that no line in the plane intersects all three subsets.

6. Let L/K be an extension of number fields and φ a non-trivial archimedean valuation of K.

Show that the image of the ring of integers OL under the natural map L → Kφ ⊗K L =∏
ψ|φ

Lψ has closure
∏
ψ|φ

Aψ.

7. Let K0 be the field obtained by adjoining all 2-power roots of unity to Q2, and K the

completion of K0 with respect to the extension φ of the 2-adic valuation to K0. Show that

K has an automorphism σ of order 2 mapping each 2-power root of unity to its inverse, and

that E = K〈σ〉 ⊂ K is a quadratic extension of complete fields with e(φ/φE) = f(φ/φE) = 1.

8. (Kummer-Dedekind.) Let L/K be an extension of number fields and α ∈ OL an element

that generates L over K. Suppose that p is a prime in OK that does not divide the index

of OK-modules [OL : OK [α]]. Prove: if fαK factors over K = OK/p as f =
∏t

i=1
geii , then

p factors in OL as pOL =
∏t

i=1
qeii , with qi ⊂ OL the prime ideal generated by p and gi(α)

for some lift gi ∈ OK [X] of gi.

[Hint: we have f =
∏t

i=1
fi ∈ Kp[X] by Hensel’s lemma, and Lqi = Kp[X]/(fi) has residue

class field K[X]/(gi).]

9. Let K be complete with respect to a non-archimedean valuation φ and ψ the extension of φ

to the algebraic closure Ω of K.

a. (Krasner’s lemma.) Let α ∈ Ω be separable over K and suppose that β ∈ Ω satisfies

ψ(α − β) < ψ(α − α′) for every K-conjugate α′ 6= α of α. Show that α is contained in

K(β).

[Hint: Show that α is fixed under every automorphism of Ω/K(β).]
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b. Let K(α)/K be a Galois extension of degree n and f ∈ K[X] the irreducible polynomial

of α over K. Let g ∈ K[X] be a polynomial of degree less than n. Show that there exists

ε > 0 such that K(α) is the splitting field of f+kg for all elements k ∈ K with ψ(k) < ε.

10. Let p be a prime number and F/Qp be a finite extension.

a. Show that there exist a number field K and a prime p|p in K such that Kp is isomorphic

to F .

b. Let E/F be a finite Galois extension with group G. Show that we can choose number

fields L and K that are dense in respectively E and F in such a way that L/K is also

Galois with group G.

11. Let L be a finite extension of a field K that is complete with respect to a discrete prime

divisor, and suppose that the residue class field extension L/K is separable. Show that

AL = AK [α] for some α ∈ AL.

[Hint: If L = K(x) there exists x ∈ Aψ with irreducible polynomial f such that f is the

irreducible polynomial of x over K. If π is a prime element of L, then f(x+π) is also a prime

element and α = x+ π does what we want.]

12. Determine the structure of Qp ⊗Q K for K = Q[X]/(X4 − 17) and p = 3, 5, 17, 149 and ∞.

What is the corresponding factorization of these rational primes in K?

[Hint: 74 = 17 mod 149.]

13. For K = Q(α) with α4 = 17 we set β = (α2+1)/2. Show that there is no element x ∈ OK for

which the index [OK : Z[x]] is odd, and that 1, α, β, (αβ+β)/2 is a Z-basis for OK . Compute

a Z-basis for each of the prime ideals lying over 2.

In the following three exercises K denotes a field with a non-archimedean valuation ϕ, and r is a

positive real number.

14. For f =
∑

i
aiX

i ∈ K[X], f 6= 0, denote the largest and the smallest value of i for which

ϕ(ai)r
i = maxj ϕ(aj)r

j by lr(f) and sr(f), respectively.

a. Prove that lr and sr extend to group homomorphisms K(X)∗ → Z.

b. Suppose that K is algebraically closed, and let f ∈ K[X], f 6= 0. Prove that the number

of zeroes α of f in K with ϕ(α) = r, counted with multiplicities, is equal to lr(f)−sr(f).

15. Let f =
∑

i
aiX

i ∈ K[X], f 6= 0. The Newton polygon of f is defined to be the “lower

convex hull” of the points (i,− logϕ(ai)), with i ranging over all non-negative integers for

which ai 6= 0; more precisely, if C ⊂ R×R is the convex hull of the set of those points, then

the Newton polygon equals {(x, y) ∈ C : there is no (x, y′) ∈ C with y′ < y}. The Newton

polygon is the union of finitely many line segments of different slopes.

a. Draw, for each prime number p, the Newton polygon of 3X3 − 6
7
X2 + 3

2
X + 5 ∈ Q[X]

with respect to the p-adic valuation of Q.

b. Prove: if log r occurs as the slope of one of the line segments that constitute the Newton

polygon of f , then lr(f)−sr(f) (as defined in the previous exercise) is equal to the length

of the projection of that line segment on the x-axis, and otherwise lr(f)− sr(f) = 0.

Remark. Combining b with part b of the preceding exercise one sees that the valuations of

the zeroes of f (in some algebraic extension of K) can be read from the Newton polygon

of f .
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16. Let f ∈ K[X], and suppose that f(0) 6= 0.

a. Suppose that K is complete with respect to ϕ, and that f is irreducible. Prove that the

Newton polygon of f is a single line segment.

b. Suppose that the Newton polygon of f intersects the set Z × (− logϕ(K∗)) in exactly

two points. Prove that f is irreducible.

c. Prove that 3X3 − 6
7
X2 + 3

2
X + 5 is the product of two irreducible factors in each of

Q2[X] and Q7[X], that it is irreducible in Q3[X], and that it is the product of three

linear factors in Q5[X]. How does it factor in Q[X]?
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4 Extensions of local fields

In this section, we study finite extensions of a field K that is complete with respect to a

discrete prime divisor φ. For L a finite extension of K, we write ψ to denote the unique

extension of φ to L. By 3.7, we have [L : K] = e(ψ/φ)f(ψ/φ) for these extensions, so they

are unramified when L/K is separable of degree [L : K] and totally ramified when L = K.

We will often restrict to the case that the residue class field extension L/K is separable.

This is necessarily the case if K is perfect, so our assumption is satisfied for completions

of number fields, for function fields of curves over a finite field and for function fields in

any dimension over a field of characteristic zero.

◮ Unramified extensions

We first study the unramified extensions L/K, which are in a sense the simplest extensions.

The main result is that these extensions can uniquely be ‘lifted’ from the residue class field

extension L/K.

4.1. Proposition. Let L be a finite extension of a field K that is complete with respect

to a discrete valuation, and suppose that the residue class field extension L/K is separable.

Then there is a unique unramified subextension T/K of L/K such that T = L.

Proof. As L/K is finite separable we can write L = K(x) for some separable x ∈ L. Let
fx
K

be the irreducible polynomial of x, and let f ∈ Aφ[X] be a monic polynomial with

reduction f = fx
K
∈ K[X]. As f has a simple zero x ∈ L, there exists by Hensel’s lemma

2.8 a unique element x ∈ L with residue class x ∈ L such that f(x) = 0. The polynomial

f is irreducible in K[X] as its reduction f ∈ K[X] is, so it is the irreducible polynomial

of x over K. For the subfield T = K(x) ⊂ L we have T = K(x) = L and therefore

[T : K] = deg f = [T : K]. This implies that T/K is unramified.

If E/K is any subextension of L/K with E = L, the irreducible polynomial fxK of x

over K has a simple zero in the residue class field E that can be lifted to a zero y ∈ E of

fxK with y = x ∈ L. But this implies y = x as x ∈ L is the unique zero of f with residue

class x ∈ L. We obtain T ⊂ E, so if we require in addition that E be unramified over K

the equality [E : K] = [E : K] = [T : K] shows that E = T , i.e. T is unique. �

The field T in the proposition is the inertia field of the extension L/K. It is the largest

subfield E of L for which the prime ideal p ⊂ AK remains inert, i.e. generates the prime

ideal of the valuation ring in AE . The construction of T as a primitive extension K(x) for

some element x ∈ L for which the reduction f ∈ K[X] of the irreducible polynomial fxK is

separable shows that the inertia field of L/K is always separable over K. We will give a

Galois theoretic construction of T in the next section.

The following theorem is a more precise version of 4.1 and expresses the fact that the

construction of unramified extensions L/K from separable extensions L/K is functorial

and induces an equivalence of categories. We write F sep for a separable closure of a field F .
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4.2. Theorem. Every unramified extension L/K is separable, and the assignment L 7→ L

establishes an inclusion preserving bijection between the set of finite unramified extensions

L ⊂ Ksep of K and the set of finite separable extensions L ⊂ K
sep

of K. Moreover, for

any two unramified extensions L1 and L2 of K the natural map

HomK(L1, L2)
∼−→ HomK(L1, L2)

is bijective.

Proof. If L/K is finite and unramified, we have L = T in 4.1 and we observed already that

T/K is separable. As an arbitrary unramified extension L/K is a union of finite unramified

extensions, this implies that L/K is separable.

The proof of 4.1 shows that for every finite separable extension K(x) of K, there is

a unique finite unramified extension L = K(x) of K inside Ksep with residue class field

K(x). This establishes a bijection that clearly preserves inclusions.

If φ : K(x)→ F is a K-homomorphism between finite separable extensions of K, then

φ maps x to some zero y of fx
K

in F . If f ∈ A[X] is a monic lift of fx
K

and x ∈ Ksep its zero

with reduction x ∈ Ksep
, then y ∈ F can uniquely be lifted to a zero y in the unramified

extension F/K corresponding to F . We find that there is K-homomorphism φ : K(x)→ F

satisfying φ(x) = y, and that this is the unique element of HomK(K(x), F ) inducing φ. �

We see from this theorem that a compositum of unramified extensions of K is again

unramified, and that we can take the union of all unramified extensions inside Ksep to

obtain the maximal unramified extension Kunr of K.

4.3. Corollary. Let K be complete with respect to a discrete valuation and L/K a

finite unramified extension. Then L/K is Galois if and only if L/K is Galois, and if these

extensions are Galois their Galois groups are isomorphic.

Proof. We have [L : K] = [L : K] because L/K is unramified and an isomorphism

AutK(L)
∼−→ AutK(L) by taking L1 = L2 = L in the previous theorem. �

Taking the projective limit with respect to all unramified extensions of K, we see that the

maximal unramified extensionKunr/K is Galois with group Gal(Kunr/K) ∼= Gal(K
sep
/K).

In particular, one finds that Gal(Kunr/K) ∼= Ẑ when K is finite. On a finite level, this can

be formulated as follows.

4.4. Corollary. Let K be a non-archimedean local field. Then there is for each n ≥ 1 a

unique unramified extension Kn/K of degree n inside Ksep. This extension is cyclic, and

we have K = K(ζ) for a root of unity ζ of order coprime to charK.

Proof. IfK is finite of order q = pk with p = charK, the unique extensionKn of degree n of

K is the field of order qn. By the previous corollary, the corresponding unramified extension

Kn of degree n of K is also unique and Galois with group isomorphic to Gal(Fqn/Fq) ∼=
Z/nZ. A generator x of the cyclic group F∗qn is a root of unity of order m = qn − 1, so its
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irreducible polynomial fx
K

is a factor of the cyclotomic polynomial (Φm mod p) ∈ K[X].

As m is coprime to p = charK, the polynomial Φm is separable over K and we can apply

Hensel’s lemma 2.7 to lift fx
K

to a factor f of Φm in K[X]. As Kn is generated over K by

a root of f , it follows that Kn = K(ζm) for an m-th root of unity ζm ∈ Kn. �

We have shown that the identity e · f = [L : K] for an extension L of a field K that is

complete with respect to a discrete prime divisor corresponds to a unique subextension

K ⊂ T ⊂ L such that T/K is unramified of degree f and L/T is totally ramified of

degree e. We know how to generate the inertia field T over K, so we are left with the

investigation of totally ramified extensions.

◮ Totally ramified extensions

A finite extension of non-archimedean valued fields is said to be tamely ramified if

the residue class field extension is separable and the ramification index is not divisible by

the characteristic of the residue class field. Note that every finite extension of K is tamely

ramified when charK = 0, and that unramified extensions are always tame. For infinite

algebraic extensions of K the ramification index can be infinite. In that case one says that

the ramification is tame if this is the case for every finite subextension L/K.

Our first result applies to totally ramified extensions that are tamely ramified.

4.5. Theorem. Let K be complete with respect to a discrete prime divisor and L/K a

totally and tamely ramified extension of degree e. Then there exists a prime element π of

K such that L = K( e
√
π).

Proof. Let πL and πK be prime elements of L and K, respectively. Then πL generates L

as K(πL) ⊂ L has ramification index e = [L : K], and we have πeL = uπK for some unit u

in the valuation ring AL of L. As L/K is totally ramified, we have L = K, so there exists

v ∈ A∗K with u = v. The element x = vπK/π
e
L has residue class x = 1 ∈ L, so we can

apply Hensel’s lemma (as in 2.8) to the polynomial Xe−x, which has a root 1 ∈ L that is

simple as the derivative eX
e−1

does not vanish outside 0. We find that there exists y ∈ A∗L
such that ye = x, so L = K(yπL) = K( e

√
vπK). �

4.6. Example. The p-th cyclotomic extension Qp(ζp) is totally ramified of degree p − 1

over Qp and can be written as Qp(ζp) = Qp( p−1
√−p).

To see this, one considers the prime element πL = 1− ζp ∈ L = Qp(ζp) and computes the

residue class of u−1 = p/(1− ζp)p−1 in L as

p

(1− ζp)p−1
=

p−1∏

i=1

1− ζip
1− ζp

=

p−1∏

i=1

i−1∑

j=0

ζjp ≡ (p− 1)! = −1 ∈ L

using the identity ζp = 1 ∈ L and Wilson’s theorem. Thus, one can take v = −1 in the

preceding proof. �
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One can deduce from 4.5 that every finite extension L of a field K that is complete with

respect to a discrete prime divisor has a unique maximal subfield V ⊂ L such that V/K is

tamely ramified (exercise 4). This field obviously contains the inertia field T . The union of

all tamely ramified extensions of K inside an algebraic closure yields an infinite separable

extension Ktame ⊃ K containing Kunr that is known as the maximal tamely ramified

extension of K, see exercise 5.

If L/K is a non-archimedean extension of valued fields that is not tamely ramified,

then L/K is inseparable or the ramification index e satisfies e = 0 ∈ K. Such extensions

are said to be wildly ramified. The structure of these extensions is in general much more

complicated than what we have seen so far. Even in the case that both L/K and L/K

are separable, there can be many non-isomorphic wildly ramified extensions of the same

degree.

A general method to look at totally ramified extensions L/K proceeds by studying the

irreducible polynomial of a prime element πL. Such polynomials turn out to be Eisenstein

polynomials in AK , i.e. monic polynomials of the form
∑n
i=0 aiX

i with a0, a1, . . . , an−1 in

the maximal ideal pK ⊂ AK and a0 6∈ p2K .

4.7. Lemma. Let K be complete with respect to a discrete prime divisor and L/K a

totally ramified extension of degree e. Then L equals K(πL) for every prime element πL of

L, and fπLK is an Eisenstein polynomial in AK [X]. Conversely, every root of an Eisenstein

polynomial in AK [X] generates a totally ramified extension of K.

Proof. If L/K is totally ramified of degree e thenK(πL) has ramification index e = [L : K]

over K, so its degree over K cannot be smaller then [L : K] and we have L = K(πL). If

ψ is the extension of the valuation on K to a normal closure M of L over K, then every

root π of fπLK in M has valuation ψ(π) = ψ(πL) < 1, so the same holds for all but the

highest coefficient of fπLK , which can be written as sums of products of roots. The constant

coefficient ±NL/KπL of fπLK generates the maximal ideal in AK as it has valuation ψ(πL)
e,

so fπLK is Eisenstein.

Conversely, every Eisenstein polynomial f ∈ AK [X] is irreducible, and a root π of f

generates a totally ramified extension K(π) of degree e = deg(f) of K by 3.3: the valuation

ψ(π) is the e-th root of the valuation of a prime element of K. �

◮ p-adic fields of given degree

If K is a local field of characteristic zero, i.e. a finite extension of Qp, the preceding lemma

can be used to show that the number of totally ramified extensions of K of given degree e

is finite. This yields the following finiteness result.

4.8. Theorem. Let p be a prime number and n an integer. Then there are only finitely

many extensions L/Qp of degree n inside a separable closure Qsep
p of Qp.

Proof. As the inertia field of L/Qp is uniquely determined inside Qsep
p by its degree

(corollary 4.4), it suffices to show that a every subfield K ⊂ Qsep
p that is of finite degree
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over Qp only has finitely many totally ramified extensions L/K of given degree e inside

Qsep
p . By the lemma, such extensions are obtained by adjoining the root of a polynomial

f = Xe +
∑e−1
i=0 aiX

i with ‘coefficient vector’

v = (ae−1, ae−2, . . . , a1, a0) ∈ C = pe−1K × (pK \ p2K).

to K. Conversely, every point v ∈ C corresponds to a separable—here we use e 6= 0 ∈ K—

polynomial f ∈ A[X], each of whose e roots in Ksep generates a totally ramified extension

of degree e of K. By Krasner’s lemma (exercise 3.11), every point w ∈ C that is sufficiently

close to v gives rise to a polynomial g ∈ A[X] that has the same splitting field as f . As C is

compact, it follows that the Eisenstein polynomials of degree e in A[X] have only finitely

many different splitting fields in Ksep. It follows that there are only finitely many totally

ramified extensions of degree e of K. �

◮ Different and discriminant

An important invariant to measure the ramification in an extension L/K is given by the

different and the discriminant of the extension. We have already encountered these in the

case of number fields, and the definitions are highly similar. In section 6, we will study the

relation between local and global discriminants in more detail.

Let K be complete with respect to a discrete prime divisor. In order to avoid triviali-

ties, we will assume that L is a finite separable extension of K. The discriminant ∆(L/K)

of a finite extension L is defined as the AK -ideal generated by the discriminant

∆(ω1, ω2, . . . , ωn) = det(TrL/K(ωiωj))
n
i,j=1

of an integral basis {ω1, ω2, . . . , ωn} of AL over AK . Such a basis exists by 3.7, and the value

of the discriminant is defined up to the square of a unit in AK . In particular, ∆(L/K) ⊂ AK
is well-defined, and it is non-zero because we assume L/K to be separable. The different

D(L/K) is the AL-ideal with inverse

D(L/K)−1 = {x ∈ L : TrL/K(xAL) ⊂ AK}.

Exactly as in the global case [ANT, Theorem 4.17], we have NL/K(D(L/K)) = ∆(L/K),

where NL/K denotes the ideal norm. Moreover, we have D(M/K) = D(M/L)D(L/K) for

a tower K ⊂ L ⊂M of finite extensions. If AL has an AK-basis consisting of powers of an

element α ∈ AL, we know from [ANT, Proposition 4.6] that then ∆(L/K) is generated by

the discriminant ∆(f) of f = fαK . Moreover, the different is then equal to D(L/K) = f ′(α)·
AL [ANT, ex. 4.29]. We can use this to compute the differential exponent ordpL(D(L/K))

of a complete extension L/K. The result obtained is a refinement of [ANT, Theorem 4.17].

4.9. Theorem. Let L be a finite separable extension of a field K that is complete with

respect to a discrete prime divisor, and suppose that the residue class field extension L/K

is separable. Let e be the ramification index of L/K. Then

ordpL(D(L/K)) = e− 1 + u
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with u = 0 if L/K is tamely ramified and u ≥ 1 if L/K is wildly ramified. We have

u ≤ ordpL(e) when e 6= 0 ∈ K.

Proof. If L/K is unramified, we can lift any basis of L/K to obtain a basis of AL over AK
by 3.7, and the discriminant of this basis is a unit as the separability of L/K implies that

its reduction in K is non-zero. It follows that ∆(L/K) = AK and D(L/K) = AL for

unramified extensions.

If T is the inertia field of L/K, we have D(L/K) = D(L/T ) since D(T/K) = (1), so

we can further assume that L/K is totally ramified of degree e. Let π be a prime element

in L and f =
∑e
i=0 aiX

i ∈ AK [X] its irreducible polynomial. Then AL = AK [π] by 3.7

and we have

ordpL(D(L/K)) = ordpL(f
′(π)) = ordpL(

e∑

i=1

iaiπ
i−1) = min

i
{ordpL(iaiπi−1)}.

The final equality follows from 1.3 and the fact that all terms in the sum have different

order at pL. The term with i = e in the last sum has order e − 1 + ordpL(e) at pL,

and all other terms have order at least e because f is Eisenstein by 4.7. It follows that

ordpL(D(L/K)) = e − 1 if and only if ordpL(e) = 0, i.e. if and only if L/K is tamely

ramified. If L/K is wildly ramified we obtain e ≤ ordpL(D(L/K)) ≤ e− 1+ ordpL(e). The

upper bound is finite only when e 6= 0 ∈ K. �

Theorem 4.8 does not hold for local fields of positive characteristic when charK divides n,

see exercise 13. However, there is an elegant mass formula due to Serre [19, 1978] that is

more precise than 4.8 and holds in any characteristic. The statement, which we will not

prove in these notes, is that for Sn the set of totally ramified extensions of degree n of K

inside a separable closure Ksep, there is an identity

(4.10)
∑

L∈Sn
qn−1−d(L) = n.

Here q denotes the cardinality ofK and d(L) = ordpL(D(L/K)) is the differential exponent

of L/K. If charK = 0 we have a uniform upper bound d(L) ≤ e−1+ordpL(e) for all L, so

the number of terms in the sum must be finite. For n divisible by p = charK, the set Sn is

always infinite, but we see that the number of fields L with bounded differential exponent

must be finite. This immediately implies a local counterpart to Hermite’s theorem [ANT,

5.12], see exercise 14.

44 version 11 May 2017 9:57 p.m.



§4: Extensions of local fields

Exercises

1. Let K be a field with non-archimedean valuation φ and f ∈ Aφ[X] a polynomial that is

separable over the residue class field K. Show that every extension of φ to the splitting field

of f is unramified over φ.

2. Let M be a valued field with subfields E and L, and suppose that L is finite over some field

K ⊂ L ∩ E. Show that EL/E is unramified if L/K is unramified.

3. (Abhyankar’s lemma) Suppose that φ is a discrete valuation on a field K and let L and E be

two extensions of K that are contained in some finite extension M = LE of K. Let ψ be an

extension of φ to M and ψL and ψE the restrictions of ψ to L and E. Suppose that ψL/φ is

tamely ramified and that e(ψL/φ) divides e(ψE/φ). Prove that ψ is unramified over ψE .

4. Let K be complete with respect to a discrete prime divisor. Show that every tamely ramified

extension of K is separable, and that a compositum of two tamely ramified extensions inside

Ksep is again tamely ramified. Deduce that for every finite extension L/K there is a unique

maximal subfield V ⊂ L that is tamely ramified over K. If e0 is the largest divisor of the

ramification index of L/K that is coprime to charK, show that V = T ( e0
√
π) with T the

inertia field of L/K and π a prime element of T . What can you say about [L : V ]?

5. Let K be as in the previous exercise. Show that there exists a maximal tamely ramified

extension Ktame/K inside Ksep. Show also that Ktame is Galois over Kunr and that we have

Gal(Ktame/Kunr) ∼=
{

Ẑ if charK = 0;

Ẑ/Zp if charK = p > 0.

6. Show that a compositum of two totally ramified extensions need not be totally ramified.

Deduce that there is not in general a unique maximal totally ramified extension Kram ⊂ Kac

of a complete field K.

7. Let L/K and e0 be as in exercise 4 and suppose that #K = q < ∞. Show that V/K is

abelian if and only if e0 divides q − 1.

[Hint: if V/K is abelian, there is a primitive e0-th root of unity ζe0 = τ( e0
√
π)/( e0

√
π) in T

that is invariant under Gal(V/K).]

8. Show that the maximal tamely ramified abelian extension M of the field K in the previous

exercise is cyclic of degree q − 1 over Kunr, and that Gal(M/K) ∼= (Z/(q − 1)Z)× Ẑ.

9. Show that K = ∪n≥1C((X1/n)) is an algebraically closed field. Show also that K is not

complete with respect to the extension valuation of C((X)), and that the completion Ω of

K consists of Laurent series
∑

i
aiX

ni with coefficients ai ∈ C and exponents ni ∈ Q that

satisfy limi ni = +∞. Is Ω algebraically closed?

10. Show that the algebraic closure of Qp is not complete under the p-adic valuation, and let Cp

be its completion. Show that Cp is algebraically closed. Compute the transcendence degree

of Cp/Q, and deduce that Cp is isomorphic to the field of complex numbers (as a field, not

as a topological field!).
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11. Let L/K be an extension of local fields of degree n and residue class degree f . Show that we

have ordpK (∆(L/K)) ≥ n− f with equality if and only if L/K is tamely ramified.

12. Verify Serre’s formula 4.10 for n coprime to charK.

13. For K = Fp((T )) and n ≥ 1, let Kn be the extension obtained by adjoining a root of the

polynomial f = Xp + TnX + T . Show that Kn is a totally ramified separable extension of

degree p of the local field K, and that Kn and Km are not isomorphic over K when m 6= n.

14. Deduce from Serre’s formula that up to isomorphism, the number of extensions of a local

field of given discriminant is finite.
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5 Galois theory of valued fields

We have seen in the previous section that every finite extension L of a field K that is

complete with respect to a discrete prime divisor gives rise to two subfields T ⊂ V ⊂ L

of L that are separable over K. In this section we will describe the Galois correspondence

for such fields. We will assume in this section that both L/K and the residue class field

extension L/K are separable. There is always a maximal subfield Ls ⊂ L for which these

assumptions are satisfied, and in most cases that occur in practice one has Ls = L. After

we have dealt with the case of complete extensions, we will pass to the global case and

discuss the relation between local and global Galois groups.

◮ Inertia subgroup

Assume that K is complete with respect to a discrete prime divisor and that L/K is a

finite Galois extension for which L/K is separable.

5.1. Proposition. The residue class field extension L/K is Galois and the natural map

ρ : Gal(L/K) → Gal(L/K) is surjective. The invariant field Lker ρ is the inertia field

of L/K.

Proof. Every element σ ∈ Gal(L/K) induces an automorphism σ ∈ AutK(L), so we have

a natural image G of G = Gal(L/K) in AutK(L). We will prove that L/K is Galois and

that ρ is surjective by showing that K equals the invariant field L
G
.

We clearly have K ⊂ L
G
, so let x ∈ L

G
have representative x ∈ AL. If K has

characteristic zero, another representative is given by

1

[L : K]

∑

σ∈G
σ(x) ∈ LG = K

and we are done. For charK = p > 0 we let S be a p-Sylow subgroup of G and Γ ⊂ G a

system of left coset representatives of S in G. As every conjugate of x has image x in L,

the element
1

[G : S]

∑

σ∈Γ
σ(

∏

τ∈S
τ(x)) ∈ LG = K

has image x#S ∈ K. As #S is a p-power and L/K is separable, this implies x ∈ K, as was

to be shown.

Let T be the invariant field Lker ρ. Then we have [T : K] = [L : K]. The natural

map ker ρ = Gal(L/T )→ Gal(L/T ) is the zero map but, as we have just shown, it is also

surjective. We therefore have L = T , and the equality [T : K] = [T : K] shows that T/K

is unramified. It follows from 4.1 that T is the inertia field of L/K. �

The kernel of the map in the proposition is the inertia group I ⊂ Gal(L/K) of the extension

L/K. Its order is equal to the ramification index of L/K, so I is the trivial subgroup if

and only if L/K is unramified. In that case 5.1 reduces to the statement in 4.3.
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◮ Ramification groups

Let pL = πLAL be the maximal ideal in AL. Then we define the i-th ramification group

Gi ⊂ G = Gal(L/K) of L/K as

Gi = {σ ∈ G : ψ(x− σ(x)) < ψ(πiL) for all x ∈ Aψ}
= ker[G→ Aut(AL/p

i+1
L )].

The definition shows that all Gi are normal subgroups of G. As every σ 6= idL is not in Gi
for i sufficiently large, we have Gi = {1} for large i. We formally have G−1 = G, and for

i = 0 we find that G0 = I is the inertia group of ψ. The sequence

G = G−1 ⊃ I = G0 ⊃ G1 ⊃ G2 ⊃ . . .

of subgroups corresponds to an sequence of fields Vi = LGi that are known for i ≥ 1 as

the ramification fields of L/K. We will show in 5.4 that the first ramification field V = V1
is the ramification field constructed in exercise 4.4.

5.2. Theorem. Let πL be a prime element of L and write U
(0)
L = A∗L and U

(i)
L = 1 + piL

for i ≥ 1. Then the map

χi : Gi −→ U
(i)
L /U

(i+1)
L

σ 7−→ σ(πL)/πL

is for each i ≥ 0 a homomorphism with kernel Gi+1 that does not depend on the choice of

the prime element πL.

Proof. Let us check first that χi does not depend on the choice of πL. If u ∈ A∗L is a unit,

then we have σ(u)/u ∈ U (i+1)
L for σ ∈ Gi and consequently

σ(uπL)

uπL
=
σ(u)

u
· σ(πL)

πL
=
σ(πL)

πL
∈ U (i)

L /U
(i+1)
L .

For σ, τ ∈ Gi we conclude from this that we have

χi(στ) =
(στ)(πL)

πL
=
σ(τ(πL))

τ(πL)
· τ(πL)
πL

= χi(σ)χi(τ),

so χi is a homomorphism. In order to prove that kerχi = Gi+1, it suffices show that for

σ ∈ G0 an element of the inertia group and i ≥ 1, we have

σ ∈ Gi ⇐⇒ σ(πL)− πL ∈ pi+1
L ⇐⇒ σ(πL)/πL ∈ 1 + piL.

For the last two conditions the equivalence is clear. The middle condition is obviously

necessary to have σ ∈ Gi, and for its sufficiency we write AL = AT [πL] and remark that

an element x =
∑
k akπ

k
L ∈ AT [πL] satisfies σ(x) − x =

∑
k ak(σ(πL)

k − πkL) ∈ pi+1
L since

σ(ak) = ak ∈ T for σ ∈ G0 and σ(πkL)− πkL is divisible by σ(πL)− πL for all k. �
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5.3. Corollary. The group G0/G1 is cyclic of order coprime to charK. If G is abelian,

there is a canonical embedding χ0 : G0/G1  K
∗
.

Proof. The isomorphism U
(0)
L /U

(1)
L = L

∗
and 5.2 give us an injection χ0 : G0/G1  L

∗
,

so G0/G1 is a finite subgroup of the unit group of a field and therefore cyclic. Its order is

coprime to charK as there are no p-th roots of unity in a field of characteristic p > 0.

If G is abelian, we have σ(χ0(τ)) = (στ)(πL)/σ(πL) = (τσ)(πL)/σ(πL) = χ0(τ) for

σ ∈ G and τ ∈ G0, so the image of χ0 is in (L
∗
)G = K

∗
. �

5.4. Corollary. The group G1 is trivial for charK = 0 and a p-group for charK = p > 0.

The first ramification field V1 = LG1 is the largest subfield of L that is tamely ramified

over K.

Proof. For i ≥ 1 we have an isomorphism U
(i)
L /U

(i+1)
L

∼−→ L that sends 1 + aπil to a.

If charK = 0 there are no elements of finite additive order in L, so Gi/Gi+1 = 0 for all

i ≥ 1 and therefore G1 = 0. For charK = p > 0 all non-zero elements of L have additive

order p, so each quotient Gi/Gi+1 is an elementary abelian p-group. It follows that G1

is a p-group. In this case, the corresponding field V = LG1 is totally ramified of degree

#(G0/G1) coprime to p over the inertia field T , whereas L/V is totally ramified of p-power

degree. We conclude that V is the maximal tamely ramified subfield. For charK = 0 this

is trivially true since V = L. �

Example. Consider for p prime the cyclotomic extension L = Qp(ζp) of K = Qp occurring

in example 4.6. This is a Galois extension with group G = (Z/pZ)∗ if we identify t mod p

with the automorphism σt : ζp 7→ ζtp. The extension is totally and tamely ramified, so

we have G0 = G and G1 = 0. Taking πL = 1 − ζp, we see that the homomorphism

χ0 : G0 → L = Fp maps σt to the residue class

σt(πL)

πL
=

1− ζtp
1− ζp

= 1 + ζp + ζ2p + . . .+ ζt−1p ≡ t ∈ L,

so it is in this case an isomorphism.

More generally, we can consider L = Qp(ζpk) over K = Qp, which is abelian with

group G = (Z/pkZ)∗. This is a totally ramified extension, so again G0 = G. The argument

above, when applied for the prime element πL = 1− ζpk , yields

Gi = {σt : t ≡ 1 mod pi} = 〈1 + pi〉 ⊂ (Z/pkZ)∗

for all i ≥ 1. In particular, all injections χi : Gi/Gi+1 → U
(i)
L /U

(i+1)
L

∼= Fp are isomor-

phisms for this extension.

◮ Decomposition group

We now consider the case of an arbitrary finite field extension. If φ is any valuation on

K and ψ an extension of φ to a finite Galois extension L of K, then the completion Lψ
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is the compositum of its subfields L and Kφ. Standard Galois theory tells us that Lψ/Kφ

is a finite Galois extension, and that Gψ = Gal(Lψ/Kφ) is isomorphic to the subgroup of

Gal(L/K) corresponding to the subfield L ∩Kφ.

Lψ Gψ

L Kφ

L ∩Kφ

K

By the uniqueness of the extension valuation in the complete extension Lψ/Kφ, we have

ψ(σ(x)) = ψ(x) for x ∈ Lψ and σ ∈ Gψ. If we view Gψ as a subgroup of Gal(L/K), we

can write

Gψ = {σ ∈ Gal(L/K) : ψ(σ(x)) = ψ(x) for all x ∈ L}

since every element of the right hand side extends uniquely by continuity to an automor-

phism of Lψ over Kφ. This subgroup is known as the decomposition group of ψ in L/K,

and the corresponding invariant subfield LGψ is the decomposition field of ψ in L/K.

We define a left action of G = Gal(L/K) on the finite set X = {ψ|φ} of extensions of
φ to L by setting

(σψ)(x) = ψ(σ−1(x)) for x ∈ L.

If ψ is non-archimedean with valuation ring Aψ and maximal ideal qψ, the valuation σψ

has valuation ring σ[Aψ] and maximal ideal σ[qψ]. Thus, for a number field L the G-action

on the finite primes of L is ‘the same’ as the natural G-action on the corresponding prime

ideals in the ring of integers of L that was studied in [I, §8]. The theorem given there can

be generalized in the following way.

5.5. Proposition. Let L/K be a finite Galois extension with group G and X the set of

extensions of a valuation φ on K to L. Then G acts transitively on X, and the stabilizer

Gψ ⊂ G of ψ ∈ X is the decomposition group of ψ in L/K. All decomposition groups Gψ
of ψ ∈ X are conjugate in G.

Proof. Suppose that there exist extensions ψ1, ψ2 ∈ X that lie in different G-orbits. Then

the orbits Gψi = {σψi : σ ∈ G} are disjoint for i = 1, 2, so the approximation theorem

implies that there exists x ∈ L with ψ(x) < 1 for ψ ∈ Gψ1 and ψ(x) > 1 for ψ ∈ Gψ2. The

product
∏
σ∈G(σψi)(x) = ψi(NL/K(x)) is then smaller than 1 for i = 1 and greater than

1 for i = 2. This contradicts the fact that ψ1 and ψ2 coincide on NL/K(x) ∈ K, so there

cannot be two distinct G-orbits and G acts transitively on X.

We have already seen above that the decomposition group Gψ is the stabilizer of ψ in

G, and in view of the transitivity the general identity Gσψ = σGψσ
−1 for stabilizers shows

that all decomposition groups of ψ ∈ X are conjugate in G. �
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5.6. Corollary. For a normal extension L/K, the completions Lψ for ψ|φ are all iso-

morphic over Kφ. In particular, the ramification indices e = e(ψ/φ) and the residue class

degrees f = f(ψ/φ) do not depend on the choice of ψ, and one has [L : K] = efg with g

the number of different extensions of φ to L.

Proof. If ψ2 = σψ1 for σ ∈ Gal(L/K), then σ induces an isomorphism Lψ1

∼−→ Lψ2 on

the completions that is the identity on Kφ. The final formula follows from 3.10 and the

convention for archimedean φ following it. �

If the extension L/K in 4.1 is abelian, all decomposition groups Gψ for ψ ∈ X coincide.

In that case, we can speak of the decomposition group Gφ of φ in L/K.

5.7. Theorem. Let L/K be a finite Galois extension and Zψ the decomposition field of a

valuation ψ on L that is either archimedean or discrete and has restriction φ on K. Then

Zψ/K is the largest subextension E/K of L/K for which

e(ψ|E/φ) = f(ψ|E/φ) = 1.

Proof. By construction, Zψ is the largest subfield of L that is contained in Kφ, and a

subfield E ⊃ K of L is contained in Kφ if and only if its completion, which has degree

e(ψ|E/φ)f(ψ|E/φ) over Kφ by 3.10, is equal to Kφ. The theorem follows. �

◮ Galois theory for global fields

We will further suppose that L/K is a finite Galois extension with group G and ψ and φ

correspond to discrete prime divisors q and p for which the residue class field extension

L/K is separable. In the case of an extension of number fields, one may think of q and p as

ideals in the respective rings of integers. We see from 5.7 that the decomposition field Zq of

q in L/K is the largest subfield E for which qE = q∩E satisfies e(qE/p) = f(qE/p) = 1. If

L/K is in addition abelian, Zq = Zp is the largest subextension in which the prime p splits

completely. This explains the name ‘decomposition field’. Note that everything remains

correct for infinite primes if we call an infinite prime p : K → C ‘totally split’ in L if all

its extensions q to L have [Lq : Kp] = e(q/p)f(q/p) = 1.

By definition of the decomposition field Zq of a prime q in L/K, there is an identifi-

cation of Galois groups

Gal(Lq/Kp)
∼−→ Gq = Gal(L/Zq)

that is obtained by restriction of the automorphisms of Lq/Kp to L. We can apply our

theory for complete Galois extensions to Lq/Kp, so the inertia and ramification fields of

Lq/Kp can be intersected with L to produce a sequence of fields

K ⊂ Zq ⊂ Tq ⊂ Vq ⊂ L

corresponding to subgroups

G ⊃ Gq ⊃ Iq = Gq,0 ⊃ Rq = Gq,1 ⊃ {1}.
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of G. Here Tq is the inertia field of q in L/K, it corresponds to the inertia group Iq ∼=
Gal(Lq/Kp)0 of q in G. It is the largest subfield of L for which the restriction of q is

unramified over K. The (first) ramification field Vq of q in L/K corresponds to the (first)

ramification group Rq
∼= Gal(Lq/Kp)1 of q in L/K. It is the largest subfield of L for which

the restriction of q is tamely ramified over K. The groups Iq and Rq are normal in Gq,

but not necessarily in G. More precisely, one has

σGqσ
−1 = Gσq σIqσ

−1 = Iσq σRqσ
−1 = Rσq

for σ in G. In particular, we see that for abelian extensions, the decomposition, inertia and

ramification group depend only on the prime of the base field K, not on the choice of the

extension prime.

◮ Non-normal extensions

If L/K is a finite separable extension of discretely valued fields for which the residue class

field extension is separable, we can obtain the decomposition, inertia and ramification fields

of a prime q in L/K by extending q to a normal closure M of L over K and form the

intersection of L with the decomposition, inertia and ramification fields of this extension

in M/K. Conversely, knowledge of these fields in L/K can be helpful to determine the

corresponding fields in M/K.

Example. The number field K = Q(α) with α4 = 17 we considered after 3.9 is not

normal over Q. Its normal closure M = K(i) is obtained by adjoining i =
√
−1 to K.

This is a Galois extension of Q with group D4, the dihedral group of 8 elements. We have

seen that the prime 2 factors as 2OK = pqr2 in this field, so we have Zp = Tp = K

and Zr = Tr = Q(
√
17). In the normal closure M/Q, there are at least 3 primes over

2, and they are all ramified over Q by 5.6. The formula efg = 8 shows that there are

4 primes over 2 with e = 2 and f = 1. In particular, the primes p and q are ramified

in the quadratic extension M/K and r splits completely in M/K to yield a factorisation

2OM = P2Q2R2
1R

2
2. The decomposition fields of P|p and Q|q in M/Q are equal to K,

whereas the primes Ri|r have the conjugate field Q(iα) as their decomposition field. Note

that indeed Zr = ZRi ∩K.

It is clear from what we said above that the splitting behaviour of a prime in a finite

extension is determined by the decomposition and inertia groups of the primes that lie

over it in a normal closure. Conversely, the knowledge of the splitting behaviour of a few

primes can be used to determine the Galois group of the normal closure of an extension.

More precisely, we have the following relation between the action of decomposition and

inertia groups on the one hand and the factorization of a non-archimedean prime on the

other hand. All residue class field extensions are supposed to be separable.

5.8. Theorem. Let L/K be a finite separable extension, M the normal closure of L over

K and p a discrete prime divisor on K. Set G = Gal(M/K) and H = Gal(M/L) ⊂ G, and
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let G act in the natural way on the set Ω of left cosets of H in G. Suppose we are given

integers ei, fi > 0 for i = 1, 2, . . . , t such that
∑t
i=1 eifi = [L : K]. Then the following two

statements are equivalent.

(1) the prime p has t distinct extensions q1, q2, . . . , qt to L with ramification indices

e(qi/p) = ei and residue class field degrees f(qi/p) = fi;

(2) for every decomposition group GP ⊂ G of a prime P above p in M/K, there are

t different GP-orbits Ωi ⊂ Ω of length #Ωi = eifi. Under the action of the inertia

group IP ⊂ GP on Ωi, there are fi orbits of length ei each.

Proof. Let P be a prime over p in M with restriction q to L, and write ΩP for the GP-

orbit of the coset H ∈ Ω. The length of this orbit is [GP : GP ∩H], and this is equal to

the degree [Lq : Kp] = e(q/p)f(q/p) since we have a tower of complete extensions

MP ⊃ Lq ⊃ Kp

in which Gal(MP/Kp) = GP contains a subgroup HP = H ∩GP corresponding to Lq. An

arbitrary GP-orbit in Ω, say of the residue class gH, can be written as

GP · gH = g ·Gg−1PH = g · Ωg−1P,

so the length of such an orbit equals e(q′/p)f(q′/p) with q′ the restriction of g−1P to L.

We do obtain a bijection between extensions of p to L and GP-orbits in Ω:

g−11 P ∩ L = g−12 P ∩ L⇐⇒ ∃h ∈ H : hg−11 P = g−12 P⇐⇒ ∃h ∈ H : g2hg
−1
1 ∈ GP

⇐⇒ ∃h ∈ H : GP · g2h = GP · g1 ⇐⇒ GP · g2H = GP · g1H.

The inertia group IP of P is a normal subgroup of GP, so all Ip-orbits inside a single

GP-orbit have the same length. Inside the orbit ΩP this length is equal to the group index

[IP : IP ∩H] = [IP : IP ∩HP] = [IPHP : HP]. In the extension MP/Kp, this corresponds

to the subextension Lq/Tq, with Tq the inertia field of q in Lq/Kp. It follows that the length

of the IP-orbits in ΩP is [Lq : Tq] = e(q/p) as asserted. The identity IP · gH = g · Ig−1PH

now shows that the length of the IP-orbits in the GP-orbit corresponding to a prime q′ of
L equals e(q′/p). �

The preceding theorem remains correct for infinite primes p : K → C of K if we choose

appropriate conventions for these primes. For an extension Lq/Kp of archimedean complete

fields we defined f(q/p) = 1 and e(q/p) = [Lq : Kp], so it makes sense to take the inertia

group Iq of an infinite prime in a Galois extension equal to the decomposition group. With

this convention, the two assertions in (2) of theorem 5.8 coincide for infinite primes and

the theorem holds unchanged.
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◮ Frobenius automorphism, Artin symbol

If L/K is a Galois extension of local fields and q a finite prime divisor of L extending p,

we have by 5.1 a group isomorphism

Gq/Iq
∼−→ Gal(Fq/Fp)

between a factor group of Gq and the Galois group of the residue class extension L/K =

Fq/Fp at q|p. As the residue class fields for primes of local fields are finite, the Galois

group Gal(Fq/Fp) is cyclic with a canonical generator, the Frobenius automorphism σq
that raises every element of Fq to the power #Fp. If q|p is unramified, we have an inclusion

Gq/Iq = Gq ⊂ Gal(L/K), so there exists a Frobenius element σq at q in Gal(L/K). This

is is the Frobenius symbol [q, L/K] of q in the Galois group of L/K. It is a well defined

element of the Galois group if q is unramified over p = q ∩K. For ramified q it can only

be defined as a coset of Ip in Gal(L/K).

If q is infinite, there is no analogue of the Frobenius automorphism and we have set

Gq = Iq. However, it is often convenient to take the Frobenius symbol for such primes to

be equal to the generator of the decomposition group Gq. This is a group of order at most

two, and the Frobenius at q is only different from the unit element in Gal(L/K) when q is

complex and p = q|K is real. In this situation, [q, L/K] is the complex conjugation on L

induced by the embedding q : K → C.

It is immediate from the definition that the Frobenius symbol satisfies

[σq, L/K] = σ[q, L/K]σ−1 for σ ∈ Gal(L/K).

In particular, this shows that the Frobenius symbol of q in an abelian extension L/K

depends only on the restriction p = q ∩ K. In that case the symbol is called the Artin

symbol of p in Gal(L/K). It is denoted by (p, L/K). It is of fundamental importance in

describing abelian extensions of number fields. For a few formal properties of Frobenius

and Artin symbols we refer to exercise 12.
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Exercises

1. Show that every Galois extension of a local field is solvable.

2. Let L be a Galois extension of a non-archimedean local field K. Show that the valuation of

the different D(L/K) is given by the formula

ordpL(D(L/K)) =
∑∞

i=0
(#Gi − 1).

Deduce that ordpL(D(L/K)) = e− 1 if and only if L/K is tamely ramified.

[Hint: look at f ′(πL) for f = fπLT .]

3. Determine all ramification groups for the cyclotomic extension Qp(ζpk )/Qp. Deduce that

ordp(D(Qp(ζpk)/Qp)) = kpk − (k + 1)pk−1.

4. Determine the decomposition, inertia and ramification fields of the primes over 3, 5, 17 and

149 in the splitting field of X4 − 17 over Q. What are the decomposition fields of the infinite

primes?

5. Let p be an odd prime number and n = pkm an integer with p ∤m. Show that the decompo-

sition, inertia and ramification groups and fields of p for the cyclotomic extension Q(ζn)/Q

with group G = Gal(Q(ζn)/Q) ∼= (Z/pkZ)∗ × (Z/mZ)∗ are given by the following table.

Q(ζn) ↔ {1}
Vp = Q(ζp, ζm) ↔ 〈(1 + p) mod pk〉×{1}
Tp = Q(ζm) ↔ (Z/pkZ)∗ ×{1}
Zp ↔ (Z/pkZ)∗ ×〈p mod m〉
Q ↔ (Z/pkZ)∗ ×(Z/mZ)∗

Deduce that the Artin symbol of p in G/Ip ∼= (Z/mZ)∗ is the residue class p mod m. What

does the table look like for p = 2?

6. Determine the decomposition and inertia fields of all primes p < 20 in the cylotomic extension

Q(ζ20)/Q. Do all subfields occur as a decomposition field of some p?

7. Let K = Q(
√
−5) and write i =

√
−1. Show that the extension K ⊂ K(i) is unramified at

all primes, and that there is an isomorphism

ClK
∼−→ Gal(K(i)/K)

that sends the class of a prime p ⊂ OK in ClK to the Artin symbol of p in Gal(K(i)/K).

8. Let K be a field that is complete with respect to a discrete valuation with a perfect residue

class field. Let L/K be a finite Galois extension with Galois group G and ramification

groups Gi. Let H ⊂ G be a subgroup, and E = LH the corresponding subfield.

a. Prove that the i-th ramification group of the extension L/E equals Gi ∩ H for every

i ≥ 0.

b. Suppose that E is Galois overK, with Galois group Γ (∼= G/H). Prove that the images of

G0 and G1 under the natural map G→ Γ are the inertia group and the first ramification

group of E/K, respectively. Show by an example that the corresponding statement for

higher ramification groups is not in general true.
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9. Let L = Q5(
4
√
50), and let E be the maximal unramified subextension of Q5 ⊂ L. Exhibit a

prime element πE of the valuation ring of E such that L = E(
√
πE). Can πE be chosen to

lie in Q5?

10. Let f ∈ Z[X] be a monic separable polynomial of degree n and G the Galois group of

the splitting field Ω of f over Q. View G as a subgroup of the symmetric group Sn via

the action of G on the n roots of f in Ω. Let p be a prime number that does not divide

the discriminant ∆(f) of f , and suppose that f mod p factors in Fp[X] as a product of t

irreducible factors of degree n1, n2, . . . , nt. Show that G contains a product of t disjoint cycles

of length n1, n2, . . . , nt.

[This is a very effective criterion in computing G.]

11. Let K be a local field of characteristic p > 0 and L/K a finite separable extension. Show

that ordpL(D(L/K)) 6≡ −1 mod p.

12. Let K ⊂ L ⊂ M be extensions of number fields and pM a prime of M with restrictions pL
and pK . If L/K and M/K are Galois and pM/pK is unramified, show that the Frobenius

symbols satisfy

[pM ,M/K]|L = [pL, L/K].

Similarly, for E/K any finite extension and pEL an extension of pL to EL, show that

[pEL, EL/E]|L = [pL, L/K]f(pE/pK)

for L/K Galois and pL/pK unramified. Are there analogues for infinite primes? What are

the resulting relations for the Artin symbols if M/K and L/K are assumed to be abelian?

In the next two exercises we let M/K be a Galois extension of number fields with group G and

L =MH ⊂M the invariant field of a subgroup H of G. We let r be a prime ofM with restrictions

q in L and p in K.

13. Suppose that G is isomorphic to the symmetric group S5 of order 120, that Gr has order 6,

and that Ir has order 2.

a. Prove that, if the identification of G with S5 is suitably chosen, Gr is generated by the

permutation (1 2 3)(4 5) and Ir by (4 5).

b. Suppose that [L : K] = 5. How many extensions q′ does p have to L, and what are the

numbers e(q′/p) and f(q′/p)?
c. Suppose that [L : K] = 15. How many extensions q′ does p have to L, and what are the

numbers e(q′/p) and f(q′/p)?

14. Suppose that G is isomorphic to the symmetric group S4 of order 24, and that r is the only

prime of M extending p.
a. Prove that p is 2-adic, in the sense that the restriction of p to Q is the 2-adic prime

of Q, and determine Gr and Ir as subgroups of S4.

b. Suppose that H is cyclic of order 4. Determine e(r/q), f(r/q), e(q/p), and f(q/p).
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6 The Kronecker-Weber theorem

IfK is a number field, the n-th cyclotomic extension K ⊂ L = K(ζn) obtained by adjoining

the roots of Xn−1 for some integer n ≥ 1 to K is abelian, as σ ∈ Gal(L/K) is determined

by the value σ(ζn) = ζkn it assumes on a primitive n-th root of unity ζn generating L over

K. More precisely, we have an injective map

Gal(K(ζn)/K) −→ (Z/nZ)∗

sending an automorphism σk : ζn 7→ ζkn to (k mod n). For K = Q or, more generally, for K

linearly disjoint from Q(ζn), this map is an isomorphism as the n-th cyclotomic polynomial

Φn =
∏

k∈(Z/nZ)∗

(X − ζkn) ∈ Z[X]

is irreducible over Q. The Kronecker-Weber theorem states that for K = Q, cyclotomic

extensions are the only source of abelian extensions.

6.1. Theorem. Every finite abelian extension of the rational number field Q is contained

in a cyclotomic extension.

The theorem was stated by Kronecker in 1853, but his proof was incomplete. A second

proof was given by Weber in 1886. In 1896 Hilbert used what is essentially the theory of

section 5 to give the first complete proof.

◮ Global and local version

The Kronecker-Weber theorem accounts for the fact that abelian number fields, as the

extensions in the theorem are called, are in many respects more manageable than arbitrary

number fields. As Shafarevič (1951) observed, it can be derived from the same result for

the local fields Qp, which is also of independent interest. Note that the local result is also

correct for Q∞ = R, albeit in a somewhat uninteresting way.

6.2. Theorem. Every finite abelian extension of the p-adic number field Qp is contained

in a cyclotomic extension.

Before we prove the local result, we will show first how it implies the global theorem.

Proof of (6.2 ⇒ 6.1). Let L/Q be an abelian extension. Then the completion Lp of L at

a prime p|p is an abelian extension of Qp that is determined up to Qp-isomorphism by the

prime p. By 6.2, there exists an integer np = pkp ·mp with p ∤mp such that Lp is contained

in Qp(ζnp). This implies that the ramification index e(p/p) of p in L/Q does not exceed

[Qp(ζnp) : Qp(ζmp)] = φ(pkp). We claim that L is a subfield of the n-th cyclotomic field

Q(ζn) for n =
∏
p|∆L p

kp . To see this, we look at the abelian extension L(ζn)/Q, which is

ramified at exactly the same rational primes as L/Q.
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The ramification index of a prime p|∆L in L(ζn) is equal to φ(pkp), as its comple-

tion at a prime over p is obtained by adjoining a pkp -th root of unity to an unramified

extension of Qp. The subgroup I of the abelian group G = Gal(L(ζn)/Q) that is gen-

erated by the inertia groups Ip ⊂ G of the primes p dividing ∆L has order at most∏
p|∆L #Ip =

∏
p|∆L φ(p

kp) = φ(n). By construction of I, every prime that ramifies in

L(ζn)/Q is unramified in L(ζn)
I/Q. It follows that L(ζn)

I/Q is unramified at all finite

primes, and by Minkowski’s theorem [I, 9.11], we have L(ζn)
I = Q and I = G. The in-

equality [L(ζn) : Q] = #I ≤ φ(n) = [Q(ζn) : Q] now shows that we have L ⊂ Q(ζn), as

claimed. �

◮ Kummer theory

In the proof of theorem 6.2, we will use a general result from Galois theory to describe all

abelian extensions L of a field K that satisfy Gal(L/K)n = 1 for some fixed integer n > 1

(i.e. the abelian extensions of exponent dividing n) in the case that K contains a primitive

n-th root of unity.

6.3. Theorem. Let n ≥ 1 be an integer and K a field containing a primitive n-th root of

unity ζn. Then there is a bijection

{K ⊂ L ⊂ Kab : Gal(L/K)n = 1} ⇆ {K∗n ⊂W ⊂ K∗}
L 7→ L∗n ∩K∗

K(
n
√
W ) ← W

between abelian extensions L of K of exponent dividing n and subgroups W ⊂ K∗ con-

taining K∗n. If L corresponds to W , there is a perfect pairing

Gal(L/K)×W/K∗n −→ 〈ζn〉

(σ,w) 7−→ (σ,w)n,K =
σ( n
√
w)

n
√
w

that identifies Gal(L/K) with Hom(W/K∗n, 〈ζn〉).

The Kummer pairing in 6.3 is canonical in the sense that for every automorphism τ of the

algebraic closure of K, we have

(6.4) (σ,w)τL/K = (τστ−1, τ(w))n,τ [K].

There is an analog of 6.3 known as Artin-Schreier theory when n equals the characteristic

of K, see exercise 1.
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◮ Proof of the theorem

We will now prove the local Kronecker-Weber theorem 6.2. We will assume p 6=∞, as the

only non-trivial extension of Q∞ = R is C = R(ζn), where we can take for n any integer

exceeding 2.

For brevity, we call an extension of Qp cyclotomic if it is contained in an extension

Qp(ζ) obtained by adjoining a root of unity ζ.

As every finite abelian group is a product of cyclic groups of prime power order, every

abelian extension L/K is a compositum of cyclic extensions Li/K of prime power order.

It is therefore sufficient to prove the theorem for cyclic extensions L/Qp of order qn with

q prime. We distinguish three cases, and start with the easiest case.

6.5. A. Tame case. A cyclic extension L/Qp of order q
n with q 6= p prime is cyclotomic.

The extension L/Qp is tamely ramified as the ramification e is a power of q 6= p. By 5.3

and 5.4, the inertia group of L/Qp injects into F∗p, so its order e divides p − 1. Applying

Abhyankar’s lemma (exercise 4.3) to L/Qp and the extension Qp(ζp)/Qp from 4.6, we see

that L(ζp)/Qp(ζp) is an unramified extension. By 4.4, we have L(ζp) ⊂ Qp(ζp, ζ) for some

root of unity ζ, so L ⊂ Qp(ζp, ζ) is cyclotomic. This settles the tame case.

6.6. B. Wild case for p 6= 2. A cyclic extension of Qp of order pn is cyclotomic when p

is odd.

If p is odd, there are two independent cyclic cyclotomic extensions of degree pn for each

n ≥ 1: the unramified extension of degree pn and the totally ramified subfield of degree

pn of Qp(ζpn+1). Let E be the compositum of these two extensions. We have to show that

every cyclic extension L/Qp of degree p
n is contained in E. If LE were strictly larger than

E, the Galois group G = Gal(LE/Qp) would be an abelian group that is annihilated by pn

and has order exceeding p2n. Then G/Gp would be an elementary abelian p-group on more

than 2 generators, so there would be at least 3 linearly independent cyclic extensions of

degree p of Qp. After adjoining a p-th root of unity ζp to them, they would still be linearly

independent over K = Qp(ζp) as [K : Qp] = p − 1 is coprime to p. This contradicts the

following lemma, which describes explicitly the maximal abelian extension L of Qp that is

of exponent p over Qp(ζp) and shows that [L : Qp(ζp)] = p2.

6.7. Lemma. The maximal abelian extension of exponent p ofK = Qp(ζp) that is abelian

over Qp equals K( p
√
W ) for the subgroup W ⊂ K∗ satisfying

W/K∗p = 〈ζp〉 × 〈1 + πp〉.

Here π denotes the prime element 1 − ζp ∈ K. The extension K ⊂ K( p
√
ζp) = K(ζp2) is

totally ramified and the extension K ⊂ K( p
√
1 + πp) is unramified.

Proof. *** �

We are left with the final case of 6.2 to be proved.
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6.8. C. Wild case for p = 2. A cyclic 2-power extension of Q2 is cyclotomic.

In this case the proof we just gave for odd p has to be modified as the totally ramified

cyclotomic extension Q2(ζ2k) for k > 2 is not cyclic but a product of two cyclic groups of

order 2 and 2k−2. It is possible to adapt lemma 6.5 to this case (exercise 6), but there is

also the following ad hoc argument.

We want to show again that every cyclic extension L of Q2 of degree 2n is contained

in the compositum E of Q2(ζ2n+2) and the unramified extension of degree 2n. For n = 1

this is done by direct inspection: the maximal abelian extension of exponent 2 of Q2 is the

cyclotomic field Q2(
√
−1,
√
5,
√
2) = Q2(ζ24). It has Galois group (Z/2Z)3. For n > 1 we

have to show that the Galois group G = Gal(LE/Q2) cannot be greater than Gal(E/Q) =

Z/2Z × (Z/2nZ)2. We know already by the case n = 1 that G/G2 ∼= (Z/2Z)3, so G can

be generated by 3 elements. In order to conclude that we have G ∼= Z/2Z × (Z/2nZ)2, it

suffices to show that G/G4 cannot be isomorphic to (Z/4Z)3. If this were the case, every

quadratic extension of Q2 would be contained in some cyclic extension M/Q2 of degree 4.

This contradicts the following lemma, which is a simple application of Galois theory (cf.

exercise 3), and concludes the proof of theorem 6.2. �

6.9. Lemma. There is no cyclic quartic extension M/Q2 with
√
−1 ∈M .

Proof. If M contains i =
√
−1, then there exists α ∈ Q2(i) such that M = Q2(i,

√
α).

Let σ be a generator of Gal(M/Q2). Then σ
2 generates the Galois group Gal(M/Q2(i)),

so we have σ2(
√
α) = −√α. The element β = σ(

√
α)/
√
α now satisfies

σβ =
σ2(
√
α)

σ(
√
α)

= − 1

β
and σ2(β) = β,

so β is in Q2(i) and has norm NQ2(i)/Q2
(β) = βσ(β) = −1. However, it is easy to see that

−1 ∈ Q2 cannot be a norm from Q2(i). If this were the case, there would be an element

x + iy ∈ Z2[i] such that x2 + y2 = −1, and this cannot happen since squares in Z2 are

congruent to 0 or 1 modulo 4Z2. �

If L/Q is abelian, the smallest integer n for which L is contained in the n-th cyclotomic

field Q(ζn) is known as the conductor of L.

The Kronecker-Weber theorem gives us a very explicit description of the maximal

abelian extension Qab of Q. It is the field Q(ζ∞) obtained by adjoining all roots of unity

in an algebraic closure of Q to Q. Its Galois group over Q is the profinite group

Gal(Q(ζ∞)/Q) = lim
←n

Gal(Q(ζn)/Q) = lim
←n

(Z/nZ)∗ = Ẑ∗

of units in the ring of profinite integers Ẑ.
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Problems

1. (Artin-Schreier theory.) LetK be a field of chracteristic p > 0 with maximal abelian extension

Kab, and define the map ℘ : Kab → Kab by ℘(x) = xp − x. Prove the following theorem.

Theorem. There is a bijection

{K ⊂ L ⊂ Kab : Gal(L/K)p = 1} ⇆ {℘[K] ⊂ W ⊂ K}

between abelian extensions L of K of exponent dividing p and subgroups W ⊂ K containing ℘[K]

that sends an extension L to the subgroup ℘[L] ∩ K and a subgroup W ⊂ K to the extension

L = K(℘−1W ). If L corresponds to W , there is an isomorphism

Gal(L/K)
∼

−→ (W/℘[K])∧ = Hom(W/℘[K],Fp)

under which σ ∈ Gal(L/K) corresponds to the homomorphism w 7→ σ(℘−1(w))−℘−1(w). In partic-

ular, one has an equality [L : K] = [W : ℘[K]] in this case.

2. Show that an abelian extension K/Q is ramified at p if and only if p divides the conductor,

and that it is wildly ramified at p if and only if p2 divides the conductor.

3. Let K be a field of characteristic different from 2 and L/K a quadratic extension. Show

that there exists an extension M/L such that M/K is cyclic of degree 4 if and only if

−1 ∈ NL/K [L∗].

4. Show that the conductor of an abelian number field K divides the discriminant ∆K , and

that it is equal to |∆K | when K is quadratic.

5. Let K 6= Q be an abelian extension of Q. Show that there are abelian extensions L/K that

are not cyclotomic. Do you need the assumption that K/Q is abelian?

6. Show that for K = Q2(ζ4), the subgroup W ⊂ K∗ consisting of elements α ∈ K∗ for which

the extension K( 4
√
α) is abelian over Q2 is equal to

W/K∗
4
= 〈ζ4〉 × 〈1 + 4ζ4〉,

and that the extension K ⊂ K( 4
√
ζ4) = K(ζ16) is totally ramified and the extension K ⊂

K( 4
√
1 + 4ζ4) is unramified. How does case C of theorem 6.2 follow from this?

[Hint: show that α ∈W if and only if NK/Q2
(α) ∈ K∗4 ∩Q∗2 = 〈−4〉 × (1 + 16Z2).]

7. (Genus fields.) ****
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7 Local and global fields

We have already seen that it is possible to derive information on global fields from their

completions at the various primes of the field. In this section, we will restrict to the case

of number fields, even though most results hold for function fields as well. We show first

that discriminants and differents of number fields can be conveniently computed from

the discriminants and differents of the local extensions. Given our ‘local definition’ of the

discriminant ∆(L/K) in [I, §7], this is of course not surprising. This definition used the

fact that rings and modules are often easier to describe after localization at a prime.

After passing to the completion of these localizations, we can use in addition the structure

theorems for local fields of the previous sections. The reason why this is often possible lies

in theorem 3.8, which tells us that for L/K a finite extension of number fields and p a

prime of K, we have an isomorphism

(7.1) Kp ⊗K L
∼−→

∏

q|p
Lq.

In this section, we write Op for the valuation ring of the p-adic valuation on a number field

K, and Ap for the valuation ring of the completion Kp. We have already seen that Op is

the localization of the ring of integers O of K at the prime p, and that Ap = lim←nO/pn
is the completion of Op in the valuation topology.

7.2. Theorem. Let L/K be an extension of number fields with different D(L/K) ⊂ OL
and discriminant ∆(L/K) ⊂ OK . Then we have

D(L/K) ·Aq = D(Lq/Kp)

for every finite prime q of L and

∆(L/K) ·Ap =
∏

q|p ∆(Lq/Kp)

for every finite prime p of K.

Proof. For every finite prime p of K, the ring of integers OL is a dense subring of A =∏
q|pAq ⊂

∏
q|p Lq = Kp⊗L and the trace TrL/K : Kp⊗L→ Kp is a continuous function.

Using 3.11, we deduce that we have an implication

TrL/K(xOL) ⊂ OK ⇒ TrL/K(xA) =
∑

q|p TrLq/Kp
(xAq) ⊂ Ap

for x ∈ L. This immediately implies an inclusion D(L/K)−1 ⊂ D(Lq/Kp)
−1 for every

extension q|p.
Conversely, for fixed q|p and x ∈ D(Lq/Kp)

−1 we can choose an element y ∈ L such

that y is close to x in Lq and close to 0 in the other completions Lq′ ⊃ Kp. Then we

have again TrL/K(yOL) ⊂ TrL/K(yA) =
∑

q|p TrLq/Kp
(yAq) ⊂ Ap since the term for our

selected extension q is in Ap as it is close to TrLq/Kp
(xAq) ⊂ Ap and the terms with q′ 6= q
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give a small contribution. It follows that y is contained in the inverse of the localized

different D(OL,q/Op)
−1 = D(L/K)−1OL,q, and this yields xAq = yAq ⊂ D(L/K)−1Aq.

This proves the other inclusion.

The identity for the discriminant follows by taking norms and using the product

relation between local and global norms from 3.11. However, one can also give a direct

proof in the following way. Let ω1, ω2, . . . , ωn be an Op-basis for the localization OL,p of

the ring of integers OL at the prime p of K. As this basis generates Aq over Ap in each

completion Lq, we obtain an isomorphism of Ap-submodules

∑n
i=1Ap ⊗ ωi ∼−→ A =

∏
q|pAq

induced by 7.1. The left hand side has discriminant ∆(L/K) ·Ap by definition of the global

discriminant, the right hand side has discriminant
∏

q|p ∆(Lq/Kp) (cf. [I, 8.1]). �

By applying theorem 4.8 on local differents we obtain the following result.

7.3. Corollary. Let L/K be an extension of number fields and q a finite prime of L with

restriction p to K. Then we have

ordq(D(L/K)) ≥ e(q/p)− 1,

and equality holds if and only if q is tamely ramified in L/K. �

The relations between a number field K and its various completions Kp are sometimes

referred to as local-global relations. In order for a statement to be true for K, it is often

necessary for the statement to be true for the completions Kp of K at all primes, both

finite and infinite. For instance, a Diophantine equation of the form f(x1, x2, . . . , xn) = 0

with f ∈ K[X1, X2, . . . , Xn] can only have a solution in Kn if it has solutions in Kn
p for all

primes p of K. It is not in general an easy matter to decide whether the converse is true.

If it is, one says that the Hasse principle holds for f over K. We will encounter a classical

example of this phenomenon in 11.12.

A convenient way to relate a number field K to its completions is given by the adèle

ring AK of K that was introduced by Chevalley around 1940. This ring is a large extension

ring of K that is constructed from the completions Kp of K at all prime divisors of K,

both finite and infinite. We know that the finite primes of K correspond to the non-zero

primes of the ring of integers OK , whereas the infinite primes come from embeddings of K

into the complex numbers. We write p to denote a prime of either kind, and take Ap = Kp

if p is infinite. The adèle ring AK of K is defined as

AK =
∏

p

′
Kp = {(xp)p ∈

∏

p

Kp : xp ∈ Ap for almost all p}.

Informally, one can say that it is the subring of the full cartesian product of all completions

consisting of vectors that are almost everywhere integral. It is an example of a ‘restricted
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direct product’. The topology on such a product is not the relative topology, but the

topology generated by the open sets of the form

∏

p∈S
Op ×

∏

p 6∈S
Ap

for some finite set of primes S and Op open in Kp. This topology makes AK into a locally

compact ring since all completions Kp are locally compact and the rings Ap are compact

for all finite p. We have a canonical embedding K  AK along the diagonal since the

vector (x)p for x ∈ K is almost everywhere integral. We usually view this embedding as

an inclusion and refer to the elements of K in AK as principal adèles.

For K = Q we find

AQ = R×
∏

p

′
Qp = {(x∞, (xp)p) : xp ∈ Zp for almost all p}.

The open subset U = (−1/2, 1/2) ×
∏
p Zp of AQ satisfies U ∩Q = {0}, since a rational

number that is p-integral at all primes p is in Z and Z ∩ (−1/2, 1/2) = {0}. It follows

that Q is a discrete subring of AQ. Moreover, the closure W = [−1/2, 1/2] ×∏
p Zp of U

is compact in AQ and it is not difficult to show (exercise 7) that Q +W = AQ, so that

the natural map W → AQ/Q is continuous surjection. It follows that its image AQ/Q is

a compact additive group. Generalizing this proof or using the following theorem, one can

prove analogous statements for arbitrary number fields K (exercise 9).

If L/K is a finite extension of number fields, we have a canonical embedding AK  AL
that sends (xp)p to the element (yq)q that has yq = xp when q|p.

7.4. Theorem. There is an isomorphism of topological rings

AK ⊗ L ∼−→ AL

such that the induced maps AK = AK ⊗ 1  AL and L = 1⊗ L  AL are the canonical

embeddings.

Proof. Taking the product over all p of the isomorphisms Kp ⊗K L
∼−→ ∏

q|p Lq, we see

that there is an isomorphism for the full cartesian product of all completions. In order

to show that this isomorphism induces the required isomorphism for the adèle rings, we

have to show that given a basis ω1, ω2, . . . , ωn of L/K, there is an induced isomorphism∑n
i=1Ap⊗ωi ∼−→ ∏

q|pAq for almost all primes p of L. This is clear: for almost all primes

p it is true that all ωi are p-integral and that the discriminant ∆(ω1, ω2, . . . , ωn) is in A
∗
p,

and for such p our basis is an integral basis of the integral closure of OK,p in L over OK,p.
The other statements follow from the corresponding statements for Kφ = Kφ ⊗ 1 and

L = 1⊗ L in 7.1. �
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7.5. Corollary. The ring AL is a free algebra of rank [L : K] over AK , and the norm map

NL/K : AL → AK induces the field norm NL/K : L→ K on the subring L ⊂ AL. �

The adèle ring of K is a locally compact additive group, so it comes with a translation

invariant measure µ known as the Haar measure on AK . The measure µ is uniquely deter-

mined up to a multiplicative constant. and can be obtained as a product measure of the

Haar measures µp on the completions Kp.

For infinite primes p the completion Kp is isomorphic to R or C, and µp is the well

known Lebesgue measure. For finite primes p we can take for µp the unique translation

invariant measure that satisfies

µp(Ap) = 1 and µp(p
n) = (Np)−n for n ∈ Z.

Here Np = NK/Q(p) ∈ Z>0 is the absolute norm of the prime p. We define the normalized

p-adic valuation |x|p of an element x ∈ Kp as the effect of the multiplication map Mx :

Kp → Kp on the Haar measure µp, i.e.

µp(xV ) = |x|pµp(V )

for every measurable subset V ⊂ Kp. If p is finite, | · |p is the p-adic valuation for which a

prime element at p has valuation N(p)−1 = (#Ap/p)
−1. For a real prime p, the normalized

absolute value is the ordinary absolute value on Kp = R. However, for complex p the

normalized absolute value is the square of the ordinary absolute value.

7.6. Product formula. For every non-zero element x ∈ K∗, we have

∏

p

|x|p = 1.

Proof. With this normalization, we have
∏

p finite |x|p = (#(O/xO))−1 for every non-

zero x ∈ O by the Chinese remainder theorem and the identity |x|p = (#(Op/xOp))
−1

for each finite prime p. On the other hand, the normalization for infinite primes yields∏
p infinite |x|p =

∏
σ:K→C |σ(x)| = |NK/Q(x)| = #(O/xO). The proves the theorem for

integral non-zero x, the general result follows by multiplicativity. �

The unit group of the adèle ring AK is the group

JK =
∏

p

′
K∗p = {(xp)p ∈

∏

p

K∗p : xp ∈ A∗p for almost all p}

that is known as the idèle group of K. For the topology on this group we do not take the

relative topology coming from the adèle ring, but the topology generated by open sets of

the form ∏

p∈S
Op ×

∏

p 6∈S
A∗p
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for S a finite set of primes and Op open in K∗p . This topology is finer than the relative

topology J inherits from AK , and it makes JK into a locally compact group. Under the

diagonal embedding, the unit group K∗ of K becomes a subgroup of JK consisting of the

principal idèles. The product formula 7.6 implies that K∗ is a discrete subgroup of JK ,

so the factorgroup CK = JK/K
∗ is again a locally compact group, the idèle class group

of K. This is not a compact group, since the volume map

τ : J −→ R>0

(xp)p −→
∏

p

|xp|p

is a continuous surjective map that factors via CK by the product formula. One can however

show that the subgroup C1
K = (ker τ)/K∗ of CK is a compact group—a fact that is closely

related to the Dirichlet unit theorem and the finiteness of the class number, see exercises

16–18. The idèle class group will play a key role in the formulation of class field theory in

section 9.

Problems

1. Let L/K be a normal extension of number fields of degree n and p a finite prime of K with

ramification index e in L/K. Show that ordp(∆(L/K)) ≥ (1 − e−1)n, with equality if and

only if p is tamely ramified in L/K.

2. Let K be a number field of degree n with squarefree discriminant. Show that the normal

closure M of K has group Sn over Q.

[Hint: All inertia groups in Gal(M/Q) have order two, so Gal(M/Q) is a transitive subgroup

of Sn that is generated by transpositions.]

3. It can be shown [Selmer, Math. Scand. 4, 287–302, (1956)] that the polynomial fn = Xn −
X − 1 is irreducible over Q for all n > 1. Assuming this, prove that the splitting field of fn
has Galois group Sn over Q.

4. Let D be a squarefree integer for which there exists a number field of degree n and discrim-

inant D. Show that Q(
√
D) has a normal extension N that is unramified at all finite primes

and has Galois group Gal(N/Q(
√
D)) ∼= An, the alternating group on n elements.

5. Let K be a number field of contained in a normal extension N of Q. Show that there exists

an extension E/Q of such that E ∩ N = Q and EL/E is unramified at all primes. Deduce

that for every finite group G, there are infinitely many pairwise linearly disjoint number fields

that have a Galois extension with group G that is unramified at all primes.

[Hint: write K = Q(α) with f = fαQ ∈ Z[X] and choose a polynomial g ∈ Z[X] that is p-

adically close to f at all p dividing ∆K and Eisenstein at a prime p ∤∆N . Set E = Q[X]/(g).]

6. Let O be the ring of integers of a number field K, and define the profinite completion Ô of

O as Ô = lim←n≥1 O/nO. Show that Ô is isomorphic (as a topological ring) to the direct

product
∏

p<∞Ap of all valuation rings of the finite completions Kp of K.
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7. Show that every element in AQ can uniquely be written as a sum of a rational number and

an element in [−1/2, 1/2)×
∏
p
Zp. Deduce that there is an exact sequence

0 −→ Ẑ −→ AQ/Q −→ R/Z −→ 0

of topological groups and that AQ/Q is a compact group of Haar measure 1 under the

quotient Haar measure it inherits from AQ. Show also that AQ/Q is connected, and that it

can be given a Q-vector space structure.

An exact sequence 0 → A → B → C → 0 of topological abelian groups with continuous group

homomorphisms is said to split if there is an isomorphism f :B → A × C of topological groups

such that (i) the map A → B → A × C is the canonical inclusion A → A × C; and (ii) the map

B → A× C → C is the given map B → C.

8. Show that the sequence 0 → Ẑ → AQ/Q → R/Z −→ 0 does not split, even if in the definition

given above the map f is only required to be an isomorphism of topological spaces satisfying

(i) and (ii). Show also that the sequence does not split if in the definition given above the

map f is only required to be a group isomorphism satisfying (i) and (ii).

9. Let K be a number field. Show that K is a discrete subring of AK , and that the quotient

ring AK/K is compact. Show that under the quotient measure coming from AK , one has

µ(AK/K) = 2−s|∆K |1/2. Here s is the number of complex primes of K.

10. (Strong approximation theorem) Let K be a number field and p0 a prime of K. Show that

K is dense in
∏

p 6=p0
Kp under the diagonal embedding.

[Hint: use the previous exercise to show that every subset of the form
∏

p∈S Op×
∏

p 6∈S Ap ⊂
AK with Op an open neighborhood of 0 ∈ Kp and S a finite set of primes containing the

infinite primes contains a non-zero element of K when
∏

p∈S µp(Op) is sufficiently large.]

11. Show that inversion is not a continuous operation on the idèle group JK with respect to

the relative topology of the adèle ring AK ⊃ JK . Show also that the topology on JK is the

relative topology coming from the embedding JK  AK×AK that maps x ∈ JK to (x, x−1).

12. Show that the topology on the adèle ring of K is induced by the metric d defined by

d((xp)p, (yp)p) =
∑

p

2−N(p)|xp − yp|p.

Here N(p) ∈ Z>0 is the absolute norm of p if p is finite, and N(p) = 1 if p is infinite. Can

you find a metric that induces the topology on JK?

13. Show that the norm on the idèle groups is compatible with the ideal norm in the sense

that if we define the map φK : JK → IK to the group of fractional OK-ideals IK by φ :

(xp)p 7→
∏

p finite
pordp(xp) and set UK =

∏
A∗p ⊂ JK for every number field K, then there

is a commutative diagram with exact rows

0 −→ UL −→ JL −→ IL −→ 0yNL/K
yNL/K

yNL/K
0 −→ UK −→ JK −→ IK −→ 0

version 11 May 2017 9:57 p.m. 67



§7: Local and global fields

for every finite extension of number fields L/K.

14. Show that there is a natural map Ẑ∗ =
∏
p
Z∗p → C1

Q that is an isomorphism of topological

groups. Conclude that C1
Q is compact.

15. Show that the exact sequence 0 → C1
K → CK

τ−→ R>0 → 0 is split, and that every open

subgroup of the idèle class group CK of K has finite index in CK .

16. Let UK ⊂ JK be as in exercise 13 and write U1
K for UK ∩ J1

K . Show that U1
K/O∗K is compact

and that there is an exact sequence of topological groups

0 −→ U1
K/O∗K −→ C1

K −→ ClK −→ 0.

Deduce that C1
K is a compact group for every number field K.

[Hint: let S be the set of infinite primes of K and define L : UK → RS by L : (xp)p 7→
(log |xp|)p∈S . Then kerL is compact and the Dirichlet unit theorem asserts that L[O∗] is a

lattice of maximal rank in the hyperplane H = L[U1
K ].]

17. Show that the map φK : JK → IK in 7.11 is continuous when IK is given the discrete

topology, and that it induces a continuous surjection C1
K → ClK . Deduce that ClK is finite

if C1
K is compact.

18. (S-unit theorem.) Let S be a finite set of primes of a number field K including the infinite

primes. The group KS of S-units of K consists of the elements x ∈ K∗ that satisfy |x|p = 1

for all p 6∈ S. Use the compactness of C1
K to show that there is an isomorphism

KS
∼= ZK × Z

#S−1,

where ZK is the subgroup of roots of unity in K∗.

[Hint: Set JS =
∏

p∈S K
∗
p ×

∏
p 6∈S A

∗
p and define JS → RS by (xp)p 7→ (log |xp|p)p∈S . Then

J1
S = J1 ∩ JS is mapped to a hyperplane H ⊂ RS and KS = K ∩ JS is cocompact in H if

J1
S/KS ⊂ C1

K is compact.]

19. Let L/K be a Galois extension of number fields with group G. Show that G acts naturally

on the adèle ring AL, and that there is an isomorphism

AK
∼−→ AGL = {x ∈ AL : σ(x) = x for all σ ∈ G}.

Prove that the NL/K(x) =
∏
σ∈G

σ(x).

20. Let k be a finite field, and let K = k(t), where t is transcendental over k. We write O = k[t],

and we let Ô be the projective limit of the rings O/fO, with f ranging over O − {0}. Let
VK and JK = V ∗K be the adele ring and the idele group of K. We denote by k[[u]] the ring of

power series in one variable u over k.

a. Prove: VK/K ∼= uk[[u]]× Ô as topological groups.

b. Prove: JK/K
∗ ∼= Z× (1 + uk[[u]])× Ô∗ as topological groups; here 1 + uk[[u]] denotes

the kernel of the map k[[u]]∗ → k∗ that maps a power series to its constant term.
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8 Class field theory: ideal groups

The Kronecker-Weber theorem shows that the splitting behavior of primes p in an abelian

extension L of Q is very simple: it only depends on the residue class of p modulo the

conductor n of L. This observation has a long history going back to Fermat and Euler.

◮ Classical examples

A prime number p is a sum p = x2 + y2 = (x+ iy)(x− iy) of two squares if and only if it

does not remain prime in the ring of Gaussian integers Z[i]. This is the ring of integers of

the cyclotomic field Q(ζ4), and Fermat already knew p is a sum of 2 squares if and only if

it is not congruent to 3 mod 4.

Euler studied similar problems, such as the determination of the rational primes that

occur in the factorization of numbers of the form x2 − ay2 with a ∈ Z fixed and x, y ∈ Z

ranging over pairs of coprime integers. This comes down to the determination of the primes

for which the Legendre symbol
(
a
p

)
has a given value, and the numerical observation of Euler

was that this value only depends on p mod 4|a|. This statement is essentially equivalent

to the quadratic reciprocity law. In modern terminology, we would say that the abelian

extensionQ(
√
a) ofQ is contained in the cyclotomic fieldQ(ζ4|a|), so the splitting behavior

of a prime p in Q(
√
a) (i.e. the value of the Legendre symbol

(
a
p

)
) is determined by the

splitting behavior of p in Q(ζ4|a|), i.e. by the residue class of p mod 4|a|.
The question whether a prime p is represented by the quadratic form X2 − aY 2, i.e.,

p = x2 − ay2 for certain x, y ∈ Z, is already more complicated, since this requires that

there is a principal prime ideal in Z[
√
a] of norm p. In Fermat’s example a = −1, the

resulting ring Z[i] is a principal ideal domain, but as soon as this is no longer the case,

the situation is much more difficult. When we take a = −5, we are dealing with the ring

Z[
√
−5] that has a class group of order 2, and the rational primes that are the norm of

a principal ideal x + y
√
−5 are exactly the primes that split completely in the quadratic

extension Q(
√
−5, i) of Q(

√
−5). As this extension field is contained in the cyclotomic

extension Q(ζ20), the solvability of p = x2 + 5y2 is equivalent to p being equal to 5 or

congruent to 1 or 9 modulo 20, a result conjectured by Euler in 1744.

For other values of a, the situation is even more complicated. For instance, for a = −27
Euler conjectured around 1750 that p is of the form p = x2+27y2 if and only if p ≡ 1 mod 3

and 2 is a cube modulo p. This is a special case of a more general question suggested by the

quadratic reciprocity law: do there exist reciprocity laws for powers higher than 2? In order

for this question to be interesting for general n > 2, one restricts to primes p ≡ 1 mod n,

for which the n-th powers in F∗p = (Z/pZ)∗ have index n in the full group, and asks which

conditions on the prime p ensure that some fixed integer a is an n-th power modulo p.

This means that we are looking for a characterization of the rational primes p ≡ 1 mod n

that split completely in the field Q( n
√
a) or, equivalently, the rational primes p that split

completely in the normal extension M = Q(ζn, n
√
a). For n > 2, this is not an abelian

extension of Q for most a, and we will see that this implies that the splitting behavior

of a rational prime p in M/Q is not determined by a congruence condition on p. In fact,
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finding a ‘reciprocity law’ governing the splitting of primes in non-abelian extensions is a

problem that is still very much open today.

Going back to Euler’s conjecture for the special case where n = 3 and a = 2, we see

that the rational primes p that split completely in Q(ζ3,
3
√
2) should be the primes of the

form p = x2 + 27y2. This is not a congruence condition on p, but it states that a prime p

in K = Q(ζ3) of prime norm p 6= 3 splits completely in the abelian extension K( 3
√
2)/K

if and only if it is generated by an element π = x + 3y
√
−3 = (x + 3y) + 6yζ3. As x

and y do not have the same parity, this means that the prime p|p can be generated by an

element π ∈ OK = Z[ζ3] that is congruent to 1 mod 6OK . Generators are determined up

to multiplication by elements in O∗K = 〈ζ6〉, so we see that proving Euler’s conjecture on

the cubic character of 2 comes down to showing that a prime p of K splits completely in

K( 3
√
2)/K if and only if p is a principal ideal whose generator is trivial in (OK/6OK)∗/〈ζ6〉.

This is a cyclic group of order 3, so we have an abstract isomorphism

(8.1) (OK/6OK)∗/ im[O∗K ]
∼−→ Gal(K(

3
√
2)/K),

and primes p whose class is the unit element should split completely. As Artin realized in

1925, this suggests strongly that the isomorphism above maps the class of prime p to its

Artin symbol, just like the familiar isomorphism (Z/nZ)∗ → Gal(Q(ζn)/Q) for abelian

extensions of Q maps (p mod n) to its Artin symbol. Note that the ramifying primes 2 and

(1− ζ3)|3 in K( 3
√
2)/K are exactly the primes dividing the ‘conductor’ 6OK . The tamely

ramified prime 2 divides the conductor once, and the wildly ramified prime (1−ζ3) divides
it twice, a phenomenon that is well known for conductors over Q

◮ Towards the main theorem

The two extensions K ⊂ K(i) for K = Q(
√
−5) and K( 3

√
2)/K for K = Q(ζ3) have in

common that they are abelian extensions, and that the primes of K that split completely

in it are the primes that are principal and satisfy a congruence condition modulo certain

powers of the ramified primes. In the first case, there are no ramified primes and the only

condition is that p be principal. In the second case all primes are principal, but only those

satisfying a congruence modulo 6 split completely. A far reaching generalization that one

might hope to be true would be the following: for every abelian extension L/K of number

fields, there exists an OK-ideal f such that all principal primes generated by an element

π ≡ 1 mod f split completely in L/K. As divisors of this ‘conductor ideal’ f one expects

to find the primes that ramify in L/K, and one can hope that, just as for K = Q, the

smallest possible f is divisible exactly by the ramifying primes, and the primes occurring

with exponent > 1 are the wildly ramifying primes.

As we have phrased it, the statement is correct for our two examples, but it fails to

hold for K = Q. The reason is that the splitting primes in the cyclotomic field Q(ζn)

are the prime ideals pZ for which the positive generator is congruent to 1 modulo n. A

sign change in the residue class modulo n changes the corresponding Artin symbol by a
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complex conjugation, so this peculiar detail is only relevant to abelian extensions L/Q that

are complex, i.e. extensions in which the real prime is ramified. When we take this into

account, we arrive at the following weak form of the main theorem of class field theory.

8.2. Main theorem (weak form). For every abelian extension of number fields L/K

there exists an OK-ideal f such that all primes of K that are principal with totally positive

generator π ≡ 1 mod f split completely in L/K.

The smallest ideal f one can take in 1.2 is the conductor ideal fL/K of the extension. As

we will see, it is exactly divisible by the finite primes of K that ramify in L. The wildly

ramifying primes occur with higher exponent than 1.

For imaginary quadratic fields K, Theorem 1.2 was proved during the 19-th century

by Jacobi, Dedekind, Kronecker, Weber and others. Such K have no real primes, and the

reason that their abelian extensions are relatively accessible stems from the fact that they

can be obtained by adjoining the values of complex analytic functions that occur when

one tries to invert certain elliptic integrals. This is somewhat reminiscent of the situation

for Q, where the abelian extensions are obtained by adjoining values of the exponential

function e2πiz at rational values of z.

For arbitrary number fields K, work of Hilbert, Furtwängler and Takagi in the period

1895–1919 culminated in a proof of a result somewhat stronger than 1.2. In particular,

Takagi proved that given K and f, there exists a maximal abelian extension Hf/K with

conductor ideal f; he also gave an explicit description of the corresponding Galois group

Gal(Hf/K).

For K = Q, we know that the maximal abelian extension of conductor n is the n-th

cyclotomic field Q(ζn), and that the isomorphism (Z/nZ)∗
∼−→ Gal(Q(ζn)/Q) sends the

residue class of a prime p to its Artin symbol. In our two examples this was also the case.

For K = Q(
√
−5) we had an isomorphism ClK

∼−→ Gal(K(i)/K) mapping the class of

a prime p to its Artin symbol as the principal primes were exactly the primes that split

completely in K(i). For K = Q(ζ3) we can determine the Artin symbol in K( 3
√
2) for every

prime not dividing 6, and writing IK(6) for the group of fractional OK-ideals relatively

prime to 6 we have the Artin map

ψK( 3√2)/K : IK(6)→ Gal(K(
3
√
2)/K)

that maps a prime p ∤6 to the Artin symbol (p, L/K). Euler’s conjecture is that the primes

in the kernel are the primes generated by an element congruent to 1 mod 6OK and Artin’s

generalization is that the kernel of ψK( 3√2)/K consists of all fractional ideals generated by

an element congruent to 1 ∈ (OK/6OK)∗, so that the Artin map induces the abstract

isomorphism 1.1. In its full generality, this is the following important extension of 1.2 that

Artin conjectured in 1925 and proved 2 years later, using a clever reduction to the case of

cyclotomic extensions due to Čebotarev.

8.3. Artin’s reciprocity law. For every abelian extension of number fields L/K, there
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exists an OK-ideal f divisible by all finite primes that ramify in L such that the Artin map

ψL/K : IK(f) −→ Gal(L/K)

p 7−→ (p, L/K)

is surjective and its kernel contains all principal ideals generated by an element x ∈ OK
that is congruent to 1 mod f and positive at the real primes p : K → R that ramify in L/K.

◮ Cycles and ray classes

Artin’s reciprocity law is a very strong statement that implies a large number of relations

between the Artin symbols at different primes. It suggests that it is convenient to include

the ramified real primes in the conductor f of the extension, and to declare an element

x ∈ OK congruent to 1 mod f if it is congruent to 1 modulo the ideal part and positive at

the real primes in f. The corresponding notion is provided by the cycles of a number field.

8.4. Definition. A cycle or divisor of a number field K is a formal product f =
∏

p p
n(p)

with p ranging over all primes of K such that

(i) n(p) is a non-negative integer for all p and n(p) = 0 for almost all p;

(ii) n(p) ∈ {0, 1} if p is real and n(p) = 0 if p is complex.

For any cycle f, the finite part f0 =
∏

p finite p
n(p) of a cycle is simply an integral ideal of

the ring of integers OK of K, while its infinite part f∞ =
∏

p infinite p
n(p) is a collection

of real primes of K. As for ideals, we refer to the exponents n(p) as ordp(f) and write

p|f if ordp(f) > 0. Divisibility of cycles is defined in the obvious way, so we write f1|f2 if

ordp(f1) ≤ ordp(f2) for all p. Similarly, the greatest common divisor gcd(f1, f2) is the cycle

with order min(ordp(f1), ordp(f2)) at p.

Congruences modulo cycles have to be defined in such a way that the quotient of two

integral elements x1, x2 ≡ 1 mod f is again congruent to 1 mod f, which is not the case for

the usual additive congruences.

8.5. Definition. Let p be a prime of K and n ∈ Z≥0 an integer. Then an element x ∈ K∗
is multiplicatively congruent to 1modulo pn, notation x ≡ 1mod∗ pn, if one of the following
conditions is satisfied.

(i) n = 0;

(ii) p is real, n = 1 and x is positive under the embedding p : K∗ → R∗;

(iii) p is finite, n > 0 and we have x ∈ 1 + pn ⊂ Ap.

For a cycle f =
∏

p p
n(p) we write x ≡ 1mod∗ f if x ≡ 1mod∗ pn(p) for all p.

Let I(f) be the group of fractional O-ideals a that have ordp(a) = 0 for every finite prime p

dividing the cycle f. The principal ideals xO generated by elements x ≡ 1mod∗ f form a

subgroup R(f) ⊂ I(f) that is sometimes called the ray modulo f. The terminology stems

from the fact that we may identify the ray R(∞) in Q with the positive rational half-line,
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a ‘ray’ from the origin. The factor group Clf = I(f)/R(f) is the ray class group modulo f.

The ray class groups will appear as the basic abelian Galois groups over K.

Example. For K = Q there is a single real prime p = ∞, so every cycle of Q is of the

form f = (n) or f = (n) ·∞ for some positive integer n. The corresponding ray class groups

are Cl(n) = (Z/nZ)∗/〈−1 mod n〉 and Cl(n)·∞ = (Z/nZ)∗.

In order to describe the structure of general ray class groups, we define the group (O/f)∗
for a cycle f = f0f∞ by

(O/f)∗ = (O/f0)∗ ×
∏

p|f∞

〈−1〉.

Every x ∈ K∗ contained in the subgroup K(f) ⊂ K∗ of elements that are units at all

finite primes in f has a residue class in (O/f)∗ consisting of its residue class in (O/f0)∗ at
the finite component and the sign of p(x) at the component of a real prime p : K → R

dividing f∞.

8.6. Proposition. The ray class group modulo f is finite and fits in an exact sequence

0 −→ (O/f)∗/ im[O∗] −→ Clf −→ Cl −→ 0

of finite abelian groups.

Proof. Let P (f) denote the group of principal ideals generated by elements x ∈ K(f).

Then we have an exact sequence 0 → P (f)/R(f) → I(f)/R(f) → I(f)/P (f) → 0 in which

the middle term is by definition the ray class group modulo f. The final term is the ordinary

class group, since every ideal class in Cl contains an ideal from I(f) by the approximation

theorem.

The group P (f) = K(f)/O∗ admits a canonical surjection to (O/f)∗/ im[O∗], and

the kernel consists by definition of the ray R(f) modulo f. This yields the required exact

sequence, and the finiteness of Clf follows from the finiteness of the outer terms. �

8.7. Corollary. If a cycle f is divisible by g, the natural map Clf → Clg is surjective.

Proof. The outer vertical arrows in the diagram

0 −→ (O/f)∗/ im[O∗] −→ Clf −→ Cl −→ 0
ycan

ycan

yid

0 −→ (O/g)∗/ im[O∗] −→ Clg −→ Cl −→ 0

are obviously surjective, so the same is true for the middle arrow. �
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◮ Ideal groups

We want to characterize the abelian extensions L/K in terms of the kernel of the Artin

map ψL/K : I(f) → Gal(L/K) in 1.3. The problem is that this kernel depends on the

chosen cycle f. If f satisfies the requirements of 1.3, then so does any multiple of f.

The same situation occurs if we want to specify an abelian number field L ⊂ Q(ζn)

by the subgroup Bn ⊂ (Z/nZ)∗ to which it corresponds. If we replace n by a multiple

m, we obtain another subgroup Bm ⊂ (Z/mZ)∗ corresponding to L that is ‘equivalent’

to Bn in the sense that the natural map (Z/mZ)∗ −→ (Z/nZ)∗ induces an isomorphism

(Z/mZ)∗/Bm
∼−→ (Z/nZ)∗/Bn.

An ideal group defined modulo f is a group B(f) satisfying R(f) ⊂ B(f) ⊂ I(f). If f′

is another cycle and B(f′) an ideal group defined modulo f′, we say that B(f) and B(f′)
are equivalent if for every common multiple g of f and f′, the inverse images of B(f) and

B(f′) under the natural maps I(g) → I(f) and I(g) → I(f′) coincide. If this is the case,

it follows from 1.7 that we have an isomorphism I(f)/B(f) ∼= I(f′)/B(f′) of finite abelian

groups. The notion of equivalence does not depend on the choice of a common multiple,

and we obtain an equivalence relation on the set of ideal groups. The equivalence classes

are simply referred to as ideal groups. If an ideal group B has a representative defined

modulo f, we denote it by B(f) and say that B can be defined modulo f or has modulus f.

Before we formulate the main theorem in its final form, we still need to show that the

set of moduli of an ideal group consists of the multiples of some unique minimal modulus,

the conductor of the ideal group. Over Q, this reflects the fact that an abelian number

field L can be embedded in Q(ζm) if and only if m is divisible by the conductor of L. The

general statement for ideal groups follows from the following lemma.

8.8. Lemma. An ideal group that can be defined modulo f1 and f2 can be defined modulo

gcd(f1, f2).

Proof. Write f = gcd(f1, f2) and g = lcm(f1, f2) and Hi = B(fi)/R(fi). By 1.7, all arrows

in the commutative diagram

I(g)/R(g)
φ1−→ I(f1)/R(f1)yφ2

yχ1

I(f2)/R(f2)
χ2−→ I(f)/R(f)

are surjective. We can define G = φ−11 [H1] = φ−12 [H2] by assumption, and we have to

show that there exists a subgroup H ⊂ I(f)/R(f) with inverse image G in I(g)/R(g). The

obvious candidate is H = χ1[H1] = χ2[H2]. We have χiφi[G] = H, so in order to prove

that G = (χiφi)
−1[H] we need to show ker(χiφi) ⊂ G.

From kerφi = (R(fi)∩I(g))/R(g) ⊂ G we have [(R(f1)∩I(g))·(R(f2)∩I(g))]/R(g) ⊂ G.
We claim the equality

(R(f1) ∩ I(g)) · (R(f2) ∩ I(g)) = (R(f1)R(f2)) ∩ I(g).
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The inclusion ⊃ is the nontrivial one, so let xiO ∈ R(fi) for i = 1, 2 be given such that

x1x2O ∈ I(g) holds. If p is finite and divides g, say p|f1, it follows from ordp(x1x2) = 0

and x1 ≡ 1mod∗ f1 that ordp(x2) = 0. Thus x1O and x2O are in I(g), which establishes

our claim.

As we have ker(χiφi) = (R(f) ∩ I(g))/R(g), the proof may be concluded by showing

R(f) to be equal to R(f1)R(f2). The inclusion R(f) ⊃ R(f1)R(f2) is immediate from R(f) ⊃
R(fi) for both i. For x ≡ 1mod∗ f the congruences y ≡ xmod∗ f1 and y ≡ 1mod∗ f2 are

compatible, so they are satisfied for some y ∈ K∗ by the approximation theorem. Now the

representation xO = xy−1 · yO shows that we have xO ∈ R(f1)R(f2), thereby proving the

other inclusion. �

The preceding proof is characteristic for many proofs using ideal groups in the sense that

the approximation theorem plays an essential role. In the idèlic formulation given in the

next section the existence of a conductor will be a trivial consequence of the formalism.

If B1 and B2 are ideal groups ofK and f is a common modulus, we define their product

and intersection by (B1B2)(f) = B1(f)B2(f) and (B1 ∩ B2)(f) = B1(f) ∩ B2(f). We write

B1 ⊂ B2 if B1(f) ⊂ B2(f) holds. One easily checks that all this is independent of the choice

of the common modulus f.

◮ Main theorem

We can now formulate the ideal group version of the main theorem of class field theory.

8.9. Main theorem. Let K be a number field, ΣK the set of finite abelian extensions

of K contained in some fixed algebraic closure and B the set of ideal groups of K. Then

there exists an inclusion reversing bijection

ΣK ⇆ B

such that for an extension L/K corresponding to an ideal group B with conductor f the

following holds:

(1) the primes dividing the conductor f are the primes that ramify in L/K, and the primes

whose square divides f are the primes that are wildly ramified in L/K;

(2) for every multiple g of the conductor f, the Artin map ψL/K : I(g) → Gal(L/K) is a

surjective homomorphism with kernel B(g).

The ideal group B corresponding to an abelian extension L of K determines the Galois

group Gal(L/K) as for every modulus g of B, the Artin map for L/K induces an Artin

isomorphism

(8.10) ψL/K : I(g)/B(g)
∼−→ Gal(L/K).

The splitting behavior of a prime of K in the extension L is determined by the ideal

class of p in the generalized ideal class group I(g)/B(g). The field L is the unique field
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corresponding to this ideal group B and is known as the class field of B. This (highly

non-trivial) existence of class fields for every given division of prime ideals into classes

modulo a cycle accounts for the name class field theory .

It is possible to give an explicit description of the ideal group corresponding to an

abelian extension L/K in terms of L. In fact, this description follows completely from

functorial properties of the Artin map. We will list all these properties in a single theorem

and derive them from 1.9. We need the action of the norm on ideal groups to formulate it.

If f is a cycle in K and L/K a finite extension, we can view f as a cycle in L by taking

f0OL as its finite part and the product of the real extensions of the p|f∞ as the infinite

part. In this situation, the ideal norm NL/K : IL → IK can be restricted to yield a norm

map NL/K : IL(f) → IK(f) that maps the ray RL(f) in L into the ray RK(f) in K. In

particular, the inverse image of an ideal group B(f) in K under the norm yields an ideal

group N−1L/KB(f) modulo f in L. We denote its equivalence class by N−1L/KB.

8.11. Theorem. Let K be a number field, and L, L1 and L2 finite abelian extensions of

K inside an algebraic closure K with corresponding ideal groups B, B1 and B2. Then the

following properties hold:

(1) we have B(g) = NL/K(IL(g)) ·R(g) for every modulus of B;

(2) the ideal group B1 ∩ B2 corresponds to the compositum L1L2, and the ideal group

B1B2 corresponds to the intersection L1 ∩ L2;

(3) if L2 contains L1 and g is a modulus of B2, then g is a modulus of B1 and there is a

commutative diagram

I(g)/B2(g)
∼−→ Gal(L2/K)

ycan

yres

I(g)/B1(g)
∼−→ Gal(L1/K)

relating the Artin isomorphisms of L1 and L2 over K;

(4) if E ⊂ K is any finite extension of K, then LE ⊃ E is a finite abelian extension

corresponding to the ideal group N−1E/KB of E. For every modulus g of B there is a

commutative diagram

IE(g)/N
−1
E/KB(g)

∼−→ Gal(LE/E)
yNE/K

yres

I(g)/B(g)
∼−→ Gal(L/K).

Moreover, the ideal group B0 corresponding to the abelian extension L ∩ E of K

satisfies B0(g) = NE/K(IE(g)) ·B(g);

(5) if E ⊂ K is any finite extension of K, then the ideal group BE corresponding to the

maximal subextension of E/K that is abelian over K satisfies BE(g) = NE/K(IE(g)) ·
R(g) for each of its moduli g.
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Proof. Property (2) is a generality on inclusion reversing bijections that we leave to the

reader.

For (3), we observe first that the diagram is commutative because of the property

(p, L2/K)|L1 = (p, L1/K) of the Artin symbol of the primes p ∤ g that generate I(g). In

particular, if R(g) is in the kernel of the Artin map of the extension L2/K, it is in the

kernel of the Artin map of the extension L1/K. This implies that g is a modulus for B1.

The commutativity of the diagram in (4) is proved in a similar way. If r is a prime

in E lying above a finite prime p ∤g, it is unramified in LE/E and one has (r, LE/E)|L =

(p, L/K)f(r/p) = (NE/Kr, L/K). This also shows that the ray RE(g) is in the kernel of the

Artin map ψLE/E : IE(g) → Gal(LE/E), since its norm image NE/K(RE(g)) ⊂ R(g) is

in the kernel of ψL/K . As the restriction map on the Galois groups is injective, we have

ker(ψLE/E) = N−1E/KB(g) as the ideal group corresponding to the extension LE of E.

Using Galois theory, we see that the cokernels of the vertical maps give an isomorphism

I(g)/NE/K(IE(g)) ·B(g)
∼−→ Gal((L ∩ E)/K,

and the restriction property (p, L/K)|L∩E = (p, (L ∩ E)/K) of the Artin symbol shows

that this is the Artin isomorphism for the extension L ∩ E of K. It follows that B0(g) =

NE/K(IE(g)) ·B(g) is the ideal group of L ∩ E over K.

In order to derive the basic statement (1) from this we take E/K abelian in the

previous argument and g a modulus of the corresponding ideal group BE . Setting L equal

to the class field of R(g), we have an inclusion E ⊂ L from BE ⊃ R(g) and from what we

have just proved we find BE(g) = NE/K(IE(g)) ·R(g).
Finally, for property (5), we apply this argument once more with E/K finite, g a

modulus of the ideal group of the maximal subextension E0 ⊂ E that is abelian over K

and L the class field of R(g). This yields L ∩ E = E0 and the property follows. �

◮ Ray class fields

The abelian extension Hf of K corresponding to the ray R(f) modulo a cycle f is known

as the ray class field modulo f. They can be viewed as generalizations of the cyclotomic

fields in the sense of Kronecker-Weber to arbitrary K. By the main theorem, they have

the following properties.

8.12. Theorem. Let K be a number field with maximal abelian extension Kab, f a cycle

of K and Hf ⊂ Kab the ray class field modulo f. Then Hf is the maximal abelian extension

of K inside Kab in which all primes of the ray R(f) split completely. The extension Hf/K

is unramified outside f, and we have an Artin isomorphism

Clf
∼−→ Gal(Hf/K).

The field Kab is the union of all ray class fields of K inside Kab. �

Example. For K = Q the ray class fields can be given explicitly as

Hn = Q(ζn + ζ−1n ) and Hn·∞ = Q(ζn).
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In order to prove this, one applies (4) of 1.11 with E = Q(ζn) and L = Hn·∞. For every

prime p|p inQ(ζn) that does not divide n·∞, the normNQ(ζn)/Q(p) = pf(p/p)Z is in the ray

R(n·∞), so the left vertical arrow is the zero map. This implies that LE = Hn·∞(ζn) equals

E = Q(ζn), so Hn·∞ is contained in Q(ζn). As we know the Galois group Gal(Hn·∞/Q) ∼=
Cln·∞ = (Z/nZ)∗ we have Hn·∞ = Q(ζn) as stated. The real field Hn ⊂ Hn·∞ is contained

in the maximal real subfield Q(ζn + ζ−1n ) of the cyclotomic field, and it must be equal to

it as we have already seen that its Galois group over Q is Cln = (Z/nZ)∗/〈−1 mod n〉.

A ray class field of special importance is the ray class field modulo the trivial cycle f = 1

of K. It is known as the Hilbert class field of K. As the ray class group modulo the trivial

cycle is the ordinary class group ClK of K, we have an Artin isomorphism

ψH/K : ClK
∼−→ Gal(H/K)

between the class group ofK and the Galois group overK of the maximal abelian extension

H of K that is unramified at all primes of K. Moreover, the primes that split completely in

H/K are the principal prime ideals in the ring of integers of K. This is a rather surprising

relation: it is not at all obvious that the size of a certain unramified extension of K should

be related to the class group of K, which measures how much the ring of integers of K

differs from a principal ideal ring. On the other hand, this relation is extremely useful as it

enables us to study the class group of a number field K by constructing unramified abelian

extensions of K. In this context, one also uses a slightly larger field known as the strict or

narrow Hilbert class field. It is the maximal abelian extension of K that is unramified at

all finite primes of K.

A problem that has not been answered in a satisfactory way for any number field

K 6= Q apart from imaginary quadratic number fields is how to find explicit generators

over K of the abelian extensions whose existence is guaranteed by the general theory. For

small examples (exercises 10, 16, 23), a more or less sophisticated combination of ad hoc

arguments often leads to the desired result.
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Exercises

1. Let it be given that for every integer a, the Legendre symbol
(
a
p

)
depends only on the residue

class p mod 4|a|, and that the residue classes of p and −p have the same behaviour if a is

positive. Deduce the quadratic reciprocity law from this.

[Hint: for p− q = 4a we obtain
(
p−q
q

)
=
(
p−q
p

)
.]

2. Show that every prime number of the form p = x2 + 5y2 is equal to 5 or congruent to 1 or 9

modulo 20.

3. Let n > 2 be an integer. Determine all integers a for which the extension Q(ζn, n
√
a) is an

abelian extension of Q.

4. Prove the main theorem 8.9 for K = Q.

[There is more to it than Kronecker-Weber...]

5. Let B1 and B2 be ideal groups of K with conductors f1 and f2. Show that B1 ∩ B2 has

conductor lcm(f1, f2) and that B1B2 has conductor dividing gcd(f1, f2). Give an example in

the second case where the conductor is a strict divisor of gcd(f1, f2).

6. The Euler Φ-function is defined for cycles f of K by Φ(f) = #(O/f)∗.
a. Show that φ is multiplicative, i.e. Φ(fg) = Φ(f)Φ(g) if gcd(f, g) = 1.

b. Let E be the unit group of O and Ef the subgroup of units in E that are 1mod∗ f. Show
that the ray class group of conductor f has order h(f) = hKΦ(f)[E : Ef]

−1.

7. The strict or narrow Hilbert class field H+ = H+(K) of a number field K is the maximal

abelian extension of K in which all finite primes are unramified. Show that H+ is a Galois

extension of the Hilbert class field H of K, and that Gal(H+/H) is an elementary abelian

2-group of order 2r[O∗ : O∗+]−1. Here r is the number of real primes of K and O∗+ denotes

the group of totally positive units in O, i.e. those units that are positive under every real

embedding of K.

8. Let H be the Hilbert class field of K and p a finite prime of K. Prove that p splits completely

in H/K if and only if p is principal. Show also that the the norm map NH/K : ClH → ClK
is the zero map.

9. Let K1,K2 ⊂ Qac be number fields of class number 1. Prove that K1∩K2 has class number 1.

10. Show that K = Q(
√
−15) has Hilbert class field K(

√
5).

11. Let K be a number field that is Galois over Q with group G. Show that the Hilbert class

field H of K is normal over Q, and that there is an exact sequence

0 −→ ClK −→ Gal(H/Q) −→ G −→ 0.

Show also Gal(H/Q) can be written as a semi-direct product Gal(H/Q) ∼= ClK ⋊ G with

respect to the natural action of G on ClK if G is cyclic of prime order.

12. Let K be an imaginary quadratic field and L/K an unramified abelian extension. Show that

L/Q is Galois. Can you describe Gal(L/Q)?
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13. Let E/K be an extension of number fields of degree n. Show that the class number hK divides

nhE . Show also that hK divides hE and that the norm map NE/K : ClE → ClK is surjective

if there is a prime that is totally ramified in E/K.

14. Show that the class number of the real cyclotomic field Q(ζn+ ζ
−1
n ) divides the class number

of Q(ζn) for every n > 1, and that the class number of Q(ζm) divides the class number of

Q(ζn) if m divides n.

15. (Ring class fields.) Let K be a number field with ring of integers O and R ⊂ O a subring

for which the conductor f = fO/R (in the sense of [I, 5.8]) is non-zero. Show that there is a

unique subfield Rf ⊂ Hf of the ray class field modulo f that contains the Hilbert class field

of K and yields an isomorphism

Pic(R)
∼−→ Gal(Rf/K)

under which the residue class of an invertible prime ideal p ⊂ R is mapped to the Artin

symbol of pO in Rf/K. If K is imaginary quadratic, show that Rf/Q is Galois and that

Gal(Rf/Q) is isomorphic to the semidirect product Pic(R)⋊ Z/2Z, where the action of the

non-trivial element of Z/2Z on Pic(R) is the inversion [a] 7→ [a]−1.

16. Let K be a cubic number field of squarefree discriminant D. Show that the extension

K(
√
D)/Q(

√
D) is cyclic of degree 3 and totally unramified. Conclude that the class number

of Q(
√
D) is divisible by 3. As an example, show that K = Q(

√
−31) has Hilbert class field

K(α) with α3 + α+ 1 = 0.

17. Let k ≥ 1 be an odd integer and α a root of the polynomial X3 + 4kX − k. Show that Q(α)

is a cubic field with even class number.

18. For p be a prime number we let m(p) be the number of distinct zeroes of X3 −X − 1 in the

finite field Fp. Prove the following:

m = 0 if and only if
(
p
23

)
= 1 and p cannot be written as p = a2 + 23b2 with a, b ∈ Z;

m = 1 if and only if
(
p
23

)
= −1;

m = 2 if and only if p = 23;

m = 3 if and only if p can be written as p = a2 + 23b2 with a, b ∈ Z.

19. Suppose L/K is cyclic of prime power order pk and p does not divide hK . Prove that there

is a prime that is totally ramified in L/K.

20. The Hilbert class field tower of K is the sequence of fields K = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂
Hi ⊂ . . . in which Hi+1 is the Hilbert class field of Hi for each i ≥ 0. The Hilbert class

field tower is said to be finite if Hi+1 = Hi for i sufficiently large. Prove that all fields Hi
are normal extensions of K with root discriminant |∆Hi |1/[Hi:Q] = |∆K |1/[K:Q], and that the

Hilbert class field tower of K is finite if and only if there is a finite extension of K with class

number 1.

[It has been shown by Golod and Shafarevich in 1964 that there exist infinite class field

towers. This implies that the asymptotic lower bound |∆K |1/[K:Q] > 5.803... for [K : Q]

tending to infinity [I, §9] cannot be replaced by any lower bound that tends to infinity with

[K : Q].]
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21. Let O be the ring of integers of K = Q(
√
5).

a. Prove O is a principal ideal domain with unit group O∗ = 〈−1, (1 +
√
5)/2〉.

b. Let p be a prime number. Prove that there exists a field L satisfying

[L : Q] = 4,
√
5 ∈ L, |∆L/Q| = 25p

if and only if p 6≡ 2, 3 mod 5. Prove also that if such a field exists, it is uniquely

determined by p, up to isomorphism. We denote this field by L(p).

c. Prove that among all fields L(p), the only one that is Galois over Q is the field L(5).

Can you embed L(5) in a cyclotomic extension of Q?

22. (Continuation.) A number field is called totally real if it has no complex primes, totally

complex if it has no real primes, and mixed if it is neither totally real nor totally complex.

The Fibonacci sequence (Fn)
∞
n=0 is inductively defined by F0 = 0, F1 = 1, Fn+2 = Fn+1+Fn.

Let p be a prime number with p ≡ 1 or 4 mod 5.

a. Prove that L(p) is mixed if and only if p ≡ 3 mod 4.

b. Suppose that p ≡ 1 mod 8. Prove that L(p) is totally real if p divides F(p−1)/4, and

totally complex otherwise.

c. Suppose that p ≡ 5 mod 8. Prove that L(p) is totally complex if p divides F(p−1)/4, and

totally real otherwise.

d. Let p be a prime number with p ≡ 11 or 19 mod 20. Prove that the field L(p) has

exactly one prime lying over 5 if p ≡ 11 mod 20, and exactly two primes lying over 5 if

p ≡ 19 mod 20.

23. Show that the Hilbert class field H of Q(
√
−17) is a dihedral extension of Q of degree 8.

Find generators for H.

[Hint: Show that H contains i =
√
−1 and that H/Q(i) is a V4-extension.]

24. (Artin) Show that the real quadratic field Q(
√
19 · 151) has class number 1, and that it has

a Galois extension of degree 60 that is unramified at all finite primes.

[Hint: the polynomial X5 −X − 1 has discriminant 19 · 151, so you can use exercise 7.4.]

25. Show that the splitting field of the polynomial X4 − X − 1 is unramified over Q(
√
−283).

Deduce that the class number of Q(
√
−283) is divisible by 3. [You may verify that it is equal

to 3. Can you describe the Hilbert class field of Q(
√
−283)?]

26. Show that for every number field K, there is a canonical isomorphism Gal(Kab/K) ∼=
lim← Clf between the Galois group of the maximal abelian extension of K and the pro-

jective limit of the ray class groups Clf of K with respect to the natural maps Clg → Clf if f
divides g. Show that the direct product

∏
pA
∗
p of the unit groups of the completions Ap of O

at the finite primes p admits a natural map to Gal(Kab/K). Can you describe the cokernel?

Is this map injective? Deduce that every number field K 6= Q has abelian extensions that

are not cyclotomic.
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9 Class field theory: idèles

The formulation of class field theory as given in the preceding section is the classical

formulation using ideal groups. From a computational point of view, these groups are

often a convenient tool as they have a simple definition that makes them well-suited for

most explicit computations. It is however somewhat annoying that every proof involving

ideal groups starts by the choice of a common cycle modulo which everything is defined,

and the end of the proof is the observation that the result obtained is independent of the

choice of the common modulus.

In order to avoid the choice of moduli, say in the case of base field Q, it is clear that

one should not work with the groups (Z/nZ)∗ for varying n, but pass to the projective

limit

Ẑ∗ = lim
←n

(Z/nZ)∗ =
∏

p

Z∗p

from the beginning and define the Artin map on Ẑ∗ rather than on an ideal group IQ(n)

for some large n. We see that for the rational field, this large group becomes a product of

completions at all finite primes of the field.

◮ Subgroups of the idèle group

In the general case, one also needs the real completions in order to keep track of the sign

conditions at the real primes. Chevalley observed that a very elegant theory results if one

takes the product of the unit groups at all completions of the number field, i.e. the idèle

group J of K, and writes all ray class groups as surjective images J ։ Clf.

As the idèle group J contains a subgroup

(9.1) K∗p = K∗p ×
∏

p′ 6=p

{1} ⊂ J

for each prime p, we obtain a local Artin map for each completion Kp of K. This point of

view enables us to describe the relation between the global abelian extension L/K and the

local extensions Lq/Kp, thus giving rise to a local class field theory . Moreover, it yields in

a natural way a direct description of the power of a prime p dividing the conductor of an

extension L/K that strengthens the qualitative description of 1.9(1).

In order to describe the open subgroups of the idèle group J of K, we look at the open

subgroups of the completions K∗p first. If p is a finite prime, a basis of open neighborhoods

of the unit element 1 ∈ K∗p consists of the subgroups U
(n)
p ⊂ K∗p defined by

U
(n)
p =

{
Up = A∗p if n = 0;

1 + pn if n ∈ Z>0.

If p is real, we have Kp
∼= R. Every open subgroup of the multiplicative group R∗ contains

the group R>0 of positive real numbers as R>0 is generated by any open neighborhood of

1 ∈ R∗. The open subgroups of K∗p are therefore

U
(0)
p = K∗p and U

(1)
p = Kp,>0.
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Finally, if p is complex, the only open subgroup of K∗p is the trivial subgroup U
(0)
p = K∗p ,

which is generated by every open neighborhood of 1 ∈ K∗p ∼= C∗. With this notation, we

have for each cycle f =
∏

p p
n(p) of K a subgroup

(9.2) Wf =
∏

p U
n(p)
p ⊂ J.

9.3. Proposition. A subgroup of the idèle group J of K is open if and only if it contains

Wf for some cycle f of K.

Proof. As almost all exponents n(p) in (2.2) are equal to zero, the definition of the idèle

topology shows thatWf is an open subgroup of J . Conversely, ifH ⊂ J is an open subgroup

of J , we must have Wf ⊂ H for some f as every open neighborhood of 1 ∈ J generates

some Wf. �

◮ Ray classes as idèle classes

It follows from 2.2 that a subgroup of the idèle class group C = J/K∗ is open if and only

if it contains the homomorphic image Df of some subgroup Wf ⊂ J . We have a canonical

isomorphism J/K∗Wf
∼−→ C/Df for the quotients of the basic open subgroups Df ⊂ C.

9.4. Theorem. For every cycle f of K there are isomorphisms

J/K∗Wf
∼−→ C/Df

∼−→ Clf = I(f)/R(f)

such that the class of a prime element πp at a finite prime p ∤ f in J/K∗Wf or C/Df

corresponds to p mod R(f) in Clf.

Proof. Write f =
∏

p p
n(p), and define a map

φ : J −→ Clf = I(f)/R(f)

(xp)p −→
∏

p finite

pordp(x
−1xp) mod R(f),

where x ∈ K∗ is an element that satisfies x−1xp ≡ 1mod∗ pn(p) for all primes p dividing f.

Such an element exists by the approximation theorem, and it is uniquely determined up

to multiplication by an element y ∈ K∗ satisfying y ≡ 1mod∗ f. By definition of R(f), the

map φ is a well defined homomorphism. Its surjectivity is clear as a prime element πp ∈ J
at a finite prime p ∤ f is mapped to p mod R(f). It remains to show that kerφ = K∗Wf.

Suppose we have (xp)p ∈ kerφ. Then there exists x ∈ K∗ as above and y ∈ K∗ such
that y ≡ 1mod∗ f and ∏

p finite

pordp(x
−1xp) =

∏

p finite

pordp(y).

This implies that xp(xy)
−1 is a unit at all finite p outside f and satisfies xp(xy)

−1 ≡
1mod∗ pn(p) for p|f, so we have (xp)p ∈ xyWf. This proves the inclusion kerφ ⊂ K∗Wf.

The other inclusion is obvious from the definition of φ. �
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9.5. Corollary. Every open subgroup of C is of finite index.

Proof. Any open subgroup contains a subgroup Df, which is of finite index in C by the

finiteness of the ray class group Clf. �

If B is an ideal group and g a modulus for B, we define the open subgroup DB ⊂ C

corresponding to B as the kernel

DB = ker[C −→ I(g)/B(g)]

of the natural map induced by 2.3. We have a canonical isomorphism C/DB
∼−→ I(g)/B(g)

that maps the class of a prime element πp at a finite prime p ∤ g to (p mod B(g), and it

follows from the definition of equivalence of ideal groups that DB depends on B, but not

on the choice of the modulus g.

9.6. Proposition. The correspondence B 7→ DB is an inclusion preserving bijection

between the set of ideal groups of K and the set of open subgroups of the idèle class

group C. The conductor f of an ideal group B is the smallest cycle satisfying Df ⊂ DB .�

From the obvious equality Df1 · Df2 = Dgcd(f1,f2), we obtain as a simple corollary of the

formalism a statement that required a proof in 1.8.

9.7. Corollary. If an ideal group can be defined modulo f1 and f2, it can be defined

modulo gcd(f1, f2). �

◮ The kernel of the Artin map

Combining the bijection between open subgroups of C and ideal groups in 2.6 with the

main theorem 1.9, we see that every finite abelian extension L/K corresponds to an open

subgroup DL of C for which there is an Artin isomorphism

C/DL
∼−→ Gal(L/K)

that maps the residue classes of the prime elements πp mod DL for finite unramified p to

the Artin symbol (p, L/K).

In order to describe the subgroup DL of the idèle class group corresponding to L, we

need to define the norm NL/K : CL → CK on idèle class groups. We know (cf. A.2) that

there is an adèle norm NL/K : AL → AK that is the ordinary field norm NL/K : L → K

when restricted to L. It can be given explicitly as

(9.8) NL/K((xq)q) = (
∏

q|p
NLq/Kp

(xq))p.

Here q and p range over the primes of L and K, respectively. The norm maps the unit

group JL = A∗L into the unit group JK and L∗ into K∗, so we have an induced norm

NL/K : CL → CK on the idèle class groups.
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We need to check that this norm corresponds to the norm on ideal class groups under

the isomorphism 2.3. As in the previous section, we view a cycle f of K as a cycle in a finite

extension L when necessary, and use the obvious notation WL,f ⊂ JL and DL,f ⊂ CL for

the corresponding subgroups in JL and CL. For a cycle f of K we have NL/K [WL,f] ⊂WK,f

and NL/K [DL,f] ⊂ DK,f.

9.9. Proposition. Let L/K be a finite extension and f a cycle of K. Then there is a

commutative diagram

CL/DL,f
∼−→ IL(f)/RL(f)yNL/K

yNL/K

CK/DK,f
∼−→ IK(f)/RK(f)

in which the horizontal isomorphisms are as in 2.3.

Proof. The commutativity of the diagram may be verified on prime elements πq at finite

primes q of L outside f, since these classes generate CL/DL,f. For such prime elements

we have NL/K(πq) = NLq/Kp
(πq) by 2.8, and by the definition of extension valuations we

have NLq/Kp
(πq) ·Ap = pf(q/p). It follows that the diagam commutes. �

9.10. Proposition. Let L be a finite extension of K. Then there exists a cycle f of K

such that DK,f is contained in NL/KCL and all primes dividing f are ramified in L/K. In

particular, NL/KCL is open in CK .

Proof. With [L : K] = n, we have NL/KJL ⊃ Unp for all primes p. As Unp contains an

open neighborhood of 1 ∈ Up, one has Unp ⊃ U
(k)
p for some k ∈ Z>0. If q|p is unramified,

the identity

NLq/Kp
(x+ yπkp) = NLq/Kp

(x) + TrLq/Kp
(y)πkp mod pk+1Ap

for x, y ∈ Aq and the surjectivity of the norm and trace map on the residue class field

extension kp ⊂ kq easily imply that we have NLq/Kp
[Uq] = Up. This proves our proposition,

as it implies NL/KJL ⊃WK,f for some f divisible only by ramifying primes.

9.11. Theorem. For any finite extension L/K there exists a cycle f in K that is only

divisible by ramifying primes and an isomorphism

CK/NL/KCL
∼−→ I(f)/NL/KIL(f) ·R(f)

that maps the class of πp to the class of p for finite unramified p.

Proof. Take f as in 2.10, then the isomorphism is obtained by taking cokernels in the

diagram of 2.9. �
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◮ Main theorem

We can now give the idèlic version of the main theorem of class field theory. Note that so

far, none of the proofs in this section relied on the main theorem 1.9 or its corollaries.

9.12. Main theorem. Let K be a number field, ΣK the set of finite abelian extensions

of K contained in some fixed algebraic closure and D the set of open subgroups of the idèle

class group C of K. Then there exists an inclusion reversing bijection

ΣK ⇆ D

such that for an extension L/K corresponding to the subgroup D of C the following holds:

(1) D = NL/KCL;

(2) there is a global Artin isomorphism ψL/K : C/D
∼−→ Gal(L/K) such that the image of

a completion K∗p in C is mapped onto the decomposition group Gp of p in Gal(L/K).

It induces a local Artin isomorphism

ψp : K∗p/NLq/Kp
L∗q

∼−→ Gp = Gal(Lq/Kp) ⊂ Gal(L/K)

for the local extension at p. If p is finite, this local isomorphism maps the local unit

group Up onto the inertia group Ip ⊂ Gp and the class of a prime element πp at p to

the coset of the Frobenius automorphism in Gp.

The idèlic main theorem 2.12 is similar in content to 1.9, but it has several advantages

over the older formulation. First of all, it does without the choice of defining moduli,

thus avoiding the cumbersome transitions between equivalent groups. Secondly, it yields a

description of the contribution of a prime p that shows the local nature of this contribution.

The statement in (2) is not a simple corollary of the identity D = NL/KCL since it requires

the non-trivial identity

(9.13) K∗p ∩ (K∗NL/KJL) = NLq/Kp
L∗q

for the intersection of the subgroup K∗p ⊂ C with the kernel NL/KCL of the global Artin

map. From (2), we obtain a description of the conductor that can be used to actually

compute it.

9.14. Corollary. Let fL/K =
∏

p p
n(p) be the conductor of the abelian extension L/K. If

q is a prime of L that extends p, then n(p) is the smallest non-negative integer n for which

the inclusion

U
(n)
p ⊂ NLq/Kp

Uq

is satisfied. �

As a supplement to 2.12, there are again the functorial diagrams occurring in 1.11. Both

the statements and their derivation from the main theorem have an immediate translation

in terms of the idèle class group, and we leave them to the reader.
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◮ Local class field theory

The local Artin isomorphism, which occurs as a ‘corollary’ of the idèlic version of global

class field theory, leads to a class field theory for local number fields that is interesting

in its own right. This local theory can also be developed independently from the global

theory, and one may argue that this in certain ways more natural. Our order of presentation

however follows the history of the subject.

As we have formulated global class field theory for number fields only, and not for

function fields of dimension 1 over finite fields (i.e. extensions of a finite field of transcen-

dence degree 1), we obtain a local class field theory for local fields in characteristic 0 only.

The theory in characteristic p is highly similar, even though some of the proofs have to be

modified for extensions of degree divisible by the characteristic.

9.15. Proposition. Let F be a finite extension of Qp for some prime number p and E/F

a finite abelian extension with group G. Then there is a canonical isomorphism

ψE/F : F ∗/NE/FE
∗ ∼−→ G

that maps the unit group of the ring of integers of F onto the inertia group IE/F and a

prime element onto the Frobenius residue class mod IE/F .

Proof. We can choose number fields K and L that are dense in F and E, respectively, in

such a way that L is G-invariant and LG = K. This means that there are primes q in L

and p in K such that F = Kp and E = Lq, and Gp = G. The global Artin map for L/K

now induces a local Artin isomorphism ψE/F with the stated properties.

In order to prove the canonicity of ψE/F , we have to show that it does not depend on

the choice of the G-invariant subfield L ⊂ E. Thus, let L′ be another number field that is

dense in E and stable under G. Replacing L′ by LL′ if necessary, we may assume that L

is contained in L′. Then K ′ = (L′)G contains K, and we have F = Kp = K ′r for a prime

r|p. The commutative diagram

K ′r −→ CK′/NLK′/K′CLK′
∼−→ Gal(LK ′/K ′)

yid

yNK′/K

yres

Kp −→ CK/NL/KCL
∼−→ Gal(L/K);

derived from 1.11 (4) shows that L′/K ′ and L/K induce the same Artin isomorphism for

the extension E/F . �

The description of the local Artin isomorphism given by the preceding proposition is some-

what indirect as the map is induced by the Artin isomorphism of a ‘dense global extension’.

Only in the case of an unramified extension E/F the situation is very transparent, as in

that case both F ∗/NE/FE
∗ and Gal(E/F ) have canonical generators, and they corre-

spond under the Artin isomorphism. Only relatively recently, in 1985, Neukirch realized

that that the local Artin map in the general case is completely determined by this fact

and the functorial properties of the Artin symbol. We do not give the argument here.
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9.16. Main theorem for local number fields. Let F be a local number field, ΣF the

set of finite abelian extensions of F contained in some fixed algebraic closure and H the set

of open subgroups of finite index of F ∗. Then there exists an inclusion reversing bijection

ΣF ⇆ H

such that for an extension E/F corresponding to the subgroup H of F ∗ the following holds:

(1) H = NE/FE
∗;

(2) there is an Artin isomorphism ψE/F : F ∗/H
∼−→ Gal(E/F ) such that, for non-

archimedean F , the unit group U of the valuation ring of F is mapped onto the inertia

group IE/F and a prime element is mapped into the Frobenius coset modulo IE/F .

Note that NE/FE
∗ ⊂ F ∗ in 2.16 is indeed an open subgroup of finite index, as it contains

F ∗n for n = [E : F ]. We leave it to the reader to formulate the local functorial diagrams,

which are analogous to those in 1.11.

The extension corresponding to an open subgroup H of finite index in F ∗ is called the

class field of H. In the global case we have class fields corresponding to open subgroups of

the idèle class group.

The global theorem 2.13 implies the existence of the Artin isomorphism in (2). The

injectivity of the map E 7→ NE/FE
∗ follows then easily, as an abelian extension F ′ with

NF ′/FF
′∗ = NE/FE

∗ gives a vertical zero map in (4) that implies E ⊂ F ′, whence E = F ′

by symmetry. The surjectivity however is not obvious, and we will prove a local existence

theorem in section 12 to show that every open subgroup H ⊂ F ∗ has a class field. Apart

from this independent statement, the local main theorem can be seen as a corollary of the

global theorem. It is also possible, and to some extent more natural, to use the local case

in order to prove the more complicated global theorem. For such an approach we refer to

[7] or [9].

The next three sections will be devoted to the proof of the main theorem of class field

theory. Section 10 introduces cyclic group cohomology in order to prove the norm-index

inequality [CK : NL/KCL] ≥ [L : K] for cyclic extensions L of a number field K. Section 11

proves the reverse inequality [CK : NL/KCL] ≤ [L : K], which holds for arbitrary finite

extensions L/K, by an explicit construction of idèle norms in suitable extensions. Section 12

combines the inequalities into a proof of Artin’s reciprocity law and finishes all proofs by

establishing the existence theorems in has a class field.
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Exercises

1. Let p be a prime of K and C the idèle class group of K. Show that the natural map K∗p → C

mapsK∗p isomorphically to a closed subgroup of C. Is the analogous statement for the natural

map Kp ×Kp′ → C correct?

2. Let F be a non-archimedean local field and E/F a finite extension.

a. Show that the norm map and the trace map for the residue class field extension E/F

are surjective.

b. Suppose that E/F is unramified. Show that

NE/F [U
(i)
E ] = U

(i)
F for i ≥ 0.

3. Let L/K be a finite abelian extension of number fields and x ∈ K∗ an element that is

contained in the local norm image NLq/Kp
[Lq]

∗ ⊂ K∗p at all primes p 6= p0 of K. Show that

x is also a local norm at p0.

[Hint: use 9.14.]

4. Let L/K be a finite abelian extension of number fields with conductor fL/K , and p|p a finite

prime of K. Denote by m the exponent to which p appears in fL/K , and let e = e(p/p) be

the ramification index of p over the rational prime p. We write Ui for U
(i)
p in this exercise.

Prove the following assertions.

a. If i, j are positive integers with j 6≡ 0 mod p, then the map Ui → Ui sending every x to

xj is an isomorphism.

b. For i > e/(p− 1) there is an isomorphism Ui → Ui+e sending every x to xp.

c. If j is a positive integer, then (K∗p)
j is an open subgroup of K∗p, and it contains Ue′+ke,

where e′ denotes the least integer > e/(p− 1) and k is the number of factors p in j.

d. If Kp ⊂ E is a finite extension, then NE/Kp
[E∗] is an open subgroup of K∗p, and it

contains Ue′+ke, with e
′ as in (c) and k the number of factors p in [E : Kp].

e. One has m ≤ e′+ke, where e′ denotes the least integer > e/(p−1) and k is the number

of factors p in [L : K].

f. More precisely, one has m ≤ e′ + ke, with e′ as before, but with k now equal to the

number of factors p in the exponent of the inertia group of p in Gal(L/K).

5. Let K = Q(
√
−3) and L = K( 3

√
2). We write ζ3 for the cube root of unity (−1 +

√
−3)/2 in

K, and µ3 for the subgroup of K∗ generated by ζ3. The unique primes of K lying over 2 and

3 are denoted by 2 and t, respectively.

a. Prove that K ⊂ L is cyclic of degree 3, and that the map ǫ: Gal(L/K) → µ3 sending σ

to σ( 3
√
2)/ 3

√
2 is a group isomorphism.

b. Show that the conductor fL/K divides 2t4.

c. Let p be a finite prime of K not dividing 2t, and let Np be the cardinality of its residue

class field. Prove that ǫ((p, L/K)) is the unique element of µ3 that is congruent to

2(Np−1)/3 modulo p.

d. Show that L is the ray class field of K with modulus 6 (= 2 · t2).
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6. (Euler’s conjecture.) Let p 6= 3 be a prime number. Show that 2 has a unique cube root in

Fp if p ≡ 2 mod 3, and that we have

2 is a cube in Fp ⇐⇒ p = x2 + 27y2 with x, y ∈ Z

for primes p ≡ 1 mod 3.

7. Let a be an integer that is not a square. Show that a prime p ∤2a can be written as p = x2−ay2
if and only if p splits completely in the ring class field R ⊃ Q(

√
a) corresponding to the order

Z[
√
a].

8. Prove the following criterion, discovered by Euler, on the biquadratic character of 2 modulo

a prime number p ≡ 1 mod 4:

2 is a fourth power in Fp ⇐⇒ p = x2 + 64y2 with x, y ∈ Z.

9. Derive the local Kronecker-Weber theorem 7.2 from the local main theorem 9.17.

10. Prove the local main theorem 9.17 for archimedean F . For non-archimedean F , show that

the theorem holds for unramified extensions, i.e. show that there is an inclusion reversing

bijection between unramified extensions E/F and subgroups of F ∗ containing UF given by

E 7→ NE/F [E
∗].

11. Let K be a local field and H a subgroup of K∗.

a. Suppose the K is archimedean. Show that [K∗ : H] is finite if and only if H is open.

b.

b. Suppose that K is non-archimedean and charK = 0. Show that [K∗ : H] is finite if and

only if H is open and not contained in the unit group UK of the valuation ring.

c. Suppose that charK = p > 0. Show that there exists a subgroup H ⊂ K∗ that is of

finite index but not open.

12. Let K be an extension of Qp with residue class field K of order q and L/K a totally ramified

extension of degree coprime to pq − p. Show that the largest subextension M of L/K for

which M/K is abelian is K itself, and that NL/KL
∗ = K∗. Can you prove this without class

field theory?

13. Let M be the splitting field of X4 − 17 over Qp. Determine the subgroup NM/QpM
∗ ⊂ Q∗p

for p = 2, 3, 5, 17 and 149.

14. Let L/K be a tamely ramified abelian extension of local number fields. Prove directly (i.e.

without using 9.17) that the order of the group K∗/NL/KL
∗ equals the degree [L : K].

15. Show that the Artin isomorphisms ψE/F in 9.17 for E ⊂ F ab induce an injective homomor-

phism ψF : F ∗ → Gal(F ab/F ) of topological groups that fits in an exact diagram

0 −→ UF −→ F ∗
ord−→ Z −→ 0y≀

yψF
ycan

0 −→ Gal(F ab/F unr) −→ Gal(F ab/F ) −→ Gal(F unr/F ) −→ 0

Deduce that the image of ψF is dense.
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