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INTRODUCTION

In the first part of these notes (‘Number rings’), we proved the basic theorems on the arith-
metic of algebraic number fields. The first part of the theory, dealing with ideal factorization
in number rings, was completely algebraic, and used only ring theoretic arguments. The
second part made specific use of the fact that number rings allow embeddings in Euclidean
spaces, and the resulting theorems on the finiteness of the class group and the structure
of the unit group of the ring of integers are particular for number rings. Although the
terminology from commutative algebra we employed is of a more recent nature, the results
we have proved so far are mostly classical, going back to 19-th century mathematicians as
Kummer, Dirichlet, Kronecker and Dedekind.

The theory to be developed in this second half of the notes concerns some important
extensions of the theory that were obtained during the period 1895-1950. We start with
the valuation theory introduced by Hensel in the early 20-th century, which yields a more
‘topological’ or ‘analytic’ approach to the theory of ideal factorization. This leads in a
natural way to the notion of a complete field, and for number fields the process of com-
pletion gives rise to local fields like the field R of real numbers and the fields Q,, of p-adic
numbers. As was shown by Hasse, it is often fruitful to develop the global theory from the
local case, since local fields are in many ways ‘easier’ than number fields, somewhat in the
same way as localized number rings tend to be ‘easier’ than general number rings. The
interplay between local and global fields finds its ultimate form in Chevalley’s definition
of adeles and ideles.

The power and esthetic impact of these more modern concepts is particularly visible
in the class field theory, which allows a classical ideal theoretic and a more recent idelic
formulation. Although it has its roots in the 19th century work of Kronecker, Weber
and Hilbert, it is a 20th century theory that was developed by Takagi, Artin, Hasse and
Chevalley during the period 1915-1945, and was reformulated once more in cohomological
terms, in the second half of the twentieth century. We will apply class field theory to very
classical problems such as the representation of integers by binary quadratic forms and the
derivation of higher (than quadratic) reciprocity laws.






1 VALUED FIELDS

Valuation theory provides an approach to the arithmetic of number fields by methods remi-
niscent of those in complex function theory, which describe functions by locally convergent
Laurent series expansions. More precisely, one considers the field M of meromorphic func-
tions on C obtained as the field of fractions of the ring O of holomorphic functions on C,
and writes f € M in the neighborhood of a point a € C as a convergent series

oo

flz) = Z ap(z — a)k

k>—0o0

with complex coefficients a; that are zero for almost all k& < 0. The ‘local variable’ z — «/ is
not unique in the sense that we can write f as a Laurent series in any variable w € M that
has a simple zero at a. If f is not identically zero, the lowest index k with a; # 0 does not
depend on the choice of the local variable and is known as the order ord,(f) of f at a. A
function f € M* is determined up to multiplication by a function without zeroes and poles
by the values ord,(f) for @ € C. These functions are precisely the units in O. One often
encounters subfields of M instead of M, such as the rational function field C(X) C M
consisting of those f € M that allow a meromorphic extension to the Riemann sphere
P!(C). Finite extensions of C(X) inside M arise as function fields associated to algebraic
curves.

Exercise 1. Show that C(X) C M satisfies C(X) N O = C[X] and C(X) N O* = C*.

In the early 20th century, the German mathematician Hensel observed that every non-
zero element of a number field K can be viewed in a similar way as a function on the set
of primes of the ring of integers Ok of K, since every non-zero element x has an order
ordy(xz) € Z at each prime p. The subring of ‘holomorphic elements’ x € K that have
ordy(x) > 0 for all p is the ring of integers Ok, and an element x € K* is determined up
to multiplication by an element in OF by the values ord,(x). If 7 € K is an element of
order 1 at p, we can try to write x like the function f above as a Laurent series

that converges ‘locally at p’. Apart from the fact that we have to specify which coefficients
ar, € K can occur in this series, we need to define a notion of ‘convergence around p’ for
series in K in order for this statement to make sense.

» VALUATIONS

Valuations, which can be thought of as ‘absolute values’ on arbitrary fields K, provide
a tool to introduce a metric topology on K. We will see in Theorem 2.7 that ‘p-adic
valuations’ on a number field K lead to p-adic expansions of elements in K, and in the
p-adic completions K, of K.
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§1: Valued fields

1.1. Definition. A valuation on a field K is a function ¢ : K — R>( satisfying
(1) ¢(x) =0 if and only if x = 0;

(2) ¢(zy) = d(x)9(y) for z,y € K;

(3) there exists C € R such that ¢(z +y) < Cmax{¢(z),¢(y)} for all z,y € K.

Conditions (1) and (2) describe the absolute value ¢ as the extension of a homomorphism
K* — R+ to all of K, obtained by putting ¢(0) = 0. Condition (3) expresses its ‘conti-
nuity’” with respect to addition. The smallest possible constant C' in (3) is the norm ||¢||
of the valuation ¢. It cannot be smaller than 1, and by (2) it equals

ol = sup (1 +x).
w: $(2)<1

This supremum is actually a maximum and, as will become clear, it is actually assumed
for x € {0, 1} (exercise 9). If ¢ is a valuation and r a positive real number, then z — ¢(x)"
defines a valuation of norm ||¢||".

The valuations that are implicit in the two situations described above are the valuation
o : M — R> defined by

bo(f) = cordald) for some ¢ € (0,1)
for f # 0 and the valuation ¢, : K — R>( defined by
bp () = T (@) for some ¢ € (0,1)

for x # 0. These definitions also make sense for f = 0 and x = 0 if we symbolically set
ord, (0) = ord,(0) = 4o00. From the obvious identities

ord, (f1 + f2) > min{ord, (f1), orda(f2)}
ordy (z1 + x2) > min{ord, (1), ordy(z2)}

we see that the norm of ¢, and ¢, equals 1. The value of the constant c in their definition
is irrelevant for most purposes, and in 1.8 we will introduce a corresponding notion of
equivalence of valuations. A valuation ¢ of norm 1 satisfies the ultrametric inequality

(1.2) ¢ (> r_q wi) < maxg—io2,..n (k)

and is called non-archimedean. If (1.2) holds, a sum of small elements will never be large, so
in this case the Archimedean postulate, which states that a ‘small but non-zero’ quantity
becomes arbitrarily large when repeatedly added to itself, does not hold. When quantities
of unequal size are added under a non-archimedean valuation, the ultrametric inequality
becomes an equality:

(1.3) d(x1) # d(x2) = d(x1 + 22) = max{p(r1), p(x2)}.
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§1: Valued fields

To see this, one supposes ¢(z1) > ¢(x2) and concludes from the inequalities

¢(z1) = ¢(z1 + 22 — 22) < max{(z1 + x2), d(—z2)} < max{P(z1), d(z2)} = ¢(z1)

that we have ¢(z1 + x2) = ¢(x1). The value ¢(—1) = 1 used here is immediate from the
fact that its square equals ¢(1) = 1. The ultrametric inequality is much stronger than the
more familiar triangle inequality

(D ey Ti) < Doy (i),

and this has amusing consequences for the geometry of the underlying space (exercise 8).
A trivial example of a non-archimedean valuation that exists on any field K is the trivial
valuation on K, obtained by extending the trivial homomorphism ¢ : K* — {1}.

Exercise 2. Show that every valuation on a finite field is trivial.

Valuations of norm larger than 1 are called archimedean. Characteristic examples are the
valuations ¢, : K — R>¢ obtained from embeddings o : K — C as

(1.4) ¢o () = |o(z)]

Valuations of this form have norm 2 and satisfy the triangle inequality.

» METRICS AND TOPOLOGY

Although valuations are not required to satisfy the triangle inequality, they do when raised
to a suitable power. This is a consequence of the following lemma.

1.5. Lemma. A valuation on a field K satisfies the triangle inequality if and only if its
norm does not exceed 2.

Proof. It is clear that a valuation satisfying the triangle inequality has norm at most 2.
Conversely, if ¢ has norm at most 2, we can repeatedly apply condition (3) in Definition
1.1 to obtain ¢(Zf:1 x;) < 2™ max; ¢(x;). Taking some of the z; in this inequality equal
to 0, we see that a sum of k terms can be bounded by d)(Zf:l x;) < 2kmax; ¢(z;). In
particular, we have ¢(k - 1) < 2k for k € Z>;. We now use the multiplicativity of ¢ to
obtain the estimate

oo+ =03 (1) ety < 20+ Dmaxtol 7)oty )

; i i
=0
" n ; —q n
<+ )Y (7)ol o) = a0 + (o) + 60"
i=0
The resulting inequality ¢(x +y) < ¥/4(n+ 1)(¢(x) + ¢(y)) is valid for all z,y € K and
implies the triangle inequality if we let n tend to infinity. U

An argument similar to that given in the preceding proof shows that it is possible to decide
whether a valuation is non-archimedean by looking at its values on multiples of the unit
element only.
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§1: Valued fields

1.6. Proposition. A valuation on a field K is non-archimedean if and only if it is bounded
on the set {n-1:n € Z}.

Proof. It is clear from the ultrametric inequality 1.2 that we have ¢(+n-1) < ¢(1) =1 if
¢ is non-archimedean. For the converse, we assume that ¢ is a valuation that is bounded
by M on {n-1:n € Z} and—after replacing ¢ by a suitable power if necessary—that it
satisfies the triangle inequality. Taking n-th roots of both sides of the estimate

oo+ = o (1)) < (0 DM max(o(e), o)

i=0
and letting n tend to infinity, we see that ¢ is non-archimedean. 0

We see from 1.6 that we can always take the upper bound M = 1 for a valuation bounded
on Z. This is also immediate from the multiplicativity of valuations.
For a field K of positive characteristic, the set {n - 1:n € Z} in 1.6 is finite set.

1.7. Corollary. A valuation on a field of positive characteristic is non-archimedean. [

Let ¢ be a valuation on a field K. Then there is a natural valuation topology 74 on K in
which a basis of open neighborhoods of a point x € K is given by the collection of open
balls

Us(@) ={y e K:9(z —y) <e} (e €Rso)

of radius € around x. As all powers of ¢ induce the same topology, the topology 7y is
metrizable by 1.5.

Exercise 3. Show that 7Ty is the discrete topology on K if and only if ¢ is trivial.

Just as for the ordinary absolute value on R or C, one shows for the valuation topology
that the addition map (z,y) — z+y and the multiplication map (x,y) — xy are continuous
maps from K x K to K, and that the inversion map z — x~! is continuous on K*. These
continuity properties can be summarized by stating that the valuation topology 74 on K
makes K into a topological field.

By the ultramatric property (1.3), a non-archimedean topological field K is topologi-
cally rather different from archimedean topological fields such as R and C. For instance,
given points z,y,z € K for which x — y and y — z have different valuation, the sum
x—z = (x —y)+ (y — 2) has the same valuation as either x — y or y — z: every triangle in
K is isosceles. In the same vein, it follows from the fact that every two points z,y in an
open ball U.(z() have distance

o(x —y) = ¢(z — 0 + 2o — y) < max{d(z — z0), d(zo —y)} <€
that every point in this open ball is a center: U (z) = U.(x0) = U:(y).

]_0 version 11 May 2017 9:57 p.m.



§1: Valued fields

> INDEPENDENCE OF VALUATIONS

Two valuations ¢ and v on a field K are said to be equivalent if they induce the same
topology on K. Equivalence can easily be decided using the following proposition.

1.8. Proposition. Let ¢ and 1 be two non-trivial valuations on a field K. Then the
following conditions are equivalent.

(1) ¢ =" for some constant r > 0;

(2) ¢ and v are equivalent;

(3) the topology Ty is stronger than Ty;

(4) ¢(x) < 1 implies (x) < 1 for all x € K.

Proof. The implications (1) = (2) and (2) = (3) are clear. As the inequality ¢(z) < 1
amounts to saying that the sequence {x™},, converges to 0 in the corresponding valuation
topology, we also have (3) = (4).

In order to prove (4) = (1), we take an element a € K with 0 < ¢(a) < 1. Such an
element exists because ¢ is non-trivial. We claim that we actually have an equivalence

d(x) <1<=¢(z)<l1.

Indeed, take x € K with ¥ (z) < 1. If we had ¢(x) > 1 then 27! would violate (4), and if
we had ¢(z) = 1 then az~* would violate (4) for large k. Thus ¢(z) < 1 as desired.

Next, let x € K* be arbitrary and define o, € R by ¢(z) = ¢(a)® and ¢(z) =
Y(a)?. We want to show that a = (3, since this implies that r = log ¢(x)/logv(z) =
log ¢(a)/log 1 (a) does not depend on z, i.e. that we have ¢ = 9" for this r. The desired
equality follows from the fact that for m,n € Z with n > 0 we have

<= d(r) < ¢la)™" = p(a"a™) < 1= Pp(x"aT") < 1 = 2 < B.
This finishes the proof of the proposition. O

If ¢ and v are non-trivial valuations on K that are not equivalent, the proof of 1.8 shows
that we can find a € K satisfying ¢(a) < 1 and (b) > 1, and also b € K satisfying
¢(a) > 1 and ¥ (b) < 1. The element x = a/b then satisfies ¢p(x) < 1 and ¥(z) > 1, and

this means that the elements

zk

B
converge for k — oo to 0 in 7y, and to 1 in Ty. For k — oo the limits are 1 and 0, re-
spectively. This ‘unrelated behavior’ leads to an independence of non-equivalent valuations

T

that can be phrased in the following way for any number n > 2 of valuations.

1.9. Approximation theorem. Let ¢1,¢o,...,®, ben non-trivial valuations on K, and
suppose that no two of them are equivalent. Write K; for the field K equipped with the
topology Ty,, and A = K - (1,1,...,1) for the image of K under the diagonal embedding
K — [[;—, Ki. Then A is dense in []]_, K;.

Proof. We may and will assume n > 2, the case n = 1 being trivial.
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§1: Valued fields

By the continuity of the field operations in the valuation topologies Ty,, the closure A
of A is a K-vector subspace of the n-dimensional K-vector space [];_, K;. For n = 2, we
observed just before the theorem that A that contains the basis vectors (0,1) and (1,0) as
limits of elements 2" /(1 + 2™) - (1,1) € A. This implies A = K x K», as desired.

In order to prove the general case by induction, we assume that the theorem holds
for n — 1 > 2 valuations. This implies that we can find a € K satisfying ¢;1(a) > 1 and
¢i(a) <1for 2 <i<n-—1,and also b € K satisfying ¢1(b) > 1 and ¢,,(b) < 1.

If we have ¢,(a) < 1, then z = a™b with m sufficiently large will be an element
for which «™/(1 4+ 2™) - (1,1,...,1) converges to the basis vector (1,0,...,0). If we have
én(a) > 1, then z = a™b/(1 + a™) with m sufficiently large has this property. Thus A
contains (1,0,...,0), and therefore all basis vectors, yielding A =[]\, K;. O

In less formal terms, the approximation theorem states that given ¢; as above and any
choice of elements a; € K for 1 <1 < n, there exists x € K such that z is arbitrarily close
to a; in the topology Ty, for all ¢.

» PRIME DIVISORS

An equivalence class of non-trivial valuations on K is known as a place or prime divisor
of K, often shortened to prime of K. By the proposition, the prime divisor corresponding
to a non-trivial valuation ¢ is the equivalence class {¢" : r > 0}. Depending on the type
of valuations it contains, a prime divisor is said to be archimedean or non-archimedean.
Archimedean prime divisors are also known as infinite primes, as opposed to the finite
primes denoting the non-archimedean prime divisors.

The terminology ‘prime’ to denote an equivalence class of valuations stems from the
fact that, at least in the non-archimedean case, they are closely related to the prime ideals
in subrings of K. The most classical case is the classification of the prime divisors of the
rational number field Q, due to Ostrowski.

1.10. Theorem. A non-trivial valuation on Q is either equivalent to the p-adic valuation
op : Q — R given by
(bp(z) =p ordy ()

for a prime number p, or to the ordinary absolute value on Q given by
Poo(x) = |z|.

Proof. Let ¢ be a non-archimedean valuation on Q. Then ¢ is bounded by 1 on Z, and
the set p = {x € Z : ¢(x) < 1} is easily seen to be a prime ideal of Z. It is non-zero as ¢
is non-trivial, so we have p = pZ for some prime number p. As all elements in Z \ pZ have
valuation 1, the valuation ¢ assumes the value 1 on all fractions v = ¢ with p{ab. Writing
arbitrary z € Q* as = up® with v as above and k = ord,(z) € Z, we find that we have
d(z) = @) with ¢ = ¢(p) € (0,1), and that ¢ is equivalent to bp-
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§1: Valued fields

Suppose now that ¢ is an archimedean valuation on Q. We may assume that it satisfies
the triangle inequality, implying ¢(k) < |k| for k € Z. Given two integers m,n > 1, we can
write all powers of m in base n as m' =3 7_,a;n’ with a; € {0,1,...,n — 1} and as # 0.
As the number of digits s is the entier of log(m?)/logn, we have s/t < logm/logn. The
triangle inequality implies ¢(m)* < (s + 1)nmax{1, ¢(n)*}, so we can take t-th roots and
let t tend to infinity to obtain the estimate

¢(m) < max{1, g(n)}'s"™/ 108",

This shows that we must have ¢(n) > 1, since otherwise ¢ would be bounded on Z and
therefore non-archimedean. The resulting inequality ¢(m)'/1°8™ < ¢(n)/1°8" is in fact
an equality, as we can interchange the roles of m and n. Thus a = ¢(n)*/ 198" > 1 does
not depend on the value of n > 1, and we have ¢(n) = |n|'°8® for all n € Z. This implies

é(x) = |z|'°8® for all x € Q, showing ¢ to be equivalent to the ordinary absolute value ¢u.
on Q. 0

The normalization of the p-adic valuation ¢, in 1.10 is standard, and chosen in such a way
that we have have the product formula

H dp(x) =1 for ze€ Q.

p<oo
Here the product is taken over all prime divisors of Q, including the unique infinite prime.
It shows that the approximation theorem 1.9 does not necessarily hold for an infinite
collection of non-equivalent valuations.

Exercise 4. Show that Chinese remainder theorem for Z can be obtained as a special case of the approx-

imation theorem.

The argument used to classify the non-archimedean primes of Q can be used in more
general situations. For any non-archimedean valuation ¢ on a field K, the ultrametric
property of ¢ implies that

Ay ={z e K : ¢(x) <1}
is a subring of K, the valuation ring of ¢. We have z € A, or 2~ € A, for every z € K*.
In particular, Ay has field of fractions K. The valuation ring Ay is a local ring with unit
group A% = {x € K : ¢(x) = 1} and maximal ideal

my ={x € K:¢(x) <1}
The quotient k, = Ay/my is known as the residue class field of ¢.

Exercise 5. Which possibilities are there for the pair (char(K), char(kg)) of field characteristics?
Just as for K = Q, the finite primes of a number field ‘are’ the primes of its ring of integers.

1.11. Theorem. Every non-trivial non-archimedean valuation on a number field K is of
the form
bp () = e (@) with ¢ € (0,1)

for some non-zero prime ideal p of the ring of integers Ok of K. In this way, the finite
primes of K correspond bijectively to the non-zero prime ideals p C Og.
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§1: Valued fields

Proof. If ¢ is a non-archimedean valuation on a number field K, then the ring of integers
Ok is contained in the valuation ring A,. To see this, one observes that every x € Ok
satisfies some equation z" = Z?:_Ol a;xz’ with n > 1 and coefficients a; € Z. We have
#(a;) <1, s0 ¢p(x) > 1 would imply ¢(z™) > max;—12... n—1 $(a;z"), contradicting (1.2).

If ¢ is non-trivial, then myNOf is a non-zero prime ideal p of Ok, and ¢ is identically 1
on Ok \ p. The local ring O, = Ok, is a discrete valuation ring, say with maximal ideal
pO, = 7O,, and we have ¢[O05] = 1. Writing € K* as = ur" with u € O} and
k = ordy(z), we find ¢y(z) = % @) with ¢ = ¢(7) € (0,1).

As ¢, and ¢, are clearly inequivalent for p # p’, this shows that the finite primes
of K correspond bijectively to the non-zero prime ideals p C Og. O

The valuation ring corresponding to a prime p of Ok is the ring
a
OK,p = {E ca € OK,b€ OK\p}

defined in [Number rings, §2] by localizing the ring of integers Ok at the prime p.
If K = F(X) is the field of rational functions over a field F', the argument used in
proving 1.11 yields the following.

1.12. Theorem. Let R = F[X] be the polynomial ring over a field F' and ¢ a non-trivial
valuation on its field of fractions K = F(X) that is trivial on F. Then ¢ is either a P-adic
valuation ¢p given by

pp(x) = rdr@) with ¢ € (0, 1)

for some non-constant monic irreducible polynomial P € R, or the degree valuation ¢
given by
hoo () = ¢ do8() with ¢ € (0,1)

for x # 0. Here deg is the multiplicative extension to K* of the degree map R\ {0} — Z.

Proof. As ¢ is trivial on F, it is non-archimedean by 1.6. Suppose first that we have
¢(X) < 1. Then R = F[X] is a subring of the valuation ring Ky, so so p = m,, is a prime
ideal of R = F[X]. It is non-zero as ¢ is non-trivial, so p = (P) for some non-constant
monic irreducible polynomial P € R. All elements in R\ p have valuation 1, and ¢ assumes
the value 1 on all units of the localized ring R,. As before, K is the field of fractions of
the discrete valuation ring Ry, and any x € K* can be written as x = uP¥ with u € Ry
and k = ordp(x) € Z. In this situation we have ¢(z) = ¢(P)*, so we find ¢ = ¢p with
constant ¢ = ¢(P) € (0, 1).

Suppose now that we have ¢(X) > 1. Then we have ¢(X 1) < 1, so the previous
argument can be repeated with the ring F[X ~!] in the role of R. This time the prime ideal
p C F[X 1] contains X1, so we have p = X 1F[X~1]. To finish the proof we note the
equality ordx—1(z) = — deg(x), which yields ¢ = ¢, with constant ¢ = ¢(X ~1). O
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§1: Valued fields

> FINITE AND INFINITE PRIMES

If F is finite, then all valuations of F'(X) are trivial on F' and 1.12 provides all valuations
on F(X). If F is algebraically closed, then the monic irreducibles in F[X] are of the form
X — a with a € F, and the primes ¢p in 1.12 correspond to the ‘points’ of F. One can
view — deg(x) as the order of the zero of = at the ‘point at infinity’ oo = 1/0. In geometric
terms, K = F(X) is the function field of the projective line P*(F), and primes of K are
the points of P*(F). This point of view is fundamental in the theory of algebraic curves,
as it neatly generalizes to arbitrary projective curves.

It is a standard fact from algebraic geometry that the most elegant and uniform results
are usually obtained for projective curves, which provide a ‘compactification’ of the more
familiar affine curves by the addition of finitely many ‘points at infinity’. In the same way
the consideration of all primes of a number field, not just the finite ones, is in many ways
the ‘right’ way to approach number fields. This point of view was introduced by Weil and
Chevalley, who incorporated it around 1940 in their construction of ideles. It was further
developed by Arakelov and others.

For projective curves, the notion of being a point ‘at infinity’ is not canonical, and
the degree valuation ¢, which corresponds to the discrete valuation ring F[X _1]( X-1),
is in no intrinsic way different from the valuation ¢x with valuation ring F[X] x): it also
corresponds to a finite prime of F(X). Number fields are different from function fields in
the sense that they have ‘intrinsically’ infinite primes, i.e., non-archimedean primes. We
will prove in 2.4 that the infinite primes of a number field are of the type given in (1.4),
and come from the finitely many complex embeddings of the field.

> DISCRETE VALUATION RINGS

The proofs of 1.10, 1.11 and 1.12 show that non-archimedean valuations on K often come
from discrete valuation rings R C K, and as their name indicates such rings provide
valuations on their field of fractions. In line with this terminology, we call a valuation
¢ : K — R>q discrete if ¢[K*] is a discrete subgroup of R~. An archimedean valuation
on a field K can not be discrete as it follows from 1.6 and 1.7 that we have Q C K with ¢
non-trivial on Q, and then from 1.10 that ¢[K*] contains the dense subgroup ¢[Q*] C Rso.
As expected, discrete valuation rings are indeed the valuation rings coming from non-trivial
discrete valuations.

1.13. Proposition. Let ¢ be a non-trivial non-archimedean valuation on a field K and
Ay the valuation ring of ¢. Then ¢ is discrete if and only if Ay is a discrete valuation ring.

Proof. Suppose that A is a discrete valuation ring and 7 a generator of its maximal ideal.
Then every € K* has a unique representation as = un® with u € A* and k € Z.
Units in A have valuation 1, so ¢(x) = ¢(7)* and ¢[K*] is the discrete subgroup of R
generated by ¢(7).

Conversely, let ¢[K*] # {1} be discrete in Rs(. Then ¢[K*] is infinite cyclic (cf.
exercise 11), so we can find m € A such that ¢[K*] is generated by ¢(x). For any € K*
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there exists k € Z with ¢(x) = ¢(7)*, so we have z = un* for some u € A*. It follows that
A is a discrete valuation ring with maximal ideal 7A. 0J

Let ¢ be a non-trivial discrete valuation on K with valuation ring A. If 7 € A generates
the maximal ideal p of A, we say that 7 is a prime element for ¢, or a uniformizer or local
parameter at the corresponding prime. The function v : K — Z U {0} sending = € K*
to ordy(z) € Z and 0 € K to oo is the (normalized) exponential valuation corresponding
to ¢. It is a homomorphism on K* that fits in a natural exact sequence

0 A* — K* 5 Z 0.
Every choice of 7 leads to a splitting of this exact sequence, and an isomorphism
(1.14) K* = (m) x A™.

A fundamental system of neighborhoods of 0 € K in the valuation topology 74 is given
by the integral powers 7% A of the maximal ideal of K. Note that these are additive sub-
groups of K. Analogously, the subgroups 1 + 7¥A C K* form a fundamental system of
neighborhoods of 1 inside A*, when k ranges over the positive integers. Note that these
neighborhoods are both open and closed, and that the topological groups K and K* are
therefore totally disconnected. This shows that the topology of K is different from what
we are used to for the archimedean fields R and C.

Exercises

6. An exponential valuation on a field K is a map v : K — R U {oo} satisfying
(1) v(x) = oo if and only if z = 0;
(2) v(zy) =v(x) +v(y) for all z,y € K;
(3) v(z+y) > min{v(z),v(y)} for all z,y € K.
Show that there is a natural bijective correspondence between exponential valuations and
non-archimedean valuations on K. What does it mean for exponential valuations to be ‘non-
trivial’, ‘discrete’ or ‘equivalent’?

7. Let L/K be an algebraic extension and ¢ a valuation on L. Show that ¢ is trivial if and only
if its restriction to K is trivial.

8. Show that the norm of a valuation ¢ on a field K equals max{¢(1), #(2)}.

9. Let F be a field and H a subgroup of Rso. Recall that the group ring F[H] consists of
finite formal sums new Ih [h] with fn, € F, with addition and multiplication being derived
from addition and multiplication in F' and the relations [hi][h2] = [h1h2] for h1,he € H. For
non-zero x € F[H] we set

(Y fulh)) = max{h € H: fn # 0.

heH
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11.

12.
13.

14.

15.

16.

17.

§1: Valued fields

Show that F'[H] is a domain, and that ¢ induces a non-archimedean valuation on the field of
fractions K of F[H] with image ¢[K*] = H. What is the residue class field of this valuation?

Let ¢ be a valuation on a field K. Show that the value group ¢[K™] is either a discrete or a
dense subgroup of R, and that it is cyclic if and only if it is discrete.

Do there exist a field K and a non-trivial valuation ¢ on K for which we can strengthen the
implication (1.3) to an equivalence

¢(x +y) = max{¢(z), p(y)} <= () # ¢(y)

valid for all z,y € K*7
Show that there is a unique valuation on C that extends the ordinary absolute value on R.

Let ¢ be a non-trivial discrete valuation, A its valuation ring, and kp = A/p its residue class
field. Write U, =1 + pk for k € Z~o.

a. Show that p*/p*™! is a 1-dimensional vector space over kp;

b. Show that the map = — = — 1 induces a group isomorphism Uy /U1 = pk/pk+1.

Let ¢ be a non-archimedean valuation on K. For ¢ € Rxo, define ¢. : K[X] — Rxo by

Ye(Y", aiX") = max; ¢(as)c’.

a. Show that 1. gives rise to a valuation on the field of fractions K(X) of K[X] that
extends ¢.

b. Show that ., and 1., are not equivalent for ¢ non-trivial and ¢ # co.

¢. Which prime divisors are obtained when ¢ is trivial on K?

(Gauss’s lemma.) Let A be the valuation ring of a non-archimedean valuation on a field K.
Prove that if the product of two monic polynomials f,g € K[X] is in A[X], then f and g are
in A[X]. How does the classical Gauss lemma (with A =Z and K = Q) follow from this?
[Hint: you can use the valuation v from the preceding exercise.]

Let K be a field and 0,7 : K — C two embeddings of K in the field of complex numbers.
Show that the induced archimedean valuations ¢, and ¢, on K are equivalent if and only if
we have c =T or o = 7.

Let F be a finite field, and K = F(X) the rational functional field over F. Show every z € K*
satisfies a ‘sum formula’
Z v(z) =0

v

analogous to the product formula for K = Q, when v ranges over all suitably normalized
exponential valuations on K.
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2 COMPLETE FIELDS

In calculus, one learns that the right setting to study functions defined over the rational
number field Q is not Q itself: in order to obtain a satisfactory theory, one uses a completion
process to pass from Q to the real number field R, or the algebraic closure C of R. In the
same way, functions on a valued field K are studied most conveniently over the completion
of K with respect to the valuation, or an algebraic extension of this completion.

» COMPLETIONS

A valued field K is said to be complete if every Cauchy sequence in K has a limit in K.
Given K with valuation ¢, we can construct its completion with respect to ¢. The con-
struction is similar to Cantor’s construction of R from Q, but uses the existence of the
complete field R containing the values of ¢.

2.1. Theorem. Let ¢ be a valuation on K. Then there exists a field extension K C K and
an extension of ¢ to a valuation on K such that Ky is a complete valued field containing
K as a dense subfield.

For every field extension F' of K that is complete with respect to a valuation extending ¢,
there exists a unique continuous K-homomorphism Ky — F.

Proof. Let R be the K-algebra of Cauchy sequences in K with componentwise addition
and multiplication, and extend ¢ to R by putting

o(()32)) = lim o(a;)

The ideal m = {a € R : ¢(a) = 0} of null-sequences is a maximal R-ideal as a = (a;)52, ¢
m implies a; # 0 for i sufficiently large, making a invertible in R/m. The composition
K — R — R/m = K, yields a field inclusion K C K, = 9R/m, and ¢ is descends to a map
K4 — R> that is easily checked to be a valuation on K, extending ¢. The subfield K is
dense in Ky, as the element (a;):2; mod m € K, is the limit of the sequence (a;)52, in K.
Moreover, K4 is complete as we can choose, for any given Cauchy sequence (x;)72, in Ky,
a sequence of elements a; € K C K, such that ¢(z; — a;) < 1/i holds. Then z = (a;)$2,
is a Cauchy sequence in K, and x mod m € Ky, is the limit of (z;):2;.

Finally, if FF D K is complete with respect to a valuation extending ¢, the canonical
map R — F sending (a;)72; to lim;_, a; gives rise to a topological embedding K, =
M/m — F. As K is dense in K, there can be at most one continuous K-homomorphism
K4 — F, so this embedding is unique. 0

> COMPLETE ARCHIMEDEAN FIELDS

The last statement in theorem 2.1 implies that the completion K is uniquely determined
up to topological isomorphism. It also implies that a complete archimedean field, which
contains the prime field Q on which the valuation is non-trivial by 1.6 and equal to a
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power of the ordinary absolute value by Ostrowski’s earlier theorem 1.10, contains the real
number field R as a topological subfield. The following lemma allows us to focus on the
case were K also contains the complex number field C as a topological subfield.

2.2. Lemma. Let K be a field that is complete with respect to a valuation ¢, and L = K (i)
the extension of K obtained by adjoining a root i of X?+1. Then L is complete with respect
to the valuation v : L — R>¢ defined by

Y(x) = ¢(NL/K($))1/[L:K]'

Proof. For i € K, we have L = K(i) = K and ¢ = ¢, so there is nothing to prove.

Assume i ¢ K. Then the map 1 is multiplicative and non-zero on L*, and on the
K-basis {1,4} of L we have 1)(a+bi) = ¢(a®+b>)/? for a,b € K. Replacing ¢ if necessary
by a power, we can assume that ¢ satisfies the triangle inequality. In order to show that
1 is a valuation, we need to show that ¢(z) < 1 implies ¥ (1 4+ ) < C for some C' € Rxg.
Writing = a + bi, we see that it suffices to show that ¢(a) and ¢(b) remain bounded
when a,b € K satisfy the inequality ¢(a? + b?) < 1.

We argue by contradiction, and assume that ¢(a) is unbounded under the inequality
(1 + (b/a)?) < ¢(a)~2. This yields elements x, € K satisfying ¢(1 + 22) < 47", and
therefore, by the triangle inequality for ¢,

A(@nt1 = Tn)(@nt1 +20) = (1 +2741) — (L+27)) <2-47"

Upon changing the sign of x, 11 where necessary, we obtain ¢(x,41 — ) < 27" for all
n > 1, making (z,), into a Cauchy sequence in the complete field K. Its limit z € K
satisfies 22 + 1 = 0, contrary to the assumption i ¢ K.

The argument above also shows that if ¢(a? +b?) tends to 0, then so do ¢(a) and ¢(b).
Indeed, if ¢(a) would be bounded away from zero, then ¢(1 + (b/a)?) = ¢(a)2¢p(a® + b?)
would tend to zero, leading to the same contradiction. This implies that L is complete

with respect to v, as convergence in L amounts to convergence of the coefficients on the
K-basis {1,i}. O

Lemma 2.2 does not assume that ¢ is archimedean, and the formula it gives to extend ¢
to a finite extension is a generality that we will encounter again in 3.3.

We will now show that no complete archimedean fields exist beyond the familiar
examples R and C. This theorem, which goes by the name of Ostrowski in valuation
theory, is also known as the Gelfand-Mazur theorem in Banach algebras.

2.3. Theorem. A complete archimedean field is topologically isomorphic to either R or C.

Proof. We already saw that a complete archimedean field K contains R as a topolog-
ical subfield. By Lemma 2.2, the (possibly trivial) extension L = K(i) is a complete
archimedean field containing C as a topological subfield. It now suffices to show that L
equals C, as we then have R C K C L = C, leaving no further choice for K.
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Write ¢ for the valuation on L, and scale it to satisfy the triangle inequality. Suppose
there exists & € L\ C. Then the function C — R defined by z — 9 (z — a) is positive
on all of C, and as ¢¥(z — ) > ¥(z)(1 — ¥(a/z)) tends to infinity with ¢ (z), there exists
an element zy € C where ¥ (z — «) attains its minimum value r > 0. If z € C satisfies
P(z — z0) < r, we can use Ostrowski’s identity

(20" (a0
Hgn:Lg;ﬂ Y(¢(z — 20) — (@ — 20))

U(z —a)
to obtain, for all integers n > 1, an inequality

P(z — 20)
() ST

h(z —a) <20 — a)"P(1 — )")-
Letting n tend to infinity, we find ¥(z — «) = r for all z satisfying 1)(z — z9) < r. Repeating

the argument, we see that ¥(z — «) is constant on C. This contradiction shows that no
element o € L\ C exists, and finishes the proof. O

2.4. Corollary. Let ¢ be an archimedean valuation on K. Then there exist an embedding
0: K — C andr € Rsg such that ¢(x) = |o(z)|" holds for x € K.

Proof. Theorems 2.1 and 2.3 show that we have an embedding ¢ : K — C of topological
fields, so the topology T coincides with the topology of the valuation ¢, from (1.4) that
is induced by o. By 1.8, this implies ¢ = ¢_. 0

If two embeddings 01,02 : K — C induce the same valuation on K, there is by 2.1 an
induced topological isomorphism on the completions. As R has no automorphisms and C
no continuous automorphisms besides the identity and complex conjugation, we conclude
that o1 and oy are either equal or complex conjugates of each other. This immediately
yields the following archimedean counterpart of theorem 1.11.

2.5. Corollary. The infinite primes of a number field K correspond bijectively to the
complex embeddings o : K — C, when taken up to complex conjugation. 0J

An infinite prime of a number field K is called real if it comes from a real embedding
K — R, and complex if it comes from an embedding K — C with non-real image. We see
that in contrast to the situation for non-archimedean primes in 1.11, a number field has
only a finite number of archimedean prime divisors: for K of degree n, the number r of
real and s of complex primes satisfies the relation

r+2s=n

that we already encountered in [NR, (5.3)].
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| 4 NON-ARCHIMEDEAN COMPLETIONS

For non-archimedean valued fields K, the residue class field K can be any field, and the
value group ¢[K*] any subgroup of R~ (cf. exercise 1.10). The same is true for complete
archimedean fields, by the following lemma.

2.6. Lemma. Let K, be the completion of a field K with respect to a non-archimedean
valuation ¢. Then we have ¢[K*] = ¢[K}] and K =K,.

For z € K we can find a € K* with ¢(a — ) < ¢(z), so the ultrametric inequality (1.3)
gives ¢(a) = ¢p(a — z + z) = ¢(x), proving ¢(z) € ¢[K] and ¢[K] = $[Ky].

Similarly, if z € K satisfies ¢(x) < 1 and a € K is chosen satisfying ¢(a — z) < 1,
then we have T =a € K = K. O

Given the large variety of complete non-archimedean fields, no classification result of the
simplicity of Theorem 2.3 exists for them. On the other hand, they all share ‘analytic
properties’ that are in some ways easier than those of R and C.

By the ultrametric inequality (1.2), which bounds finite sums by the maximum of
their terms, converging sums ) |, -, aj in a complete non-archimedean field with valuation
¢ can simply be characterized as sums for which ¢(ax) tends to 0 for k — oo.

Exercise 1. Prove this, and show that the value of the sum is the same for each reordering of the terms.

In non-archimedean fields, all open balls U, = {z € K : ¢(x) < £} and closed balls
B. ={z € K : ¢(z) < ¢} are additive subgroups of K. For ¢ = 1 we obtain the valuation
ring A = Ay = B; and its maximal ideal m = my = U;. Open and closed balls are the
same thing in case we are dealing with the discrete valuations from 1.13, which frequently
arise in number theory and geometry.

Let ¢ be non-trivial and discrete on K. Then the value group ¢[K*| is an infinite
cyclic group (¢(m)) C Rs( generated by the largest value ¢(w) € (0,1) assumed by ¢. A
uniformizer m € K* for the corresponding prime divisor p, on which ¢ assumes this largest
value, is unique up to multiplication by units in the valuation ring A, and by (1.14) every
x € K* can be written as

(2.7) x=u- 7o @)

where v € A* is a p-adic unit having ¢(u) = 1 and ord,(z) € Z denotes the valuation of
at the prime p. We also write p for the maximal ideal wA of the valuation ring A.

In a complete discretely valued field K, with 7 a uniformizer for the prime p, every
element admits a p-adic expansion

(2.8) x = Z apm®,

k>ord, (x)

with aj from some subset S C A of p-adic digits. For S one can pick any set of repre-
sentatives in A of the residue classes modulo p, where it is customary to pick 0 € S for
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the representative of the class p itself. In view of the application in 3.7, we include in the

k

statement below a version in which the powers 7" are replaced by arbitrary elements 7y

that generate the same ideal as 7*.

2.9. Theorem. Let K be a complete non-archimedean field, with A and p = A as above.
Let 7, € K be a generator of p*, for k > 1, and S C A a set of representatives of A/p
containing 0. Then we have

A= {Zakm cay € S for k > 0},
k=0

and every x € K* has a unique p-adic expansion x = Zk>0rdp(m) apm®.

Proof. If (a)r>0 is any sequence in S, the sum Zk>0 a7k has terms tending to 0, and
is therefore convergent in K. Assume that not all aj are zero. As all non-zero terms have
different valuations, the value z = ), amy has valuation ¢(z) = ¢(nn), with N = ord, (z)
the smallest k£ with a; # 0. This not only shows that the value lies in A, but also that any
difference ZZO aEpTy — ZZO by of two distinct sums with coefficients in S is non-zero: it
has non-zero valuation ¢(mwy) with N = min{k : ay # by }.

Conversely, given z € A, there exists ag € S with x = ag mod p. We have x = ag+m121
with z; € A, and taking a; € S satisfying 1 = a; mod p yields z — ag — a;m € mp = p2.
Thus x = ag + aym; + xomo for some x5 € A, and continuing inductively we construct
elements a; for k > 0 such that we have x = ZZ:O arm, mod p” 1, and therefore x =
ZZO:O arTn. We already know that the expansion is unique, proving the first statement.

For the second statement, we use (2.7) to reduce to the case ordy(z) = 0, and then
apply the first statement with 7, = 7*. O

If the complete field K in the preceding theorem is obtained by completion of a subfield
Ky C K, the elements 7w, and the coefficients ax can be taken from Ky by Lemma 2.6.
This applies in particular to the completions of Q arising from the p-adic valuations in
Theorem 1.10.

» p-ADIC NUMBERS

The p-adic number field Q,, is the field obtained by completing the rational number field
Q under the p-adic valuation ¢, from 1.10. The valuation ring of Q, is denoted by Z,, and
its residue class field is the finite field ¥, = Z/pZ = Z,,/pZ,. Making the obvious choices
m=pand S ={0,1,2,...,p— 1} for K = Q,, in Theorem 2.9, we see that p-adic numbers
have a unique p-adic expansion

x:Zakpk with a; € {0,1,2,...,p—1}.
k

These expansions are in many ways similar to the well known decimal expansions r =
> ok Ok 10~ with a; € {0,1,2,...,9} that are used in the archimedean completion R of Q.
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Note that the ambiguity of decimal expansions (1=.9999999999...) does not occur in the
p-adic case.

Arithmetical operations in Q,, are performed in almost the same way as operations on
real numbers given by a decimal expansion. An addition ), app® + > i bpp® is performed
as an addition of formal power series in p followed by a transport of ‘carries’, for ¢ ranging
from —oo to oo, from coefficients a; + b; not in S to the next higher coefficient. A carry at
the i-th coefficient a; + b; € S gives a new i-th coefficient a; + b; — p € S and replaces the
(4 1)-st coefficient by a; 41 + b1 + 1. Similar remarks can be made for the multiplication
of p-adic numbers, and for subtraction one transports ‘carries’ in the other direction. As
an example for the addition, one can consider the representation

—1= Z(p ~1)p* eqQ,

k>0

for —1 € Z,,: both sides yield 0 when 1 is added. As this example makes clear, the natural
(total) ordering on Z or Q has no natural extension to Z, or Q,.

Division in Q, can be treated in various ways. If one needs a = z/y € Q,, one
can find the expansion of a by equating coefficients in a ‘power series identity’ ay = =x.
However, one can also perform long division as for real numbers. In this case one obtains
the quotient a = z/y = >, app® of two elements x,y € Z;, by successively subtracting
suitable multiples axp®y (with ar € S) of y from x that eliminate the lowest coefficient,
i.e. that leave a smaller remainder. As an example, one can check that the quotient % € Zs
has a 3-adic expansion

771 =1102120102120102120... € Qs
that is periodic with period length 6, just like the decimal expansion
771 = 142857142857 142857 ... € R.

The equality of the period lengths is no coincidence, see exercise 6.
There are other convenient choices for the set S of digits in Q,, such as the multi-
plicatively closed set of Teichmiiller representatives (exercise 7).

» LOCAL FIELDS

For K as in theorem 2.9, the representation of elements of A by their expansions ), -, ax 7
establishes a bijection of A with a countable infinite product [], ., S of ‘digit sets’ S that is
actually an isomorphism of topological spaces if we give S the discrete topology: elements
are close if their first NV digits coincide for some large N. If the cardinality of S, which
equals the cardinality of the residue class field A/p, is finite, then Tychonoff’s theorem
from topology implies that [],.,S, and therefore A and all open balls p™ are compact,
making the valuation topology on K into a locally compact topology.

A field equipped K with a non-discrete valuation is said to be a local field if the
valuation topology on K is locally compact.
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2.10. Theorem. Let K be a local field. Then K is complete under the valuation topology,
and either

— K is archimedean, and topologically isomorphic to R or C, or

— K is non-archimedean, its valuation is discrete and its residue class field is finite.

Proof. If K is archimedean, its completion is topologically isomorphic to either R or C
by Theorem 2.3. As a locally compact subfield of R contains a closed interval [—e, ¢], and
a locally compact subfield of C a closed disk {z : |z] < e}, we deduce that K is equal to
either R or C.

Suppose K is non-archimedean and locally compact for the topology 74 of a non-
discrete valuation ¢. Then 0 € K has a compact neighborhood that contains the closed
ball 7"A = {x € K : ¢(x) < ¢(n") if we pick for 7 € K* any element with ¢(7) < 1,
and n a sufficiently large integer. It follows that the closed ball 7 A, and therefore A
itself, is compact. As the cosets of the open unit ball Uy = m C A cover A, there are only
finitely many different cosets, and the residue class field A/m is finite. We also see that the
complement of m in the closed set A, and therefore in K, is open, and that m is therefore
closed and compact. As m = U, >2U;_1/,, is covered by finitely many open balls of radius
1 —1/n, it is contained in U;_,,, for n sufficiently large, showing that the valuation is
discrete. O

Combining Theorem 1.11 with Lemma 2.6, we see that the completions of a number field
at its primes, both finite and infinite, are local fields.

Exercise 2. Let F' be a finite field. Show that every completion of the rational function field F(X) at one
of its primes is a local field.

» HENSEL'S LEMMA

In complete fields, one can often ‘refine’ approximate solutions to polynomial equations to
actual solutions. There are several results of this nature that all go under the same name.

2.11. Hensel’s lemma. Let K be complete with respect to a non-archimedean valuation
and A the valuation ring of K. Suppose that f € A[X] is a primitive polynomial that
factors over the residue class field K as

f=9-heK[X]
with §,h € K[X] coprime. Then there is a factorization f = g-h of f in K[X] such that
deg(g) = deg(g) and g, h € A[X] have reduction g and h in K[X].

Proof. The required polynomials g and h are obtained by an inductive refinement of initial
lifts of g and h to A[X]. More precisely, set r = deg f and s = deg(g) and suppose we have
7 € p and polynomials gg, ho, ap and by in A[X] such that

deg(go) = s f = goho mod mA[X]
deg(hg) <r—s apgo + boho = 1 mod TA[X].
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By assumption, such polynomials can be found when 7 is taken to be a generator of p. We
will show how to construct g1, h1,a; and by in A[X] that are congruent to go, ho, ag and
bp modulo mA[X] and satisfy

deg(g1) = deg(go) f = g1h1 mod T2 A[X]
deg(hy) = deg(ho) ai1gy + bihy = 1 mod 72 A[X].

Once we can do this, it suffices to iterate the construction. One obtains sequences (g ) and
(hi )k of polynomials in A[X] that satisfy deg(gx) = deg(g) and f = gxhx mod 7r2kA[X].
Moreover, these sequences converge quadratically to polynomials g,h € A[X]| as we have
congruences

gk =0Jk—1 mod 7T2kA[X]
hi =hj,_1 mod 72" A[X],

and their limit yields the factorization f = gh in K[X].

We now construct polynomials u,v € A[X] of degree deg(u) < s and deg(v) < r —s
such that g; = go + mu and h; = hg + 7v provide a factorization f = g1h; mod 72 A[X].
Writing f = goho + 7o for some ro € A[X], we need to achieve the congruence

vgo + uhg = ro mod TA[X].

By assumption we have aggo + boho = 1 mod 7A[X], and we take u € A[X] to be the
polynomial of degree smaller than s = deg(go) that satisfies u = byrg mod goA[X]. Then
the congruence uhg = ro mod TA[X] + goA[X] shows that we can find v € A[X] of degree
at most r — s satisfying uhg = ro — vgg mod wA[X], as desired.

The polynomials ¢g; and hy satisfy agg; + bphy = 1 + 7t for some t € A[X], so
we can define a1 = (1 — wt)ag and by = (1 — 7wt)by to achieve the desired congruence
Cblgl—l—blhl:(1—7Tt)(1+7Tt)ElmOd7T2A[X]. ]

In the special case that g is a simple linear factor of f, the proof reduces to the itera-
tive approximation of a root of f by a process known as Newton iteration (exercise 8).
As this special case will be used frequently, we state it separately. For some immediate
consequences of the result we refer to the exercises.

2.12. Corollary. Let f € A[X] be a polynomial. Then every simple zero of the polynomial

f = fmodp[X] in A/p can be lifted to a zero of f in A. O

A more general version of the lifting of zeroes from K to K is given in exercise 9.
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Exercises

3. Let K be afield that is locally compact in some valuation topology T and FE a finite extension
of K. Show that the function ¢ on E given by

P(x) = ¢(Ng, i (z)) /K] (z € B)

is a valuation on F, and that F is complete with respect to this valuation. Deduce that C is
the algebraic closure of R.

[Hint: Define an appropriate vector norm ||.|| on the K-vector space E and use the continuity
of 1) on the norm-compact unit ball in E to show that there are positive constants ci1, c2 such
that ¢1||z]| < ¥ (z) < eol|z|| for all € E.]

4. Show that the completion of the rational function field C(X) with respect to the discrete
valuation ¢, corresponding to a € C is the field

C((X —a) = {Z:;_oo ci(X —a)':c; € C}
of Laurent series in X — «.

5. Show that Q) is transcendental over Q. What is its transcendence degree?

6. (Periodic expansions.) Show that a p-adic number x € Q, is rational if and only if its p-adic
expansion r = ZZ aipi is periodic, i.e. if there exists an integer N > 0 such that a;,+n = a;
for all sufficiently large i. The smallest such N is called the period of x. Determine how the
period of x depends on z, and find all z € Q, having period 1. State and prove analogous
results for £ € Qo = R in terms of the decimal expansion of x.

7. (Teichmiiller representatives.) Let p be a prime number. Show that Q, contains a primitive
(p — 1)-st root of unity (,—1 and that there is a natural isomorphism

Z, = (Cp—1) X (1 + pZyp).

Deduce that S = ((,—1)U{0} is a set of representatives of F;, in Z,, in the sense of theorem 2.6
that is closed under multiplication. Generalize to non-archimedean completions of arbitrary
number fields.

The next two exercises deal with the approximation of zeroes of a differentiable function f known

as Newton iteration. If f is a differentiable function on R we define for arbitrary zo € R the
sequence of Newton iterates {x,}n—1 C R by

_ S
f'(@n)

This is well defined provided that f'(x,) # 0 for each x,. For K an arbitrary field and f € K[X]
a polynomial the Newton iterates of xo € K are defined by the same formula, with f’ the (formal)
derivative of f.

Tntl = Tn n > 0).

8. (Newton iteration in R.) Suppose that f is twice continuously differentiable on R and x € R
a zero of f for which f'(x) # 0.
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§2: Complete fields

a. Show that there is an open neighborhood of z in R such that lim,,_, z, = x for each
initial value zo # z in this neighborhood. Determine how large these neighborhoods can
be taken for each of the zeroes of f = X° — X.

b. Show that there exists a constant C' = C(f) > 0 and a neighborhood U of z such that
the resulting sequence satisfies |2,+1 — | < C|z, — x| for all starting values xo € U.
(This is called quadratic convergence.)

9. (Hensel’s lemma on polynomial zeroes.) Suppose that K is complete with respect to a non-
archimedean valuation ¢. Let A be the valuation ring of K and f € A[X] a polynomial. Let
zo € A be an element for which ¢(f(z0)) < #(f'(z0))?. Show that the Newton iterates of
xo converge to a zero x € A of f satisfying ¢(x — xo) < &é(f(z0)/f (z0)). Show also that we
have ¢(zn, — ) < C?" ¢(f(20)) with C = ¢(f(x0)/f (x0)?) < 1 for all n.

10. Let p be a prime number and n > 0 an integer. Show that Q,/Q}" is a finite group. Determine
its order if p does not divide n. (For the general case see exercise 12.)

11. Show that Q, has exactly 3 non-isomorphic quadratic extensions if p is odd. What is the
corresponding statement for p = 27

12. Let K be a field of characteristic zero that is complete with respect to a non-archimedean
valuation ¢. We define C' as the open disk around the origin in K with radius 1 if ¢|q is

1/p—1

trivial, and with radius ¢(p) if ¢|q is p-adic. Show that the power series

log(l+z) =— Z # and exp(z) = Z i—lj

k>1 k>0
define continuous group homomorphisms
log: U1 =1+p—> K and exp: C — K~

such that logoexp and expolog are the identity maps on C and 1 4 C. Show that log is
injective on U; if ¢|q is trivial, and consists of the p-power roots of unity in K if ¢|q is
p-adic.

13. Let p be a prime number and set ¢ = p if p is odd and g = 4 if p = 2. Show that the closure
of the subgroup of Z;, generated by 1+ ¢ equals 1+ ¢Z,, and that the map Z — Z;, sending
x — (14 ¢q)® can be extended to an isomorphism Z, =1+ qZ, of topological groups
that maps p"Z, onto 1 + gp"Z, for n > 1. Use this to compute the order of Q;/Q," for
arbitrary n.

14. Determine for each prime p (including co) the order of the group of roots of unity in Q.
Prove that Q, and Q, are not isomorphic (as fields) when p # p'.

15. (Product formula.) For p a finite prime of a number field K, we let the normalized p-adic
valuation ¢p be the valuation satisfying ¢p[K™] = (Nk,q(p)), i.e. the subgroup of R* gen-
erated by the ideal norm of the corresponding prime ideal. For an infinite prime p we set
¢p(z) = |Nk,/r(x)|. Show that with this normalization, the formula Hp prime Pp(T) =1
holds for all x € K*.
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A coefficient field for a local ring A with maximal ideal p is a subring £ C A for which the natural
map k — A/p is an isomorphism. A field K with a non-archimedean valuation ¢ is said to have
a coefficient field if its valuation ring has.

16.

17.

18.

19.

20.

28

Let K be a field of positive characteristic that is complete with respect to a discrete valuation.
Suppose that K is perfect. Show that K has a coefficient field.

[Hint: for z € K there exists 2, € A such that :z:ﬁn has residue . Show that the map K> K
sending x to lim 22" is well defined and yields the required field.]

Show that every complete non-archimedean field K with residue class field K of characteristic
zero has a coefficient field.
[Hint: the valuation ring A contains a maximal subfield.]

Let K be a field that is complete with respect to a non-trivial discrete valuation, and suppose
that the residue class field K is perfect and of the same characteristic as K. Show that K is
isomorphic (as a topological field) to the field K ((X)) of Laurent series over K. Deduce that
a local field of characteristic p > 0 is of the form F((X)) with F' finite.

Let F be a field and P € F[X] an irreducible separable polynomial with residue class field
E = F[X]/(P). Show that the completion of the function field F'(X) with respect to the
valuation ¢p defined in 1.12 is topologically isomorphic to the field E((Y)) of Laurent series
over E.

Let K be a field with a non-archimedean valuation . Denote the valuation ring and its
maximal ideal by A and p.

a. Let S be the set of those x € K for which 14 z has an nth root in K for infinitely many
positive integers n. Prove: if K is complete with respect to ¢ then p C S, and if ¢ is
discrete than S C A.

b. Suppose that ¢ is non-trivial and that K is complete with respect to ¢. Prove that any
discrete valuation on K is equivalent to ¢.

c. For i = 0, 1, let K; be a field that is complete with respect to a discrete valuation.
Prove that any field homomorphism Ky — K37 of which the image is not contained in
the valuation ring of K3 is continuous.

d. Show that the fields Q, for p prime or p = oo have no field automorphism except the
identity.
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3 EXTENDING VALUATIONS

In this section, we will see how to extend a valuation ¢ on a field K to a finite extension
L of K. If K is complete with respect to ¢, the extension valuation is unique (Theorem
3.3), and the general case follows from this by considering L ‘over the completion K4’
in the tensor product L ®x K4 (Theorem 3.8). In the case where ¢ is non-archimedean,
this yields a ‘topological approach’ to the factorization of ideals of Dedekind domains in
extension rings that was treated in [ANT, §2 and 3|.

If L/K is purely inseparable, the extension of valuations is automatic as we have
2Kl ¢ K for every x € L, and therefore an extension 1 of ¢ to L must be given by

Tp(@ — ¢(x[LK])1/[LK]
It is easily seen that this is indeed a valuation on L.

> VECTOR SPACES OVER COMPLETE FIELDS

Let ¢ be a non-trivial valuation on K, and assume that ¢ satisfies the triangle inequality.
A vector norm on a finite dimensional K-vector space V' is a function ||.|| : V' — R>( that
is positive outside the origin 0 € V' and satisfies

|z +yll < || + Iyl and k]| = (k)]

for z,y € V and k € K. It defines a metric topology on V under which the vector space
operations of addition and scalar multiplication are continuous.
Two vector norms ||-||; and ||-||2 on V are said to be equivalent if there are constants
C1,C5 € R+ such that
Chllz|[x < [lz][2 < Collz]]x

holds for all x € V. In other words, they define the same topology on V.
For every basis {w; }; of V over K, there is an associated vector norm on V' defined by

| Z kiwillo = max o(k;).

If K is complete, this is up to equivalence the only one.

3.1. Lemma. Let V be a finite dimensional vector space over a complete field K. Then
all vector norms on V' are equivalent, and V' is complete with respect to these norms.

Proof. Choose a basis {w; }; for V over K, and let ||-||op be the associated vector norm. As K
is complete with respect to ¢, we see that V' is complete with respect to this norm. Any
norm || - || on V is continuous with respect the norm || - ||, as we have, with n = dimg V,
inequalities

1D aiwi|| < nmax ||aiw;|| < nmax||w|| max ¢(a;) = Caf > aiwillo.
; i

(3
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An inequality of the type C1||z||o < ||z|| for such a norm can be derived by induction on
n = dimg V. In the case that K is locally compact, which will usually be the case for us,
there is an even shorter proof based on the observation that the unit ball B = {z € V :
||z||o < 1} and therefore the unit sphere S = {z € V : ||z||o = 1} are ||-||op-compact in V. If
C1 > 0 denotes the minimum of the continuous function ||.|| on S, we have ||z|| > Ci]|z||o
on S and therefore on all of V', as every x € V' can be written as x = ks with £k € K and
ses. O

In the case where L is a finite field extension of the complete field K and ¢ satisfies the
triangle inequality on K, every extension valuation ¢ of ¢ to V also satisfies the triangle
inequality, so it is a vector norm on V. By the preceding lemma, the topology on L induced
by 1 does not depend on a choice of 1. By Proposition 1.8, it follows that there can be at
most one extension v of ¢ to L.

> EXTENDING VALUATIONS: COMPLETE CASE

If L/ K is separable and M a normal closure of L over K, the uniqueness of a hypothetical
extension ¢ of ¢ to M implies that we must have ¢ o o = 1) for every o € Gal(M/K). If
we apply this for z € L and o ranging over the cosets of Gal(M /L) in Gal(M/K), we find
Y(x) K = (N g (2)) = ¢(Np (), so 1 is given on L by the formula

(32) h(z) = (b(NL/K(x))l/[L:K]'

we already encountered in the special case of Lemma 2.2. Note that this formula is also
correct for purely inseparable extensions as in that case the norm raises to the power
[L : K]. In the important special case that K is a local field, there is a simple topological
argument that shows that 3.2 defines an extension valuation (exercise 2.3). This argument
can be extended to the general case, but it is easier to use the fact that the complete
archimedean case follows from Ostrowski’s theorem 2.2 and treat the non-archimedean
case separately.

3.3. Theorem. Let K be complete with respect to a valuation ¢ and L a finite extension
of K. Then ¢ has a unique extension to a valuation 1) on L. One has

V() = (b(NL/K(x))l/[L:K]

for x € L, and L is complete with respect to .

Proof. In the non-archimedean case the only non-trivial extension is C/R, and for this
extension the theorem is obviously correct.

Assume now that ¢ is non-archimedean. As the function ) is multiplicative on L
and non-zero for x # 0, we only have to show that ¥(z + y) < max{y(x),¥(y)} holds
for x,y € L. Dividing by max{¢(x),v(y)} shows that this is equivalent to showing that
we have (1 4+ x) < 1 if ¢(x) < 1. As the norm Ny k(z) is the constant coefficient
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of the characteristic polynomial of =, which is a power of the irreducible polynomial f%
of z, we have to show that we have ¢(f5(—1)) < 1 if we know that ¢(f5(0)) < 1. It
therefore suffices to show that for each monic irreducible polynomial f € K[X], we have
the remarkable implication

(3.4) f(0) e Ay = f € Ay[X].

This implication follows from Hensel’s lemma 2.7: if f is not in Ay4[X], we can find t € K*
with ¢(t) < 1 such that tf is a primitive polynomial in A,4[X]. The highest and the

lowest coefficient of ¢f are in the maximal ideal of Ay, so X" divides tf in K[X] for some
k > 1, and if we take k to be maximal we have k = deg X* < deg f. This contradicts the
irreducibility of f, since Hensel’s lemma implies that the factor X" € K[X] lifts to a factor
of degree k of tf (and therefore of f) in K|[X]. O

As the valuation on a complete field K can uniquely be extended to every finite exten-
sion, it has a unique extension v to the algebraic closure K?° of K. We have ¢(z) =
(Nre(a) /i () IE@E] for any o € K2

We see from the implication 3.4 that the valuation ring A, C L consists exactly of
the elements x € L that have irreducible polynomial f§ € A4[X]. We can phrase this as
follows.

3.5. Corollary. Suppose that the valuation ¢ in 3.3 is non-archimedean. Then the valu-
ation ring of the extension valuation v is the integral closure of the valuation ring Ay in
the extension L. 0

» ¢ AND f

If L/K is a finite field extension and 1 a valuation on L that extends a non-archimedean
valuation ¢ on K, we define the ramification index e(¢)/¢) of ¢ over ¢ as the group index

e(/¢) = [W[L*] : o[ K]
and the residue class degree f(1/¢) of 1) over ¢ as the degree of the extension of residue
fields
fW/é)=IL: K].
Note that these quantities are multiplicative in towers of extensions.

If A is a Dedekind domain with field of fractions K and L a finite extension of K,
we have defined [ANT, §3] quantities e(q/p) and f(q/p) carrying the same name for every
extension q of a prime p C A to the integral closure B of A in L. This is of course
no coincidence: if ¥ is a g-adic valuation on L and ¢ its restriction to K then we have
e(v /o) = e(q/p) because ordq(x_) = e(%p) -ordy(z) for all x € K* and f(¢/¢) = f(q/p)
because the residue class fields L and K of v and ¢ are simply the residue class fields of
the primes q and p. Led by the analogy, we say that a non-archimedean valuation v is
unramified over ¢ if e(¢/¢) = 1 and the residue class field extension L/K is separable.

(In many situations, the field K will be perfect and the second condition is automatically
satisfied.) Similarly, ¢ is said to be totally ramified over ¢ if e(¢p/¢) = [L : K].
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3.6. Theorem. Let ¢ be a non-archimedean valuation on a field K and i) an extension
of ¢ to a finite extension L of K. Then e(¢)/¢) and f(¢/¢) are finite and satisfy

e(v/9)f(¢/¢) < [L: K].

Proof. Let R C Ay be a set of elements whose residue classes in L are linearly independent
over K, and S C L* a set of elements whose 1)-images are in different cosets of ¢[K*] in
W[L*]. We are done if we can show that the elements rs € L with r € R and s € S are
linearly independent over K, since in that case R and S are finite and satisfy #R-#S < [L :
K]. As R and S can have order e(¢/¢) and f(¢/¢), the theorem then follows immediately.

Suppose that we have a sum ) _a, srs = 0 in which almost all a, ;s equal zero. Then
all non-zero elements ag = Y a7 have valuation Y(as) = max, ¢(a,s) € ¢[K*], as one
can pick for such a; a coefficient a, s of maximal valuation and observe that a, Slas € Ay is
by definition of R in Aq’;. It follows that all non-zero terms « s have distinct valuation, so
the ultra-metric inequality becomes an equality 0 = (>, ass) = max, 1(cs) that shows
that all terms in our sum are zero. ([l

Even when K is complete with respect to ¢, the inequality in the previous theorem can
be strict (exercise 7). However, in the important case that K is complete with respect to
a discrete valuation, the theorem can be strengthened in the following way.

3.7. Theorem. Let L be a finite extension of a field K that is complete with respect to
a discrete valuation ¢ and 1 the extension of ¢ to L. Then we have an equality

e(p/9)f (/o) = [L: K].

Moreover, if 7 is a prime element for ¢ and the residue classes of 1,72,...,Trp/¢) € Ay
form a basis for L over K, then we have an integral basis

Aw = @ A¢ s Ty J .
1<i< (/)
1<5<e($/9)
Proof. As every integral basis for A, over A is also a basis for L as a vector space over
K, the first statement is implied by the second.
For the second statement, we can apply theorem 2.6. More precisely, let Sy C Ay be
a set of representatives of A, modulo its maximal ideal p, that contains 0. Choosing the
elements r; as in the theorem, we easily see that

f(¥/9) f(¥/9)
S = ZSo-ri:{zsiri:siesoforalli}
i=1 i=1

is a set of representatives of A, modulo its maximal ideal p,, that contains 0. As e(y)/¢)
is finite and ¢ is discrete, v is again discrete. Let mx and 7y be corresponding prime

32 version 11 May 2017 9:57 p.m.



§3: Extending valuations

elements, then we have (7 )¢(¥/?) = ¢(rg) and any power p, is generated by an element

of the form W%W’;{ with 0 < j < e(y/¢). Theorem 2.6 shows that any x € A, has a unique

representation
o0

Xr = Z (Z Sijkﬂ'l;()?"iﬂ'%,

1<i<f(v/¢) k=0
1<j<e(/ )

as was to be shown. O

If the extension L/K in 3.7 is either totally ramified or unramified, one deduces easily
that we can find o € Ay such that Ay, = Ayla]. Such an element « is said to generate a
primitive integral basis. If the residue class extension L/K is separable, such an element o
can always be found (exercise 13). Note that this is not in general the case for an extension
Ok C Op, of rings of integers, not even when K = Q (exercise 15).

> EXTENDING VALUATIONS: GENERAL CASE

We continue with the general problem of extending a valuation ¢ on K to a finite exten-
sion L. As valuations extend uniquely in purely inseparable extensions, it is no essential
restriction to assume L/K to be separable, and we will do so for convenience.

3.8. Theorem. Let ¢ be a valuation on K, and L a finite separable field extension of K.
Then there are only finitely many valuations v on L extending ¢, and the canonical map

K¢ ®KL — HLw
Y|

is an isomorphism of K 4-algebras.

Proof. Note first that that there are canonical K-homomorphisms of L and K into every
completion L, at an extension i of ¢, so that we have a map on the tensor product as
stated.

As L/K is separable, we can find a € L such that L = K(«). Let f be the irreducible
polynomial of a over K. Then we have L = K[X]/(f), and if f = [[\_, ¢i is the factor-
ization of the separable polynomial f into (distinct) monic irreducibles in K[ X], we can
apply the Chinese remainder theorem to write the tensor product

t

Ky 0k L=Ky[X]/(f) =[] Kol X]/(9:)

=1

as a product of finite extensions of K. If L, is the completion of L with respect to a
valuation v that extends ¢, the image of the induced K-homomorphism hy : Ky @ L —
Ly is closed by 3.1 as it is of finite dimension over K4 and dense as it contains L. It follows
that hy is surjective and factors as a projection of K, @k L on a component K4[X]/(g:)
followed by an isomorphism Ky4[X]/(g:) — Ly.
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Conversely, every component K4[X]/(g;) of the tensor product is a finite extension
of the complete field Ky, so it comes by 3.3 with an extension valuation v of ¢ under
which it is complete. The composition of the embedding L — Ky ® g L with the projection
Ky ®r L — Ky[X]/(g;) yields a K-homomorphism L — K4[X]/(g;) that maps « to the
residue class of X, so ¥ induces a valuation on L via this map. As the image of L in
K4[X]/(gi) is dense, we obtain an isomorphism of complete fields L, — K4[X]/(g;) by
2.1. Thus, the extensions ¢ of ¢ to L correspond bijectively to a factor g; of f in K,[X]
in the sense that there is an isomorphism Ky[X]/(gi) = L. The theorem follows. O

3.9. Corollary. Suppose that L = K(«) for some separable o € L and f the irreducible
polynomial of o over K. For each extension v of ¢ to L, let g, be the irreducible polynomial
ofa € L C Ly over Ky. Then the map 1 — gy induces a bijection of finite sets

{¢|¢} <> {monic irreducible factors of f in K4[X]|}.

This shows that extending valuations is essentially the same thing as factoring polyno-
mials over complete fields. Such factorizations can be found using Hensel’s lemma from
sufficiently accurate approximate factorizations. For discrete valuations ¢, it is very often
sufficient to factor the irreducible polynomial of a suitable element o € L over the residue
class field K. When we phrase this in terms of the ideals in the valuation rings, we find
that this observation is in fact nothing but a rewording of the Kummer-Dedekind theorem
[ANT, theorem 3.1]. For the details we refer to exercise 10.

3.10. Example. Let K = Q(«) be the extension of Q that is obtained by adjoining a root
« of the irreducible polynomial X% — 17, and suppose we want to determine the extensions
of the 2-adic valuation ¢ = |- |2 on Q to K. We need to factor the polynomial f = X*—17,
which has a bad reduction over F, over the field Q5. The approximate zero 3 € Zs satisfies
|f(3)|2 = |64]2 < |f(3)|3 = |4]3, so the refined version of Hensel’s lemma in exercise 2.9
shows that f has a zero a € Zs with a = 3 mod 16. As Zs does not contain the 4-th root of
unity i = v/—1, we conclude that f factors over Qg as X4 —17 = (X —a)(X +a)(X? +a?).
This yields an isomorphism

Q2 ®q Q(a) — Q2 x Q2 x Q2(i)

of Qq-algebras that maps the element z®@h(a) to (xh(a),zh(—a),zh(ia)) for any h € Q[X].
We conclude that ¢ has two extensions 1, ¥2 to K with e(i1/¢) = e(v2/¢) = 1 and

f(i1/¢) = f(¥2/¢) = 1 and a single extension 93 with e(y3/¢) = 2 and f(v3/¢) = 1.
They are given by

P1(h()) = |h(a)l2 P2(h(a)) = |h(=a)l P3(h(a)) = |h(ia)l2

for h € Q[X], i.e. they are the composition of an embedding of K in Q2 or Qz(i) with
the unique 2-adic valuation on these complete fields. In terms of ideals, this means that
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we have a factorization 20k = paqots of the rational prime 2. The ideals p,q,t C O
are obtained by intersecting the ring O, which becomes a subring of Z, or Zs[i] after an
embedding, with the maximal ideal 2Zy or (1 + 7)Z[i]. As 2 divides [Ok : Z[z]] for every
x € K (exercise 15), we cannot apply the Kummer-Dedekind theorem directly here.

Theorem 3.8 has another direct corollary that was already familiar to us [ANT, Theorem
3.4] from the theory of extensions of Dedekind rings. The separability assumption cannot
be omitted here.

3.11. Corollary. For L/K finite separable and ¢ a non-archimedean valuation on K, we
have an inequality

> ew/o)f(W/¢) < [L: K]

Yl

that is an equality when ¢ is discrete.

Proof. Counting K-dimensions for the tensor product in 3.8, we find that [L : K] =
> oLy + Ky), and 3.6 and 3.7 imply that we have [Ly : Ky] > e(/)f(¢/¢) with
equality for discrete ¢. O

In the archimedean case we put f(1/¢) = 1 and e(p/¢) = [Ly : K4), such that equality
holds as for discrete ¢. In line with this choice, we say that an extension |¢ of archimedean
valuations (or primes) is ramified if ¢ is real and 1 is complex.

A final consequence of the basic theorem 3.8 is the following relation between global
and local norms and traces.

3.12. Corollary. For L/K finite separable and ¢ a valuation on K we have identities

NL/K(x):HNLw/K¢(x) and TI'L/K(LI?):ZTI‘Lw/Kd)(QZ)
Ylo bl

for every element x € L.

Proof. The matrix M, of multiplication by x € L is the same for the K-vector space L
and the Ky-vector space Ky ® g L, and computing its trace or norm using the isomorphism
in 3.8 gives the desired result. 0
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Exercises

36

. Let K be a field. Show that there exists a non-trivial valuation on K if and only if K is not

an algebraic extension of a finite field.
[Hint: use exercise 1.15.]

. Let K be complete with respect to a discrete valuation ¢ and % the extension of ¢ to an

algebraic extension L of K. Show that e(i/¢) and f(1)/¢) are finite if and only if the degree
[L : K] is finite.

. Prove that a local field of characteristic 0 is a finite extension of Q, for some p (possibly

p = 00).

. Let L be a field that is complete with respect to a discrete valuation v, and let K be a

subfield of L for which K C L is finite and separable. Prove that K is complete with respect
to the restriction of ¢ to K.

. Let K be a field, ¢ a non-archimedean valuation on K, and n a positive integer. Denote by

Sh, the set of those non-zero vectors (x1,x2,...,x,) € K™ with the property that h is the
smallest of the subscripts ¢ for which ¢(z;) = max{p(z;) : 1 < j < n}.
a. Prove that any sequence v, vs2, ..., v, Of vectors in K" satisfying v; € S; for each i
forms a basis for K™ over K.
b. Prove that the two-dimensional Euclidean plane can be written as the union of three
dense subsets with the property that no line in the plane intersects all three subsets.

. Let L/K be an extension of number fields and ¢ a non-trivial archimedean valuation of K.

Show that the image of the ring of integers Or under the natural map L — Ky Qg L =
[1,, Lw has closure [, , Ay.

Let Ky be the field obtained by adjoining all 2-power roots of unity to Qsz, and K the
completion of Ky with respect to the extension ¢ of the 2-adic valuation to Ky. Show that

K has an automorphism o of order 2 mapping each 2-power root of unity to its inverse, and
that F = K'° C K is a quadratic extension of complete fields with e(¢/¢r) = f(¢/dr) = 1.

(Kummer-Dedekind.) Let L/K be an extension of number fields and a € Op an element
that generates L over K. Suppose that p is a prime in Ok that does not divide the index
of Ox-modules [0y, : Okla]]. Prove: if f& factors over K = O /p as f = H::1 g, then
p factors in Or, as pOr = szl q;*, with q; C Or the prime ideal generated by p and g;(«)
for some lift g; € Ok [X] of g;.

[Hint: we have f = H§:1 fi € Kp[X] by Hensel’s lemma, and Lq, = Kp[X]/(fi) has residue
class field K[X]/(g,).]

. Let K be complete with respect to a non-archimedean valuation ¢ and i the extension of ¢

to the algebraic closure 2 of K.

a. (Krasner’s lemma.) Let a € Q) be separable over K and suppose that 5 € Q satisfies
Y(a—B) < P(a — ') for every K-conjugate o’ # « of a. Show that « is contained in
K(8).

[Hint: Show that « is fixed under every automorphism of /K (f).]
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b. Let K(a)/K be a Galois extension of degree n and f € K[X] the irreducible polynomial
of a over K. Let g € K[X] be a polynomial of degree less than n. Show that there exists
€ > 0 such that K(«) is the splitting field of f+ kg for all elements k € K with ¥(k) < e.

Let p be a prime number and F'/Q, be a finite extension.
a. Show that there exist a number field K and a prime p|p in K such that K is isomorphic
to F.
b. Let E/F be a finite Galois extension with group G. Show that we can choose number
fields L and K that are dense in respectively E and F in such a way that L/K is also
Galois with group G.

Let L be a finite extension of a field K that is complete with respect to a discrete prime
divisor, and suppose that the residue class field extension L/K is separable. Show that
AL = Axla] for some o € Ap.

[Hint: If L = K (Z) there exists x € A, with irreducible polynomial f such that f is the
irreducible polynomial of T over K. If 7 is a prime element of L, then f(x+ ) is also a prime
element and o = = + 7 does what we want.]

Determine the structure of Q, ®q K for K = Q[X]/(X* — 17) and p = 3,5,17,149 and oco.
What is the corresponding factorization of these rational primes in K?
[Hint: 7* = 17 mod 149.]

For K = Q(a) with a* = 17 we set 3 = (a®+1)/2. Show that there is no element z € Ok for
which the index [Ok : Z[z]] is odd, and that 1, o, B, (S + ) /2 is a Z-basis for Ox. Compute
a Z-basis for each of the prime ideals lying over 2.

In the following three exercises K denotes a field with a non-archimedean valuation ¢, and 7 is a

positive real number.

14.

15.

For f = Zl a; X" € K[X], f # 0, denote the largest and the smallest value of i for which
o(a;)r" = max; ¢(a;)r? by I.(f) and s,.(f), respectively.
a. Prove that [, and s, extend to group homomorphisms K (X)* — Z.
b. Suppose that K is algebraically closed, and let f € K[X], f # 0. Prove that the number
of zeroes a of f in K with ¢(a) = r, counted with multiplicities, is equal to I (f) — s, (f).

Let f =), a; X" € K[X], f # 0. The Newton polygon of f is defined to be the “lower
convex hull” of the points (i, —log¢(ai)), with ¢ ranging over all non-negative integers for
which a; # 0; more precisely, if C' C R x R is the convex hull of the set of those points, then
the Newton polygon equals {(z,y) € C : there is no (z,y’) € C with y’ < y}. The Newton
polygon is the union of finitely many line segments of different slopes.
a. Draw, for each prime number p, the Newton polygon of 3X°% — $X2 + %X +5 € Q[X]
with respect to the p-adic valuation of Q.
b. Prove: if logr occurs as the slope of one of the line segments that constitute the Newton
polygon of f, then [,.(f)—s,(f) (as defined in the previous exercise) is equal to the length
of the projection of that line segment on the z-axis, and otherwise I,.(f) — s»(f) = 0.
Remark. Combining b with part b of the preceding exercise one sees that the valuations of
the zeroes of f (in some algebraic extension of K) can be read from the Newton polygon

of f.
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16. Let f € K[X], and suppose that f(0) # 0.

a. Suppose that K is complete with respect to ¢, and that f is irreducible. Prove that the
Newton polygon of f is a single line segment.

b. Suppose that the Newton polygon of f intersects the set Z x (—log p(K™)) in exactly
two points. Prove that f is irreducible.

c. Prove that 3X3 — %X 24 %X + 5 is the product of two irreducible factors in each of
Q2[X] and Q7[X], that it is irreducible in Q3[X], and that it is the product of three
linear factors in Qs[X]. How does it factor in Q[X]?
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4 BEXTENSIONS OF LOCAL FIELDS

In this section, we study finite extensions of a field K that is complete with respect to a
discrete prime divisor ¢. For L a finite extension of K, we write ¥ to denote the unique
extension of ¢ to L. By 3.7, we have [L : K| = e(v¥/¢)f(1/p) for these extensions, so they
are unramified when L/K is separable of degree [L : K| and totally ramified when L = K.
We will often restrict to the case that the residue class field extension L/K is separable.
This is necessarily the case if K is perfect, so our assumption is satisfied for completions
of number fields, for function fields of curves over a finite field and for function fields in
any dimension over a field of characteristic zero.

> UNRAMIFIED EXTENSIONS

We first study the unramified extensions L/K, which are in a sense the simplest extensions.
The main result is that these extensions can uniquely be ‘lifted’ from the residue class field
extension L/K.

4.1. Proposition. Let L be a finite extension of a field K that is complete with respect
to a discrete valuation, and suppose that the residue class field extension L /K is separable.
Then there is a unique unramified subextension T/K of L/K such that T = L.

Proof. As L/K is finite separable we can write L = K (Z) for some separable Z € L. Let
f% be the irreducible polynomial of Z, and let f € Ay[X] be a monic polynomial with
reduction f = f% € K[X]. As f has a simple zero T € L, there exists by Hensel’s lemma
2.8 a unique element = € L with residue class T € L such that f(z) = 0. The polynomial
f is irreducible in K[X] as its reduction f € K[X] is, so it is the irreducible polynomial
of x over K. For the subfield T = K(x) C L we have T = K(Z) = L and therefore
[T : K] =deg f = [T : K|. This implies that T'/K is unramified.

If £/K is any subextension of L/K with E = L, the irreducible polynomial fi of x
over K has a simple zero in the residue class field E that can be lifted to a zero y € E of
f& with y =7 € L. But this implies y = x as x € L is the unique zero of f with residue
class T € L. We obtain T' C E, so if we require in addition that E be unramified over K
the equality [F : K] = [E : K| = [T : K| shows that E =T, i.e. T is unique. O

The field T in the proposition is the inertia field of the extension L/K. It is the largest
subfield E of L for which the prime ideal p C Ax remains inert, i.e. generates the prime
ideal of the valuation ring in Ag. The construction of 7" as a primitive extension K (z) for
some element z € L for which the reduction f € K[X] of the irreducible polynomial f% is
separable shows that the inertia field of L/K is always separable over K. We will give a
Galois theoretic construction of 7" in the next section.

The following theorem is a more precise version of 4.1 and expresses the fact that the
construction of unramified extensions L/K from separable extensions L/K is functorial
and induces an equivalence of categories. We write F°P for a separable closure of a field F'.
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4.2. Theorem. Every unramified extension L/K is separable, and the assignment L + L
establishes an inclusion preserving bijection between the set of finite unramified extensions
L C K®P of K and the set of finite separable extensions L C K of K. Moreover, for
any two unramified extensions L1 and Lo of K the natural map

HOIHK(Ll,LQ) ;> Homﬁ(fl,fg)

is bijective.
Proof. If L/K is finite and unramified, we have L = T in 4.1 and we observed already that
T /K is separable. As an arbitrary unramified extension L/K is a union of finite unramified
extensions, this implies that L/K is separable.

The proof of 4.1 shows that for every finite separable extension K (Z) of K, there is
a unique finite unramified extension L = K(x) of K inside K*°P with residue class field
K (7). This establishes a bijection that clearly preserves inclusions.

If  : K(Z) — F is a K-homomorphism between finite separable extensions of K, then
¢ maps T to some zero 7 of f% in F. If f € A[X] is a monic lift of f% and z € K°°P its zero
with reduction = € Fsep, then 7 € F can uniquely be lifted to a zero y in the unramified

extension F'/K corresponding to F. We find that there is K-homomorphism ¢ : K(x) — F
satisfying ¢(z) = y, and that this is the unique element of Homg (K (), F) inducing ¢. O

We see from this theorem that a compositum of unramified extensions of K is again
unramified, and that we can take the union of all unramified extensions inside K®°P to
obtain the maximal unramified extension K""" of K.

4.3. Corollary. Let K be complete with respect to a discrete valuation and L/K a
finite unramified extension. Then L/K is Galois if and only if L/K is Galois, and if these
extensions are Galois their Galois groups are isomorphic.

Proof. We have [L : K] = [L : K] because L/K is unramified and an isomorphism
Autg (L) =+ Aut(L) by taking L; = Ly = L in the previous theorem. O

Taking the projective limit with respect to all unramified extensions of K, we see that the
maximal unramified extension K" /K is Galois with group Gal(K"™ /K) = Gal(K " /K).
In particular, one finds that Gal(K" /K) = Z when K is finite. On a finite level, this can
be formulated as follows.

4.4. Corollary. Let K be a non-archimedean local field. Then there is for each n > 1 a
unique unramified extension K, /K of degree n inside K*°P. This extension is cyclic, and
we have K = K (() for a root of unity ¢ of order coprime to chark.

Proof. If K is finite of order ¢ = p* with p = charK, the unique extension K,, of degree n of
K is the field of order ¢". By the previous corollary, the corresponding unramified extension
K, of degree n of K is also unique and Galois with group isomorphic to Gal(F /F,) =
Z/nZ. A generator T of the cyclic group F}. is a root of unity of order m = ¢" — 1, so its
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irreducible polynomial f% is a factor of the cyclotomic polynomial (®,, mod p) € K[X].
As m is coprime to p = char K, the polynomial ®,,, is separable over K and we can apply
Hensel’s lemma 2.7 to lift f% to a factor f of ®,, in K[X]. As K, is generated over K by
a root of f, it follows that K,, = K((,,) for an m-th root of unity ¢,, € K,. O

We have shown that the identity e - f = [L : K| for an extension L of a field K that is
complete with respect to a discrete prime divisor corresponds to a unique subextension
K C T C L such that T/K is unramified of degree f and L/T is totally ramified of
degree e. We know how to generate the inertia field T over K, so we are left with the
investigation of totally ramified extensions.

> TOTALLY RAMIFIED EXTENSIONS

A finite extension of non-archimedean valued fields is said to be tamely ramified if
the residue class field extension is separable and the ramification index is not divisible by
the characteristic of the residue class field. Note that every finite extension of K is tamely
ramified when charK = 0, and that unramified extensions are always tame. For infinite
algebraic extensions of K the ramification index can be infinite. In that case one says that
the ramification is tame if this is the case for every finite subextension L/K.

Our first result applies to totally ramified extensions that are tamely ramified.

4.5. Theorem. Let K be complete with respect to a discrete prime divisor and L/K a
totally and tamely ramified extension of degree e. Then there exists a prime element w of
K such that L = K (/7).

Proof. Let 77, and wx be prime elements of L and K, respectively. Then 7;, generates L
as K(mr) C L has ramification index e = [L : K], and we have 7§ = umg for some unit u
in the valuation ring Ay, of L. As L/K is totally ramified, we have L = K, so there exists
v € A} with u = v. The element z = v /7¢ has residue class T = 1 € L, so we can
apply Hensel’s lemma (as in 2.8) to the polynomial X¢ — z, which has a root 1 € L that is
simple as the derivative eX " does not vanish outside 0. We find that there exists y €A}
such that y* =z, so L = K(ynr) = K(J/v7Kk). O

4.6. Example. The p-th cyclotomic extension Q,((,) is totally ramified of degree p — 1
over Q,, and can be written as Q,((p) = Qp( *V/—p).

To see this, one considers the prime element 77, =1 — (, € L = Q,((,) and computes the
residue class of u™! =p/(1 —(,)? in L as

r_ :Iﬁl_c I:IZ =(p-1=-1¢L
(1—¢)pt 1—¢p =1 j=0 B

=1

using the identity ¢, = 1 € L and Wilson’s theorem. Thus, one can take v = —1 in the
preceding proof. O
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One can deduce from 4.5 that every finite extension L of a field K that is complete with
respect to a discrete prime divisor has a unique maximal subfield V' C L such that V/K is
tamely ramified (exercise 4). This field obviously contains the inertia field 7. The union of
all tamely ramified extensions of K inside an algebraic closure yields an infinite separable
extension K%M > K containing K" that is known as the maximal tamely ramified
extension of K, see exercise 5.

If L/K is a non-archimedean extension of valued fields that is not tamely ramified,
then L/K is inseparable or the ramification index e satisfies € = 0 € K. Such extensions
are said to be wildly ramified. The structure of these extensions is in general much more
complicated than what we have seen so far. Even in the case that both L/K and L/K
are separable, there can be many non-isomorphic wildly ramified extensions of the same
degree.

A general method to look at totally ramified extensions L/K proceeds by studying the
irreducible polynomial of a prime element 7y,. Such polynomials turn out to be Eisenstein
polynomials in Ak, i.e. monic polynomials of the form Z?:o a; X" with ag,ai,...,a,_1 in
the maximal ideal px C Ax and ag € p%.

4.7. Lemma. Let K be complete with respect to a discrete prime divisor and L/K a
totally ramified extension of degree e. Then L equals K (71, for every prime element 7, of
L, and f;* is an Eisenstein polynomial in Ax[X]. Conversely, every root of an Eisenstein
polynomial in A [X] generates a totally ramified extension of K.

Proof. If L/ K is totally ramified of degree e then K (7r,) has ramification index e = [L : K]
over K, so its degree over K cannot be smaller then [L : K| and we have L = K(rz). If
1) is the extension of the valuation on K to a normal closure M of L over K, then every
root m of fi* in M has valuation ¢ (7) = ¢(7) < 1, so the same holds for all but the
highest coefficient of fz*, which can be written as sums of products of roots. The constant
coefficient N,/ g 7r of fi" generates the maximal ideal in Ag as it has valuation (7 )¢,
so fi* is Eisenstein.

Conversely, every Eisenstein polynomial f € Ag[X] is irreducible, and a root 7 of f
generates a totally ramified extension K (7) of degree e = deg(f) of K by 3.3: the valuation
¥(m) is the e-th root of the valuation of a prime element of K. O

» p-ADIC FIELDS OF GIVEN DEGREE

If K is a local field of characteristic zero, i.e. a finite extension of Q,, the preceding lemma
can be used to show that the number of totally ramified extensions of K of given degree e
is finite. This yields the following finiteness result.

4.8. Theorem. Let p be a prime number and n an integer. Then there are only finitely
many extensions L/Q,, of degree n inside a separable closure QP of Q.

Proof. As the inertia field of L/Q, is uniquely determined inside QP by its degree
(corollary 4.4), it suffices to show that a every subfield K C QP that is of finite degree
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over Q, only has finitely many totally ramified extensions L/K of given degree e inside
Q. By the lemma, such extensions are obtained by adjoining the root of a polynomial

f=X¢+ 30 a; X" with ‘coefficient vector’
U= (Ge—1,0c2,...,a1,a0) € C=p%" x (pg \ Pk)-

to K. Conversely, every point v € C' corresponds to a separable—here we use e # 0 € K—
polynomial f € A[X], each of whose e roots in K*°P generates a totally ramified extension
of degree e of K. By Krasner’s lemma (exercise 3.11), every point w € C that is sufficiently
close to v gives rise to a polynomial g € A[X] that has the same splitting field as f. As C'is
compact, it follows that the Eisenstein polynomials of degree e in A[X] have only finitely
many different splitting fields in K®°P. It follows that there are only finitely many totally
ramified extensions of degree e of K. ([l

> DIFFERENT AND DISCRIMINANT

An important invariant to measure the ramification in an extension L/K is given by the
different and the discriminant of the extension. We have already encountered these in the
case of number fields, and the definitions are highly similar. In section 6, we will study the
relation between local and global discriminants in more detail.

Let K be complete with respect to a discrete prime divisor. In order to avoid triviali-
ties, we will assume that L is a finite separable extension of K. The discriminant A(L/K)
of a finite extension L is defined as the Ag-ideal generated by the discriminant

Alwr,wa, ..., wy) = det(Try /x (wiw;))7 =1

of an integral basis {w1,ws, ...,w,} of A over Ax. Such a basis exists by 3.7, and the value
of the discriminant is defined up to the square of a unit in Ag. In particular, A(L/K) C Ax
is well-defined, and it is non-zero because we assume L/K to be separable. The different
D(L/K) is the Ap-ideal with inverse

D(L/K) ' ={zeL:Try r(zAL) C Ax}.

Exactly as in the global case [ANT, Theorem 4.17], we have N,k (D(L/K)) = A(L/K),
where Ny, i denotes the ideal norm. Moreover, we have ©(M/K) = D(M/L)D(L/K) for
a tower K C L C M of finite extensions. If Ay has an Ax-basis consisting of powers of an
element a € Ay, we know from [ANT, Proposition 4.6] that then A(L/K) is generated by
the discriminant A(f) of f = f%. Moreover, the different is then equal to ®(L/K) = f'(«)-
Ap, [ANT, ex. 4.29]. We can use this to compute the differential exponent ord,, (D(L/K))
of a complete extension L/K. The result obtained is a refinement of [ANT, Theorem 4.17].

4.9. Theorem. Let L be a finite separable extension of a field K that is complete with
respect to a discrete prime divisor, and suppose that the residue class field extension L/K
is separable. Let e be the ramification index of L/K. Then

ordy, (O(L/K))=e—1+4+u
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with w = 0 if L/K is tamely ramified and w > 1 if L/K is wildly ramified. We have
u < ordy, (e) whene # 0 € K.

Proof. If L/K is unramified, we can lift any basis of L/K to obtain a basis of A7, over Ax
by 3.7, and the discriminant of this basis is a unit as the separability of L/K implies that
its reduction in K is non-zero. It follows that A(L/K) = A and ®(L/K) = Ay for
unramified extensions.

If T is the inertia field of L/ K, we have ®(L/K) = ©(L/T) since D(T/K) = (1), so
we can further assume that L/K is totally ramified of degree e. Let m be a prime element
in L and f =55 ,a,X" € Ag[X] its irreducible polynomial. Then A; = Ak|n] by 3.7
and we have

e

ordy, (D(L/K)) = ordy, (f'(m)) = ordy, (Y _ia;m'™") = minford,, (ia;7'~)}.
=1

The final equality follows from 1.3 and the fact that all terms in the sum have different
order at pz. The term with ¢ = e in the last sum has order e — 1 4 ord,, (e) at py,
and all other terms have order at least e because f is Eisenstein by 4.7. It follows that
ordy, (O(L/K)) = e — 1 if and only if ordy, (e¢) = 0, i.e. if and only if L/K is tamely
ramified. If L/K is wildly ramified we obtain e < ord,, (9(L/K)) < e—1+ordy, (e). The
upper bound is finite only when e # 0 € K. O

Theorem 4.8 does not hold for local fields of positive characteristic when char K divides n,
see exercise 13. However, there is an elegant mass formula due to Serre [19, 1978] that is
more precise than 4.8 and holds in any characteristic. The statement, which we will not
prove in these notes, is that for S, the set of totally ramified extensions of degree n of K
inside a separable closure K®°P, there is an identity

(4.10) Z VAL =,
Les,

Here g denotes the cardinality of K and d(L) = ord,,, (D(L/K)) is the differential exponent
of L/K. If charK = 0 we have a uniform upper bound d(L) < e—14ord,, (e) for all L, so
the number of terms in the sum must be finite. For n divisible by p = charK, the set S,, is
always infinite, but we see that the number of fields L with bounded differential exponent
must be finite. This immediately implies a local counterpart to Hermite’s theorem [ANT,
5.12], see exercise 14.
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Exercises

1. Let K be a field with non-archimedean valuation ¢ and f € As[X] a polynomial that is
separable over the residue class field K. Show that every extension of ¢ to the splitting field
of f is unramified over ¢.

2. Let M be a valued field with subfields E and L, and suppose that L is finite over some field
K C LN E. Show that EL/FE is unramified if L/K is unramified.

3. (Abhyankar’s lemma) Suppose that ¢ is a discrete valuation on a field K and let L and E be
two extensions of K that are contained in some finite extension M = LFE of K. Let ¢ be an
extension of ¢ to M and ¢, and g the restrictions of 1 to L and E. Suppose that 11 /¢ is
tamely ramified and that e(¢r/¢) divides e(1r/¢). Prove that v is unramified over ¥ g.

4. Let K be complete with respect to a discrete prime divisor. Show that every tamely ramified
extension of K is separable, and that a compositum of two tamely ramified extensions inside
K*°? is again tamely ramified. Deduce that for every finite extension L/K there is a unique
maximal subfield V' C L that is tamely ramified over K. If eg is the largest divisor of the
ramification index of L/K that is coprime to charK, show that V = T'( °/7) with T the
inertia field of L /K and 7 a prime element of 7. What can you say about [L : V]?

5. Let K be as in the previous exercise. Show that there exists a maximal tamely ramified
extension K*™°/K inside K. Show also that K**™ is Galois over K" and that we have

y/ if charK = 0;

Gal(Ktame/Kunr) ~ 4 n
Z/Z, if charK =p > 0.

6. Show that a compositum of two totally ramified extensions need not be totally ramified.
Deduce that there is not in general a unique maximal totally ramified extension K™ C K?*¢
of a complete field K.

7. Let L/K and eo be as in exercise 4 and suppose that #K = q < co. Show that V/K is
abelian if and only if ep divides g — 1.
[Hint: if V/K is abelian, there is a primitive eo-th root of unity (¢, = 7( ¢/7)/( /7)) in T
that is invariant under Gal(V/K).]

8. Show that the maximal tamely ramified abelian extension M of the field K in the previous
exercise is cyclic of degree ¢ — 1 over K", and that Gal(M/K) = (Z/(q — 1)Z) x Z.

9. Show that K = U,>1C((X'/™)) is an algebraically closed field. Show also that K is not
complete with respect to the extension valuation of C((X)), and that the completion Q of
K consists of Laurent series Zi a; X™ with coefficients a; € C and exponents n; € Q that
satisfy lim; n; = 4-o00. Is €2 algebraically closed?

10. Show that the algebraic closure of Q, is not complete under the p-adic valuation, and let C,,
be its completion. Show that C, is algebraically closed. Compute the transcendence degree
of C,/Q, and deduce that C, is isomorphic to the field of complex numbers (as a field, not
as a topological field!).
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11.

12.
13.

14.

46

Let L/K be an extension of local fields of degree n and residue class degree f. Show that we
have ordp, (A(L/K)) > n — f with equality if and only if L/K is tamely ramified.

Verify Serre’s formula 4.10 for n coprime to chark.

For K = F,((T)) and n > 1, let K,, be the extension obtained by adjoining a root of the
polynomial f = X? +T" X + T. Show that K, is a totally ramified separable extension of
degree p of the local field K, and that K,, and K,, are not isomorphic over K when m # n.

Deduce from Serre’s formula that up to isomorphism, the number of extensions of a local
field of given discriminant is finite.
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5 (GALOIS THEORY OF VALUED FIELDS

We have seen in the previous section that every finite extension L of a field K that is
complete with respect to a discrete prime divisor gives rise to two subfields " C V C L
of L that are separable over K. In this section we will describe the Galois correspondence
for such fields. We will assume in this section that both L/K and the residue class field
extension L/K are separable. There is always a maximal subfield L, C L for which these
assumptions are satisfied, and in most cases that occur in practice one has Ly, = L. After
we have dealt with the case of complete extensions, we will pass to the global case and
discuss the relation between local and global Galois groups.

» INERTIA SUBGROUP

Assume that K is complete with respect to a discrete prime divisor and that L/K is a
finite Galois extension for which L/K is separable.

5.1. Proposition. The residue class field extension L/K is Galois and the natural map
p : Gal(L/K) — Gal(L/K) is surjective. The invariant field L**? is the inertia field
of L/K.

Proof. Every element o € Gal(L/K) induces an automorphism & € Aut(L), so we have
a natural image G of G = Gal(L/K) in Autz(L). We will prove that L/ K is Galois and

that p is surjective by showing that K equals the invariant field °.

— -G —G . —
We clearly have K C L , so let T € L have representative x € Ap. If K has
characteristic zero, another representative is given by

ﬁZU(x)ELG:K
) ceG

and we are done. For charK = p > 0 we let S be a p-Sylow subgroup of G and I’ C G a
system of left coset representatives of S in G. As every conjugate of x has image Z in L,

the element
Z H r(z) e L =K
ocel TES

[GS

has image Z%° € K. As #5S is a p-power and L L/K is separable, this implies Z € K, as was
to be shown.

Let T be the invariant field L**?. Then we have [T : K] = [L : K]. The natural
map ker p = Gal(L/T) — Gal(L/T) is the zero map but, as we have just shown, it is also
surjective. We therefore have L = T, and the equality [T : K] = [T : K| shows that T/K
is unramified. It follows from 4.1 that 7" is the inertia field of L/K. U

The kernel of the map in the proposition is the inertia group I C Gal(L/K) of the extension
L/K. Tts order is equal to the ramification index of L/K, so I is the trivial subgroup if
and only if L/K is unramified. In that case 5.1 reduces to the statement in 4.3.
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» RAMIFICATION GROUPS
Let p;, = mp Ar, be the maximal ideal in A;. Then we define the i-th ramification group
G, C G=Gal(L/K) of L/K as
Gi={oceG:Y(x—o(x) <(ry) forall x € Ay}
= ker[G — Aut(Ar/pit)].
The definition shows that all G; are normal subgroups of G. As every ¢ # idy, is not in G;

for 7 sufficiently large, we have G; = {1} for large i. We formally have G_; = G, and for
i = 0 we find that Gg = I is the inertia group of 1. The sequence

G=G_1D0I=GyD>G; DGy D ...

of subgroups corresponds to an sequence of fields V; = L% that are known for i > 1 as
the ramification fields of L/ K. We will show in 5.4 that the first ramification field V' = V;
is the ramification field constructed in exercise 4.4.

5.2. Theorem. Let 7 be a prime element of L and write US)) = A} and Ug) =1+pt
for i > 1. Then the map

Xi: Gy — U julity

or—o(mp)/7L

is for each i > 0 a homomorphism with kernel G;;1 that does not depend on the choice of
the prime element my,.
Proof. Let us check first that y; does not depend on the choice of 7. If u € A7 is a unit,
then we have o(u)/u € U SH) for o € G; and consequently

olums) _olw) olra) _ oms) _ o pin

urmy, u Tr, Tr,

For 0,7 € G; we conclude from this that we have

xlor) = ) ) T i),

so x; is a homomorphism. In order to prove that ker x; = G;41, it suffices show that for
o € Gy an element of the inertia group and i > 1, we have

0 €Gi<=o(ny) — 7L €p! <= o(np)/mp € 1+ph.

For the last two conditions the equivalence is clear. The middle condition is obviously
necessary to have o € G;, and for its sufficiency we write Ay, = Ap[rr] and remark that
an element x = Y, axmk € Ar[ry] satisfies o(z) — 2 = >, ar(o(rp)" ol

— k) € pit! since

o(ay) = ay € T for 0 € Gy and o(n§) — 7§ is divisible by o(7r) — 71, for all k. O
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5.3. Corollary. The group Go/G) is cyclic of order coprime to charK. If G is abelian,
there is a canonical embedding xo : Go/G1 — K.

Proof. The isomorphism Ujgo)/U,gl) = T" and 5.2 give us an injection xo : Go/G1 — L,
so Gy /G is a finite subgroup of the unit group of a field and therefore cyclic. Its order is
coprime to charK as there are no p-th roots of unity in a field of characteristic p > 0.

If G is abelian, we have o(xo(7)) = (o07)(7r)/o(7wr) = (to)(nr)/o(nr) = xo(T) for

o€ G and 7 € Gy, so the image of yo isin ()¢ =K. O

5.4. Corollary. The group G, is trivial for charK = 0 and a p-group for charK = p > 0.
The first ramification field Vi = L&' is the largest subfield of L that is tamely ramified
over K.

Proof. For + > 1 we have an isomorphism Ug)/UgH) s L that sends 1 + an! to a.
If charK = 0 there are no elements of finite additive order in L, so G; /Git1 = 0 for all
i > 1 and therefore G; = 0. For charK = p > 0 all non-zero elements of L have additive
order p, so each quotient G;/G;4+1 is an elementary abelian p-group. It follows that G,
is a p-group. In this case, the corresponding field V = L& is totally ramified of degree
#(Go/G1) coprime to p over the inertia field T', whereas L/V is totally ramified of p-power
degree. We conclude that V' is the maximal tamely ramified subfield. For char K = 0 this
is trivially true since V = L. 0

Example. Consider for p prime the cyclotomic extension L = Q,((,) of K = Q,, occurring
in example 4.6. This is a Galois extension with group G = (Z/pZ)* if we identify ¢t mod p
with the automorphism o; : ¢, C;. The extension is totally and tamely ramified, so
we have Gop = G and G; = 0. Taking 7, = 1 — (,, we see that the homomorphism
Yo :Go— L= F, maps o, to the residue class

oi(mr) _ 1_@
TL B 1_Cp

=14+G+C+... + ¢ =tel,

so it is in this case an isomorphism.

More generally, we can consider L = Q,((,x) over K = Q,,, which is abelian with
group G = (Z/p*Z)*. This is a totally ramified extension, so again Gy = G. The argument
above, when applied for the prime element 77, =1 — (,x, yields

Gi={o;:t=1modp'} = (1+p") C (Z/ka)*

for all ¢ > 1. In particular, all injections x; : G;/Giy1 — UI(Ji)/UI(Ji+1) =~ F, are isomor-
phisms for this extension.

» DECOMPOSITION GROUP

We now consider the case of an arbitrary finite field extension. If ¢ is any valuation on
K and v an extension of ¢ to a finite Galois extension L of K, then the completion L,
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is the compositum of its subfields L and K. Standard Galois theory tells us that L /Ky
is a finite Galois extension, and that G, = Gal(Ly/Ky) is isomorphic to the subgroup of
Gal(L/K) corresponding to the subfield L N K.

Ly Gy
L K¢
LN K¢

K

By the uniqueness of the extension valuation in the complete extension L /Ky, we have
Y(o(z)) = Y(x) for x € Ly and 0 € Gy. If we view Gy, as a subgroup of Gal(L/K), we
can write

Gy = {0 € Gal(L/K) : Y(o(x)) = ¢(z) for all z € L}

since every element of the right hand side extends uniquely by continuity to an automor-
phism of L, over Ky4. This subgroup is known as the decomposition group of ¢ in L/K,
and the corresponding invariant subfield L& is the decomposition field of v in L/K.

We define a left action of G = Gal(L/K) on the finite set X = {¢|¢} of extensions of
¢ to L by setting

(o) (x) = (o (x)) for x € L.

If ¢ is non-archimedean with valuation ring A, and maximal ideal q, the valuation ot
has valuation ring o[A,] and maximal ideal o[qy]. Thus, for a number field L the G-action
on the finite primes of L is ‘the same’ as the natural G-action on the corresponding prime
ideals in the ring of integers of L that was studied in [I, §8]. The theorem given there can
be generalized in the following way.

5.5. Proposition. Let L/K be a finite Galois extension with group G and X the set of
extensions of a valuation ¢ on K to L. Then G acts transitively on X, and the stabilizer
Gy C G of ¢ € X is the decomposition group of ¢ in L/K. All decomposition groups G,
of ¢ € X are conjugate in G.

Proof. Suppose that there exist extensions 11,19 € X that lie in different G-orbits. Then
the orbits Gi; = {ov; : 0 € G} are disjoint for i = 1,2, so the approximation theorem
implies that there exists z € L with ¥(x) < 1 for ¢» € Gi1 and () > 1 for ¢p € Gio. The
product [[ .o (ovi)(x) = ¥i(NL/k(x)) is then smaller than 1 for i = 1 and greater than
1 for 7 = 2. This contradicts the fact that 1y and v coincide on Ny /k(z) € K, so there
cannot be two distinct G-orbits and G acts transitively on X.

We have already seen above that the decomposition group G, is the stabilizer of ¥ in
G, and in view of the transitivity the general identity G,y = 0G0 ™! for stabilizers shows
that all decomposition groups of ¢ € X are conjugate in G. O
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5.6. Corollary. For a normal extension L/K, the completions Ly for 1|¢ are all iso-
morphic over K. In particular, the ramification indices e = e(v/¢) and the residue class
degrees f = f(v/¢) do not depend on the choice of 1, and one has [L : K| = efg with g
the number of different extensions of ¢ to L.

Proof. If 15 = o1 for 0 € Gal(L/K), then o induces an isomorphism Ly, — Ly, on
the completions that is the identity on K. The final formula follows from 3.10 and the
convention for archimedean ¢ following it. O

If the extension L/K in 4.1 is abelian, all decomposition groups Gy, for ¢ € X coincide.
In that case, we can speak of the decomposition group G4 of ¢ in L/K.

5.7. Theorem. Let L/K be a finite Galois extension and Z,, the decomposition field of a
valuation ¢ on L that is either archimedean or discrete and has restriction ¢ on K. Then
Zy/ K is the largest subextension E/K of L/K for which

e(le/o) = f(¥le/¢) = 1.

Proof. By construction, Z, is the largest subfield of L that is contained in Ky, and a
subfield £ D K of L is contained in Ky if and only if its completion, which has degree
e(Y|e/o)f(Y|e/p) over Ky by 3.10, is equal to K. The theorem follows. O

> (GALOIS THEORY FOR GLOBAL FIELDS

We will further suppose that L/K is a finite Galois extension with group G and 1 and ¢
correspond to discrete prime divisors q and p for which the residue class field extension
L/K is separable. In the case of an extension of number fields, one may think of q and p as
ideals in the respective rings of integers. We see from 5.7 that the decomposition field Z; of
qin L/K is the largest subfield E for which qp = qN E satisfies e(qg/p) = f(qr/p) = 1. If
L/K is in addition abelian, Z; = Z, is the largest subextension in which the prime p splits
completely. This explains the name ‘decomposition field’. Note that everything remains
correct for infinite primes if we call an infinite prime p : K — C ‘totally split’ in L if all
its extensions q to L have [Lq : K] = e(q/p)f(q/p) = 1.

By definition of the decomposition field Z, of a prime q in L/K, there is an identifi-
cation of Galois groups

Gal(Lq/Ky) — Gq = Gal(L/Z,)

that is obtained by restriction of the automorphisms of L,/K, to L. We can apply our
theory for complete Galois extensions to Lq/K,, so the inertia and ramification fields of
Lq/K, can be intersected with L to produce a sequence of fields

KczZ,cTycV,CL
corresponding to subgroups

GDGq DIq :Gq’o DRq :Gq,1 D {1}
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of G. Here T, is the inertia field of q in L/K, it corresponds to the inertia group I, =
Gal(Lq/Ky)o of q in G. It is the largest subfield of L for which the restriction of q is
unramified over K. The (first) ramification field V; of q in L/K corresponds to the (first)
ramification group Rq = Gal(Lq/K})1 of qin L/K. It is the largest subfield of L for which
the restriction of q is tamely ramified over K. The groups I, and R4 are normal in Gg,
but not necessarily in G. More precisely, one has

-1 _ -1 _ -1 _
0Gq0~ " = Goyq oljo™" = Isq oRq0™" = Ryq

for o in G. In particular, we see that for abelian extensions, the decomposition, inertia and
ramification group depend only on the prime of the base field K, not on the choice of the
extension prime.

» NON-NORMAL EXTENSIONS

If L/K is a finite separable extension of discretely valued fields for which the residue class
field extension is separable, we can obtain the decomposition, inertia and ramification fields
of a prime q in L/K by extending q to a normal closure M of L over K and form the
intersection of L with the decomposition, inertia and ramification fields of this extension
in M/K. Conversely, knowledge of these fields in L/K can be helpful to determine the
corresponding fields in M /K.

Example. The number field K = Q(«) with a? = 17 we considered after 3.9 is not
normal over Q. Its normal closure M = K(i) is obtained by adjoining i = v/—1 to K.
This is a Galois extension of Q with group Dy, the dihedral group of 8 elements. We have
seen that the prime 2 factors as 20k = pqr? in this field, so we have Z, = T, = K
and Z, = T, = Q(v/17). In the normal closure M/Q, there are at least 3 primes over
2, and they are all ramified over Q by 5.6. The formula efg = 8 shows that there are
4 primes over 2 with e = 2 and f = 1. In particular, the primes p and q are ramified
in the quadratic extension M /K and t splits completely in M /K to yield a factorisation
20 = P2Q?R2R2. The decomposition fields of Plp and Q|q in M/Q are equal to K,
whereas the primes 9;|t have the conjugate field Q(icr) as their decomposition field. Note
that indeed Z, = Zy, N K.

It is clear from what we said above that the splitting behaviour of a prime in a finite
extension is determined by the decomposition and inertia groups of the primes that lie
over it in a normal closure. Conversely, the knowledge of the splitting behaviour of a few
primes can be used to determine the Galois group of the normal closure of an extension.
More precisely, we have the following relation between the action of decomposition and
inertia groups on the one hand and the factorization of a non-archimedean prime on the
other hand. All residue class field extensions are supposed to be separable.

5.8. Theorem. Let L/K be a finite separable extension, M the normal closure of L over
K and p a discrete prime divisor on K. Set G = Gal(M/K) and H = Gal(M /L) C G, and
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let G act in the natural way on the set ) of left cosets of H in G. Suppose we are given

integers e;, f; > 0 fori=1,2,...,t such that Zle e;fi = [L : K|. Then the following two

statements are equivalent.

(1) the prime p has t distinct extensions qi,qs,...,q: to L with ramification indices
e(q:/p) = e; and residue class field degrees f(q:/p) = fi;

(2) for every decomposition group Gy C G of a prime P above p in M/K, there are
t different Gp-orbits ; C Q of length #$; = e;f;. Under the action of the inertia
group Iy C G on €);, there are f; orbits of length e; each.

Proof. Let ‘B be a prime over p in M with restriction q to L, and write Qg for the Gip-
orbit of the coset H € . The length of this orbit is [Gp : Gop N H], and this is equal to
the degree [Lq : K] = e(q/p) f(q/p) since we have a tower of complete extensions

in which Gal(Mq/K,) = Gy contains a subgroup Hyy = H NGy corresponding to Ly. An
arbitrary Geg-orbit in €2, say of the residue class gH, can be written as

Gyp-gH =g -GyapH =g-Qy1qp,

so the length of such an orbit equals e(q’/p)f(q’/p) with g’ the restriction of g~ B to L.
We do obtain a bijection between extensions of p to L and Gy-orbits in €2

G IBNL=g,"BNL<=3hecH: hg'"P=g,"P<=3he H:ghg]' Gy
< Jdhc H:Gp- -gpp2h=Gyp-g1 <= Gy -g2H =Gy -g1H.

The inertia group Iy of ‘B is a normal subgroup of Gy, so all Iy-orbits inside a single
Gs-orbit have the same length. Inside the orbit {0y this length is equal to the group index
Iy : Iy H] = [Iy : Iy N Hy] = [IpHsy : Hypl. In the extension My /Ky, this corresponds
to the subextension Ly /T, with T; the inertia field of q in L, /K. It follows that the length
of the I-orbits in Qg is [Lq : Ty] = e(q/p) as asserted. The identity I -gH = g- I;-1p H
now shows that the length of the Iy-orbits in the Ge-orbit corresponding to a prime g’ of
L equals e(q'/p). O

The preceding theorem remains correct for infinite primes p : K — C of K if we choose
appropriate conventions for these primes. For an extension Lq /K, of archimedean complete
fields we defined f(q/p) =1 and e(q/p) = [Lq : K], so it makes sense to take the inertia
group I of an infinite prime in a Galois extension equal to the decomposition group. With
this convention, the two assertions in (2) of theorem 5.8 coincide for infinite primes and
the theorem holds unchanged.
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» FROBENIUS AUTOMORPHISM, ARTIN SYMBOL

If L/K is a Galois extension of local fields and q a finite prime divisor of L extending p,
we have by 5.1 a group isomorphism

Gq/Iq — Gal(Fy/Fy)

between a factor group of Gy and the Galois group of the residue class extension L/K =
F,/F, at q|p. As the residue class fields for primes of local fields are finite, the Galois
group Gal(Fy/Fy) is cyclic with a canonical generator, the Frobenius automorphism o,
that raises every element of Fy; to the power #F}. If q|p is unramified, we have an inclusion
Gq/1q = G4 C Gal(L/K), so there exists a Frobenius element o4 at q in Gal(L/K). This
is is the Frobenius symbol [q, L/K] of q in the Galois group of L/K. It is a well defined
element of the Galois group if q is unramified over p = q N K. For ramified q it can only
be defined as a coset of I, in Gal(L/K).

If g is infinite, there is no analogue of the Frobenius automorphism and we have set
G4 = I;. However, it is often convenient to take the Frobenius symbol for such primes to
be equal to the generator of the decomposition group G. This is a group of order at most
two, and the Frobenius at q is only different from the unit element in Gal(L/K) when q is
complex and p = (| is real. In this situation, [q, L/K] is the complex conjugation on L
induced by the embedding q : K — C.

It is immediate from the definition that the Frobenius symbol satisfies

[0q,L/K] = o[q,L/K]o™'  for o € Gal(L/K).

In particular, this shows that the Frobenius symbol of q in an abelian extension L/K
depends only on the restriction p = q N K. In that case the symbol is called the Artin
symbol of p in Gal(L/K). It is denoted by (p, L/K). It is of fundamental importance in
describing abelian extensions of number fields. For a few formal properties of Frobenius
and Artin symbols we refer to exercise 12.
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Exercises

1. Show that every Galois extension of a local field is solvable.

2. Let L be a Galois extension of a non-archimedean local field K. Show that the valuation of
the different ®(L/K) is given by the formula

ordp,, (D(L/K)) =372 (#Gi — 1).

Deduce that ordp, (D (L/K)) = e — 1 if and only if L/K is tamely ramified.
[Hint: look at f'(wz) for f = fr*.]

3. Determine all ramification groups for the cyclotomic extension Q((,x)/Qp. Deduce that
ordp (D(Qp(G,r)/Qp)) = kp* — (k +1)p" .

4. Determine the decomposition, inertia and ramification fields of the primes over 3, 5, 17 and
149 in the splitting field of X* — 17 over Q. What are the decomposition fields of the infinite
primes?

5. Let p be an odd prime number and n = p*m an integer with p{m. Show that the decompo-
sition, inertia and ramification groups and fields of p for the cyclotomic extension Q((,)/Q
with group G = Gal(Q(¢n)/Q) = (Z/p*Z)* x (Z/mZ)* are given by the following table.

Q(¢n) o {1}

Vo =Q(G:Gm) ¢ {(1+p) modp")x{1}

Tp = Q(Gm) o (Z/htz) x{1}

Z, > (Z/p"Z)* X (p mod m)
Q o @it x(z/m2y

Deduce that the Artin symbol of p in G/I, = (Z/mZ)" is the residue class p mod m. What
does the table look like for p = 27

6. Determine the decomposition and inertia fields of all primes p < 20 in the cylotomic extension
Q(¢20)/Q. Do all subfields occur as a decomposition field of some p?

7. Let K = Q(v/—5) and write ¢ = /—1. Show that the extension K C K (i) is unramified at
all primes, and that there is an isomorphism

Clg = Gal(K(i)/K)

that sends the class of a prime p C Ok in Clg to the Artin symbol of p in Gal(K (i)/K).

8. Let K be a field that is complete with respect to a discrete valuation with a perfect residue
class field. Let L/K be a finite Galois extension with Galois group G and ramification
groups G;. Let H C G be a subgroup, and E = L the corresponding subfield.

a. Prove that the i-th ramification group of the extension L/E equals G; N H for every
1> 0.

b. Suppose that E is Galois over K, with Galois group I' (22 G/H). Prove that the images of
Go and G under the natural map G — I are the inertia group and the first ramification
group of F/K, respectively. Show by an example that the corresponding statement for
higher ramification groups is not in general true.
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9.

10.

11.

12.

Let L = Q5(~/50), and let E be the maximal unramified subextension of Qs C L. Exhibit a
prime element g of the valuation ring of E such that L = E(\/7g). Can 7g be chosen to
lie in Q57

Let f € Z[X] be a monic separable polynomial of degree n and G the Galois group of
the splitting field Q of f over Q. View G as a subgroup of the symmetric group S, via
the action of G on the n roots of f in ). Let p be a prime number that does not divide
the discriminant A(f) of f, and suppose that f mod p factors in F,[X] as a product of ¢
irreducible factors of degree n1,no, ..., n;. Show that G contains a product of ¢ disjoint cycles
of length ni,neo, ..., n;.

[This is a very effective criterion in computing G'.]

Let K be a local field of characteristic p > 0 and L/K a finite separable extension. Show
that ordp, (D(L/K)) # —1 mod p.

Let K C L C M be extensions of number fields and pas a prime of M with restrictions pr,
and pr. If L/K and M/K are Galois and pa/Px is unramified, show that the Frobenius
symbols satisfy

[par, M/K][r = [pr, L/K].

Similarly, for F/K any finite extension and pgr an extension of pr to FL, show that
peL, EL/E]|L = [pL7L/K]f(pE/pK)

for L/K Galois and pr/px unramified. Are there analogues for infinite primes? What are
the resulting relations for the Artin symbols if M/K and L/K are assumed to be abelian?

In the next two exercises we let M /K be a Galois extension of number fields with group G and
L = M*™ C M the invariant field of a subgroup H of G. We let t be a prime of M with restrictions
qin L and p in K.

13.

14.

56

Suppose that G is isomorphic to the symmetric group Ss of order 120, that G+ has order 6,
and that I has order 2.
a. Prove that, if the identification of G with S5 is suitably chosen, G is generated by the
permutation (12 3)(45) and I by (45).
b. Suppose that [L : K] = 5. How many extensions ¢’ does p have to L, and what are the

numbers e(q’/p) and f(q'/p)?
c. Suppose that [L : K] = 15. How many extensions q’ does p have to L, and what are the

numbers e(q’/p) and f(q'/p)?

Suppose that G is isomorphic to the symmetric group S4 of order 24, and that t is the only
prime of M extending p.
a. Prove that p is 2-adic, in the sense that the restriction of p to Q is the 2-adic prime
of Q, and determine G and I as subgroups of Ss.
b. Suppose that H is cyclic of order 4. Determine e(t/q), f(t/q), e(q/p), and f(q/p).
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6 THE KRONECKER-WEBER THEOREM

If K is a number field, the n-th cyclotomic extension K C L = K((,) obtained by adjoining
the roots of X™ — 1 for some integer n > 1 to K is abelian, as 0 € Gal(L/K) is determined
by the value o((,) = ¢¥ it assumes on a primitive n-th root of unity ¢,, generating L over
K. More precisely, we have an injective map

Gal(K(Cn)/K) — (Z/nZ)"

sending an automorphism oy, : ¢, + ¢* to (k mod n). For K = Q or, more generally, for K
linearly disjoint from Q((,,), this map is an isomorphism as the n-th cyclotomic polynomial

e, = JI (xX-¢)ezix]
ke(Z/nZ)*

is irreducible over Q. The Kronecker-Weber theorem states that for K = Q, cyclotomic
extensions are the only source of abelian extensions.

6.1. Theorem. Every finite abelian extension of the rational number field Q is contained
in a cyclotomic extension.

The theorem was stated by Kronecker in 1853, but his proof was incomplete. A second
proof was given by Weber in 1886. In 1896 Hilbert used what is essentially the theory of
section 5 to give the first complete proof.

» (GLOBAL AND LOCAL VERSION

The Kronecker-Weber theorem accounts for the fact that abelian number fields, as the
extensions in the theorem are called, are in many respects more manageable than arbitrary
number fields. As Shafarevi¢ (1951) observed, it can be derived from the same result for
the local fields Q,,, which is also of independent interest. Note that the local result is also
correct for Q.. = R, albeit in a somewhat uninteresting way.

6.2. Theorem. Every finite abelian extension of the p-adic number field Q,, is contained
in a cyclotomic extension.

Before we prove the local result, we will show first how it implies the global theorem.

Proof of (6.2 = 6.1). Let L/Q be an abelian extension. Then the completion L, of L at
a prime p[p is an abelian extension of Q,, that is determined up to Q,-isomorphism by the
prime p. By 6.2, there exists an integer n, = phr -my, with pfm, such that L, is contained
in Qp(¢p,). This implies that the ramification index e(p/p) of p in L/Q does not exceed
(Qp(Cn,) : Qp(Cm,)] = ¢(p™). We claim that L is a subfield of the n-th cyclotomic field
Q(¢n) for n=T[,a, p*». To see this, we look at the abelian extension L((,)/Q, which is

ramified at exactly the same rational primes as L/Q.
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The ramification index of a prime p|Ar in L(¢,) is equal to ¢(p*r), as its comple-
tion at a prime over p is obtained by adjoining a p*»-th root of unity to an unramified
extension of Q,. The subgroup I of the abelian group G = Gal(L(¢,)/Q) that is gen-
erated by the inertia groups I, C G of the primes p dividing Ay has order at most
Hp\AL #I, = HpIAL (p*r) = ¢(n). By construction of I, every prime that ramifies in
L(¢,)/Q is unramified in L(¢,)!/Q. It follows that L(¢,)!/Q is unramified at all finite
primes, and by Minkowski’s theorem [I, 9.11], we have L(¢,)! = Q and I = G. The in-

equality [L((n) : Q] = #I < ¢(n) = [Q((n) : Q] now shows that we have L C Q((,), as
claimed. ]

» KUMMER THEORY

In the proof of theorem 6.2, we will use a general result from Galois theory to describe all
abelian extensions L of a field K that satisfy Gal(L/K)™ =1 for some fixed integer n > 1
(i.e. the abelian extensions of exponent dividing n) in the case that K contains a primitive
n-th root of unity.

6.3. Theorem. Let n > 1 be an integer and K a field containing a primitive n-th root of
unity (,. Then there is a bijection

(KCcLCcK®:Cal(L/K)"=1} S {K"cWcK*}
—  L*"NK*
%

W

h

K(

3

between abelian extensions L of K of exponent dividing n and subgroups W C K* con-
taining K*". If L corresponds to W, there is a perfect pairing

Gal(L/K) x W/K*"™ — (()
o(Yw)
W

(o,w) — (0, W),k =

that identifies Gal(L/K) with Hom(W/K*" ((,)).

The Kummer pairing in 6.3 is canonical in the sense that for every automorphism 7 of the
algebraic closure of K, we have

(6.4) (0. w) Lk = (10771 7(W))n rix)-

There is an analog of 6.3 known as Artin-Schreier theory when n equals the characteristic
of K, see exercise 1.
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» PROOF OF THE THEOREM

We will now prove the local Kronecker-Weber theorem 6.2. We will assume p # oo, as the
only non-trivial extension of Q. = R is C = R((,,), where we can take for n any integer
exceeding 2.

For brevity, we call an extension of Q, cyclotomic if it is contained in an extension
Q,(¢) obtained by adjoining a root of unity .

As every finite abelian group is a product of cyclic groups of prime power order, every
abelian extension L/K is a compositum of cyclic extensions L;/K of prime power order.
It is therefore sufficient to prove the theorem for cyclic extensions L/Q, of order ¢" with
q prime. We distinguish three cases, and start with the easiest case.

6.5. A. Tame case. A cyclic extension L/Q, of order q" with q # p prime is cyclotomic.

The extension L/Q), is tamely ramified as the ramification e is a power of ¢ # p. By 5.3
and 5.4, the inertia group of L/Q, injects into F, so its order e divides p — 1. Applying
Abhyankar’s lemma (exercise 4.3) to L/Q,, and the extension Q,((,)/Q, from 4.6, we see
that L((,)/Qp(¢p) is an unramified extension. By 4.4, we have L((,) C Q,(p, ¢) for some
root of unity ¢, so L C Q,((p, () is cyclotomic. This settles the tame case.

6.6. B. Wild case for p # 2. A cyclic extension of Q,, of order p" is cyclotomic when p
is odd.

If p is odd, there are two independent cyclic cyclotomic extensions of degree p™ for each
n > 1: the unramified extension of degree p™ and the totally ramified subfield of degree
p" of Qp((pn+1). Let E be the compositum of these two extensions. We have to show that
every cyclic extension L/Q, of degree p™ is contained in E. If LE were strictly larger than
E, the Galois group G = Gal(LE/Q,) would be an abelian group that is annihilated by p"
and has order exceeding p?". Then G/GP would be an elementary abelian p-group on more
than 2 generators, so there would be at least 3 linearly independent cyclic extensions of
degree p of Q,. After adjoining a p-th root of unity ¢, to them, they would still be linearly
independent over K = Q,((,) as [K : Qp] = p — 1 is coprime to p. This contradicts the
following lemma, which describes explicitly the maximal abelian extension L of Q,, that is
of exponent p over Q,((,) and shows that [L : Q,((,)] = p?.

6.7. Lemma. The maximal abelian extension of exponent p of K = Q,((,) that is abelian
over Q,, equals K (/W) for the subgroup W C K* satisfying

W/K*? = ((,) x (1 +7P).

Here 7 denotes the prime element 1 — (, € K. The extension K C K({/(,) = K((p2) Is
totally ramified and the extension K C K({/1 + ©P) is unramified.
Proof. *** O

We are left with the final case of 6.2 to be proved.
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6.8. C. Wild case for p = 2. A cyclic 2-power extension of Qs is cyclotomic.

In this case the proof we just gave for odd p has to be modified as the totally ramified
cyclotomic extension Qa((yr) for k > 2 is not cyclic but a product of two cyclic groups of
order 2 and 2¥~2. It is possible to adapt lemma 6.5 to this case (exercise 6), but there is
also the following ad hoc argument.

We want to show again that every cyclic extension L of Qs of degree 2™ is contained
in the compositum E of Q2({s»+2) and the unramified extension of degree 2". For n = 1
this is done by direct inspection: the maximal abelian extension of exponent 2 of Q5 is the
cyclotomic field Qo (v/—1,v5,v2) = Qa(C24). It has Galois group (Z/2Z)3. For n > 1 we
have to show that the Galois group G = Gal(LE/Q2) cannot be greater than Gal(E/Q) =
Z/2Z x (Z/2"Z)*. We know already by the case n = 1 that G/G? = (Z/2Z)3, so G can
be generated by 3 elements. In order to conclude that we have G = Z /27 x (Z/2"Z)?, it
suffices to show that G/G* cannot be isomorphic to (Z/4Z)3. If this were the case, every
quadratic extension of Q2 would be contained in some cyclic extension M/Qq of degree 4.
This contradicts the following lemma, which is a simple application of Galois theory (cf.
exercise 3), and concludes the proof of theorem 6.2. O

6.9. Lemma. There is no cyclic quartic extension M/Qq with \/—1 € M.

Proof. If M contains i = y/—1, then there exists @ € Qz(i) such that M = Qa(i, /).
Let o be a generator of Gal(M/Qz). Then o2 generates the Galois group Gal(M/Qxz(4)),
so we have 0%(y/a) = —/a. The element 8 = o(y/a)/y/a now satisfies

02(\/5) _ _l an o2 _

so B is in Q2(7) and has norm Nq,(;)/q,(8) = Bo(8) = —1. However, it is easy to see that
—1 € Qg cannot be a norm from Q2(). If this were the case, there would be an element
x + iy € Zs[i] such that 2 + y?> = —1, and this cannot happen since squares in Zo are
congruent to 0 or 1 modulo 4Z,. 0

of =

If L/Q is abelian, the smallest integer n for which L is contained in the n-th cyclotomic
field Q((,) is known as the conductor of L.

The Kronecker-Weber theorem gives us a very explicit description of the maximal
abelian extension Q* of Q. It is the field Q((s,) obtained by adjoining all roots of unity
in an algebraic closure of Q to Q. Its Galois group over Q is the profinite group

Gal(Q(¢)/Q) = lim Gal(Q(¢)/Q) = lim(Z/nZ)" = 2

of units in the ring of profinite integers Z.
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Problems

1. (Artin-Schreier theory.) Let K be a field of chracteristic p > 0 with maximal abelian extension
K®", and define the map o : K*® — K by p(z) = 2P — x. Prove the following theorem.

Theorem. There is a bijection
{KCLCK:Gal(L/K)? =1} S {p[K]CW C K}

between abelian extensions L of K of exponent dividing p and subgroups W C K containing p[K]
that sends an extension L to the subgroup p[L] N K and a subgroup W C K to the extension
L = K(p~'W). If L corresponds to W, there is an isomorphism

Gal(L/K) — (W/p[K])" = Hom(W/p[K], Fy)

under which o € Gal(L/K) corresponds to the homomorphism w + o(p~ ! (w)) — p~ ' (w). In partic-
ular, one has an equality [L : K] = [W : p[K]] in this case.

2. Show that an abelian extension K/Q is ramified at p if and only if p divides the conductor,
and that it is wildly ramified at p if and only if p? divides the conductor.

3. Let K be a field of characteristic different from 2 and L/K a quadratic extension. Show
that there exists an extension M /L such that M/K is cyclic of degree 4 if and only if
—1e€ NL/K[L*].

4. Show that the conductor of an abelian number field K divides the discriminant Ag, and
that it is equal to |[Ax| when K is quadratic.

5. Let K # Q be an abelian extension of Q. Show that there are abelian extensions L/K that
are not cyclotomic. Do you need the assumption that K/Q is abelian?

6. Show that for K = Q2((4), the subgroup W C K™ consisting of elements « € K™ for which
the extension K (+/a) is abelian over Qg is equal to

W/K™ = (Ca) x (1 +4¢a),

and that the extension K C K(+/C4) = K((i6) is totally ramified and the extension K C
K (v/1+ 4(4) is unramified. How does case C of theorem 6.2 follow from this?
[Hint: show that o € W if and only if Nx/q,(e) € K** N Q3 = (—4) x (1 + 16Z2).]

7. (Genus fields.) ****

version 11 May 2017 9:57 p.m. 6].



§7: Local and global fields

7 LOCAL AND GLOBAL FIELDS

We have already seen that it is possible to derive information on global fields from their
completions at the various primes of the field. In this section, we will restrict to the case
of number fields, even though most results hold for function fields as well. We show first
that discriminants and differents of number fields can be conveniently computed from
the discriminants and differents of the local extensions. Given our ‘local definition’ of the
discriminant A(L/K) in [I, §7], this is of course not surprising. This definition used the
fact that rings and modules are often easier to describe after localization at a prime.
After passing to the completion of these localizations, we can use in addition the structure
theorems for local fields of the previous sections. The reason why this is often possible lies
in theorem 3.8, which tells us that for L/K a finite extension of number fields and p a
prime of K, we have an isomorphism

(7.1) K, ®x L = [ Lq.
qlp

In this section, we write Oy, for the valuation ring of the p-adic valuation on a number field
K, and A, for the valuation ring of the completion K,. We have already seen that O, is
the localization of the ring of integers O of K at the prime p, and that A, = lim,,, O/p"
is the completion of O, in the valuation topology.

7.2. Theorem. Let L/K be an extension of number fields with different ®(L/K) C Op,
and discriminant A(L/K) C Og. Then we have

D(L/K) - Aq =D(Lq/Ky)
for every finite prime q of L and

A(L/K) - Ap = [I A(Lq/Kp)

qlp
for every finite prime p of K.

Proof. For every finite prime p of K, the ring of integers Oy, is a dense subring of A =
Hq‘p Aq C qup Ly = K, ®L and the trace Trp i : K, ® L — K, is a continuous function.
Using 3.11, we deduce that we have an implication

TI'L/K(I'OL) C OK = TI’L/K(.I‘A) = qu Tqu/Kp (IAq) C Ap

for z € L. This immediately implies an inclusion D(L/K)™* C D(Lq4/K,)~" for every
extension q|p.

Conversely, for fixed q|p and z € D(Ly/K,)~! we can choose an element y € L such
that y is close to x in Lq and close to 0 in the other completions Ly O Kp. Then we
have again Try,/x (yOr) C Trr x(yA) = >4, Tz, /x, (yAq) C Ay since the term for our
selected extension q is in Ay as it is close to Trp_/k, (vAq) C Ay and the terms with g’ # q
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give a small contribution. It follows that y is contained in the inverse of the localized
different D(Op 4/0,) ! = D(L/K)'OL 4, and this yields 24, = yA, C D(L/K) 1 A,.
This proves the other inclusion.

The identity for the discriminant follows by taking norms and using the product
relation between local and global norms from 3.11. However, one can also give a direct
proof in the following way. Let wi,ws,...,w, be an Oy-basis for the localization Or , of
the ring of integers Or, at the prime p of K. As this basis generates A3 over A, in each
completion L, we obtain an isomorphism of Ay-submodules

S ApQw — A= qup Aq

induced by 7.1. The left hand side has discriminant A(L/K)- A, by definition of the global
discriminant, the right hand side has discriminant [],, A(Lq/Kp) (cf. [I, 8.1]). O

By applying theorem 4.8 on local differents we obtain the following result.

7.3. Corollary. Let L/K be an extension of number fields and q a finite prime of L with
restriction p to K. Then we have

ordy (D(L/K)) > e(a/p) - 1.
and equality holds if and only if q is tamely ramified in L/K. O

The relations between a number field K and its various completions K, are sometimes
referred to as local-global relations. In order for a statement to be true for K, it is often
necessary for the statement to be true for the completions K, of K at all primes, both
finite and infinite. For instance, a Diophantine equation of the form f(x1,%2,...,2,) =0
with f € K[X1, X, ..., X,] can only have a solution in K™ if it has solutions in K for all
primes p of K. It is not in general an easy matter to decide whether the converse is true.
If it is, one says that the Hasse principle holds for f over K. We will encounter a classical
example of this phenomenon in 11.12.

A convenient way to relate a number field K to its completions is given by the adele
ring Ax of K that was introduced by Chevalley around 1940. This ring is a large extension
ring of K that is constructed from the completions K, of K at all prime divisors of K,
both finite and infinite. We know that the finite primes of K correspond to the non-zero
primes of the ring of integers O, whereas the infinite primes come from embeddings of K
into the complex numbers. We write p to denote a prime of either kind, and take A, = K,
if p is infinite. The adéle ring Ak of K is defined as

Ag = H/ K, ={(zp)p € HKP : x, € Ay for almost all p}.
p p

Informally, one can say that it is the subring of the full cartesian product of all completions
consisting of vectors that are almost everywhere integral. It is an example of a ‘restricted
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direct product’. The topology on such a product is not the relative topology, but the
topology generated by the open sets of the form

110: x ] 4

pes pegsS

for some finite set of primes S and O, open in K. This topology makes Ay into a locally
compact ring since all completions K, are locally compact and the rings A, are compact
for all finite p. We have a canonical embedding K ~— Ay along the diagonal since the
vector (x), for € K is almost everywhere integral. We usually view this embedding as
an inclusion and refer to the elements of K in Ag as principal adéles.

For K = Q we find

Agq =R x H/ Q) = {(zeo, (zp)p) : xp € Z,, for almost all p}.
P

The open subset U = (—1/2,1/2) x [ Z, of Aq satisfies U N Q = {0}, since a rational
number that is p-integral at all primes p is in Z and Z N (—1/2,1/2) = {0}. It follows
that Q is a discrete subring of Aq. Moreover, the closure W = [-1/2,1/2] x [[, Z;, of U
is compact in Aq and it is not difficult to show (exercise 7) that Q + W = Aq, so that
the natural map W — Aq/Q is continuous surjection. It follows that its image Aq/Q is
a compact additive group. Generalizing this proof or using the following theorem, one can
prove analogous statements for arbitrary number fields K (exercise 9).

If L/ K is a finite extension of number fields, we have a canonical embedding Ax — Aj,
that sends (xp), to the element (yq)q that has yq = x, when q|p.

7.4. Theorem. There is an isomorphism of topological rings
Ar®L = A

such that the induced maps Ax = Ax ®1 — Ay and L =1® L — A, are the canonical
embeddings.

Proof. Taking the product over all p of the isomorphisms K, ®x L — [] alp Ly, we see
that there is an isomorphism for the full cartesian product of all completions. In order
to show that this isomorphism induces the required isomorphism for the adele rings, we
have to show that given a basis wy,ws,...,w, of L/K, there is an induced isomorphism
S Ay @w; — 1 qlp Aq for almost all primes p of L. This is clear: for almost all primes
p it is true that all w; are p-integral and that the discriminant A(wy,wa, ... ,wy) is in A},
and for such p our basis is an integral basis of the integral closure of Ok  in L over Ok .
The other statements follow from the corresponding statements for Ky = K, ® 1 and
L=1®Lin 7.1. O
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7.5. Corollary. The ring Ay, is a free algebra of rank [L : K] over Ak, and the norm map
Nr/k : Ap — Ak induces the field norm Ny, i : L — K on the subring L C Ap,. O

The adele ring of K is a locally compact additive group, so it comes with a translation
invariant measure . known as the Haar measure on A . The measure p is uniquely deter-
mined up to a multiplicative constant. and can be obtained as a product measure of the
Haar measures py, on the completions K.

For infinite primes p the completion K, is isomorphic to R or C, and py is the well
known Lebesgue measure. For finite primes p we can take for p, the unique translation
invariant measure that satisfies

pp(Ap) =1 and  pp(p") = (Np)™" for neZ.

Here Np = N /q(p) € Z~¢ is the absolute norm of the prime p. We define the normalized
p-adic valuation |z|, of an element z € K, as the effect of the multiplication map M, :
K, — K, on the Haar measure py, i.e.

up(acV) = ’x|plﬁp(v)

for every measurable subset V' C K,,. If p is finite, | - |, is the p-adic valuation for which a
prime element at p has valuation N (p)~! = (#A4,/p)~*. For a real prime p, the normalized
absolute value is the ordinary absolute value on K, = R. However, for complex p the
normalized absolute value is the square of the ordinary absolute value.

7.6. Product formula. For every non-zero element x € K*, we have
H [zfp = 1.
p

Proof. With this normalization, we have [], g |2y = (#(0/x0))~! for every non-
zero z € O by the Chinese remainder theorem and the identity |z|, = (#(Op/x0,))?
for each finite prime p. On the other hand, the normalization for infinite primes yields
[T, infinite 12lp = [lo.x e lo(@)| = [Nk /q(x)| = #(0/20). The proves the theorem for
integral non-zero x, the general result follows by multiplicativity. 0

The unit group of the adele ring A is the group
!/
Jrg = H K, ={(wp)p € HK; s xp € Ay for almost all p}
p p

that is known as the idéle group of K. For the topology on this group we do not take the
relative topology coming from the adele ring, but the topology generated by open sets of

[I10s < II 4

pesS peégs

the form
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for S a finite set of primes and Oy open in K. This topology is finer than the relative
topology J inherits from Ak, and it makes Jx into a locally compact group. Under the
diagonal embedding, the unit group K* of K becomes a subgroup of Jx consisting of the
principal idéles. The product formula 7.6 implies that K* is a discrete subgroup of Jg,
so the factorgroup Cx = Ji /K™ is again a locally compact group, the idele class group
of K. This is not a compact group, since the volume map

T: J—Ryg

(zp)p — H | p
p

is a continuous surjective map that factors via C'x by the product formula. One can however
show that the subgroup C = (ker 7)/K* of Ck is a compact group—a fact that is closely
related to the Dirichlet unit theorem and the finiteness of the class number, see exercises
16—18. The idele class group will play a key role in the formulation of class field theory in
section 9.

Problems

1. Let L/K be a normal extension of number fields of degree n and p a finite prime of K with
ramification index e in L/K. Show that ordp(A(L/K)) > (1 — e ')n, with equality if and
only if p is tamely ramified in L/K.

2. Let K be a number field of degree n with squarefree discriminant. Show that the normal
closure M of K has group S, over Q.
[Hint: All inertia groups in Gal(M/Q) have order two, so Gal(M/Q) is a transitive subgroup
of S, that is generated by transpositions.]

3. It can be shown [Selmer, Math. Scand. 4, 287-302, (1956)] that the polynomial f, = X" —
X — 1 is irreducible over Q for all n > 1. Assuming this, prove that the splitting field of f,
has Galois group S, over Q.

4. Let D be a squarefree integer for which there exists a number field of degree n and discrim-
inant D. Show that Q(v/D) has a normal extension N that is unramified at all finite primes
and has Galois group Gal(N/Q(v/D)) & A, the alternating group on n elements.

5. Let K be a number field of contained in a normal extension N of Q. Show that there exists
an extension E/Q of such that E NN = Q and FL/FE is unramified at all primes. Deduce
that for every finite group G, there are infinitely many pairwise linearly disjoint number fields
that have a Galois extension with group G that is unramified at all primes.

[Hint: write K = Q(a) with f = fg € Z[X] and choose a polynomial g € Z[X] that is p-
adically close to f at all p dividing Ak and Eisenstein at a prime pfAn. Set E = Q[X]/(g).]

6. Let O be the ring of integers of a number field K, and define the profinite completion O of
O as O = lim¢ »>1 O/nO. Show that O is isomorphic (as a topological ring) to the direct
product Hp <00 Ap of all valuation rings of the finite completions Kp of K.
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Show that every element in Aq can uniquely be written as a sum of a rational number and
an element in [—1/2,1/2) x Hp Z,. Deduce that there is an exact sequence

0—>2—>AQ/Q—>R/Z—>O

of topological groups and that Aq/Q is a compact group of Haar measure 1 under the
quotient Haar measure it inherits from Aq. Show also that Aq/Q is connected, and that it
can be given a Q-vector space structure.

An exact sequence 0 - A — B — C — 0 of topological abelian groups with continuous group
homomorphisms is said to split if there is an isomorphism f: B — A x C of topological groups
such that (i) the map A — B — A x C is the canonical inclusion A — A x C; and (ii) the map
B —- Ax (C — C is the given map B — C.

8.

10.

11.

12.

13.

Show that the sequence 0 — Z — Aq/Q — R/Z — 0 does not split, even if in the definition
given above the map f is only required to be an isomorphism of topological spaces satisfying
(i) and (ii). Show also that the sequence does not split if in the definition given above the
map f is only required to be a group isomorphism satisfying (i) and (ii).

. Let K be a number field. Show that K is a discrete subring of Ak, and that the quotient

ring Ak /K is compact. Show that under the quotient measure coming from Ak, one has
Ak /K) =27°|Ak|"2. Here s is the number of complex primes of K.

(Strong approximation theorem) Let K be a number field and po a prime of K. Show that
K is dense in Hp 250 Ky under the diagonal embedding.

[Hint: use the previous exercise to show that every subset of the form Hpes Oyp X Hpes Ap C
A with Op an open neighborhood of 0 € Ky and S a finite set of primes containing the
infinite primes contains a non-zero element of K when Hp cs Hp(Op) is sufficiently large.]

Show that inversion is not a continuous operation on the idele group Jx with respect to
the relative topology of the adeéle ring Ax O Jx. Show also that the topology on Jk is the
relative topology coming from the embedding Jx »— Ax x Ax that maps = € Jx to (z,z71).

Show that the topology on the adele ring of K is induced by the metric d defined by

d((@p)p, (Wp)p) = > 2 VP lay — yplp.
p

Here N(p) € Z~ is the absolute norm of p if p is finite, and N(p) = 1 if p is infinite. Can
you find a metric that induces the topology on Jx?

Show that the norm on the idele groups is compatible with the ideal norm in the sense
that if we define the map ¢x : Jx — Ik to the group of fractional Ok-ideals Ix by ¢ :
(p)p — Hp niee PP P) and set Ux = [ A C Jk for every number field K, then there
is a commutative diagram with exact rows

0O — U, — Jop — I, — 0

J/NL/K J/NL/K lNL/K

0 — Uy — Jg — Ik — O
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14.

15.

16.

17.

18.

19.

20.

68

for every finite extension of number fields L/ K.

Show that there is a natural map Z = Hp Z, — C’é that is an isomorphism of topological
groups. Conclude that Cé is compact.

Show that the exact sequence 0 — C} — Cx — Rso — 0 is split, and that every open
subgroup of the idele class group C'x of K has finite index in Ck.

Let Ux C Jx be as in exercise 13 and write Uy for Ux N J). Show that U /O} is compact
and that there is an exact sequence of topological groups

0 — Uk /O — C) — Clxg — 0.

Deduce that C is a compact group for every number field K.

[Hint: let S be the set of infinite primes of K and define L : Ux — R® by L : (zp)p
(log |xp|)pes. Then ker L is compact and the Dirichlet unit theorem asserts that L[O*] is a
lattice of maximal rank in the hyperplane H = L[Uk].]

Show that the map ¢x : Jk — Ik in 7.11 is continuous when Ik is given the discrete
topology, and that it induces a continuous surjection C} — Clk. Deduce that Clk is finite
if Ck is compact.

(S-unit theorem.) Let S be a finite set of primes of a number field K including the infinite
primes. The group Kgs of S-units of K consists of the elements x € K™ that satisfy |z|p =1
for all p ¢ S. Use the compactness of C'k to show that there is an isomorphism

Kg =2 Zg X Z#Sil,

where Zk is the subgroup of roots of unity in K*.

[Hint: Set Js = Hpes K} x Hpgzs A}, and define Js — R® by (zp)p — (log|zp|p)pes. Then
Ji = J' N Js is mapped to a hyperplane H C R® and Ks = K N Js is cocompact in H if
Ji/Kg C Ck is compact.]

Let L/K be a Galois extension of number fields with group G. Show that G acts naturally
on the adele ring Ay, and that there is an isomorphism

Ax =5 Af ={zeAr:o(x) ==z forall 0 € G}.

Prove that the Np/x (z) =[], .o o(2).

Let k be a finite field, and let K = k(t), where ¢ is transcendental over k. We write O = k[t],
and we let O be the projective limit of the rings O/fO, with f ranging over O — {0}. Let
Vi and Jx = Vi be the adele ring and the idele group of K. We denote by k[[u]] the ring of
power series in one variable u over k.
a. Prove: Ve /K =~ uk[[u]] x O as topological groups.
b. Prove: Jx /K* 2 Z x (1 + uk[[u]]) x O* as topological groups; here 1 + uk[[u]] denotes
the kernel of the map k[[u]]® — k™ that maps a power series to its constant term.
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& CLASS FIELD THEORY: IDEAL GROUPS

The Kronecker-Weber theorem shows that the splitting behavior of primes p in an abelian
extension L of Q is very simple: it only depends on the residue class of p modulo the
conductor n of L. This observation has a long history going back to Fermat and Euler.

» (CLASSICAL EXAMPLES

A prime number p is a sum p = 22 + y? = (x + iy)(z — iy) of two squares if and only if it
does not remain prime in the ring of Gaussian integers Z[i]. This is the ring of integers of
the cyclotomic field Q((4), and Fermat already knew p is a sum of 2 squares if and only if
it is not congruent to 3 mod 4.

Euler studied similar problems, such as the determination of the rational primes that
occur in the factorization of numbers of the form z? — ay? with a € Z fixed and =,y € Z
ranging over pairs of coprime integers. This comes down to the determination of the primes
for which the Legendre symbol (%) has a given value, and the numerical observation of Euler
was that this value only depends on p mod 4|a|. This statement is essentially equivalent
to the quadratic reciprocity law. In modern terminology, we would say that the abelian
extension Q(v/a) of Q is contained in the cyclotomic field Q((4|q)), so the splitting behavior
of a prime p in Q(v/a) (i.e. the value of the Legendre symbol (]%)) is determined by the
splitting behavior of p in Q((yjq|), i.e. by the residue class of p mod 4/a.

The question whether a prime p is represented by the quadratic form X2 —aY?, i.e.,
p = 22 — ay? for certain z,y € Z, is already more complicated, since this requires that
there is a principal prime ideal in Z[y/a] of norm p. In Fermat’s example a = —1, the
resulting ring Z[i] is a principal ideal domain, but as soon as this is no longer the case,
the situation is much more difficult. When we take a = —5, we are dealing with the ring
Z[v/—5| that has a class group of order 2, and the rational primes that are the norm of
a principal ideal = + y+/—5 are exactly the primes that split completely in the quadratic
extension Q(v/—5,7) of Q(v/—5). As this extension field is contained in the cyclotomic
extension Q((a0), the solvability of p = x? + 5y? is equivalent to p being equal to 5 or
congruent to 1 or 9 modulo 20, a result conjectured by Euler in 1744.

For other values of a, the situation is even more complicated. For instance, for a = —27
Euler conjectured around 1750 that p is of the form p = 22 +27y? if and only if p = 1 mod 3
and 2 is a cube modulo p. This is a special case of a more general question suggested by the
quadratic reciprocity law: do there exist reciprocity laws for powers higher than 27 In order
for this question to be interesting for general n > 2, one restricts to primes p = 1 mod n,
for which the n-th powers in F; = (Z/pZ)* have index n in the full group, and asks which
conditions on the prime p ensure that some fixed integer a is an n-th power modulo p.
This means that we are looking for a characterization of the rational primes p = 1 mod n
that split completely in the field Q({/a) or, equivalently, the rational primes p that split
completely in the normal extension M = Q((,, /a). For n > 2, this is not an abelian
extension of Q for most a, and we will see that this implies that the splitting behavior

of a rational prime p in M/Q is not determined by a congruence condition on p. In fact,
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finding a ‘reciprocity law’ governing the splitting of primes in non-abelian extensions is a
problem that is still very much open today.

Going back to Euler’s conjecture for the special case where n = 3 and a = 2, we see
that the rational primes p that split completely in Q((s, {3/5) should be the primes of the
form p = x2 4 27y2. This is not a congruence condition on p, but it states that a prime p
in K = Q((3) of prime norm p # 3 splits completely in the abelian extension K (¢/2)/K
if and only if it is generated by an element 71 = x + 3yv/—3 = (z + 3y) + 6y(3. As x
and y do not have the same parity, this means that the prime p|p can be generated by an
element m € Ok = Z[(3] that is congruent to 1 mod 60k. Generators are determined up
to multiplication by elements in O} = ((s), so we see that proving Euler’s conjecture on
the cubic character of 2 comes down to showing that a prime p of K splits completely in
K (3/2)/K if and only if p is a principal ideal whose generator is trivial in (O /60x)*/((s)-
This is a cyclic group of order 3, so we have an abstract isomorphism

(8.1) (Ok /60k)*/im[O}] = Gal(K (V2)/K),

and primes p whose class is the unit element should split completely. As Artin realized in
1925, this suggests strongly that the isomorphism above maps the class of prime p to its
Artin symbol, just like the familiar isomorphism (Z/nZ)* — Gal(Q({,)/Q) for abelian
extensions of Q maps (p mod n) to its Artin symbol. Note that the ramifying primes 2 and
(1 —¢3)|3 in K(¥/2)/K are exactly the primes dividing the ‘conductor’ 60g. The tamely
ramified prime 2 divides the conductor once, and the wildly ramified prime (1 — (3) divides
it twice, a phenomenon that is well known for conductors over Q

> TOWARDS THE MAIN THEOREM

The two extensions K C K(i) for K = Q(v/—=5) and K(V/2)/K for K = Q((3) have in
common that they are abelian extensions, and that the primes of K that split completely
in it are the primes that are principal and satisfy a congruence condition modulo certain
powers of the ramified primes. In the first case, there are no ramified primes and the only
condition is that p be principal. In the second case all primes are principal, but only those
satisfying a congruence modulo 6 split completely. A far reaching generalization that one
might hope to be true would be the following: for every abelian extension L/K of number
fields, there exists an Og-ideal | such that all principal primes generated by an element
m = 1 mod § split completely in L/K. As divisors of this ‘conductor ideal’ f one expects
to find the primes that ramify in L/K, and one can hope that, just as for K = Q, the
smallest possible § is divisible exactly by the ramifying primes, and the primes occurring
with exponent > 1 are the wildly ramifying primes.

As we have phrased it, the statement is correct for our two examples, but it fails to
hold for K = Q. The reason is that the splitting primes in the cyclotomic field Q(¢,)
are the prime ideals pZ for which the positive generator is congruent to 1 modulo n. A
sign change in the residue class modulo n changes the corresponding Artin symbol by a
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complex conjugation, so this peculiar detail is only relevant to abelian extensions L/Q that
are complex, i.e. extensions in which the real prime is ramified. When we take this into
account, we arrive at the following weak form of the main theorem of class field theory.

8.2. Main theorem (weak form). For every abelian extension of number fields L/K
there exists an O -ideal § such that all primes of K that are principal with totally positive
generator m = 1 mod § split completely in L/K.

The smallest ideal § one can take in 1.2 is the conductor ideal {1,/ of the extension. As
we will see, it is exactly divisible by the finite primes of K that ramify in L. The wildly
ramifying primes occur with higher exponent than 1.

For imaginary quadratic fields K, Theorem 1.2 was proved during the 19-th century
by Jacobi, Dedekind, Kronecker, Weber and others. Such K have no real primes, and the
reason that their abelian extensions are relatively accessible stems from the fact that they
can be obtained by adjoining the values of complex analytic functions that occur when
one tries to invert certain elliptic integrals. This is somewhat reminiscent of the situation
for Q, where the abelian extensions are obtained by adjoining values of the exponential

2miZ at rational values of z.

function e

For arbitrary number fields K, work of Hilbert, Furtwangler and Takagi in the period
1895-1919 culminated in a proof of a result somewhat stronger than 1.2. In particular,
Takagi proved that given K and f, there exists a mazimal abelian extension H;/K with
conductor ideal f; he also gave an explicit description of the corresponding Galois group

For K = Q, we know that the maximal abelian extension of conductor n is the n-th
cyclotomic field Q((,,), and that the isomorphism (Z/nZ)* — Gal(Q(¢,)/Q) sends the
residue class of a prime p to its Artin symbol. In our two examples this was also the case.
For K = Q(y/—5) we had an isomorphism Clx — Gal(K(i)/K) mapping the class of
a prime p to its Artin symbol as the principal primes were exactly the primes that split
completely in K (i). For K = Q((3) we can determine the Artin symbol in K (+/2) for every
prime not dividing 6, and writing Ik (6) for the group of fractional Og-ideals relatively
prime to 6 we have the Artin map

Uiy i+ I (6) = Gal(K (V2)/K)

that maps a prime p{6 to the Artin symbol (p, L/K). Euler’s conjecture is that the primes
in the kernel are the primes generated by an element congruent to 1 mod 60k and Artin’s
generalization is that the kernel of K(¥3)/K consists of all fractional ideals generated by
an element congruent to 1 € (O /60k)*, so that the Artin map induces the abstract
isomorphism 1.1. In its full generality, this is the following important extension of 1.2 that
Artin conjectured in 1925 and proved 2 years later, using a clever reduction to the case of
cyclotomic extensions due to Cebotarev.

8.3. Artin’s reciprocity law. For every abelian extension of number fields L/K, there
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exists an Ok -ideal | divisible by all finite primes that ramify in L such that the Artin map

wL/K I (f) — Gal(L/K)
pr— (p,L/K)

is surjective and its kernel contains all principal ideals generated by an element x € Ok
that is congruent to 1 mod f and positive at the real primes p : K — R that ramify in L/ K.

» (CYCLES AND RAY CLASSES

Artin’s reciprocity law is a very strong statement that implies a large number of relations
between the Artin symbols at different primes. It suggests that it is convenient to include
the ramified real primes in the conductor § of the extension, and to declare an element
x € Ok congruent to 1 mod f if it is congruent to 1 modulo the ideal part and positive at
the real primes in f. The corresponding notion is provided by the cycles of a number field.

8.4. Definition. A cycle or divisor of a number field K is a formal product f = Hp pn(®)
with p ranging over all primes of K such that

(i) n(p) is a non-negative integer for all p and n(p) = 0 for almost all p;

(ii) n(p) € {0,1} if p is real and n(p) = 0 if p is complex.

For any cycle f, the finite part fo = Hp finite p"®) of a cycle is simply an integral ideal of
the ring of integers O of K, while its infinite part fo, = Hp infinite p"®) is a collection
of real primes of K. As for ideals, we refer to the exponents n(p) as ord,(f) and write
p|f if ord,(f) > 0. Divisibility of cycles is defined in the obvious way, so we write f;|f2 if
ordy (f1) < ordy(f2) for all p. Similarly, the greatest common divisor ged(fy, f2) is the cycle
with order min(ord,(f;),ord,(f2)) at p.

Congruences modulo cycles have to be defined in such a way that the quotient of two
integral elements x1, 25 = 1 mod f is again congruent to 1 mod §, which is not the case for
the usual additive congruences.

8.5. Definition. Let p be a prime of K and n € Z>( an integer. Then an element x € K*
is multiplicatively congruent to 1 modulo p™, notation x = 1 mod™ p™, if one of the following
conditions is satisfied.

(i) n=0;

(ii) p is real, n = 1 and z is positive under the embedding p : K* — R*;
(iii) p is finite, n > 0 and we have x € 1 4+ p™ C A,.
For a cycle f =[], p"™®) we write x = 1 mod* § if z = 1 mod* p™®) for all p.

Let I(f) be the group of fractional O-ideals a that have ord,(a) = 0 for every finite prime p
dividing the cycle f. The principal ideals O generated by elements x = 1 mod™ § form a
subgroup R(f) C I(f) that is sometimes called the ray modulo f. The terminology stems
from the fact that we may identify the ray R(oo) in Q with the positive rational half-line,
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a ‘ray’ from the origin. The factor group Cl; = I(f)/R(f) is the ray class group modulo f.
The ray class groups will appear as the basic abelian Galois groups over K.

Example. For K = Q there is a single real prime p = oo, so every cycle of Q is of the
form § = (n) or f = (n) - co for some positive integer n. The corresponding ray class groups
are Cl,y) = (Z/nZ)* /(—1 mod n) and Cl).cc = (Z/nZ)*.

In order to describe the structure of general ray class groups, we define the group (O/f)*
for a cycle | = fofoo by
(O/f) = (Offo) x [ (-1

plfoo

Every x € K* contained in the subgroup K(f) C K* of elements that are units at all
finite primes in f has a residue class in (O/f)* consisting of its residue class in (O/fo)* at
the finite component and the sign of p(x) at the component of a real prime p : K — R
dividing fec-

8.6. Proposition. The ray class group modulo § is finite and fits in an exact sequence
0 — (O/f)*/im[O0*] — Cl; — C1 — 0

of finite abelian groups.

Proof. Let P(f) denote the group of principal ideals generated by elements =z € K ().
Then we have an exact sequence 0 — P(f)/R(f) — I(f)/R(f) — I(f)/P(f) — 0 in which
the middle term is by definition the ray class group modulo §. The final term is the ordinary
class group, since every ideal class in CI contains an ideal from I(f) by the approximation
theorem.

The group P(f) = K(f)/O* admits a canonical surjection to (O/f)*/im[O*], and
the kernel consists by definition of the ray R(f) modulo f. This yields the required exact
sequence, and the finiteness of Cl; follows from the finiteness of the outer terms. O

8.7. Corollary. If a cycle | is divisible by g, the natural map Cl; — Clg is surjective.

Proof. The outer vertical arrows in the diagram

0 — (0/f)*/im0*] — Cy — CI — 0

[ ean [ ean [

0 — (0/g)*/iml0*] — Clyj — CI — 0
are obviously surjective, so the same is true for the middle arrow. 0
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» IDEAL GROUPS

We want to characterize the abelian extensions L/K in terms of the kernel of the Artin
map ¥,k : I(f) = Gal(L/K) in 1.3. The problem is that this kernel depends on the
chosen cycle f. If | satisfies the requirements of 1.3, then so does any multiple of f.
The same situation occurs if we want to specify an abelian number field L C Q((,)
by the subgroup B,, C (Z/nZ)* to which it corresponds. If we replace n by a multiple
m, we obtain another subgroup B,, C (Z/mZ)* corresponding to L that is ‘equivalent’
to By, in the sense that the natural map (Z/mZ)* — (Z/nZ)* induces an isomorphism
(Z/mZ)* /By, — (Z/nZ)*|B,.

An ideal group defined modulo f is a group B(f) satisfying R(f) C B(f) C I(f). If ¥/
is another cycle and B(f') an ideal group defined modulo §, we say that B(f) and B(f)
are equivalent if for every common multiple g of f and §', the inverse images of B(f) and
B(f") under the natural maps I(g) — I(f) and I(g) — I(f') coincide. If this is the case,
it follows from 1.7 that we have an isomorphism I(f)/B(f) = I(f')/B(f’) of finite abelian
groups. The notion of equivalence does not depend on the choice of a common multiple,
and we obtain an equivalence relation on the set of ideal groups. The equivalence classes
are simply referred to as ideal groups. If an ideal group B has a representative defined
modulo f, we denote it by B(f) and say that B can be defined modulo f or has modulus f.

Before we formulate the main theorem in its final form, we still need to show that the
set of moduli of an ideal group consists of the multiples of some unique minimal modulus,
the conductor of the ideal group. Over Q, this reflects the fact that an abelian number
field L can be embedded in Q((,,) if and only if m is divisible by the conductor of L. The
general statement for ideal groups follows from the following lemma.

8.8. Lemma. An ideal group that can be defined modulo f, and 2 can be defined modulo
ged(f1, f2)-

Proof. Write f = ged(f1, f2) and g = lem(f1, f2) and H; = B(f;)/R(f;). By 1.7, all arrows
in the commutative diagram

I(g)/Rg) % I(1)/R(})

l(ﬁz le
I(2)/R(F2) == I()/R()

are surjective. We can define G = ¢ '[H;] = ¢, '[Hs] by assumption, and we have to
show that there exists a subgroup H C I(f)/R(f) with inverse image G in I(g)/R(g). The
obvious candidate is H = x1[H1] = x2[H2]. We have x;¢;[G] = H, so in order to prove
that G = (x;¢;) " [H] we need to show ker(x;¢;) C G.

From ker ¢; = (R(fi)N1(g))/R(g) C G we have [(R(f1)NI(g))-(R(f2)N1(g))]/R(g) C G.
We claim the equality

(R(f1) N1(g)) - (R(F2) N 1(g)) = (R(f1)R(f2)) N I(g)-
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The inclusion D is the nontrivial one, so let ;O € R(f;) for i = 1,2 be given such that
1220 € I(g) holds. If p is finite and divides g, say p|fi, it follows from ord,(ziz2) = 0
and z7 = 1mod™ f; that ord,(xz2) = 0. Thus 210 and z20 are in I(g), which establishes
our claim.

As we have ker(x;¢;) = (R(f) N 1(g))/R(g), the proof may be concluded by showing
R(f) to be equal to R(f1)R(f2). The inclusion R(f) D R(fi1)R(f2) is immediate from R(f) D
R(f;) for both 4. For x = 1mod” f the congruences y = rmod”f; and y = 1 mod™ f, are
compatible, so they are satisfied for some y € K* by the approximation theorem. Now the
representation xO = zy~! - yO shows that we have O € R(f1)R(f2), thereby proving the
other inclusion. d

The preceding proof is characteristic for many proofs using ideal groups in the sense that
the approximation theorem plays an essential role. In the idelic formulation given in the
next section the existence of a conductor will be a trivial consequence of the formalism.

If By and Bs are ideal groups of K and § is a common modulus, we define their product
and intersection by (B1Bs2)(f) = B1(f)Bz(f) and (B1 N B2)(f) = Bi(f) N Ba(f). We write
By C By if B1(f) C Ba(f) holds. One easily checks that all this is independent of the choice
of the common modulus f.

» MAIN THEOREM
We can now formulate the ideal group version of the main theorem of class field theory.

8.9. Main theorem. Let K be a number field, ¥ the set of finite abelian extensions
of K contained in some fixed algebraic closure and B the set of ideal groups of K. Then
there exists an inclusion reversing bijection

Yk S B

such that for an extension L/K corresponding to an ideal group B with conductor f the

following holds:

(1) the primes dividing the conductor § are the primes that ramify in L/ K, and the primes
whose square divides f are the primes that are wildly ramified in L/K;

(2) for every multiple g of the conductor §, the Artin map v,k : 1(g) — Gal(L/K) is a
surjective homomorphism with kernel B(g).

The ideal group B corresponding to an abelian extension L of K determines the Galois
group Gal(L/K) as for every modulus g of B, the Artin map for L/K induces an Artin
isomorphism

(8.10) v/ 1(g)/B(g) — Gal(L/K).

The splitting behavior of a prime of K in the extension L is determined by the ideal
class of p in the generalized ideal class group I(g)/B(g). The field L is the unique field
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corresponding to this ideal group B and is known as the class field of B. This (highly
non-trivial) existence of class fields for every given division of prime ideals into classes
modulo a cycle accounts for the name class field theory.

It is possible to give an explicit description of the ideal group corresponding to an
abelian extension L/K in terms of L. In fact, this description follows completely from
functorial properties of the Artin map. We will list all these properties in a single theorem
and derive them from 1.9. We need the action of the norm on ideal groups to formulate it.

If fis a cycle in K and L/K a finite extension, we can view f as a cycle in L by taking
foOr, as its finite part and the product of the real extensions of the p|f, as the infinite
part. In this situation, the ideal norm Ny i : I, — Ik can be restricted to yield a norm
map Ny, : IL(f) — Ix(f) that maps the ray Rr(f) in L into the ray Rg(f) in K. In
particular, the inverse image of an ideal group B(f) in K under the norm yields an ideal
group N, ' B(f) modulo f in L. We denote its equivalence class by N, / ' B.

8.11. Theorem. Let K be a number field, and L, Ly and L finite abelian extensions of

K inside an algebraic closure K with corresponding ideal groups B, B, and Bsy. Then the

following properties hold:

(1) we have B(g) = N,k (IL(g)) - R(g) for every modulus of B;

(2) the ideal group By N By corresponds to the compositum Ly Ly, and the ideal group
B1Bs corresponds to the intersection Ly N Ls;

(3) if Ly contains Ly and g is a modulus of Bs, then g is a modulus of By and there is a
commutative diagram

I(g)/B2(g) — Gal(Ly/K)

lcan J/I‘ES

I(g)/Bi(g) — Gal(Li/K)

relating the Artin isomorphisms of L1 and Lo over K;
(4) if E C K is any finite extension of K, then LE D E is a finite abelian extension
corresponding to the ideal group N, / KB of E. For every modulus g of B there is a
commutative diagram

Iz(g)/N.7.B(g) — Gal(LE/E)

E/K
lNE/K J{res
I(g)/B(g) = Gal(L/K).

Moreover, the ideal group By corresponding to the abelian extension L N E of K
satisfies Bo(a) = Npx(I5(a)) - B(g);

(5) if E C K is any finite extension of K, then the ideal group Bg corresponding to the
maximal subextension of E /K that is abelian over K satisfies Bg(g) = Ng/k(IE(g))-
R(g) for each of its moduli g.
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Proof. Property (2) is a generality on inclusion reversing bijections that we leave to the
reader.

For (3), we observe first that the diagram is commutative because of the property
(p, Lo/ K)|, = (p,L1/K) of the Artin symbol of the primes p{g that generate I(g). In
particular, if R(g) is in the kernel of the Artin map of the extension Lo/K, it is in the
kernel of the Artin map of the extension L;/K. This implies that g is a modulus for Bj.

The commutativity of the diagram in (4) is proved in a similar way. If v is a prime
in E lying above a finite prime pf{g, it is unramified in LE/E and one has (v, LE/E)|, =
(p, L/K)? /%) = (Ng, kv, L/K). This also shows that the ray Rg(g) is in the kernel of the
Artin map Yrp/p : Ip(g) — Gal(LE/E), since its norm image Ng/x(Re(g)) C R(g) is
in the kernel of ¢, /. As the restriction map on the Galois groups is injective, we have
ker(Vrp/p) = N*}KB(g) as the ideal group corresponding to the extension LE of E.

E
Using Galois theory, we see that the cokernels of the vertical maps give an isomorphism

1(9)/Ng/k(Ie(g)) - B(g) — Gal((LNE)/K,

and the restriction property (p,L/K)|rne = (p, (L N E)/K) of the Artin symbol shows
that this is the Artin isomorphism for the extension L N E of K. It follows that By(g) =
Ng/k(Ie(g)) - B(g) is the ideal group of L N E over K.

In order to derive the basic statement (1) from this we take E/K abelian in the
previous argument and g a modulus of the corresponding ideal group Bg. Setting L equal
to the class field of R(g), we have an inclusion E C L from Bg D R(g) and from what we
have just proved we find Br(g) = Ng/x(Ie(9)) - R(g).

Finally, for property (5), we apply this argument once more with E/K finite, g a
modulus of the ideal group of the maximal subextension Ey C E that is abelian over K
and L the class field of R(g). This yields L N E = Ey and the property follows. O

> RAY CLASS FIELDS

The abelian extension H;j of K corresponding to the ray R(f) modulo a cycle f is known
as the ray class field modulo f. They can be viewed as generalizations of the cyclotomic
fields in the sense of Kronecker-Weber to arbitrary K. By the main theorem, they have
the following properties.

8.12. Theorem. Let K be a number field with maximal abelian extension K2, f a cycle
of K and H; C K ab the ray class field modulo §. Then H; is the maximal abelian extension
of K inside K*" in which all primes of the ray R(f) split completely. The extension H;/K
is unramified outside f, and we have an Artin isomorphism

Cl; — Gal(H;/K).
The field K is the union of all ray class fields of K inside K?P. U
Example. For K = Q the ray class fields can be given explicitly as
Ho=QGu+GY)  and  Hyoo = Q(G).
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In order to prove this, one applies (4) of 1.11 with F = Q({,) and L = H,,.~. For every
prime p[p in Q(¢,,) that does not divide n-oo, the norm Nq(¢,)/q(p) = p/®/P)Z is in the ray
R(n-00), so the left vertical arrow is the zero map. This implies that LE = H,,.o((,) equals
E = Q((n), so Hy,. is contained in Q(¢,,). As we know the Galois group Gal(H,,.c0/Q) =
Cly.co = (Z/nZ)* we have H,,..o = Q((,) as stated. The real field H,, C H,,. is contained
in the maximal real subfield Q(¢, + ¢, 1) of the cyclotomic field, and it must be equal to
it as we have already seen that its Galois group over Q is Cl,, = (Z/nZ)*/(—1 mod n).

A ray class field of special importance is the ray class field modulo the trivial cycle f = 1
of K. It is known as the Hilbert class field of K. As the ray class group modulo the trivial
cycle is the ordinary class group Clg of K, we have an Artin isomorphism

between the class group of K and the Galois group over K of the maximal abelian extension
H of K that is unramified at all primes of K. Moreover, the primes that split completely in
H/K are the principal prime ideals in the ring of integers of K. This is a rather surprising
relation: it is not at all obvious that the size of a certain unramified extension of K should
be related to the class group of K, which measures how much the ring of integers of K
differs from a principal ideal ring. On the other hand, this relation is extremely useful as it
enables us to study the class group of a number field K by constructing unramified abelian
extensions of K. In this context, one also uses a slightly larger field known as the strict or
narrow Hilbert class field. It is the maximal abelian extension of K that is unramified at
all finite primes of K.

A problem that has not been answered in a satisfactory way for any number field
K # Q apart from imaginary quadratic number fields is how to find explicit generators
over K of the abelian extensions whose existence is guaranteed by the general theory. For
small examples (exercises 10, 16, 23), a more or less sophisticated combination of ad hoc
arguments often leads to the desired result.

78 version 11 May 2017 9:57 p.m.



§8: Class field theory: ideal groups

Exercises
1. Let it be given that for every integer a, the Legendre symbol (%) depends only on the residue
class p mod 4|a|, and that the residue classes of p and —p have the same behaviour if a is
positive. Deduce the quadratic reciprocity law from this.

[Hint: for p — ¢ = 4a we obtain (pT;q) = (%) ]

2. Show that every prime number of the form p = z? + 5y is equal to 5 or congruent to 1 or 9
modulo 20.

3. Let n > 2 be an integer. Determine all integers a for which the extension Q((,, ¥/a) is an
abelian extension of Q.

4. Prove the main theorem 8.9 for K = Q.
[There is more to it than Kronecker-Weber...]

5. Let By and Bs be ideal groups of K with conductors fi and f2. Show that B; N By has
conductor lem(f1, f2) and that B;Bs has conductor dividing ged(fi,f2). Give an example in
the second case where the conductor is a strict divisor of ged(f1, f2).

6. The Euler ®-function is defined for cycles § of K by ®(f) = #(O/f)*.
a. Show that ¢ is multiplicative, i.e. ®(fg) = ®(f)®(g) if ged(f,g) = 1.
b. Let E be the unit group of O and Ej; the subgroup of units in £ that are 1 mod” f. Show
that the ray class group of conductor f has order A(f) = hx ®(f)[E : Ef]_l.

7. The strict or narrow Hilbert class field H" = H*(K) of a number field K is the maximal
abelian extension of K in which all finite primes are unramified. Show that H™ is a Galois
extension of the Hilbert class field H of K, and that Gal(H"/H) is an elementary abelian
2-group of order 2"[O* : O%]'. Here r is the number of real primes of K and O} denotes
the group of totally positive units in O, i.e. those units that are positive under every real
embedding of K.

8. Let H be the Hilbert class field of K and p a finite prime of K. Prove that p splits completely
in H/K if and only if p is principal. Show also that the the norm map Ny x : Clg — Clk
is the zero map.

9. Let K1, Ko C Q? be number fields of class number 1. Prove that K1 N K> has class number 1.
10. Show that K = Q(y/—15) has Hilbert class field K (/5).
11. Let K be a number field that is Galois over Q with group G. Show that the Hilbert class
field H of K is normal over Q, and that there is an exact sequence
0 — Clg — Gal(H/Q) — G — 0.
Show also Gal(H/Q) can be written as a semi-direct product Gal(H/Q) = Clx X G with
respect to the natural action of G on Clgk if G is cyclic of prime order.

12. Let K be an imaginary quadratic field and L/K an unramified abelian extension. Show that
L/Q is Galois. Can you describe Gal(L/Q)?
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13.

14.

15.

16.

17.

18.

19.

20.

80

Let E/K be an extension of number fields of degree n. Show that the class number hx divides
nhg. Show also that hy divides hg and that the norm map Ng,k : Clg — Clk is surjective
if there is a prime that is totally ramified in /K.

Show that the class number of the real cyclotomic field Q((n +¢,, ') divides the class number
of Q(¢n) for every n > 1, and that the class number of Q((m) divides the class number of
Q(¢n) if m divides n.

(Ring class fields.) Let K be a number field with ring of integers O and R C O a subring
for which the conductor f = fo,r (in the sense of [I, 5.8]) is non-zero. Show that there is a
unique subfield Ry C Hj of the ray class field modulo f that contains the Hilbert class field
of K and yields an isomorphism

Pic(R) — Gal(R;/K)

under which the residue class of an invertible prime ideal p C R is mapped to the Artin
symbol of pO in R;/K. If K is imaginary quadratic, show that R;/Q is Galois and that
Gal(R;/Q) is isomorphic to the semidirect product Pic(R) X Z/2Z, where the action of the
non-trivial element of Z/2Z on Pic(R) is the inversion [a] — [a] '

Let K be a cubic number field of squarefree discriminant D). Show that the extension
K(vVD)/Q(V/D) is cyclic of degree 3 and totally unramified. Conclude that the class number
of Q(v/D) is divisible by 3. As an example, show that K = Q(v/—31) has Hilbert class field
K(a) with a® +a+1=0.

Let k > 1 be an odd integer and « a root of the polynomial X + 4kX — k. Show that Q(«)
is a cubic field with even class number.

For p be a prime number we let m(p) be the number of distinct zeroes of X3 — X —11in the
finite field F,,. Prove the following:
m = 0 if and only if (2’#3) =1 and p cannot be written as p = a? + 23b* with a,b € Z;
m = 1 if and only if (2%) = -1
m = 2 if and only if p = 23;
m = 3 if and only if p can be written as p = a® + 23b® with a,b € Z.

Suppose L/K is cyclic of prime power order p* and p does not divide hx. Prove that there
is a prime that is totally ramified in L/K.

The Hilbert class field tower of K is the sequence of fields K = Hy C Hy C H, C ... C
H; C ... in which H;4+; is the Hilbert class field of H; for each ¢ > 0. The Hilbert class
field tower is said to be finite if H;y1 = H; for i sufficiently large. Prove that all fields H;
are normal extensions of K with root discriminant |A g, |V/Hi:Q) = | Ak |V/EQl and that the
Hilbert class field tower of K is finite if and only if there is a finite extension of K with class
number 1.

[It has been shown by Golod and Shafarevich in 1964 that there exist infinite class field
towers. This implies that the asymptotic lower bound |Ag|Y/FQ > 5803... for [K : Q]
tending to infinity [I, §9] cannot be replaced by any lower bound that tends to infinity with

(K : Q] ]
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Let O be the ring of integers of K = Q(/5).
a. Prove O is a principal ideal domain with unit group O* = (-1, (1 + v/5)/2).
b. Let p be a prime number. Prove that there exists a field L satisfying

[L:Q] =4, Ve, |AL/ql = 25p

if and only if p # 2, 3 mod 5. Prove also that if such a field exists, it is uniquely
determined by p, up to isomorphism. We denote this field by L.

c. Prove that among all fields L), the only one that is Galois over Q is the field Ls).
Can you embed Ls) in a cyclotomic extension of Q7

(Continuation.) A number field is called totally real if it has no complex primes, totally
complex if it has no real primes, and mixed if it is neither totally real nor totally complex.
The Fibonacci sequence (F,)n—g is inductively defined by Fy = 0, F1 = 1, Frip2 = Frqp1 + F.
Let p be a prime number with p =1 or 4 mod 5.
a. Prove that L(,) is mixed if and only if p = 3 mod 4.
b. Suppose that p = 1 mod 8. Prove that L, is totally real if p divides F{,_1)/4, and
totally complex otherwise.
c. Suppose that p =5 mod 8. Prove that L, is totally complex if p divides F(,_1)/4, and
totally real otherwise.
d. Let p be a prime number with p = 11 or 19 mod 20. Prove that the field L, has
exactly one prime lying over 5 if p = 11 mod 20, and exactly two primes lying over 5 if
p = 19 mod 20.

Show that the Hilbert class field H of Q(1/—17) is a dihedral extension of Q of degree 8.
Find generators for H.
[Hint: Show that H contains ¢ = /—1 and that H/Q(¢) is a Vi-extension.]

(Artin) Show that the real quadratic field Q(+/19 - 151) has class number 1, and that it has
a Galois extension of degree 60 that is unramified at all finite primes.
[Hint: the polynomial X® — X — 1 has discriminant 19 - 151, so you can use exercise 7.4.]

Show that the splitting field of the polynomial X* — X — 1 is unramified over Q(v/—283).
Deduce that the class number of Q(+/—283) is divisible by 3. [You may verify that it is equal
to 3. Can you describe the Hilbert class field of Q(1/—283)7]

~Y

Show that for every number field K, there is a canonical isomorphism Gal(K*"/K) =
lim. Cl; between the Galois group of the maximal abelian extension of K and the pro-
jective limit of the ray class groups Cl; of K with respect to the natural maps Clg — Clj if §
divides g. Show that the direct product Hp A}, of the unit groups of the completions Ay of O
at the finite primes p admits a natural map to Gal(K*"/K). Can you describe the cokernel?
Is this map injective? Deduce that every number field K # Q has abelian extensions that
are not cyclotomic.
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9 CLASS FIELD THEORY: IDELES

The formulation of class field theory as given in the preceding section is the classical
formulation using ideal groups. From a computational point of view, these groups are
often a convenient tool as they have a simple definition that makes them well-suited for
most explicit computations. It is however somewhat annoying that every proof involving
ideal groups starts by the choice of a common cycle modulo which everything is defined,
and the end of the proof is the observation that the result obtained is independent of the
choice of the common modulus.

In order to avoid the choice of moduli, say in the case of base field Q, it is clear that
one should not work with the groups (Z/nZ)* for varying n, but pass to the projective
limit

A = lim(Z/nZ)" Hz*

from the beginning and define the Artin map on Z* rather than on an ideal group Iq(n)
for some large n. We see that for the rational field, this large group becomes a product of
completions at all finite primes of the field.

> SUBGROUPS OF THE IDELE GROUP

In the general case, one also needs the real completions in order to keep track of the sign
conditions at the real primes. Chevalley observed that a very elegant theory results if one
takes the product of the unit groups at all completions of the number field, i.e. the idele
group J of K, and writes all ray class groups as surjective images J — Cl;.

As the idele group J contains a subgroup

(9.1) K;=K;x [[{1}cJ
p'#p

for each prime p, we obtain a local Artin map for each completion K, of K. This point of
view enables us to describe the relation between the global abelian extension L/K and the
local extensions Ly/K,, thus giving rise to a local class field theory. Moreover, it yields in
a natural way a direct description of the power of a prime p dividing the conductor of an
extension L/K that strengthens the qualitative description of 1.9(1).

In order to describe the open subgroups of the idele group J of K, we look at the open
subgroups of the completions K first. If p is a finite prime, a basis of open neighborhoods

of the unit element 1 € K consists of the subgroups Uén) C K, defined by
Uén) _ Up = A} %f n = 0;
1 -+ pn lf n e Z>0.

If p is real, we have K, = R. Every open subgroup of the multiplicative group R* contains
the group R~ of positive real numbers as R~ is generated by any open neighborhood of
1 € R*. The open subgroups of K are therefore

Uéo) =K, and Uél) = K, >o0-
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Finally, if p is complex, the only open subgroup of Ky is the trivial subgroup Uéo) = Ky,
which is generated by every open neighborhood of 1 € K = C*. With this notation, we
have for each cycle f = Hp p"®) of K a subgroup

(9.2) =1, Uy ¢

9.3. Proposition. A subgroup of the idéle group J of K is open if and only if it contains
W; for some cycle § of K.

Proof. As almost all exponents n(p) in (2.2) are equal to zero, the definition of the idele
topology shows that W} is an open subgroup of J. Conversely, if H C J is an open subgroup
of J, we must have W; C H for some | as every open neighborhood of 1 € J generates
some Wj. 0J

> RAY CLASSES AS IDELE CLASSES

It follows from 2.2 that a subgroup of the idéle class group C' = J/K* is open if and only
if it contains the homomorphic image D; of some subgroup W; C J. We have a canonical
isomorphism J/K*Wj =/ D; for the quotients of the basic open subgroups D; C C.

9.4. Theorem. For every cycle f of K there are isomorphisms
J/K*W; — C/D;y — Cly = I(§)/R(j)

such that the class of a prime element w, at a finite prime p {§ in J/K*W; or C/D;
corresponds to p mod R(f) in Cl;.

Proof. Write f = Hp p"®)and define a map

¢:  J— Cl=I(})/R()
(@p)p — [ #o9 @ ) mod R(f),

p finite

where x € K* is an element that satisfies 7'z, = 1 mod” p™(®) for all primes p dividing f.
Such an element exists by the approximation theorem, and it is uniquely determined up
to multiplication by an element y € K* satisfying y = 1 mod™ §. By definition of R(f), the
map ¢ is a well defined homomorphism. Its surjectivity is clear as a prime element 7, € J
at a finite prime p{f is mapped to p mod R(f). It remains to show that ker ¢ = K*W;.
Suppose we have (z,), € ker ¢. Then there exists x € K* as above and y € K* such

that y = 1 mod™ f and
H pordp (7 ay) _ H pOrdp (y)
p finite p finite

—1 -1

This implies that x,(xy)”" is a unit at all finite p outside f and satisfies x,(zy)™" =
Lmod* p"®) for plf, so we have (x,), € zyW;. This proves the inclusion ker¢ C K*W;.

The other inclusion is obvious from the definition of ¢. U

version 11 May 2017 9:57 p.m. 83



§9: Class field theory: ideles

9.5. Corollary. Every open subgroup of C' is of finite index.

Proof. Any open subgroup contains a subgroup Dj, which is of finite index in C' by the
finiteness of the ray class group Cl;. U

If B is an ideal group and g a modulus for B, we define the open subgroup Dy C C
corresponding to B as the kernel

Dp = ker[C — I(g)/B(g)]

of the natural map induced by 2.3. We have a canonical isomorphism C/Dg —~ I(g)/B(g)
that maps the class of a prime element 7, at a finite prime p{g to (p mod B(g), and it
follows from the definition of equivalence of ideal groups that Dg depends on B, but not
on the choice of the modulus g.

9.6. Proposition. The correspondence B +— Dp is an inclusion preserving bijection
between the set of ideal groups of K and the set of open subgroups of the idele class
group C. The conductor § of an ideal group B is the smallest cycle satisfying Dy C Dp.[]

From the obvious equality Dy, - Dy, = Dgcq(y, 5,), We obtain as a simple corollary of the
formalism a statement that required a proof in 1.8.

9.7. Corollary. If an ideal group can be defined modulo f, and fs, it can be defined
modulo ged(f1, f2). O

> THE KERNEL OF THE ARTIN MAP

Combining the bijection between open subgroups of C' and ideal groups in 2.6 with the
main theorem 1.9, we see that every finite abelian extension L/K corresponds to an open
subgroup Dy, of C' for which there is an Artin isomorphism

C/Dyp = Gal(L/K)

that maps the residue classes of the prime elements m, mod Dy, for finite unramified p to
the Artin symbol (p, L/K).

In order to describe the subgroup Dy, of the idele class group corresponding to L, we
need to define the norm Ny g : Cp — Ck on idele class groups. We know (cf. A.2) that
there is an adele norm Ny, i @ A, — A that is the ordinary field norm Ny i : L — K
when restricted to L. It can be given explicitly as

(9.8) NL/K((xq)q) = (HNLq/Kp (7q))p-
qlp

Here q and p range over the primes of L and K, respectively. The norm maps the unit
group J = A7} into the unit group Jx and L* into K™, so we have an induced norm
Np g : CpL — Ck on the idele class groups.
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We need to check that this norm corresponds to the norm on ideal class groups under
the isomorphism 2.3. As in the previous section, we view a cycle f of K as a cycle in a finite
extension L when necessary, and use the obvious notation Wy ; C Jr and Dp; C Cp, for
the corresponding subgroups in .Jz, and Cr. For a cycle § of K we have Ny, /(W 5] C Wk
and NL/K [DL’f] C DK’f.

9.9. Proposition. Let L/K be a finite extension and § a cycle of K. Then there is a
commutative diagram

Cr/Dr; = I.(f)/RL(f)
lNL/K lNL/K
Cx/Dk; — Ik(f)/Rk(f)

in which the horizontal isomorphisms are as in 2.3.

Proof. The commutativity of the diagram may be verified on prime elements 7, at finite
primes q of L outside f, since these classes generate Cr /Dy ;. For such prime elements
we have Ny i (mq) = Np, /K, (7q) by 2.8, and by the definition of extension valuations we
have Np /i, (mq) - Ap = pf(a/P) Tt follows that the diagam commutes. O

9.10. Proposition. Let L be a finite extension of K. Then there exists a cycle § of K
such that Dy ; is contained in NL/KC’L and all primes dividing § are ramified in L/K . In
particular, Ny, /i Cy, is open in Ck.

Proof. With [L : K| = n, we have Ny /xJ;, D Uy for all primes p. As Uy contains an

open neighborhood of 1 € Uy, one has Uy D Uék) for some k € Z~g. If q|p is unramified,
the identity

Np, /K, (x + yﬂ;f) =N, /K, (z) + Try,/x, (y)wﬁ mod pkHAp

for x,y € Ay and the surjectivity of the norm and trace map on the residue class field
extension ky C kq easily imply that we have Np,_/x, [Uq] = U,. This proves our proposition,
as it implies Ny, xJi, O Wi ; for some f divisible only by ramifying primes.

9.11. Theorem. For any finite extension L/K there exists a cycle f in K that is only
divisible by ramifying primes and an isomorphism

Cx/Np/kCr — I(§)/Np/xIL(f) - R(f)

that maps the class of m, to the class of p for finite unramified p.

Proof. Take § as in 2.10, then the isomorphism is obtained by taking cokernels in the
diagram of 2.9. O
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» MAIN THEOREM

We can now give the idelic version of the main theorem of class field theory. Note that so
far, none of the proofs in this section relied on the main theorem 1.9 or its corollaries.

9.12. Main theorem. Let K be a number field, ¥ the set of finite abelian extensions
of K contained in some fixed algebraic closure and D the set of open subgroups of the idéle
class group C of K. Then there exists an inclusion reversing bijection

Yk & D

such that for an extension L/K corresponding to the subgroup D of C' the following holds:

(1) D= Np/kCr;

(2) there is a global Artin isomorphism 1y, /i : C/D — Gal(L/K) such that the image of
a completion K in C is mapped onto the decomposition group Gy of p in Gal(L/K).
It induces a local Artin isomorphism

Yyt K /Np,jwe, Ly = Gy = Gal(Ly/K,) C Gal(L/K)

for the local extension at p. If p is finite, this local isomorphism maps the local unit
group U, onto the inertia group I, C G, and the class of a prime element m, at p to
the coset of the Frobenius automorphism in G|.

The idelic main theorem 2.12 is similar in content to 1.9, but it has several advantages
over the older formulation. First of all, it does without the choice of defining moduli,
thus avoiding the cumbersome transitions between equivalent groups. Secondly, it yields a
description of the contribution of a prime p that shows the local nature of this contribution.
The statement in (2) is not a simple corollary of the identity D = N, Cy since it requires
the non-trivial identity

(913) K;m(K*NL/KJL):NLq/KPL:

for the intersection of the subgroup K; C C with the kernel Ny ,xCp, of the global Artin
map. From (2), we obtain a description of the conductor that can be used to actually
compute it.

9.14. Corollary. Let fr,x =], p™(?) be the conductor of the abelian extension L/K. If
q is a prime of L that extends p, then n(p) is the smallest non-negative integer n for which
the inclusion

U™ < Ny, k., Uy

is satisfied. 0

As a supplement to 2.12, there are again the functorial diagrams occurring in 1.11. Both
the statements and their derivation from the main theorem have an immediate translation
in terms of the idele class group, and we leave them to the reader.
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» LOCAL CLASS FIELD THEORY

The local Artin isomorphism, which occurs as a ‘corollary’ of the idelic version of global
class field theory, leads to a class field theory for local number fields that is interesting
in its own right. This local theory can also be developed independently from the global
theory, and one may argue that this in certain ways more natural. Our order of presentation
however follows the history of the subject.

As we have formulated global class field theory for number fields only, and not for
function fields of dimension 1 over finite fields (i.e. extensions of a finite field of transcen-
dence degree 1), we obtain a local class field theory for local fields in characteristic 0 only.
The theory in characteristic p is highly similar, even though some of the proofs have to be
modified for extensions of degree divisible by the characteristic.

9.15. Proposition. Let F' be a finite extension of Q, for some prime number p and E/F
a finite abelian extension with group G. Then there is a canonical isomorphism

that maps the unit group of the ring of integers of F' onto the inertia group Ig,/p and a
prime element onto the Frobenius residue class mod Ig/p.

Proof. We can choose number fields K and L that are dense in F' and F, respectively, in
such a way that L is G-invariant and L¢ = K. This means that there are primes q in L
and p in K such that F' = K, and E = Ly, and G, = G. The global Artin map for L/K
now induces a local Artin isomorphism g, with the stated properties.

In order to prove the canonicity of g, p, we have to show that it does not depend on
the choice of the G-invariant subfield L C E. Thus, let L’ be another number field that is
dense in E and stable under G. Replacing L’ by LL’ if necessary, we may assume that L
is contained in L’. Then K’ = (L)% contains K, and we have F' = K, = K/ for a prime
t|p. The commutative diagram

Ké — OK’/NLK’/K’CLK’ ;> GaI(LK'/K’)

J{id lNK//K J{res

~

K, — Cr/Nr/kCr —  Gal(L/K);

derived from 1.11 (4) shows that L'/K’ and L/K induce the same Artin isomorphism for
the extension E/F. O

The description of the local Artin isomorphism given by the preceding proposition is some-
what indirect as the map is induced by the Artin isomorphism of a ‘dense global extension’.
Only in the case of an unramified extension E/F the situation is very transparent, as in
that case both F*/Ng,pE* and Gal(E/F) have canonical generators, and they corre-
spond under the Artin isomorphism. Only relatively recently, in 1985, Neukirch realized
that that the local Artin map in the general case is completely determined by this fact
and the functorial properties of the Artin symbol. We do not give the argument here.
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9.16. Main theorem for local number fields. Let F' be a local number field, ¥ the
set of finite abelian extensions of I’ contained in some fixed algebraic closure and H the set
of open subgroups of finite index of F'*. Then there exists an inclusion reversing bijection

Yr &S H

such that for an extension E/F corresponding to the subgroup H of F* the following holds:
(1) H = Ng/rE™;

(2) there is an Artin isomorphism vYg/p : F*/H — Gal(E/F) such that, for non-
archimedean F', the unit group U of the valuation ring of F' is mapped onto the inertia
group Ig,r and a prime element is mapped into the Frobenius coset modulo I, p.

Note that Ng,/pE* C F* in 2.16 is indeed an open subgroup of finite index, as it contains
F*" for n = [E : F]. We leave it to the reader to formulate the local functorial diagrams,
which are analogous to those in 1.11.

The extension corresponding to an open subgroup H of finite index in F'* is called the
class field of H. In the global case we have class fields corresponding to open subgroups of
the idele class group.

The global theorem 2.13 implies the existence of the Artin isomorphism in (2). The
injectivity of the map E + Ng,pE* follows then easily, as an abelian extension F’ with
NF//FF’* = Ng,pE* gives a vertical zero map in (4) that implies £ C I, whence £ = F’
by symmetry. The surjectivity however is not obvious, and we will prove a local existence
theorem in section 12 to show that every open subgroup H C F* has a class field. Apart
from this independent statement, the local main theorem can be seen as a corollary of the
global theorem. It is also possible, and to some extent more natural, to use the local case
in order to prove the more complicated global theorem. For such an approach we refer to
[7] or [9].

The next three sections will be devoted to the proof of the main theorem of class field
theory. Section 10 introduces cyclic group cohomology in order to prove the norm-index
inequality [Cx : Np/xCr] > [L : K] for cyclic extensions L of a number field K. Section 11
proves the reverse inequality [Cx : Ny, xCr] < [L : K], which holds for arbitrary finite
extensions L/ K, by an explicit construction of idele norms in suitable extensions. Section 12
combines the inequalities into a proof of Artin’s reciprocity law and finishes all proofs by
establishing the existence theorems in has a class field.
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Exercises

1. Let p be a prime of K and C the idele class group of K. Show that the natural map K, — C
maps K isomorphically to a closed subgroup of C' Is the analogous statement for the natural
map Kp x Ky — C correct?

2. Let F be a non-archimedean local field and E/F a finite extension.
a. Show that the norm map and the trace map for the residue class field extension E/F
are surjective.
b. Suppose that F/F is unramified. Show that

Ng,p[UP1=UY  fori>o0.

3. Let L/K be a finite abelian extension of number fields and © € K™ an element that is
contained in the local norm image Ni, /k, [Lq]* C K at all primes p # po of K. Show that
x is also a local norm at po.
[Hint: use 9.14.]

4. Let L/K be a finite abelian extension of number fields with conductor f.,x, and p|p a finite
prime of K. Denote by m the exponent to which p appears in fz,,x, and let e = e(p/p) be
the ramification index of p over the rational prime p. We write U; for Uéi) in this exercise.
Prove the following assertions.

a. If 4, j are positive integers with j £ 0 mod p, then the map U, — U, sending every x to
27 is an isomorphism.

b. For i > e/(p — 1) there is an isomorphism U; — U, sending every = to x?.

c. If j is a positive integer, then (K;)J is an open subgroup of K, and it contains Ue/ e,
where €’ denotes the least integer > e/(p — 1) and k is the number of factors p in j.

d. If Kp C F is a finite extension, then Ng,k, [E] is an open subgroup of Ky, and it
contains U/ ke, with €’ as in (¢) and k the number of factors p in [E : Kp].

e. One has m < €’ + ke, where ¢’ denotes the least integer > e¢/(p —1) and k is the number
of factors p in [L : K.

f. More precisely, one has m < e’ + ke, with ¢’ as before, but with k now equal to the
number of factors p in the exponent of the inertia group of p in Gal(L/K).

5. Let K = Q(v/—=3) and L = K(+/2). We write (3 for the cube root of unity (—1 ++/—3)/2 in
K, and ug for the subgroup of K™* generated by (3. The unique primes of K lying over 2 and
3 are denoted by 2 and t, respectively.
a. Prove that K C L is cyclic of degree 3, and that the map e: Gal(L/K) — us sending o
to o(V/2)/%/2 is a group isomorphism.
b. Show that the conductor f;,x divides 2t

c. Let p be a finite prime of K not dividing 2t, and let Np be the cardinality of its residue
class field. Prove that e((p,L/K)) is the unique element of pusz that is congruent to
2(NP=1/3 modulo p.

d. Show that L is the ray class field of K with modulus 6 (= 2 - t?).
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(Euler’s conjecture.) Let p # 3 be a prime number. Show that 2 has a unique cube root in
F, if p =2 mod 3, and that we have

2 is a cube in Fp<:>p:a:2—|—27y2 with z,y € Z

for primes p = 1 mod 3.

Let a be an integer that is not a square. Show that a prime p)[2a can be written as p = 2% —ay?
if and only if p splits completely in the ring class field R D Q(y/a) corresponding to the order

Z[\/a)

. Prove the following criterion, discovered by Euler, on the biquadratic character of 2 modulo

a prime number p = 1 mod 4:

2 is a fourth power in F), <= p = 2 + 64y* with z,y € Z.

. Derive the local Kronecker-Weber theorem 7.2 from the local main theorem 9.17.

Prove the local main theorem 9.17 for archimedean F'. For non-archimedean F', show that
the theorem holds for unramified extensions, i.e. show that there is an inclusion reversing
bijection between unramified extensions E/F and subgroups of F'* containing Ur given by
E — Ng/p|E"].

Let K be a local field and H a subgroup of K*.
a. Suppose the K is archimedean. Show that [K™ : H] is finite if and only if H is open.
b.
b. Suppose that K is non-archimedean and charK = 0. Show that [K™ : H] is finite if and
only if H is open and not contained in the unit group Uk of the valuation ring.
¢. Suppose that charK = p > 0. Show that there exists a subgroup H C K™ that is of
finite index but not open.

Let K be an extension of Q, with residue class field K of order q and L/K a totally ramified
extension of degree coprime to pg — p. Show that the largest subextension M of L/K for
which M/K is abelian is K itself, and that Ny ,xL* = K*. Can you prove this without class
field theory?

Let M be the splitting field of X* — 17 over Q,. Determine the subgroup Ny, M™ C Q,
for p=2, 3,5, 17 and 149.

Let L/K be a tamely ramified abelian extension of local number fields. Prove directly (i.e.
without using 9.17) that the order of the group K* /Ny ,xL* equals the degree [L : K].

Show that the Artin isomorphisms ¢g/p in 9.17 for £ C F b induce an injective homomor-
phism ¢ : F* — Gal(F®/F) of topological groups that fits in an exact diagram

0 —s Ur — F* ord V4 — 0

| v [on

0 — Gal(F**/F"™) — Gal(F**/F) — Gal(F"™/F) — 0

Deduce that the image of ¥ r is dense.
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