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1. Introduction

The Drinfeld–Vlăduţ bound [2] states that for any finite field Fq of q elements, the limit

A(q) = lim sup
C/Fq

#C(Fq)

g(C)
,

where C runs over all smooth, projective, geometrically connected curves over Fq up to isomor-
phism, is at most

√
q − 1. Ihara, Drinfeld and Vlăduţ also proved that this bound is attained if q

is a square, using supersingular points on modular curves. Serre proved that it A(q) is positive for
all q.

Garcia and Stichtenoth started looking for explicit equations for families of curves {Cn}∞n=1

in which g(Cn) → ∞ as n → ∞ and where limn→∞ #Cn(Fq)/g(C) is positive. In the first part
of this talk we explain one of their examples, based on the expositional article [5]. Elkies has
given explicit equations for certain families of modular curves; see for example [3]. He also showed
that all of the explicit towers which had so far been published were actually examples of towers of
modular curves (of elliptic, Shimura or Drinfeld type.) The second part of this talk is devoted to
an explanation of Elkies’ method.

2. A first example of a tower with many points

This example is taken from Garcia and Stichtenoth [5], § 4. Consider the following tower of curves
{Cn}n≥1 over a field F4 with four elements: Cn is the normalisation of the curve in (P1

F4
)n defined

by the n − 1 equations
x3

i+1 = (xi + 1)3 − 1 (1 ≤ i ≤ n − 1),

and the morphism Cn+1 → Cn given by projection onto the first n coordinates. It is clear from
the equations defining this tower that the place x1 = 0 is totally ramified in each step Cn+1 → Cn;
this implies that Cn is an integral curve.

The point x1 = ∞ of C1 = P1
F4

splits completely in C2; this can be seen by rewriting the
equation defining C2 as

(x2/x1)
3 = 1 + x−1

1 + x−2
1

and using the fact that F4 contains the third roots of unity. More precisely, the three points in C2

with x1 = ∞ are given by x2 = ∞ and x2/x1 = ζ with ζ a third root of unity. (In the projective
model that we have given, the last equation only makes sense after blowing up the model in the
point x1 = x2 = ∞.) For the same reason, each of the three points x1 in C2 with x1 = ∞ splits
completely in C3, and so on. This implies that Cn has at least 3n−1 rational points for each n.

The only points of C1 above which the morphism C2 → C1 is ramified are the zeros of
(x1 + 1)3 − 1, i.e. x1 = 0, x1 = ζ3 − 1 and x1 = ζ2

3 − 1 = ζ3, where ζ3 is a primitive third root of
unity. (These are precisely the elements of F4 except the unit element.)

If the morphism C3 → C2 is ramified above a point P of C2, then P has x2 ∈ {0, ζ3−1, ζ3}. This
set is contained in {0, 1, ζ3−1, ζ3}. For x2 = 0 the equation defining C2 implies x1 ∈ {0, ζ3−1, ζ3},
and for x2 ∈ {1, ζ3−1, ζ3} it implies x1 = 1. By induction, this means that the morphism Cn → C1

is only ramified for x1 ∈ {0, 1, ζ3 − 1, ζ3}. Since furthermore this morphism is of degree 3n−1 and
the total ramification index above each point is therefore at most 3n−1−1, it follows from Hurwitz’
genus formula that for all n ≥ 1 we have

2g(Cn) − 2 ≤ 3n−1(2g(C1) − 2) + 4(3n−1 − 1)

= 2 · 3n−1 − 4.

This implies that
g(Cn) ≤ 3n−1 − 1
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and finally

lim
n→∞

#Cn(F4)

g(Cn)
≥ lim

n→∞

3n−1

3n−1 − 1

= 1.

Since
√

4 − 1 = 1, this means that the tower {Cn}∞n=1 attains the Drinfeld–Vlăduţ bound.
In the above we have implicitly used the fact that all morphisms Cn+1 → Cn are tamely

ramified; this is necessary for Hurwitz’ genus formula to hold. In situations where wild ramification
occurs, a little more care is needed.

3. Decomposition of cyclic isogenies

In the remainder of this talk, we will concentrate on towers of modular curves. which have first
been studied by Ihara, Drinfeld and Vlăduţ; Elkies (see e.g. [3]) gave explicit equations for several
families of such curves and showed that all explicit towers which had appeared in the literature
were examples of towers of modular curves (of elliptic, Shimura or Drinfeld type).

We start with some generalities about isogenies between elliptic curves. Let S be a scheme and
m an integer which is invertible on S. An isogeny of elliptic curves over S is called a cyclic isogeny

of degree m if “locally for the étale topology on S” (i.e. after base extension by some surjective
étale morphism S′ → S) its kernel is isomorphic to the constant group scheme (Z/mZ)S . Such
isogenies are classified by an affine coarse moduli scheme over Z[1/m], which we denote by Y0(m).

Our goal is to prove that for l = 2, 3, 5 and all n ≥ 1 the affine curve Y0(l
n) (and hence also

its compactification X0(l
n)) is birationally equivalent to (i.e. has the same function field as) a

closed subscheme of (P1)n−1 given by n−2 equations which can be written down explicitly. These
are the three simplest cases of the observation that for any integers l ≥ 2 and n ≥ 2 there is a
birational map from X0(l

n) to a closed subscheme of (X0(l
2)) (see below). The reason that we

consider l = 2, 3, 5 is that these are the prime numbers for which X0(l
2) has genus 0.

The observation referred to above is captured in the following two results:

Proposition 3.1. Let l and n be positive integers, and let φ: E0 → En be a cyclic isogeny of
degree ln of elliptic curves over some Z[1/l]-scheme. Then φ has a unique decomposition

φ: E0
φ1−→ E1

φ2−→ E2
φ3−→ · · · φn−→ En

with each φi cyclic of degree l.

Proof . Let G denote the kernel of φ. Then the kernel of φ1 in a decomposition as above is
necessarily the unique subgroup ln−1G of order l in G, and E1 = E0/ln−1G. The image of G
under φ1 is then to G/ln−1G, which is cyclic of order ln−1. By induction we see that all the φi are
defined uniquely.

Proposition 3.2. Let l and n be positive integers, and consider a sequence

φ: E0
φ1−→ E1

φ2−→ E2
φ3−→ · · · φn−→ En

of cyclic isogenies of degree l of elliptic curves over some Z[1/l]-scheme. Then the composed isogeny
φ: E0 → En is cyclic (of degree ln) if and only if each of the composed isogenies φi+1 ◦ φi: Ei−1 →
Ei+1 with 1 ≤ i ≤ n − 1 is cyclic (of degree l2).

Proof . This is a special case of Theorem 6.7.15 of Katz and Mazur [6].

Remark . The assumption that l is invertible on the base scheme can be gotten rid of by requiring
in addition that the decomposition is in so-called standard order . This property is defined in terms
of standard subgroups of cyclic group schemes in the sense of Drinfeld. For details, see Katz and
Mazur [6], [REF].

Using these two results, we can identify a cyclic isogeny φ: E → E′ of degree ln with a sequence
of n − 1 isogenies of degree l2 which overlap along an isogeny of degree l. A word of warning is
appropriate: in general, given a sequence of n − 1 isomorphism classes of such l2-isogenies, the
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ln-isogeny cannot be reconstructed uniquely from this. Even over C there is a case where two
overlapping 4-isogenies can be glued to an 8-isogeny in two non-isomorphic ways.

In terms of coarse moduli spaces, the situation can be described as follows. For n ≥ 2, we
have n − 1 morphisms

pi: Y0(l
n) → Y0(l

2) (1 ≤ i ≤ n − 1)

where pi sends φ: E0 → En to φi+1 ◦ φi: Ei−1 → Ei+1. Furthermore, there are two morphisms

q1, q2: Y0(l
2) → Y0(l)

sending E0 → E1 → E2 to E0 → E1 and E1 → E2, respectively. The curve Y0(2
n) can now be

identified, at least up to birational equivalence, as

Y0(2
n)

(p1,...,pn−1)−→
{

(x1, . . . , xn−1) ∈ Y0(4)n−1

∣

∣

∣

∣

q1(xi+1) = q2(xi) for 1 ≤ i ≤ n − 2

}

.

4. Explicit equations for modular curves

In this section we give rational parameterisations of some curves Y0(n) for small n. As is well-
known, Y0(1) = Y (1) is isomorphic to A1

Z
and can be parameterised by the j-invariant. Because

the formula for the j-invariant of a curve in general Weierstraß form is not very enlightening, we
give the formula only for three special cases (note that in each case not every elliptic curve can be
written in the indicated Weierstraß form):

base Weierstraß equation j-invariant

Z[1/2] y2 = x(x2 + a2x + a4)
28(a2

2 − 3a4)
3

a2
4(a

2
2 − 4a4)

Z[1/3] y2 = x3 + a4x + a6
2833a3

4

4a3
4 + 27a2

6

Z y2 + a1xy + a3y = x3 a3
1(a

3
1 − 24a3)

3

a3
3(a

3
1 − 27a3)

Next we do Y0(2) over Z[1/2]. Let E be an elliptic curve over a Z[1/2]-scheme S together
with a rational cyclic subgroup G of order 2. This G has the form {O, P}, where O ∈ E(S) is
the neutral element and P ∈ E(S) is a point of order 2. Locally on S, we may choose coordinates
(x, y) such that our equation has the form

y2 = x(x2 + ax + b)

as in the first line of the table above, where P has coordinates (0, 0). This equation is unique up
to substitutions of the form y = u3y′ and x = u2x′, where u is a unit on S; such a substitution
results in a Weierstraß equation having coefficients a′ = u−2a and b′ = u−4b. In particular, the
rational function

h2(E, G) = a2/4b

on S is independent of the chosen coordinates and is therefore defined globally; it is called a
modular function. We note that given values of a and b determine an elliptic curve if and only
if both b and a2 − 4b are non-zero, i.e. if and only if h2 6∈ {1,∞}. When S is the spectrum of a
quadratically closed field K of characteristic different from 2, we can moreover choose coordinates
uniquely such that the coefficient b in the above Weierstraß equation equals 1. This means that
a given value h2 ∈ K \ {1} uniquely determines a pair (E, G) up to isomorphism. We summarise
this by saying that the modular function h2 is a principal modulus for Y0(2) (the German word
Hauptmodul is more commonly used).

It follows directly from the definitions of j and h2 that the composition of the quotient map

q1: Y0(2) → Y (1)

(E, G) 7→ E
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with the j-invariant j: Y (1)
∼−→ A1 is given in terms of the coordinate h2 by

j ◦ q1 = 26 (4h2 − 3)3

h2 − 1
.

Equivalently, the following diagram of Z[1/2]-schemes is commutative:

Y0(2)
h2

//

q1

��

P1

26 (4x−3)3

x−1
��

Y (1)
j

// P1.

To describe the map q2 which sends (E, G) to E/G, we apply a well-known formula for the
2-isogeny with kernel {O, (0, 0)} of the elliptic curve E given by y2 = x(x2 + ax + b). Namely, this
isogeny goes from E to the elliptic curve

E′: y′2 = x′(x′2 − 2ax′ + a2 − 4b)

and sends (u, v) to
(

u2+au+b
u , v u2−b

u2

)

. The definitions of j and h2 now imply that q2 is given in

coordinates by

j ◦ q2 = 26 (h2 + 3)3

(h2 − 1)2
,

or equivalenty by the following commutative diagram of Z[1/2]-schemes:

Y0(2)
h2

//

q2

��

P1

26 (x+3)3

(x−1)2
��

Y (1)
j

// P1.

In order to describe Y0(4), we have to parameterise elliptic curves E with a given cyclic
subgroup G of order 4 over a Z[1/2]-scheme S. As above, we can, locally on S, embed our curve
into P2 via a Weierstraß equation

y2 = x(x2 + ax + b),

with (0, 0) corresponding to the unique point of order 2 inside the given cyclic subgroup. It follows
easily from the doubling formula for this elliptic curve that our subgroup has the form {x = c},
where c is a square root of b. Under a change of coordinates x = u2x′ and y = u3y′, both a and c
are multiplied by u−2, so that

h4(E, G) = a/2c

is a well-defined function on S independent of the choice of coordinates. Moreover, the value of h4

determines the isomorphism class of (E, G) (although this is not completely trivial if h4 = 0), so
that h4 is a principal modulus for Y0(4). A given value of h4 actually defines an elliptic curve with
a cyclic subgroup of order 4 if and only if h4 6∈ {1,−1,∞}.

The morphism q1: Y0(4) → Y0(2) with moduli interpretation (E, G) 7→ (E, 2G) is given in
coordinates by

h2 ◦ q1 = h2
4;

this follows directly from the definitions of h2 and h4. The morphism q2: Y0(4) → Y0(2) with
moduli interpretation (E, G) 7→ (E/2G, G/2G) is given by

h2 ◦ q2 =
(h4 + 3)2

8(h4 + 1)
;

we leave it to the reader to check this using the formulas for 2-isogenies mentioned before.
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Now we are ready to write down equations for Y0(2
n) (and X0(2

n)) for all n ≥ 2:

Y0(2
n) ⊂ X0(2

n) −→
{

(x1, . . . , xn−1) ∈ (P1)n−1

∣

∣

∣

∣

x2
i+1 =

(xi + 3)2

8(xi + 1)
for 1 ≤ i ≤ n − 2

}

.

The cusps are given by xi ∈ {1,−1,∞} for any (hence all) xi. As we remarked in § 3, these
equations actually describe a singular model of Y0(2

n).
Now let p be an odd prime number, and consider the above family of modular curves over a

field Fp2 of p2 elements. By methods similar to the ones we saw last time in Jeroen’s talk, one
can show that the supersingular points on Y0(2

n) are Fp2 -rational, and that there are precisely
(p − 1)2n−3 of these points (Ihara–Vlăduţ). Using the well-known formulas for the genera of
modular curves (see for example Diamond and Shurman [1], Chapter 3), it is straightforward to
show that for n ≥ 2

g(X0(2
n)) =

{

1 + 2n−3 − 2(n−1)/2, n odd;
1 + 2n−3 − 3 · 2n/2−2, n even.

This implies that the tower {X0(2
n)} over Fp2 attains the Drinfeld–Vlăduţ bound.

It remains to write down equations for the supersingular points. For this we use the following
explicit description of the supersingular points on Y (2)Fp

. First of all, an elliptic curve E over a
field of characteristic different from 2, together with a basis for the 2-torsion, can be written in
Legendre form as

y2 = x(x − 1)(x − λ)

where the given basis corresponds to {(0, 0), (1, 0)}. The x-coordinate λ of the third point of order 2
is then a principal modulus for Y (2). Now a point on Y (2) with a given value of λ is supersingular
if and only if the so-called Deuring polynomial

H(X) =

(p−1)/2
∑

m=0

(

(p − 1)/2

m

)

Xm

vanishes in λ. Furthermore, there is an isomorphism

Y0(4)
∼−→ Y (2)

given by the commutative diagram

Y0(4)
h2

//

∼

��

P1

x+1

2

��

Y (2)
λ

// P1.

Again, we leave it to the reader to show this using the formulas for 2-isogenies. This shows that a
point on Y0(4)Fp

with a given value of h2 is supersingular if and only if

H

(

h2 + 1

2

)

= 0.

It is possible to show, using properties of the Deuring polynomial H(X), that for all points
(x1, . . . , xn−1) of Y0(2

n) over an algebraic closure of Fp2 the following holds: if H(xi) = 0 for some
i, then H(xi) = 0 for all i, and in this case all the xi are Fp2 -rational. This was done by Garcia,
Stichtenoth and Rück [4]; the proof is quite involved and uses the hypergeometric differential
equation.
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