Linear algebra 2: exercises for Section 7

Ex. 7.1. Let V and W be normed vector spaces over \mathbb{R} . For a linear map $f: V \to W$ let

$$||f|| = \sup_{x \in V, ||x||=1} ||f(x)||$$

- 1. Show that $B(V, W) = \{ f \in \text{Hom}(V, W) : ||f|| < \infty \}$ is a subspace of Hom(V, W), and that $||\cdot||$ is a norm on B(V, W).
- 2. Show that B(V, W) = Hom(V, W) if V is finite dimensional.
- 3. Taking V = W above, we obtain a norm on B(V, V). Show that $||f \circ g|| \le ||f|| \cdot ||g||$ for all $f, g \in B(V, V)$.
- **Ex. 7.2.** Consider the rotation map $f: \mathbb{R}^2 \to \mathbb{R}^2$ which rotates the plane by 45 degrees. For any norm on \mathbb{R}^2 the previous exercise defines a norm ||f||. Show that ||f|| = 1 when we take the standard euclidean norm $||\cdot||_2$ on \mathbb{R}^2 . What is ||f|| when we take the maximum norm $||\cdot||_{\infty}$ on \mathbb{R}^2 ?
- **Ex. 7.3.** Consider $V = \mathbb{R}^n$ with the standard inner product and the norm $||\cdot||_2$. Suppose that $f: V \to V$ is a diagonalizable map whose eigenspaces are orthogonal (i.e., V has an orthogonal basis consisting of eigenvectors of f). Show that ||f|| as defined in Ex. 7.1 above is equal to the largest absolute value of an eigenvalue of f.
- **Ex. 7.4.** What is the sine of the matrix $\begin{pmatrix} \pi & \pi \\ 0 & \pi \end{pmatrix}$?
- **Ex. 7.5.** Consider the vector space V of polynomial functions $[0,1] \to \mathbb{R}$ with the supnorm: $||f|| = \sup_{0 \le x \le 1} |f(x)|$. Consider the functional $\phi \in V^*$ defined by $\phi(f) = f'(0)$. Show that $\phi \notin B(V, \mathbb{R})$. [Hint: consider the polynomials $(1-x)^n$ for $n=1,2,\ldots$]