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Abstract. Let T be an ergodic transformation on X and {αn} a sequence of

partitions on X. Define Kn(x) = min{j ≤ 1 : T jx ∈ αn(x)}, where αn(x) is
the element of αn containing x. In this paper we give conditions on T and αn,

for which limn→∞
log Kn(x)

n
exists. We study the question in one and higher

dimensions.

1. Introduction

Let x ∈ [0, 1) and let T be a transformation from [0, 1) to [0, 1). One can study
the movement of x under iterations of T , and if B is a set of non-negative measure
containing x, one can address the question of how many iterations of T are needed
for the orbit of x to return to the set B for the first time. This number of iterations
is called the first return time of x to B under T . The first and most famous result
about this type of questions is the Poincaré Recurrence Theorem. It states that if
B is a set of positive measure and if T is a transformation that preserves a finite
measure, then almost all elements of B return to B eventually. An immediate
consequence of this result is that almost all x ∈ B return to B infinitely often. The
Poincaré Recurrence Theorem is powerful, but it doesn’t make a statement about
the speed with which a point returns to a set it started in.

A great number of articles have been published answering this question in various
ways. Usually the first return time of x to a partition element generated by the
transformation T itself is studied. Given a partition P of [0, 1) and a transformation
T , it is possible to construct a sequence of partitions {Pn} by looking at inverse
images of P under iterations of T and taking intersections. More precisely,

Pn =
n−1∨
i=0

T−iP = {A0 ∩ T−1A1 ∩ · · · ∩ T−(n−1)An−1 : Ai ∈ P}.

Using the partition P and the transformation T , one can construct for almost every
x ∈ [0, 1) an expansion. This is done by specifying for each n the partition element
of Pn that the element Tnx belongs to. The expansion that is obtained in this way
is called the (T,P)-expansion of x. If Pn(x) denotes the partition element of Pn
that contains x, then Pn(x) specifies the first n coordinates of the (T,P)-expansion
of x.

Ornstein and Weiss proved an asymptotic result on the number of iterations of
T that are needed before x returns to Pn(x) for the first time. Let (X,F , µ, T ) be
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a dynamical system and let E ⊂ X. Then the first return time of an element x of
E to the set E will be denoted by RE(x) and is given by

RE(x) = min{j ≥ 1 : T jx ∈ E}.

Then the following theorem states the result of Ornstein and Weiss. For the proof,
consult [O].

Theorem 1.1. Let (X,F , µ, T ) be an ergodic and measure preserving dynamical
system with µ a probability measure and suppose P is a partition on X with H(P) <
∞. Define the sequence of partitions {Pn} by Pn =

∨n−1
i=0 T

−iP for each n ≥ 1.
Then

lim
n→∞

logRPn(x)(x)
n

= h(T,P) µ a.e.

In other words, if we look at the (T,P)-expansion of x, the above theorem says
that the first n coordinates of this expansion will repeat themselves for the first
time after approximately 2nh steps. Others proved similar results for more specific
transformations or more general sets. Marton and Shields for example studied
the asymptotic convergence of logarithmic waiting times. The waiting time of an
element y (not necessarily in E) to E under T is denoted by WE(y) and is given by

WE(y) = min{j ≥ 1 : T j−1y ∈ E}.

Marton and Shield showed that also in this case we have to wait 2nh(T,P) steps,
before we see the first n coordinates again for the first time.

Theorem 1.2. Let (X,F , µ) be a probability space and T a measure preserving and
ergodic transformation on X that is weak Bernoulli. Suppose that P is a partition
on X with H(P) < ∞. Let x, y ∈ X with P(x) 6= P(y) and define again the
sequence of partitions {Pn} by Pn =

∨n−1
i=0 T

−iP for each n ≥ 1. Then

lim
n→∞

logWPn(x)(y)
n

= h(T,P) µ a.e.

A proof of this theorem can be found in [M].
Seo studied the first return time of a point under a specific transformation,

namely the irrational translation, to a dyadic interval centered at the point itself.
The proof can be found in [S]. Recall that an irrational number θ ∈ (0, 1) is of type
η if η = sup{β : lim inf

j→∞
jβ ||jθ|| = 0}, where ||θ|| equals the distance to the nearest

integer.

Theorem 1.3. Let θ ∈ (0, 1) be an irrational number. Let furthermore (I,B, λ, T )
be a dynamical system, with I = [0, 1), B the Borel σ-algebra on I, λ the Lebesgue
measure on (I,B) and T the transformation on I defined by Tx = x + θ (mod 1).
Then θ is of type 1 if and only if

lim
n→∞

logRB(x,2−n)(x)
n

= 1,

where B(x, 2−n) = {y ∈ [0, 1) : |y − x| < 2−n.

In the proof of this theorem it is shown that

lim sup
n→∞

logRB(x,2−n)(x)
n

= 1 and lim inf
n→∞

logRB(x,2−n)(x)
n

=
1
η
,
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where η denotes the type of the irrational number θ.

A more general version of the theorem above is given by Barreira and Saussol.
Let X ⊆ Rd for some d ∈ N. For each x ∈ X and r, ε > 0 we can define the set

Aε(x, r) = {y ∈ B(x, r) : RB(x,r)(y) ≤ µ(B(x, r))−1+ε},

where B(x, r) is the ball in Rd with centre x and radius r. A measure µ is said to
have long return time with respect to a transformation T if

lim inf
r→0

logµ(Aε(x, r))
logµ(B(x, r))

> 1.

Barreira and Saussol proved the next theorem. The proof as well as examples of
transformations having the above property can be found in [B].

Theorem 1.4. Let T : X → X be a Borel measurable transformation on a mea-
surable set X ⊆ Rd for some d ∈ N and µ a T -invariant probability measure on X.
If µ has long return time with respect to T and if

lim inf
r→0

logµ(B(x, r))
log r

> 0

for µ-almost every x ∈ X, then

lim inf
r→0

logRB(x,r)(x)
− log r

= lim inf
r→0

logµ(B(x, r))
log r

and

lim sup
r→0

logRB(x,r)(x)
− log r

= lim sup
r→0

logµ(B(x, r))
log r

for µ-almost every x ∈ X.

In this paper we will not be looking at return times to sets generated by the trans-
formation itself, but at return times to sets generated by another transformation.
Let S be a transformation and α a partition, together generating the sequence of
partitions {αn}, where αn =

∨n−1
i=0 S

−iα. We can then look at the (S, α)-expansion
of an element x and if αn(x) denotes the partition element of αn containing x, then
this partition element specifies the first n coordinates of this expansion. If T is
another transformation defined on the same space and if we define the value Kn(x)
by

Kn(x) = min{j ≥ 1 : T jx ∈ αn(x)},
then Kn(x) denotes the first return time of x under T to the partition element of αn
it started in. In other words, Kn(x) is the first j, such that the first n coordinates
of the (S, α)-expansion of T jx equal those of the (S, α)-expansion of x itself. An
important difference of this setup with respect to the results mentioned above, is
that the partitions under consideration are independent of the transformation T
and are in fact generated by the other transformation S. We will show that also
the logarithm of the quantity Kn(x) converges asymptotically, but surprisingly this
limit doesn’t depend on the transformation T at all. We will prove that for almost
all elements x,

lim
n→∞

logKn(x)
n

= h,

where h is the entropy of S relative to the partition α. This means that the
convergence of this value depends only on the randomness of S and not on that
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of T . Thus, the same result holds for all transformations T satisfying the right
conditions. This generalizes a theorem of Kim and Kim [K], where they proved the
result for the case {αn} is the collection of dyadic intervals of order n.

We will begin by stating and proving the one-dimensional version of the result
mentioned above. In the last section we will give generalizations of this result to
higher dimensions by using the Theorem of Barreira and Saussol. This is done for
specific choices of S and α.

Throughout this text, if α is a partition of a non-empty set X and x is an element
of X, then α(x) will denote the partition element of α containing x.

2. One-dimensional Log Return Times

In this section we will study the asymptotic behaviour of the log return time for
certain one-dimensional partitions defined on the unit interval I = [0, 1). Therefore,
consider the dynamical systems (I,B, µ1, T ) and (I,B, µ2, S), where I is the unit
interval [0, 1), B is the Borel σ-algebra on I, and µ1 and µ2 are probability measures
on (I,B) with µ1 � µ2. Suppose T and S are ergodic transformations from I to
itself and µ1-, respectively µ2-invariant. Let α be an interval partition of I, with
H(α) < ∞ and such that each partition αn =

∨n−1
i=0 S

−iα is again an interval
partition of I. Throughout this section, we let h = hµ2(S, α) indicate the entropy
of S with respect to α, and we suppose h > 0. Define for every x ∈ [0, 1) the first
return time of x under T to its cylinder set αn(x) by

Kn(x) = min{j ≥ 1 : T jx ∈ αn(x)}.

Theorem 2.1. Let P be a finite partition of I, consisting of intervals. Define
the sequence of partitions {Pn}n≥1 by Pn =

∨n−1
i=0 T

−iP and suppose that for each
n ≥ 1 the partition Pn also consists of intervals only. Suppose furthermore that
H(P) <∞ and hµ1(T,P) > 0. Then

lim
n→∞

logKn(x)
n

= h µ1 a.e.

Remark. Notice that to guarantee that each of the partitions Pn is an interval
partition, it is enough that the transformation T is monotone on each of the elements
of the partition P.

Proof. Let h∗ = hµ1(T,P), and let 0 < ε < h be given. Call an element A of
Pn (n, ε)-typical if 2−n(h∗+ε) < µ1(A) < 2−n(h∗−ε), and a similar definition for
members of αn. Let l(P)

n be the number of (n, ε)-typical sets for the partition Pn,
and l(α)

n be the number of (n, ε)-typical sets for the partition αn. By the Shannon-
McMillan-Breiman Theorem, Pn(x) and αn(x) are (n, ε)-typical for all n sufficiently
large, and for almost every x,. Furthermore, there exist a positive integer N such
that l(P)

n (ε) < 2n(h∗+ε) and l(α)
n (ε) < 2n(h+ε) for all n > N . For each n > N , define

the integer m = m(n) = b (h−ε)n
h∗+2ε c and let

Dn(ε) =

 2−m(h∗+ε) < µ1(Pm(x)) < 2−m(h∗−ε)

x ∈ I : 2−n(h+ε) < µ2(αn(x)) < 2−n(h−ε)

αn(x) 6⊆ Pm(x)

 .

If x ∈ Dn(ε), then αn(x) will intersect at least two elements of the partition Pm
and the elements with which it intersects include at least one (m, ε)-typical element
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of Pm, namely Pm(x). Since both partitions Pm and αn consist of intervals only,
the measure of Dn(ε) can be estimated by

µ2(Dn(ε)) ≤ 2 · the number of (m, ε)-typical elements of Pm
·the maximal µ2-measure of an (n, ε)-typical element of αn

≤ 2 · 2m(h∗+ε) · 2−n(h−ε) ≤ 2 · 2−n((h−ε)−(h−ε) h
∗+ε

h∗+2ε ).

By the Borel-Cantelli Lemma this means that µ2(Dn(ε) i.o.) = 0 and the Shannon-
McMillan-Breiman Theorem gives that µ2({x ∈ I : αn(x) 6⊆ Pm(x) i.o.}) = 0.
Since µ1 � µ2, it follows that µ1({x ∈ I : αn(x) 6⊆ Pm(x) i.o.}) = 0, so for almost
all x ∈ I, for n big enough, αn(x) ⊆ Pm(x). Therefore Kn(x) ≥ RPm(x)(x) and by
Theorem 1.1 then

lim inf
n→∞

logKn(x)
n

≥ lim inf
n→∞

logRPm(x)(x)
m

· m
n

= (h− ε) h∗

h∗+2ε µ1 a.e.

Since this holds for all ε sufficiently small, we have that lim infn→∞
logKn(x)

n ≥ h
µ1 a.e.

The fact that lim supn→∞
logKn(x)

n ≤ h for µ1-almost every x can be proven in
a similar way by taking ε < h∗, replacing the set Dn(ε) by

D′n(ε) =

 2−m(h∗+ε) < µ1(Pm(x)) < 2−m(h∗−ε)

x ∈ I : 2−n(h+ε) < µ2(αn(x)) < 2−n(h−ε)

Pm(x) 6⊆ αn(x)

 ,

and taking m = m(n) = d (h+2ε)n
h∗−ε e. Notice that in this case we can immedeately

give an estimate of the µ1-measure of D′n(ε), so that we do not have to impose that
µ2 � µ1. �

Now consider the number

Kn(x, y) = min{j ≥ 1 : T j−1y ∈ αn(x)},
which can be interpreted as the time we have to wait until an element y ∈ X enters
for the first time the partition element of αn in which x lies. We are going to prove
the equivalence of Theorem 2.1 for this waiting time.

Theorem 2.2. Let P be a finite partition of I, consisting of intervals and such
that each of the partitions Pn =

∨n−1
i=0 T

−iP is again an interval partition. Suppose
furthermore that H(P) < ∞ and hµ1(T,P) > 0. If T is a measure preserving,
ergodic, weakly Bernoulli transformation, then

lim
n→∞

logKn(x, y)
n

= h (µ1 × µ1) a.e.

Proof. Fix y ∈ I, and let ε > 0. Define

An =

 2−n(h+ε) < µ2(αn(x)) < 2−n(h−ε)

x ∈ I :
Kn(x, y) < 2n(h−2ε)

 .

Then An is the union of those (n, ε)-typical elements of αn, that contain T j−1y for
some j < 2n(h−2ε). Since this number cannot exceed 2n(h−2ε), we have

µ2(An) < 2n(h−2ε) · 2−n(h−ε) = 2−nε.
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Then by the Borel-Cantelli Lemma, the Shannon-McMillan-Breiman Theorem and
the fact that µ1 � µ2, we have, as in the proof of Theorem 2.1, that

lim inf
n→∞

logKn(x, y)
n

≥ lim inf
n→∞

log 2n(h−2ε)

n
= h− 2ε (µ1 × µ1) a.e.

To prove that lim supn→∞
logKn(x,y)

n ≤ h for (µ1 × µ1)-almost every (x, y), we
let h∗ = hµ1(T,P), where 0 < ε∗ < h∗ is given. For each n define the number
m = m(n) = d (h+2ε∗)n

h∗−ε∗ e. As in the proof of Theorem 2.1 we can show that for n
big enough, we have for almost all x ∈ I that Pm(x) ⊆ αn(x). This means that
then Kn(x, y) ≤Wm(x, y) and therefore by Theorem 1.2

lim sup
n→∞

logKn(x, y)
n

≤ lim sup
n→∞

logWm(x, y)
m

· m
n

= (h+ 2ε∗) h∗

h∗−ε∗ (µ1 × µ1) a.e.

Since this holds for all 0 < ε∗ < h∗, we have the result. �

In the previous theorems, the condition that h(T, α) > 0 was used in the proof.
We will now show that this condition is indeed necessary by showing that for
certain irrational rotations lim

n→∞
Kn(x)/n does not exist. To this end, consider the

probability space (I,B, λ) and let the transformation Tθ : I → I be defined by
Tθx = x + θ (mod 1) with θ ∈ (0, 1) an irrational number. It is well known that
hλ(T,P) = 0 for any partition P. Suppose α is a generating partition of S with
H(α) <∞ and h = h(S, α) > 0. Define for each x ∈ I,

Kθ
n(x) = min{j ≥ 1 : T jθ x ∈ αn(x)}.

We have the following theorem.

Theorem 2.3. Let θ ∈ (0, 1) be an irrational number of type η. Then, for almost
all x ∈ I

lim inf
n→∞

logKθ
n(x)
n

=
h

η
and lim sup

n→∞

logKθ
n(x)
n

= h a.e.

Proof. Let 0 < ε < h be given. Then by the Shannon-McMillan-Breiman Theorem,
we know that for almost all x, there exists an N such that for all n ≥ N we have

2−n(h+ε) < λ(αn(x)) < 2−n(h−ε).

Therefore, for these x’s we have that

αn(x) ⊆ B(x, 2−n(h−ε)),

so Kn(x) ≥ RB(x,2−n(h−ε))(x). On the other hand, if we define for each n ≥ N , the
integer m = m(n) = dn(h+ 2ε)e and the set

En(ε) =

 2−n(h+ε) < λ(αn(x)) < 2−n(h−ε)

x ∈ I :
B(x, 2−m) 6⊆ αn(x)

 ,

by an argument similar to the proof of Theorem 2.1 we can see that
∑∞
n=1 λ(En(ε)) <

∞. Thus by the Borel Cantelli Lemma and the Shannon-McMillan-Breiman The-
orem Kθ

n(x)(x) ≤ RB(x,2−m)(x) for all n sufficiently large. By Theorem 1.3

lim inf
n→∞

logKθ
n(x)
n

=
h

η
λ a.e.,
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and

lim sup
n→∞

logKθ
n(x)
n

= h a.e.

�

The following corollary follows immediately from the above theorem.

Corollary 2.1. Let θ ∈ (0, 1) be an irrational number of type η. If η = 1, then

lim
n→∞

logKθ
n(x)
n

= h a.e., and if η > 1, then lim
n→∞

logKθ
n(x)
n

does not exist.

3. Higher Dimensions

Using the Theorem of Barreira and Saussol, some of the results of the previous
section can be extended to dimension d ∈ N in case the partitions αn are given
by the d-dimensional dyadic hypercubes of order n. To this end, consider the
probability space (Id,Bd, λd), where Id is the d-dimensional unit hypercube, Bd is
the d-dimensional Borel σ-algebra and λd is the d-dimensional Lebesgue measure
on (Id,Bd). Let the partitions Qdn of Id be given by

Qdn = {
d−1∏
j=0

[
ij
2n
,
ij + 1

2n
) : 0 ≤ i0, . . . id−1 ≤ 2n − 1}.

Then for each x̄ ∈ Id,

(diameter Qdn(x̄)) = (
d∑
i=1

(2−n)2)1/2 =
√
d · 2−n

and λd(Qdn(x̄)) = 2−dn. Let Q(i1,...,id)
n denote the partition element

Q(i1,...,id)
n = [

i1
2n
,
i1 + 1

2n
)× . . .× [

id
2n
,
id + 1

2n
).

Using the result of Barreira and Saussol, we prove the following theorem.

Theorem 3.1. Let T be an measure preserving transformation on the probability
space (Id,Bd, µ). Assume that µ has long return time with respect to T , and is
absolutely continuous with respect to λd with density g bounded away from zero and
bounded from above. Define for each x̄ ∈ Id,

Kd
n(x̄) = min{k ∈ N : T kx̄ ∈ Qdn(x̄)},

then for µ-almost every x̄ ∈ Id,

lim
n→∞

logKd
n(x̄)
n

= d.

Proof. Notice first that lim
r→0

log λd(B(x̄, r))
log r

= d. Since µ � λd with density

bounded away from zero and bounded from above, it follows that

lim
r→0

logµ(B(x̄, r))
log r

= lim
r→0

log λd(B(x̄, r))
log r

= d.
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Therefore all the conditions of the Theorem of Barreira and Saussol are satisfied.
Since for each x̄ ∈ Id, Qdn(x̄) ⊆ B(x̄,

√
d · 2−n), we have Kd

n(x̄) ≥ RB(x̄,
√
d·2−n)(x̄)

and thus

lim inf
n→∞

logKd
n(x̄)
n

≥ lim inf
n→∞

logRB(x̄,
√
d·2−n)(x̄)

− log(
√
d · 2−n)

· − log(
√
d · 2−n)
n

≥ lim inf
r→0

logRB(x̄,r)(x̄)
− log r

(1− r log
√
d).

Using Theorem 1.4 then gives

lim inf
n→∞

logKd
n(x̄)
n

≥ lim inf
r→0

logµ(B(x̄, r))
log r

= d

for µ-almost all x̄ ∈ Id.
For the second part, using Kac’s Lemma we get∫

Id
Kd
n(x̄)dµ(x̄) =

2n−1∑
i1,...,id=0

∫
Q

(i1,...,id)
n

Kd
n(x̄)dµ(x̄) ≤ 2dn.

Let ε > 0. For each n ≥ 1, define the set Bdn = {x̄ ∈ Id : Kd
n(x̄) > 2dn(1+ε)}. Then

by Markov’s Inequality

µ(Bdn) ≤ 1
2dn(1+ε)

∫
Id
Kd
n(x̄)dµ(x̄) ≤ 2−dnε.

By the Borel-Cantelli Lemma, then µ(Bdn i.o.) = 0, so that

lim sup
n→∞

logKd
n(x̄)
n

≤ lim sup
n→∞

log 2dn(1+ε)

n
= d+ dε µ a.e. �

The above theorem can be generalized when the partitions Qdn are replaced by
d-fold product partitions. αn×· · ·×αn, where αn is some interval partition of [0, 1).
For ease of notation, we restrict our attention to dimension 2. Given a rectangle
R, we define the frame of R of width δ as the set

F(R, δ) = {x̄ ∈ I2 : x̄ ∈ R and d(x̄, ∂R) ≤ δ},
where ∂R is the boundary of R and d indicates the usual Euclidian distance in the
plane. Notice that the proportion of R taken up by its frame of width δ is bounded
above by

4 · (length of R) · δ
λ̄(R)

.

Now, consider the probability space (I,B, ν). Suppose S is a measure preserving
weakly mixing transformation on I, and let α be an interval partition on I with
Hλ(α) <∞. Construct the sequence of partitions {αn} by setting αn =

∨n−1
i=0 S

−iα,
and suppose that h = h(S, α) > 0. Assume that for each n ≥ 1 the partition αn
consists of intervals only. Now construct the two-dimensional dynamical system
(I2, B̄, ν̄, S × S) by setting I2 = I × I, B̄ = B × B and ν̄ = (ν × ν) Then h̄ =
h(S×S, α×α) = 2h. We assume throughout that ν is equivalent to λ with density
bounded away from 0 and ∞. This allows us to replace ν by λ in the Shannon-
McMillan-Breiman theorem applied to the partition αn. For this reason, we shall
assume with no loss of generality that ν is λ.

Let T be a transformation on (I2, B̄, µ), where µ is a T -invariant probability
measure, absolutely continuous with respect to λ̄ with density bounded away from
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zero and bounded from above. Assume furthermore that T has long return time
with respect to µ. Define

K̄n(x̄) = min{j ≥ 1 : T j x̄ ∈ (αn × αn)(x̄)}.

Then also in this case we have the following theorem.

Theorem 3.2. For µ-almost every x̄ ∈ I2,

lim
n→∞

log K̄n(x̄)
n

= h̄.

Proof. Again the proof is done by first checking that lim infn→∞
log K̄n(x̄)

n ≥ h̄ µ

a.e. and then that lim supn→∞
log K̄n(x̄)

n ≤ h̄ for µ-almost all x. For the first part,
let ε > 0 be given and define for each n ≥ 1

Dn(ε) =

 2−n(h+ε) < λ(αn(x)) < 2−n(h−ε)

x̄ = (x, y) ∈ I2 :
2−n(h+ε) < λ(αn(y)) < 2−n(h−ε)

 .

Then for all x̄ ∈ Dn(ε), we have that (αn(x) × αn(y)) ⊆ B(x̄,
√

2 · 2−n(h−ε)), so
RB(x̄,b

√
2·2−n(h−ε)c)(x̄) ≤ K̄n(x̄). The Shannon-McMillan-Breiman Theorem tells us

that λ̄(Dn(ε)c) = 0, so by absolute continuity also µ(Dn(ε)c) = 0 and then by
Theorem 1.4

lim inf
n→∞

log K̄n(x̄)
n

≥ lim inf
n→∞

logRB(x̄,b
√

2·2−n(h−ε)c)(x̄)

− log(b
√

2 · 2−n(h−ε)c)
· − log(b

√
2 · 2−n(h−ε)c)
n

≥ h̄− 2ε µ a.e.

For the other part, let ε∗ > 0 again be given and define for each n ≥ 1 the number
m = m(n) = dn(h+ 4ε∗)e and the set

Dn(ε∗) =

 2−n(h+ε∗) < λ(αn(x)) < 2−n(h−ε∗)

x̄ = (x, y) ∈ I2 : 2−n(h+ε∗) < λ(αn(y)) < 2−n(h−ε∗)

B(x̄, 2−m) 6⊆ (αn(x)× αn(y))

 .

If x̄ ∈ Dn(ε∗), then B(x̄, 2−m) overlaps with at least two elements of the partition
αn×αn, so that x̄ = (x, y) must lie in the frame of αn(x)×αn(y) of width at most
2 · 2−m. Therefore,

λ̄(F(αn(x)× αn(y), 2−m))
λ̄(αn(x)× αn(y))

≤ 2−n(h−ε∗) · 2 · 2−m

2−n(h̄+2ε∗)
≤ 2 · 2−nε

∗
.

Then K̄n(x̄) ≤ RB(x̄,2−m)(x̄), so by Theorem 1.4

lim sup
n→∞

log K̄n(x̄)
n

≤ lim sup
n→∞

logRB(x̄,2−m)(x̄)
− log 2−m

· m
n
≤ 2(h+ 4ε∗) = h̄+ 8ε∗ µ a.e.

And since this holds for all ε∗ > 0, this finishes the proof. �

A similar result can be obtained without using the Theorem of Barreira and
Saussol, but a different set of assumptions instead. Let us consider a dynamical
system (I2, B̄, ν, S), where ν � λ̄ with density function f bounded away from zero
by a constant cS > 0 and from above by a constant CS <∞. Let S be an ergodic
and ν-preserving transformation. Also consider a finite partition α of I2 with
Hν(α) < ∞ and h = hν(S, α) > 0. Suppose furthermore that for each n ≥ 1, the
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partition αn =
∨n−1
i=0 S

−iα consists of rectangles and that there exists a constant
ζα > 1 independent of n such that for all A ∈ αn,

(diameter A)2 ≤ ζαλ̄(A).

Let (I2, B̄, µ, T ) also be a dynamical system where µ� λ̄, with density g bounded
away from zero by a constant cT > 0 and bounded from above by a constant
CT <∞. Suppose furtermore that T is an ergodic and µ-preserving transformation.
We then have the following theorem.

Theorem 3.3. Let P be a finite partition of I2 with Hµ(P) < ∞. Suppose fur-
thermore that h∗ = hµ(T,P) > 0. Define the sequence of partitions {Pn} by
Pn =

∨n−1
i=0 T

−iP and suppose that for all n ≥ 1 the partition Pn consists of
rectangles only. Suppose furthermore that there exists a constant ζP , such that for
all n ≥ 1

(diameter P )2 ≤ ζP λ̄(P )
for all P ∈ Pn. Then

lim
n→∞

log K̄n(x̄)
n

= h µ a.e.

Notice that instead of the assuming a long return time, we now imposed the con-
dition that the partition elements consist of rectangles, whose diameters can not
become large with respect to their measures.

Proof. Let ε > 0 be given. For each n ≥ 1, define the number m = m(n) =
b (h−2ε)n

h∗+ε c and the set

Dn(ε) =

 2−m(h∗+ε) < µ(Pm(x̄)) < 2−m(h∗−ε)

x̄ ∈ I2 : 2−n(h+ε) < ν(αn(x̄)) < 2−n(h−ε)

αn(x̄) 6⊆ Pm(x̄)

 .

Using the same technique as in the second part of the proof of Theorem 3.2, we can
show that

λ̄(F(Pm(x̄), δ))
λ̄(Pm(x̄))

≤ 4
√
ζPζαCT
cS

2−1/2nε.

From this we can deduce that
∞∑
n=1

λ̄(Dn(ε)) <∞.

So by using the Borel Cantelli Lemma, it can be shown that for n big enough
αn(x̄) ⊆ Pm(x̄), which means that

lim inf
n→∞

logKn(x̄)
n

≥ lim inf
n→∞

logRPm(x̄)(x̄)
m

· m
n

= (h− 2ε)
h∗

h∗ + ε
µ a.e.

The proof of the assertion that

lim sup
n→∞

logKn(x̄)
n

≤ h µ a.e.

can be obtained in a similar way by taking m = m(n) = d (h+2ε)n
h∗−ε e and

Dn(ε) =

 2−m(h∗+ε) < µ(Pm(x̄)) < 2−m(h∗−ε)

x̄ ∈ I2 : 2−n(h+ε) < ν(αn(x̄)) < 2−n(h−ε)

Pm(x̄) 6⊆ αn(x̄)

 .
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