Optimal Expansions in non-integer base

Karma Dajani

For a given positive integer \(m \), let \(A = \{0, 1, \ldots, m\} \) and \(\beta \in (m, m + 1) \). A sequence \((c_i) = c_1c_2 \ldots \) consisting of elements in \(A \) is called a \(\beta \)-expansion of \(x \) if \(\sum_{i=1}^{\infty} c_i \beta^{-i} = x \). It is well known that almost every \(x \in [0, m/(\beta - 1)] \) has uncountably many expansions. We call an expansion \((d_i) \) of \(x \) optimal if for all \(n \geq 1 \), the inequality \(x - \sum_{i=1}^{n} d_i \beta^{-i} \leq x - \sum_{i=1}^{n} c_i \beta^{-i} \) holds for any other expansion \((c_i) \) of \(x \). We show that optimal expansions almost always fail to exist except for a countable set \(P \) consisting of those bases \(\beta \in (m, m + 1) \) which satisfy one of the equalities

\[
1 = \frac{m}{\beta} + \cdots + \frac{m}{\beta^n} + \frac{p}{\beta^{n+1}}, \quad n \in \mathbb{N} \text{ and } p \in \{1, \ldots, m\}.
\]

More precisely, we have the following dichotomy:

Theorem

(i) If \(\beta \in P \), then each \(x \in [0, m/(\beta - 1)] \) has an optimal expansion.

(ii) If \(\beta \in (m, m + 1) \setminus P \), then the set of numbers \(x \in [0, m/(\beta - 1)] \) with an optimal expansion is nowhere dense and has Lebesgue measure zero.

This is joint work with Vilmos Komornik, Paola Loreti and Martijn de Vries.