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Introduction 

A famous conjecture of Artin (1927) [3, 9] asserts that for every non-zero 
rational number t the set of prime numbers q for which t is a primitive root 
possesses a density inside the set of all prime numbers. The original conjecture 
included a formula for this density, but calculations by Lehmer [14] indicated 
that this formula must be wrong. A corrected version of the conjecture [31, Intr., 
Sect. 23; 2, Intr.] was proved by Hooley [11, 12] under the assumption of certain 
generalized Riemann hypotheses. 

In this paper we are concerned with a generalized form of Artin's conjecture, 
which recently arose in connection with Euclid's algorithm [23, 30, 19] and the 
construction of division chains [5, 20] in global fields. Our main contribution is 
a necessary and sufficient condition for the conjectural density of the set of 
primes in question to be non-zero. As an application of this result we prove a 
theorem about the existence of a euclidean algorithm in rings of arithmetic type. 
For  an application to arithmetic codes we refer to [15]. 

We discuss the various ways in which Artin's conjecture has been 
generalized. 

First, instead of the rational numbers one can "consider an arbitrary global 
field K, as in [3]. Prime numbers are then replaced by non-archimedean prime 
divisors p of K. 

Secondly, a congruence condition can be imposed on these primes [30, 19]. 
This is even of interest in the case K = Q: for example, among all primes for 
which 27 is a primitive root there are no primes which are - 1  mod 4, while, 
conjecturally, there are infinitely many which are 1 mod4.  Using class field 
theory we can formulate such a congruence condition on p as a condition on the 
Artin symbol (P, F/K), for some finite abelian extension F of K. Thus, in the 
given example, the condition q - - 1 mod 4 is equivalent to the requirement that 
(q,Q(i)/Q) is the non-identity element of the Galois group Gal(Q(/)/Q). A 
further generalization is achieved if we replace F by an arbitrary finite Galois 
extension of K, and the Artin symbol by the Frobenius symbol. 
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The third generalization is due to Cooke and Weinberger [5]. The condition 
that the non-zero element t of K is a primitive root mod p can be reformulated 
as follows: if ( t )  denotes the subgroup of the multiplicative group K* of K 
generated by t and/~p the residue class field at p, then the map ( t )  ~ / ~ *  should 
be defined and surjective. The generalization consists in replacing ( t )  by an 
arbitrary finitely generated subgroup W c K*. In the applications one often takes 
W to be the group of units of a suitable subring of K. 

A fourth generalization which has been considered [14, 17, 5] consists in 
weakening the condition that W ~ / s  be surjective. Instead, one requires that 
the index of the image of W in /s divides some fixed positive integer k. 

Other types of generalizations, not considered here, can be found in [6-8, 
16]; compare also Section 8. 

We refer to Section 2 for the precise formulation of the generalized conjec- 
ture, and its heuristic derivation. Not  surprisingly, the various generalizations do 
not affect the status of the conjecture: in the function field case it is a theorem, 
and in the number field case it is true modulo certain'generalized Riemann 
hypotheses. This is shown in Section 3, by a trivial reduction to results of Bilharz 
and Queen [3, 19] and Cooke and Weinberger [-5]. 

In the applications of the conjecture it is obviously relevant to know under 
which conditions the conjectural density vanishes. This problem is less trivial 
than in the case of Artin's original conjecture, since our formula is an infinite 
sum rather than an infinite product. Our solution is stated in Section 4, and the 
proof occupies Sections 5, 6 and 7. 

In Section 8 we mention various problems to which our results apply. The 
application to Euclid's algorithm is considered in detail in Section 9. 

1. Notations 

In this paper K is a global field, i.e. a finite extension of the rational number 
field Q or a function field in one variable over a finite field. In the first case we 
simply call K a number field, we denote by A/( its discriminant over Q, and we 
put p =  1. In the second case, K is called a function field, and p denotes its 
characteristic. 

Throughout  this paper we use the letters m, n, d, possibly with subscripts, to 
denote squarefree integers > 0  which are relatively prime to p, also at places 
where this is not explicitly required. Similarly, by l we always mean a prime 
number different from p. The functions of Moebius and Euler are denoted by kL 
and q~, respectively; q[r means that q divides r, and q,~r has the opposite 
meaning. The number of elements of a set S is denoted by ~ S. 

Let R be a ring. Then R* is its group of units, R *q is the subgroup of q-th 
powers, and if tER* then ( t )  is the subgroup generated by t. The ring of integers 
is indicated by Z, and Fq is a finite field of q elements. 

The restriction of an automorphism a of a field L to a subfield /2 of L is 
denoted by atE. If L/E is a Galois extension, then GaI(L/E) is its Galois group, 
and idL is the identity automorphism of L. The composite of two fields L 1 and 
L 2 is denoted by L 1 �9 L 2. By (q we mean a primitive q-th root of unity. 
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A prime p of K is a non-archimedean prime divisor of K. The associated 
normalized exponential valuation is denoted by ordp, a n d / ( p  is the residue class 
field at p. We put Np =~/(p .  

If S is a set of primes of K, then the lower and upper Dirichlet densities 
d ( S )  and d+(S) are defined by 

d (S) =liminf(  ~ (Np)-  ~)/(~ (Np)- ' ) ,  
s ~ l + O  p~S p 

d + (S) = limsup ( ~ (N P)- ~)/(~ (N 0)- ~) 
s ~ l + 0  p~S p 

(the sums in the denominators are over all primes p of K). Generally, 
0 < d (S) < d+ (S) < 1. If d_ (S) = d+ (S) then this common value is denoted by d(S) 
and called the Dirichlet density of S. It may be remarked that all our results 
remain valid if, in the number field case, we replace Dirichlet density by natural 
density. For  the function field case this is not true [3]. 

If p is a prime of K and L/K is Galois, then the Frobenius symbol (p, L/K) 
denotes the set of those aeGal(L/K) for which there is a prime q of L extending 
p such that t rq=q  and ~ = c ~  Np for all ~ L q ,  where ~ is the automorphism of Lq 
induced by a. This is a non-empty subset of Gal(L/K), and if p is not ramified in 
L/K then it is a conjugacy class. 

The notations F, C, W, r, k, M, ~, q(n), Ln, Cn, an, a are introduced in 
Section 2, and for " G R H "  we refer to Sections 3 and 9. 

2. The Generalized Conjecture 

Let there be given a global field K, a finite Galois extension F of K, a subset 
C~Gal(F/K) which is a union of conjugacy classes, a finitely generated sub- 
group W c K *  of rank r > l  modulo its torsion subgroup, and an integer k > 0  
which is relatively prime to p. We are interested in the set M = M(K, F, C, W,, k) 
of primes p of K which satisfy the following conditions: 

(p, F/K) m C, 

ordp(w)=0 for all w6W, 

if ~: ~ -* W Kp is the natural map, then the index of ~(W) in K* divides k. 

Notice that we have excluded the case W is ;finite. In this case it is easily seen 
that also M is finite. 

The conjecture is that M has a density. In order to state the formula for the 
conjectural density we introduce some new notation. For  a prime number l*p  
let q(l) be the smallest power of l not dividing k and let Lt=K(~q(~), W 1/q(z)) be 
the field obtained by adjoining all q(l)-th roots of elements of W to K. Notice 
that q(l)=l for all but finitely many 1, and that Lt is a finite Galois extension of 
K. Similarly, if n is a squarefree integer > 0, relatively prime to p, then we define 
q(n) = I-[ q(l), Ln = K(~qtn ~, W1/q~n)). Clearly, Ln is the composite of the fields L t, lln. 

lJn 
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Further, we define C n c GaI(F.  L,/K) by 

C,={aeGal(F.Ln/K): (alF)eC, and (a l L t) :# idL, for all l[n} 

and we put 

an = ~C,/~Gal(F. Ln/K ) = :~C,/[F. L.: K]. 

If n divides m, then 

(2.1) a,>am>O. 

It follows that the sequence (a,) has a limit, if n ranges over all squarefree 
integers > 0 prime to p, ordered by divisibility. Let 

(2.2) a = l i m a  n. 
n 

(2.3) Conjecture. The density d(M) exists and is equal to d. 

We quickly review the heuristic reasoning underlying the conjecture, and will 
at the same time prove half of it: 

(2.4) d+(M)<a. 

(2.5) Lemma. Let ]3 be a prime of K which satisfies 

(2.6) ordp(w)=0 for all w~W, 

(2.7) ordp(2.AK)=0 if K is a number field. 

Then the index of ~J(W) in I(* divides k if and only if for all prime numbers 14=p 
we have 

(2.8) (p ,L , /K)4={idJ .  

Notice that only finitely many p are excluded by (2.6) and (2.7). Some 
condition on p is necessary: - 7  is a primitive root mod 2, but (2, Q(I /C~) /Q)  
= {idQ{v-=-~}. 

Proof of (2.5). "If". If the index of O(W) in K* does not divide k, then for some 
prime number l it is divisible by q(1); notice that the index is relatively prime to 
p, since ~/~* is. That means 

(2.9) q(/)~/(* 

(2.10) ~k(W)c Ir *ql'). 

But, since p satisfies ordp(l. 1 )=0 and ordp(w)=0 for all weW, by (2.9) and (2.6), 
these conditions simply express that p splits completely in K((q(o, W1/q(~))=L~, 
so (p, LI/K)= {idL,}, contradicting (2.8). 

"Only if". Let the index of O(W) in / r  divide k, and let I be a prime number 
4:/~. If ordd/ .  1)> 0 then K is a number field, and the presence of the/-th roots of 
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unity in L~ implies, by condition (2.7), that p ramifies in Lt/K , so 
(p, LJK)+{idL,}. Hence we may assume that ord~(l. 1)=0. Then if p splits 
completely in Lt/K, we necessarily have (2.9) and (2.10) (again using (2.6)), 
contradicting that the index of @(W) in K* divides k. We conclude that p does 
not split completely in Lt/K , so (p, L J K ) #  {idL, }. This proves (2.5). 

Now let M,  be the set of those primes p of K for which 

(p, F/K) ~ C, 

(p, L J K ) ~  {idL, } for all lln. 

Clearly 

(2.11) M , = M  m if him, 

and Lemma (2.5) implies that M differs by at most a finite set from the "limit" 
N M,.  We calculate the density of M,.  Formal properties of the Frobenius 

n 

symbol imply that M, differs by at most a finite set from 

(2.12) {tJ" (p ,F .L , /K)~C,}  

so Tchebotarev's theorem [-13, Ch.VIII, Sect. 4] implies that 

d( Mn) = ~Cn/: ~ Gal (F -LJK)  = a n. 

Thus we see that Conjecture (2.3) is equivalent to the assertion that 

(2.13) d(~  Mn)=limd(Mn). 
n n 

A trivial example shows that (2.13) is certainly not a generality following from 
(2.11): if M,  consists of all primes except the first n ones, in some numbering of 
the primes, then d(Mn)= 1 for all n, and (~ Mn=ft so d((")Mn)=0. Weinberger 

n n 

[29] proved that (2.13) even can fail in a situation closely resembling ours. 
In any case, it is true that 

d + (M)=d + ( N Mm) < d + (Mn)=d(Mn)=an 
m 

for all n, which, in the limit, gives (2.4). 

(2.14) Proposition. We have 

#(d) c(d) 
an=a~l~ [ff?~i-K] where c(d)=:~(CnGal(F/FnLa) ). 

Proof. For din, put 

Da={a~Gal(F.Ln/K): (aIF)~C, and (alLl)=idL, for all lid}. 

The principle of inclusion and exclusion [22] gives 

#Cn = #(d)" 
din 
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To count Dd, notice that 

D d = {aeGal (F .  L,/Ld): (aIF)e C}. 

For  every aeDa, we clearly have (a[F)eCc~Gal(F/Fc~L~). Conversely, if 
zeCnGal(F/FnLd),  then z has precisely one extension to an element of 
Gal(F.Ld/La), which in turn can be extended in [F.L,,:F.La] ways to an 
element a of D d. We conclude that 

SO 

~D a = [F. L,:F. Ld]" c(d) 

~c. p(d) c(d) 
a"-[F.L,:K]--d~l,  [F.La:K ]" 

This proves (2.14). 

Remark. It follows that 

~(n) c(n) 
(2.15) a = ~ [ F . L , : K ]  

since the sum is absolutely convergent, as can be proved by the methods of 
Sections 5 and 6. The formula leaves something to be desired, since it does not 
even enable us to answer the question of when a = 0. We return to this question 
in Section 4. It will turn out that the definition of a is a handier tool than 
formula (2.15). 

3. The Status of the Conjecture 

(3.1) Theorem. I f  K is a function field, then Conjecture (2.3) is true. I f  K is a 
number field, then Conjecture (2.3) is true if for every squarefree integer n > 0 the 
(-function of L, satisfies the generalized Riemann hypothesis. 

We use " G R H "  as an abbreviation for the Riemann hypotheses mentioned 
in (3.1). In the function field case " G R H "  refers to an empty set of hypotheses. 
We refer to [27, 12] for a method to find, in the number field case, a smaller set 
of Riemann hypotheses which is also sufficient for the validity of (2.3). 

Proof of (3.1). First let K be a function field. In this case Bilharz [3] proved the 
original con jec tu re -  i.e., F = K, C--  {idr}, W infinite cyclic, k = 1 - modulo 
certain Riemann hypotheses for function fields, which were later shown by Weil 
to be correct [28, 4]. From what Bilharz actually proved [3, p. 485, italicized] it 
is not hard to derive the more general conjecture. Compare also the details 
given by Queen [19]. This finishes our discussion of the function field case. 

Next let K be a number field, and assume GRH.  Then, according to Cooke 
and Weinberger [5, Theorem 1.1], Conjecture (2.3) is true at least in the case F 
= K ,  C =  {idK}. Thus, to prove (3.1) it suffices to prove the following lemma. 

(3.2) Lemma. I f  (2.3) is true in the case F = K, C = {idr}, then it is generally true. 
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Proof. Let M = M(K, F, C, IV,, k) be as in Section 2, and put 

M' = M(K, K, {idr}, IV,, k). 

We define a as in (2.2), and a' denotes the Corresponding quantity for M'. We 
must prove: if d(M') exists and equals a', then d(M) exists and equals a. 

To see this, let C" be the complement of C in Gal(F/K), put 

M"=M(K,F,  C", W,k), 

and let a" correspond to M". Then one easily sees that 

a' = a + a". 

Also, M' differs by only a finite set from the disjoint union MwM",  so 

d_(M')<d (M)+d+(M"). 

But, by assumption, d_(M')=d(M')=a', and from (2.4) it follows that 
d+(M")<a". We conclude that d ( M ) > a ' - a " = a ,  and combined with (2.4) this 
gives d(M)=a, as required. This proves (3.2) and (3.1). 

4. The Non-Vanishing of the Density 

(4.1) Theorem. Let h be the product of those prime numbers l~p  for which 
W c  K *q(O. Then the following assertions are equivalent: 

(4.2) a + 0 ;  

(4.3) a,:#O for all n; 

(4.4) there exists asGal(F(~h)/K ) such that 

(~rlF)~C, 

(alLt)=~idL, for every 1 with LtcF((h). 

Remark. It is not hard to show that h is finite, cf. (5.1), (6.1). 
The implication (4.2)=~(4.3) is trivial, since a,>a>O for all n, by (2.1). The 

converse 

(4.5) if a,4:0 for all n then a4:0 

will be proved in Sections 5 and 6. 
Notice that the existence of a in (4.4) is equivalent to the non-vanishing of 

%,  where m is the product of those l for which LzcF(~h); again, m is finite. This 
remark makes (4.3)~(4.4) obvious, and the remaining implication (4.4)=~(4.3) is 
proved in Section 7. 

(4.6) Theorem. Let h be the product of those prime numbers 14:p for which 
W c  K *q(0. Then if M is infinite, there exists ~r~Gal(F(~h)/K) with 

(a[F)~C, 

(alLl)~:idL, for every l with LlcF(~,).  

Conversely, if such a a exists and GRH is true, then M is infinite and d(M) > O. 
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Proof If no such a exists then by (4.1) there exists n with a, = 0, so Cn =~l. Then 
the set (2.12) is empty, so M n is finite, and the same is then true for M. 
Conversely, if such a exists and G R H  is true, then a > 0  by (4.1) and d(M)--a  by 
(3.1). Hence, d ( M ) > 0  and M is infinite. This proves (4.6). 

Thus, modulo GRH,  the set M can only have density zero if it is finite. 
In many applications, W satisfies the condition 

(4.7) there is no integer q > l  with W ~ K  *q. 

This is true, for example, if W is the group of units of an integrally closed 
subring of K with infinitely many units. 

(4.8) Corollary. I f  W satisfies (4.7) and GRH is true, then M is infinite if and 
only if C is not contained in 0 Gal(F/LI), the union ranging over those prime 
numbers 14:p for which L l ~ F .  l 

Proof Apply (4.6), and notice that h = 1. This proves (4.8). 

5. Proof of (4.5): the Number Field Case 

In this section we assume that K is a number field. 

(5.1) Lemma. For all but finitely many prime numbers l the natural map 
W/WI_~ K , / K  , l  is injective. 

Proof The group K* is the direct sum of a finite group and a free abelian group 
of infinite rank. Further, W = K *  is finitely generated. These two facts easily 
imply that K * / W  is again the direct sum of a finite group and a free abelian 
group of infinite rank. So for only finitely many prime numbers l the group 
K*/Whas/ - tors ion ,  and for all others the map W / W ~ K * / K  *t is injective. This 
proves (5.1). 

(5.2) Lemma. Let l be a prime number satisfying 

(5.3) l does not divide 2.A r 

(5.4) the map W/Wt-~  K* /K  *t is injective. 

Then [Ll: K] = q(l) r. q~(q(I)), and the largest abelian subextension of K ~ Ll is 
K(~qlt))" 

Proof  Clearly, K((q~t~) is a subextension of L, and (5.3) implies that [K(~q~0) : K]  
=q~(q(l)). To calculate [L~ : K(ffq~))] we first prove that the natural map 

(5.5) W/Wl__, K((q~o),/K(~q~t~), t 

is injective. 
Let w~W, w 6 W  ~. Then w 6 K  *t, by (5.4), so X t - w  is irreducible over K. 

Combining this with [K(~t):K-] = l - 1  we see that the splitting field of X t - w  
has degree l ( l - 1 )  over K, and has a non-abelian Galois group; here we use 14: 2. 
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Since K((q(l) ) has an abelian Galois group, the splitting field of X ~ - w  is not 
contained in K((~)). We conclude that w is no l-th power in K((q~,)), thus 
establishing that (5.5) is injective. 

An easy inductive argument now shows that the natural map w/wq~t~  
K((q(t))*/K((q(l)) *q(t) is also injective, so Kummer theorytells us that Gal(Lt/K((qtt))) 
is canonically isomorphic to the character group W=Hom(W,((q(0)) .  Thus 
[Ll:K((qtl))]=~l;V=q(l) ~ (since W has no /-torsion, by (5.3)), which proves the 
first assertion of (5.2). Further, Gal(Lt/K ) is isomorphic to the semidirect product 
of I~ by GaI(K((~,))/K), with the latter group acting on 17r via ((qtg)). Again using 
that 1:~2 one finds that the commutator subgroup of Gal(LJK) equals W, so 
K ((~t~)) is the maximal abelian subextension of K c L~. This proves (5.2). 

(5.6) Lemma. Let l be a prime number satisfying the following conditions. 

(5.7) 1 does not divide 2.AF, 

(5.8) the map W / W t ~ K * / K  *t is injective, 

(5.9) there exists no prime p of K for which ordo(l)>0 and ordo (w)4:0 for some 
w~W. 

Further, let d be a squarefree integer, not divisible by I. 7hen the fields L t and 
La" F are linearly disjoint over K. 

Proof Since Lt/K is Galois is suffices to prove that Llc~La.F=K. Let N 
=L~nLd.F. Then N/K is a solvable Galois extension, so if N + K  then there 
exists an abelian subextension N'/K, N ' c N ,  N'+K.  From N ' c L  l and (5.2) we 
then have N'cK((q,)),  which by (5.7) implies that N'/K is ramified at every 
prime p lying over l (i.e., for which ordp(/)>0). On the other hand, N ' c L d . F  
implies that N'/K can only ramify at primes p of K for which 

ordp (d) > 0, 

or ordp(w)4=0 for some w~W, 

or ord~(Av) >0.  

By (d,/) = 1, (5.9) and (5.7) none of these primes lies over l, contradicting what we 
just proved. This proves (5.6). 

Proof of (4.5) in the Number Field Case. Suppose a,4=0 for all n. We prove that 
a~0 .  

Let l and d be as in (5.6). Then (5.6), the definition of C,, and (5.2) give 

[Lnl" F:K] = [Lz:K] �9 [Ld" F:K] 

~C~ l =([L~: K] - 1). ~C d 

(5.10) [Lt :K]  =q(l) r. q)(q(l)) =q(l) r+l .  (1 - 1//), 
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aal=aa. (1 1 
[L~ : K] )" 

SO 

Now let n be the product of those l which violate at least one of the conditions 
(5.7), (5.8), (5.9). Then for any multiple m of n it follows by induction on the 
number of prime numbers dividing m/n that 

a.=a H(1 ' )  
qm/n [L t :K]  

so in the limit 

( 1) 
(5.11) a=a. . l~I  1 

U ~ , : K ]  " 

From (5.10) and r >  1 it is clear that the infinite product converges and is non- 
zero. So a.#:0 indeed implies that a4=0. This proves (4.5) if K is a number field. 

6. Proof of (4.5): the Function Field Case 

In this section K is assumed to be a function field, and we denote by P the free 
abelian group 

P=(~)Z,  

the direct sum ranging over all primes p of K. There is a natural group 
homomorphism K*--*P mapping x to (ordo(x))~, and the kernel of this map is 
finite, consisting of the non-zero constants in K. 

(6.1) Lemma. For all but finitely many 1 the induced map W/WI--*P/IP is 
injective. 

Proof Similar to the proof of (5.1). This proves (6.1). 

(6.2) Lemma. Let m be such that any lira satisfies 

(6.3) K contains no primitive l-th root of unity; 

(6.4) W/Wt---, P/I P is injective. 

7hen [Lm:K((q~,,~)]=q(m) r, and K((q~m) ) is the largest totally unramified sub- 
extension of K c Lm. 

Proof From (6.4) it follows that the natural map W / W t ~ K * / K  *~ is injective, for 
any llm. Using (6.3), one finds by the argument in the proof of (5.2) that also 
W/Wl-'*K((q(m))*/K((qtm)) *l is injective. Kummer theory then implies that 
[Lm: K((qtm~)]-:~(W/W~tm)), and by (6.3) this equals q(m)'. 

Let N be the maximal totally unramified subextension of K c L m. Clearly 
K((qtm)) c N, and if the inclusion holds strictly then N contains w m for some I I m 
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and some w~W, w ~ W  t. By (6.4), we then have l,~ordp(w) for some prime p of K, 
so N / K  is ramified at this p, contradiction. This proves (6.2). 

(6.5) Lemma. Let n be the product of those pi'ime numbers l~-p which satisfy at 
least one of the following conditions: 

(6.6) K contains a primitive I-th root of unity; 

(6.7) the map W / W ~ P / I  P is not injective ; 

(6.8) there is a prime p of K which ramifies in F/K, with ramification index 
divisible by I. 

Further, let m be relatively prime to n. Then we have: 

(6.9) F . L ,  nLm=F.Lnc~K(~qC,,)) 

(6.10) [F.  Lnm : K] = IF.  Ln : K]" q(n) r. [F. Ln(~q~m)): F" Ln] 

(6.11) if m = ml .m 2 ,  then 

(F. LnC3Lm, ) �9 (F. L~c~Lm2)=F. L n ~ L  m. 

Proof. (6.9). The inclusion ~ is clear. By (6.8), all ramification indices in the 
extension K ~ F ' L n  are composed of prime numbers dividing p n, and all 
ramification indices in K c L m are composed of prime numbers dividing rn. Since 
(pn, m)= 1, it follows that F .  L n r Lm is totally unramified over K, so (6.2) implies 
that F. LnC3 Lm C K((qtm)). This implies the opposite inclusion. 

(6.10). We have: 

[F" L,,m: F" Ln]=[F" L,~" Lm: F- L,J 

= [L,~ : F .  L, r Lm] 

= [ L  m : F.  L, n K((q~m~)] by (6.9) 

= q(m) ~. [K(~q~m) ) : F" Ln n K((q~m))] by (6.2) 

= q(m) ~. [F. L,(~q~)): F �9 Ln]. 

Multiplying by [F.  Ln: K] we obtain (6.10). 
(6.11). Let G = Gal(K(~q~m))/K). This is a cyclic group, since ~q~m) lies in a finite 

subfield. Define the subgroups H~, H2, H of G by 

n~ = Gal(K((q~)/K((qo~,~)), i= 1, 2, 

n = Gal(K(~q~,n))/F" L n ~ K(~q~m))). 

Since m is squarefree, we have (m~,m2)= 1 so K(~qt,n~) ).K(~q~m~))=K(~tm)) and 
H 1 (3 H 2 = {idKt~.,)}. But G is cyclic, so ~r and ~ H  2 a r e  relatively prime. Then 
also the index of H in H.  H~ is relatively prime to the index of H in H.  H 2 ,  s o  

H . H t n H . H 2 = H .  
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In terms of fields, this means 

(F. L. c~ K((q(m~)))" (F" L.  n K(~q(m~))) = F .  L. ~ K((q(m) ). 

By (6.9), this is equivalent to (6.11). This proves (6.5). 

(6.12) Lemma. Let f, g be two functions defined on squarefree integers such that 

(6.13) f (d)  is a real number, O< f ( d ) <  1, 

(6.14) g(d)eZ, g(d)>0 

for all d, and such that 

(6.15) f ( d l d 2 ) = f ( d l ) f ( d z ) ,  

(6.16) g(dld2)=least common multiple of g(dO and g(d2) 

for all dl,  d2 with (dl, d2) = 1. Then for all m we have 

- -  [1 f ( 1 ) ]  E #(d) f ( d ) >  1-I \ - ~ / .  
aim g(d) l l m ,  , 

l prime 

Proof See [10, 21]. This proves (6.12). 

(6.17) Lemma. Let s be an integer, s > 1, and for any integer u > 0 relatively prime to 
s let e(u) be the smallest integer t > 0 with s t = 1 mod u. Then 

1 E 
. >  o, u .  e (u)  

(u, s) = 1 

is convergent. 

Proof See [18, Ch.V, Lemma 8.3; 21]. This proves (6.17). 

Proof of(4.5) in the Function Field Case. Let n be as defined in (6.5). We prove that 
a n ~ 0 implies that a 4= 0. 

Let m be relatively prime to n. For z s C , ,  define 

Cm(Z)={a~GaI(F'L,m/K): (a lF 'L , )=z ,  and (~rlL34:idL, for all lira}, 

am(Z) =~Cm(Z)/[F" L.m:K], 

a(z) = lim am(Z) 
m 

the limit being over all squarefree integers m > 0 which are relatively prime to pn, 
ordered by divisibility; it is easily seen to exist. 

Clearly, we have 

Cnm = ~ .  Cm(T) (disjoint union), 

anm= E am('C)' 
z ~ C n  

a =  

~ C n  
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We claim that a(z) > 0 for every zE C,. Since C,, is non-empty (by a, 4= 0) this implies 
a>0 .  Put 

c(z'm)={ 10 else.if zsGal(F.Ln/F.L.C~Lm) , 

Notice that (6.11) implies 

(6.18) c(z,m)=c(z, ma).c(z, m2) if m=mam2. 

Applying the principle of inclusion and exclusion as in (2.14) we find that 

#(d). c(z, d) 
amiz)= E ff: iK--] aim 

which by (6.10) is equal to 

1 #(d). c(z, d). q(d)-" 
IF Ln: K]'d~lm 

Putting f(d) = c(z, d). q(d)- ", g(d) = [F. L,(r : F. L,,] we find 

1 I~(d) f(d) 
am(z)- [F.  L,: K]" ~1~ g(d) 

We are in a position to apply Lemma(6.12). Conditions(6.13) and (6.14) are 
obviously satisfied, and (6.15) is clear from (6.18). To prove (6.16), let Q be the largest 
finite field contained in F.  L,, and notice that 

g(d) = [Q((q(d)):Q] = min {t > O: (~Q)t_ 1 mod q(d)}. 

We conclude that 

1 �9 l q  (1 f(l)~ am(z) >= 
[F. L,:K] ~1~ \ g(/) ]" 

The infinite product 

H (1 f(/) ,7 (1 c(z,l) 
, p , i ~ . -  g--~-) = I~ g( l ) .q ( l ) ' ]  

l.~n p 

is clearly convergent if r > 2, and if r = 1 it converges by Lemma (6.17). It follows that 

a(z)> 1 ~ (, f ( l ) \  
= [ F . L n : K  ] �9 I -  g~)  >0, 

as required. This proves (4.5). 
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7. Proof of Theorem (4.1) 

In  this section, h is as defined in (4.1). 

(7.1) Lemma. Let l be a prime number @p. Then all prime numbers dividing 
[Li.F(~h):F(~h) ] are <I. Further, if  [Lt.F(~h):F(~h) ] is not divisible by l, then 
L l c F(~h). 

Proof. The  degree [F((h, (l) : F((h)] is a divisor of  l -  1, and L t �9 F((h) is ob ta ined  f rom 
F((h, (t) by successively adjoining zeros of  po lynomia l s  X s _ c~. At  each stage, such a 
po lynomia l  is either irreducible or  comple te ly  reducible. Hence  [Ll.F(~h): 
F(~h, ( l )]  is a power  of  I. This implies the first assert ion of the lemma.  Moreover ,  
i f / d o e s  not  occur  in [L t .  F(fh)'.F((h)], then Lt" F((h)=F((h, (l), SO 

(7.2) L t c f ( ( h , ( , ) .  

I f  now W c K *qt l~, then l divides h, so ( l~  F((h), and this gives L I ~  F((h), as  required. 
So suppose  Wis  not  conta ined  in K *q~~ Then  for some w~.Wthe po lynomia l  X q~ 
- w  has no zero in K, and this easily implies that  for some veK  with vqt~/~ W t h e  
po lynomia l  X t -  v has no zero in K. Then X z - v  is irreducible over  K, and  it has a 
zero in L l and hence in F(~h,~t ). Since [F((h,~t):F((h) ] is relatively p r ime  to l, it 
must  actually have a zero in F((h). But F((h) is no rma l  over  K, so it now follows that  
all zeros of  X l - v  are in F((h). Therefore  (t~F((h), SO (7.2) gives LlcF((h). This 
proves  (7.1). 

Proof of(4.1). We must  p rove  tha t  (4.4) implies (4.3). So let m be the p roduc t  of  those 
l for which Ll~F((h);  then (4.4) means  that  Cm~:~J. We prove  tha t  this implies 
Cn4:~t for every mult iple  n of  m. Then  an4:0 for all n, which is (4.3). 

The  p roof  that  C~ ~ 1  is by induct ion on the n u m b e r  t of  pr imes  dividing n/m. 
The  case t = 0 is obvious.  So let t > 0, and let I be the largest pr ime n u m b e r  dividing 
n/m. Put  n o = nil. The  inductive hypothesis  tells us tha t  C~o 4:~t. Since IX m, we know 
f rom (7.1) tha t  l divides [Li.F((h):F((h)], while all p r ime factors of  
[L~o.F((h):F((h)] are < some pr ime n u m b e r  dividing n o and therefore <l .  We 
conclude that  L~. F((h) is not  conta ined  in L,o. F((h), SO a f o r t i o r i  

(7.3) Lno .F~Lz .L~o .F=L~ .F .  

N o w  let z~C~o; tha t  is, z is an a u t o m o r p h i s m  of  L~o.F with 

(z lF)~C,  

(zlLr)+idL,, for all l'lno. 

By (7.3), we can extend z to an a u t o m o r p h i s m  of  L , .  F which is not  the identi ty on 
L t. This gives an e lement  of  C~, so C~+~l. 

This proves  T h e o r e m  (4.1). 

8. Examples 

Let  q be a p r ime  number ,  and let g be an integer. We say that  g is a Fibonacci 
primitive root [24, 1] modu lo  q if g is a pr imit ive  roo t  m o d  q and  satisfies the 
congruence  g2 = g + 1 m o d  q. The  following theorem was predicted by Shanks  [241. 
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(8.1) Theorem. I f  GRH is true, then the set S of prime numbers which have a 
Fibonacci primitive root has a density, and 

27 (1 1 
d(S)=~" l~I 1(1_1))=0265705...; 

here l ranges over all prime numbers. 

Proof(sketch). Let O=(1 +1/~)/2 be a zero of X z - X - 1 ,  and consider 

M~ = M(Q(0), Q(0, ~4), {idQ~o,;4)}, (8 ) ,  1), 

M2 = M(Q(O), Q(0, ~4), {z}, (O), 1) 

where z is the non-trivial automorphism of Q(0, (4) over Q(8). Then it is not hard to 
see (cf. [24]) that 

d({qeS: q -  1 mod4} )= �89  

d({qeS: q-= - 1 mod 4})= d(m2) 

SO 

d(S) = �89 d(M1) + d(M2) 

if d(M1) and d(M2) exist. If GRH is true, then (3.1), (5.11) and a short calculation 
show that 

d ( M 1 ) = d ( M 2 ) = 9 ,  tgl-]m (1 / ( i l l )  -) 

s o  

3 9 2.20 (1 1 27 
d(S) =2"40' ~ ' [ I  l 1(1-1)) - - -  = ~ . A  

where A is Artin's constant: 

/82, A= (1 ! = 0. 3739558136... 
1) 

(see 1-32]). This proves (8.1). 

(8.3) Theorem.Let b, c be positive integers, (b,c)= 1, and let tEQ, t=gO, 1, - 1. Put 

d(t) = A Q(1/i- ). 

7hen the set of prime numbers q for which 

(8.4) q = b mocl c, 

(8.5) t is a primitive root mod q 
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is finite if and, modulo GRH, only if we are in one of the following situations: 

(8.6) llc, b-=lmodl ,  tEQ *l for some prime number l; 

(8.7) d(t)[c, ( ~ ) ) = 1  (Kronecker symbol); 

Proof (sketch). The set we are interested in is 

M=M(Q,Q(~c),  {~rb}, ( t ) ,  1) 

where ab is the automorphism of Q((c) mapping ~c to (~. By (4.6), this set is finite if 
and, modulo GRH, only if Q(~c, ~h) does not have an automorphism satisfying 
certain requirements; here h = 1-[ I. A straightforward analysis shows that the only 

t ~ Q  *t 

obstructions preventing the existence of such a a are the conditions (8.6), (8.7) and 
(8.8). This proves (8.3). 

We remark that the if-part of (8.3) can be proved directly, using nothing more 
than quadratic reciprocity; in fact, one finds that in each of the situations (8.6), (8.7) 
and (8.8) the set of primes in question either is empty or only contains the prime 
number 2. But the advantage of our approach is that one need not know beforehand 
the list of exceptional situations: they are just the obstructions encountered during 
the construction of a, and if in all other situations a can be constructed one knows 
that the list is complete (mod GRH). 

Using (5.11) it is possible to derive a formula for the conjectural density of the set 
of prime numbers satisfying (8.4) and (8.5). In each case the result is a rational 
number times Artin's constant (8.2). 

The same remarks apply to other sets of primes of a similar type. For example, 
we can consider the prime numbers q with the property that a given rational 
number t 4= 0 has residue index k modulo q; i.e., the subgroup generated by (t mod q) 
should have index k in F*. Here k is a given integer > 1. The set of such q is a subset 
of 

M(Q, Q, {idQ}, ( t ) ,  k) 

since here it is only required that the residue index of t divides k. To force equality, 
we also require that k divides the residue index, i.e. that q splits completely in F 
-----Q((k, tug)  �9 This leads to the set 

M =M(Q,  Q((k, tug) ,  {idF}, ( t ) ,  k). 

Applying (4.6) one finds that M is finite if and, modulo GRH, only if one of the 
following conditions is satisfied, with t and d(t) as in (8.3): 

(8.9) d(t)lk, and k is odd; 

(8 .10)  t = - - U  2, d(2u)12k, k - 2 m o d 4  for some uEQ; 

(8.11) t=u  2 . . . .  3, d(-3u)lk ,  3Xk, 2ml k for some u~Q, m~Z>__l; 

(8.12) t = - u  2 . . . .  3, d(-3u) lk ,  3~/k, 2re+ilk for some u~Q, m~Z>=2; 

(8.13) t = - u  6, d(-6u)lk ,  3~/k, k = 4 m o d 8  for some u~Q. 

This answers a question left open in [17]. 
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We can combine the various requirements. Thus, with b, c, t, k as before, we can 
consider the set of prime numbers q satisfying 

q = b m o d c ,  

t has residue index k modulo q. 

This set differs by only finitely many elements from 

M = M ( Q , F ,  C , ( t ) , k )  

where 

F = Q((r (k, tl/k) 

and where C consists of those automorphisms a of F for which 

a((<) = ~b, a(~k) = ~k, a(tllk) = tllk 

(so ~ C < 1). It is again possible, by a straightforward but tedious analysis, to find the 
complete list of obstructions preventing M from being infinite (rood GRH).  

For  more details on a similar example, related to arithmetic codes, we refer to 
[15]. 

In the next section we apply our results to prove a theorem about euclidean 
rings. Another application of the same type is found at the end of Cooke's and 
Weinberger's paper [5]. Further, our Corollary (4.8) can be used to improve slightly 
upon a result of Queen [20,Th. 1]. 

To finish this section we mention some sets of prime numbers to which our 
results do not immediately apply. Most of these can be dealt with by small 
modifications of our method, and in case (8.16) the G R H  can even be dispensed 
with. 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

The set of primes q for which 2 is a primitive root modulo q2 

The set of primes q for which the residue index of 2 is a power of 2. 

The set of primes q for which the residue index of 2 is squarefree (cf. [6]). 

The set of primes q for which both 2 and 3 are primitive roots (cf. [16]). 

The set of primes q for which a given positive integer t is the smallest 
positive integral primitive root (cf. [11]). 

9. Euclid's Algorithm 

Let K be a global field, and let S be a non-empty set of prime divisors of K, 
containing the set So of archimedean prime divisors of K. We denote by R s the ring 
of S-integers in K: 

R s =  { x e K :  ordp(x)>0 for all primes pCS}. 
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Thus, ifK is a number field and S = S~o, then R s is the ring of algebraic integers in K. 
We ask under which conditions there exists a euclidean algorithm on Rs, i.e. a 

function $: R s - {0}~Z>__o such that for all b, ceRs,  c4:0, there exist q, r~Rs with 

b - - q c + r ,  r = 0  or ~k(r)<~k(c). 

If such a ~O exists, we call Rs euclidean. It is well known that a necessary condition 
for Rs to be euclidean is that it is a principal ideal ring. If R s is euclidean, then its 
smallest algorithm O is defined by 

0(x)=min{~O(x): $ is a euclidean algorithm on Rs}. 

It is easily verified that 0 is indeed a euclidean algorithm on Rs, cf. [231. 
IfS has precisely one element, then R s is euclidean if and only if it is isomorphic 

to one of the rings 

Z, Z[�89 +~/~33)1, Z [ ~  ~ 11, Z[�89 +~/~7)1, 

Z[]//~23, Z[ �89  F[X]  

where F is a finite field. Up to isomorphism there are precisely eight principal ideal 
rings Rs with :~S = 1 which are not euclidean. They are 

Z[�89 +Vr~- 19)1, Z[�89 +1//-43)1, 

Z[�89 + ~ ) 1 ,  Z[�89 +1/ / -  163)], 

F2[X, Y1/(Y2 + Y + X 3 + X + 1), 

F2[X, Y1/(y2 + Y + X 5 -~ X 3 .-[- 1), 

F3[X, Y]/ (Y  2 - X 3 + X +  1), 

F, EX, y ] / ( y 2 +  y + x 3  +r/) 

where q~F4, qCF2. These results can be found in [23, 19]. 
In the case ~S > 2 we have the following theorem. 

(9.1) Theorem. Suppose that Rs is a principal ideal ring, and that fdS > 2. Further, if 
K is a numberfield, assume that for every squarefree integer n and everyfinite subset 
S ' c S  the ~-function of the field K(~,,R*, l/n) satisfies the generalized Riemann 
hypothesis. Then R s is euclidean, and its smallest algorithm 0 is given by 

(9.2) O(x)= ~ ordp(x).np (x~Rs,x:~O) 
pr 

where the sum is over all primes o f K  which are not in S, and 

np 1 if the natural map * -* = R s - , K  p is surjective, 

np=2 else. 

The Riemann hypotheses mentioned in this theorem will again be denoted by 
"GRH". 
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The function field case of (9.1) is due to Queen [19]. In the number field case 
only a partial result was known: Weinberger [30] proved, modulo certain 
generalized Riemann hypotheses, that if K has class number one and S = S o~, :~S ~ 2, 
a euclidean algorithm on Rs is given by 

~k(x) = ~ ordp(x). (np + 1) 
pCS 

with np as defined in (9.1). Since this function does not assume the value 1, it is 
obviously not the smallest algorithm. 

We remark that in the number field case all known euclidean rings Rs, ~S < oe, 
are actually euclidean with respect to the norm function 

N(x)=~(Rs/Rsx), xeRs, x +O. 

Here no Riemann hypotheses are assumed. The rings Z [ I / ~ ] ,  Z[~32] are 
examples of rings of unknown character: they are euclidean if G R H  is true, but the 
norm function is not a euclidean algorithm. 

Before giving the proof of (9.1) we introduce some terminology. A divisor of K is 
a formal product 1-[p "(~), m(p)EZ, re(p)=0 for all but finitely many p, with 

p 

p ranging over the non-archimedean prime divisors of K. For xeK*, the principal 
divisor (x) is defined by (x) = l~[ por%(x). The set of divisors of K is an abelian group 

p 
with respect to multiplication, and the principal divisors form a subgroup. Let b = 
I~ P"{P) be a divisor with n(p)__> 0 for all p. A subgroup H of the group of divisors 
p 

is said to have modulus b if 

for every [Ip"(P)~H and all p with n(p)>0 
p 

we have re(p)= 0 

and 

(x)eH for all xeK* satisfying 

ordp(x-1)~n(p)  for all p with n(p)>0. 

The primes p of K with p~S are in one-to-one correspondence with the non-zero 
prime ideals of Rs. We identify the group of fractional Rs-ideals with the group of 
those divisors 1-[p m{p) for which re(p)=0 for all peS. 

p 

Proof of (9.1). Suppose, for the moment, that Rs is euclidean, and let ~ denote its 
smallest algorithm. If rteRs is a prime element, Rsrc = p, then Samuel's results [23, 
Sect.4] easily imply that 0(r0>n p. Since further O(xy)>=8(x)+8(y), by [23, 
Prop. 12], we conclude that 

0(x)_>_ ~ ordo(x).np, x~Rs, xaeO. 
pCS 

So if the right hand side represents an algorithm on Rs, it is necessarily the smallest 
one. 
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In the rest of the proof let 0 be defined by (9.2), and assume GRH.  We must 
prove that ~ is a euclidean algorithm on Rs. Let b, cERs, c4=0. We look for an 
element 

r ~ b + R s . c  

with 

r = 0  or 8(r)<8(c). 

Dividing b and c by their greatest common d iv i so r - t h ey  have one, since Rs is a 
principal ideal ring - we may suppose that (b, c) = 1. Further, replacing S by a finite 
subset which also yields a principal ideal ring and gives the same value for 8(c), we 
may suppose that 2 < ~S < oo. 

If 0(c)=0, then ceR*, so we can take r=0 .  
If 0(c)= 1, then c is a prime element: Rsc=p ,  and np= 1. Then the mapR~-~ 

I(*_~(Rs/Rsc)* is surjective, so we can find reR~ with r=-bmodRs  c. Clearly, 
Off) = 0 < 1 = O(c). 

If 8(c)> 3, then a suitable generalization of Dirichlet's theorem on primes in 
arithmetic progressions [13] tells us that every residue class in (Rs/Rsc)* contains 
infinitely many prime elements. In particular, the residue class b +Rsc  contains a 
prime element r, and then we have 3(r)< 2 < 3 < 8(c). 

We are left with the case O(c)= 2. It would, in this case, be sufficient to find a 
prime r of K, rr with the following two properties: 

(9.3) n~=l ,  

(9.4) r = R s . r  for some r e b + R s c .  

This would give Off) = n, = 1 < 2 = 8(c), as required. 
Condition (9.3) simply means that the natural map 

R~ ~ / ( *  

is surjective. Clearly, this is a condition of the type considered in Section 2, with W 
=R~, k = 1. Notice that the rank of W, modulo its torsion subgroup, equals ~tS 
- 1 > 1 .  

Using class field theory [13] we translate the condition (9.4) into one of the type 
"(p, F / K ) c  C' ,  as follows. For  F we take what has been called the S-ray class field 
with modulus c. More precisely, F is the class field of K with respect to the smallest 
group of divisors with modulu's Rsc which contains all non-archimedean peS. We 
call this group of divisors H. Properties of F are: 

(9.5) F/K is abelian, 

(9.6) the conductor of F/K divides Rsc, 

(9.7) all peS  split completely in F, 

and moreover F is the largest field with these properties, inside an algebraic closure 
of K;  cf. [5]. 
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Let I denote the group of divisors generated by all p not occurring in Rs c, and 
let P be the subgroup {(x): xeK*, (x)eI}. Since R s is a principal ideal ring, we ban 
write any element of I as the product of an element of P and a factor 1-I t ~ 

peS 
m(p) EZ, the product ranging over the non-archimedean 0eS. The latter factor is an 
element of H, so I = P.  H. Translating this statement on divisor groups into one 
about their class fields, we find that 

(9.8) K is the maximal totally unramified subextension of K c F .  

By class field theory, the Frobenius symbol induces an isomorphism 
1/H_~ Gal(F/K). But we have I = P. H, and a short calculation leads to 

(9.9) (Rs/Rsc)*/~b(R*) ~- Gal(F/K) 

where ~9: R'~(Rs/Rsc)* is the natural map. Let the automorphism of F/K 
corresponding to (b+Rsc)mod ~(R*) be denoted by a. Then condition (9.4) is 
equivalent to 

(9.10) (r,F/K)c {a} 

ifr does not divide Rsc. We conclude that to prove the existence of t  satisfying (9.3) 
and (9.4) it certainly suffices to show that the set 

M = M(K, F, {a}, R~, 1) 

is infinite. By (4.8) and the G R H  assumption we have made, we know that indeed M 
is infinite, except if aeGal(F/L ~) for some prime number 14: p with L~c F; here L l 
= K(ff l, R~ 2/t). That means 

(9.11) Ltc F"  

where F"={xeF: a(x)=x}. To finish the proof of (9.1) it suffices to derive a 
contradiction from (9.11). 

In the function field case we are immediately done. Namely, the definition of L 
makes it clear that L JK can only ramify at primes in S, if K is a function field; but 
F/K is unramified at these primes, by (9.6) or (9.7), so we can only have (9.11) ifL JK 
is totally unramified. By (9.8) this implies L , =  K, which is absurd, since R~ contains 
elements which are no / - th  powers in K. 

In the remainder of the proof we therefore assume that K is a number field. The 
only reason that the preceding argument does not apply is that L z/K may ramify at 
primes dividing I. On the other hand, F/K only ramifies at primes dividing Rsc, so 

(9.12) there exists a prime I~S with ordi(c)>0 and ordi(/)>0. 

By (9.5) and (9.11), the field L t is abelian over K. Since R* contains elements which 
are no l-th powers in K, this implies 

(9.13) ~l~K 
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and 

(9.14) [Lt:K] is divisible by l 

(in fact, it is a power of l). 
We distinguish cases. From O(c)=2 and (9.12) we see that there are precisely 

three possibilities: 

Rsc=l, ni=2,  

or Rsc=l .m,  n l = n , , =  1, I:~m, 

or Rsc=I 2, n l = l .  

First let Rs c = 1, nl = 2. Since ord~(/) > 0, the characteristic of the field Rs/I equals 
l, so J~(Rs/l)* = l I - 1 for some integer f > 0. By (9.11) and (9.9) it follows that [Lz: K] 
divides I y -  1, contradicting (9.14). 

Next suppose that R s c = l . m ,  n~=n , ,= l ,  14:m. Then (Rs/Rsc)*~-(Rs/l)*O 
(Rs/m)*, and the subgroup ~9(R*) projects onto (Rs/m)* ~ince n,, = 1. Therefore 
~((Rs/Rsc)*/~k(R~) ) divides :~(Rs/I)*=l I - l ,  for some integer f > 0 ,  and this 
leads to the same contradiction as in the preceding case. 

In the remaining case: Rsc=l 2, n~= 1, this contradiction cannot be derived. 
Here Gal(F/K) is isomorphic to (Rs/12)*/~k(R*); since r maps onto (Rs/I)* this 
is a factor group of the kernel of the natural map (Rs/12)*~(Rs/l) *, which, in turn, is 
an elementary abelian/-group. Therefore Kummer  theory and (9.13) tell us that 

(9.15) F=K(xl / l  ..... ~/l) 

for some integer t=>0 and certain x~K*,  x ~ K  *~. 
Fix i, 1 < i <  t, for the moment. Since F/K is unramified outside I, by (9.6), we 

have ordp(x~)=-0 mod I for all primes p 4= I of K. But Rs is a principal ideal ring, so 
modifying x i by an / - th  power we can achieve that 

ordp(Xl)=0 for all p~Sw {1}, 

0 < ordl(x~) < 1 -1 .  

We claim that ord~(xi)=0. In fact, if l < o r d i ( x i ) < l - 1  then a strictly local 
computation shows that the l-component of the discriminant of K(x 1/t) o v e r  K 
equals I ~- 1 § t.ord~. The conductor-discriminant product formula then implies that 
the I-component of the conductor of K(x~/~)/K is equal to 11 § t.ordt~l~/t~-1~. On the 
other hand, from K(x~/l) c F and (9.6) we know that this conductor divides Rs c = 12. 
Therefore 1 + l .  ordt ( / ) / ( / -1)<2,  which is impossible. This proves our claim that 
ord,(Xl) = 0. 

We now have ordp(x~)=0 for all pr so xieR'~ for all i. By (9.15) this yields 

FcK(R*I / t )=Lz  

and combining this with (9.11) we find that F c L t c F ' c F ,  so F = L I = F  ~ and a is 
the identity automorphism of F. This is no contradiction, but it solves our problem: 
namely, a = idF means, by definition of a, that (b + Rs. c) is in the image @(R~) of R~', 
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so the re  exists r e R ~  wi th  f e b  +Rsc ,  a n d  t h e n  O ( r ) = 0  < 2 =O(c),  as requi red .  Th i s  
p roves  (9.1). 

I t  c an  be s h o w n  tha t  the  s i t u a t i o n  e n c o u n t e r e d  at  the  end  of  this  p r o o f  o n l y  
occurs  for l =  2. A n  e x a m p l e  in  wh ich  it  does  occu r  is g iven  by  

g = Q ( ~ s ) ,  S=Soo, Rs = Z [ ~ 5 ] ,  

c = 4, l =  2, I = the  p r i m e  ly ing  over  2. 

Thus ,  there  exists n o  p r i m e  e l e m e n t  r c e Z [ ( 5 ]  which  is l m o d 4 ,  for wh ich  the  
n a t u r a l  m a p  Z [ (5 ]*  ~ (Z [ ( s ] / Z  [~5] rt)* is surject ive.  Th i s  d i sp roves  a c o n j e c t u r e  
of  Q u e e n  [19, R e m a r k  2]. 
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