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Mixed Type Functional Differential Equations
(MFDE)

We are interested in nonlinear differential equations of the form

ẋ(t) = G(xt).

• x is a continuous function with x(t) ∈ R.
• xt ∈ C([−1, 1]) is the state of x at t, i.e.,

xt(θ) = x(t+ θ), θ ∈ [−1, 1] .

• G : C([−1, 1])→ R is sufficiently smooth.

Note that

• ẋ(t) depends on both past and future values of x.

• We will look for x(t) near equilibria x, G(x) = 0.
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Results

Starting point is the MFDE

ẋ(t) = Lxt +R(xt).

• xt ∈ X = C([−1, 1]) is the state of x at t.

• L : X → R is (for example) the linear operator

φ 7→ A0φ(0) +A−φ(−1) +A+φ(+1).

• R : X → R is a nonlinear smooth operator with R(0) = 0
and DR(0) = 0.

Characteristic equation given by ∆(z) = 0, with

∆(z) = z −A0 −A−e−z −A+e
z.

We are specially interested in cases where there are eigenvalues
on the imaginary axis, i.e., ∆(iω) = 0 for some ω ∈ R.
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Results II

Recall

ẋ(t) = Lxt +R(xt). (1)

As for delay equations, can define spectral projection
Q0 : X → X0 ⊂ X onto finite dimensional subspace X0

spanned by elements of the form

φ : t 7→ tleiωt with ∆(iω) = 0 and φ̇(t) = Lφt.

Main result gives ”smooth” u∗ : X0 →
⋂
η>0BC

1
η such that

(i) Sufficiently small solutions x to (1) are captured via
x = u∗(Q0x0).

(ii) Any φ ∈ X0 such that u∗φ is sufficiently small, yields a
solution x = u∗φ to (1).

(iii) Dynamics on X0 is captured by ODE (with A = L|X0
)

Φ̇(t) = AΦ(t) + f(Φ(t)), where

f(ψ) = Q0[L(u∗ψ − ψ)θ +R((u∗ψ)θ)].
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MFDE

Weird ”interaction from future” often raises doubts about
usefullness of MFDE in modelling applications.

• Lattice differential equations.

One studies travelling wave solutions to infinite dimensional
differential systems on discrete lattices.

– Material science (crystals)
– Image processing (recognizing edges / outlines in pictures)
– Biology (signal propagation through nerves with discrete

gaps)

• Solving optimal control problems with delays.

• Direct models that, indeed, contain past + future terms.
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Modelling

Ferdinand Banks in ’Energy Economics: a modern introduction’

The difference between science and economics is
that science aims at the understanding of the
behaviour of nature, while economics is involved
with an understanding of models- and many of
these models have no relation to any state
of nature that has ever existed on this planet [...]

Our examples will come from economics.

• Optimal control capital dynamics with delay

• Direct life cycle model
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Optimal Control Capital Market Dynamics

Consider an economy that starts at time t = 0. Total amount
of capital in economy given by k(t) ≥ 0. Investments given by
u(t).

Production takes time! (Rustichini, 1989)

Consumption c(t) that is technologically feasible depends on
investments and available capital, i.e.,
c(t) = C(u(t− τ), k(t− τ)).

Total welfare is given by ln c(t) > 0 to ensure ”spreading out”
of consumption.

Optimal control problem: maximize∫ ∞
0

e−ρt lnC
(
u(t− τ), k(t− τ)

)
dt,

subject to k̇(t) = u(t− τ)− gk(t− τ).

Here g is a form of capital decay rate and ρ is the discount
rate. This is a factor to correct for the fact that future welfare
is rated to be less important than present welfare.
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Euler Lagrange with Delays

Consider the problem to maximize the functional

J(y) =
∫ ∞

0

f(t, y(t− τ), y(t), ẏ(t− τ), ẏ(t))dt.

Introduce notation x(t) = y(t− τ) and z(t) = y(t+ τ).

Theorem 1 (Hughes 1968). If y maximizes J , then the
following MFDE is satisfied

D3︸︷︷︸
y(t)

f(t, x, y, ẋ, ẏ) + D2︸︷︷︸
y(t−τ)

f(t+ τ, y, z, ẏ, ż)

= (d/dt)[ D5︸︷︷︸
ẏ(t)

f(t, x, y, ẋ, ẏ)

+ D4︸︷︷︸
ẏ(t−τ)

f(t+ τ, y, z, ẏ, ż)].

• Solving an optimal control problem with delays thus leads to
a MFDE!
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Market Dynamics with Delays

Application of Hughes’ result to maximize∫ ∞
0

e−ρt lnC
(
u(t− τ), k(t− τ)

)
dt,

leads to MFDE

e−ρ(t+τ)[gD1C/C +D2C/C]
(
k̇(t+ τ) + gk(t), k(t)

)
= d

dt

(
e−ρtD1C/C(k̇(t) + gk(t− τ), k(t− τ))

)
.

(2)

Our example: C(u, k) =
√
u− k. Steady state solution

k =
e−2ρτ

4(ρ+ ge−ρτ)2
.

Linearizing around steady state and trying exponential solutions
ezt yields characteristic equation

∆(z) = (z − ρe−(z−ρ)τ)(z − ρ+ ρezτ)
−1

2(ρ+ ge−ρτ)(2ρeρτ + g) = 0.
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Market Dynamics with Delay

• Benhabib & Nishimura (1979) analyzed model without
delays, but with at least three different economic goods.

• They found a pair of distinct eigenvalues that cross the
imaginary axis when varying the parameters (ρ, g), leading to
Hopf bifurcation.

• Using CM reduction we are able to do the same for MFDE.

• ∆(z) is transcendental function with infinitely many zeroes
to the right and left of imaginary axis.

• Numerically study zeroes in a neighbourhood of origin.

• Economically interesting periodic solutions for models with
only one production and one consumption good.
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Zeroes

Roots of ∆(z) in rectangle [−5, 5]× [−23, 23], calculated using
complex bisection.
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Zeroes - Detail
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Observe crossing of imaginary axis at g ≈ 13.667698, ρ = 0.80,
τ = 4.
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Hopf bifurcation

Periodic solutions were computed for capital k(t).
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Hopf bifurcation

Using computed periodic solutions, can construct local
bifurcation diagram.
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Explicit formula available for computing direction of bifurcation,
derived by ”lifting” finite dimensional Hopf bifurcation on CM.
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Direct modelling: Life cycle model

Albis et al. (2004) consider a population model consisting of
overlapping generations, that leads directly to MFDE.

• Fixed size population normalized to one. Each individual
lives for time T = 1.

• Individuals born at time s have assets a(s, t) at time t.

• At birth, assets are zero, i.e., a(s, s) = 0.

• One does not die in debt, i.e., a(s, s+ 1) ≥ 0.

• Age-independent wages w(t) are received.

• Interest rate r(t).

• Individuals born at time s consume c(s, t) at time t.

Individual budget constraint:

∂a(s, t)
∂t

= r(t)a(s, t) + w(t)− c(s, t).
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Life cycle model II

Goal of every individual born at time s is to maximize his
lifetime welfare, given by

∫ s+1

s

ln c(s, τ)dτ.

Solving this optimization problem shows that the optimal asset
distribution a∗(s, t) depends on the interest rates and wages
during the lifetime of an individual, i.e.,

a∗(s, t) = F (rs+, ws+, t− s),

for some F . Here rs+ ∈ C([0, 1]) is defined by
rs+(θ) = r(s+ θ).

The total amount of capital at any time t is given by

k(t) =
∫ t

t−1

a∗(σ, t)dσ,

namely the total amount of assets owned by living individuals.

– Typeset by FoilTEX – 16



Life cycle model III

The economy has a single market good, that can be used for
both production and consumption. It is produced at the rate Q
given by

Q(k(t), e(t), l(t)) = Ak(t)α(e(t)l(t))β.

• l(t) is the labour supply, in our case l(t) = 1.
• e(t) accounts for the increase in labour efficiency over time.
• A,α, β > 0 are parameters.
• Q above is known as a Cobb-Douglas production function.

Note that interest rate r(t) is, (by definition), the price of
capital. Similarly, the wages w(t) are the price of labour. They
can be found by partial differentiation of Q.

r(t) = ∂Q
∂k = αAk(t)α−1(e(t)l(t))β,

w(t) = ∂Q
∂l = βAk(t)αe(t)βl(t)β−1.
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Life cycle model IV

We can now put everything back together.

k(t) =
∫ t
t−1

a∗(σ, t)dσ,

a∗(s, t) = F (rs+, ws+, t− s),

r(t) = ∂Q
∂k = αAk(t)α−1(e(t)l(t))β,

w(t) = ∂Q
∂l = βAk(t)αe(t)βl(t)β−1.

Substituting everything into the first equation, we arrive at

k(t) = G(kt, α, β),

in which kt ∈ C([−1, 1]) is given by kt(θ) = k(t+ θ).
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Life cycle model V

Threefold differentiation of

k(t) = G(kt, α, β). (3)

using the explicit form of G yields an MFDE

k′′′(t) = f(k(t), k′(t), k′′(t), k(t− 1), k(t+ 1),∫ t+1

t
k(τ)α+β−1dτ,

∫ t−1

t
k(τ)α+β−1dτ).

(4)

Albis et al. choose α+ β = 1, in which case the MFDE
becomes linear.

We are interested in α+ β 6= 1, and we find that for every
γ = α+ β 6= 1, (4) has a unique strictly positive equilibrium
solution k.

Linearization around k yields the characteristic equation with

w = αAk
γ−1

,

∆(z + w) = αz3 + w(α− γ2)z2 − γw2(1− γ)z
− wγ((γ − 1)w2 + 2β)
+ (z + w)−1[2βw(γz + w) cosh z+

w2(γ − 1)(γw2 + 2β)].
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Life cycle model VI

Roots of ∆(z) with α = β.
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• Real root crosses the imaginary axis at α+ β = 1
• Apparently no imaginary pair of roots that cross imaginary

axis.
• Since we demand k > 0, eigenmodes with Re z > 0 and

Im z 6= 0 do not interest us.
• Loss of stability when α+ β > 1?
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Recent Model (Albis et al. 2005)

Similar model, now with fixed wages only in the time periode
[α, 1− α] ⊂ [0, 1] of an individual’s life.

Albis et al. attempt to find Hopf bifurcations for characteristic
equation

∆(z) = −
∫ 1−α
α

ezτdτ

1− 2α
+ (1− σ)

∫ 1

0

ezτdτ +
σ∫ 1

0
e−zτdτ

.
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Fixed α = 0.2. Conditions for Hopf bifurcation not satisfied!
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The program

• Analyze the linear homogeneous equation

ẋ(ξ) = Lxξ

and determine set N0 of solutions that grow at most
polynomially.
• Analyze the linear inhomogeneous equation

ẋ(ξ) = Lxξ + f(ξ) (5)

and find an ”inverse” K such that x = Kf solves (5) and K
projects out N0 in some sense.
• Analyze functional

G(u, y) = y +K(R(u)),

for y ∈ N0. Use fixpoint arguments to find fixpoint u(y) for
G(·, y) for sufficiently small y. Note that u(y) solves

ẋ(ξ) = Lxξ +R(xξ).
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Comparison with delay equations

The homogeneous linear equation

ẋ(ξ) = Lxξ,

is for general MFDE not a well-posed initial value problem, if
we demand x continuous.

Example: x|[−1,1] = 1 and

x′(ξ) = x(ξ − 1) + x(ξ + 1).
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Comparison with delay equations II

Linear delay equations (RFDE) however do allow unique
forward continuation of solutions, i.e., the problem

ẋ(ξ) = Ldxξ−, x0− = φ,

in which xξ− ∈ C([−1, 0]) is defined by xξ−(θ) = x(ξ + θ), has
solution

xt− = S(t)φ,

in which S(t) is an eventually compact semigroup, with
generator

A : D(A) = {φ ∈ C1([−1, 0]) | φ̇(0) = Ldφ} → C([−1, 0])
Aφ = φ̇

One can thus employ all the strong results from semigroup
theory, in particular variation of constants formula!

As in study of elliptic PDEs (Mielke, Kirchgässner), need to
construct pseudo inverse K by hand for MFDE.
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Linear inhomogeneous equations

The important step is to analyze the linear inhomogeneous
equation

ẋ(ξ) = Lxξ + f(ξ), (6)

for functions f : R→ R.

Mallet-Paret established result for hyperbolic versions of (6),
using Laplace transform techniques.

Theorem 2. Suppose that ∆(z) = 0 has no roots on the
imaginary axis. Then for every f ∈ L∞, (6) has a unique
solution in W 1,∞, given by

x(ξ) =
∫ ∞
−∞

G(ξ − s)f(s)ds,

where G has Fourier transform Ĝ(η) = ∆(iη)−1.
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Nonhyperbolic inhomogeneous equations

However, when we have spectrum on the imaginary axis,

ẋ(ξ) = Lxξ

has set of solutions N0 that are bounded or grow at most at a
polynomial rate. Need to find a ”pseudo-inverse” that projects
out these solutions in some way.

Want to apply Mallet-Paret theorem, but need to ”shift” the
eigenvalues off the imaginary axis first.

This can be done by multiplying the equations with
exponentials eηξ.

Laplace transform enables us to link the ”projecting out” of
solutions in N0, to the projection Q0 onto the spectral
subspace X0.

– Typeset by FoilTEX – 26



Dynamics on the Center Manifold

For any φ ∈ X0, define the function Φ : R→ X0 by

Φ(t) = Q0[(u∗φ)t].

Then Φ satisfies an ODE on the center manifold

Φ̇(ξ) = AΦ(ξ) + f(Φ(ξ)), where

f(ψ) = Q0[L(u∗ψ − ψ)θ + R̃((u∗ψ)θ)].
(7)

Here R̃ is ”cut-off” version of R, i.e., globally bounded.
Conversely, if Ψ satisfies (7), then x = u∗Ψ(0) satisfies

ẋ(t) = Lxt + R̃(xt)

and in addition, xt = (u∗Ψ(t))0.

For delay eqs. (RFDE), variation of constants approach yields

fd(ψ) = Q0[R̃((u∗ψ)0)δ(θ)].

Although this appears to differ from (7), examples indicate that
our f restricted to RFDE yields same Taylor expansions as fd.
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Further issues

• In the context of RFDE, one can also study invariant stable
and unstable manifolds that capture sufficiently small
solutions on the halflines R±.

• This feature is absent from our analysis here, due to the
ill-posedness of the initial value problem. We cannot define a
suitable solution operator for linear systems on half lines.

• Mallet - Paret and Verduyn Lunel (2001) have some results
in this direction

• Need to develop Floquet theory to analyze periodic solutions
of MFDE.

• Need to do some work on stability analysis. Spectrum is
unbounded to the left and right of imaginary axis. But
perhaps results restricted to positive solutions? Useful for
modelling applications.
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