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Abstract

We consider scalar lattice differential equations posed on square lattices in two space dimensions. Under

certain natural conditions we show that wave-like solutions exist when obstacles (characterized by “holes”)

are present in the lattice. Our work generalizes to the discrete spatial setting the results obtained in [9]

for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the

development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a

generalization of a classical result due to Aronson and Weinberger that concerns the spreading of localized

disturbances.
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1 Introduction

Consider a subset Λ ⊂ Z2 that results after removing a finite (possibly zero) number of points from
the standard square grid. Write int(Λ) ⊂ Λ for the collection of grid points for which all four nearest
neighbours are also included in Λ and write ∂Λ = Λ \ int(Λ) for the remaining points, which can
be interpreted as the boundary of Λ. Fix a detuning parameter 0 < a < 1 and consider the bistable
nonlinearity g(u) = u(1− u)(u− a).
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In this paper we are interested in the scalar lattice differential equation (LDE)

u̇ij(t) = ui+1,j(t) + ui,j+1(t) + ui−1,j(t) + ui,j−1(t)− 4uij(t) + g
(
uij(t)

)
, (i, j) ∈ int(Λ), (1.1)

augmented by rules on ∂Λ that ensure that the homogeneous states u ≡ 0, u ≡ a and u ≡ 1 are
equilibria for the full problem. We encourage the reader to think of this system as the discrete
analogue of the scalar Nagumo PDE

∂tu(x, y, t) = ∂xxu(x, y, t) + ∂yyu(x, y, t) + g
(
u(x, y, t)

)
, (x, y) ∈ Ω, (1.2)

posed on an exterior domain Ω = R
2 \ K for some compact (possibly empty) obstacle K, with

Neumann boundary conditions on ∂Ω.
In the unobstructed case Λ = Z

2, it is known that (1.1) admits planar travelling wave solutions

uij(t) = Φ(iσh + jσv + ct), Φ(−∞) = 0, Φ(∞) = 1, (1.3)

which propagate with speed −c in the direction (σh, σv) with a fixed monotone wave profile Φ. Our
goal here is to show that these unobstructed waves persist in an appropriate sense, after removing
points from Z

2. In particular, we give conditions under which (1.1) with Λ 6= Z
2 admits so-called

entire asymptotic plane-wave solutions. Such solutions are defined for all t ∈ R and satisfy the
temporal limits

lim
|t|→∞

sup
(i,j)∈Λ

|uij(t)− Φ(iσh + jσv + ct)| = 0. (1.4)

As such, the present work can be seen as a direct (partial) generalization of the results concerning
the obstructed PDE (1.2) that were obtained by Berestycki, Hamel and Matano in the landmark
paper [9].

Viewed from a dynamical system perspective, the limits (1.4) suggest that u(t) can be seen as
a homoclinic excursion to and from an unobstructed travelling wave, with large transients when
the wave front meets the obstacle. In particular, the wave-like solutions constructed in the present
paper can be seen in the wider context of so-called transition fronts, which can roughly be defined as
global in time solutions for which the width of the interfacial region connecting the limiting values
is uniformly bounded in time. This nomenclature allows classical travelling waves and more general
wave-like solutions to be discussed within a common framework. Besides the work [9] mentioned
above, results concerning the existence of transition fronts have appeared in a wide range of settings,
including diffusive random media [39], reaction-diffusion-advection PDEs [7] and time-dependent
reaction-diffusion PDEs [8]. As far as we know however, the present paper is the first that features
transition fronts for LDEs in higher space dimensions.

Reaction-Diffusion Problems

The discrete and continuous Nagumo systems (1.1)-(1.2) can both be seen as phenomenological
models in which two stable equilibria compete for dominance in a spatial domain. In modelling
contexts one often thinks of these equilibria as representing material phases or biological species.
The competition is caused by the opposing dynamical effects of the reaction and diffusion terms
present in (1.1)-(1.2). Indeed, both equations feature a thresholding nonlinearity that promotes high
frequencies together with a diffusion operator that attenuates them. The main questions center on
how the long-term behavior of these reaction-diffusion systems is impacted by the balance between
these dynamical features.

In the past, the PDE (1.2) has served as a prototype system for the understanding of many basic
concepts at the heart of dynamical systems theory, including the existence and stability of planar
travelling waves and the study of obstacles. Multi-component versions of (1.2) such as the Gray-
Scott model [20] play an important role in the formation of patterns, generating spatially periodic
structures from equilibria that destabilize through Turing bifurcations.
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More recently, spatially discrete systems such as (1.1) have started to attract an increasing
amount of attention. Dramatic increases in computer power have made these systems considerably
more accessible and have clearly demonstrated that discrete models can capture dynamical behaviour
that their continuous counterparts can not. Understanding the causes and consequences of these
differences is a major theme that continues to drive researchers in this area, motivated by both
mathematical and practical considerations.

On the mathematical side, the shift from the PDE (1.2) with Ω = R
2 to the LDE (1.1) with

Λ = Z
2 breaks two important symmetries, namely the translational invariance and spatial isotropy

of R2. In the sequel two fundamental consequences of these broken symmetries are encountered. In
addition, the discrete Laplacian in (1.1) is a bounded operator while the continuous Laplacian in
(1.2) is unbounded. This requires the use of delicate techniques when comparing the spectral and
dynamical properties of these two operators, as discussed in [4].

On the practical side, many physical and biological systems have a discrete spatial structure. It
is hence important to develop mathematical modelling tools that can incorporate such structures
effectively. Indeed, genuinely discrete phenomena such as phase transitions in Ising models [5], crystal
growth in materials [11], propagation of action potentials in myelinated nerve fibers [6] and phase
mixing in martensitic structures [40] have all been modelled using equations similar to (1.1). We
expect this list to get longer over time as the available mathematical techniques for discrete systems
are improved.

Finally, we remark that the LDE (1.1) arises as the standard finite difference spatial discretization
of the PDE (1.2). As such, the study of (1.1) and its variants provides information on the impact of
discretization schemes and is therefore of importance in the field of numerical analysis. In order to
faithfully replicate the PDE behavior in numerical simulations, the vested interest here is to actually
suppress as best as possible the novel features appearing in discrete systems. Such issues are explored
in [2, 15, 26]. In this paper we take the neutral perspective that the discrete model is set and we
seek to understand its behavior in its own right.

Existence of Waves

In the unobstructed PDE (1.2) with Ω = R
2, the balance between diffusion and reaction is resolved

through the formation of planar travelling waves

u(x, y, t) = Φ(xσh + yσv + ct); Φ(−∞) = 0, Φ(∞) = 1, (1.5)

which form the skeleton of the global dynamics [1]. These waves can be thought of as a mechanism
of transport in which the fitter species or more energetically favourable phase invades the spatial
domain. The existence of these waves can be established via phase-plane analysis [19], since the wave
profile necessarily satisfies the planar ODE

cΦ′ = Φ′′ + g(Φ). (1.6)

Here we have assumed the normalization σ2
h + σ2

v = 1. Notice that the underlying spatial dimension
and the direction (σh, σv) are not visible in the travelling wave ODE (1.6), which means that existence
results in one spatial dimension can easily be transferred to higher spatial dimensions in a radially
symmetric fashion.

By contrast, substitution of the discrete travelling wave Ansatz (1.3) into the LDE (1.1) with
Λ = Z

2 leads to the mixed type functional differential equation (MFDE)

cΦ′(ξ) = Φ(ξ + σh) + Φ(ξ − σh) + Φ(ξ + σv) + Φ(ξ − σv)− 4Φ(ξ) + g
(
Φ(ξ)

)
. (1.7)

The broken translational invariance is manifested by the fact that the wavespeed c appears in
(1.7) in a singular fashion. This leads to the phenomenon of propagation failure, in which a sufficient
energy difference between the two stable equilibrium states is needed for propagation of waves,
together with the appearance of step-like wave solutions [5, 6, 17, 33].
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The broken spatial isotropy is manifested by the explicit presence of the propagation direction
(σh, σv) in (1.7). This leads to direction-dependent wave speeds, wave forms and even pinning regions.
In particular, waves can fail to propagate in certain directions that resonate with the lattice whilst
travelling freely in others. This phenomenon has been studied when the bistable nonlinearity is
piecewise linear via classical analysis [12], as well as for more general nonlinearities via numerics
[16, 30], homoclinic-unfolding [36] and center manifold analysis [25].

Stability of Waves

While existence results for travelling wave solutions to the PDE (1.2) with Ω = R
2 do not depend on

the spatial dimension, stability results do. In fact, it has long been known [18] that travelling fronts
for one dimensional versions of (1.2) are nonlinearly stable under small perturbations, provided one
allows for a small phase shift in the wave. Results in four or more dimensional problems have also
been available for some time [41]. However, the first stability result in the critical case of two spatial
dimensions was only obtained relatively recently by Kapitula [32].

The key feature that complicates the stability analysis of plane waves in two dimensions is that
the interface, by which we mean a level set of the function u(x, y, t) = Φ(x + ct), is no longer
localized in space at a point as it is in one dimension, but rather spread out over an entire line. This
means that a phase shift is a big perturbation from the perspective of Lp (p < ∞): the difference
Φ(x + τ) − Φ(x) does not live in Lp for any τ 6= 0 (with p < ∞). Thus it is not unreasonable to
expect that a localized perturbation does not lead to a phase shift. On the other hand, one must
now be concerned with long wave deformations of the interface in the direction transverse to that of
propagation. Such deformations manifest themselves as curves of essential spectrum that touch the
origin. This typically leads to slow algebraic decay at the linear level, which in the two dimensional
case is notoriously difficult to control.

There are two main approaches towards establishing the stability of travelling waves. The first
is based on spectral methods, Green’s functions and bootstrapping or fixed-point arguments. This
approach was developed by Kapitula [32] for the planar unobstructed PDE (1.2). Very recently [24],
we were able to extend it to the planar unobstructed LDE (1.1), thereby generalizing earlier work by
Bates and Chen [3] featuring a four-dimensional non-local setting. The advantage of this approach
is that only weak spectral assumptions need to be imposed on the underlying system. On the other
hand, such methods typically employ rather crude estimates on the nonlinear terms and hence yield
rather weak estimates for the basin of attraction.

The second approach is based on comparison principles and yields stronger estimates for the
basin of attraction, at the price of requiring more structure on the underlying system. The inclusion
of obstacles in (1.1)-(1.2) is a rather strong perturbation from the unobstructed systems, so it is not
surprising that comparison principles are the method of choice in the present context.

We remark that comparison principles were used in an early paper [41] to prove the stability of
waves in an unobstructed four dimensional version of the PDE (1.2). Here the algebraic decay of the
interfacial deformations described above is rather fast, considerably easing the analysis. However,
besides the partial results in [34], the first successful use of the comparison principle in two dimensions
was actually a byproduct of the analysis [9] on which this paper is based. It is therefore not surprising
that part of our work here can be seen as a companion paper to [24], in the sense that we give an
alternative proof of the nonlinear stability of travelling waves to the unobstructed planar LDE (1.1)
with Λ = Z

2.

The Program

As mentioned above, our contribution in this paper is to extend some of the main results in [9]
to the spatially discrete setting. In fact, the main steps that underpin our arguments here closely
mimic the program developed in [9]. In the remainder of this introduction we therefore describe this
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program in some detail, explaining the achievements in [9] and the technical modifications required
to extend them to the discrete setting.

Let us therefore consider either (1.1) or (1.2), with Λ 6= Z
2 or Ω 6= R

2. One starts by considering
the unobstructed wave when it is still far away from the obstacle, but moving towards it. As time
progresses, the wave scatters from the obstacle and the goal is to prove that the wave eventually
recovers its shape. To this end, one can distinguish the following three temporal regimes and study
them separately:

(i) the pre-interaction regime in which the obstacle is so far away from the wave front that
the obstacle essentially sees only an equilibrium solution;

(ii) the interaction regime in which the wave front and the obstacle interact strongly, producing
a large transient; and finally,

(iii) the post-interaction regime in which the wave front is again far from the obstacle.

In order to construct the desired entire asymptotic plane wave solution, one roughly needs the
following ingredients:

(i) a stability result which guarantees that the plane wave doesn’t change much in the pre-
interaction regime;

(ii) a bound showing that the transient produced during the interaction regime is spatially local-
ized;

(iii-A) a result that describes the final state of compact subsets of the medium, long after the wave
front has passed through the region and the transients have died down; and finally

(iii-B) powerful estimates on the basin of attraction of the travelling planar wave that can accommo-
date the large spatially localized transients generated during the interaction regime.

Pre-interaction regime

Continuous Setting The main task in this step is to prove that the asymptotic requirement

lim
t→−∞

sup
(x,y)∈Ω

|u(x, y, t)− Φ(x+ ct)| = 0, (1.8)

with Φ as in (1.6), fixes a unique solution to the obstructed PDE (1.2) that is defined for all t ∈ R.
The arguments used to achieve this in [9] are all one-dimensional in nature, in the sense that the sub
and super-solutions that are used in the construction of u depend only on the coordinate x parallel
to the direction of the wave.

In particular, a well-known squeezing technique is employed that goes back to the classic work
of Fife and McLeod [19]. Roughly speaking, this technique allows additive initial perturbations to
wave-like structures to be traded off for an asymptotic phase offset. Since this general principle lies
at the heart of many other arguments in this paper, we discuss it here in some detail.

For the unobstructed PDE (1.2) with Ω = R
2, the squeezing mechanism can be exhibited by

constructing a super-solution of the form

u(x, y, t) = Φ
(
x+ ct+ Z(t)

)
+ z(t), (1.9)

with z decreasing from z0 to 0 and with Z increasing from 0 to Z∞. To better understand the crucial
relationship between the asymptotic phaseshift Z∞ and the additive perturbation z, we note that
the super-solution residual J = ut − uxx − g(u) is given by

J = ŻΦ′ + ż + g(Φ)− g(Φ + z). (1.10)

5



Close to the interface, the term g(Φ) − g(Φ + z) ∼ −g′(Φ)z is negative and must be dominated
by the positive term ŻΦ′. This requires that Ż dominate z and ż. On the other hand, close to the
spatial limits Φ → 0 and Φ → 1 we have g′(Φ) < 0, so this regime requires z to dominate ż. These
observations allow us to define z(t) as a slowly decaying exponential, which gives the relation

Z∞ ∼
∫ ∞

0

z(t)dt ∼ z0 (1.11)

between the asymptotic phase shift and the size of the initial perturbation.
In one spatial dimension, this technique (along with others) has been used to establish the

nonlinear stability of travelling waves under asymptotic phase shifts. In our present context, a slight
variant is used in [9] to establish the uniqueness of the entire solution u for (1.2) with (1.8) that was
mentioned above.

On the other hand, the existence of this solution u is harder to establish. The main procedure
in [9] is to split the plane R2 into two half-planes along a vertical line, with the obstacle contained
entirely in one of the half-planes. One can then focus on time regimes where the bulk of the incoming
wave is contained in the obstacle-free half-plane. Following ideas in [21, 23], one can then trap the
desired entire solution u between the sum and the difference of two counter-propagating wave fronts.
This allows the use of a limiting argument to show that the solution u actually exists.

Discrete Setting The main ideas of the PDE analysis described above can be carried over to the
LDE setting without major complications. Indeed, arguments based on the comparison principle are
well-developed for systems posed on one-dimensional lattices; see for example [14, 29]. Care must
however be taken when studying the counter-propagating wave fronts, as the discrete Laplacian
causes cross-talk between the two-half planes that needs to be carefully controlled. This analysis is
carried out in §6.

Interaction regime

Continuous Setting The main issue in this phase is to show that the large perturbations that
arise when the wave front hits the obstacle are spatially localized. In particular, in [9] the authors
show that whenever the obstacle R2 \Ω is bounded, the entire solution u that satisfies the temporal
requirement (1.8) also admits the spatial limits

lim
|x|+|y|→∞

|u(x, y, t)− Φ(x+ ct)| = 0, (1.12)

locally uniformly in t.
For the transverse direction y → ∞, this result can be established using standard parabolic

estimates, since the obstacle can effectively be pushed to y = −∞ and hence ignored in the limit.
The analysis for x → −∞ is more subtle and does need to take the obstacle into account. In order
to do this, two branches of modified nonlinearities g±δ are constructed in [9] with the property that
g−δ ≤ g ≤ g+

δ . These modified nonlinearities have zeroes at g−(−δ) = g+(δ) = 0 and g−(1 − δ) =
g+(1 + δ) = 0. This allows travelling waves for the unobstructed problem with nonlinearities g± to
be effectively used as sub and super-solutions for the original obstructed problem.

Discrete Setting The parabolic estimates and limiting arguments described above can be readily
transferred to the discrete setting; see §7. On the other hand, special care needs to be taken in the
construction of the modified nonlinearities g±δ , which we perform in §3. This is related to the fact
that the existence of travelling waves (c,Φ) for unobstructed lattices hinges on a delicate analysis of
the MFDE (1.7); see [35]. Together with our generalization of the classical spreading speed result,
this requires smoothness on the part of the nonlinearities beyond that which was used in [9].
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Post-interaction regime - rest state

Continuous Setting The first key result obtained in [9] for this phase is that one has the temporal
convergence

lim
t→∞

u(x, y, t)→ u∞(x, y), (1.13)

locally uniformly in (x, y), where u∞ is a stationary solution to the obstructed PDE (1.2) that admits
the spatial limits

lim
|x|+|y|→∞

u∞(x, y) = 1, (1.14)

together with Neumann boundary conditions on ∂Ω.
Let us briefly comment on the interpretation of this spatial limit. A classical result due to

Aronson and Weinberger [1, Thm. 5.3] for the unobstructed PDE (1.2) with Ω = R
2 states that

an initial disturbance from the u ≡ 0 rest state that occupies a large area of the spatial domain
and is large in amplitude, will eventually spread to fill out the entire spatial domain. The radial
speed of this spreading is comparable to that of a travelling planar wave. In [9, Lem. 5.2] a similar
result was established for the obstructed case Ω 6= R

2. In particular, the authors established that
disturbances such as those described above continue to spread out in all directions, providing one
restricts attention to regions of space that are sufficiently far away from the obstacle. This provides
a mechanism by which the disturbance caused by the incoming wave can bend around the obstacle.
In particular, the favoured state u ≡ 1 invades the domain in an asymptotic sense.

It is clear that the homogeneous equilibrium u∞ ≡ 1 is a candidate for the temporal limit (1.13)
discussed above. It is however by no means clear that this is the only candidate. The second key
result in [9] gives geometric conditions on the obstacle R2 \ Ω that are sufficient to guarantee that
in fact u∞ ≡ 1. These conditions are satisfied if the obstacle is star-shaped or directionally convex,
but are far from being sharp. For example, a recent result due to Bouhours [10] characterizes a class
of admissible perturbations to such obstacles that still allow one to prove u∞ ≡ 1.

Discrete Setting The main issue in the discrete setting is that an analogue of the classic Aronson
and Weinberger spreading speed result described above is not readily available in the literature. This
situation is remedied in §4, where we construct expanding sub-solutions based on the gluing together
of planar travelling waves. The main obstruction here is that the speeds and profiles of these planar
waves are direction-dependent, which prevents us from using a radially symmetric construction and
requires a delicate balancing of angular dependent terms.

Naturally, such a spreading result can only be established if the wave speeds are strictly positive
for every direction. In the discrete case, an important role is therefore reserved for the pinning
phenomenon discussed above, which can block propagation in certain directions. In the present
paper we avoid such complications and stay away from the pinning regime. This issue is discussed
further in §9.

We also do not fully explore the issues concerning the geometry of the obstacle. We do however
show in §7 that directionally convex obstacles force the identity u∞ ≡ 1, which allows our results to
be applied to an important class of non-empty bounded obstacles.

Post-interaction regime - convergence to wave

Continuous Setting In this final step of the program, the large transients generated in the
interaction regime must be controlled in a frame that moves along with the unobstructed wave. As
discussed above, this analysis leads naturally to a large basin nonlinear stability result for planar
travelling wave solutions to the unobstructed PDE (1.2) with Ω = R

2. For presentation purposes, we
will focus our discussion here on this unobstructed special case. Indeed, the inclusion of the obstacle
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merely adds technical complications that do not contribute to the understanding of the differences
between the continuous and discrete frameworks.

The main task is to construct a super-solution for (1.2) with Ω = R
2 of the form

u(x, y, t) = Φ
(
x+ ct+ θ(y, t) + Z(t)

)
+ z(t), (1.15)

which adds transverse effects to the Ansatz (1.9) discussed earlier. As before, the function z decreases
from z0 to 0 while Z increases from 0 to Z∞. Both z and Z should be thought of as small terms. By
contrast, the new function θ should be allowed to be arbitrarily large at t = 0, provided that it is
localized in the sense θ(·, 0) ∈ L2 and that it decays to zero as t→∞ uniformly in y. This function
controls deformations of the wave interface in the transverse direction.

We note that any localized initial perturbation from the wave can be dominated by the initial
condition in (1.15) by choosing z0 positive and as small as we wish, at the cost of a larger value
for ‖θ(·, 0)‖L2 . Assuming for the moment that Z∞ scales with z0, this freedom implies that we
can dominate the transients caused by such a perturbation by a family of super-solutions that have
arbitrarily small asymptotic phase offsets Z∞. A similar argument with sub-solutions then establishes
the convergence to the planar wave without any asymptotic phase shift.

The difference in behaviour between one and two spatial dimensions is hence caused by the extra
transverse direction, along which perturbations can diffuse in a sense without causing a phase shift.
The assumption that the initial transverse perturbation θ(·, 0) is localized is crucial here. Indeed, if
θ(·, 0) is not localized but still very small, the perturbations can not only cause phase offsets of the
underlying wave, but can also prevent solutions from converging to any translate of the wave at all
[38].

We now proceed to discuss the choices made in [9] for the functions θ, Z and z, which ensure
that (1.15) is indeed a super-solution with Z∞ ∼ z0. As before, we write J = ut − ∆u − g(u) for
the super solution residual. A short computation shows that we can split J into the three parts

J = Jglb + Jheat + Jnl, (1.16)

which with the shorthand ξ = x+ ct+ θ(y, t) + Z(t) can be written as

Jglb(x, y, t) = Ż(t)Φ′(ξ) + ż(t) + g
(
Φ(ξ)

)
− g
(
Φ(ξ) + z(t)

)
,

Jheat(x, y, t) = Φ′(ξ)
(
∂tθ(y, t)− ∂yyθ(y, t)

)
,

Jnl(x, y, t) = −Φ′′(ξ)[∂yθ(y, t)]2.
(1.17)

Exactly as discussed earlier, one can ensure that Jglb(x, y, t) ≥ 0 by picking z(t) to be a slowly
decaying exponential. This gives the desired proportionality Z∞ ∼ z0. Since Φ′′ does not admit a
sign, the two remaining terms Jheat and Jnl need to be treated together. The structure of Jheat

strongly suggests a relation with the heat equation and that is precisely what is exploited in [9].
To set the stage, let us introduce the functions

v(y, t) = e−y
2/4t, h(y, t) =

1√
4πt

v(y, t) (1.18)

and remark that the one dimensional heat kernel h(y, t) can be seen in an appropriate sense as the
solution of the initial value problem

∂th = ∂yyh, h(y, 0) = δ(y). (1.19)

The choice for θ used in [9] is now given by

θ(y, t) = β(t+ 1)−2γ−1
v
(
y, γ(t+ 1)

)
, (1.20)
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in which γ = γ(β)� β and β � 1 can be chosen to be arbitrarily large. In particular, the function
θ can be seen as a modified heat-kernel where the diffusion is sped up by a factor γ and the decay
rate at the center y = 0 is slowed down to β(t + 1)−2γ−1

. The partial derivatives ∂tθ, ∂yθ and
∂yyθ can all be explicitly evaluated and yield rational functions of t and y multiplied by v(y, t).
Exploiting a uniform bound |Φ′′(ξ)| ≤ KΦ′(ξ), one can decouple ξ from the pair (y, t) and guarantee
Jheat + Jnl ≥ 0 by picking γ appropriately.

Discrete Setting Considerable modifications must be made to the procedure outlined above
before it can be used in the discrete setting. To appreciate the difficulties involved, let us consider
the discrete analogue of the super-solution Ansatz (1.15). Choosing (σh, σv) ∈ Z2 \ {(0, 0)}, this can
be written as

uij(t) = Φ
(
iσh + jσv + ct+ θiσv−jσh(t) + Z(t)

)
+ z(t). (1.21)

Writing J for the appropriate super-solution residual, we note that it can again be split up into three
components J = Jglb + Jheat + Jnl that are the discrete analogues of (1.17). For the presentation
here it is only necessary to fully write out one of these terms. Indeed, introducing the shorthands
ξ = iσv + jσh + ct and l = iσv − jσh ∈ Z, we restrict our attention to the component

Jheat = Φ′(ξ)θ̇l(t)− Φ′(ξ + σh)
(
θl+σv (t)− θl(t)

)
− Φ′(ξ − σh)

(
θl−σv (t)− θl(t)

)
−Φ′(ξ − σv)

(
θl+σh(t)− θl(t)

)
− Φ′(ξ + σv)

(
θl−σh(t)− θl(t)

)
,

(1.22)

which is a sum of first differences in θ, each multiplied by a different shifted version of Φ′. Since
Jheat no longer factors as a positive function of ξ times a parabolic operator acting on θ, it is not
at all clear how the approach described above for the continuous setting can be mimicked.

Our inspiration to deal with this challenge comes from the art of normal form transformations.
In particular, we add four specially chosen auxilliary terms to the Ansatz (1.21). This replaces the
shifted coefficients Φ′(ξ ± σh) and Φ′(ξ ± σv) that appear in Jheat by unshifted coefficients Φ′(ξ),
while generating additional terms that only involve higher order differences in θ or products of lower
order differences.

This construction relies on solving linear inhomogeneous MFDEs. More specifically, the four
new terms added to (1.21) can all be factorized as a first difference in θ multiplied by ξ-dependent
functions p±h and p±v that satisfy

[L0p
±
#](ξ) = Φ′(ξ ± σ#)− α±#Φ′(ξ), # = h, v. (1.23)

Here the linear operator L0 : W 1,∞(R,R)→ L∞(R,R) is given by

[L0p](ξ) = −cp′(ξ) + p(ξ + σh) + p(ξ + σv) + p(ξ − σh) + p(ξ − σv)− 4p(ξ)

+g′
(
Φ(ξ)

)
p(ξ)

(1.24)

and the constants α±# are fixed by the requirement that the system is actually solvable. The details
of this construction rely heavily on the linear Fredholm theory developed by Mallet-Paret [35]. In
any case, let us remark here that L0 is related to the linearization of the travelling wave MFDE
(1.7) around the solution Φ. Indeed, we have L0Φ′ = 0, which means that we expect the asymptotics
p±#(ξ) ∼ ξΦ′(ξ) as ξ → ±∞ as the right hand side of (1.24) is resonant.

It is worthwhile to pause here to fully understand the ramifications of our analysis up to this
point. With the new terms, we obtain

Jheat = Φ′(ξ)
[
θ̇l(t)− α+

h

(
θl+σv (t)− θl(t)

)
− α−h

(
θl−σv (t)− θl(t)

)
−α−v

(
θl+σh(t)− θl(t)

)
− α+

v

(
θl−σh(t)− θl(t)

)]
+ h.o.t.,

(1.25)
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in which the higher order terms contain, amongst others, products of second order differences in θ
and the functions p±#(ξ). It is now tempting to try to proceed as in the continuous case, writing hl(t)
for the solution of the initial value problem

ḣl(t) = α+
h [hl+σv (t)− hl(t)] + α−h [hl−σv (t)− hl(t)]

+α−v [hl+σh(t)− hl(t)] + α+
v [hl−σh(t)− hl(t)],

hl(0) = δl,0

(1.26)

and building θ from h in a fashion similar to (1.20). For γ � 1, this choice would imply that
supl∈Z |θl(t)| remains roughly constant over long periods of time, while k-th order differences in θ
would roughly decay at the rate t−k/2.

There are however three important issues that complicate such an attempt. First of all, the
heat-like problem (1.26) contains convective terms, in contrast to (1.19). These terms manifest
themselves as e±iωσ# − 1 = O(iω) contributions when Fourier-expanding the first differences in θ in
the l-direction. When scaling time as in (1.20), one must therefore take care that only the diffusive
effects are sped up, since the convective effects do not generate terms of a definite sign.

The second problem is that the ξ-dependent terms that behave as ξΦ′(ξ) can never be dominated
by the signed terms proportional to Φ′(ξ) that can be obtained by carefully exploiting (1.26). It is
therefore necessary to use Jglb for this purpose. This implies that we would need Jglb ∼ z(t) ∼ t−1,
since these troublesome terms come with second order differences in θ. Unfortunately, this gives
Z(t) ∼ ln(t), destroying any hope of closing a stability argument.

Finally, the third problem is caused by the fact that (1.26) does not actually capture all the
diffusive effects present in the problem. Indeed, second order differences in θ also generate O(ω2)
contributions in Fourier space. Naturally, this leads to trouble when trying to control the second
order terms in (1.25), even if they are multiplied by functions proportional to Φ′(ξ).

In order to solve the second and third problems, it is necessary to perform an additional step
in the normal form inspired expansion. In particular, we add a large number of extra terms to the
Ansatz (1.21) in order to explicitly control all second order differences in θ and all products of first
order differences in θ.

Although this operation is a bookkeeping nightmare, it serves two crucial purposes. First of all, it
ensures that all diffusive effects are made visible. It is here that the link to our prior work [24] based
on spectral techniques becomes apparent, since we recover a condition on the essential spectrum that
ensures that the diffusion coefficient is non-zero. Furthermore, the decay rate of all remaining terms
is pushed to at least t−3/2, corresponding to third order differences in θ. Since this latter function is
integrable over [1,∞), these terms can be successfully absorbed into Jglb.

In contrast to the continuous setting, we therefore see that the three separate components Jglb,
Jheat and Jnl of the super-solution residual need to be analysed together. In addition, one can no
longer use decaying exponentials for the global functions Z(t) and z(t), which requires considerably
more care to be taken at many points in the analysis. These issues are explored in detail in §5, which
we consider to be the heart of this paper.

Organization

This paper is organized as follows. In §2 we state our main results along with their underlying
assumptions. A comparison principle that is used throughout the paper is established in §3, along
with asymptotic properties of planar travelling wave solutions to the unobstructed LDE. In §4 we
establish a result similar in spirit to [1, Thm. 5.3], stating that large disturbances from the zero
rest state fill the entire unobstructed lattice Z2, provided the support of the initial condition is
large enough. Sub and super-solutions providing a large basin of attraction for the waves mentioned
above are constructed in §5. In §6 we focus on the behavior of the obstructed LDE and establish
the existence of an entire solution that resembles an unobstructed wave as t→ −∞. The behaviour
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of this entire solution in several limiting regimes is studied in §7. The proof of our main result is
presented in §8, followed by a discussion in §9.

Reader’s guide In order to prevent disruptions to the flow of ideas, the proof of many of our
results is deferred to the second part of their respective sections. Constants that are used across
different sections are given names, constants used only within a section are given numbers, while
constants used only within proofs are given primes. We also use primes to denote derivatives, but
trust that no confusion shall result.

Acknowledgments Hoffman acknowledges support from the NSF (DMS-1108788). Hupkes ac-
knowledges support from the Netherlands Organization for Scientific Research (NWO). Van Vleck
acknowledges support from the NSF (DMS-1115408 and DMS-1419047).

2 Main Results

In this section we outline our two main results. The first result concerns a two-dimensional obstacle
free lattice and is essentially a stability result for travelling planar fronts. The second result shows
that these travelling planar fronts persist in an appropriate sense after perturbing the lattice by
removing grid points.

2.1 Homogeneous Lattice

Let us first consider the spatially homogeneous LDE

u̇ij(t) = [∆+u(t)]ij + g
(
uij(t)

)
, (2.1)

in which the plus-shaped discrete Laplacian acts on a planar sequence u ∈ `∞(Z2;R) as

[∆+u]ij = ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij . (2.2)

The conditions on the nonlinearity g that we will need are summarized in the following assumption.

(Hg) The nonlinearity g : R→ R is C2-smooth and has a bistable structure, in the sense that there
exists a constant 0 < a < 1 such that we have

g(0) = g(a) = g(1) = 0, g′(0) < 0, g′(1) < 0, (2.3)

together with

g(u) < 0 for u ∈ (0, a) ∪ (1,∞), g(u) > 0 for u ∈ (−∞,−1) ∪ (a, 1). (2.4)

We note that the results in [35] guarantee that (2.1) has planar travelling wave solutions for every
possible direction of propagation. The key requirement in our next assumption is that all these waves
travel at a strictly positive speed.

(HΦ) For each angle ζ ∈ [0, 2π], there exists a wave speed cζ > 0 and a profile Φζ ∈ C1(R,R) that
satisfies the limits

lim
ξ→−∞

Φζ(ξ) = 0, lim
ξ→+∞

Φζ(ξ) = 1 (2.5)

and yields a solution to the homogeneous LDE (2.1) upon writing

uij(t) = Φζ(i cos ζ + j sin ζ + cζt). (2.6)
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For the remainder of this subsection, we fix a specific angle ζ∗ ∈ R and write

(σh, σv) = (cos ζ∗, sin ζ∗) (2.7)

whenever tan ζ∗ /∈ Q. On the other hand, we refer to ζ∗ as a rational angle if tan ζ∗ ∈ Q, in which case
we define (σh, σv) in a different way. In particular, for rational angles ζ∗ we pick a pair (σh, σv) ∈ Z2

with gcd(σh, σv) = 1, for which we have the identity

[σ2
h + σ2

v ]1/2(cos ζ∗, sin ζ∗) = (σh, σv). (2.8)

As a consequence of (HΦ), for every ζ∗ ∈ R there exists a wave speed c > 0 and a wave profile
Φ ∈ C1(R,R) that satisfies the limits (2.5), so that the LDE (2.1) admits a solution

uij(t) = Φ(iσh + jσv + ct). (2.9)

We emphasize here that the pair (c,Φ) is a rescaled version of the pair (cζ∗ ,Φζ∗) for rational angles
ζ∗. We choose to use this rescaling here to highlight certain resonances that play a role in the
discussion below.

A standard approach towards establishing the stability of the wave solution (2.9) under the
nonlinear dynamics of the LDE (2.1) is to consider the linear variational problem

v̇ij(t) = [∆+v(t)]ij + g′
(
Φ(iσh + jσv + ct)

)
vij(t). (2.10)

As can be seen, the linear operator on the right hand side of this system does not have constant
coefficients and hence cannot be diagonalized via Fourier transform. It can however be partially
diagonalized if one takes the Fourier transform in the direction that is perpendicular to the prop-
agation of the wave, i.e., upon taking iσh + jσv = constant. We pursued this strategy in [24] for
rational angles ζ∗. For each transverse spatial frequency ω ∈ [−π, π], we arrived at an LDE posed
on a one dimensional lattice that is parallel to the direction of propagation. This LDE is given by

v̇n(t) = eiσvωvn+σh(t) + e−iσhωvn+σv (t) + e−iσvωvn−σh(t) + eiσhωvn−σv (t)− 4vn(t)

+g′
(
Φ(n+ ct)

)
vn(t),

(2.11)

in which n = iσh + jσv ∈ Z. As explained in detail in [27, §2], there is a close relationship between
the Green’s function for the LDE (2.11) and the linear operators

Lω : W 1,∞(R,C)→ L∞(R,C), ω ∈ [−π, π], (2.12)

that act as

[Lωp](ξ) = −cp′(ξ) + eiσvωp(ξ + σh) + e−iσhωp(ξ + σv) + e−iσvωp(ξ − σh) + eiσhωp(ξ − σv)

−4p(ξ) + g′
(
Φ(ξ)

)
p(ξ).

(2.13)

The formal adjoints of these operators are written as

L∗ω : W 1,∞(R,C)→ L∞(R,C), ω ∈ [−π, π], (2.14)

and act as

[L∗ωq](ξ) = cq′(ξ) + e−iσvωq(ξ − σh) + e+iσhωq(ξ − σv) + e+iσvωq(ξ + σh) + e−σhωq(ξ + σv)

−4q(ξ) + g′
(
Φ(ξ)

)
q(ξ).

(2.15)
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Indeed, the designation of formal adjoint is justified by an easy computation, which shows that∫ ∞
−∞

q∗(ξ)[Lωp](ξ) dξ =
∫ ∞
−∞

[L∗ωq](ξ)∗p(ξ) dξ (2.16)

holds for all pairs p, q ∈W 1,∞(R,C).
We emphasize here that the definitions above for the operators Lω and L∗ω do not require the

angle ζ∗ to be rational or the frequency ω to be restricted to the interval [−π, π]. However, for
rational angles one can exploit the fact that the shifts σh and σv are integer-valued to derive two
important periodicity properties. Indeed, for rational angles ζ∗ we have Lω+2π = Lω. In addition,
an easy computation shows that

e−2πi`(Lω − λ)e2πi` = Lω − 2πi`c− λ (2.17)

for all λ ∈ C and ` ∈ Z, in which the exponential shift operator eν is defined by

[eνv](ξ) = eνξv(ξ). (2.18)

In particular, for all ω ∈ [−π, π] and rational angles ζ∗, the spectrum of Lω is invariant under the
operation λ 7→ λ+ 2πic.

As discussed in detail in [24], the operator L0 encodes stability properties of the wave (c,Φ)
under perturbations that are constant in the direction transverse to propagation. In any case, it is
easy to verify that L0Φ′ = 0 holds regardless of the angle ζ∗ ∈ R. The results in [35] show that L0

is a Fredholm operator of index zero with a one-dimensional kernel. In addition, these results give
the existence of a strictly positive bounded function Ψ ∈ C1(R,R) for which

L∗0Ψ = 0,
∫
R

Ψ(ξ)Φ′(ξ) dξ = 1. (2.19)

In view of the characterization

Range(L0) = {f ∈ L∞(R;R) :
∫
R

Ψ(ξ)f(ξ) dξ = 0}, (2.20)

this directly implies that λ = 0 is a simple eigenvalue of L0 for all angles ζ∗ ∈ R.
The next result shows how this simple eigenvalue behaves as ω is varied. It basically states that

there is a branch of simple eigenvalues λω and eigenfunctions φω for the operators Lω with ω ≈ 0. For
rational angles ζ∗, one can also exploit the periodicity properties above to show that the spectrum
of Lω lies to the left of the line Reλ = −β, with the exception of simple eigenvalues at λω + 2πicZ.

Proposition 2.1. Consider the unobstructed LDE (2.1) and suppose that (Hg) is satisfied. Pick a
direction ζ∗ ∈ R and suppose that the requirements stated in (HΦ) all hold, but only for the angle ζ∗.

Then there exists a constant δω > 0 together with pairs

(λω, φω) ∈ C×W 1,∞(R,C), (2.21)

defined for each ω ∈ (−δω, δω), such that the following holds true.

(i) There exists δλ > 0 such that for all ω ∈ (−δω, δω), the operator Lω − λ is invertible as a map
from W 1,∞(R,C) into L∞(R,C) for all λ ∈ C that have 0 < |λ− λω| < δλ.

(ii) The only nontrivial solutions p ∈ W 1,∞(R,C) of (Lω − λω)p = 0 are p = φω and scalar
multiples thereof.

(iii) For all ω ∈ (−δω, δω), the equation (Lω−λω)v = φω does not admit a solution v ∈W 1,∞(R,C).

(iv) The maps ω 7→ λω and ω 7→ φω are C2-smooth, with λ0 = 0 and φ0 = Φ′.
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In addition, in the special case tan ζ∗ ∈ Q, there exists β > 0 such that the operator Lω − λ is
invertible as a map from W 1,∞(R,C) into L∞(R,C) for all ω ∈ (−δω, δω) and for all λ ∈ C that
have

Reλ ≥ −β, λ− λω /∈ 2πicZ. (2.22)

Proof. Statements (i) through (iv) can be obtained by following the implicit function argument
developed in the proof of [24, Prop. 2.2]. The final statement follows from the periodicity properties
discussed above together with (i) and [24, Lem. 6.2].

In the present paper we focus on developing a comparison-principle based approach to understand
the stability of (2.9), avoiding the spectral techniques that lie at the heart of [24]. Nevertheless, we
need to impose one of the spectral conditions stated in [24]. In particular, the next assumption
ensures that the curve ω → λω touches the origin in a quadratic tangency that opens up on the left
side of the imaginary axis.

(HS)ζ∗ Recalling the curves ω 7→ (λω, φω) defined in Proposition 2.1, we have the Melnikov identity

[ d
2

dω2λω]ω=0 < 0. (2.23)

We emphasize here that [24, Lem. 6.3] guarantees that (HS)ζ∗ is satisfied whenever ζ∗ ≈ kπ
4 and

c kπ
4
> 0 for some k ∈ Z. In addition, during all the numerical experiments that we presented in

[24, §6], we never encountered a case where (HS)ζ∗ fails. The interesting fact to note here is that
when tan ζ∗ /∈ Q, our results show that the comparison principle is sufficiently strong to guarantee
that control over the spectral curve for (ω, λ) ≈ (0, 0) automatically gives control over the rest
of the spectrum. We have limited a-priori knowledge concerning this remainder, unlike the strong
information for rational angles stated in the final part of Proposition 2.1.

We are now ready to state our first main result, which will be proved in §5. Compared to the
small-perturbation stability result in [24], we note that here the initial deviation from the wave can
be very large in compact regions and the angle ζ∗ is not required to be rational. On the other hand,
in [24] the perturbations are not required to decay in the direction parallel to the wave propagation
as they are here.

Theorem 2.2. Consider the unobstructed LDE (2.1) and suppose that (Hg) is satisfied. Pick a
direction ζ∗ ∈ R and suppose that the requirements stated in (HΦ) all hold, but only for the angle
ζ∗. In addition, suppose that (HS)ζ∗ is satisfied.

Consider any C1-smooth function U : [0,∞) → `∞(Z2;R) that satisfies the LDE (2.1) for all
t ≥ 0. Suppose furthermore that we have the spatial limit

|Uij(0)− Φζ∗(i cos ζ∗ + j sin ζ∗)| → 0, |i|+ |j| → ∞. (2.24)

Then we have the uniform convergence

sup
(i,j)∈Z2

|Uij(t)− Φζ∗(i cos ζ∗ + j sin ζ∗ + cζ∗t)| → 0, t→∞. (2.25)

2.2 Obstructed Lattice

In order to formalize the concept of removing grid points from a lattice, we start by introducing
some notation. In particular, for any (i, j) ∈ Z2 we write

NZ2(i, j) = {(i+ 1, j), (i, j + 1), (i− 1, j), (i, j − 1)} ⊂ Z2 (2.26)
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to denote the set of nearest neighbours for the grid point(i, j). Obviously, we can now restate the
definition (2.2) as

[∆+u]ij =
∑

(i′,j′)∈N
Z2 (i,j)

[ui′,j′ − uij ]. (2.27)

Consider now a bounded set Kobs ⊂ Z2, which should be interpreted to be missing from the
lattice. We write

Λ = Z
2 \Kobs (2.28)

to refer to the remaining grid points. In addition, for any point (i, j) ∈ Λ, we write

NΛ(i, j) = NZ2(i, j) ∩ Λ, (2.29)

which represents the set of traditional nearest neighbours of (i, j) that are not contained in Kobs.
We use the suggestive notation

∂Λ = {(i, j) ∈ Λ : NZ2(i, j) 6= NΛ(i, j)} (2.30)

to denote the set of points in the lattice that are nearest neighbour to a site in the obstacle Kobs.
Let us now consider a sequence v ∈ `∞(Λ,R) and introduce the punctured discrete Laplacian

that acts as

[∆+
Λv]ij =

∑
(i′,j′)∈NΛ(i,j)

[vi′j′ − vij ] (2.31)

for (i, j) ∈ Λ. Obviously, we have

[∆+
Λv]ij = [∆+v]ij , (i, j) ∈ Λ \ ∂Λ. (2.32)

Our main goal in this paper is to study the obstructed LDE

u̇ij(t) = [∆+
Λu(t)]ij + g

(
u(t)

)
, (i, j) ∈ Λ. (2.33)

As a consequence of our choice for ∆+
Λ , one can interpret this LDE as the analogue of a reaction-

diffusion PDE posed on an exterior domain under Neumann boundary conditions.
Besides the conditions imposed above on the homogeneous LDE (2.1), we need to impose the

following two conditions on the obstacle Kobs.

(HK1) The obstacle set Kobs is bounded and Λ = Z
2 \Kobs is connected, in the sense that for every

(i, j) ∈ Λ and (i′, j′) ∈ Λ, there exists an integer N ≥ 0 and a sequence {(ik, jk)}Nk=0 ⊂ Λ with

(i0, j0) = (i′, j′), (iN , jN ) = (i, j), (2.34)

so that for every 1 ≤ k ≤ N we have

(ik, jk) ∈ NΛ(ik−1, jk−1). (2.35)

(HK2) The obstacle Kobs is directionally convex, in the sense that there exists a line ` ⊂ R
2 so

that the following holds true. For any (i, j) ∈ ∂Λ and (i′, j′) ∈ Kobs that are related via
(i′, j′) ∈ NZ2(i, j), we have

d
(
(i′, j′), `

)
≤ d
(
(i, j), `

)
, (2.36)

in which d
(
(x, y), `

)
≥ 0 denotes the distance between a point (x, y) ∈ R2 and the line ` ⊂ R2.
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These conditions can be seen as the discrete analogues of the restrictions imposed in [9]. However,
we remark here that we exclude the star-shaped obstacles that are allowed in [9]. In any case, it is
easy to see that any obstacle that consists of a single point automatically satisfies both (HK1) and
(HK2).

We are now ready to state our second main result, which is the discrete analogue of [9, Thm.
1.3]. It basically states that there is an entire solution to (2.33) that looks like a travelling planar
wave travelling towards the obstacle for t � −1, gets scattered by the obstacle at t = O(1) and
gradually recovers its shape as the wavefront moves away from the obstacle for t� +1.

Theorem 2.3. Consider the obstructed LDE (2.33), pick a direction ζ∗ ∈ R and suppose that
(Hg), (HΦ), (HS)ζ∗ , (HK1) and (HK2) are all satisfied. Then there exists a C1-smooth function
U : R→ `∞(Λ,R) that satisfies the obstructed LDE (2.33) for all t ∈ R, admits the inequalities

0 < Uij(t) < 1, U̇ij(t) > 0 (2.37)

for all t ∈ R and (i, j) ∈ Λ and enjoys the temporal limits

sup
(i,j)∈Λ

|Uij(t)− Φζ∗(i cos ζ∗ + j sin ζ∗ + cζ∗t)| → 0, t→ ±∞, (2.38)

together with the spatial limit

sup
t∈R
|Uij(t)− Φζ∗(i cos ζ∗ + j sin ζ∗ + cζ∗t)| → 0, |i|+ |j| → ∞. (2.39)

In addition, if V : R → `∞(Λ;R) is another C1-smooth function that satisfies the obstructed LDE
(2.33) for all t ∈ R with

sup
(i,j)∈Λ

|Vij(t)− Φζ∗(i cos ζ∗ + j sin ζ∗ + cζ∗t)| → 0, t→ −∞, (2.40)

then we have U = V .

3 Preliminaries

In this section we consider an obstacle Kobs ⊂ Z2, which at times will be taken to be empty, and
study the LDE

u̇ij(t) = [∆+
Λu(t)]ij + g

(
uij(t)

)
, (i, j) ∈ Λ, (3.1)

in which Λ = Z
2 \Kobs. We formulate a comparison principle for (3.1) and focus on the asymptotic

behaviour of travelling wave solutions to (3.1) with Kobs = ∅. We are specifically interested in the
dependence of these waves on the direction of propagation and the specific form of the nonlinearity,
which we will often need to distort.

For the purposes of this section, we need to relax the smoothness requirements present in (Hg).
In particular, we introduce the following condition on the nonlinearity g.

(hg)§3 The nonlinearity g is C1-smooth, while the map u 7→ g′(u) is locally Lipschitz continuous. In
addition, there exists a constant 0 < a < 1 such that we have

g(0) = g(a) = g(1) = 0, g′(0) < 0, g′(1) < 0, (3.2)

together with

g(u) < 0 for u ∈ (0, a) ∪ (1,∞), g(u) > 0 for u ∈ (−∞,−1) ∪ (a, 1). (3.3)
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We start by formulating a weak and strong version of a comparison principle for (3.1). The weak
version does not need the obstacle to be finite or connected as required by (HK1).

Proposition 3.1. Pick any subset Kobs ⊂ Z2, consider the LDE (3.1) and suppose that (hg)§3 is
satisfied. Consider a pair of functions u, v ∈ C1([0,∞), `∞(Λ,R)) that satisfy the uniform bounds

−1 ≤ uij(t) ≤ 2, −1 ≤ vij(t) ≤ 2, (i, j) ∈ Λ, t ≥ 0, (3.4)

together with the initial inequalities

uij(0) ≥ vij(0), (i, j) ∈ Λ. (3.5)

Suppose furthermore that for any t ≥ 0 and all (i, j) ∈ Λ, at least one of the following two properties
is satisfied.

(a) We have the differential inequalities

u̇ij(t) ≥ [∆+
Λu(t)]ij + g

(
uij(t)

)
, v̇ij(t) ≤ [∆+

Λv(t)]ij + g
(
vij(t)

)
. (3.6)

(b) We have the inequality uij(t) ≥ vij(t).

Then we in fact have uij(t) ≥ vij(t) for all (i, j) ∈ Λ and t ≥ 0.

Corollary 3.2. Consider the setting of Proposition 3.1. Suppose that the obstacle Kobs satisfies
(HK1) and that there exists (i0, j0) ∈ Λ for which ui0j0(0) > vi0j0(0). Then we have the strict
inequality

uij(t) > vij(t), (i, j) ∈ Λ, t > 0. (3.7)

Proof. Suppose that for some t∗ > 0 and (i∗, j∗) ∈ Λ, we have ui∗j∗(t∗) = vi∗j∗(t∗). Since uij(t) ≥
vij(t) for all t ≥ 0 and (i, j) ∈ Λ, we must have u̇i∗j∗(t∗) = v̇i∗j∗(t∗). In particular, this implies

[∆+
Λu(t∗)]i∗j∗ = [∆+

Λv(t∗)]i∗j∗ , (3.8)

which in turn shows that we must have uij(t∗) = vij(t∗) for all (i, j) ∈ NΛ(i∗, j∗). Exploiting the
connectedness of Λ, this argument can be repeated to show that u(t∗) = v(t∗), which contradicts
the uniqueness of solutions to (3.1) in backward time.

We now turn our attention to travelling wave solutions of the unobstructed system (3.1) with
Λ = Z

2. To this end, we pick an arbitrary pair (σh, σv) ∈ R2, assuming only that σ2
h + σ2

v 6= 0.
Inserting the travelling wave Ansatz

uij(t) = Φ(iσh + jσv + ct) (3.9)

into the homogeneous LDE (3.1), we arrive at the travelling wave MFDE

cΦ′(ξ) = Φ(ξ + σh) + Φ(ξ + σv) + Φ(ξ − σh) + Φ(ξ − σv)− 4Φ(ξ) + g
(
Φ(ξ)

)
. (3.10)

The following assumption relating to the existence of solutions to (3.10) with non-zero wave speed
is used frequently throughout this entire paper.

(hΦ)§3 The travelling wave system (3.10) admits a solution (c,Φ) for some c 6= 0 and bounded function
Φ ∈ C2(R,R) that satisfies the limits

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1. (3.11)
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We note that the C1-smoothness of the nonlinearity g prescribed by (hg)§3 ensures that the C2-
continuity mentioned in (hΦ)§3 is automatic upon assuming that Φ is merely continuous.

An important role is played by the asymptotic rates at which the wave profile Φ approaches its
limiting values. To study these rates, we introduce the limiting spatial characteristic functions

∆−(z) = cz − (2 cosh(σhz) + 2 cosh(σvz)− 4)− g′(0),

∆+(z) = cz − (2 cosh(σhz) + 2 cosh(σvz)− 4)− g′(1).
(3.12)

It is well known that the real roots of the equations ∆±(z) = 0 are directly related to the asymptotic
convergence rates discussed above.

Lemma 3.3. Consider the characteristic equations (3.12) and suppose that (hg)§3 and (hΦ)§3 both
hold. Then there exist constants η±Φ > 0 that satisfy the identities

cη−Φ = 2 cosh(σhη−Φ ) + 2 cosh(σvη−Φ )− 4 + g′(0),

−cη+
Φ = 2 cosh(σhη+

Φ ) + 2 cosh(σvη+
Φ )− 4 + g′(1),

(3.13)

which implies that

∆+(−η+
Φ ) = ∆−(η−Φ ) = 0. (3.14)

In addition, if either ∆+(−η) = 0 or ∆−(η) = 0 holds for any η ≥ 0, then we must have η = η+
Φ or

η = η−Φ respectively.
Finally, if the inequalities

c > 0, η−Φ ≤ η
+
Φ (3.15)

are both satisfied, then the inequality

g′(0) > g′(1) (3.16)

must also hold.

Proof. The statements follow directly from the observation that [∆±]′′(z) < 0 for all z ∈ R, together
with the limits limz→±∞∆±(z) = −∞ and the inequalities ∆±(0) > 0.

Proposition 3.4. Consider the travelling wave MFDE (3.10), assume that (hg)§3 and (hΦ)§3 both
hold and recall the spatial exponents η±Φ defined in Lemma 3.3. Then there exist constants KΦ > 1,
κΦ > 0 and C±Φ > 0 such that for every ξ ≤ 0 we have∣∣∣Φ(ξ)− C−Φ e−η

−
Φ |ξ|
∣∣∣ ≤ KΦe

−(η−Φ +κΦ)|ξ|,∣∣∣Φ′(ξ)− η−ΦC−Φ e−η−Φ |ξ|∣∣∣ ≤ KΦe
−(η−Φ +κΦ)|ξ|,∣∣∣Φ′′(ξ)− [η−Φ ]2C−Φ e

−η−Φ |ξ|
∣∣∣ ≤ KΦe

−(η−Φ +κΦ)|ξ|,

(3.17)

while for every ξ ≥ 0 we have∣∣∣(1− Φ(ξ))− C+
Φ e
−η+

Φ |ξ|
∣∣∣ ≤ KΦe

−(η+
Φ +κΦ)|ξ|,∣∣∣Φ′(ξ)− η+

ΦC
+
Φ e
−η+

Φ |ξ|
∣∣∣ ≤ KΦe

−(η+
Φ +κΦ)|ξ|,∣∣∣Φ′′(ξ) + [η+

Φ ]2C+
Φ e
−η+

Φ |ξ|
∣∣∣ ≤ KΦe

−(η+
Φ +κΦ)|ξ|.

(3.18)
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Proof. These bounds follow directly from [35, Thm. 2.2].

Corollary 3.5. Consider the setting of Proposition 3.4. Then there exist constants

0 < α±low < α±up, 0 < β±low < β±up (3.19)

such that for every ξ ≤ 0 we have

β−lowe
−η−Φ |ξ| ≤ Φ(ξ) ≤ β−upe

−η−Φ |ξ|,

α−lowe
−η−Φ |ξ| ≤ Φ′(ξ) ≤ α−upe

−η−Φ |ξ|,
(3.20)

while for every ξ ≥ 0 we have

β+
lowe

−η+
Φ |ξ| ≤ 1− Φ(ξ) ≤ β+

upe
−η+

Φ |ξ|

α+
lowe

−η+
Φ |ξ| ≤ Φ′(ξ) ≤ α+

upe
−η+

Φ |ξ|.
(3.21)

Proof. These identities follow directly from Proposition 3.4, upon exploiting the fact that the in-
equalities 0 < Φ(ξ) < 1 and Φ′(ξ) > 0 hold for all ξ ∈ R.

Corollary 3.6. Consider the travelling wave MFDE (3.10) and assume that (hg)§3 and (hΦ)§3 both
hold. Then for every M > 1, there exists a constant Kshift = Kshift(M) so that∣∣∣∣Φ′′(ζ)

Φ′(ξ)

∣∣∣∣+
∣∣∣∣Φ′(ζ)
Φ′(ξ)

∣∣∣∣ ≤ Kshift (3.22)

holds for every pair (ζ, ξ) ∈ R2 for which |ζ − ξ| ≤M .

Proof. This follows from the fact that Φ′(ξ) > 0 for all ξ ∈ R together with the asymptotic bounds
stated in Proposition 3.4.

Our final main result in this section roughly states that the properties described above for the
wave (c,Φ) vary continuously upon changing the direction (σh, σv) and perturbing the nonlinearity
g. We note that the results in [35, Thm. 2.1] cover neither variations in the direction of propagation
nor smoothness properties of asymptotic expansions, so we take the opportunity here to discuss
these issues in depth.

In order to state the result, we introduce for any η ∈ R and any interval I ⊂ R the exponentially
weighted function spaces

BCη(I,R) = {p ∈ C(I,R) | supξ∈I e−η|ξ| |p(ξ)| <∞},

BC1
η(I,R) = {p ∈ C1(I,R) | supξ∈I e−η|ξ|[|p(ξ)|+ |p′(ξ)|] <∞}.

(3.23)

Proposition 3.7. Consider the travelling wave MFDE (3.10) and suppose that (hg)§3 and (hΦ)§3
with c > 0 are both satisfied. Fix δp > 0 sufficiently small and consider the set

Ω = {(δ, σ′h, σ′v) : 0 ≤ δ < δp and |σ′h − σh|+ |σ′v − σv| < δp}. (3.24)

Then for any p = (δ, σ′h, σ
′
v) ∈ Ω, there exist C2-smooth functions Φ±p : R→ R and constants c±p > 0

such that the following properties hold.

(i) For any p = (δ, σ′h, σ
′
v) ∈ Ω, the MFDEs

c±p [Φ±p ]′(ξ) = Φ±p (ξ + σ′h) + Φ±p (ξ + σ′v) + Φ±p (ξ − σ′h) + Φ±p (ξ − σ′v)− 4Φ±p (ξ)

+g±δ
(
Φ±p (ξ)

) (3.25)

are satisfied for all ξ ∈ R. Here the maps u → g±δ (u ∓ δ) satisfy (hg)§3, while for any u ∈ R
we have g±0 (u) = g(u) and g−δ (u) ≤ g(u) ≤ g+

δ (u).
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(ii) For any p = (δ, σ′h, σ
′
v) ∈ Ω, we have [Φ±p ]′(ξ) > 0, together with the four limits

limξ→−∞Φ−p (ξ) = −δ, limξ→+∞Φ−p (ξ) = 1− δ,

limξ→−∞Φ+
p (ξ) = +δ, limξ→+∞Φ+

p (ξ) = 1 + δ.
(3.26)

(iii) For any p = (δ, σ′h, σ
′
v) ∈ Ω, the functions W±p : R→ `∞(Z2,R) defined by

[W±p ]ij(t) = Φ±p (σ′hi+ σ′vj + c±p t) (3.27)

satisfy the differential inequalities

J−ij (t) ≤ 0 ≤ J +
ij (t), (3.28)

in which

J±ij (t) = [Ẇ±p ]ij(t)− [∆+W±p (t)]ij − g
(
[W±p ]ij(t)

)
. (3.29)

In addition, if δ = 0, then we have W−p = W+
p and the inequalities in (3.28) are equalities.

(iv) Upon writing ηΦ = min{η+
Φ , η

−
Φ}, the maps

(ν, σ′h, σ
′
v) 7→


c±ν2,σ′h,σ

′
v
∈ R

Φ−ν2,σ′h,σ
′
v

+ ν2 − Φ ∈ BC− 1
2ηΦ

(R,R)

Φ+
ν2,σ′h,σ

′
v
− ν2 − Φ ∈ BC− 1

2ηΦ
(R,R)

(3.30)

are C1-smooth, with

c±0,σh,σv = c, Φ±0,σh,σv = Φ. (3.31)

(v) For any p = (δ, σ′h, σ
′
v) ∈ Ω, the function Φ−p + δ satisfies the asymptotic estimates (3.17)-

(3.18) with constants KΦ > 1 and κΦ > 0 that are independent of p, constants η±Φ > 0 that
depend C1-smoothly on (σ′h, σ

′
v) but are independent of δ, together with constants C±Φ that

depend C1-smoothly on (
√
δ, σ′h, σ

′
v). A similar statement holds for the functions Φ+

p − δ.

In the remainder of this section we provide the missing proofs for the results stated above. We
start by establishing the weak comparison principle, closely following the arguments in [29, Prop.
4.1], which in turn are based on [13].

Proof of Proposition 3.1. Upon writing wij(t) = uij(t)− vij(t) together with

Iij(t) =
∫ 1

0

g′
(
vij(t) + ϑwij(t)

)
dϑ, (3.32)

the estimate

ẇij(t) ≥ [∆+
Λw(t)]ij + g

(
uij(t)

)
− g
(
vij(t)

)
= [∆+

Λw(t)]ij + Iij(t)wij(t)
(3.33)

holds for all (i, j) ∈ Λ and t ≥ 0 for which condition (a) is satisfied.
In order to show that wij(t) ≥ 0 for all t ≥ 0 and (i, j) ∈ Λ, let us assume to the contrary that

this is false. In particular, suppose that there exist t∗ > 0, (i∗, j∗) ∈ Λ for which wi∗,j∗(t∗) = −ϑ < 0.
Picking ε > 0 and K ′ > 0 in such a way that ϑ = εe2K′t∗ , we can now define

T ′ := sup{t ≥ 0 | wij(t) > −εe2K′t for all (i, j) ∈ Λ}. (3.34)
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The C1-smoothness of w guarantees that 0 < T ′ ≤ t∗. In addition, we have

inf
(i,j)∈Λ

wij(T ′) = −εe2K′T ′ , (3.35)

since otherwise the smoothness of w as map into `∞(Λ,R) would allow the constant T ′ to be
increased. Without loss of generality we may therefore assume that (0, 0) ∈ Λ and w0,0(T ′) <

− 7
8εe

2K′T ′ .
Consider now the function

w−ij(t;β) = −ε
(3

4
+ βzij

)
e2K′t, (3.36)

in which β > 0 is a parameter and z ∈ `∞(Λ;R) has z0,0 = 1, lim|i|+|j|→∞ zij = 3, 1 ≤ z ≤ 3 and∣∣∆+
Λz
∣∣ ≤ 1. Write β∗ ∈ ( 1

8 ,
1
4 ] for the minimal value of β for which wij(t) ≥ w−ij(t;β) holds for all

(i, j, t) ∈ Λ× [0, T ′]. Since

lim
|i|+|j|→∞

w−ij(t;β∗) = −ε[ 3
4

+ 3β∗]e2K′t < −9
8
εe2K′t, (3.37)

there exist (i0, j0) ∈ Λ and 0 < t0 ≤ T ′ such that wi0,j0(t0) = w−i0,j0(t0;β∗). The definition of β∗ now
implies that

ẇi0,j0(t0) ≤ ẇ−i0,j0(t0;β∗), (3.38)

In addition, by positivity of the off-diagonal coefficients in ∆+
Λ , we have

[∆+
Λw(t0)]i0,j0 ≥ [∆+

Λw
−(t0;β∗)]i0,j0 . (3.39)

Using the fact that wi0,j0(t0) < 0, we see that (a) and hence (3.33) is satisfied, which leads to the
estimate

− 7
4εK

′e2K′t0 ≥ ẇ−i0,j0(t0) ≥ ẇi0,j0(t0)

≥ [∆+
Λw(t0)]i0,j0 + Ii0,j0(t0)wi0,j0(t0)

≥ [∆+
Λw
−(t0;β∗)]i0,j0 + Ii0,j0(t0)w−i0,j0(t0;β∗).

(3.40)

In particular, we obtain the bound

−7
4
εK ′e2K′t0 ≥ −3ε

[
1 +M ′

]
e2K′t0 , (3.41)

in which

M ′ = sup
−1≤u≤2

|g′(u)| . (3.42)

This leads to a contradiction upon choosing K ′ � 1 to be sufficiently large, showing that indeed
wij(t) ≥ 0 for all (i, j) ∈ Λ and t ≥ 0.

We now turn our attention to the results stated in Proposition 3.7. Our first concern is to
construct the distorted nonlinearities mentioned in item (i).

Lemma 3.8. There exist two C1-smooth functions

τ± : R× (−∞, 1
12

]→ R (3.43)

that satisfy the following properties.
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(i) For any ν ∈ (0, 1
12 ) and any u ∈ [ν, 1− ν], we have τ±(u, ν) = u.

(ii) For any ν ∈ (0, 1
12 ) and any u ∈ (−∞,−ν2) ∪ (1− ν2,∞), we have

τ+(u, ν) = u+ ν2, (3.44)

while for any ν ∈ (0, 1
12 ) and any u ∈ (−∞, ν2) ∪ (1 + ν2,∞), we have

τ−(u, ν) = u− ν2. (3.45)

(iii) For any ν ≤ 0, we have τ±(s, ν) = s for all s ∈ R.

(iv) For any 0 ≤ ν ≤ 1
12 and u ∈ R, we have the bound

1
2
≤ 1− 6ν ≤ ∂uτ±(u, ν) ≤ 1, (3.46)

together with

τ−(u, ν) ≤ u ≤ τ+(u, ν). (3.47)

(v) There exists a constant C1 > 1 such that

[∂uτ±(u, ν)− ∂uτ±(v, ν)] ≤ C1 |u− v| (3.48)

holds for all ν ≤ 1
12 and (u, v) ∈ R2.

Proof. We restrict ourselves to defining a function τ+ : R2 → R that satisfies the stated properties
whenever u ≤ 1

2 and ν ≤ 1
12 . To this end, we define the three open sets

V1 = {ν < 0} ∪ {u > ν} ⊂ R2,

V2 = {ν > 0 and u < −ν2} ⊂ R2,

V3 = {ν > 0 and − ν2 < u < ν} ⊂ R2,

(3.49)

together with the three smooth functions

τ1 : R2 → R (u, ν) 7→ u,

τ2 : R2 → R (u, ν) 7→ u+ ν2,

τ3 : R× {ν > 0} → R (u, ν) 7→
∫ u
−ν2 [1 + 6ν−1(1 + ν)−3(s+ ν2)(s− ν)] ds.

(3.50)

Upon writing τ+(u, ν) = τi(u, ν) whenever (u, ν) ∈ Vi, we have constructed a C1-smooth function
τ+ : V → R, where V = V1 ∪ V2 ∪ V3.

We now set out to show that τ+ can be extended to the boundary ∂V in a smooth fashion. First
of all, notice that

∂uτ3(u, ν) = 1 + 6ν−1(1 + ν)−3(u+ ν2)(u− ν)

≥ 1− 6ν−1(1 + ν)−3 1
4 (ν + ν2)2

≥ 1− 6ν 1
4 (1 + ν)2

≥ 1− 6ν

≥ 1
2 .

(3.51)
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In addition, for any ν > 0 we have

∂uτ3(−ν2, ν) = ∂uτ3(ν, ν) = 1 (3.52)

by construction, while a short computation shows that

τ3(−ν2, ν) = 0, τ3(ν, ν) = ν. (3.53)

Differentiating these last two identities with respect to ν, we obtain

−2ν∂uτ3(−ν2, ν) + ∂ντ3(−ν2, ν) = 0, ∂uτ3(ν, ν) + ∂ντ3(ν, ν) = 1, (3.54)

which shows that for all ν > 0 we have

∂ντ3(−ν2, ν) = 2ν, ∂ντ3(ν, ν) = 0. (3.55)

This suffices to show that τ+ can be extended to a C1-smooth function on R2 \ {0, 0}.
In order to establish C1-smoothness at (0, 0), we compute

τ3(u, ν) = u+ ν2 + 2ν−1(1 + ν)−3u3 + (1 + ν)−3
[
2ν5 + 3(ν − 1)(u2 − ν4)− 6ν2(u+ ν2)

]
. (3.56)

We define τ+(0, 0) = 0, which together with

lim
ν↓0

1
ν
τ+(0, ν) = lim

ν↓0

1
ν
τ3(0, ν) = 0 (3.57)

allows us to conclude

∂uτ
+(0, 0) = 1, ∂ντ

+(0, 0) = 0. (3.58)

It hence remains to show that for any sequence {(uk, νk)} ⊂ V3 with (uk, νk) → (0, 0) we have
∂uτ3(uk, νk)→ 1 and ∂ντ3(uk, νk)→ 0. We compute

∂uτ3(u, ν) = 1 + 6ν−1(1 + ν)−3u2 + (1 + ν)−3
[
6(ν − 1)u− 6ν2

]
,

∂ντ3(u, ν) = 2ν − 2ν−2(1 + ν)−3u3 − 6ν−1(1 + ν)−4u3

−3(1 + ν)−4
[
2ν5 + 3(ν − 1)(u2 − ν4)− 6ν2(u+ ν2)

]
+(1 + ν)−3

[
10ν4 + 3(u2 − ν4)− 12(ν − 1)ν3 − 12ν(u+ ν2)− 12ν3

]
.

(3.59)

In view of the fact that |uk| ≤ νk ≤ 1 and νk ↓ 0, the desired limits can now be read off.
Finally, the Lipschitz property (v) can be easily verified using (3.59).

Lemma 3.9. Suppose that (hg)§3 is satisfied. For any sufficiently small δ > 0, there exist nonlin-
earities g±δ : R→ R such that the following properties are satisfied.

(i) For all u ∈ R we have the inequalities

g−δ (u) ≤ g(u) ≤ g+
δ (u). (3.60)

(ii) Recalling the constant a appearing in (hg)§3, we have the identities

g−δ (−δ) = g−δ (a) = g−δ (1− δ) = 0, g+
δ (δ) = g+

δ (a) = g+
δ (1 + δ) = 0, (3.61)

together with the inequalities

g±δ (u) > 0, u ∈ (−∞,±δ) ∪ (a, 1± δ)

g±δ (u) < 0, u ∈ (±δ, a) ∪ (1± δ,∞).
(3.62)
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(iii) We have the equalities

Dg−δ (−δ) = Dg(0) = Dg+
δ (+δ), Dg−δ (1− δ) = Dg(1) = Dg+

δ (1 + δ). (3.63)

(iv) The maps (u, ν) 7→ g±ν2(u) are C1-smooth. In addition, for fixed δ > 0 the maps u 7→ Dg±δ (u)
are locally Lipschitz.

(v) There exists κdis > 0 such that we have

g−δ (u)− g(u) ≤ −κdisδ (3.64)

for any −δ ≤ u ≤ 0, together with

g+
δ (u)− g(u) ≥ κdisδ (3.65)

for any 1 ≤ u ≤ 1 + δ.

Proof. Upon writing

g−δ (u) = g
(
τ+(u,

√
δ)
)
, g+

δ (u) = g
(
τ−(u,

√
δ)
)
, (3.66)

the properties (i) through (iv) follow immediately from Lemma 3.8.
Addressing item (v), we note that there exists δu > 0 such that g′(u) < 1

2g
′(0) < 0 for all

|u| < δu. In addition, since

Dg−δ (u) = Dg
(
τ+(u,

√
δ)
)
∂uτ

+(u,
√
δ) (3.67)

with u ≤ τ+(u,
√
δ) ≤ u+ δ and 1

2 ≤ ∂uτ
+(u,

√
δ) ≤ 1, we see that we can pick κ′ > 0 in such a way

that

Dg−δ (u) ≤ −κ′, Dg(u) ≤ −κ′, −δ ≤ u ≤ 0, (3.68)

possibly after restricting δ > 0. We now find, for any −δ ≤ u ≤ 0,

g−δ (u)− g(u) = Dg−δ (u1)(u+ δ)−Dg(u2)u, (3.69)

for some −δ < u1 < u < u2 < 0. In particular, if − δ2 ≤ u ≤ 0, we have

g−δ (u)− g(u) ≤ Dg−δ (u1)(u+ δ) ≤ −κ′ δ
2
, (3.70)

while if −δ ≤ u ≤ − δ2 we have

g−δ (u)− g(u) ≤ −Dg(u2)u ≤ −κ′ δ
2
. (3.71)

The inequality for g+
δ follows analogously.

Linearizing the travelling wave MFDE (3.10) around the wave (c,Φ), we arrive at the homoge-
neous MFDE

cv′(ξ) = v(ξ + σh) + v(ξ − σh) + v(ξ + σv) + v(ξ − σv)− 4v(ξ) + g′
(
Φ(ξ)

)
v(ξ). (3.72)

Our analysis in the remainder of this section hinges upon understanding solutions to (3.72) that
decay at specified exponential rates on half-lines.
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In particular, we choose four exponents η±fs and η±sl in such a way that

0 < η±sl < η±Φ < η±fs < 2η±sl , (3.73)

while all non-real roots of ∆+(z) = 0 have Re z /∈ [−η+
fs , 0] and all non-real roots of ∆−(z) = 0 have

Re z /∈ [0, η−fs ]. Using these exponents, we introduce the constant

σ = max{|σh| , |σv|} (3.74)

together with the function spaces

BC+
sl = {v ∈ C([0,∞),R) : ‖v‖BC+

sl
:= supξ≥0 e

η+
sl |ξ| |v(ξ)| <∞},

BC−sl = {v ∈ C((−∞, 0],R) : ‖v‖BC−sl := supξ≤0 e
η−sl |ξ| |v(ξ)| <∞},

BC⊕1,sl = {v ∈ C([−σ,∞),R) : ‖v‖BC⊕1,sl := supξ≥−σ eη
+
sl |ξ|[|v(ξ)|+ |v′(ξ)|] <∞},

BC	1,sl = {v ∈ C((−∞, σ],R) : ‖v‖BC	1,sl := supξ≤σ eη
−
sl |ξ|[|v(ξ)|+ |v′(ξ)|] <∞},

(3.75)

with similar definitions for BC±fs , BC	1,fs and BC⊕1,fs.
Returning to (3.72), we introduce the solution spaces

Pfs =
{
v ∈ BC	1,fs : [L0v](ξ) = 0 for all ξ ≤ 0

}
,

Qfs =
{
v ∈ BC⊕1,fs : [L0v](ξ) = 0 for all ξ ≥ 0

}
.

(3.76)

We note that we are abusing notation here in the sense that in addition to the definition (2.12), we
are interpreting L0 as an operator from BC⊕1,fs → BC+

fs and also as an operator from BC	1,fs → BC−fs .
In order to capture the initial conditions associated to the functions in the solution spaces (3.76),

we will use the notation evξu ∈ C([−σ, σ],R) to denote the state of a continuous function u at ξ,
which is defined by

[evξu](ϑ) := u(ξ + ϑ), ϑ ∈ [−σ, σ]. (3.77)

This allows us to define the segment spaces

Pfs =
{
φ ∈ C([−σ, σ],R) : φ = ev0v for some v ∈ Pfs

}
,

Qfs =
{
φ ∈ C([−σ, σ],R) : φ = ev0v for some v ∈ Qfs

}
,

B = span{ev0Φ′}.

(3.78)

In view of the asymptotics (3.17)-(3.18), the fact that the kernel of L0 is one-dimensional implies
that

Pfs ∩Qfs = {0}, Pfs ∩B = {0}, Qfs ∩B = {0}. (3.79)

In order to obtain a splitting for the state space C([−σ, σ],R) involving the components (3.78), we
need to exploit the Hale inner product [22]. In the current setting, this bilinear form is given by

〈ψ, φ〉 := cψ(0)φ(0)−
∫ σ

0

ψ(θ − σ)φ(θ) dθ −
∫ −σ

0

ψ(θ + σ)φ(θ) dθ (3.80)

for any pair φ, ψ ∈ C([−σ, σ],R). The Hale inner product is non-degenerate in the sense that if
〈ψ, φ〉 = 0 for all ψ ∈ C([−σ, σ],R), then necessarily φ = 0 [37]. As a consequence of [37, Thm. 4.3],
we now have the characterization

Pfs ⊕Qfs ⊕B = {φ ∈ C([−σ, σ],R) | 〈ev0 Ψ, φ〉 = 0}, (3.81)
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in which we have recalled the function Ψ defined by (2.19). Let us now pick a one-dimensional space
Γ ⊂ C([−σ, σ],R) that has the property that φ ∈ Γ satisfies φ = 0 if and only if 〈ev0Ψ, φ〉 = 0. We
now see that

C([−σ, σ],R) = B ⊕Qfs ⊕ Pfs ⊕ Γ. (3.82)

As customary, the solution Φ to the travelling wave equation (3.10) breaks when changing the
parameters (c, σh, σv). The key ingredient we will use in this section is that the arising gap can be
captured in the finite dimensional space Γ. As a consequence, the size of such gaps can be measured
effectively by means of the Hale inner product. This is particularly useful in view of the identity

d
dξ 〈evξΨ, evξv〉 = Ψ(ξ)[L0v](ξ), (3.83)

which holds for any pair v ∈ C1(R,R) and ξ ∈ R.
We now turn our attention to the perturbed linearization

c′v′(ξ) = v(ξ + σ′h) + v(ξ − σ′h) + v(ξ + σ′v) + v(ξ − σ′v)− 4v(ξ) + g′
(
Φ(ξ)

)
v(ξ). (3.84)

For convenience, we introduce the parameter q′ = (c′, σ′h, σ
′
v) and the set

Dq(δq) = {(c′, σ′h, σ′v) ∈ R3 : |c′ − c|+ |σ′h − σh|+ |σ′v − σv| < δq and σ′ = σ}, (3.85)

in which we have introduced the notation

σ′ = max{|σ′h| , |σ′v|}. (3.86)

We note that the restriction σ′ = σ is a purely technical one in order to ensure that the state
space C([−σ, σ],R) remains unaffected. In light of the fact that (3.10) remains invariant under the
transformations

ξ 7→ λξ, (σh, σv)→ λ−1(σh, σv), c 7→ λc, (3.87)

this restriction will not hinder our ability to describe waves travelling in arbitrary directions suffi-
ciently close to (σh, σv).

For any q′ ∈ Dq(δq), we introduce the differential operator L(q′) that acts as

[L(q′)v](ξ) = −c′v′(ξ) + v(ξ + σ′h) + v(ξ + σ′v) + v(ξ − σ′h) + v(ξ − σ′v)− 4v(ξ) + g′
(
Φ(ξ)

)
v(ξ).

(3.88)

As above, this operator will be interpreted as a linear map on both BC⊕1,fs and BC	1,fs, mapping into
BC+

fs and BC−fs respectively.
We now borrow some convenient results from [31] that describe how L(q′) and the spaces (3.78)

vary with q′. For explicitness, we write

q∗ = (c, σh, σv). (3.89)

Lemma 3.10 (see [31, §5]). Suppose that (hg)§3 and (hΦ)§3 are both satisfied and pick δq > 0
sufficiently small. Then for any q′ = (c′, σ′h, σ

′
v) ∈ Dq(δq), there exist linear maps

u∗Qfs
(q′) : Qfs → BC⊕1,fs, u∗Pfs

(q′) : Pfs → BC	1,fs (3.90)

that satisfy the following properties.

(i) For any (φQ, φP ) ∈ Qfs × Pfs and q′ ∈ Dq′(δq), the function v+ = u∗Qfs
(q′)φQ satisfies

[L(q′)v+](ξ) = 0 for all ξ ≥ 0, while v− = u∗Pfs
(q′)φP satisfies [L(q′)v−](ξ) = 0 for all ξ ≤ 0.
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(ii) Pick any q′ ∈ Dq(δq) and consider any pair (v+, v−) ∈ BC⊕1,fs×BC
	
1,fs for which [L(q′)v+](ξ) =

0 for all ξ ≥ 0 and [L(q′)v−](ξ) = 0 for all ξ ≤ 0 Then we must have

v+ = u∗Qfs
(q′)ΠQfsev0v

+, v− = u∗Pfs
(q′)ΠPfsev0v

−. (3.91)

(iii) For any q′ ∈ Dq(δq), we have the identities

ΠQfsev0u
∗
Qfs

(q′) = I, ΠPfsev0u
∗
Pfs

(q′) = I. (3.92)

(iv) The maps

q′ 7→

{
u∗Qfs

(q′) ∈ L
(
Qfs, BC

⊕
1,fs

)
u∗Pfs

(q′) ∈ L
(
Pfs, BC

	
1,fs

) (3.93)

are C1-smooth.

Lemma 3.11 (see [31, §3] ). Suppose that (hg)§3 and (hΦ)§3 are both satisfied and pick δq > 0
sufficiently small. Then for any q′ = (c′, σ′h, σ

′
v) ∈ Dq(δq), there exist linear maps

L+
inv(q′) : BC+

fs → BC⊕1,fs, L−inv(q′) : BC−fs → BC	1,fs (3.94)

that satisfy the following properties.

(i) For every f± ∈ BC±fs and q′ ∈ Dq(δq), the function v+ = L+
inv(q′)f+ satisfies [L(q′)v+](ξ) =

f+(ξ) for all ξ ≥ 0, while v− = L−inv(q′)f− satisfies [L(q′)v−](ξ) = f−(ξ) for all ξ ≤ 0.

(ii) For every f± ∈ BC±fs and q′ ∈ Dq(δq), we have the identities

ΠQfsev0L+
inv(q′)f+ = 0,

ΠPfsev0L−inv(q′)f− = 0.
(3.95)

(iii) The maps

q′ 7→

{
L+

inv(q′) ∈ L
(
BC+

fs , BC
⊕
1,fs

)
L−inv(q′) ∈ L

(
BC−fs , BC

	
1,fs

) (3.96)

are C1-smooth.

The next result can be seen as a continuation result for the two halves of the wave profile Φ′ upon
varying q. In particular, we construct two solution families for the homogeneous MFDE (3.84) that
decay at the relevant slow exponential rate. This will allow us to control the constants appearing in
the asymptotic expansions (3.17)-(3.18).

Lemma 3.12. Suppose that (hg)§3 and (hΦ)§3 are both satisfied and pick δq > 0 sufficiently small.
Then for any q′ = (c′, σ′h, σ

′
v) ∈ Dq(δq), there exist functions

b+ = b+(q′) ∈ BC⊕1,sl, b− = b−(q′) ∈ BC	1,sl (3.97)

that satisfy the following properties.

(i) We have [L(q′)b+(q′)](ξ) = 0 for all ξ ≥ 0, together with [L(q′)b−(q′)](ξ) = 0 for all ξ ≤ 0.

(ii) The maps q′ 7→ b+(q′) ∈ BC⊕1,sl and q′ 7→ b−(q′) ∈ BC	1,sl are C1-smooth, with b±(q∗) = Φ′.
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(iii) For all q′ ∈ Dq(δq) we have ΠBev0b
±(q′) = ev0Φ′, together with

ΠQfsev0b
+(q′) = 0, ΠPfsev0b

−(q′) = 0. (3.98)

(iv) Upon writing η+
q′ > 0 for the exponent defined in Lemma 3.3 applied to the characteristic

equation

∆+
q′(z) = c′z − (2 cosh(σ′hz) + 2 cosh(σ′vz)− 4)− g′(1) (3.99)

and similarly defining η−q′ > 0, there exist constants C±q′ > 0 and K2 > 1 such that for all
q′ ∈ Dq(δq) we have ∣∣∣b+(q′)(ξ)− C+

q′e
−η+

q′ |ξ|
∣∣∣ ≤ K2e

−η+
fs |ξ|, ξ ≥ 0,∣∣∣b−(q′)(ξ)− C−q′e

−η−
q′ |ξ|
∣∣∣ ≤ K2e

−η−fs |ξ|, ξ ≤ 0.
(3.100)

In addition, the maps q′ 7→ C±q′ are C1-smooth.

Proof. Since the maps q′ 7→ η+
q′ are C1-smooth, we can construct a map q′ 7→ b+0 (q′) that satisfies

conditions (ii) - (iv) simply by using

b+0 (q′)(ξ) = Φ′
(
[η+
q′/η

+
Φ ]ξ
)
, ξ � 1 (3.101)

and ensuring that b+0 (q′)(ξ) = Φ′(ξ) for ξ ∈ [−σ, σ].
We now write b+(q′) = b+0 (q′)+v(q′) and find that (i) now requires that the function v(q′) satisfy

[L(q′)v(q′)](ξ) = fq′(ξ) := −[L(q′)b+0 (q′)](ξ), ξ ≥ 0. (3.102)

By construction however, we see that fq′ ∈ BC+
fs , which allows us to write

v(q′) = L+
inv(q′)fq′ ∈ BC⊕1,fs, (3.103)

which depends C1-smoothly on q′ and has v(q∗) = 0. This ensures that (ii) and (iv) remain satisfied.
In addition, a simple multiplicative rescaling allows (iii) to be restored.

Based on the ingredients above, we can follow the procedure developed in [31] to implement a
version of Lin’s method. In particular, we combine the two inverses L±inv(q′) to construct solutions
to L(q′)v = f up to a gap at zero, which can be contained in the one-dimensional space Γ.

Lemma 3.13 (see [28, Lem. 5.10]). Suppose that (hg)§3 and (hΦ)§3 are both satisfied and pick
δq > 0 sufficiently small. Then for any q′ = (c′, σ′h, σ

′
v) ∈ Dq(δq) and any pair (f−, f+) ∈ BC−fs ×

BC+
fs , there is a unique quadruplet(

v−, α−, v+, α+
)
∈ BC	1,fs × R×BC

⊕
1,fs × R (3.104)

for which the pair

w−(q′) = v−(q′) + α−(q′)b−(q′) ∈ BC	1,sl, w+(q′) = v+(q′) + α+(q′)b+(q′) ∈ BC⊕1,sl (3.105)

satisfies the following properties.

(i) For all ξ ≥ 0 we have [L(q′)v−](ξ) = [L(q′)w−](ξ) = f−(ξ), while for all ξ ≥ 0 we have
[L(q′)v+](ξ) = [L(q′)w+](ξ) = f+(ξ).

(ii) We have the inclusions ev0w
± ∈ Pfs ⊕Qfs ⊕ Γ.
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(iii) The gap between w+ and w− at zero satisfies ev0[w+ − w−] ∈ Γ.

Upon writing (
v−, α−, v+, α+

)
= L3(q′)(f−, f+) (3.106)

for the quadruplet described above, the map

q′ 7→ L3(q′) ∈ L
(
BC−fs ×BC

+
fs , BC

	
1,fs × R×BC

⊕
1,fs × R

)
(3.107)

is C1-smooth. In addition, the gap at zero satisfies the identity

〈ev0Ψ, ev0[w+ − w−]〉 =
∫ 0

−∞
Ψ(ξ)[L(q∗)w−](ξ) dξ +

∫ ∞
0

Ψ(ξ)[L(q∗)w+](ξ) dξ. (3.108)

We are now ready to construct a solution to the MFDE

c′W ′(ξ) = W (ξ + σ′h) +W (ξ + σ′v) +W (ξ − σ′h) +W (ξ − σ′v)− 4W (ξ)

+g−δ
(
W (ξ)

) (3.109)

on half-lines. We note that the asymptotic estimates (3.17)-(3.18) allow us to write

Φ(ξ) = v−∗ + [η−Φ ]−1Φ′(ξ), ξ ≤ σ,

Φ(ξ) = 1 + v+
∗ − [η+

Φ ]−1Φ′(ξ), ξ ≥ −σ,
(3.110)

for some pair (v−∗ , v
+
∗ ) ∈ BC	1,fs ×BC

⊕
1,fs. Introducing the notation

h− = (v−, α−) ∈ BC	1,fs × R, h+ = (v+, α+) ∈ BC⊕1,fs × R, (3.111)

we fix δ > 0 and define the functions

[W−(h−)](ξ) = −δ + v−∗ + v− +
(
α− + [η−Φ ]−1

)
b−(q′) ξ ≤ σ,

[W+(h+)](ξ) = 1− δ + v+
∗ + v+ +

(
α+ − [η+

Φ ]−1
)
b+(q′) ξ ≥ −σ.

(3.112)

We intend to find a pair (h−, h+) such that (3.109) with W = W+(h+) is satisfied for ξ ≥ 0, while
(3.109) with W = W−(h−) is satisfied for ξ ≤ 0. Plugging this Ansatz into (3.109), we find

−[L(q′)v−](ξ) = R−q′,δ(h−; ξ), ξ ≤ 0,

−[L(q′)v+](ξ) = R+
q′,δ(h

+; ξ), ξ ≥ 0,
(3.113)

with nonlinear terms

R−q′,δ(h−; ξ) = (c− c′)[v−∗ ]′(ξ) + v−∗ (ξ + σ′h) + v−∗ (ξ − σ′h)− v−∗ (ξ + σh)− v−∗ (ξ − σh)

+v−∗ (ξ + σ′v) + v−∗ (ξ − σ′v)− v−∗ (ξ + σv)− v−∗ (ξ − σv)

+g−δ
(
W−(h−)

)
− g
(
δ +W−(h−)

)
+R0

(
v−(ξ) + α−b−(q′)(ξ) + [η−Φ ]−1[b−(q′)(ξ)− Φ′(ξ)]; ξ

)
,

R+
q′,δ(h

+; ξ) = (c− c′)[v+
∗ ]′(ξ) + v+

∗ (ξ + σ′h) + v+
∗ (ξ − σ′h)− v+

∗ (ξ + σh)− v+
∗ (ξ − σh)

+v+
∗ (ξ + σ′v) + v+

∗ (ξ − σ′v)− v+
∗ (ξ + σv)− v+

∗ (ξ − σv)

+g−δ
(
W+(h+)

)
− g
(
δ +W+(h+)

)
+R0

(
v+(ξ) + α+b+(q′)(ξ)− [η+

Φ ]−1[b+(q′)(ξ)− Φ′(ξ)]; ξ
)
,

(3.114)
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in which we have introduced the expression

R0(v; ξ) = g
(
Φ(ξ) + v

)
− g
(
Φ(ξ)

)
− g′

(
Φ(ξ)

)
v. (3.115)

Lemma 3.14. Suppose that (hg)§3 and (hΦ)§3 are both satisfied, pick sufficiently small constants
δq > 0 and δ0 > 0 and an arbitrary constant M4 > 1. Then there exists a constant C4 > 1 and an
exponent κ4 > 0 such that for any sets

(v+, v+
1 , v

+
2 ) ∈ [BC⊕1,fs]

3, (α+, α+
1 , α

+
2 ) ∈ R3 (3.116)

that have∥∥v+
∥∥
BC⊕1,fs

+
∥∥v+

1

∥∥
BC⊕1,fs

+
∥∥v+

2

∥∥
BC⊕1,fs

≤M4,
∣∣α+

∣∣+
∣∣α+

1

∣∣+
∣∣α+

2

∣∣ ≤M4, (3.117)

any 0 ≤ δ < δ0 and any q′ ∈ Dq(δq), we have the estimates∥∥∥R+
q′,δ(v

+, α+; ·)
∥∥∥
BC+

fs

≤ C4δ
κ4 + C4 |q′ − q∗|+ C4

[
|α+|+ ‖v+‖BC⊕1,fs

]2
, (3.118)

together with∥∥∥R+
q′,δ(v

+
1 , α

+
1 ; ·)−R+

q′,δ(v
+
2 , α

+
2 ; ·)

∥∥∥
BC+

fs

≤ C4

[√
δ +

∥∥v+
1

∥∥
BC⊕1,fs

+
∥∥v+

2

∥∥
BC⊕1,fs

+
∣∣α+

1

∣∣+
∣∣α+

2

∣∣ ]
×
[ ∣∣α+

1 − α
+
2

∣∣+
∥∥v+

1 − v
+
2

∥∥
BC⊕1,fs

]
.

(3.119)

Similar estimates hold for the nonlinearities R−q′,δ.

Proof. Notice first that for every u ∈ R, there exists 0 < ϑ < 1 so that

τ+(u− δ,
√
δ)− u =

[
∂uτ

+(−δ + ϑu,
√
δ)− ∂uτ+(−δ,

√
δ)
]
u. (3.120)

Using the Lipschitz property (v) obtained in Lemma 3.8 for ∂uτ+, together with the bound (3.46),
one finds that there exists C ′1 > 1 so that∣∣g−δ (−δ + u)− g(u)

∣∣ ≤ C ′1 min{
√
δ, |u|} |u| (3.121)

holds for all u ∈ R and all 0 ≤ δ < δ0. In a similar fashion, for all such u and δ we have∣∣g−δ (−δ + u)− g(u)
∣∣ ≤ C ′1 min{

√
δ, |1− u|} |1− u| . (3.122)

In particular, whenever 1− u ∈ BC+
sl , we can estimate

∥∥gδ(− δ + u(·)
)
− g
(
u(·)

)∥∥
BC+

fs
≤ C ′1δ

2η+
sl−η

+
fs

2η+
sl ‖1− u‖BC+

sl
. (3.123)

In addition, exploiting the Lipschitz continuity of g′, for any u ∈ BC+
sl one easily estimates

‖R0(u(·); ·)‖BC+
fs
≤ C ′2 ‖u‖

2
BC+

sl
, (3.124)

for some C ′2 > 1, which suffices to establish (3.118). The Lipschitz bound (3.119) can be obtained
using standard arguments, again exploiting the Lipschitz continuity of g′ and ∂uτ

+.
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Proof of Proposition 3.7. Fix δ0 > 0 and δq > 0 sufficiently small. On account of the estimates in
Lemma 3.14, a fixed point argument can be used to construct for any q′ ∈ Dq(δq) and 0 ≤ δ < δ0, a
pair (h−∗ , h

+
∗ ) = (h−∗ , h

+
∗ )(q′, δ) with

(h−∗ , h
+
∗ ) = L3(q′)

(
R−q′,δ(h

−
∗ ; ·),R+

q′,δ(h
+
∗ ; ·)

)
. (3.125)

In addition, the map (q′, ν) 7→ (h−∗ , h
+
∗ )(q′, ν2) is C1-smooth with (h−∗ , h

+
∗ )(q, 0) = 0. The functions

W+(h+
∗ ) and W−(h−∗ ) together define a solution to the travelling wave system (3.109) provided

ev0[W+(h+
∗ ) − W−(h−∗ )] = 0 ∈ Γ. This one dimensional equation implicitly defines c′ as a C1-

smooth function of (
√
δ, σ′h, σ

′
v), which can be seen by exploiting (3.108) and using the identity∫

R
Ψ(ξ)Φ′(ξ) dξ = 1 to verify the conditions of the implicit function theorem. Similar computations

can be found in [27]. This concludes the construction of the pairs (c−p ,Φ
−
p ).

The pairs (c+p ,Φ
+
p ) can be constructed in a similar fashion and the differential inequalities (3.28)

now follow from the identities

J±ij (t) = g±δ
(
W±ij (t)

)
− g
(
W±ij (t)

)
, (3.126)

together with the inequalities (3.60).

4 Spreading Speed

In this section we consider the homogeneous lattice and set out to prove that large disturbances
from the zero rest state spread out to fill the entire lattice Z2, provided the initial support of the
disturbance is sufficiently large. This is the analogue of the classic result [1, Thm. 5.3] obtained by
Aronson and Weinberger for bistable reaction-diffusion PDEs.

Proposition 4.1. Consider the unobstructed LDE (2.1), suppose that (hg)§3 and (HΦ) both hold
and write c∗ = minζ∈[0,2π]{cζ}. Fix any 0 < c < c∗. Then for any sufficiently small η > 0, there exist
R = R(c, η) > 0 and T = T (c, η) > 0 such that the solution to the LDE (2.1) with initial condition

uij(0) =

{
1− η

√
i2 + j2 ≤ R

0
∣∣i2 + j2

∣∣ > R
(4.1)

satisfies uij(t) ≥ 1− η for all t ≥ T and
√
i2 + j2 ≤ R+ c(t− T ).

The main difficulty here is that it is no longer possible to construct a radially symmetric expand-
ing sub-solution, because the wave profiles are angular dependent. In addition, the technical trick
[1, (5.8)], which allowed a smooth flat core to be connected to an outwardly travelling wave via a
sharp interface, is no longer available. Instead, we work here with suitably stretched versions of the
angular dependent wave profiles in order to construct a wide transition area between the core and
the outgoing waves.

Lemma 4.2. Consider the unobstructed LDE (2.1) and suppose that (hg)§3 and (HΦ) both hold.
Pick a sufficiently small δ0 > 0 and recall the nonlinearities g−δ defined in Lemma 3.9. Then for
all 0 ≤ δ < δ0 and ζ ∈ [0, 2π] there exists a wave speed cζ;δ > 0 together with a wave profile
Φζ;δ ∈ C1(R,R) that satisfies the MFDE

cΦ′ζ;δ(ξ) = Φζ;δ(ξ + cos ζ) + Φζ;δ(ξ + sin ζ) + Φζ;δ(ξ − cos ζ) + Φζ;δ(ξ − sin ζ)− 4Φζ;δ(ξ)

+g−δ
(
Φζ;δ(ξ)

)
(4.2)

and enjoys the limits

lim
ξ→−∞

Φζ;δ(ξ) = −δ, lim
ξ→+∞

Φζ;δ(ξ) = 1− δ. (4.3)
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In addition, there exists a constant C1 > 1 so that for all 0 ≤ δ < δ0 and ζ ∈ [0, 2π], we have the
uniform bound ∣∣∣Φ′ζ;δ(ξ′)∣∣∣∣∣∣Φ′ζ;δ(ξ)∣∣∣ ≤ C1, |ξ′ − ξ| ≤ 2. (4.4)

Proof. The statements follow directly from Proposition 3.7. In particular, the uniform bound (4.4)
follows from the continuity properties stated in item (v) of this result.

In order to connect the waves defined above to a flat inner core, we need to ensure that the wave
profiles are all cut off at the same value. In addition, we need to enforce a convexity condition in
the transition area. The next result handles these two requirements.

Lemma 4.3. Suppose that (hg)§3 and (HΦ) both hold, pick a sufficiently small δ0 > 0 and recall
the wave profiles Φζ;δ defined in Lemma 4.2. Then for any h∞ ≥ 0, there exists a continuous map
τh∞ : [0, 2π]× (0, δ0)→ R and a continuous map Φ∞;h∞ : (0, δ0)→ (1− 2δ0, 1), such that the shifted
profiles

Φζ;δ,h∞(ξ) := Φζ;δ
(
ξ + τh∞(ζ, δ)

)
(4.5)

satisfy the following properties.

(i) For any δ ∈ (0, δ0), we have

Φ′′ζ;δ,h∞(ξ) ≤ 0, ξ ≥ 0, 0 ≤ ζ ≤ 2π. (4.6)

(ii) For any δ ∈ (0, δ0), we have

Φζ;δ,h∞(0) ≥ 1− 2δ, 0 ≤ ζ ≤ 2π. (4.7)

(iii) For any δ ∈ (0, δ0) and 0 ≤ ζ ≤ 2π, we have

Φζ;δ,h∞(h∞) = Φ∞;h∞(δ) ≥ 1− 2δ. (4.8)

(iv) For any fixed 0 < δ < δ0, the map ζ 7→ τh∞(ζ, δ) is C1-smooth.

Proof. We note first that the asymptotic estimates in Proposition 3.4 imply that the wave profiles
Φζ;δ(ξ) are convex down as ξ → +∞. In particular, the continuity properties of the asymptotic
coefficients that are stated in item (v) of Proposition 3.7 allow us to construct a continuous function
τ∗ : (0, δ0)→ R in such a way that for all ζ ∈ [0, 2π] and all 0 < δ < δ0, we have the inequalities

Φ′′ζ;δ
(
ξ + τ∗(δ)

)
≤ 0, ξ ≥ 0, (4.9)

together with

Φζ;δ
(
τ∗(δ)

)
≥ 1− 2δ. (4.10)

Now, for every 0 < δ < δ0 we define

Φ∞;h∞(δ) = max
ζ∈[0,2π]

Φζ;δ(τ∗(δ) + h∞), (4.11)

which depends continuously on δ. We can now pick τh∞(ζ, δ) in such a way that

Φζ;δ
(
τh∞(ζ, δ)

)
= Φ∞;h∞(δ) (4.12)
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holds for all ζ ∈ [0, 2π], which establishes (iii). Since Φ′ζ;δ > 0, we necessarily have τh∞(δ, ζ) ≥ τ∗(δ),
which implies (i) and (ii).

The smoothness (iv) can be established by noting that for any α in the range of Φζ;ν2 , the implicit
definition

Φζ;ν2(ξ) = α (4.13)

locally defines a C1-smooth function ξ = ξ(α, ζ, ν) on account of the fact that Φ′ζ;δ > 0. This
observation also implies that the continuity of the map (ζ, δ) 7→ τh∞(ζ, δ) follows directly from the
continuity of δ 7→ Φ∞;h∞(δ).

Our next result provides a bound on the angular derivatives of the wave profiles. We emphasize
that the constants K2 below cannot be taken to be uniform across 0 ≤ δ < δ0, because the shifts
τh∞ defined above generically become unbounded as δ → 0.

Corollary 4.4. Suppose that (hg)§3 and (HΦ) both hold and pick a sufficiently small δ0 > 0. Then
there exists an exponent η∗ > 0 so that the following holds true.

For any h∞ ≥ 0 and any 0 < δ < δ0, there exists a constant K2 = K2(δ;h∞) > 1 such that the
estimates

∂ζΦζ;δ,h∞(ξ) ≤ K2e
−η∗|ξ|, ξ ∈ R, ζ ∈ [0, 2π], (4.14)

hold for the wave profiles defined in Lemma 4.3.

Proof. The existence of the derivative with respect to ζ follows from item (iv) of Lemma 4.3, together
with the smoothness properties established in item (iv) of Proposition 3.7. The exponential bound
(4.14) follows from items (iv) and (v) of Proposition 3.7.

We now set out to construct an expanding sub-solution for the unobstructed LDE (2.1). We
introduce the set

Dp = {p = (δ, c, ρ, h∞, h) ∈ R4 × C2(R,R) for which (i)p through (iii)p below hold}, (4.15)

in which the three conditions are specified below.

(i)p Recalling δ0 from Lemma 4.3, we have 0 < δ < δ0.

(ii)p We have ρ > 0 and 0 < c < minζ∈[0,2π] cζ;δ.

(iii)p We have the inequalities 0 ≤ h′(ξ) ≤ 1 for all ξ ∈ R, together with the bound ‖h′′‖∞ <∞ and
the identity h(ξ) = h(0) = h∞ ≥ 0 for all ξ ≥ 0.

The variable ρ � 1 should be seen as the radius of the initial inner core where our sub-solution
is close to one and constant, while the function h should be seen as a stretching function that
smoothens the transition between an outer region where the sub-solution follows the wave profiles
and the inner region where the sub-solution is constant.

For any p = (δ, c, ρ, h∞, h) ∈ Dp, we now introduce the function u : [0,∞)→ `∞(Z2;R) given by

uij(t) = uij;p(t) = Φζij ;δ,h∞(h
(
ρ+ ct−Rij)

)
, (4.16)

where the pair (Rij , ζij) is defined in such a way that

i = Rij cos(ζij), j = Rij sin(ζij), Rij ≥ 0. (4.17)

In order to formulate conditions under which u is in fact a sub-solution for (2.1), we define

J−ij (t) = J−ij;p(t)

= u̇ij(t)− [∆+u(t)]ij − g
(
uij(t)

)
.

(4.18)
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Upon introducing the shorthand zij = zij(t) = ρ+ ct−Rij , we may compute

J−ij (t) = ch′
(
zij
)
Φ′ζij ;δ,h∞

(
h(zij)

)
−
[
Φζi+1,j ;δ,h∞

(
h(zi+1,j)

)
+ Φζi−1,j ;δ,h∞

(
h(zi−1,j)

)
− 2Φζij ;δ,h∞

(
h(zij)

)]
−
[
Φζi,j+1;δ,h∞

(
h(zi,j+1)

)
+ Φζi,j−1;δ,h∞

(
h(zi,j−1)

)
− 2Φζij ;δ,h∞

(
h(zij)

)]
−g
(

Φζij ;δ,h∞
(
h(zij)

))
.

(4.19)

The wave profile equation (4.2) can be rephrased as

0 = −cζij ;δΦ′ζij ;δ,h∞
(
h(zij)

)
+
[
Φζij ;δ,h∞

(
h(zij) + cos ζij

)
+ Φζij ;δ,h∞

(
h(zij)− cos ζij

)
− 2Φζij ;δ,h∞

(
h(zij)

)]
+
[
Φζij ;δ,h∞

(
h(zij) + sin ζij

)
+ Φζij ;δ,h∞

(
h(zij)− sin ζij

)
− 2Φζij ;δ,h∞

(
h(zij)

)]
+g−δ

(
Φζij ;δ,h∞

(
h(zij)

))
.

(4.20)

Upon introducing for any sequence v : Z2 → R the notation

π+
ijv =

(
vi+1,j , vi,j+1, vi−1,j , vi,j−1, vij

)
∈ R5, (4.21)

we may write

J−ij;p(t) = −H1

(
ζij , zij(t); p

)
+R2

(
π+
ijζ, π

+
ijz(t); p

)
+R3

(
π+
ijζ, π

+
ijz(t); p

)
, (4.22)

in which we have defined the expressions

H1(ζij , zij ; p) =
(
cζij ;δ − ch′(zij)

)
Φ′ζij ;δ,h∞

(
h(zij)

)
−g−δ

(
Φζij ;δ,h∞

(
h(zij)

))
+ g
(

Φζij ;δ,h∞
(
h(zij)

))
,

R2(π+
ijζ, π

+
ijz; p) = Φζij ;δ,h∞

(
h(zij) + cos ζij

)
− Φζi+1,j ;δ,h∞

(
h(zi+1,j)

)
+Φζij ;δ,h∞

(
h(zij)− cos ζij

)
− Φζi−1,j ;δ,h∞

(
h(zi−1,j)

)
,

R3(π+
ijζ, π

+
ijz; p) = Φζij ;δ,h∞

(
h(zij) + sin ζij

)
− Φζi,j+1;δ,h∞

(
h(zi,j+1)

)
+Φζij ;δ,h∞

(
h(zij)− sin ζij

)
− Φζi,j−1;δ,h∞

(
h(zi,j−1)

)
.

(4.23)

Roughly speaking, our goal is to show that H1 can be used to dominate R2 and R3. The following
series of results will focus on obtaining bounds for the first two of these three expressions, which in
view of the symmetry between R2 and R3 will suffice for our purposes.

Lemma 4.5. Suppose that (hg)§3 and (HΦ) both hold. Then for any p ∈ Dp, the bound

H1(ζij , zij ; p) ≥
[

min
ζ∈[0,2π]

{cζ;δ} − c
]
Φ′ζij ;δ,h∞

(
h(zij)

)
(4.24)

holds for all pairs (ζij , zij) ∈ R2.
In addition, there exists a constant κ3 > 0 such that we have the bound

H1(ζij , zij ; p) ≥ κ3δ (4.25)

for any p ∈ Dp and (ζij , zij) ∈ R2 for which Φζij ;δ,h∞
(
h(zij)

)
≤ 0.

Proof. This follows directly from (iii)p together with item (v) of Lemma 3.9.

34



For convenience, we split the expression R2 into three parts by introducing the expressions

R2,A(π+
ijζ, π

+
ijz; p) = Φζij ;δ,h∞(h(zij) + cos ζij)− Φζij ;δ,h∞

(
h(zij + cos ζij)

)
+Φζij ;δ,h∞(h(zij)− cos ζij)− Φζij ;δ,h∞

(
h(zij − cos ζij)

)
,

R2,B(π+
ijζ, π

+
ijz; p) = Φζij ;δ,h∞

(
h(zij − cos ζij)

)
− Φζij ;δ,h∞

(
h(zi+1,j)

)
+Φζij ;δ,h∞

(
h(zij + cos ζij)

)
− Φζij ;δ,h∞

(
h(zi−1,j)

)
,

R2,C(π+
ijζ, π

+
ijz; p) = Φζij ;δ,h∞

(
h(zi+1,j)

)
− Φζi+1,j ;δ,h∞

(
h(zi+1,j)

)
+Φζij ;δ,h∞

(
h(zi−1,j)

)
− Φζi−1,j ;δ,h∞

(
h(zi−1,j)

)
.

(4.26)

This allow us to write

R2(π+
ijζ, π

+
ijz; p) = R2,A(π+

ijζ, π
+
ijz; p) +R2,B(π+

ijζ, π
+
ijz; p) +R2,C(π+

ijζ, π
+
ijz; p) (4.27)

and we set out to bound each of the components separately.

Lemma 4.6. Suppose that (hg)§3 and (HΦ) both hold. Then there exists a constant K4 > 1 such
that the following holds true.

Consider any p ∈ Dp, any pair (i, j) ∈ Z2 and any t ≥ 0 and suppose that at least one of the two
following conditions is satisfied:

(a) For all z′ ∈ R with |z′ − zij(t)| ≤ 1, we have h′(z′) = 1.

(b) For all ξ ∈ R with
∣∣ξ − h(zij(t))∣∣ ≤ 2, we have Φ′′(ξ) ≤ 0.

Then one has the estimate

R2,A

(
π+
ijζ, π

+
ijz(t); p

)
≤ K4Φ′ζij ;δ,h∞

(
h
(
zij(t)

))
‖h′′‖∞ . (4.28)

Proof. We rewrite R2,A as the difference

R2,A(π+
ijζ, π

+
ijz; p) = Φζij ;δ,h∞

(
h
(
zij + (σ − τ) cos ζij

)
+ (σ + τ − 1) cos ζij

)∣∣τ=1

τ=0

∣∣σ=1

σ=0
, (4.29)

which allows us to apply the fundamental theorem of calculus to write

zij(σ, τ) = zij + (σ − τ) cos ζij ,

ξij(σ, τ) = h
(
zij(σ, τ)

)
+ (σ + τ − 1) cos ζij

(4.30)

and obtain

R2,A(π+
ijζ, π

+
ijz; p) =

∫ 1

0

∫ 1

0
Φ′′
(
ξij(σ, τ)

)[
1−

(
h′
(
zij(σ, τ)

))2]
cos2(ζij) dσdτ

−
∫ 1

0

∫ 1

0
Φ′
(
ξij(σ, τ)

)
h′′
(
zij(σ, τ)

)
cos2(ζij) dσdτ.

(4.31)

Note that for all 0 ≤ σ ≤ 1 and 0 ≤ τ ≤ 1, we have |zij(σ, τ)− zij | ≤ 1 and |ξij − h(zij)| ≤ 2. In
particular, if either (a) or (b) holds, the first term in (4.31) is non-positive, which allows us to apply
(4.4) and obtain the desired bound.

Lemma 4.7. Suppose that (hg)§3 and (HΦ) both hold. Then there exists a constant K5 > 1 such
that for any p ∈ Dp, any (i, j) ∈ Z2 and any t ≥ 0, we have the bound

R2,B(π+
ijζ, π

+
ijz(t); p) ≤ K5Φ′ζij ;δ,h∞

(
h
(
zij(t)

)) 1
1 +Rij

, (4.32)

which can be sharpened to

R2,B

(
π+
ijζ, π

+
ijz(t); p

)
= 0 (4.33)

whenever zij(t) ≥ 2.
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Proof. The triangle inequality

|Rij −Ri+1,j | ≤ 1 (4.34)

gives the bound |zij − zi+1,j | ≤ 1 for all (i, j) ∈ Z2. An application of the mean value theorem
implies

Φζij ;δ,h∞
(
h(zij − cos ζij)

)
− Φζij ;δ,h∞

(
h(zi+1,j)

)
= Φ′ζij ;δ

(
h(z∗)

)
h′(z∗)

[
zij − cos ζij − zi+1,j

]
(4.35)

for some z∗ that has |z∗ − zij | ≤ 2. The identity (4.33) for zij ≥ 2 is now immediate.
Assume for the moment that (i, j) 6= (0, 0). Exploiting the elementary observation

(Ri+1,j −Rij)(Ri+1,j +Rij) = R2
i+1,j −R2

ij = 1 + 2i, (4.36)

a little algebra leads to the identity

Ri+1,j −Rij − cos ζij = 1
2Rij

(
1 + (1+2i)(Rij−Ri+1,j)

Rij+Ri+1,j

)
. (4.37)

Again applying (4.34), we find

|Ri+1,j −Rij − cos ζij | ≤ 1
2Rij

(
1 + |i|+|i+1|

Rij+Ri+1,j

)
≤ 1

Rij
.

(4.38)

In particular, for any (i, j) ∈ Z2 we may write

|Ri+1,j −Rij − cos ζij | ≤
2

1 +Rij
. (4.39)

Observing the identity zi+1,j−zij = Rij−Ri+1,j and noting the estimate |h(z∗)− h(z)| ≤ |z∗ − z| ≤
2, one can now exploit the uniform bound (4.4) to complete the proof.

Lemma 4.8. Suppose that (hg)§3 and (HΦ) both hold and recall the constant η∗ defined in Corollary
4.4. Then for any p ∈ Dp, there exists a constant K6 = K6(δ, h∞) > 1 so that for any pair (i, j) ∈ Z2

and any t ≥ 0, we have the bound

R2,C(π+
ijζ, π

+
ijz(t); p) ≤ K6e

−η∗|h(zij(t))|(1 +Rij)−1, (4.40)

which can be sharpened to the identity

R2,C

(
π+
ijζ, π

+
ijz(t)

)
= 0 (4.41)

whenever zij(t) ≥ 1.

Proof. First of all, there exists C ′ > 0 for which the geometric bound

|ζi+1,j − ζij | ≤ C ′(1 +Rij)−1 (4.42)

holds for all (i, j) ∈ Z2. We now exploit the mean value theorem to write

Φζij ;δ,h∞
(
h(zi+1,j)

)
− Φζi+1,j ;δ,h∞

(
h(zi+1,j)

)
= ∂ζΦζ∗;δ,h∞

(
h(zi+1,j)

)
(ζi+1,j − ζij) (4.43)

for some ζ∗ ∈ [0, 2π]. The estimate (4.40) now follows upon combining (4.42) with (4.14).
Finally, the identity (4.41) follows from the fact that zi+1,j ≥ 0, which implies that h(zi+1,j) = h∞

and hence

∂ζΦζ∗;δ,h∞
(
h(zi+1,j)

)
= ∂ζΦζ∗;δ,h∞(h∞) = ∂ζΦ∞;h∞(δ) = 0. (4.44)
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We now show how to construct the stretching function h, reflecting the specific criteria that arise
in the statement of Lemma 4.6. This stretching function is then used to confirm the sub-solution
status of the functions (4.16).

Lemma 4.9. For any δh > 0, there exist constants L = L(δh) > 3 and h∞ = h∞(δh) > 3 together
with a C2-smooth function h = h(δh) : R→ R that satisfies the following properties.

(i) We have h(−L) = 0 and h(ξ) = h∞ for all ξ ≥ 0.

(ii) For all ξ ∈ R we have the bounds 0 ≤ h′(ξ) ≤ 1 and −δh ≤ h′′(ξ) ≤ 0.

(iii) For all ξ ≤ −L+ 3 we have h′(ξ) = 1.

Proof. First of all, write ` = L− 3 and consider the polynomial

P (ξ) =
`

2
+

1
2
`−3(ξ4 + 2`ξ3). (4.45)

It is easy to verify that

P (−`) = 0, P ′(−`) = 1, P ′′(−`) = 0, (4.46)

while also

P (0) =
1
2
`, P ′(0) = 0, P ′′(0) = 0. (4.47)

In addition, for all −` ≤ ξ ≤ 0 we have

0 ≤ P ′(ξ) = `−3ξ2(2ξ + 3`) ≤ 1 (4.48)

and

0 ≥ P ′′(ξ) = 6`−3(ξ2 + `ξ) ≥ P ′′(−1
2
`) = −3

2
`−1. (4.49)

We can hence find the desired function h by picking `� 1 and writing h(ξ) = 3 + ξ + ` for ξ ≤ −`,
together with h(ξ) = 3 + P (ξ) for −` ≤ ξ ≤ 0 and h(ξ) = 3 + 1

2` for ξ ≥ 0.

Lemma 4.10. Suppose that (hg)§3 and (HΦ) both hold and pick any 0 < c < minζ∈[0,2π]cζ . Then
there exist constants h∞ = h∞(c) > 0 and δ0 = δ0(c) > 0 together with a C2-function h = h(c) :
R→ R, so that the following holds true.

For any 0 < δ < δ0, there exists a constant ρ = ρ(c, δ)� 1 such that the function

uij(t) = Φζij ;δ,h∞
(
h(ρ+ ct−Rij)

)
(4.50)

satisfies the following properties.

(i) For all t ≥ 0 and (i, j) ∈ Z2 we have the differential inequality

u̇ij(t) ≤ [∆+u(t)]ij(t) + g
(
uij(t)

)
. (4.51)

(ii) For all (i, j) ∈ Z2 and t ≥ 0 for which Rij ≤ ρ+ ct, we have the inequalities

1− 2δ < uij(t) = Φ∞;h∞(δ) < 1− δ. (4.52)

(iii) For all t ≥ 0 we have the spatial limits

lim
|i|+|j|→∞

uij(t) = −δ. (4.53)
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Proof. First, pick κ′ > 0 and δ0 > 0 sufficiently small to ensure that for all 0 < δ < δ0 we have

min
ζ∈[0,2π]

[cθ;δ − c] > κ′. (4.54)

Now, pick δh in such a way that

K4δh <
1
6
κ′ (4.55)

and recall the function h and constants L and h∞ defined in Lemma 4.9.
Consider now the conditions (a) and (b) in Lemma 4.6. Our choice of the stretching function

h implies that we have h′(z) = 1 whenever z ≤ −L + 3, which implies that (a) is satisfied for
zij ≤ −L + 2. For zij ≥ −L + 2, we note that h(zij) ≥ 2. Since Φ′′θij ;δ,h∞(ξ) ≤ 0 for ξ ≥ 0, we see
that (b) is satisfied in this case. In particular, we may conclude that for all 0 < δ < δ0 and any t ≥ 0
we have

R2,A(π+
ijζ, π

+
ijz(t); p) ≤

1
6
κ′Φ′ζij ;δ,h∞

(
h
(
zij(t)

))
≤ 1

6
H1(ζij , zij(t); p). (4.56)

Turning our attention to R2,B , we note that Lemma 4.7 implies that

R2,B

(
π+
ijζ, π

+
ijz(t); p

)
= 0, zij(t) ≥ 2. (4.57)

On the other hand, for zij ≤ 2 we see that

Rij = ρ+ ct− zij ≥ ρ− 2. (4.58)

In particular, by choosing ρ� 1 in such a way that

K5(1 + [ρ− 2])−1 ≤ 1
6
κ′, (4.59)

we can ensure that for all 0 < δ < δ0 we have

R2,B

(
π+
ijζ, π

+
ijz(t); p

)
≤ 1

6
H1(ζij , zij(t); p). (4.60)

It remains to consider the term R2,C in the range zij ≤ 1, for which we know Rij ≥ ρ − 1. To
this end, fix a value for 0 < δ < δ0, recall the setting of Lemma 4.8 and choose h∗ � 1 in such a
way that

K6(δ, h∞)e−η∗h∗ ≤ 1
6
κ3δ (4.61)

holds, together with

Φζ;δ,h∞(−h∗) ≤ 0, ζ ∈ [0, 2π]. (4.62)

Lemma 4.5 implies that

R2,C

(
π+
ijζ, π

+
ijz(t); p

)
≤ 1

6
H1

(
ζij , zij(t); p

)
(4.63)

whenever h(zij(t)) ≤ −h∗, which is equivalent to zij(t) ≤ z∗ for some z∗ ∈ R. By possibly increasing
ρ� 1, we can now ensure that

K6e
−η∗|h(zij)|ρ−1 ≤ 1

6
κ′Φ′ζ;δ,h∞

(
h(zij)

)
(4.64)
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holds for all z∗ ≤ zij ≤ 1. This in fact implies that (4.63) holds for all zij(t) ∈ R.
The terms present in R3 can be recovered from the terms in R2 by the symmetry (i, j, θ) 7→

(j, i, θ + π/2). In particular, we can now write

J−ij;p(t) ≤ −H1(ζij , zij(t); p) + 1
2H1(ζij , zij(t); p) + 1

2H1(ζij , zij(t); p)

≤ 0,
(4.65)

which establishes (i). The remaining properties (ii) and (iii) follow directly from properties of the
profiles Φζ;δ,h∞ .

Proof of Proposition 4.1. Pick δ0 = δ0(c) and h∞ = h∞(c) from Lemma 4.10 above. For any small
η > 0, we can pick 0 < δ < δ0 such that Φ∞,h∞(δ) = 1− η by continuity and the limit

lim
δ↓0

Φ∞,h∞(δ) = 1. (4.66)

The result now follows directly from Lemma 4.10.

5 Large Disturbances

In this section we show how large but localized disturbances to planar travelling waves can be con-
trolled by suitably constructed sub and super-solutions. In particular, we show that such disturbances
eventually die out, showing that the planar waves are extremely robust.

Let us consider a planar wave that travels in the general direction (σh, σv) ∈ R2 \ {0, 0}. To
ease our notation, we introduce a new coordinate system that reflects the geometry of the wave. In
particular, we (somewhat misleadingly) write

n = iσh + jσv,

l = iσv − jσh.
(5.1)

The first of these coordinates represents the direction parallel to the propagation of the wave, while
the second coordinate represents the direction perpendicular to wave motion. In the sequel we often
refer to n as the wave coordinate and l as the transverse coordinate.

Let us write Z2
× ⊂ R2 for the set of all pairs (n, l) that can arise from the transformation (5.1).

For rational directions of propagation it is possible to pick (σh, σv) ∈ Z2, which ensures the inclusion
Z

2
× ⊂ Z2. However, the inverse of the transformation (5.1) is given by

i = [σ2
h + σ2

v ]−1
(
nσh + lσv

)
,

j = [σ2
h + σ2

v ]−1
(
nσv − lσh

)
,

(5.2)

which means that Z2
× can be a strict sublattice of Z2. Since we intend to treat the variables n and l

somewhat independently, we often choose to ignore this issue in this paper and simply take (n, l) ∈
Z

2. One can think of this choice as studying a finite number of independent systems simultaneously.
For directions of propagation that are not rational, the range Z2

× is no longer a subset of Z2. In this
case, we often take (n, l) ∈ R2, hence considering an infinite set of systems simultaneously.

Rewriting the homogeneous LDE (2.1) in terms of our new coordinates, we obtain the system

u̇nl(t) = [∆×
S
u(t)]nl + g

(
unl(t)

)
, (n, l) ∈ S, (5.3)

in which the set S can be one of

S ∈
{
Z

2,R2,Z2
×
}
, (5.4)
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depending on the circumstances. Here we have introduced the notation

[∆×
S
u]nl =

∑
(n′,l′)∈N×

S
(n,l)

[un′l′ − uij ], (5.5)

for any u : S→ R, in which the neighbour set

N×
S

(n, l) = {(n+ σh, l + σv), (n+ σv, l − σh), (n− σh, l − σv), (n− σv, l + σh)} ⊂ S (5.6)

encodes the geometry of the new coordinate system. To avoid clutter, we use the shorthand ∆× = ∆×
S

whenever it is clear which set is being used.
The planar travelling wave solutions (3.9) can now be written as

unl(t) = Φ(n+ ct), (n, l) ∈ S. (5.7)

The main results of this section construct sub and super-solutions for (5.3) that converge to shifted
versions of (5.7). Our versions are rather technical as we intend them to be strong enough to allow
the effects of the obstacle to be included later on. The properties (vi) - (viii) together with the fact
that we do not prescribe a specific choice for z should be seen in this light. On the other hand, the
algebraic decay properties imposed on z and stated in (iii) can be seen as direct consequences of the
discrete nature of the lattice.

Proposition 5.1. Consider any angle ζ∗ with tan ζ∗ ∈ Q and suppose that (Hg) and (HS)ζ∗ both
hold. Pick (σh, σv) ∈ Z2 \ {(0, 0)} with the property that√

σ2
h + σ2

v(cos ζ∗, sin ζ∗) = (σh, σv), gcd(σh, σv) = 1 (5.8)

and suppose that (hΦ)§3 holds for this pair (σh, σv) with c > 0.
Then there exist constants

δε > 0, ηz > 0, KZ > 1, KN > 1, ηN > 0, (5.9)

such that for any triplet (ε1, ε2, ε3) that has

0 < 2ε2 < ε1 ≤ δε, 0 < ε3 ≤ ε1 (5.10)

and any pair Ω⊥ > 0, Ωphase > 0, there exists a function θ : [0,∞)→ `∞(Z;R) so that the following
holds true.

Consider any phase shift ϑ ∈ R and any function z : [0,∞)→ R that satisfies the conditions

(i)z We have z′(t) ≥ −ηzz(t) for all t ≥ 0.

(ii)z We have 0 < z(t) ≤ z(0) = ε1 for all t ≥ 0.

(iii)z We have z(t) ≥ ε3(1 + t)−3/2.

There exist functions W± : [0,∞) → `∞(Z2;R) and ξ± : [0,∞) → `∞(Z2;R) that satisfy the
following properties.

(i) The quantities

J−nl(t) = Ẇ−nl(t)− [∆×W−(t)]nl − g
(
W−nl(t)

)
,

J +
nl(t) = Ẇ+

nl(t)− [∆×W+(t)]nl − g
(
W+
nl(t)

)
,

(5.11)

satisfy the bounds

J−nl(t) ≤ − 1
2ηzz(t),

J +
nl(t) ≥ + 1

2ηzz(t),
(5.12)

for all t ≥ 0 and (n, l) ∈ Z2.
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(ii) For |l| ≤ Ω⊥, we have

W−nl(0) ≤ Φ(n+ ct+ ϑ− Ωphase), W+
nl(0) ≥ Φ(n+ ct+ ϑ+ Ωphase). (5.13)

(iii) For every t ≥ 0 and every (n, l) ∈ Z2, we have the bounds

Φ
(
ξ−nl(t)

)
− ε2(1 + t)−1/2 ≤ W−nl(t) + z(t) ≤ Φ

(
ξ−nl(t)

)
+ ε2(1 + t)−1/2,

Φ
(
ξ+
nl(t)

)
− ε2(1 + t)−1/2 ≤ W+

nl(t)− z(t) ≤ Φ
(
ξ+
nl(t)

)
+ ε2(1 + t)−1/2.

(5.14)

(iv) We have θl(t) ≥ 0 for all t ≥ 0 and l ∈ Z, together with the uniform limit

lim
t→∞

[sup
l∈Z

θl(t)] = 0. (5.15)

(v) Introducing the function

Z(t) = KZ

∫ t

0

z(t′) dt′, (5.16)

we have the identities

ξ−nl(t) = n+ ct+ ϑ− θl(t)− Z(t),

ξ+
nl(t) = n+ ct+ ϑ+ θl(t) + Z(t).

(5.17)

(vi) Consider any bounded set S ⊂ Z2. Upon writing

diam(S) = sup
(n,l)∈S,(n′,l′)∈S

[
|n− n′|+ |l − l′|

]
, (5.18)

we have the uniform bounds

max(n,l)∈S ξ
−
nl(t)−min(n,l)∈S ξ

−
nl(t) ≤ 1 + diam(S),

max(n,l)∈S ξ
+
nl(t)−min(n,l)∈S ξ

+
nl(t) ≤ 1 + diam(S),

(5.19)

for every t ≥ 0.

(vii) For any (n, l) ∈ Z2 with |l| ≤ Ω⊥ and t ≥ 0, we have

ξ̇±nl(t) ≥
c

2
. (5.20)

(viii) For any pairs (n, l) ∈ Z2 and (n′, l′) ∈ N×
Z2(n, l), we have the bounds∣∣W±nl(t)−W±n′l′(t)∣∣ ≤ KN e−ηN |ξ±nl(t)|. (5.21)

Proposition 5.2. Consider the setting of Proposition 5.1, but now with tan ζ∗ /∈ Q and (σh, σv) =
(cos ζ∗, sin ζ∗). Then the results in Proposition 5.1 continue to hold, but now with maps

θ : [0,∞)→ L∞(R;R), W± : [0,∞)→ L∞(R2;R), ξ± : [0,∞)→  L∞(R2;R), (5.22)

variables

n ∈ R, l ∈ R (5.23)

and sets

S ⊂ R2, N×
R2(n, l). (5.24)
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Notice that a direct consequence of (iii), (iv) and (v) is that for all (n, l) ∈ Z2 or (n, l) ∈ R2, we
have

W−nl(0) ≤ Φ(n+ ct+ ϑ)− 1
2
ε1, W+

nl(0) ≥ Φ(n+ ct+ ϑ) +
1
2
ε1, (5.25)

which shows that we can indeed interpret the results above as a mechanism for turning small global
additive perturbations into small phase shifts, as customary in one-dimensional results of this nature.
The extra feature in two dimensions is that we can also include large localized phase shifts in the
initial perturbation.

In order to assist the reader in interpreting the results above, we conclude this subsection by
using them to establish the nonlinear stability of the travelling wave (5.7), as stated in Theorem 2.2.
As a preparation, we construct a template function zhom that satisfies the requirements (i)z through
(iii)z.

Lemma 5.3. Fix any 0 < ηz < 1. Then there exists constants Ihom = Ihom(ηz) > 1 and κhom =
κhom(ηz) > 0 together with a C1-smooth function zhom : [0,∞) → R that satisfies the following
properties.

(i) We have z′hom(t) ≥ −ηzzhom(t) for all t ≥ 0.

(ii) We have κhom(1 + t)−3/2 ≤ zhom(t) ≤ zhom(0) = 1 for all t ≥ 0.

(iii) We have
∫∞

0
zhom(t) dt < Ihom.

Proof. For 0 ≤ t ≤ 3
2η
−1
z − 1 we write

zhom(t) = e−ηzt, (5.26)

while for t ≥ 3
2η
−1
z − 1 we write

zhom(t) = η−3/2
z (

3
2

)3/2eηz−
3
2 (1 + t)−3/2. (5.27)

One can readily verify that zhom is C1-smooth and that (i) and (ii) are satisfied. Property (iii) follows
from the identity ∫ ∞

0

zhom(t) dt = η−1
z

[
2eηz−

3
2 + 1

]
. (5.28)

Proof of Theorem 2.2. Pick any δ∗ > 0. We restrict ourselves here to showing that

lim inf
t→∞

inf
(n,l)∈Z2

×

[Unl(t)− Φ(n+ ct)] ≥ −δ∗, (5.29)

noting that the companion bound

lim sup
t→∞

sup
(n,l)∈Z2

×

[Unl(t)− Φ(n+ ct)] ≤ +δ∗, (5.30)

can be obtained in a similar fashion.
Pick ε1 > 0 in such a way that

ε1KZIhom ‖Φ′‖∞ ≤ δ∗ (5.31)
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and write ε2 = 1
2ε1, ε3 = ε1κhom, ϑ = 0 and z(t) = ε1zhom(t). There exists a finite set Sε2 ⊂ Z2

× for
which

|Unl(0)− Φ(n)| ≤ ε2 (5.32)

holds for all (n, l) ∈ Z2
× \ Sε2 . In particular, by picking Ω⊥ and Ωphase appropriately, we can ensure

that

W−nl(0) ≤ Unl(0) (5.33)

holds for all (n, l) ∈ Z2
×. Since

lim
t→∞

sup
(n,l)∈Z2

×

[
W−nl(t)− Φ

(
n+ ct− Z(t)

)]
= 0, (5.34)

while also ∣∣Φ(n+ ct)− Φ
(
n+ ct− Z(t)

)∣∣ ≤ ‖Φ′‖∞ |Z(t)| ≤ ε1 ‖Φ′‖∞KZIhom ≤ δ∗, (5.35)

the comparison principle directly implies (5.29).

5.1 Notation

In this subsection we set up the notation that will be used throughout §5. In addition, we perform
some preliminary computations that will aid us in the construction of the sub and super-solutions
described in Proposition 5.1. Throughout the remainder of this section, we will assume for the sake
of readability that (σh, σv) ∈ Z2. The (slight) modifications that are required for irrational directions
will be pointed out at the appropriate locations.

First of all, we introduce for any u ∈ `∞(Z2;R) and any (n, l) ∈ Z2, the vector

π×nlu =
(
un+σh,l+σv , un+σv,l−σh , un−σh,l−σv , un−σv,l+σh , unl

)
∈ R5, (5.36)

which can be seen as evaluating u on a stencil of grid points that consists of (n, l) and its nearest
neighbours N×

Z2(n, l).
Upon introducing the vector

L× = (1, 1, 1, 1,−4) ∈ R5, (5.37)

we can now rewrite (5.3) in the form

u̇nl(t) = L×π×nlu(t) + g
(
unl(t)

)
. (5.38)

To avoid clutter, we also introduce the operator

π× : `∞(Z2;R)→ `∞(Z2,R5) (5.39)

that acts as

[π×u]nl = π×nlu. (5.40)

This allows us to restate (5.3) as

u̇(t) = L×π×u(t) + g
(
u(t)

)
, (5.41)

in which the nonlinearity g is interpreted to act componentwise. We will refer to equations such
as (5.41), where the dependence on (n, l) has been dropped, as equations in global form. Similarly,
equations such as (5.38) are called equations in local form.
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Summation Convention

Throughout the sequel we will use greek indices

µ, µ′, µ′′ ∈ {1, 2, 3, 4, 5}, ν, ν′, ν′′ ∈ {1, 2, 3, 4, 5} (5.42)

with the following summation convention. The indices µ, µ′, µ′′ will only appear on the right side
of identities and any term involving n ≥ 1 distinct greek indices needs to be summed over all 5n

combinations of these indices. On the other hand, the indices ν, ν′, ν′′ may appear on both sides of
an identity and do not require a summation.

We refer to individual components of π× and L× by writing

π×nl =
(
π×nl;1, . . . , π

×
nl;5

)
, L× =

(
L×1 , . . . , L

×
5

)
, (5.43)

together with

π× =
(
π×;1 , . . . , π

×
;5

)
. (5.44)

In particular, the local form (5.38) can be written as

u̇nl(t) = L×µ π
×
nl;µu(t) + g

(
unl(t)

)
, (5.45)

while the global form (5.41) can be written as

u̇(t) = L×µ π
×
;µu(t) + g

(
u(t)

)
. (5.46)

Let us now fix a speed c ∈ R together with a C1-smooth function θ : [0,∞) → `∞(Z;R) and
a C1-smooth function Z : [0,∞) → R. In what follows, a crucial role will be played by the related
quantities

ξnl(t) := n+ ct− θl(t)− Z(t), (n, l) ∈ Z2, t ≥ 0. (5.47)

In particular, let us consider any C2-smooth function h : R → R for which h, h′ and h′′ are all
bounded. Upon introducing the notation

nl(h; t) = h
(
ξnl(t)

)
(5.48)

and writing

(h; t) ∈ `∞(Z;R2) (5.49)

for the sequence that has

[(h; t)]nl = nl(h; t), (5.50)

we observe that the map t 7→ (h; t) is a C1-smooth map from [0,∞) into `∞(Z;R2). In particular,
by evaluating at ξnl(t) the scalar function h has been transformed into a smooth sequence-valued
function. We lose an order of smoothness here because of the uniform continuity requirements arising
from the `∞ norm.

Let us now consider two functions

p, q ∈ C1
(

[0,∞), `∞(Z;R)
)
. (5.51)

We introduce the notation

nl(q, h; t) = ql(t)h
(
ξnl(t)

)
, nl(p, q, h; t) = pl(t)ql(t)h

(
ξnl(t)

)
(5.52)
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and write

(q, h; t) ∈ `∞(Z;R2) (p, q, h; t) ∈ `∞(Z;R2) (5.53)

for the sequences that have

[(q, h; t)]nl = nl(q, h; t), [(p, q, h; t)]nl = nl(p, q, h; t). (5.54)

As before, the maps t 7→ (q, h; t) and t 7→ (p, q, h; t) are C1-smooth maps from [0,∞) into `∞(Z;R2).
Turning our attention to sequences θ ∈ `∞(Z;R), we need to introduce a number of difference

operators. To this end, we define the shifts

(σ1, . . . , σ5) =
(
σv,−σh,−σv, σh, 0

)
(5.55)

and introduce the notation

π�l θ =
(
π�l;1θ, . . . , π

�
l;5θ
)
∈ R5 (5.56)

for first difference operators π�l;ν that act as

π�l;νθ = θl+σν − θl, 1 ≤ ν ≤ 5. (5.57)

In global form, we write

π�θ = {π�l θ}l∈Z ∈ `∞(Z;R5) (5.58)

and refer to the individual components as

π�;νθ = {π�l;νθ}l∈Z ∈ `∞(Z;R). (5.59)

In a similar fashion, we introduce the notation

π��l θ =
(
π��l;νν′θ

)
(ν,ν′)∈{1,...5}2 ∈ R

5×5, (5.60)

with second difference operators that act as

π��l;νν′ =
(
θl+σν+σ′ν − θl+σ′ν

)
−
(
θl+σν − θl

)
. (5.61)

In other words, we have

π��l;νν′ = π�l;ν′π
�
;νθ. (5.62)

In global form, we write

π��θ = {π��l θ}l∈Z ∈ `∞(Z;R5×5), π��;νν′θ = {π��l;νν′θ}l∈Z ∈ `∞(Z;R). (5.63)

Naturally, this allows us to define third differences

π���θ ∈ `∞(Z;R5×5×5) (5.64)

by means of the components

π���l;νν′ν′′θ = π�l;ν′′π
��
;νν′θ = π�l;ν′′π

�
;ν′π

�
;νθ. (5.65)

We also need to consider a second transformation of the function h. To this end, we define the
five constants

(τ1, . . . , τ5) =
(
σh, σv,−σh,−σv, 0

)
(5.66)
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and write τh ∈ C2(R,R5) for the function that has

[τh](ξ) =
(
h(ξ + τ1), . . . , h(ξ + τ5)

)
∈ R5. (5.67)

Abusing notation, we often write

[τh](ξ) =
(
[τ1h](ξ), . . . , [τ5h](ξ)

)
(5.68)

for the five components of τh. We note that the pairing of the constants σµ and τµ comes directly
from the form of the neighbour set N×

Z2 defined in (5.6).
For any (n, l) ∈ Z2 and t ≥ 0, we write

nl(L; t) = L× +
(

0, 0, 0, 0, g′
(
Φ(ξnl(t))

))
∈ R5. (5.69)

In particular, for any sequence u ∈ `∞(Z2;R) we have

nl(L; t)π×nlu = L×µ π
×
nl;µu+ g′

(
Φ
(
ξnl(t)

))
unl. (5.70)

In global form, we shorten this to

(L; t)π×u = L×µ π
×
;µu+ g′

(
Φ
(
ξ(t)

))
u. (5.71)

For convenience, we often use the shorthand

nl(Lτh; t) = nl(L; t)nl(τh; t)

= L×µ [τµh]
(
ξnl(t)

)
+ g′

(
Φ
(
ξnl(t)

))
h
(
ξnl(t)

)
= L×µ h

(
ξnl(t) + τµ

)
+ g′

(
Φ
(
ξnl(t)

))
h
(
ξnl(t)

)
,

(5.72)

together with

nl(q, Lτh; t) = ql(t)nl(L; t)nl(τh; t)

= ql(t)nl(Lτh; t),

nl(p, q, Lτh; t) = pl(t)ql(t)nl(L; t)nl(τh; t)

= pl(t)ql(t)nl(Lτh; t).

(5.73)

In global form, we write

(Lτh; t) = (L; t)(τh; t),

(q, Lτh; t) = q(t)(Lτh; t),

(p, q, Lτh; t) = p(t)q(t)(Lτh; t).

(5.74)

5.2 Preliminary Computations

In this subsection we set out to derive a number of tractable expressions for the quantities

(L; t)π×(h; t), (L; t)π×(q, h; t), (L; t)π×(p, q, h; t), (5.75)

since these play a crucial role in the verification of the relevant differential inequalities for our sub-
solution. For use in the sequel when discussing obstacle problems, we also consider the quantities

[π×;ν − π×;5 ](h; t), [π×;ν − π×;5 ](q, h; t), [π×;ν − π×;5 ](p, q, h; t). (5.76)
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As in §5.1, the function h : R→ R is assumed to be C2-smooth with uniform bounds for h, h′ and
h′′, while p and q are assumed to be two C1-smooth functions mapping [0,∞) into `∞(Z;R).

We start by writing

π×nl;ν (h; t) = nl(τνh; t) +Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
= nl(τνh; t)− π�l;νθ(t) nl(τνh′; t) +Mh,2;ν(ξnl(t), π�l;νθ(t)

)
,

(5.77)

which should be seen as implicit definitions for the expressionsMh,1;ν andMh,2;ν . The mean value
theorem implies the identities

Mh,1;ν(ξnl, π�l;νθ) = h′(ξnl + τν + ϑ1[θl − θl+σν ]
)
[θl − θl+σν ],

Mh,2;ν(ξnl, π�l;νθ) = 1
2h
′′(ξnl + τν + ϑ2[θl − θl+σν ]

)
[θl − θl+σν ]2,

(5.78)

for some pair 0 < ϑ1 < 1 and 0 < ϑ2 < 1 that depends on ξnl ∈ R and π�l;νθ ∈ R5. In particular, the
uniform bounds on h′ and h′′ imply that there exists C > 0 such that

Mh,1;ν(ξnl, π�l;νθ) ≤ C
∣∣∣π�l;νθ∣∣∣ ,

Mh,2;ν(ξnl, π�l;νθ) ≤ C
∣∣∣π�l;νθ∣∣∣2 , (5.79)

for any ξnl ∈ R, any π�l;νθ ∈ R and any integer 1 ≤ ν ≤ 5. For convenience, for any t ≥ 0 we
introduce the global form expressions

Nh,1;ν(π�;νθ; t) ∈ `∞(Z2;R), Nh,2;ν(π�;νθ; t) ∈ `∞(Z2;R), (5.80)

that are given by

[Nh,1;ν(π�;νθ; t)]nl =Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
, [Nh,2;ν(π�;νθ; t)]nl =Mh,2;ν

(
ξnl(t), π�l;νθ(t)

)
.

(5.81)

Notice in particular, that for any ν ∈ {1, . . . , 4} we have

[π×nl;ν − π
×
nl;5] (h; t) = nl(τνh; t)− nl(h; t) +Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
. (5.82)

In global form, we write this as

[π×;ν − π×;5 ] (h; t) = (τνh; t)− (h; t) +Nh,1;ν

(
π�;νθ; t

)
. (5.83)

Moving on, we use (5.77) to compute

nl(L; t)π×nl (h; t) = L×µ nl(τµh; t) + g′
(

Φ
(
ξnl(t)

))
nl(h; t) + L×µMh,1;µ

(
ξnl(t), π�l;µθ(t)

)
= L×µ nl(τµh; t) + g′

(
Φ
(
ξnl(t)

))
nl(h; t)− L×µ π�l;µθ(t) nl(τµh′; t)

+L×µMh,2;µ

(
ξnl(t);π�l;µθ(t)

)
.

(5.84)

We remind the reader that according to our summation convention, all three terms featuring µ in
the final identity come with an implicit

∑5
µ=1 summation in front. Exploiting the fact that π�;5 = 0

and L×ν = 1 for 1 ≤ ν ≤ 4, we can now write

(L, t)π×(h; t) = (Lτh; t)− (π�;µθ, τµh
′; t) +Nh,2;µ(π�;µθ; t). (5.85)
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We now focus on expressions involving (q, h; t). First of all, a short computation shows that

π×nl;ν (q, h; t) = ql+σν (t)h
(
ξn+τν ,l+σν (t)

)
= π�l;νq(t)π

×
nl;ν (h; t) + ql(t)π×nl;ν (h; t).

(5.86)

Using the expression (5.77) above, we expand this as

π×nl;ν (q, h; t) = π�l;νq(t)nl(τνh; t) + π�l;νq(t)Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
+ql(t)nl(τνh; t)− ql(t)π�l;νθ(t)nl(τνh′; t)

+ql(t)Mh,2;ν

(
ξnl(t), π�l;νθ(t)

)
.

(5.87)

In global form, this is

π×;ν (q, h; t) = (π�;νq, τνh; t) + π�;νq(t)Nh,1;ν

(
π�;νθ; t

)
+(q, τνh; t)− (q, π�;νθ, τνh

′; t)

+q(t)Nh,2;ν

(
π�;νθ; t

)
.

(5.88)

At times, it suffices to use the cruder version

π×;ν (q, h; t) = (π�;νq, τνh; t) + π�;νq(t)Nh,1;ν

(
π�;νθ; t

)
+(q, τνh; t) + q(t)Nh,1;ν

(
π�;νθ; t

)
.

(5.89)

In particular, exploiting the crude identity (5.89), we obtain

[π×;ν − π×;5 ] (q, h; t) = (π�;νq, τνh; t) + π�;νq(t)Nh,1;ν

(
π�;νθ; t

)
+(q, τνh; t)− (q, h; t) + q(t)Nh,1;ν

(
π�;νθ; t

)
.

(5.90)

Moving on, we compute

nl(L; t)π×nl (q, h; t) = L×µ π
�
l;µq(t) nl(τµh; t) + L×µ π

�
l;µq(t)Mh,1;µ

(
ξnl(t), π�l;µθ(t)

)
+ql(t)nl(L; t)nl(τh; t)− ql(t)L×µ π�l;µθ(t)nl(τµh′; t)

+ql(t)L×µMh,2;µ

(
ξnl(t), π�l;µθ(t)

)
,

(5.91)

which as before can be simplified to

nl(L; t)π×nl (q, h; t) = π�l;µq(t) nl(τµh; t) + π�l;µq(t)Mh,1;µ

(
ξnl(t), π�l;µθ(t)

)
+ql(t)nl(L; t)nl(τh; t)− ql(t)π�l;µθ(t)nl(τµh′; t)

+ql(t)Mh,2;µ

(
ξnl(t), π�l;µθ(t)

)
.

(5.92)

In global form, we hence have

(L; t)π×(q, h; t) = (π�;µq, τµh; t) + π�;µq(t)Nh,1;µ(π�;µθ; t)

+(q, Lτh; t)− 
(
q, π�µθ, τµh

′; t
)

+ q(t)Nh,2;µ

(
π�;µθ; t

)
,

(5.93)

which if desired can be simplified to

(L; t)π×(q, h; t) = (π�;µq, τµh; t) + π�;µq(t)Nh,1;µ(π�;µθ; t)

+(q, Lτh; t) + q(t)Nh,1;µ

(
π�;µθ; t

)
.

(5.94)
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Finally, we discuss the terms involving (p, q, h; t). A short computation shows

π×nl;ν (p, q, h; t) = pl+σν (t)ql+σν (t)h
(
ξn+τν ,l+σν (t)

)
= π�l;νp(t)π

×
nl;ν (q, h; t) + pl(t)π×nl;ν (q, h; t),

(5.95)

which using (5.89) expands as

π×nl;ν (p, q, h; t) = π�l;νp(t)nl(π
�
;νq, τνh; t) + π�l;νp(t)π

�
l;νq(t)Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
+π�l;νp(t)nl(q, τνh; t) + π�l;νp(t)ql(t)Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
+pl(t)nl(π�;νq, τνh; t) + pl(t)π�l;νq(t)Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
+pl(t)(q, τνh; t) + pl(t)ql(t)Mh,1;ν

(
ξnl(t), π�l;νθ(t)

)
.

(5.96)

Inspection of this expression readily yields

[π×;ν − π×;5 ] (p, q, h; t) = (π�;νp, π
�
;νq, τνh; t) + π�;νp(t)π

�
;νq(t)Nh,1;ν

(
π�;νθ; t

)
+(π�;νp(t), q, τνh; t) + π�;νp(t)q(t)Nh,1;ν

(
π�;νθ; t

)
+(p, π�;νq, τνh; t) + p(t)π�;νq(t)Nh,1;ν

(
π�;νθ; t

)
+(p, q, τνh; t)− (p, q, h; t) + p(t)q(t)Nh,1;ν

(
π�;νθ; t

)
.

(5.97)

In addition, we can compute

nl(L; t)π×nl (p, q, h; t) = π�l;µp(t)nl(π
�
;µq, τµh; t) + π�l;µp(t)π

�
l;µq(t)Mh,1;µ

(
ξnl(t), π�l;µθ(t)

)
+π�l;µp(t)nl(q, τµh; t) + π�l;µp(t)ql(t)Mh,1;µ

(
ξnl(t), π�l;µθ(t)

)
+pl(t)nl(π�;µq, τµh; t) + pl(t)π�l;µq(t)Mh,1;µ

(
ξnl(t), π�l;µθ(t)

)
+pl(t)ql(t)nl(Lτh; t) + pl(t)ql(t)Mh,1;µ

(
ξnl(t), π�l;µθ(t)

)
,

(5.98)

which can be rewritten in global form as

(L; t)π×(p, q, h; t) = (π�;µp(t), π
�
;µq, τµh; t) + π�;µp(t)π

�
;µq(t)Nh,1;µ

(
π�;µθ; t

)
+(π�;µp(t), q, τµh; t) + π�;µp(t)q(t)Nh,1;µ

(
π�;µθ; t

)
+(p, π�;µq, τµh; t) + p(t)π�;µq(t)Nh,1;µ

(
π�;µθ; t

)
+(p, q, Lτh; t) + p(t)q(t)Nh,1;µ

(
π�;µθ; t

)
.

(5.99)

5.3 The Ansatz

In this subsection we introduce the basic form of the sub-solution that we will analyze and perform
some preliminary computations pertaining to the differential inequality that sub-solutions must
satisfy. In particular, throughout this subsection we fix three external functions

θ ∈ C1
(
[0,∞), `∞(Z;R)

)
, z ∈ C1

(
[0,∞),R

)
, Z ∈ C1

(
[0,∞),R

)
(5.100)

and consider fifty-five auxilliary functions

p�ν ∈ BC2(R,R), p��νν′ ∈ BC2(R,R), q��νν′ ∈ BC2(R,R) (5.101)
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that will be determined later on in this subsection.
Our Ansatz can be written as

u−nl(t) = Φ
(
n+ ct− θl(t)− Z(t)

)
+ π�l;µθ(t)p

�
µ

(
n+ ct− θl(t)− Z(t)

)
+π��l;µµ′θ(t)p

��
µµ′

(
n+ ct− θl(t)− Z(t)

)
+π�l;µθ(t)π

�
l;µ′θ(t)q

��
µµ′

(
n+ ct− θl(t)− Z(t)

)
− z(t).

(5.102)

Upon writing

ξnl(t) = n+ ct− θl(t)− Z(t), (5.103)

our Ansatz can be rephrased in the global form

u−(t) = (Φ; t) + (π�;µθ, p
�
µ; t) + (π��;µµ′θ, p

��
µµ′ ; t) + (π�;µθ, π

�
;µ′θ, q

��
µµ′ ; t)− z(t). (5.104)

We note that (Φ; t) − z(t) can be seen as the direct lifting of the PDE sub-solution used in [9] to
the discrete setting. The terms (π�;µθ, p

�
µ; t) correspond to those that were explicitly discussed in §1,

which allowed a factor Φ′(ξ) to be pulled off from all first differences in θ appearing in the residual.
The remaining terms in (5.104) are designed to allow a similar factorization for all second order
differences and certain problematic products of first order differences.

As a first preparation, we introduce the nonlinear expression

RN ;ν(π�θ, π��θ; t) = [π×;ν − π×;5 ]u−(t)

= RN ;Φ;ν(π�θ; t) +RN ;p�;ν(π�θ, π��θ; t)

+RN ;p��;ν(π�θ, π��θ; t) +RN ;q��;ν(π�θ, π��θ; t),

(5.105)

in which we have defined

RN ;Φ;ν(π�θ; t) = [π×;ν − π×;5 ](Φ; t),

RN ;p�;ν(π�θ, π��θ; t) = [π×;ν − π×;5 ](π�;µ′θ, p
�
µ′ ; t),

RN ;p��;ν(π�θ, π��θ; t) = [π×;ν − π×;5 ](π��;µ′µ′′θ, p
��
µ′µ′′ ; t),

RN ;q��;ν(π�θ, π��θ; t) = [π×;ν − π×;5 ](π�;µ′θ, π
�
;µ′′θ, q

�
µ′µ′′ ; t).

(5.106)

Using the expressions obtained in §5.2, we now compute

RN ;Φ;ν(π�θ; t) = (τνΦ; t)− (Φ; t) +NΦ,1;ν

(
π�;νθ(t); t

)
RN ;p�;ν(π�θ, π��θ; t) = 

(
π��;µ′νθ, p

�
µ′ ; t) + π��µ′νθ(t)Np�µ′ ,1;ν

(
π�;νθ(t); t

)
+(π�µ′θ, τνp

�
µ′ ; t)− (π�µ′θ, p

�
µ′ ; t)

+π�µ′θ(t)Np�µ′ ,1;ν

(
π�;νθ(t)

)
,

(5.107)
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together with

RN ;p��;ν(π�θ, π��θ; t) = 
(
π���;µ′µ′′νθ, p

��
µ′µ′′ ; t) + π���µ′µ′′νθ(t)Np��µ′µ′′ ,1;ν

(
π�;νθ(t); t

)
+(π��µ′µ′′θ, τνp

��
µ′µ′′ ; t)− (π��µ′µ′′θ, p

��
µ′µ′′ ; t)

+π��µ′µ′′θ(t)Np��µ′µ′′ ,1;ν

(
π�;νθ(t)

)
,

RN ;q��;ν(π�θ, π��θ; t) = (π��µ′νθ, π
��
µ′′νθ, τνq

��
µ′µ′′ ; t) + π��µ′νθ(t)π

��
µ′′νθ(t)Nq��µ′µ′′ ,1;ν

(
π�;νθ; t

)
+(π��µ′νθ, π

�
µ′′θ, τνq

��
µ′µ′′ ; t) + π��µ′νθ(t)π

�
µ′′θ(t)Nq��µ′µ′′ ,1;ν

(
π�;νθ; t

)
+(π�µ′θ, π

��
µ′′νθ, τνq

��
µ′µ′′ ; t) + π�µ′θ(t)π

��
µ′′νθ(t)Nq��µ′µ′′ ,1;ν

(
π�;νθ; t

)
+(π�µ′θ, π

�
µ′′θ, τνq

��
µ′µ′′ ; t)− (π�µ′θ, π

�
µ′′θ, q

��
µ′µ′′ ; t)

+π�µ′θ(t)π
�
µ′′θ(t)Nq��µ′µ′′ ,1;ν

(
π�;νθ; t

)
.

(5.108)

We now turn to the main task in this subsection, which is to consider the quantity

J−nl(t) = u̇−nl(t)− [∆×u−(t)]nl − g
(
u−nl(t)

)
(5.109)

and determine suitable choices for the functions (5.101). To this end, we decompose J−nl(t) as

J−nl(t) = u̇−nl(t)− L×π
×
nlu
−(t)− g

(
u−nl(t)

)
= u̇−nl(t)− nl(L; t)π×nlu

−(t) + g′
(

Φ
(
ξnl(t)

))
u−nl(t)− g

(
u−nl(t)

)
= u̇−nl(t)− nl(L; t))π×nlu

−(t) + g′
(

Φ
(
ξnl(t)

))[
u−nl(t)− Φ

(
ξnl(t)

)]
− g
(
u−nl(t)

)
+g′
(

Φ
(
ξnl(t)

))
Φ
(
ξnl(t)

)
.

(5.110)

For convenience, we rephrase this as

J−(t) = u̇−(t)− (L; t)π×u−(t) + 
(
g′(Φ); t

)[
u−(t)− (Φ; t)

]
− g
(
u−(t)

)
+(LτΦ; t)− L×(τΦ; t)

(5.111)

and carefully study each of the terms.
First of all, a short computation shows that

u̇−(t) = c(Φ′; t)− (θ̇ + Ż,Φ′; t)− ż(t)

+(π�;µθ̇, p
�
µ; t) + c(π�;µθ,Dp

�
µ; t)− (θ̇ + Ż, π�;µθ,Dp

�
µ; t)

+(π��;µµ′ θ̇, p
��
µµ′ ; t) + c(π��;µµ′θ,Dp

��
µµ′ ; t)− (θ̇ + Ż, π��;µµ′θ,Dp

��
µµ′ ; t)

+(π�;µθ̇, π
�
;µ′θ, q

��
µµ′ ; t) + (π�;µθ, π

�
;µ′ θ̇, q

��
µµ′ ; t)

+c(π�;µθ, π
�
;µ′θ,Dq

��
µµ′ ; t)− (θ̇ + Ż, π�;µθ, π

�
;µ′θ,Dq

��
µµ′ ; t).

(5.112)

For later use, we introduce the fifty-five functions

f�p;ν ∈ BC1(R,R), f��p;νν′ ∈ BC1(R,R), f��q;νν′ ∈ BC1(R,R) (5.113)

that are defined by

f�p;ν = L0p
�, f��p;νν′ = L0p

��
νν′ , f��q;νν′ = L0q

��
νν′ , (5.114)

51



in which we have recalled the linear operator

[L0v](ξ) = −cv′(ξ) + v(ξ + σh) + v(ξ + σv) + v(ξ − σh) + v(ξ − σv)− 4v(ξ)

+g′
(
Φ(ξ)

)
v(ξ).

(5.115)

Notice in particular that if L0v = f , then

cnl(v′; t) = nl(L; t)nl(τv; t)− f
(
ξnl(t)

)
, (5.116)

which allows us to write

c(v′; t) = (Lτv; t)− (f ; t). (5.117)

In addition, the wave profile equation implies that for any t ≥ 0 we have

cΦ′(ξnl(t)) = L×µ [τµΦ]
(
ξnl(t)

)
+ g
(

Φ
(
ξnl(t)

))
, (5.118)

which implies that

c(Φ′; t) = L×µ (τµΦ; t) + 
(
g(Φ); t

)
= L×(τΦ; t) + 

(
g(Φ); t

)
.

(5.119)

With this hand, we can expand u̇−(t) as

u̇−(t) = L×(τΦ; t) + (g(Φ); t)− (θ̇ + Ż,Φ′; t)− ż(t)

+(π�;µθ̇, p
�
µ; t)− (θ̇ + Ż, π�;µθ,Dp

�
µ; t)

+(π�;µθ, Lτp
�
µ; t)− (π�;µθ, f

�
p;µ; t)

+(π��;µµ′ θ̇, p
��
µµ′ ; t)− (θ̇ + Ż, π��;µµ′θ,Dp

��
µµ′ ; t)

+(π��;µµ′θ, Lτp
��
µµ′ ; t)− (π��;µµ′θ, f

��
p;µµ′ ; t)

+(π�;µθ̇, π
�
;µ′θ, q

��
µµ′ ; t) + (π�;µθ, π

�
;µ′ θ̇, q

��
µµ′ ; t)

−(θ̇ + Ż, π�;µθ, π
�
;µ′θ,Dq

��
µµ′ ; t)

+(π�;µθ, π
�
;µ′θ, Lτq

��
µµ′ ; t)− (π�;µθ, π

�
;µ′θ, f

��
q;µµ′ ; t).

(5.120)

Moving on to the second term in (5.111), we use the computations in §5.2 to compute

(L; t)π×u−(t) = (L, τΦ; t)− (π�µθ, τµΦ′; t) +NΦ,2;µ(π�;µθ; t)− (L; t)z(t)

+(π��;µµ′θ, τµ′p
�
µ; t) + π��;µµ′θ(t)Np�µ,1;µ′(π�;µ′θ; t)

+(π�;µθ, Lτp
�
µ; t)− (π�;µθ, π

�
;µ′θ, τµ′Dp

�
µ; t)

+π�;µθ(t)Np�µ,2;µ′
(
π�;µ′θ; t

)
+(π���;µµ′µ′′θ, τµ′′p

��
µµ′ ; t) + π���;µµ′µ′′θ(t)Np�µµ′ ,1;µ′′(π�;µ′′θ; t)

+(π��;µµ′θ, Lτp
�
µµ′ ; t) + π��;µµ′θ(t)Np��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
+(π��µµ′′θ, π

��
µ′µ′′θ, τµ′′q

��
µµ′ ; t) + π��µµ′′θ(t)π

��
µ′µ′′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
+(π��µµ′′θ, π

�
µ′θ, τµ′′q

��
µµ′ ; t) + π��µµ′′θ(t)π

�
µ′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
+(π�µθ, π

��
µ′µ′′θ, τµ′′q

��
µµ′ ; t) + π�µθ(t)π

��
µ′µ′′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
+(π�µθ, π

�
µ′θ, Lτq

��
µµ′ ; t) + π�µθ(t)π

�
µ′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
.

(5.121)
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Comparing (5.111), (5.120) and (5.121), we see that a fair number of terms cancel. In order to
organize the remaining terms, we first introduce for v ∈ `∞(Z2;R) the nonlinear expression

G0

(
v; t) = −g

(
(Φ; t) + v

)
+ g
(
(Φ; t)

)
+ g′

(
(Φ; t)

)
v ∈ `∞(Z2;R), (5.122)

which measures the purely nonlinear part of g near the wave Φ
(
ξnl(t)

)
. Utilizing G0, we now define

the nonlinear expression

R1

(
π�θ, π��θ, z; t

)
= G0

(
(π�;µθ, p

�
µ; t) + (π��µµ′θ, p

��
µµ′ ; t) + (π�µθ, π

�
µ′θ, q

��
µµ′ ; t)− z(t); t

)
−NΦ,2;µ(π�;µθ; t).

(5.123)

In addition, we define the nonlinear expressions

R2

(
Ż, π�θ, π��θ; t

)
= −(Ż, π�;µθ,Dp

�
µ; t)− (Ż, π��;µµ′θ,Dp

��
µµ′ ; t),

R3

(
θ̇, π��θ; t

)
= −(θ̇, π��;µµ′θ,Dp

��
µµ′ ; t),

R4

(
π�θ̇, π�θ; t

)
= (π�;µθ̇, π

�
;µ′θ, q

��
µµ′ ; t) + (π�;µθ, π

�
;µ′ θ̇, q

��
µµ′ ; t),

(5.124)

together with

R5

(
π�θ, π��θ, π���θ; t

)
= −π��;µµ′θ(t)Np�µ,1;µ′(π�;µ′θ; t)− π�;µθ(t)Np�µ,2;µ′

(
π�;µ′θ; t

)
−π���;µµ′µ′′θ(t)Np�µµ′ ,1;µ′′(π�;µ′′θ; t)− π��;µµ′θ(t)Np��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
−(π��µµ′′θ, π

��
µ′µ′′θ, τµ′′q

��
µµ′ ; t)− π��µµ′′θ(t)π��µ′µ′′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
−(π��µµ′′θ, π

�
µ′θ, τµ′′q

��
µµ′ ; t)− π��µµ′′θ(t)π�µ′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
−(π�µθ, π

��
µ′µ′′θ, τµ′′q

��
µµ′ ; t)− π�µθ(t)π��µ′µ′′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
−π�µθ(t)π�µ′θ(t)Nq��µµ′ ,1;µ′′

(
π�;µ′′θ; t

)
.

(5.125)

Finally, we define the two linear expressions

E1
(
π��θ̇; t

)
= (π��;µµ′ θ̇p

��
µµ′ ; t),

E2
(
π���θ; t

)
= −(π���;µµ′µ′′θ, τµ′′p

��
µµ′ ; t).

(5.126)

Together, these expressions allow us to write

J−(t) = −(Ż,Φ′; t)− ż(t) + (L; t)z(t)

−(θ̇,Φ′; t) + (π�µθ, τµΦ′; t)− (π�;µθ, f
�
p;µ; t)

+(π�;µθ̇, p
�
µ; t)− (π��;µµ′θ, τµ′p

�
µ; t)− (π��;µµ′θ, f

��
p;µµ′ ; t)

−(θ̇, π�;µθ,Dp
�
µ; t) + (π�;µθ, π

�
;µ′θ, τµ′Dp

�
µ; t)− (π�;µθ, π

�
;µ′θ, f

��
q;µµ′ ; t)

+R1

(
π�θ, π��θ, z; t

)
+R2

(
Ż, π�θ, π��θ; t

)
+R3

(
θ̇, π��θ; t

)
+R4

(
π�θ̇, π�θ; t

)
+R5

(
π�θ, π��θ, π���θ; t

)
+E1

(
π��θ̇; t

)
+ E2

(
π���θ; t

)
.

(5.127)

We emphasize at this point that in the sequel all the terms contained in numbered expressions will
be bounded by the terms that are kept in their explicit form.
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Our task is to choose the inhomogeneities (5.114) in such a way that all the explicit terms in
(5.127) that do not involve the function z are of the form (∗,Φ′; t). This way, the dependence of
these terms on ξnl(t) can be factored out, leaving only terms that merely depend on the transverse
coordinate l. To this end, we start by writing

f�p;ν(ξ) = [τνΦ′](ξ)− α�p;νΦ′(ξ), (5.128)

in which the choice

α�p;ν =
∫
R

Ψ(ξ)[τνΦ′](ξ) dξ, (5.129)

ensures by the characterization (2.20) that one can find functions p�ν ∈ BC1(R,R) for which the
relevant identity in (5.114) holds.

Incorporating the definitions above into (5.127), we arrive at the identity

J−(t) = −(Ż,Φ′; t)− ż(t) + (L; t)z(t)

−(θ̇,Φ′; t) + (α�p;µπ
�
µθ,Φ

′; t)

+(α�p;µπ
�
;µµ′θ, p

�
µ′ ; t)− (π��;µµ′θ, τµ′p

�
µ; t)− (π��;µµ′θ, f

��
p;µµ′ ; t)

−(α�p;µπ
�
µθ, π

�
;µ′θ,Dp

�
µ′ ; t) + (π�;µθ, π

�
;µ′θ, τµ′Dp

�
µ; t)− (π�;µθ, π

�
;µ′θ, f

��
q;µµ′ ; t)

+R1

(
π�θ, π��θ, z; t

)
+R2

(
Ż, π�θ, π��θ; t

)
+R3

(
θ̇, π��θ; t

)
+R4

(
π�θ̇, π�θ; t

)
+R5

(
π�θ, π��θ, π���θ; t

)
+R6

(
θ̇, π�θ; t)

+E1
(
π��θ̇; t

)
+ E2

(
π���θ; t

)
+ E3

(
π�θ̇, π��θ; t

)
,

(5.130)

in which we have introduced the extra nonlinear expression

R6

(
θ̇, π�θ; t) = −(θ̇ − α�µπ�µθ, π�;µ′θ,Dp�µ′ ; t), (5.131)

together with the extra linear expression

E3
(
π�θ̇, π��θ; t) = (π�;µ′ [θ̇ − α�µπ�µθ], p�µ′ ; t). (5.132)

In order to satisfy the goal mentioned above, it now suffices to pick

f��p;νν′(ξ) = α�p;νp
�
ν′(ξ)− [τν′p�ν ](ξ)− α��p;νν′Φ′(ξ),

f��q;νν′(ξ) = −α�p;νDp�ν′(ξ) + [τν′Dp�ν ](ξ)− α��q;νν′Φ′(ξ),
(5.133)

in which we have introduced the constants

α��p;νν′ =
∫
R

Ψ(ξ)
[
α�p;νp

�
ν′(ξ)− [τν′p�ν ](ξ)

]
dξ,

α��q;νν′ =
∫
R

Ψ(ξ)
[
− α�p;νDp�ν′(ξ) + [τν′Dp�ν ](ξ)

]
dξ.

(5.134)

As above, these choices ensure that one can find functions p��νν′ , q
��
νν′ ∈ BC1(R,R) for which the

relevant identities in (5.114) hold.
Upon introducing our final nonlinear expression

R7

(
π�θ; t

)
= α��q;µµ′ (π

�
;µθ, π

�
;µ′θ,Φ

′; t), (5.135)

we can summarize our computations in the following result.
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Lemma 5.4. Pick any pair (σh, σv) ∈ Z2 \ {(0, 0)} and suppose that (Hg) and (hΦ)§3 both hold.
Then for every (ν, ν′) ∈ {1, . . . 5}2, there exist functions

p�ν , p
��
νν′ , q

��
νν′ ∈ BC2(R,R) (5.136)

that satisfy the identities

[L0p
�
ν ](ξ) = [τνΦ′](ξ)− α��p;νΦ′(ξ),

[L0p
��
νν′ ](ξ) = α�p;νp

�
ν′(ξ)− [τν′p�ν ](ξ)− α��p;νν′Φ′(ξ),

[L0q
��
νν′ ](ξ) = −α�p;νDp�ν′(ξ) + [τν′Dp�ν ](ξ)− α�q;νν′Φ′(ξ),

(5.137)

with coefficients

α�p,ν =
∫
R

Ψ(ξ)[τνΦ′](ξ) dξ,

α��p;νν′ =
∫
R

Ψ(ξ)
[
α�p;νp

�
ν′(ξ)− [τν′p�ν ](ξ)

]
dξ,

α��q;νν′ =
∫
R

Ψ(ξ)
[
− α�p;νDp�ν′(ξ) + [τν′Dp�ν ](ξ)

]
dξ.

(5.138)

In addition, for every triplet of C1-smooth functions

z : [0,∞)→ R, Z : [0,∞)→ R, θ : [0,∞)→ `∞(Z;R), (5.139)

the function u− : [0,∞)→ `∞(Z2;R), defined by

u−(t) = (Φ; t) + (π�;µθ, p
�
µ; t) + (π��;µµ′θ, p

��
µµ′ ; t) + (π�;µθ, π

�
;µ′θ, q

��
µµ′ ; t)− z(t) (5.140)

with ξnl(t) = n+ ct− θl(t)− Z(t), admits the identity

J−(t) := u̇−(t)−∆×u−(t)− g
(
u−(t)

)
= −(Ż,Φ′; t)− ż(t) + (L; t)z(t)

−(θ̇,Φ′; t) + α�p;µ(π�µθ,Φ
′; t) + α��p;µµ′ (π

��
µµ′θ,Φ

′; t)

+R1

(
π�θ, π��θ, z; t

)
+R2

(
Ż, π�θ, π��θ; t

)
+R3

(
θ̇, π��θ; t

)
+R4

(
π�θ̇, π�θ; t

)
+R5

(
π�θ, π��θ, π���θ; t

)
+R6

(
θ̇, π�θ; t) +R7

(
π�θ; t

)
+E1

(
π��θ̇; t

)
+ E2

(
π���θ; t

)
+ E3

(
π�θ̇, π��θ; t

)
.

(5.141)

Here the nonlinear expressions R1 through R7 are defined in (5.123), (5.124), (5.125), (5.131) and
(5.135), while the linear expressions E1 through E3 are defined in (5.126) and (5.132).

Finally, for any ν ∈ {1, . . . 4} we have

[π×;ν − π×;5 ]u−(t) = RN ;ν(π�θ, π��θ; t), (5.142)

with RN ;ν defined in (5.105).

In the remainder of this subsection we derive some useful estimates on the numbered terms
appearing in (5.141). In addition, we establish a critical relation between the expressions (5.137)-
(5.138) and spectral properties of the operators Lω discussed in Proposition 2.1.

Lemma 5.5. Consider the setting of Lemma 5.4. There exist constants K� > 1 and η� > 0 such
that we have the bounds

|p�(ξ)|+ |p��(ξ)|+ |q��(ξ)| ≤ K�e
−η�|ξ|,

|Dp�(ξ)|+ |Dp��(ξ)|+ |Dq��(ξ)| ≤ K�e
−η�|ξ|,

(5.143)
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for all ξ ∈ R. In addition, we have the bounds[
|p�(ξ)|+ |p��(ξ)|+ |q��(ξ)|

]2 ≤ K�Φ′(ξ), (5.144)

again for all ξ ∈ R.

Proof. Upon recalling the constants η±Φ from Lemma 3.3, let us write η±� = 3
4η
±
Φ . Upon writing

Λ+
inv : BC−η+

�
([0,∞),R)→ BC1

−η+
�

([−σ,∞),R) (5.145)

for the inverse of L0 that has properties analogous to those stated in Lemma 3.11, we can write

[p�ν ]|[−σ,∞) = Λ+
inv[τνΦ′ − α�p;νΦ′]. (5.146)

Similar properties hold on (−∞, σ] and the desired estimates now follow directly from these obser-
vations.

Lemma 5.6. Consider the setting of Lemma 5.4. We have the identities

[ ddωλω]ω=0 = iσµα
�
p;µ,

[ d
2

dω2λω]ω=0 = −σ2
µα
�
p;µ − 2σµσµ′α��p;µµ′ .

(5.147)

Proof. Throughout this proof we use the shorthand Dω = d
dω . Taylor expanding the quantities λω

and φω for ω ≈ 0 in the expression (Lω − λω)φω = 0 and remembering that φ0 = Φ′, we obtain

O(ω3) = L0Φ′ + ω
(
L0[Dωφω]ω=0 + [DωLω −Dωλω]ω=0Φ′

)
+ω2

2

(
L0[D2

ωφω]ω=0 + 2[DωLω −Dωλω]ω=0[Dωφω]ω=0 + [D2
ωLω −D2

ωλω]ω=0Φ′
)
.

(5.148)

Taking the inner product against Ψ and recalling that L∗0Ψ = 0 leaves

[Dωλω]ω=0 =
∫ ∞
−∞

Ψ(ξ)
[
[DωLω]ω=0Φ′

]
(ξ) dξ. (5.149)

Recalling the identity

[Lωv](ξ) = −cv′(ξ) + L×µ exp(iσµω)[τµv](ξ) + g′
(
Φ(ξ)

)
v, (5.150)

we may compute

[DωLωv](ξ) = iσµL
×
µ exp(iσµω)[τµv](ξ),

= iσµ exp(iσµω)[τµv](ξ),

[D2
ωLωv](ξ) = −σ2

µ exp(iσµω)[τµv](ξ).

(5.151)

We hence see that

[DωLω]ω=0Φ′ = iσµτµΦ′, (5.152)

which implies

[Dωλω]ω=0 = iσµ
∫∞
−∞Ψ(ξ)[τµΦ′](ξ) dξ

= iσµα
�
p;µ,

(5.153)
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as desired.
Moving on, we see that

L0[Dωφω]ω=0 = iσµα
�
p;µΦ′ − iσµτµΦ′

= −iσµf�µ.
(5.154)

In particular, up to multiples of Φ′ we may write

[Dωφω]ω=0 = −iσµp�µ. (5.155)

We now integrate the O(ω2) term in (5.148) against Ψ, yielding

[D2
ωλω]ω=0 =

∫∞
−∞Ψ(ξ)

[
[D2

ωLω]ω=0Φ′
]
(ξ) dξ

+2
∫∞
−∞Ψ(ξ)

[
[DωLω −Dωλω]ω=0[Dωφω]ω=0

]
(ξ) dξ.

(5.156)

Plugging in the identities obtained above, we obtain

[D2
ωλω]ω=0 =

∫∞
−∞Ψ(ξ)

[
− σ2

µτµΦ′
]
(ξ) dξ

+2
∫∞
−∞Ψ(ξ)

[
[iσµτµ − iσµα�p;µ][−iσµ′p�µ′ ]

]
(ξ) dξ

= −σ2
µα
�
p;µ + 2σµσµ′

∫∞
−∞Ψ(ξ)[τµp�µ′ − α�p;µp�µ′ ](ξ) dξ

= −σ2
µα
�
p;µ + 2σµσµ′

∫∞
−∞Ψ(ξ)[τµ′p�µ − α�p;µp�µ′ ](ξ) dξ

= −σ2
µα
�
p;µ − 2σµσµ′α��p;µµ′ ,

(5.157)

as desired.

Lemma 5.7. Fix any pair (σh, σv) ∈ Z2 \ {(0, 0)}, suppose that (Hg) and (hΦ)§3 both hold and pick
any M1 > 0. Then there exists a constant C1 = C1(M1) > 1 such that for every pair of C1-smooth
functions

θ : [0,∞)→ `∞(Z;R), z : [0,∞)→ R (5.158)

that satisfy the bound

|z(t)|+ ‖π�θ(t)‖`∞(Z;R5) < M1, t ≥ 0, (5.159)

we have the estimates∣∣[R1

(
π�θ, π��θ, z; t

)
]nl
∣∣ ≤ C1 |z(t)|

(
|z(t)|+ |π�l θ(t)|+ |π��l θ(t)|

)
+C1

(
|π�l θ(t)|+ |π��l θ(t)|

)2Φ′
(
ξnl(t)

)
,∣∣[R7

(
π�θ; t

)
]nl
∣∣ ≤ C1 |π�l θ(t)|

2 Φ′
(
ξnl(t)

) (5.160)

for every (n, l) ∈ Z2 and t ≥ 0.

Proof. On account of the a-priori bound |π�l θ| < M1, we can invoke Corollary 3.6 to obtain∣∣MΦ,2,µ

(
ξnl(t), π�l;µθ(t)

)∣∣ ≤ C ′1Φ′
(
ξnl(t)

) ∣∣π�l;µθ(t)∣∣2 (5.161)

for some C ′1 = C ′1(M1) > 1. In addition, the a-priori bound on u−(t)− (Φ; t) allows us to write∣∣[G0

(
u−(t)− (Φ; t)

)]
nl

∣∣ ≤ C ′2 ∣∣u−nl(t)− nl(Φ; t)
∣∣2 (5.162)

for some C ′2 > 0. The desired estimates follow directly from these observations upon utilizing the
bound (5.144).
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Lemma 5.8. Fix any pair (σh, σv) ∈ Z2 \ {(0, 0)}, suppose that (Hg) and (hΦ)§3 both hold and pick
any M1 > 0. Then there exists a constant C1 = C1(M1) > 1 such that for every pair of C1-smooth
functions

θ : [0,∞)→ `∞(Z;R), Z : [0,∞)→ R (5.163)

that satisfy the bound

‖π�θ(t)‖`∞(Z;R5) < M1, t ≥ 0, (5.164)

we have the estimates∣∣∣[R2

(
Ż, π�θ, π��θ; t

)
]nl
∣∣∣ ≤ C1

∣∣∣Ż(t)
∣∣∣ [ |π�l θ(t)|+ |π��l θ(t)| ],∣∣∣[R3

(
θ̇, π��θ; t

)
]nl
∣∣∣ ≤ C1

∣∣∣θ̇l(t)∣∣∣ |π��l θ(t)| ,∣∣∣[R4

(
π�θ̇, π�θ; t

)
]nl
∣∣∣ ≤ C1

∣∣∣π�l θ̇(t)∣∣∣ |π�l θ(t)| ,∣∣[R5

(
π�θ, π��θ, π���θ; t

)
]nl
∣∣ ≤ |π�l θ(t)|

[
|π��l θ(t)|+ |π�l θ(t)|

2 + |π���l θ(t)|
]

+ |π��l θ(t)|
2
,∣∣∣[R6

(
θ̇, π�θ; t)]nl

∣∣∣ ≤ C1

∣∣∣θ̇l(t)− α�µπ�l;µθ(t)∣∣∣ |π�l θ(t)| ,∣∣[RN ;ν

(
π�θ, π��θ, π���θ; t

)
]nl
∣∣ ≤ C1e

−κ�|ξnl(t)|

(5.165)

for every (n, l) ∈ Z2 and t ≥ 0.

Proof. These bounds follow directly from the definitions (5.105), (5.123), (5.124), (5.125), (5.131)
and (5.135), together with the bounds (5.143).

Lemma 5.9. Fix any pair (σh, σv) ∈ Z2\{(0, 0)} and suppose that (Hg) and (hΦ)§3 both hold. Then
there exists a constant C1 > 1 such that for every C1-smooth function

θ : [0,∞)→ `∞(Z;R), (5.166)

we have the bounds ∣∣∣[E1(π��θ̇; t)]nl∣∣∣ ≤ C1

∣∣∣π��l θ̇(t)∣∣∣ ,∣∣[E2(π���θ; t)]nl∣∣ ≤ C1 |π���l θ(t)| ,∣∣∣[E3(π�θ̇, π��θ; t)]nl∣∣∣ ≤ C1

∣∣∣π�l [θ̇(t)− α�µπ�l;µθ(t)]∣∣∣
(5.167)

for all (n, l) ∈ Z2 and t ≥ 0.

Proof. These estimates follow directly from the definitions (5.126) and (5.132) together with the
bounds (5.143).

5.4 The expanding plateau

In this subsection we construct a function v : [1,∞) → `∞(Z;R) that can be thought of as an
expanding and convecting plateau. Later on, we will obtain the function θ by multiplying v by a
global prefactor that decays in time.

For convenience, we define the quantities

ν1 = 1
i [

d
dωλω]ω=0,

ν2 = − 1
2 [ d

2

dω2λω]ω=0.
(5.168)
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We assume throughout this section that ν2 > 0, noting that this is a consequence of the Melnikov
condition (HS)ζ∗ . For any γ ≥ 1 and t ≥ 1, we define

vl;γ(t) = (γt)1/2

∫ ∞
−∞

exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω, (5.169)

which can be explicitly evaluated as

vl;γ(t) =
√
π

ν2
exp

[
− (l + ν1t)2

4ν2γt

]
. (5.170)

We also introduce the functions

V(k)
l;γ (t) = (γt)1/2

∫ ∞
−∞

ωk exp[iω
(
l + ν1t

)
] exp[−ν2ω

2γt] dω (5.171)

for integers k ≥ 1, which can be evaluated as

V(1)
l;γ (t) = 1

2 i
l+ν1t
ν2γt

vl;γ(t),

V(2)
l;γ (t) =

[
− 1

4
(l+ν1t)

2

(ν2γt)2 + 1
2

1
ν2γt

]
vl;γ(t),

V(3)
l;γ (t) =

[
− i

8
(l+ν1t)

3

(ν2γt)3 + 3i
4

(l+ν1t)
(ν2γt)

(ν2γt)−1
]
vl;γ(t).

(5.172)

To prevent cumbersome notation, we introduce the shorthand

ρ = ρ(l, t; γ) =
l + ν1t

2ν2γt
, (5.173)

which allows us to reduce the expressions above to the compact form

V(1)
l;γ (t) = iρvl;γ(t),

V(2)
l;γ (t) =

[
− ρ2 + 1

2 (ν2γt)−1
]
vl;γ(t),

V(3)
l;γ (t) =

[
− iρ3 + 3i

2 ρ(ν2γt)−1
]
vl;γ(t).

(5.174)

Our first result studies the effects of non-polynomial Fourier multipliers applied to v;γ(t).

Lemma 5.10. Pick a sufficiently small δω > 0 and any M > 1. Consider any analytic function
℘ : C→ C that has

|℘(ω)| ≤M(1 + ω4), ω ∈ R (5.175)

and satisfies the bound

|℘(ω)| ≤M |ω|s , −δω ≤ Reω ≤ δω, −δω ≤ Im δ ≤ +δω (5.176)

for some s ∈ {0, 2, 4}. In addition, consider the expression

W(℘)
l;γ (t) = (γt)1/2

∫ ∞
−∞

℘(ω) exp[iω
(
l + ν1t

)
] exp[−ν2ω

2γt] dω. (5.177)
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Then for any triplet (l, t, γ) with γ ≥ 1, t ≥ 1 and |ρ(l, t; γ)| ≤ δω, we have the bounds

∣∣∣W(℘)
l;γ (t)

∣∣∣ ≤



Mvl;γ(t)

+M
[
(γt)1/2 + 16ν−1

2 δ−1
ω [ 3

4 (ν2δω)−4 + 1]
]
e−ν2δ

2
ωγt, for s = 0,

2Mvl;γ(t)[ρ2 + 1
2 (ν2γt)−1]

+M
[
(γt)1/2 + 16ν−1

2 δ−1
ω [ 3

4 (ν2δω)−4 + 1]
]
e−ν2δ

2
ωγt, for s = 2,

8Mvl;γ(t)[ρ4 + 3
4 (ν2γt)−2]

+M
[
(γt)1/2 + 16ν−1

2 δ−1
ω [ 3

4 (ν2δω)−4 + 1]
]
e−ν2δ

2
ωγt, for s = 4,

(5.178)

with ρ = ρ(l, t; γ). In addition, for any (l, t, γ) with γ ≥ 1, t ≥ 1 and |ρ(l, t; γ)| ≥ δω, we have∣∣∣W(℘)
l;γ (t)

∣∣∣ ≤M[2(γt)1/2 + 16ν−1
2 δ−1

ω [
3
4

(ν2δω)−4 + 1]
]
e−ν2δ

2
ωγt. (5.179)

Proof. Upon introducing the expressions

p(ω) = −ν2ω
2γt, q(ω) = ω(l + ν1t), (5.180)

we compute, for any y ∈ R,

p(ω + iy) = −ν2(−y2 + 2iyω + ω2)γt

= ν2y
2γt− iωy(2ν2γt)− ν2ω

2γt,

q(ω + iy) = iy(l + ν1t) + ω(l + ν1t)

= iyρ(2ν2γt) + ωρ(2ν2γt),

(5.181)

where ρ = ρ(l, t; γ). In other words, we have

Re [p(ω + iy) + iq(ω + iy)] = [y2 − 2yρ]ν2γt− ω2ν2γt. (5.182)

For convenience, let us assume from now on that ρ ≥ 0. On the interval y ∈ [0, ρ], we have

Re
[
p(ω + iy) + iq(ω + iy)

]
≤ −ω2ν2γt. (5.183)

For each fixed ω, the expression (5.182) is minimized on the domain y ∈ [0, δω] upon choosing
y = y∗ = min{ρ, δω}. In the case y∗ = ρ, we have

p(ω + iρ) + iq(ω + iρ) = −ρ2ν2γt− ν2ω
2γt, (5.184)

while in the case y∗ = δω, we have

Re
[
p(ω + iy∗) + iq(ω + iy∗)

]
≤ −ν2δ

2
ωγt− ω2ν2γt. (5.185)

Upon introducing the five line segments

Γ1 = (−∞,−δω], Γ2 = [−δω,−δω + iy∗], Γ3 = [−δω + iy∗,+δω + iy∗],

Γ4 = [δω + iy∗,+δω], Γ5 = [δω,∞),
(5.186)

we define the separate integrals

W(℘)
l;γ;Γi

(t) = (γt)1/2

∫
Γi

℘(ω) exp[p(ω) + iq(ω)] dω (5.187)
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and note that Cauchy’s theorem implies that

W(℘)
l;γ (t) =

5∑
i=1

W(℘)
l;γ;Γi

(t). (5.188)

Setting out to bound each of the integrals (5.187) separately, we start by computing∫∞
δω

(1 + ω4)e−ν2ω
2γtdω = e−ν2δ

2
ωγt
∫∞
δω

(1 + ω4)e−ν2(ω2−δ2
ω)γtdω

= e−ν2δ
2
ωγt
∫∞
δω

(1 + ω4)e−ν2(ω−δω)(ω+δω)γtdω

≤ 8e−ν2δ
2
ωγt
∫∞
δω

[(ω − δω)4 + 1 + δ4
ω]e−ν2(ω−δω)2δωγtdω

= 8
[
24(2ν2δωγt)−5 + (1 + δ4

ω)(2ν2δωγt)−1
]
e−ν2δ

2
ωγt.

(5.189)

In particular, imposing the restriction 0 < δω ≤ 1
2 and remembering γt ≥ 1, we see that∣∣∣W(℘)

l;γ;Γ1
(t)
∣∣∣+
∣∣∣W(℘)

l;γ;Γ5
(t)
∣∣∣ ≤ 16M(ν2δω)−1[ 3

4 (ν2δω)−4 + 1]. (5.190)

Moving on, (5.183) implies that for all ω ∈ Γ2 ∪ Γ4 we have

Re
[
p(ω) + iq(ω)

]
≤ −ν2δ

2
ωγt. (5.191)

Remembering that 0 ≤ y∗ ≤ δω and imposing the restriction 0 < δω ≤ 1
2 , we obtain∣∣∣W(m)

l;γ;Γ2
(t)
∣∣∣+
∣∣∣W(m)

l;γ;Γ4
(t)
∣∣∣ ≤ 2Mδω(γt)1/2 |2δω|s e−ν2δ

2
ωγt

≤ M(γt)1/2e−ν2δ
2
ωγt.

(5.192)

In addition, for 0 ≤ ρ ≤ δω we have

(γt)−1/2
∣∣∣W(℘)

l;γ;Γ3
(t)
∣∣∣ ≤ exp[−y2

∗ν2γt]
∫ δω
−δω M(|ω|+ |y∗|)se−ν2ω

2γt dω

≤ exp[−y2
∗ν2γt]

∫ +∞
−∞ M(|ω|+ |y∗|)se−ν2ω

2γt dω

≤ exp[−y2
∗ν2γt]

∫ +∞
−∞ M2s−1(|ω|s + |y∗|s)e−ν2ω

2γt dω.

(5.193)

The desired expressions (5.178) for 0 ≤ ρ ≤ δω now follow from the identities∫ +∞
−∞ e−ν2ω

2γt dω =
√

π
ν2γt

,∫ +∞
−∞ ω2e−ν2ω

2γt dω = 1
2 (ν2γt)−1

√
π

ν2γt
,∫ +∞

−∞ ω4e−ν2ω
2γt dω = 3

4 (ν2γt)−2
√

π
ν2γt

.

(5.194)

On the other hand, for ρ ≥ δω, we compute∣∣∣W(℘)
l;γ;Γ3

(t)
∣∣∣ ≤ (γt)1/2 exp[−δ2

ων2γt]
∫ δω
−δω M(|2δω|s)e−ν2ω

2γt dω

≤ (γt)1/2 exp[−δ2
ων2γt]

(
2δωM

)
≤ M(γt)1/2 exp[−δ2

ων2γt],

(5.195)

which suffices to establish (5.179).

We remark that the bounds (5.172) and (5.178) all involve the quantity vl;γ(t). We augment
these results with the following uniform estimates.
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Lemma 5.11. For all γ ≥ 1, t ≥ 1 and l ∈ Z, we have the uniform bounds

|vγ;l(t)| ≤
√

π
ν2
,

|ρvγ;l(t)| ≤
√

π
ν2
e−1/2

√
1

2ν2γt
,∣∣ρ2vγ;l(t)

∣∣ ≤ √
π
ν2
e−1 1

ν2γt
,∣∣ρ3vγ;l(t)

∣∣ ≤ √
π
ν2
e−3/2

(
3

2ν2γt

)3/2
,

(5.196)

again with ρ = ρ(l, t; γ).

Proof. Observe first that for all x ∈ R and α > 0 we have the bounds

|x| exp[−αx2] ≤ e−1/2

√
1

2α
, x2 exp[−αx2] ≤ α−1e−1,

∣∣x3
∣∣ exp[−αx2] ≤

( 3
2α
)3/2

e−3/2.

(5.197)

Using the expression

vγ;l(t) =
√
π

ν2
exp[−ν2ρ

2γt], (5.198)

the desired estimates (5.196) now follow immediately.

Taking a time derivative in (5.169) yields the expression

v̇l;γ(t) = (γt)1/2

∫ ∞
−∞

[1
2
t−1 + iων1 − γν2ω

2] exp[iω
(
l + ν1t

)
] exp[−ν2ω

2γt] dω, (5.199)

which in view of the identities (5.174) can be written as

v̇γ;l(t) =
[

1
2 t
−1 − ν1ρ(l, t; γ) + γν2ρ

2(l, t; γ)− 1
2γ(γt)−1

]
vl;γ(t)

=
[
− ν1ρ+ γν2ρ

2
]
vl;γ(t),

(5.200)

again with ρ = ρ(l, t; γ). For convenience, we note that Lemma 5.11 implies the uniform bound

|v̇l;γ(t)| ≤ ν1

√
π

ν2
e−1/2

√
1

2ν2γt
+

1
t
e−1

√
π

ν2
(5.201)

for all γ ≥ 1, t ≥ 1 and l ∈ Z.
For any sequence v ∈ `∞(Z;R), let us define the quantity

[Kv]l := α�µπ
�
l;µv + α��µµ′π

��
l;µµ′v. (5.202)

A short computation using Lemma 5.6 shows that for some κ3 ∈ R, we have

[Kv;γ(t)]l = (γt)1/2
∫∞
−∞

[
α�µ(eiσµω − 1) + α��µµ′(e

iσµω − 1)(eiσµ′ω − 1)
]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω

= (γt)1/2
∫∞
−∞

[
iν1ω − ν2ω

2 + iκ3ω
3 +O4(ω)

]
exp[iω

(
l + ν1t

)
] exp[−ν2ω

2γt] dω.
(5.203)

Here for any s ∈ {0, 2, 4}, we have introduced the notation Os(ω) to denote a function that satisfies
the conditions (5.175) - (5.176) for some M > 1.
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An important role in the sequel will be reserved for the quantity

Sl;γ(t) = v̇l;γ(t)− 1
2

(γt)−1vl;γ(t)− [Kv;γ(t)]l, (5.204)

for which we can compute

Sl;γ(t) = (γt)1/2
∫∞
−∞

[
1
2 t
−1 + iων1 − γν2ω

2 − 1
2 (γt)−1 − iν1ω + ν2ω

2 − iκ3ω
3 −O4(ω)

]
× exp[iω(l + ν1t)] exp[−ν2ω

2γt] dω

= (γt)1/2
∫∞
−∞

[
1
2 (γ − 1)(γt)−1 − (γ − 1)ν2ω

2 − iκ3ω
3 −O4(ω)

]
× exp[iω(l + ν1t)] exp[−ν2ω

2γt] dω.
(5.205)

We conclude this subsection by obtaining near field (|ρ| ≤ δω) and far field (|ρ| ≥ δω) bounds on
the various quantities introduced here, which will allow us to obtain useful bounds on the numbered
expressions in (5.141).

Lemma 5.12. Pick δω > 0 sufficiently small. There exists a constant C2 = C2(δω) > 1 such that
for all γ ≥ 1, t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω, we have the bound∣∣Sl;γ(t)− (γ − 1)ν2ρ

2vl;γ(t)
∣∣ ≤ C2

[
|ρ|3 + |ρ| (γt)−1 + (γt)−2

]
vl;γ(t)

+C2(γt)1/2e−ν2δ
2
ωγt,

(5.206)

in which ρ = ρ(l, γ; t).

Proof. This estimate follows directly from (5.205), using the identities (5.174) and the bounds
(5.178).

Lemma 5.13. Pick δω > 0 sufficiently small. There exists a constant C2 = C2(δω) > 1 such that
for all γ ≥ 1, t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω, we have the bounds

|π�l v;γ(t)| ≤ C2

[
|ρ|+ (γt)−1

]
vl;γ(t) + C2(γt)1/2e−ν2δ

2
ωγt,

|π��l v;γ(t)| ≤ C2

[
ρ2 + (γt)−1

]
vl;γ(t) + C2(γt)1/2e−ν2δ

2
ωγt,

|π���l v;γ(t)| ≤ C2

[
|ρ|3 + |ρ| (γt)−1 + (γt)−2

]
vl;γ(t) + C2(γt)1/2e−ν2δ

2
ωγt,

(5.207)

in which ρ = ρ(l, γ; t).

Proof. Observing that

π�l;µv;γ(t) = (γt)1/2
∫∞
−∞(eiσµω − 1) exp[iω(l + ν1t)] exp[−ν2ω

2γt] dω

= (γt)1/2
∫∞
−∞(iσµω +O2(ω)) exp[iω(l + ν1t)] exp[−ν2ω

2γt] dω,
(5.208)

the identities (5.174) and the bounds (5.178) suffice to obtain the desired estimate on π�l v;γ(t). The
other estimates can be obtained in a similar fashion.

Lemma 5.14. Pick δω > 0 sufficiently small. There exists a constant C2 = C2(δω) > 1 such that
for all γ ≥ 1, t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω, we have the bounds

|v̇l;γ(t)| ≤ C2[ρ+ γρ2]vl;γ(t),

|π�l v̇;γ(t)| ≤ C2

[
γ(γt)−1 |ρ|+ ρ2 + (γt)−1 + γ |ρ|3

]
vl;γ(t)

+γC2(γt)1/2e−ν2δ
2
ωγt,

|π��l v̇;γ(t)| ≤ C2

[
(γt)−1γρ2 + γ(γt)−2 + |ρ|3 + (γt)−1 |ρ|+ γρ4

]
vl;γ(t)

+γC2(γt)1/2e−ν2δ
2
ωγt,

(5.209)
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in which ρ = ρ(l, γ; t).

Proof. For convenience, we assume throughout this proof that ρ ≥ 0. The bound for v̇l;γ(t) follows
directly from (5.200). Moving on to the second estimate, we write

π�l;µv̇;γ(t) = (γt)1/2
∫∞
−∞

[(
iσµω +O2(ω)

)(
1
2 t
−1 + iων1 − γν2ω

2
)]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω

= (γt)1/2
∫∞
−∞

[
1
2 t
−1iσµω + 1

2 t
−1O2(ω) +O2(ω)− iσµγν2ω

3 + γO4(ω)
]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω.

(5.210)

Using (5.174) and (5.178), we hence see that there exists C ′2 > 1 for which∣∣∣π�l;µv̇;γ(t)
∣∣∣ ≤ C ′2[t−1(ρ+ ρ2 + (γt)−1) + ρ2 + (γt)−1 + γ(ρ3 + ρ(γt)−1 + ρ4 + (γt)−2)

]
+γC ′2(γt)1/2e−ν2δ

2
ωγt,

(5.211)

from which the desired estimate immediately follows.
To obtain the third estimate, we note that there exists κ3 ∈ R for which

π��l;µµ′ v̇;γ(t) = (γt)1/2
∫∞
−∞

[(
− σµσµ′ω2 + iκ3ω

3 +O4(ω)
)(

1
2 t
−1 + iων1 − γν2ω

2
)]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω

= (γt)1/2
∫∞
−∞

[
1
2 t
−1O2(ω)− iω3ν1σµσµ′ +O4(ω) + γO4(ω)

]
× exp[iω(l + ν1t)] exp[−ν2ω

2γt] dω.

(5.212)

Using (5.174) and (5.178), we hence see that there exists C ′2 > 1 for which∣∣∣π��l;µµ′ v̇;γ(t)
∣∣∣ ≤ C ′2

[
t−1(ρ2 + (γt)−1) + ρ3 + (γt)−1ρ+ (γ + 1)(ρ4 + (γt)−2)

]
+γC ′2(γt)1/2e−ν2δ

2
ωγt,

(5.213)

from which the desired estimate immediately follows.

Lemma 5.15. Pick δω > 0 sufficiently small. There exists a constant C2 = C2(δω) > 1 such that
for all γ ≥ 1, t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω, we have the bounds∣∣v̇;γ(t)− α�µπ�;µv;γ(t)

∣∣ ≤ C2

[
ρ2 + (γt)−1

]
vl;γ(t)

+C2(γt)1/2e−ν2δ
2
ωγt,∣∣∣π�l [v̇l;γ(t)− α�µπ�l;µv;γ(t)]

∣∣∣ ≤ C2

[
(γt)−1γ |ρ|+ γ(γt)−2 + γ |ρ|3

]
vl;γ(t)

+γC2(γt)1/2e−ν2δ
2
ωγt,

(5.214)

in which ρ = ρ(l, γ; t).

Proof. As before, we restrict ourselves to the setting ρ ≥ 0. First of all, we write

wl;γ(t) = v̇l;γ(t)− α�µπ�l;µv;γ(t) (5.215)
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and note that there exist κ2, κ3 ∈ R for which we can compute

wl;γ(t) = (γt)1/2
∫∞
−∞

[
1
2 t
−1 + iων1 − γν2ω

2 − α�µ(eiσµω − 1)
]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω

= (γt)1/2
∫∞
−∞

[
1
2 t
−1 + iων1 − γν2ω

2 − iων1 + κ2ω
2 + iκ3ω

3 +O(ω)
]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω

= (γt)1/2
∫∞
−∞

[
1
2 t
−1 − γν2ω

2 + κ2ω
2 + iκ3ω

3 +O4(ω)
]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω.

(5.216)

In particular, invoking (5.174) and (5.178) and exploiting a partial cancellation in the first two terms,
we see that there exists C ′2 > 1 for which

|wl;γ(t)| ≤ C ′2
[
ρ2 + (γt)−1 + ρ3 + ρ(γt)−1 + ρ4 + (γt)−2

]
vl;γ(t)

+C ′2(γt)1/2e−ν2δ
2
ωγt,

(5.217)

which suffices to obtain the first stated estimate.
Moving on to the second estimate, we compute

π�l;µw;γ(t) = (γt)1/2
∫∞
−∞

[(
iσµω +O2(ω)

)(
1
2 t
−1 − γν2ω

2 + κ2ω
2 + iκ3ω

3 +O4(ω)
)]

× exp[iω(l + ν1t)] exp[−ν2ω
2γt] dω

= (γt)1/2
∫∞
−∞

[
1
2 t
−1
(
iσµω +O2(ω)

)
− γiσµν2ω

3 + iσµκ2ω
3 + (1 + γ)O4(ω)

]
× exp[iω(l + ν1t)] exp[−ν2ω

2γt] dω.
(5.218)

As before, there exists C ′2 > 1 for which∣∣∣π�l;µw;γ(t)
∣∣∣ ≤ C ′2

[
t−1
(
ρ+ (γt)−1

)
+ (γ + 1)

(
ρ3 + ρ(γt)−1 + (γt)−2

)]
vl;γ(t)

+γC ′2(γt)1/2e−ν2δ
2
ωγt,

(5.219)

which suffices to complete the proof.

Lemma 5.16. Pick a sufficiently small δρ > 0. There exists a constant C3 = C3(δρ) > 1 so that for
every γ ≥ 1, every t ≥ 1 and every l ∈ Z for which |ρ(l, t; γ)| ≥ δρ, we have the bounds

|vγ;l(t)|+ |π�l v;γ(t)|+ |π��l v;γ(t)|+ |π���l v;γ(t)| ≤ C3(γt)1/2 exp[−ν2δ
2
ργt],

|v̇γ;l(t)|+ |π�l v̇;γ(t)|+ |π��l v̇;γ(t)| ≤ γC3(γt)1/2 exp[−ν2δ
2
ργt],

|Sl;γ(t)| ≤ γC3(γt)1/2 exp[−ν2δ
2
ργt].

(5.220)

Proof. These estimates follow directly from (5.179) together with the identities (5.200) and (5.205).

5.5 The function θ

In this subsection we scale the plateau function v;γ defined in (5.169) by a global factor that decays
very slowly in time. The resulting function θ controls the phase-shifts of the sub-solution u− in the
direction transverse to the wave propagation.

Throughout this subsection, we write

α = α(γ) =
1

4γ
. (5.221)
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For every β ≥ 1 and γ ≥ 1, we now define the C1-smooth function

θ;β,γ : [1,∞)→ `∞(Z;R) (5.222)

that acts as

θl;β,γ(t) = βt−αvl;γ(t) (5.223)

and can be differentiated as

θ̇l;β,γ(t) = βt−α
[
− 1

4 (γt)−1vl;γ(t) + v̇l;γ(t)
]
. (5.224)

An important role in the sequel will be played by the quantities

Tl;β,γ(t) = θ̇l;β,γ(t)− α�µπ�l;µθ;β,γ(t)− α��µµ′π��l;µµ′θ;β,γ(t). (5.225)

Recalling the linear operator K defined in (5.202), a short computation shows that

Tl;β,γ(t) = βt−α
[
v̇l;γ(t)− 1

4 (γt)−1vl;γ − [Kv;γ(t)]l
]

= βt−α
[

1
4 (γt)−1vl;γ(t) + Sl;γ(t)

]
.

(5.226)

In order to obtain a useful bound on Tl;β,γ(t), we introduce the strictly positive expressions

Ql;β,γ(t) =
1
8
βt−α[ν2γρ

2 + (γt)−1]vl;γ(t), (5.227)

with ρ = ρ(l, t; γ).

Lemma 5.17. Pick a sufficiently small δω > 0. There exists constants CT = CT (δω) > 0 and
γ∗ = γ∗(δω) ≥ 1 such that for all γ ≥ γ∗, all β ≥ 1, all t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω,
we have

Tl;β,γ(t) ≥ Ql;β,γ(t)− βCT (γt)1/2e−ν2δ
2
ωγt. (5.228)

Proof. Notice first that γ∗ ≥ 2 ensures γ∗ − 1 ≥ 1
2γ∗. In addition, using the elementary estimate

ρ3 + ρ(γt)−1 + (γt)−2 ≤ ρ3 + ρ2 + 2(γt)−2

= ν2γρ
2[ν−1

2 γ−1ρ+ ν−1
2 γ−1] + (γt)−1(2 1

γt ),
(5.229)

Lemma 5.12 implies that it suffices to pick γ∗ ≥ 2 in such a way that

C2

[
ν−1

2 γ−1
∗ δω + ν−1

2 γ−1
∗
]
≤ 1

8
, 2C2γ

−1
∗ ≤

1
8
. (5.230)

In the remainder of this subsection we obtain near field (|ρ| ≤ δω), far field (|ρ| ≥ δω) and
global bounds on various terms involving θ;β,γ(t), which will allow us to obtain useful bounds on the
numbered expressions in (5.141).

Lemma 5.18. Pick δω > 0 sufficiently small. There exists a constant C4 = C4(δω) > 1 such that
for all β ≥ 1, all γ ≥ 1, all t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω, we have the bounds

|π�l θ;β,γ(t)| ≤ βC4t
−α[ |ρ|+ (γt)−1

]
vl;γ(t)

+βC4(γt)1/2e−ν2δ
2
ωγt,

|π��l θ;β,γ(t)| ≤ βC4t
−α[ρ2 + (γt)−1

]
vl;γ(t)

+βC4(γt)1/2e−ν2δ
2
ωγt,

|π���l θ;β,γ(t)| ≤ βC4t
−α[ |ρ|3 + |ρ| (γt)−1 + (γt)−2

]
vl;γ(t)

+βC4(γt)1/2e−ν2δ
2
ωγt,

(5.231)

with ρ = ρ(l, t; γ).
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Proof. In view of the identity (5.223), these bounds follow immediately from Lemma 5.13.

Lemma 5.19. Pick δω > 0 sufficiently small. There exists a constant C4 = C4(δω) > 1 such that
for all β ≥ 1, all γ ≥ 1, all t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω, we have the bounds∣∣∣θ̇l;β,γ(t)

∣∣∣ ≤ βC4t
−α[ρ+ γρ2 + (γt)−1

]
vl;γ(t),∣∣∣π�l θ̇;β,γ(t)

∣∣∣ ≤ βC4t
−α[γ(γt)−1 |ρ|+ ρ2 + (γt)−1 + γ |ρ|3

]
vl;γ(t)

+βγC4(γt)1/2e−ν2δ
2
ωγt,∣∣∣π��l θ̇;β,γ(t)

∣∣∣ ≤ βC4t
−α[(γt)−1γρ2 + γ(γt)−2 + |ρ|3 + (γt)−1 |ρ|+ γρ4

]
vl;γ(t)

+βγC4(γt)1/2e−ν2δ
2
ωγt,

(5.232)

with ρ = ρ(l, t; γ).

Proof. Combining the results from Lemmas 5.13 and 5.14, these estimates follow directly from
(5.224).

Lemma 5.20. Pick δω > 0 sufficiently small. There exists a constant C4 = C4(δω) > 1 such that
for all β ≥ 1, all γ ≥ 1, all t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≤ δω, we have the bounds∣∣∣θ̇l;β,γ(t)− α�µπ�;µθ;β,γ(t)

∣∣∣ ≤ βC4t
−α[ρ2 + (γt)−1

]
vl;γ(t)

+βC4(γt)1/2e−ν2δ
2
ωγt,∣∣∣π�l [θ̇;β,γ,t∗(t)− α�µπ�;µθ;β,γ(t)]

∣∣∣ ≤ βC4t
−α[(γt)−1γ |ρ|+ γ(γt)−2 + γ |ρ|3

]
vl;γ(t)

+βγC4(γt)1/2e−ν2δ
2
ωγt,

(5.233)

with ρ = ρ(l, t; γ).

Proof. Combining the results from Lemmas 5.13 and 5.15, these estimates follow directly from
(5.224).

Lemma 5.21. Pick a sufficiently small δρ > 0. There exists a constant C5 = C5(δρ) > 1 so that for
all β ≥ 1, all γ ≥ 1, all t ≥ 1 and all l ∈ Z for which |ρ(l, t; γ)| ≥ δρ, we have the bounds

|θl;β,γ(t)|+ |π�l θ;β,γ(t)|+ |π��l θ;β,γ(t)|+ |π���l θ;β,γ(t)| ≤ βC5t
−α(γt)1/2 exp[−ν2δ

2
ργt],∣∣∣θ̇γ;l(t)

∣∣∣+
∣∣∣π�l θ̇;β,γ(t)

∣∣∣+
∣∣∣π��l θ̇;β,γ(t)

∣∣∣ ≤ βγC5t
−α(γt)1/2 exp[−ν2δ

2
ργt],

|Tl;β,γ(t)| ≤ βγC5t
−α(γt)1/2 exp[−ν2δ

2
ργt].

(5.234)

Proof. Using Lemma 5.16, these estimates follow directly from (5.223) and (5.224).

Lemma 5.22. There exist constants C6 > 1 and γ∗ ≥ 1 such that for all γ ≥ γ∗, all β ≥ 1, all
t ≥ 1 and all l ∈ Z, we have the bounds

|π�l θ;β,γ(t)| ≤ βC6t
−α(γt)−1/2,

|π��l θ;β,γ(t)| ≤ βC6t
−α(γt)−1,

|π���l θ;β,γ(t)| ≤ βC6t
−α(γt)−3/2.

(5.235)
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Proof. Note first that for every fixed δω > 0, we can obtain

γ(γt)1/2e−ν2δ
2
ωγt ≤ (γt)−3/2 (5.236)

for all t ≥ 1 and all γ ≥ γ∗ by picking γ∗ to be sufficiently large. The desired bounds now follow
from Lemma 5.18 and Lemma 5.21, upon using the global estimates obtained in Lemma 5.11.

Lemma 5.23. There exist constants C6 > 1 and γ∗ ≥ 1 such that for all γ ≥ γ∗, all β ≥ 1, all
t ≥ 1 and all l ∈ Z, we have the bounds∣∣∣θ̇l;β,γ(t)

∣∣∣ ≤ βC6t
−α[(γt)−1/2 + γ(γt)−1

]
,∣∣∣π�l θ̇;β,γ(t)

∣∣∣ ≤ βC6t
−α[γ(γt)−3/2 + (γt)−1

]
,∣∣∣π��l θ̇;β,γ∗(t)

∣∣∣ ≤ βC6t
−α[γ(γt)−2 + (γt)−3/2

]
.

(5.237)

Proof. Arguing similarly as in the proof of Lemma 5.22, these estimates follow from Lemmas 5.19
and 5.21.

Lemma 5.24. There exist constants C6 > 1 and γ∗ ≥ 1 such that for all γ ≥ γ∗, all β ≥ 1, all
t ≥ 1 and all l ∈ Z, we have the bounds∣∣∣θ̇l;β,γ(t)− α�µπ�;µθ;β,γ(t)

∣∣∣ ≤ βC6t
−α(γt)−1,∣∣∣π�l [θ̇;β,γ(t)− α�µπ�;µθ;β,γ(t)

]∣∣∣ ≤ βC6t
−αγ(γt)−3/2.

(5.238)

Proof. Arguing similarly as in the proof of Lemma 5.22, these estimates follow from Lemmas 5.20
and 5.21.

5.6 Construction of sub-solution

In this subsection we finally provide the proof of Propositions 5.1 and 5.2. In fact, we set out prove
the following result, which is more closely related to the notation we have developed in this section.

Proposition 5.25. Consider any angle ζ∗ with tan ζ∗ ∈ Q and suppose that (Hg) and (HS)ζ∗ both
hold. Pick (σh, σv) ∈ Z2 \ {(0, 0)} with the property that√

σ2
h + σ2

v(cos ζ∗, sin ζ∗) = (σh, σv), gcd(σh, σv) = 1, (5.239)

suppose that (hΦ)§3 holds for this pair (σh, σv) with c > 0 and recall the setting of Lemma 5.4.
Then there exist constants δz > 0, ηz > 0, KZ > 0, ηN > 0 and KN > 0 so that the following

holds true. Pick any ε2 > 0, any β > 1, any Ω⊥ > 0 and any C1-smooth function z : [1,∞)→ (0, δz]
that has

ż(t) ≥ −ηzz(t) (5.240)

for all t ≥ 1, together with

ε3 := inf
t≥1

t3/2z(t) > 0. (5.241)

Then there exists γ = γ(ε2, ε3, β,Ω⊥) ≥ 1 such that the function u− : [1,∞)→ `∞(Z2;R) defined by

u−(t) = (Φ; t) + (π�;µθ, p
�
µ; t) + (π��µµ′θ, p

��
µµ′ ; t) + (π�µθ, π

�
µ′θ, q

��
µµ′ ; t)− z(t) (5.242)
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with

Z(t) = KZ

∫ t
1
z(s) ds,

ξnl(t) = n+ ct− θl;β,γ(t)− Z(t)
(5.243)

satisfies the differential inequality

J−nl(t) ≤ −
1
2
ηzz(t), (n, l) ∈ Z2, t ≥ 1 (5.244)

and admits the bound

|u−(t)− (Φ; t) + z(t)| ≤ ε2t
−1/2, t ≥ 1. (5.245)

In addition, for every (n, l) ∈ Z2 and t ≥ 1 we have the inequality

|θl+1;β,γ(t)− θl;β,γ(t)| ≤ 1, (5.246)

which for |l| ≤ Ω⊥ can be augmented by

ξ̇nl(t) ≥
c

2
. (5.247)

Finally, for any ν ∈ {1, . . . , 4}, we have the bound∣∣∣[π×nl;ν − π×nl;5]u−(t)
∣∣∣ ≤ KN e−ηN |ξnl(t)|, (n, l) ∈ Z2, t ≥ 1. (5.248)

We start our analysis by looking at the auxilliary estimates (5.245), (5.246), (5.247) and (5.248).
First of all, Lemma 5.5 implies that there exists C ′1 > 1 for which∣∣u−nl(t) + z(t)− nl(Φ; t)

∣∣ ≤ ∣∣nl(π�;µθ, p�µ; t)
∣∣+
∣∣nl(π��;µµ′θ, p�µµ′ ; t)∣∣+

∣∣nl(π�µθ, π�µ′θ, q�µµ′ ; t)∣∣
≤ C ′1

[
|π�l θ(t)|+ |π��l θ(t)|+ |π�l θ(t)|

2 ]
.

(5.249)

In addition, the fact that gcd(σh, σv) = 1 implies that κhσh + κvσv = 1 for some pair (κh, κv) ∈ Z2.
This means that

|θl+1;β,γ(t)− θl;β,γ(t)| ≤ [|κh|+ |κv|] ‖π�θ;β,γ(t)‖`∞(Z;R5) . (5.250)

In particular, the following result suffices to obtain (5.245) and (5.246). For irrational directions
where (σh, σv) /∈ Z2, one can obtain similar estimates for θl+∆l;β,γ − θl;β,γ with bounded ∆l by re-
placing the computation below with a slightly more general argument involving the Fourier multiplier
eiω∆l − 1 applied to v;γ and θ;β,γ .

Lemma 5.26. Pick any κ > 0. Then for any β > 1, there exists γ∗ = γ∗(κ, β) ≥ 1, such that for
any γ ≥ γ∗, any t ≥ 1 and any l ∈ Z we have the bounds

|π�l θ;β,γ(t)|+ |π��l θ;β,γ(t)| ≤ κt−1/2. (5.251)

Proof. This follows directly from the global bounds in Lemma 5.22, choosing γ∗ � β2.

In view of the identity

ξ̇nl(t) = c− θ̇l;β,γ(t)−KZz(t), (5.252)

the following result can be used to establish (5.247) provided that |z(t)| ≤ c
4KZ

for all t ≥ 1.
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Lemma 5.27. For any β > 1 and Ω⊥ > 0, there exist γ∗ = γ∗(β,Ω⊥) ≥ 1, such that for any
γ ≥ γ∗, any t ≥ 1 and any l ∈ Z for which |l| ≤ Ω⊥, we have the bound∣∣∣θ̇l;β,γ∣∣∣ < c

4
. (5.253)

Proof. The uniform bound for θ̇ obtained in Lemma 5.23 implies that there exists t0 ≥ 1 such that
for every γ ≥ 1, t ≥ t0 and l ∈ Z we have the bound (5.253).

It hence remains to consider the regime 1 ≤ t ≤ t0 and |l| ≤ Ω⊥, for which we may estimate

|ρ(l, t; γ)| = 1
2

∣∣∣∣ l + ν1t

ν2γt

∣∣∣∣ ≤ 1
2

(ν2γ)−1[Ω⊥ + |ν1| t0] ≤ C ′2γ−1 (5.254)

for some C ′2 > 1. Using (5.224), we write

θ̇l;β,γ(t) = βt−α
[
− 1

4
(γt)−1 − ν1ρ+ γν2ρ

2
]
vl;γ(t), (5.255)

which shows that ∣∣∣θ̇l;β,γ(t)
∣∣∣ ≤ β[

1
4
γ−1 + |ν1|C ′2γ−1 + γν2(C ′2)2γ−2] (5.256)

whenever 1 ≤ t ≤ t0 and |l| ≤ Ω⊥. Picking γ∗ ≥ 1 sufficiently large hence establishes the desired
bound (5.253).

We note that the final auxilliary estimate (5.248) can be obtained by noting that the bound for the
nonlinear expressionsRN ;ν obtained in Lemma 5.8 merely requires an a-priori estimate on π�θ;β,γ(t).
Such an estimate can easily be obtained using Lemma 5.26 to restrict γ ≥ γ∗ ≥ 1.

It now remains to establish the differential inequality (5.244). To this end, we introduce the
expressions

Θnl;β,γ(t) = nl(θ̇;β,γ ,Φ′; t)− nl(α�µπ
�
µθ;β,γ ,Φ′; t)− nl(α��µ π

��
µµ′θ;β,γ ,Φ′; t)

= Tl;β,γ(t)Φ′
(
ξnl(t)

)
,

Znl;β,γ,KZ (t) = nl(KZz,Φ′; t) + ż(t)− nl(L; t)z(t)

= KZz(t)Φ′
(
ξnl(t)

)
+ ż(t)− g′

(
Φ
(
ξnl(t)

))
z(t).

(5.257)

Remembering the choice Ż(t) = KZz(t) and suppressing the dependence on β, γ and KZ , the
expression (5.141) can now be written as

J−(t) = −Θ(t)−Z(t)

+R1

(
π�θ, π��θ, z; t

)
+R2

(
Ż, π�θ, π��θ; t

)
+R3

(
θ̇, π��θ; t

)
+R4

(
π�θ̇, π�θ; t

)
+R5

(
π�θ, π��θ, π���θ; t

)
+R6

(
θ̇, π�θ; t) +R7

(
π�θ; t)

+E1
(
π��θ̇; t

)
+ E2

(
π���θ; t

)
+ E3

(
π�θ̇, π��θ; t

)
.

(5.258)

The following two results concern the terms Θ(t) and Z(t), which are the ones for which a definite
sign is (almost) available. We note that the strictly positive function Q(t) was defined in (5.227).

Lemma 5.28. Pick any δω > 0, any β > 1 and any ε3 > 0. Then there exist γ∗ = γ∗(δω, β, ε3) ≥ 1
such that for any γ ≥ γ∗, any t ≥ 1 and any l ∈ Z, the bound∣∣Θl;β,γ(t)−Ql;β,γ(t)Φ′

(
ξnl(t)

)∣∣ ≤ 1
26ηzε3t

−3/2 (5.259)
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holds provided |ρ(l, γ; t)| ≤ δω, while

|Θl;β,γ(t)| ≤ 1
26ηzε3t

−3/2 (5.260)

holds provided |ρ(l, γ; t)| ≥ δω.

Proof. These bounds follow directly from Lemmas 5.17 and 5.21, noting that for any C ′ > 1 we can
choose γ∗ ≥ 1 in such a way that

βγC ′(γt)1/2e−ν2δ
2
ωγt ≤ βC ′(γt)−3/2 ≤ ε3t−3/2 (5.261)

holds for any t ≥ 1 and any γ ≥ γ∗.

Lemma 5.29. There exist ηz > 0 and KZ > 1 such that for every C1-smooth function z : [1,∞)→
R that has z(t) > 0 and ż(t) ≥ −ηzz(t) for all t ≥ 1, we have

Znl;β,γ,KZ (t) ≥ ηzz(t) (5.262)

for all β ≥ 1, all γ ≥ 1, all (n, l) ∈ Z2 and all t ≥ 1.

Proof. Since

Znl;β,γ,KZ ≥
[
KZΦ′

(
ξnl(t)

)
− ηz − g′

(
Φ
(
ξnl(t)

))]
z(t), (5.263)

it suffices to choose ηz > 0 and KZ � 1 in such a way that

KZΦ′(ξ)− ηz −D
(
Φ(ξ)

)
≥ ηz (5.264)

holds for all ξ ∈ R. This is possible because of the limits Φ(−∞) = 0, Φ(+∞) = 1, the inequalities
g′(0) < 0 and g′(1) < 0 and the fact that Φ′(ξ) > 0 for all ξ ∈ R.

We are now ready to estimate the numbered terms appearing in (5.258). The terms R1 and R7

need to be considered separately in the near-field and far-field regimes, but the remaining numbered
terms can be handled using global bounds.

Lemma 5.30. There exists δz > 0 such that the following is true. Pick any δω > 0, any β > 1 and
any ε3 > 0. Then there exist γ∗ = γ∗(δω, β, ε3) ≥ 1 such that for any function z : [1,∞) → (0, δz],
any γ ≥ γ∗, any t ≥ 1 and any l ∈ Z, we have the bounds∣∣[R1

(
π�θ, π��θ, z; t

)
]nl
∣∣ ≤ 1

26ηz |z(t)|+
1
26ηzε3t

−3/2

+ 1
2Ql;β,γ(t)Φ′

(
ξnl(t)

)
,∣∣[R7

(
π�θ; t

)
]nl
∣∣ ≤ 1

2Ql;β,γ(t)Φ′
(
ξnl(t)

)
+ 1

26ηzε3t
−3/2,

(5.265)

provided |ρ(l, γ; t)| ≤ δω, together with the bounds∣∣[R1

(
π�θ, π��θ, z; t

)
]nl
∣∣ ≤ 1

26ηz |z(t)|+
1
26ηzε3t

−3/2,∣∣[R7

(
π�θ; t

)
]nl
∣∣ ≤ 1

26ηzε3t
−3/2,

(5.266)

provided |ρ(l, t, γ)| ≥ δω. Here we have used θ = θ;β,γ .

Proof. First of all, pick any 0 < κ′ ≤ 1. Possibly decreasing δz > 0 and increasing γ∗ ≥ 1, Lemma
5.26 shows that we can arrange for

δz + |π�l θ;β,γ(t)|+ |π��l θ;β,γ(t)| ≤ κ′ ≤ 1, γ ≥ γ∗, l ∈ Z, t ≥ 1. (5.267)
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Recalling the constant C1 = C1(1) defined in Lemma 5.7, we see that in the near field |ρ| ≤ δω we
have∣∣[R1

(
π�θ, π��θ, z; t

)
]nl
∣∣ ≤ C1 |z(t)|

[
|z(t)|+ π�l θ(t) + |π��l θ(t)|

]
+C1

(
|π�l θ(t)|+ |π��l θ(t)|

)2Φ′
(
ξnl(t)

)
≤ C1κ

′ |z(t)|

+16β2t−2αC1C
2
4

[(
ρ2 + (γt)−2

)
v2
l;γ(t) + (γt)e−2ν2δ

2
ωγt
]
Φ′
(
ξnl(t)

)
.

(5.268)

In view of the definition (5.227) for Ql;β,γ(t), it hence suffices to pick κ′ > 0 sufficiently small and
γ∗ ≥ 1 sufficiently large to ensure that

C1κ
′ ≤ 1

26
ηz, 16C1βC

2
4 ≤

1
16
ν2γ∗, 16C1βC

2
4γ
−1
∗ ≤

1
16

(5.269)

all hold, together with an exponential estimate similar to (5.261).
The far field case |ρ(l, t; γ)| ≥ δω can be treated in a similar fashion. Finally, inspection of (5.7)

shows that R7 only contains terms that are also present in R1.

Lemma 5.31. Pick any β > 1 and ε3 > 0. Then there exists γ∗ = γ∗(β, ε3) ≥ 1 such that for
any function z : [0,∞) → (0, 1], any γ ≥ γ∗ and any t ≥ 1, the following bounds hold for every
(n, l) ∈ Z2, ∣∣[R2

(
KZz, π

�θ, π��θ; t
)
]nl
∣∣ ≤ 1

26ηzz(t),∣∣∣[R3

(
θ̇, π��θ; t

)
]nl
∣∣∣ ≤ 1

26ηzε3t
−3/2,∣∣∣[R4

(
π�θ̇, π�θ; t

)
]nl
∣∣∣ ≤ 1

26ηzε3t
−3/2,∣∣[R5

(
π�θ, π��θ, π���θ; t

)
]nl
∣∣ ≤ 1

26ηzε3t
−3/2,∣∣∣[R6

(
θ̇, π�θ; t)]nl

∣∣∣ ≤ 1
26ηzε3t

−3/2,

(5.270)

in which we used θ = θ;β,γ .

Proof. First note that the global bounds in Lemma 5.22 imply that∣∣[R2

(
KZz, π

�θ, π��θ; t
)
]nl
∣∣ ≤ βt−αC1KZ |z(t)|

[
C6(γt)−1/2 + C6(γt)−1

]
, (5.271)

so for the first inequality it suffices to pick γ∗ ≥ 1 in such a way that

βC1KZC6(γ−1/2
∗ + γ−1

∗ ) ≤ 1
26
ηz. (5.272)

In view of the global bounds obtained in Lemmas 5.22, 5.23 and 5.24, the remaining estimates
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follow from the computations∣∣∣[R3

(
θ̇, π��θ; t

)
]nl
∣∣∣ ≤ C1

∣∣∣θ̇l(t)∣∣∣ |π��l θ(t)|
≤ C1β

2C2
6

[
(γt)−1/2 + γ(γt)−1

]
(γt)−1,∣∣∣[R4

(
π�θ̇, π�θ; t

)
]nl
∣∣∣ ≤ C1

∣∣∣π�l θ̇(t)∣∣∣ |π�l θ(t)|
≤ C1β

2C2
6

[
γ(γt)−3/2 + (γt)−1

]
(γt)−1/2,∣∣[R5

(
π�θ, π��θ, π���θ; t

)
]nl
∣∣ ≤ |π�l θ(t)|

[
|π��l θ(t)|+ |π�l θ(t)|

2 + |π���l θ(t)|
]

+ |π��l θ(t)|
2

≤ C1β
2C2

6 (γt)−1/2
[
(γt)−1 + (γt)−1 + (γt)−3/2

]
+C1β

2C2
6 (γt)−2,∣∣∣[R6

(
θ̇, π�θ; t)]nl

∣∣∣ ≤ C1

∣∣∣θ̇l(t)− α�µπ�l;µθ(t)∣∣∣ |π�l θ(t)|
≤ C1β

2C2
6 (γt)−1(γt)−1/2.

(5.273)

Indeed, the worst of these terms is given by C1β
2C2

6 [(γt)−3/2+γ(γt)−2], which can easily be estimated
by ε3t−3/2 for all t ≥ 1 by picking γ∗ sufficiently large.

Lemma 5.32. Pick any β > 1 and ε3 > 0. Then there exists γ∗ = γ∗(β, ε3), such that for any
γ ≥ γ∗, any t ≥ 1 and any (n, l) ∈ Z2, we have the bounds∣∣∣[E1(π��θ̇; t)]nl∣∣∣ ≤ 1

26ηzε3t
−3/2,∣∣[E2(π���θ; t)]nl∣∣ ≤ 1

26ηzε3t
−3/2,∣∣∣[E3(π�θ̇, π��θ; t)]nl∣∣∣ ≤ 1

26ηzε3t
−3/2.

(5.274)

Proof. Combining the global bounds obtained in Lemmas 5.22, 5.23 and 5.24 with the estimates in
Lemma 5.9, we compute∣∣∣[E1(π��θ̇; t)]nl∣∣∣ ≤ C1

∣∣∣π��l θ̇(t)∣∣∣
≤ C1C6β

[
γ(γt)−2 + (γt)−3/2

]
,∣∣[E2(π���θ; t)]nl∣∣ ≤ C1 |π���l θ(t)|

≤ C1C6β(γt)−3/2,∣∣∣[E3(π�θ̇, π��θ; t)]nl∣∣∣ ≤ C1

∣∣∣π�l [θ̇(t)− α�µπ�l;µθ(t)]
∣∣∣

≤ C1C6βγ(γt)−3/2.

(5.275)

The worst term is hence C1C6βγ(γt)−3/2, so it suffices to pick γ∗ in such a way that

2C1C6βγ
−1/2
∗ ≤ 1

26
ηzε3. (5.276)

Proof of Proposition 5.25. The statements follow from the discussion above, picking δz > 0 and
γ ≥ γ∗ ≥ 1 in such a way that the statements in Lemmas 5.28, 5.30, 5.31 and 5.32 all hold. In
particular, these estimates imply that for any (n, l) ∈ Z2 and any t ≥ 1 we have

J−nl(t) ≤ −
1
2
ηzz(t) < 0, (5.277)

as desired.
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Proof of Proposition 5.1. The statements concerning W− follow directly from Proposition 5.25,
upon choosing β > 1 to be sufficiently large and writing

W−nl(t) = u−nl(t− 1). (5.278)

We stress that the function θ;β,γ depends only on the parameters ε1, ε2, ε3, Ω⊥ and Ωphase and not
on the specific form of z(t). The super-solution W+ can be constructed analogously.

Proof of Proposition 5.2. Besides the remark just before Lemma 5.26, the fact that n and l are
integer-valued was never used in the proof of Proposition 5.1. In particular, the same estimates and
computations remain valid for (σh, σv) ∈ R2 \ {(0, 0)} and (n, l) ∈ R2.

6 The Entire Solution

Throughout the remainder of this paper we focus our attention on the obstructed LDE (6.6). The
purpose of this section is to establish the existence of an entire solution to (6.6) that converges to a
planar travelling wave as t → −∞. The ideas here closely follow the presentation in [9, §2-§3], but
the discreteness of the lattice requires certain technical adjustments.

Throughout this section we fix a pair (σh, σv) ∈ R
2 \ {0, 0} and recall the notation σ =

max{|σh| , |σv|}. We also recall the set Z2
× ⊂ R2 that was defined at the start of §5 as the range of

the coordinate transformation (5.1). For any S ⊂ Z2
×, we introduce the neighbour set

N×S (n, l) = {(n+ σh, l + σv), (n+ σv, l − σh), (n− σh, l − σv), (n− σv, l + σh)} ∩ S, (6.1)

together with the associated punctured Laplacian

[∆×S v]nl =
∑

(n′,l′)∈N×S (n,l)

[vn′l′ − vnl] (6.2)

and the boundary

∂×S = {(n, l) ∈ S | N×S (n, l) 6= N×
Z

2
×

(n, l)}. (6.3)

Upon writing

K×obs = {(n, l) ∈ Z2
× for which (n, l) =

(
iσh + jσv, iσv − jσh

)
for some (i, j) ∈ Kobs}, (6.4)

together with

Λ× = Z
2
× \K×obs, (6.5)

we see that the obstructed LDE (2.33) is transformed into

u̇nl(t) = [∆×Λ×u(t)]nl + g
(
unl(t)

)
, (n, l) ∈ Λ×. (6.6)

Proposition 6.1. Consider the obstructed LDE (6.6) and assume that (Hg), (HK1) and (hΦ)§3
with c > 0 all hold. Then there exists a C1-smooth function U : R → `∞(Λ×;R) that satisfies the
obstructed LDE (6.6) for all t ∈ R, admits the uniform limit

sup
(n,l)∈Λ×

|Unl(t)− Φ(n+ ct)| → 0, t→ −∞ (6.7)

and enjoys the estimates

0 < Unl(t) < 1, U̇nl(t) > 0 (6.8)

for all (n, l) ∈ Λ× and t ∈ R. In addition, any C1-smooth function V : R→ `∞(Λ×;R) that satisfies
(6.6) for all t ∈ R together with (6.7) must also have V = U .
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By relabelling our coordinate system and shifting the wave profile Φ, we can arrange for the
following two conditions to hold.

(hK)§6 The obstacle satisfies K×obs ⊂ {n < −2σ} ⊂ Z2
×.

(hΦ)§6 Recalling the inequality g(ξ) ≤ 0 for 0 ≤ ξ ≤ a, we have Φ(0) ≤ a. In addition, we have
Φ′′(ξ) > 0 for all ξ ≤ 0, together with c > 0.

Upon recalling the exponents (κΦ, η
±
Φ ) defined in Lemma 3.4, we fix the exponent

η0 = min{η−Φ , κΦ}. (6.9)

For any M0 > 1, we now introduce the function

Ξ(t) = ΞM0(t) (6.10)

that is uniquely defined by the initial value problem

Ξ̇(t) = M0e
η0

(
ct+Ξ(t)

)
, Ξ(−∞) = 0. (6.11)

We note that Ξ(t) is defined on the interval (−∞,−T0), for some T0 = T0(M0)� 1.
Our main task in this section is to show that the two C1-smooth functions u± : (−∞,−T0(M0))→

`∞(Z2
×;R) defined by

u−nl(t) =

{
Φ
(
n+ ct− Ξ(t)

)
− Φ

(
− n+ ct− Ξ(t)

)
n ≥ 0,

0 n < 0,

u+
nl(t) =

{
Φ
(
n+ ct+ Ξ(t)

)
+ Φ

(
− n+ ct+ Ξ(t)

)
n ≥ 0,

2Φ
(
ct+ Ξ(t)

)
n < 0,

(6.12)

are sub respectively super-solutions for (6.6). The form of these two functions is precisely the same
as that of their counterparts from [9], but the non-local terms in our LDE require special care in
our analysis because the {n < 0} and {n ≥ 0} regimes interact with each other across the {n = 0}
boundary.

In order to understand these non-local terms, we first notice that (hK)§6 implies that

∆×Λ×u
±(t) = ∆×u±(t) (6.13)

for all t ≤ −T0(M0). In addition, we introduce the notation

[I−∆(t)]n = cΦ′
(
n+ ct− Ξ(t)

)
− cΦ′

(
− n+ ct− Ξ(t)

)
−g
(

Φ
(
n+ ct− Ξ(t)

))
+ g
(

Φ
(
− n+ ct− Ξ(t)

))
,

[I+
∆(t)]n = cΦ′

(
n+ ct+ Ξ(t)

)
+ cΦ′

(
− n+ ct+ Ξ(t)

)
−g
(

Φ
(
n+ ct+ Ξ(t)

))
− g
(

Φ
(
− n+ ct+ Ξ(t)

))
.

(6.14)

Before we state our first two technical results concerning the discrete Laplacians (6.13), we recall
the notation

(σ1, . . . , σ5) =
(
σv,−σh,−σv, σh, 0

)
, (6.15)

together with the vector

(L×1 , . . . , L
×
5 ) = (1, 1, 1, 1,−4) ∈ R5 (6.16)

and the summation convention introduced in §5.1.
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Lemma 6.2. Consider the obstructed LDE (6.6), suppose that (Hg), (hK)§6, (hΦ)§3 and (hΦ)§6 all
hold and pick any M0 > 1. Then for any t ≤ −T0(M0), we have the inequalities

[∆×u−(t)]nl ≥ [I−∆(t)]n, n > 0,

[∆×u−(t)]nl ≥ 0, n ≤ 0.
(6.17)

Proof. For n ≥ σ, we may compute

[∆×u−(t)]nl = L×µΦ
(
n+ σµ + ct− Ξ(t)

)
− L×µΦ

(
− n− σµ + ct− Ξ(t)

)
= [I−∆(t)]n.

(6.18)

For 0 < n < σ, we have

[∆×u−(t)]nl − [I−∆(t)]n =
∑
n+σµ<0

[
Φ
(
− n− σµ + ct− Ξ(t)

)
− Φ

(
n+ σµ + ct− Ξ(t)

)]
≥ 0,

(6.19)

since Φ is strictly increasing. Similarly, for −σ < n ≤ 0 we have

[∆×u−(t)]nl =
∑
n+σµ>0

[
Φ
(
n+ σµ + ct− Ξ(t)

)
− Φ

(
− n− σµ + ct− Ξ(t)

)]
≥ 0,

(6.20)

while for n ≤ −σ we have [∆×u−(t)]nl = 0.

Lemma 6.3. Consider the LDE (6.6) and suppose that (Hg), (hK)§6, (hΦ)§3 and (hΦ)§6 all hold.
There exists a constant C1 > 1 so that for any M0 > 1 and any t ≤ −T0(M0) for which ct+ Ξ(t) ≤
−σ, the estimate

[∆×u+(t)]nl − [I+
∆(t)]n ≤ C1e

−(η−Φ +κΦ)|ct+Ξ(t)|1n∈[0,σ) (6.21)

holds whenever n ≥ 0, while

[∆×u+]nl − cΦ′
(
ct+ Ξ(t)

)
+ g′(0)Φ

(
ct+ Ξ(t)

)
≤ C1e

−(η−Φ +κΦ)|ct+Ξ(t)| (6.22)

holds whenever n < 0.

Proof. For convenience, we introduce the shorthand ξ = ct+ Ξ(t). For n ≥ σ, we have

[∆×u+(t)]nl = L×µΦ
(
n+ σµ + ξ

)
+ L×µΦ

(
− n− σµ + ξ

)
= [I+

∆(t)]n.
(6.23)

For 0 ≤ n < σ, we may use the asymptotics in Proposition 3.4 to compute

[∆×u+(t)]nl − [I+
∆(t)]n =

∑
n+σµ<0

[
2Φ(ξ)− Φ(n+ σµ + ξ)− Φ(−n− σµ + ξ)

]
≤

∑
n+σµ<0 C

−
Φ e

η−Φ ξ
[
2− eη

−
Φ (n+σµ) − e−η

−
Φ (n+σµ)]

+
∑
n+σµ<0KΦe

(η−Φ +κΦ)ξ
[
2 + e(η−Φ +κΦ)(n+σµ) + e−(η−Φ +κΦ)(n+σµ)

]
≤

∑
n+σµ<0KΦe

(η−Φ +κΦ)ξ
[
2 + 2e(η−Φ +κΦ)σ)],

(6.24)

since 2− 2 cosh
(
η−Φ (n+ σµ)

)
≤ 0. These two observations readily yield the first estimate (6.21).
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For −σ ≤ n < 0 we obtain

[∆×u+(t)]nl =
∑

n+σµ≥0

[
Φ(n+ σµ + ξ) + Φ(−n− σµ + ξ)− 2Φ(ξ)

]
. (6.25)

In particular, we may write

Qnl(t) = [∆×u+(t)]nl − cΦ′(ξ) + g′(0)Φ(ξ) (6.26)

and compute

Qnl(t) ≤ C−Φ e
η−Φ ξ

∑
n+σµ≥0[eη

−
Φ (n+σµ) + e−η

−
Φ (n+σµ) − 2]

−cC−Φ η
−
Φ e

η−Φ ξ + g′(0)C−Φ e
η−Φ ξ

+KΦe
(η−Φ +κΦ)ξ

∑
n+σµ≥0[e(η−Φ +κΦ)(n+σµ) + e−(η−Φ +κΦ)(n+σµ) + 2]

+KΦe
(η−Φ +κΦ)ξ[c+ |g′(0)|]

≤ C−Φ e
η−Φ ξ
[
2 cosh(σhη−Φ ) + 2 cosh(σvη−Φ )− 4− cη−Φ + g′(0)

]
+KΦe

(η−Φ +κΦ)ξ[c+ |g′(0)|+ 2 + 2e(η−Φ +κΦ)σ)]

= KΦe
(η−Φ +κΦ)ξ[c+ |g′(0)|+ 2 + 2e(η−Φ +κΦ)σ)],

(6.27)

where the last equality follows from (3.13). Finally, for n < −σ we have [∆×u+(t)]nl = 0, which
establishes (6.22) and concludes the proof.

The specific forms for u± suggest that it is worthwhile to introduce the two auxilliary functions

G(n, ξ) = g
(
Φ(n+ ξ)

)
+ g
(
Φ(−n+ ξ)

)
− g
(
Φ(n+ ξ) + Φ(−n+ ξ)

)
,

H(n, ξ) = g
(
Φ(n+ ξ)

)
− g
(
Φ(−n+ ξ)

)
− g
(
Φ(n+ ξ)− Φ(−n+ ξ)

)
.

(6.28)

The next result collects some useful properties for G and H.

Lemma 6.4. Consider the LDE (6.6) and suppose that (Hg), (hΦ)§3 and (hΦ)§6 all hold. Then
there exists C2 > 1 such that for every ξ ∈ R and n ∈ R, we have the inequalities

|G(n, ξ)| ≤ C2Φ(n+ ξ)Φ(−n+ ξ),

|H(n, ξ)| ≤ C2Φ(−n+ ξ)
(
Φ(n+ ξ)− Φ(−n+ ξ)

)
.

(6.29)

In addition, if η−Φ ≤ η
+
Φ , there exist constants L2 > 1 and κ2 > 0 such that the inequalities

G(n, ξ) ≥ +κ2Φ(−n+ ξ),

H(n, ξ) ≤ −κ2Φ(−n+ ξ) (6.30)

hold for all ξ ≤ 0 and n ≥ L2 − ξ.

Proof. For any pair (u, v) ∈ R2 we have

g(u+ v)− g(u)− g(v) = uv

∫ 1

0

∫ 1

0

g′′(su+ tv) dsdt. (6.31)

In addition, writing u = Φ(n+ ξ) and v = Φ(−n+ ξ), we have

H(n, ξ) = g(u)− g(v)− g(u− v)

= g
(
(u− v) + v

)
− g(v)− g(u− v)

= v(u− v)
∫ 1

0
g′′
(
s(u− v) + tv

)
dsdt.

(6.32)
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These observations directly imply the estimate (6.29).
We note that the inequalities c > 0 and η−Φ ≤ η+

Φ directly imply that g′(0) > g′(1). Upon
introducing the quantity

IG(u, v) = g(v)− g(0) + g(u)− g(u+ v) + [g′(1)− g′(0)]v, (6.33)

we may compute

IG(u, v) = v
∫ 1

t=0
[g′(tv)− g′(0)] dt− v

∫ 1

t=0
[g′(u+ tv)− g′(1)] dt

= v
∫ 1

t=0
[g′(tv)− g′(0)] dt

−v
∫ 1

t=0
[g′(u+ tv)− g′(u)] dt− v

∫ 1

t=0
[g′(u)− g′(1)] dt.

(6.34)

In particular, there exists C ′ > 1 for which the bound

|IG(u, v)| ≤ C ′ |v|
[
|v|+ |1− u|

]
(6.35)

holds whenever |u| ≤ 2 and |v| ≤ 2. Since g′(0) > g′(1), we hence see that there exists δ′ > 0 for
which G(n, ξ) ≥ 1

2 [g′(0)− g′(1)]Φ(−n+ ξ) holds whenever

|Φ(−n+ ξ)|+ |1− Φ(n+ ξ)| < δ′. (6.36)

Noting that the conditions on (n, ξ) in the statement of this result imply that −n + ξ ≤ −L2 and
n+ ξ ≥ L2, one can guarantee (6.36) by picking L2 sufficiently large.

Similarly, we write

IH(u, v) = g(u)− g(v)− g(u− v) + [g′(0)− g′(1)]v

= −IG(u− v, v), (6.37)

which implies

|IH(u, v)| ≤ C ′ |v|
[
2 |v|+ |1− u|

]
. (6.38)

Arguing as above, the estimates (6.30) now easily follow.

Lemma 6.5. Consider the travelling wave MFDE (3.10) and suppose that (Hg), (hΦ)§3 and (hΦ)§6
all hold. Then there exists a constant κ3 > 0 such that we have

Φ′(ξ1)− Φ′(ξ2)
Φ(ξ1)− Φ(ξ2)

≥ κ3, ξ2 < ξ1 ≤ 0. (6.39)

Proof. Pick any L′ > 1 and consider any pair (ξ1, ξ2) ∈ R2 for which

ξ1 − L′ ≤ ξ2 < ξ1 ≤ 0. (6.40)

The mean value theorem now gives

Q(ξ1, ξ2) :=
Φ′(ξ1)− Φ′(ξ2)
Φ(ξ1)− Φ(ξ2)

=
(ξ1 − ξ2)Φ′′(θ1)
(ξ1 − ξ2)Φ′(θ2)

=
Φ′′(θ1)
Φ′(θ2)

> 0 (6.41)

for some non-negative pair (θ1, θ2) ∈ R2 with |θ1 − θ2| ≤ L′. The asymptotics (3.17) now imply that
there exists a constant κ′ = κ′(L′) > 0 so that Q(ξ1, ξ2) ≥ κ′(L′) whenever (6.40) holds.

On the other hand, the exponential decay of Φ′ stated in (3.17) ensures that for L′ sufficiently
large we have

Φ′(ξ2) ≤ 1
2

Φ′(ξ1) (6.42)

78



whenever ξ2 + L′ ≤ ξ1 < 0. The desired lower bound now follows from the estimate

Φ′(ξ1)− Φ′(ξ2)
Φ(ξ1)− Φ(ξ2)

≥
1
2Φ′(ξ1)
Φ(ξ1)

≥ κ′′ (6.43)

for some κ′′ > 0, again using the asymptotics (3.17) to obtain the second inequality.

We are now ready to verify that the two functions u± are a sub and super-solution for (6.6). In
view of the preparations above, the following two results can be established almost exactly as in [9,
§2.3].

Lemma 6.6. Consider the LDE (6.6) and suppose that (Hg), (hK)§6, (hΦ)§3 and (hΦ)§6 all hold.
Then there exist M0 > 1 and T∗ ≥ T0(M0) so that the function J− : (−∞,−T∗] → `∞(Z2

×,R)
defined by

J−nl(t) = u̇−nl(t)− [∆×u−(t)]nl − g
(
u−nl(t)

)
(6.44)

satisfies the estimate

J−nl(t) ≤ 0, (n, l) ∈ Z2
×, t ≤ −T∗. (6.45)

Proof. For n ≤ −σ, we automatically have J−nl(t) = 0. For −σ < n ≤ 0, we have

J−nl(t) = −[∆×u−(t)]nl ≤ 0 (6.46)

by Lemma 6.2.
For n > 0 we write

ξ = ct− Ξ(t) (6.47)

and assume without loss that ξ < −σ. We compute

J−nl(t) =
(
c− Ξ̇(t)

)
[Φ′(ξ + n)− Φ′(ξ − n)]− [∆×u−(t)]nl − g

(
Φ(ξ + n)− Φ(ξ − n)

)
= −Ξ̇(t)[Φ′(ξ + n)− Φ′(ξ − n)] + [I−∆(t)]n − [∆×u−(t)]nl +H(n, ξ)

≤ −Ξ̇(t)[Φ′(ξ + n)− Φ′(ξ − n)] +H(n, ξ).

(6.48)

First, let us consider the case 0 < n ≤ −ξ, for which we obviously have ξ ± n ≤ 0. In particular,
recalling the estimates stated in Corollary 3.5, we may compute

J−nl(t) ≤ −M0e
η0ξe2η0Ξ(t)κ3[Φ(ξ + n)− Φ(ξ − n)] + C2Φ(ξ − n)[Φ(ξ + n)− Φ(ξ − n)]

≤
[
−M0e

η0ξe2η0Ξ(t)κ3 + C2β
−
upe
−η−Φ |ξ−n|

]
[Φ(ξ + n)− Φ(ξ − n)]

=
[
−M0e

η0ξe2η0Ξ(t)κ3 + C2β
−
upe

η−Φ ξe−η
−
Φn
]
[Φ(ξ + n)− Φ(ξ − n)]

≤ eη0ξ
[
−M0κ3 + C2β

−
up

]
[Φ(ξ + n)− Φ(ξ − n)].

(6.49)

By picking M0 � 1 to be sufficiently large we can hence arrange for J−nl(t) ≤ 0 to hold in this
regime.

We now study the situation that n > −ξ ≥ σ. In this case we have ξ + n > 0 and ξ − n < 0,
which allows us to estimate

J−nl(t) ≤ −Ξ̇(t)[Φ′(ξ + n)− Φ′(ξ − n)] + C2Φ(ξ − n)[Φ(ξ + n)− Φ(ξ − n)]

≤ −M0e
η0ξe2η0Ξ(t)

(
α+

lowe
−η+

Φ |ξ+n| − α−upe
−η−Φ |ξ−n|

)
+ C2β

−
upe
−η−Φ |ξ−n|

= −M0e
η0ξe2η0Ξ(t)e−η

−
Φn
(
α+

lowe
(η−Φ−η

+
Φ )ne−η

+
Φ ξ − α−upe

η−Φ ξ − C2β
−
upM

−1
0 e(η−Φ−η0)ξe−2η0Ξ(t)

)
≤ −M0e

η0ξe2η0Ξ(t)e−η
−
Φn
(
α+

lowe
(η−Φ−η

+
Φ )ne−η

+
Φ ξ − α−upe

η−Φ ξ − C2β
−
upM

−1
0

)
.

(6.50)
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If η−Φ ≥ η
+
Φ , we obtain the bound

J−nl(t) ≤ −M0e
η0ξe2η0Ξ(t)e−η

−
Φn
(
α+

lowe
−η+

Φ ξ − α−upe
η−Φ ξ − C2β

−
upM

−1
0

)
. (6.51)

In particular, whenever ξ � −1 is sufficiently negative to ensure that

α+
lowe

−η+
Φ ξ − α−upe

η−Φ ξ − C4β
−
upM

−1
0 > 0, (6.52)

we have J−nl(t) ≤ 0. This restriction on ξ can be achieved by choosing T∗ to be sufficiently large.
On the other hand, if η−Φ < η+

Φ , we consider two separate cases for n. In particular, recalling the
constants L2 > 1 and κ2 from Lemma 6.4, we note that for n ≥ −ξ + L2 we have

J−nl(t) ≤ Ξ̇(t)Φ′(ξ − n)− κ2Φ(ξ − n)

≤ M0e
η0ξe2η0Ξ(t)α−upe

−η−Φ |ξ−n| − κ2β
−
lowe

−η−Φ |ξ−n|

= e−η
−
Φ |ξ−n|[M0e

η0

(
ct+Ξ(t)

)
α−up − κ2β

−
low].

(6.53)

In this case, we have J−nl(t) ≤ 0 provided T∗ is chosen to be sufficiently large to guarantee that
ct+ Ξ(t)� −1 is always sufficiently negative to have

M0e
η0

(
ct+Ξ(t)

)
α−up − κ2β

−
low ≤ 0, t ≤ −T∗. (6.54)

Finally, for −ξ < n < −ξ + L2, we see from (6.50) that

J−nl(t) ≤ −M0e
η0ξe2η0Ξ(t)e−η

−
Φn
(
α+

lowe
(η−Φ−η

+
Φ )ne−η

+
Φ ξ − α−upe

η−Φ ξ − C2β
−
upM

−1
0

)
≤ −M0e

η0ξe2η0Ξ(t)e−η
−
Φn
(
α+

lowe
(η−Φ−η

+
Φ )(L2−ξ)e−η

+
Φ ξ − α−upe

η−Φ ξ − C2β
−
upM

−1
0

)
= −M0e

η0ξe2η0Ξ(t)e−η
−
Φn
(
α+

lowe
(η−Φ−η

+
Φ )L2e−η

−
Φ ξ − α−upe

η−Φ ξ − C2β
−
upM

−1
0

)
.

(6.55)

In particular, whenever ξ � −1 is sufficiently negative to ensure that

α+
lowe

(η−Φ−η
+
Φ )L2e−η

−
Φ ξ − α−upe

η−Φ ξ − C2β
−
upM

−1
0 ≥ 0, (6.56)

we have J−nl(t) ≤ 0. As before, this restriction on ξ can be achieved by choosing T∗ to be sufficiently
large.

Lemma 6.7. Consider the LDE (6.6) and suppose that (Hg), (hK)§6, (hΦ)§3 and (hΦ)§6 all hold.
Then there exist M0 > 1 and T∗ ≥ T0(M0) so that the function J + : (−∞,−T∗] → `∞(Z2

×,R)
defined by

J +
nl(t) = u̇+

nl(t)− [∆×u+(t)]nl − g
(
u+
nl(t)

)
(6.57)

satisfies the estimate

J +
nl(t) ≥ 0, (n, l) ∈ Z2

×, t ≤ −T∗. (6.58)

Proof. For convenience, we write

ξ = ct+ Ξ(t) (6.59)

and assume that

ξ < −σ, Φ(ξ) <
a

2
, (6.60)
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which for every M0 > 1 can be arranged by picking T∗ = T∗(M0) to be sufficiently large. Note in
particular that g(2Φ(ξ)) < 0.

Choose C ′ > 1 in such a way that g′′(u) ≤ C ′ for u ≤ 0 ≤ 1. Remembering that g(0) = 0 and
g′(0) < 0, we pick n < 0 and use Lemma 6.3 to obtain the bound

J +
nl(t) = 2

(
c+ Ξ̇(t)

)
Φ′(ξ)− [∆×u+(t)]nl − g

(
2Φ(ξ)

)
≥

(
c+ 2Ξ̇(t)

)
Φ′(ξ) + g′(0)Φ(ξ)− g

(
2Φ(ξ)

)
− C1e

(η−Φ +κΦ)ξ

≥
(
c+ 2Ξ̇(t)

)
Φ′(ξ) + 2g′(0)Φ(ξ)− g

(
2Φ(ξ)

)
− C1e

(η−Φ +κΦ)ξ

≥
(
c+ 2Ξ̇(t)

)
Φ′(ξ)− 2C ′Φ(ξ)2 − C1e

(η−Φ +κΦ)ξ

≥
(
c+ 2Ξ̇(t)

)
Φ′(ξ)− 2C ′[β−up]2e2η−Φ ξ − C1e

(η−Φ +κΦ)ξ

≥ 2α−lowM0e
(η0+η−Φ )ξ − 2C ′[β−up]2e2η−Φ ξ − C1e

(η−Φ +κΦ)ξ.

(6.61)

By picking M0 � 1 to be sufficiently small we can hence guarantee J +
nl(t) ≥ 0.

Let us now consider n ≥ 0, for which we may compute

J +
nl(t) = (c+ Ξ̇(t))[Φ′(ξ + n) + Φ′(ξ − n)]− [∆×u+(t)]nl − g

(
Φ(ξ + n) + Φ(ξ − n)

)
= Ξ̇(t)[Φ′(ξ + n) + Φ′(ξ − n)] +G(n, ξ) + [I+

∆(t)]n − [∆×u+(t)]nl

≥ Ξ̇(t)[Φ′(ξ + n) + Φ′(ξ − n)] +G(n, ξ)− C1e
−(η−Φ +κΦ)|ξ|1n∈[0,σ).

(6.62)

Restricting attention to 0 ≤ n ≤ −ξ, for which we have ξ ± n ≤ 0, we may estimate

J +
nl(t) ≥ M0e

η0ξα−lowe
−η−Φ |ξ+n| − C2[β−up]2e−η

−
Φ |ξ+n|e−η

−
Φ |ξ−n| − C1e

−(η−Φ +κΦ)|ξ|1n∈[0,σ)

≥ M0α
−
lowe

(η0+η−Φ )ξ − C2[β−up]2e2η−Φ ξ − C1e
(η−Φ +κΦ)ξ.

(6.63)

Choosing M0 � 1 to be sufficiently large again ensures that J +
nl(t) ≥ 0.

It remains to consider n > −ξ > σ. We now have ξ − n < 0 < ξ + n and compute

J +
nl(t) ≥ M0e

η0ξα+
lowe

−η+
Φ |ξ+n| − C2β

−
upe
−η−Φ |ξ−n|

≥ eη0ξ[M0α
+
lowe

−η+
Φ ξe−η

+
Φn − C2β

−
upe

(η−Φ−η0)ξe−η
−
Φn]

≥ eη0ξ[M0α
+
lowe

−η+
Φn − C2β

−
upe
−η−Φn].

(6.64)

If η−Φ ≥ η
+
Φ , we immediately get J +

nl(t) ≥ 0 upon picking M0 � 1 sufficiently large.
On the other hand, if η−Φ < η+

Φ , we recall the constants L2 and κ2 from Lemma 6.4 and note that
for all n ≥ −ξ + L2 > σ we have

J +
nl(t) ≥ Ξ̇(t)[Φ′(ξ + n) + Φ′(ξ − n)] +G(n, ξ) ≥ 0. (6.65)

In addition, it is possible to chose M0 � 1 in such a way that

M0α
+
lowe

−η+
Φn − C2β

−
upe
−η−Φn > 0 (6.66)

for all n in the bounded range −ξ ≤ n ≤ −ξ + L2. In this case we also have J +
nl(t) ≥ 0 from

(6.64).

We are now ready to prove the existence part of Proposition 6.1. The proof uses a limiting
procedure to construct the entire solution U from a sequence of solutions that are squeezed between
u− and u+ on compact intervals that converge to (−∞,−T∗]. We spell out this limiting procedure in
detail in the proof below, because it will be used several more times in the remainder of this paper.
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Lemma 6.8. Consider the setting of Proposition 6.1. There exists a C1-smooth function U : R →
`∞(Λ×;R) that satisfies (6.6), (6.7) and (6.8).

Proof. Consider the constant T∗ and the functions u± defined in Lemmas 6.6 and 6.7. By potentially
increasing T∗, we may assume that c > Ξ̇(t) holds for t ≤ −T∗.

For any integer k ≥ T∗, we write

u(k) : [−k,∞)→ `∞(Λ×;R) (6.67)

for the solution to the obstructed LDE (6.6) with

u
(k)
nl (−k) = u−nl(−k), (n, l) ∈ Λ×. (6.68)

In particular, for all t ≥ −k and (n, l) ∈ Λ× we have

d
dtu

(k)
nl (t) = [∆×Λ×u

(k)(t)]nl + g
(
u

(k)
nl (t)

)
,

d2

dt2u
(k)
nl (t) = [∆×Λ×

d
dtu

(k)(t)]nl + g′
(
u

(k)
nl (t)

)
d
dtu

(k)
nl (t).

(6.69)

We note that u̇−nl(t) = 0 for n ≤ 0 and

u̇−nl(t) = [c− Ξ̇(t)][Φ(ct− Ξ(t) + n)− Φ(ct− Ξ(t)− n)] > 0 (6.70)

for n > 0 and t ≤ −T∗. We hence have

u̇
(k)
nl (−k) = [∆×Λ×u

−(−k)]nl + g
(
u−nl(−k)

)
≥ u̇−nl(−k)

≥ 0.

(6.71)

The comparison principle now implies

u̇
(k)
nl (t) > 0, 0 < u

(k)
nl (t) < 1 (6.72)

for all t > −k and (n, l) ∈ Λ×. In addition, another application of the comparison principle yields

u−nl(t) ≤ u
(k)
nl (t) < u+

nl(t), −k ≤ t ≤ −T∗, (n, l) ∈ Λ×. (6.73)

Fix any interval [t0, t1]. Combining (6.69) with the bounds (6.72), we see that for each fixed
(n, l) ∈ Λ× the sequence of functions {

(
u

(k)
nl (t), ddtu

(k)
nl (t)

)
} is well-defined for large k and equicon-

tinuous on the interval t0 ≤ t ≤ t1. In particular, potentially passing to a subsequence we can
write (

u
(k)
nl (t),

d

dt
u

(k)
nl (t)

)
→
(
Unl(t), U̇nl(t)

)
k →∞, (6.74)

where the convergence is uniform on the interval t0 ≤ t ≤ t1. Via diagonalization, we can pass to a
further subsequence for which (6.74) holds for all (n, l) ∈ Λ× and t ∈ R, which can be taken as the
definition of the function U : R → `∞(Λ×;R). The convergence (6.74) is uniform for finite sets of
(n, l) and compact intervals of t. In particular, by taking limits in (6.69) we see that

U̇nl(t) = [∆×Λ×U(t)]nl + g
(
Unl(t)

)
, (n, l) ∈ Λ×, t ∈ R, (6.75)

while taking limits in (6.72) yields

U̇nl(t) ≥ 0, 0 ≤ Unl(t) ≤ 1. (6.76)
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Inspection of the definition of u− readily yields the uniform limit

sup
(n,l)∈Λ×

|Unl(t)− Φ(n+ ct)| → 0, t→ −∞. (6.77)

In particular, U is not constant which allows us to sharpen (6.76) to

U̇nl(t) > 0, 0 < Unl(t) < 1. (6.78)

Throughout the remainder of this section we consider the uniqueness of the function U defined
in Lemma 6.8. The following result establishes a key compactness property.

Lemma 6.9. Consider the setting of Lemma 6.8. Then for any ϕ ∈ (0, 1
2 ], there exist constants

T4 = T4(ϕ) > 1 and κ4 = κ4(ϕ) > 0 such that

U̇nl(t) ≥ κ4, t ≤ −T4, (n, l) ∈ Ωϕ(t), (6.79)

in which

Ωϕ(t) = {(n, l) ∈ Λ× : ϕ ≤ Unl(t) ≤ 1− ϕ}. (6.80)

Proof. The uniform convergence (6.7) implies that we can pick T4 � 1 and L4 � 1 in such a way
that

Ωϕ(t) ⊂ {|n+ ct| ≤ L4} ⊂ {n > 1}, t ≤ −T4. (6.81)

Seeking a contradiction, let us consider a sequence {(tk, nk, lk)}k≥0 with tk ∈ (−∞,−T4] and
(nk, lk) ∈ Ωϕ(tk), for which U̇nk,lk(tk)→ 0 as k →∞. Introducing the functions

U
(k)
nl (t) = Un+nk,l+lk(t+ tk) (6.82)

and arguing as in the proof of Lemma 6.8, we can pass to a subsequence for which we have the
convergence

U
(k)
nl (t)→ U∗nl(t), k →∞ (6.83)

for some function

U∗ : R→ `∞(Λ∗;R), (6.84)

where Λ∗ = Z
2
× if |nk|+ |lk| → ∞ or Λ∗ = Λ× − (n∗, l∗) if nk → n∗ and lk → l∗. In both cases, we

may pass to a further subsequence for which

nk + ctk → ξ∗, k →∞ (6.85)

for some |ξ∗| ≤ L4. By construction, the function U∗ satisfies

U̇∗nl(t) = [∆×Λ∗U
∗(t)]nl + g

(
U∗nl(t)

)
, (n, l) ∈ Λ∗, t ∈ R, (6.86)

with

U̇∗nl(t) ≥ 0, U̇∗0,0(0) = 0. (6.87)

In particular, the comparison principle implies that

U̇∗nl(t) = 0, t ≤ 0, (n, l) ∈ Λ∗. (6.88)
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On the other hand, we claim that we have the uniform convergence

lim
t→−∞

sup
(n,l)∈Λ∗

|U∗nl(t)− Φ(n+ ct+ ξ∗)| = 0, (6.89)

which directly contradicts (6.88). To see (6.89), we pick any ε > 0 and choose T ′(ε) in such a way
that

|Un+nk,l+lk(t+ tk)− Φ(n+ nk + c(t+ tk))| ≤ ε

3
, k ≥ 0, t ≤ −T ′(ε), (6.90)

which is possible because of (6.7) and tk ≤ −T4. Now pick any t ≤ −T ′(ε) and any (n, l) ∈ Λ∗. On
account of (6.83) and (6.85), there exists k∗ for which∣∣Φ(n+ nk∗ + c(t+ tk∗)

)
− Φ(n+ ct+ ξ∗)

∣∣ ≤ ε
3 ,∣∣U∗nl(t)− Un+nk∗ ,l+lk∗

(t+ tk∗)
∣∣ ≤ ε

3

(6.91)

both hold, which implies

|U∗nl(t)− Φ(n+ ct+ ξ∗)| ≤ ε. (6.92)

This establishes (6.89) and completes the proof.

Corollary 6.10. Consider the setting of Lemma 6.9 and pick a sufficiently small ϕ > 0. Then
there exist constants C5 = C5(ϕ) > 1 and η5 = η5(ϕ) > 0 such that for any 0 < ε < ϕ and any
t0 ≤ −T4(ϕ)− C5ε, the functions

W−nl(t; ε, t0) = Unl
(
t0 − C5ε(1− e−η5t) + t

)
− εe−η5t,

W+
nl(t; ε, t0) = Unl

(
t0 + C5ε(1− e−η5t) + t

)
+ εe−η5t (6.93)

satisfy the differential inequalities

Ẇ−nl(t) ≤ [∆×Λ×W
−(t)]nl + g

(
W−nl(t)

)
,

Ẇ+
nl(t) ≥ [∆×Λ×W

+(t)]nl + g
(
W+
nl(t)

)
,

(6.94)

for all 0 ≤ t ≤ −T4(ϕ)− t0 − C5ε and (n, l) ∈ Λ×.

Proof. One can follow the proof of [29, Prop 4.3] almost verbatim, noting that the specified restric-
tions on t imply that one can use the lower bound for U̇ established in Lemma 6.9.

Proof of Proposition 6.1 . It remains to consider the uniqueness of the entire solution U constructed
in Lemma 6.8. Suppose therefore that V : R → `∞(Λ×;R) satisfies the obstructed LDE (6.6) and
obeys the limit (6.7). Picking ϕ > 0 to be sufficiently small, we note that for any 0 < ε < ϕ there
exists tε ≤ −T4 − C5ε for which

|Vnl(t)− Unl(t)| ≤ ε, t ≤ tε, (n, l) ∈ Λ×. (6.95)

In particular, using the functions W± defined in Corollary 6.10, we obtain

W−nl(0; ε, t0) ≤ Vnl(t0) ≤W+
nl(0; ε, t0) (6.96)

for any t0 ≤ tε. In particular, we have

W−nl(t− t0; ε, t0) ≤ Vnl(t) ≤W+
nl(t− t0; ε, t0) (6.97)

for all t ∈ [t0,−T4 − C5ε]. Sending t0 → −∞, we obtain

Unl(t− C5ε) ≤ Vnl(t) ≤ Unl(t+ C5ε), (6.98)

for all t ≤ −T4 − C5ε. In particular, taking the limit ε→ 0 we find V = U .
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7 Various Limits

In this section we focus on the entire solution U constructed in Proposition 6.1 and establish a
number of useful limits. In particular, we show that U resembles the planar travelling wave at the
spatial horizon |n| + |l| → ∞. In addition, we show that U converges pointwise to a stationary
solution of the obstructed LDE (6.6), which under suitable conditions on the obstacle can be shown
to be equal to one identically.

As in §6, we fix a direction (σh, σv) ∈ R2 \ {0, 0}. We first state our three main results and then
proceed to prove each of them in turn.

Proposition 7.1. Consider the obstructed LDE (6.6), assume that (Hg), (HK1) and (hΦ)§3 with
c > 0 all hold and recall the entire solution U defined in Proposition 6.1. Then for every ε2 > 0 and
any pair t− ≤ t+, there exists R = R(ε2, t−, t+) such that

|Unl(t)− Φ(n+ ct)| ≤ ε2 (7.1)

for all t− ≤ t ≤ t+ and (n, l) ∈ Λ× with |n|+ |l| ≥ R.

Proposition 7.2. Consider the obstructed LDE (6.6), assume that (Hg), (HΦ) and (HK1) all hold
and recall the entire solution U defined in Proposition 6.1. Then for each (n, l) ∈ Λ× we have

lim
t→∞

Unl(t) = Unl;∞ (7.2)

for some sequence U;∞ ∈ `∞(Λ×;R) that admits the bounds 0 < U;∞ ≤ 1, obeys the limits

lim
|n|+|l|→∞

Unl;∞ = 1 (7.3)

and satisfies the stationary problem

0 = [∆×Λ×U;∞]nl + g
(
Unl;∞

)
. (7.4)

In order to state our third main result, we introduce a slight reformulation of the assumption
(HK2). In the terminology of (HK2), the condition below states that the line ` ⊂ R2 goes through
the origin and is oriented in the direction (σh, σv) ∈ R2 \ {0, 0}.

(hK2)§7 For any (n, l) ∈ ∂×Λ× and any

(n′, l′) ∈ K×obs ∩N
×
Z

2
×

(n, l), (7.5)

we have the bound

|n′| ≤ |n| . (7.6)

We emphasize here that the direction featuring in (hK2)§7 for the obstacle need not be the same
direction as the propagation direction corresponding to the entire solution U defined in Proposition
6.1. It is merely technically convenient to use the same coordinate system in all our computations
below.

Proposition 7.3. Consider the obstructed LDE (6.6), and assume that (Hg), (HΦ), (HK1) and
(hK2)§7 all hold. Then any sequence U;∞ ∈ `∞(Λ×;R) that satisfies the conditions mentioned in
Proposition 7.2 must have Unl;∞ = 1 for all (n, l) ∈ Λ×.

Focussing on Proposition 7.1, we first treat the transverse horizon |l| → ∞ using a limiting
argument and then construct a super-solution to study the wave horizon |n| → −∞. The approach
here strongly resembles the arguments developed in [9, §4 and §7.2].
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Lemma 7.4. Consider the obstructed LDE (6.6) and assume that (Hg), (HK1) and (hΦ)§3 with
c 6= 0 all hold. Let U : R→ `∞(Λ×; [0, 1]) be a solution to the obstructed LDE (6.6) that satisfies the
limit

sup
(n,l)∈Λ×

|Unl(t)− Φ(n+ ct)| → 0, t→ −∞. (7.7)

Consider any sequence {lk}k≥1 ⊂ R with |lk| → ∞ as k →∞. Pick (n, l) ∈ Λ× and consider any
interval [t0, t1] ⊂ R. Then we have

sup
t∈[t0,t1]

|Un,l+lk(t)− Φ(n+ ct)| → 0, k →∞. (7.8)

Proof. Writing

u
(k)
nl (t) = Un,l+lk(t), (7.9)

we can argue as in the proof of Lemmas 6.8 and 6.9 to show that, after passing to a subsequence,
we have

lim
t→∞

u
(k)
nl (t) = U∗nl(t) (7.10)

for all t ∈ R and (n, l) ∈ Z2
×. This convergence is uniform for t in compact intervals and (n, l)

in finite subsets of Z2
×. In addition, the C1-smooth function U∗ : R → `∞(Z2

×; [0, 1]) satisfies the
unobstructed LDE

U̇∗nl(t) = [∆×U∗(t)]nl + g
(
U∗nl(t)

)
, t ∈ R, (n, l) ∈ Z2

× (7.11)

and enjoys the limit

sup
(n,l)∈Z2

×

|U∗nl(t)− Φ(n+ ct)| → 0 as t→ −∞. (7.12)

A standard argument analogous to the one used in the proof of Proposition 6.1 now shows that in
fact U∗nl(t) = Φ(n + ct). In particular, the convergence (7.10) holds for the entire original sequence
lk.

We write (c±δ ,Φ
±
δ ) for the waves defined in Proposition 3.7 that satisfy the travelling wave MFDE

c±δ [Φ±δ ]′(ξ) = Φ±δ (ξ + σh) + Φ±δ (ξ + σv) + Φ±δ (ξ − σh) + Φ±δ (ξ − σv)− 4Φ±δ (ξ)

+g±δ
(
Φδ(ξ)

)
,

(7.13)

with the limits

Φ−δ (−∞) = −δ, Φ−δ (+∞) = 1− δ (7.14)

and

Φ+
δ (−∞) = +δ, Φ+

δ (+∞) = 1 + δ. (7.15)

We recall that we can arrange for c±δ > 0 by appropriately restricting δ > 0.

Proof of Proposition 7.1. We study the three regimes n � 1, n � −1 and |l| � 1 separately. First
of all, on account of the backward limit (6.7), we can pick T ′1 ≥ −t− sufficiently large to ensure that

|Unl(−T ′1)− Φ(n− cT ′1)| ≤ 1
2
ε2, (n, l) ∈ Λ×. (7.16)
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In particular, we can pick N ′1 � 1 in such a way that (n, l) ∈ Λ× whenever n ≥ N ′1, while also

Φ(n− cT ′1) ≥ 1− ε2, Unl(−T ′1) ≥ 1− ε2, n ≥ N ′1. (7.17)

Since Φ′ > 0, U̇nl > 0 and t− ≥ −T ′1, we hence have

|Unl(t)− Φ(n+ ct)| ≤ ε2, n ≥ N ′1, t ≥ t−. (7.18)

Moving on to the n � −1 regime, we pick δ = 1
2ε2. Reasoning similarly as above, we choose

T ′2 ≥ −t− and N ′2 � 1 in such a way that

0 ≤ Unl(−T ′2) ≤ δ, n ≤ −N ′2. (7.19)

Possibly decreasing δ > 0, we pick ϑ ∈ R in such a way that Φ+
δ (ϑ) = 1. This allows us to write

Unl(−T ′2) ≤ Φ+
δ (n+ ϑ+N ′2), (n, l) ∈ Λ×. (7.20)

For t ≥ −T ′2 and n ≥ −N ′2, we have

Φ+
δ

(
n+ ϑ+N ′2 + c+δ (t+ T ′2)

)
≥ Φ+

δ

(
−N ′2 + ϑ+N ′2

)
= 1. (7.21)

This allows us to apply the comparison principle on the region t ≥ −T ′2 and n ≤ −N ′2 to conclude

Unl(t) ≤ Φ+
δ

(
n+ ϑ+N ′2 + c+δ (t+ T ′2)

)
, t ≥ −T ′2, n ≤ −N ′2. (7.22)

In particular, since Φ+
δ (−∞) = δ = 1

2ε2, there exists N ′3 � 1 such that

0 < Unl(t) ≤ 2δ ≤ ε2, 0 < Φ(n+ ct) ≤ ε2, n ≤ −N ′3, t− ≤ t ≤ t+, (7.23)

which again shows

|Unl(t)− Φ(n+ ct)| ≤ ε2, n ≤ −N ′3, t− ≤ t ≤ t+. (7.24)

We conclude by discussing the regime |l| → ∞. By Lemma 7.4, we see that we can pick L′4 � 1
in such a way that

|Unl(t)− Φ(n+ ct)| ≤ ε2, t− ≤ t ≤ t+ (7.25)

holds whenever |l| ≥ L′4 and −N ′3 ≤ n ≤ N ′1. We claim that it now suffices to pick

R(ε2, t−, t+) = 2 max{L′4, N ′3, N ′1} (7.26)

in order to conclude the proof. To see this, we note that |l|+|n| ≥ R implies that either |l| ≥ R/2 ≥ L′4
or |n| ≥ R/2 ≥ max{N ′3, N ′1}, which shows that either (7.18), (7.24) or (7.25) is satisfied.

Turning to Proposition 7.2, we introduce the notation

B×R (n0, l0) = {(n, l) ∈ Z2
× : |n− n0|+ |l − l0| ≤ R}. (7.27)

We recall also the definition (6.3) for the notation ∂×B×R (n0, l0). In view of our preparatory work in
§4, we can closely follow the lines of [9, §5].

Lemma 7.5. Suppose that (Hg) and (HΦ) are both satisfied and recall the nonlinearities g−δ defined
in Proposition 3.7. Then for any sufficiently small δ > 0, there exist constants T = T (δ), R1(δ) and
R2(δ) with

R2(δ)−R1(δ) > 2, (7.28)
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such that the solution to the unobstructed LDE

u̇−nl = [∆×u−]nl + g−δ (u−nl), t ≥ 0 (7.29)

with initial condition

u−nl(0) =

{
1− 2δ (n, l) ∈ B×R1

(0, 0),

−δ (n, l) ∈ Z2
× \B×R1

(0, 0),
(7.30)

satisfies

u−nl(T ) ≥ 1− 2δ for all (n, l) ∈ B×R2
(0, 0). (7.31)

Proof. This follows directly from Proposition 4.1 with the nonlinearity g = g−δ . Here we exploit the
fact that this proposition only requires the weaker condition (hg)§3 instead of (Hg).

The following result is the key technical ingredient to the proof of Proposition 7.2. It can be seen as
a generalization of the spreading result to the obstructed lattice, provided that one stays far away
from the obstacle. This provides a mechanism by which we can connect points far in front of the
obstacle to points far behind the obstacle, where we know that U is large on account of the backward
limit (6.7).

Lemma 7.6. Consider the setting of Proposition 7.2, pick a sufficiently small δ > 0 and recall the
constants R1(δ) < R2(δ) and T (δ) defined in Lemma 7.5. Then there exists R3 = R3(δ) > R2(δ)
such that the following holds true.

Consider any (n0, l0, t0) ∈ Λ× ×R for which B×R3(δ)(n0, l0) ⊂ Λ× and for which Unl(t0) ≥ 1− 2δ
for all (n, l) ∈ B×R1(δ)(n0, l0). Then we have

Unl
(
t0 + T (δ)

)
≥ 1− 2δ (7.32)

for all (n, l) ∈ B×R2(δ)(n0, l0).

Proof. Consider the solution u− to the unobstructed initial value problem (7.29)-(7.30). By choosing
ϑ� 1 we can arrange for

u−nl(0) = 1− 2δ ≤ min{Φ−δ (+n+ ϑ),Φ−δ (−n+ ϑ),Φ−δ (+l + ϑ),Φ−δ (−l + ϑ)} (7.33)

to hold for all (n, l) ∈ B×R1
(0, 0). In addition, for any (n, l) ∈ Z2

× \B×R1
(0, 0) we have u−nl(0) = −δ <

Φ−δ (ξ) for all ξ ∈ R. In particular, we see that

u−nl(0) ≤ min{Φ−δ (+n+ ϑ),Φ−δ (−n+ ϑ),Φ−δ (+l + ϑ),Φ−δ (−l + ϑ)}, (n, l) ∈ Z2
×. (7.34)

Now, notice that the four functions

Φ−δ (±n+ ϑ+ cδt), Φ−δ (±l + ϑ+ cδt) (7.35)

all satisfy the unobstructed LDE

u̇nl(t) = [∆×u(t)]nl + g−δ
(
unl(t)

)
, (7.36)

since they represent waves travelling in the directions (σh, σv), (−σh,−σv), (σv,−σh) and (−σv, σh)
in the original (i, j) coordinates. In particular, for all t ≥ 0 and all (n, l) ∈ Z2

× we have

u−nl(t) ≤ min{Φ−δ (+n+ ϑ+ c−δ t),Φ
−
δ (−n+ ϑ+ c−δ t),Φ

−
δ (+l + ϑ+ c−δ t),Φ

−
δ (−l + ϑ+ c−δ t)}. (7.37)
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We now choose R3 � R2 in such a way that

Φ−δ (−1
2
R3 + |σh|+ |σv|+ ϑ+ c−δ T ) ≤ 0. (7.38)

This allows us to conclude

u−nl(t) ≤ 0, (n, l) ∈ ∂×B×R3
(0, 0), 0 ≤ t ≤ T, (7.39)

because at least one of the four arguments of Φ−δ appearing in (7.37) is less than − 1
2R3 + |σh| +

|σv|+ ϑ+ c−δ T .
By construction, we now have

Unl(t0) ≥ u−n−n0,l−l0(t− t0), (n, l) ∈ B×R3
(n0, l0), (7.40)

because Unl(t0) ≥ 1− 2δ for (n, l) ∈ B×R1
(n0, l0) and u−nl(0) = −δ ≤ 0 for all (n, l) ∈ Z2

× \B×R1
(0, 0).

In addition, we have

Unl(t) ≥ 0 ≥ u−n−n0,l−l0(t− t0) (n, l) ∈ ∂×B×R3
(n0, l0), t0 ≤ t ≤ t0 + T. (7.41)

Now, the properties of g−δ imply that

u̇−nl(t) = [∆×u−(t)]nl + g−δ
(
u−nl(t)

)
≤ [∆×u−(t)]nl + g

(
u−nl(t)

)
, (n, l) ∈ Z2

×, t ≥ 0. (7.42)

In addition, since K×obs does not intersect B×R3
(n0, l0), we have

U̇nl = [∆×U ]nl + g
(
Unl(t)

)
, (n, l) ∈ B×R3

(n0, l0) \ ∂×B×R3
(n0, l0), t ≥ t0. (7.43)

We now conclude that for all t0 ≤ t ≤ t0 + T and all (n, l) ∈ B×R3
(n0, l0) we have

Unl(t) ≥ u−n−n0,l−l0(t− t0), (7.44)

which directly implies

Unl(t0 + T ) ≥ 1− 2δ, (n, l) ∈ B×R2
(n0, l0). (7.45)

Proof of Proposition 7.2 . The fact that U̇nl(t) ≥ 0 for all t ∈ R and (n, l) ∈ Λ× implies that

Unl;∞ = lim
t→∞

Unl(t) (7.46)

is well-defined and satisfies 0 < Unl;∞ ≤ 1 for all (n, l) ∈ Λ×. To see that U;∞ satisfies the stationary
problem (7.4), let us suppose to the contrary that for some (n∗, l∗) ∈ Λ× we have

[∆×Λ×U;∞]n∗,l∗ + g
(
Un∗,l∗;∞

)
= κ′ 6= 0. (7.47)

Picking T � 1 sufficiently large, we can ensure∣∣[∆×Λ×U(t)]n∗l∗ + g
(
Un∗l∗(t)

)∣∣ ≥ 1
2
|κ′| > 0 (7.48)

for all t ≥ T . In particular, this would imply that U̇n∗,l∗(t) ≥ 1
2 |κ
′| > 0 for all t ≥ T , a clear

contradiction.
It remains to show that lim|n|+|l|→∞ Unl;∞ = 1. To this end, pick any sufficiently small δ > 0

and recall the constants R1 = R1(δ), R2 = R2(δ), R3 = R3(δ) and T = T (δ) defined in Lemma 7.6.
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Because of the limit (6.7), we can certainly find (n0, l0, t0) in such a way that B×R3
(n0, l0) ⊂ Λ× and

Unl(t0) ≥ 1− 2δ for (n, l) ∈ B×R1
(n0, l0). Now pick any (n, l) with |n|+ |l| sufficiently large to ensure

that B×R3
(n, l) ⊂ Λ×. We can then find a finite sequence

(n0, l0), (n1, l1), . . . , (nk, lk) = (n, l) (7.49)

with B×R3
(ni, li) ⊂ Λ× for 0 ≤ i ≤ k and

(ni, li) ⊂ B×R2
(ni−1, li−1), 1 ≤ i ≤ k. (7.50)

In particular, we see Unl(t0 + kT ) ≥ 1− 2δ, which in view of U̇nl(t) ≥ 0 implies Unl;∞ ≥ 1− 2δ.

We now turn our attention to the proof of Proposition 7.3. The material in [9, §6] needs to be
adapted in order to accommodate the fact that the state space for the travelling wave MFDE is
infinite dimensional. In particular, there is no analogue of the function [9, (6.4)] available for use in
our setting.

For any ϑ ∈ R, we introduce the shorthand

ξnl = ξnl;ϑ = |n| − ϑ (7.51)

and introduce the sequence w;ϑ ∈ `∞(Z2
×;R) that is given by

wnl = wnl;ϑ = Φ
(
ξnl;ϑ

)
. (7.52)

A short computation yields

[∆×w]nl = Φ(ξnl + |n+ σh| − |n|) + Φ(ξnl + |n− σh| − |n|)

+Φ(ξnl + |n+ σv| − |n|) + Φ(ξnl + |n− σv| − |n|)

−4Φ(ξnl).

(7.53)

Now, for any σ̃ ≥ 0 we have

(
|n+ σ̃| − |n| , |n− σ̃| − |n|

)
=


(+σ̃,−σ̃), n ≥ σ̃,
(+σ̃, σ̃ − 2n), 0 ≤ n < σ̃,
(2n+ σ̃, σ̃), −σ̃ < n ≤ 0,
(−σ̃,+σ̃), n ≤ −σ̃.

(7.54)

Assuming for definiteness that σh ≥ 0 and σv ≥ 0, we hence have

[∆×w]nl = Φ(ξnl + σh) + Φ(ξnl − σh) + Φ(ξnl + σv) + Φ(ξnl − σv)− 4Φ(ξnl)

+[Φ(ξnl + σh − 2n)− Φ(ξnl − σh)]10≤n<σh

+[Φ(ξnl + σh + 2n)− Φ(ξnl − σh)]1−σh<n<0

+[Φ(ξnl + σv − 2n)− Φ(ξnl − σv)]10≤n<σv

+[Φ(ξnl + σv + 2n)− Φ(ξnl − σv)]1−σv<n<0

≥ Φ(ξnl + σh) + Φ(ξnl − σh) + Φ(ξnl + σv) + Φ(ξnl − σv)− 4Φ(ξnl),

(7.55)

on account of the fact that Φ is a strictly increasing function.
If (hK2)§7 is satisfied, we may now estimate

[∆×Λ×w]nl = [∆×w]nl −
∑

(n′,l′)∈N×
Z
2
×

(n,l)∩K×obs
[wn′l′ − wnl]

= [∆×w]nl −
∑

(n′,l′)∈N×
Z
2
×

(n,l)∩K×obs
[Φ(ξn′l′)− Φ(ξnl)]

≥ [∆×w]nl,
(7.56)
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where the inequality is a consequence of the bound ξn′l′ ≤ ξnl. In particular, we see that

[∆×Λ×w]nl + g(wnl) ≥ Φ(ξnl + σh) + Φ(ξnl − σh) + Φ(ξnl + σv) + Φ(ξnl − σv)− 4Φ(ξnl)

+g
(
Φ(ξnl)

)
= cΦ′(ξnl).

(7.57)

Upon writing

u−nl;ϑ(t) = Φ
(
|n|+ c

2
t− ϑ

)
= Φ(ξnl;ϑ +

c

2
t), (7.58)

we immediately see

u̇−nl;ϑ(t)− [∆×Λ×u
−
;ϑ(t)]nl − g

(
u−nl;ϑ(t)

)
≤ − c

2
Φ′
(
ξnl;ϑ +

c

2
t
)
< 0, (7.59)

implying that u−;ϑ is a sub-solution to the obstructed LDE (6.6) for every ϑ ∈ R, with

u−nl;ϑ(0) = wnl;ϑ, lim
t→∞

u−nl;ϑ(t) = 1 (7.60)

for every (n, l) ∈ Λ×.

Proof of Proposition 7.3. In view of the discussion above, it suffices to choose ϑ� 1 in such a way
that

Unl;∞ ≥ wnl;ϑ (7.61)

holds for all (n, l) ∈ Λ×.
For any R > 0, we introduce the set

Ω×R = {(n, l) ∈ Z2
× : |n|+ |l| ≥ R}. (7.62)

Now, pick 0 < δ < 1
2 in such a way that g is strictly decreasing on [1 − δ, 1 + δ]. In addition, pick

R ≥ 1 in such a way that we have K×obs ∩ Ω×R = ∅ together with

Unl;∞ ≥ 1− δ (n, l) ∈ Ω×R. (7.63)

Shifting the wave profile Φ in such a way that Φ(0) = 1
2 , we now pick ϑ � 1 sufficiently large to

ensure that

ϑ ≥ |n| , (n, l) ∈ ∂×Ω×R. (7.64)

We now claim that (7.61) holds for all (n, l) ∈ Ω×R. To see this, note first that for (n, l) ∈ ∂×Ω×R,
our construction yields

Unl;∞ >
1
2

= Φ(0) ≥ wnl;ϑ = Φ(|n| − ϑ). (7.65)

On the other hand, our choice for R guarantees

1 + δ ≥ Unl;∞ + δ ≥ 1 ≥ wnl;ϑ (7.66)

for all (n, l) ∈ Ω×R. In particular, we can define the quantity

ε∗ = inf{ε ≥ 0 : Unl;∞ + ε ≥ wnl;ϑ for all (n, l) ∈ Ω×R}. (7.67)
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By continuity, it suffices to show that ε∗ = 0 in order to prove our claim. Assuming to the contrary
that ε∗ > 0, we note that the set

Ω̃×R := {(n, l) ∈ Ω×R : Unl < 1− ε∗
2
} (7.68)

is bounded because of the spatial limits (7.3) satisfied by U . In particular, there exists a pair
(n∗, l∗) ∈ Ω̃×R for which

Un∗l∗;∞ + ε∗ = wn∗l∗;ϑ. (7.69)

In addition, the inequality (7.65) shows that (n∗, l∗) /∈ ∂×Ω×R, which by definition implies

N×Λ×(n∗, l∗) = N×
Z2(n∗, l∗) ⊂ Ω×R. (7.70)

Finally, by continuity we also have

Unl;∞ + ε∗ ≥ wnl;ϑ, (n, l) ∈ Ω×R. (7.71)

Remembering that g is strictly decreasing on [1− δ, 1 + δ], we may now estimate

−g(Un∗l∗;∞ + ε∗) > −g(Un∗,l∗;∞)

= [∆×U;∞]n∗l∗

=
[
∆×[U;∞ + ε∗]

]
n∗l∗

≥ [∆×w·;ϑ]n∗l∗
≥ −g(wn∗l∗;ϑ)

= −g(Un∗l∗;∞ + ε∗),

(7.72)

which clearly is impossible.
It remains to establish (7.61) for the bounded set (n, l) ∈ Λ× \Ω×R. Note that the connectedness

assumption (HK1) in combination with Corollary 3.2 implies that Unl;∞ > 0 for all (n, l) ∈ Λ×. In
particular, we can pick C ′ > 1 in such a way that

Φ(−C ′) < min{Unl;∞ : (n, l) ∈ Λ× \ Ω×R}. (7.73)

Possibly increasing ϑ, we can ensure that

ξnl;ϑ ≤ −C ′, (n, l) ∈ Λ× \ Ω×R, (7.74)

which suffices to establish (7.61) and complete the proof.

8 Proof of Theorem 2.3

We are finally ready to tackle the second main result of this paper. In view of the preparatory work
in §7, it will suffice to establish the following result, which is the analogue of [9, Thm. 7.1].

Proposition 8.1. Consider any angle ζ∗ ∈ R and suppose that (Hg) and (HS)ζ∗ both hold. Suppose
furthermore that (hΦ)§3 with c > 0 holds for the pair (σh, σv) = (cos ζ∗, sin ζ∗).

Let U : [0,∞) → `∞(Λ×; [0, 1]) be a C1-smooth solution to the obstructed LDE (6.6) for an
obstacle that satisfies (HK1). Suppose that for every ε2 > 0, there exists tε2 ≥ 0 and a bounded set
K×ε2 ⊃ K

×
obs such that

|Unl(tε2)− Φ(n+ ctε2)| ≤ ε2 (8.1)
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holds for all (n, l) ∈ Z2
× \K×ε2 , while

Unl(t) ≥ 1− ε2 (8.2)

holds for all t ≥ tε2 and (n, l) ∈ ∂×Λ×.
Then we have the uniform convergence

sup
(n,l)∈Λ×

|Unl(t)− Φ(n+ ct)| → 0, t→∞. (8.3)

Naturally, we intend to exploit the sub and super-solutions constructed in Propositions 5.1 and
5.2 in order to establish the result above. Our main task in this section is therefore to construct
suitable C1-smooth functions z : [0,∞)→ R that will allow us to absorb error terms caused by the
obstacle into the term 1

2ηzz(t) that we have to spare in (5.12). It is important to note that such
estimates are required only when condition (b) in Proposition 3.1 fails, i.e., when our sub-solution
is larger than 1− ε2.

This latter event occurs at some time t1 ≥ tε2 for which no a-priori upper bound is available.
In particular, up to a scaling factor, our function z(t) will follow zhom(t) until t approaches t1,
after which it increases in a short time interval back to 2

3zhom(0) and then resets back to following
2
3zhom(t − t1) for t ≥ t1. This way, we can ensure that z(t) is sufficiently large for the critical time
period t ≥ t1 where the effects of the obstacle play a role.

Lemma 8.2. Fix any 0 < ηz < 1. Then there exists a constant `P = `P (ηz) > 0 together with a
polynomial P− that satisfies the identities

P−(−`P ) =
3
2
, P ′−(−`P ) = 0, P−(0) = 1, P ′−(0) = −ηz, (8.4)

together with the bounds

0 ≥ P ′−(x) ≥ −ηzP−(x), −`P ≤ x ≤ 0. (8.5)

Proof. Choosing `P = η−1
z , we write

P−(x) = −1
2

(x+ `P )2

`2P
+

3
2
, (8.6)

from which the identities (8.4) immediately follow. We now compute

d
dx

P ′−(x)

P−(x) = −2 (x+`P )2+3`2P(
(x+`P )2−3`2P

)2 , (8.7)

which shows that for −`P ≤ x ≤ 0 we have

P ′−(x)

P−(x) ≥ P ′−(0)

P−(0) = −ηz, (8.8)

as desired.

Lemma 8.3. Fix any 0 < ηz < 1 and recall the constant `P > 0 defined in Lemma 8.2. Then for
every 0 < ν ≤ ηz, there exists a polynomial P+;ν that satisfies the identities

P+;ν(0) = 1, P ′+;ν(0) = −ν, P ′+;ν(`P ) = 0, (8.9)

together with the bounds P+;ν(`P ) ≥ 1
2 and

0 ≥ P ′+;ν(x) ≥ −ηzP+;ν(x), 0 ≤ x ≤ `P . (8.10)
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Proof. Upon writing

P+;ν(x) =
ν

2`P
(x− `P )2 + 1− ν`P

2
(8.11)

and remembering `P = η−1
z , we immediately see that the identities (8.9) are satisfied, together with

the bound

P+;ν(`P ) = 1− ν`P
2
≥ 1

2
. (8.12)

We now compute

d
dx

P ′+;ν(x)

P+;ν(x) = −2
(x−`P )2−`2P ( 2

ν`P
−1)(

(x−`P )2+`2P ( 2
ν`P
−1)
)2 . (8.13)

In particular, for 0 ≤ x ≤ `P we have

P ′+;ν(x)

P+;ν(x) ≥ P ′+;ν(0)

P+;ν(0) = −ν ≥ −ηz. (8.14)

We are now ready to construct template functions zobs;t1(t), based on the corresponding function
zhom(t) that was defined in Lemma 5.3 for the homogeneous lattice. The crucial point in the result
below is that the constants κobs and Iobs do not depend on the size of t1, which in the sequel we
will need to be arbitrarily large.

Lemma 8.4. Fix any 0 < ηz < 1. Then there exists constants Iobs = Iobs(ηz) > 1 and κobs =
κobs(ηz) > 0, such that for any t1 ≥ 0 there exists a C1-smooth function zobs;t1 : [0,∞) → R that
satisfies the following properties.

(i) We have z′obs;t1
(t) ≥ −ηzzobs;t1(t) for all t ≥ 0.

(ii) We have 0 < zobs;t1(t) ≤ zobs;t1(0) = 1 for all t ≥ 0.

(iii) We have zobs;t1(t) ≥ 1
2zhom(t) for all t ≥ 0.

(iv) We have zobs;t1(t) ≥ κobs(1 + t− t1)−3/2 for all t ≥ t1.

(v) We have
∫∞

0
zobs;t1(t) dt < Iobs.

Proof. Recall the constant `P and the polynomials defined in Lemmas 8.2-8.3. If 0 ≤ t1 ≤ 3`P , we
define zobs;t1(t) = zhom(t) and observe that the properties (i) through (v) follow immediately from
Lemma 5.3.

On the other hand, if t1 > 3`P , we define the function zobs;t1 separately on five different intervals.
In particular, for 0 ≤ t ≤ t1 − 3`P , we write

zobs;t1(t) = zhom(t) (8.15)

and define

ν = −z′hom(t1 − 3`P )/zhom(t1 − 3`P ), (8.16)

which implies 0 < ν ≤ ηz. For t1 − 3`P ≤ t1 − 2`P , we write

zobs;t1(t) = zhom(t1 − 3`P )P+;ν

(
t− (t1 − 3`P )

)
, (8.17)
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while for t1 − `P ≤ t ≤ t1, we write

zobs;t1(t) =
2
3
P−(t− t1). (8.18)

Finally, for t ≥ t1, we write

zobs;t1(t) =
2
3
zhom(t− t1). (8.19)

It remains to specify zobs;t1(t) for t between t1 − 2`P and t1 − `P . This can be done in an arbitrary
C1-smooth fashion, under the constraints

zobs;t1(t1 − 2`P ) = zhom(t1 − 3`P )P+;ν(`P ), zobs;t1(t1 − `P ) = 1 (8.20)

together with

z′obs;t1(t1 − 2`P ) = z′obs;t1(t1 − `P ) = 0 (8.21)

and

z′obs;t1(t) ≥ 0, t1 − 2`P ≤ t ≤ t1 − `P . (8.22)

The properties (i) through (iv) follow directly from this construction, utilizing the observation

zobs;t1(t1 − 2`P ) ≥ 1
2
zhom(t1 − 3`P ). (8.23)

In addition, one readily obtains the bound∫ ∞
t=0

zobs;t1(t) dt ≤ 2
∫ ∞
t=0

zhom(t) dt+ 3`P , (8.24)

which establishes (v).

Proof of Proposition 8.1. Pick any δ∗ > 0. We restrict ourselves here to showing that

lim inf
t→∞

inf
(n,l)∈Λ×

[Unl(t)− Φ(n+ ct)] ≥ −δ∗, (8.25)

noting that the companion bound

lim sup
t→∞

sup
(n,l)∈Λ×

[Unl(t)− Φ(n+ ct)] ≤ +δ∗, (8.26)

can be obtained in a similar but less involved fashion.
Setting out to establish (8.25), we pick ε1 > 0 in such a way that both

ε1KZIobs ‖Φ′‖ ≤ δ∗, ε1KZIobs ≤ 1. (8.27)

In addition, for any 1
2 > ε2 > 0, we define ξ2 = ξ2(ε2) in such a way that Φ(ξ2) = 1− 2ε2. Note that

ξ2 → +∞ as ε2 ↓ 0. We now choose ε2 > 0 to be sufficiently small to ensure that

e−ηN ξ2(ε2)3KN eηN [diam(∂×Λ×)+2]e−ηN
c
2 t ≤ 1

2
ε1ηzκobs(1 + t)−3/2 (8.28)

holds for all t ≥ 0, which is possible because there exists κ′ > 0 such that κ′(1+t)−3/2 ≥ exp[−ηN c
2 t]

for all t ≥ 0. Possibly decreasing ε2, we ensure that 0 < 2ε2 < ε1. Recalling the constant κhom defined
in Lemma 5.3, we write ε3 = 1

2ε1κhom in view of item (iii) of Lemma 8.4.
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Now, consider the time tε2 and set K×ε2 ⊃ K×obs specified by the assumptions in the statement
of this result. If necessary, increase the size of K×ε2 to ensure that ∂×Λ× ⊂ K×ε2 . Without loss of
generality, we will assume tε2 > 0, which by the comparison principle implies 0 < U(tε2) < 1. Pick
Ω⊥ = Ω⊥(ε2) > 0 in such a way that for all (n, l) ∈ K×ε2 we have |l| ≤ Ω⊥. Pick Ωphase = Ωphase(ε2)
in such a way that

Φ(n+ ctε2 − Ωphase) ≤ Unl(tε2), (n, l) ∈ K×ε2 ∩ Λ×, (8.29)

which is possible by the boundedness of K×ε2 .
Consider now the function θ : [0,∞) → `∞(Z;R) or θ : [0,∞) → L∞(R;R) defined in either

Proposition 5.1 or 5.2, as appropriate. Upon introducing the phase shift ϑ = ctε2 , we write

t1 = inf{t ≥ 0 for which n+ ct+ ϑ− θl(t) ≥ ξ2(ε2) for some (n, l) ∈ ∂×Λ×}. (8.30)

Since θl(t) → 0 as t → ∞, we have 0 ≤ t1 < ∞. By continuity and boundedness of ∂×Λ×, there
exist (n1, l1) ∈ ∂×Λ× with

n1 + ct1 + ϑ− θl1(t1) = ξ2(ε2). (8.31)

We now write

z(t) = ε1zobs;t1(t), Z(t) = ε1KZ

∫ t

0

zobs;t1(t′) dt′ (8.32)

and consider the functions W− and ξ− defined in Proposition 5.1. By construction, we have

W−nl(0) ≤ Unl(tε2), (n, l) ∈ Λ×. (8.33)

In addition, we have

lim
t→∞

sup
(n,l)∈Λ×

[
W−nl(t)− Φ

(
n+ ct+ ϑ− Z(t)

)]
= 0, (8.34)

together with∣∣Φ(n+ ct+ ϑ)− Φ
(
n+ ct+ ϑ− Z(t)

)∣∣ ≤ ‖Φ′‖ |Z(t)| ≤ ε1 ‖Φ′‖KZIobs ≤ δ∗ (8.35)

on account of (8.27). In particular, the comparison principle now implies the bound (8.25) provided
we can show that W− is indeed a sub-solution for the obstructed LDE (6.6).

In order to establish this, we note that

[∆×W−]nl = [∆×Λ×W
−]nl (8.36)

for all (n, l) ∈ Λ× \ ∂×Λ×. We hence only have to consider (n, l) ∈ ∂×Λ×, in which case we have∣∣[∆×W−(t)]nl − [∆×Λ×W
−(t)]nl

∣∣ ≤ ∑
(n′,l′)∈N×

Z
2
×

(n,l)∩K×obs

∣∣W−n′l′(t)−W−nl(t)∣∣
≤ 3KN e−ηN |ξ

−
nl(t)|,

(8.37)

on account of the fact that Λ× is connected.
In addition, since Unl(t) ≥ 1− ε2 for all t ≥ tε2 and (n, l) ∈ ∂×Λ×, it suffices to show that

3KN e−ηN |ξ
−
nl(t)| ≤ 1

2
ηzz(t) (8.38)

for all (n, l) ∈ ∂×Λ× and t ≥ 0 for which

W−nl(t) ≥ 1− ε2. (8.39)
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For any such triplet (n, l, t), we compute

Φ
(
ξ−nl(t)

)
+ ε2 ≥ Φ

(
ξ−nl(t)

)
+ ε2(1 + t)−1/2 ≥W−nl(t) + z(t) ≥W−nl(t) ≥ 1− ε2, (8.40)

which implies ξ−nl(t) ≥ ξ2(ε2). In particular, we have

n+ ct+ ϑ− θl(t) ≥ Z(t) + ξ2(ε2) ≥ ξ2(ε2), (8.41)

which allows us to conclude that in fact t ≥ t1.
In addition, for any t ≥ t1 and any (n, l) ∈ ∂×Λ×, we have

ξnl(t) ≥ ξn1,l1(t)− [diam(∂×Λ×) + 1]

≥ ξn1,l1(t1) + (t− t1) c2 − [diam(∂×Λ×) + 1]

= n1 + ct1 + ϑ− θl1(t)− Z(t)− [diam(∂×Λ×) + 1] + (t− t1) c2
= ξ2(ε2)− Z(t)− [diam(∂×Λ×) + 1] + (t− t1) c2
≥ ξ2(ε2)− [diam(∂×Λ×) + 2] + (t− t1) c2 ,

(8.42)

remembering that (8.27) implies 0 ≤ Z(t) ≤ 1. In particular, for any t ≥ t1 and (n, l) ∈ ∂×Λ×, we
compute

3KN e−ηN |ξ
−
nl(t)| ≤ 3KN eηN [diam(∂×Λ×)+2]e−ηN ξ2(ε2)e−ηN

c
2 (t−t1)

≤ 1
2ε1ηzκobs(1 + t− t1)−3/2

≤ 1
2ε1ηzzobs;t1(t)

= 1
2ηzz(t),

(8.43)

as desired.

Proof of Theorem 2.3. Consider the entire solution Unl : R→ `∞(Λ×;R) constructed in Proposition
6.1. We claim that U satisfies the assumptions of Proposition 8.1 above.

To see this, pick any ε2 > 0. Propositions 7.2 and 7.3 together imply that for each (n, l) ∈ Λ×

we have the limit Unl(t) → 1 as t → ∞. In particular, we can pick tε2 ≥ 0 in such a way that
Unl(t) ≥ 1− ε2 for all t ≥ tε2 and (n, l) ∈ ∂×Λ×. In addition, the existence of the set K×ε2 with the
property (8.1) follows directly from an application of Proposition 7.1 with t− = t+ = tε2 .

The temporal limit (2.38) now is a direct consequence of Proposition 8.1. To establish the spatial
limit (2.39), we pick any ε2 > 0 and note that the temporal limit (2.38) implies the existence of
t− ≤ t+ for which the bound

|Unl(t)− Φ(n+ ct)| ≤ ε2 (8.44)

holds for all (n, l) ∈ Λ× and all t ∈ R for which either t ≤ t− or t ≥ t+ holds. One can then again use
Proposition 7.1 to obtain the same conclusion (8.44) for t− ≤ t ≤ t+ and |l|+ |n| ≥ R(ε2, t−, t+).

9 Discussion

In this paper we studied planar travelling wave solutions to a scalar bistable reaction-diffusion system
posed on Z2. In particular, we established the stability of these waves under a class of perturbations
that includes large but localized distortions. In addition, we proved that these planar waves persist
in an appropriate sense after removing a finite cluster of grid points.

By using the comparison principle, we were able to construct a much larger basin of attraction
for the travelling waves than was possible in our previous paper [24], where we only used spectral
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methods and Green’s function techniques. In addition, we were able to treat both rational and
irrational directions of propagation within the same framework. On the other hand, the construction
of our sub and super-solutions required an extra order of expansion in the Taylor series as compared
to [24], leading to significantly more involved computations.

Compared to the PDE results obtained in [9], there are three obvious differences that immediately
stand out. The first is that we have only considered (the analogue of) directionally convex obstacles
but not star-shaped obstacles. In order to remedy this, one would need to extend Proposition 7.3 to
include the latter class of obstacles. The key technical difficulty is that one would need to work with
radially expanding sub-solutions, which are considerably harder to construct in the LDE case than
in the PDE case. Nevertheless, using the techniques in §4 we are confident that this can be done.

The second difference is that we have not formulated an analogue for [9, Thm. 1.6], which handles
arbitrary compact obstacles. The price that needed to be paid there is that the system no longer
necessarily converges pointwise to one, the homogeneous equilibrium state. The arguments in [9, §8]
leading to this result are fairly technical, but we believe that there is no fundamental reason that
the ideas cannot be carried over to the discrete setting.

The third difference is the most intriguing from our perspective and concerns our assumption
(HΦ) that requires the waves to have strictly positive speed in every direction. In the present paper
we exploit this assumption to build a mechanism by which the invading state present behind the
incoming wave can travel in a wide berth around the obstacle to move into the region on the other
side of the obstacle. If waves cannot travel in the horizontal and vertical directions, one could imagine
that this mechanism becomes blocked, potentially protecting a zone in front of the obstacle from
seeing the invading state.

On the other hand, our understanding of the spreading of perturbations through the lattice is
rather crude at present and our proof technique for establishing the spatial limit (7.3) can easily
be considered much too coarse. At present we are conducting numerical experiments to distinguish
between these two scenarios.
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