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Chapter 1Introdu
tionStatisti
s is the s
ien
e of pulling information out of data. Though they 
an bewildly polymorphi
, any statisti
al problem may be split into three 
omponents:the obje
t we study, the operations we are allowed to use, and the exa
t mathe-mati
al question. In other words, what we have, what we 
an do, and what wewant to know.Quantum statisti
s diverge from 
lassi
al statisti
s on the �rst point, what wehave. Hen
e they di�er also on what is allowed, sin
e the two are linked.In 
lassi
al statisti
s, we often immediately start from the result of measure-ments, whi
h are modeled by random variables with probability laws. Indeed,if we 
an measure quantity A or quantity B, we 
an theoreti
ally measure bothsimultaneously. Experiments often measure every useful and easily a

essiblequantity. In theory, �what we 
an do� is applying any mathemati
al treatmenton the data to transform it. Mathemati
ally, this means applying any fun
tionon the data, possibly with a random out
ome. In pra
ti
e, 
omputational powermight bound su
h latitude.In some 
ases, however, we must already 
onsider the obje
t under study, and
hoose what measurement we 
arry out. A typi
al example would be trying tounderstand what a bla
k box does. We must probe it with inputs, and ea
h timewe must 
hoose the input. This themati
 is 
alled design of experiments. �Whatwe 
an do� may depend hugely on the problem at hand. In the bla
k box 
ase, we
an 
hoose the input. The mathemati
al des
ription of this 
hoi
e might di�erfrom one bla
k box to another, though. Yet, on
e the measurement is 
arriedout, we again have probability laws and we are ba
k to the previous paragraph.In quantum statisti
s, the design of experiments 
annot be avoided. Indeed,when we 
an measure A or B, the laws of physi
s themselves forbid us from



2 Introdu
tionmeasuring A and B, in general. We must then 
hoose the measurement thatyields the information we need most. Nevertheless, quantum physi
s gives aframework paralleling that of 
lassi
al probability, whi
h tells us exa
tly �whatwe 
an do�. Initially, �what we are given� is a quantum obje
t, whi
h is modeledby a quantum state. �What we 
an do� is measuring the state, getting a 
lassi
alrandom variable as a result, or more generally transforming the quantum state.The sets of both measurements and transformations have pre
ise and generalmathemati
al de�nitions, allowing to treat many questions in a uni�ed way.�What we want to know� seldom di�ers in quantum and 
lassi
al statisti
s. Mostoften, we want either to summarize the information in the data (statisti
al infer-en
e), to disprove a hypothesis or to see what hypothesis in a �nite set best �tsthe data (testing), or to guess with pre
ision what the underlying phenomenonwas that generated the data (estimation). All these 
an usually be des
ribed by a
lassi
al parameter. The ex
eption would be when our ben
hmark is intrinsi
allyquantum, for example when trying to approximately 
lone a quantum state.This thesis, in Part I, studies a number of parti
ular systems. Namely we 
onsiderin Chapter 2 how to best de
ide in whi
h state among a �nite set a quantumobje
t 
an be; in Chapter 3, we give a fast (1/n) pro
edure to estimate a bla
kbox unitary transformation. Chapter 4 and Chapter 5 dwell more on the generalstru
ture of quantum experiments: the former deals with an order relation onmeasurements, and the latter on �nding �maximally di�erent� subsystems of aquantum system, in the simplest 
ase.Now, we may have very di�erent questions on a given system. For su
h a system,or experiment,�what we have� and �what we 
an do� will remain the same. Wemay then wonder about what we 
an say dire
tly on the system, without referen
eto a parti
ular question. The theory of 
onvergen
e of experiments in 
lassi
alstatisti
s works out how well we 
an approximate an experiment by another. We
an then translate all the pro
edures we use in one experiment to the other.Hen
e we get answers to �what we want to know� in both experiments whensolving the question in one.Part II, the main 
ontribution of this thesis, generalizes to the quantum world themost basi
 
ase of 
onvergen
e of experiments, namely lo
al asymptoti
 normal-ity. We prove that a su�
iently smooth experiment with identi
al independent(i.i.d.) quantum states 
onverge to a quantum Gaussian shift experiment. Thepoint is that this experiment is very well-known, and everything we know aboutit 
an be translated to the large 
lass of smooth i.i.d. experiments.The remainder of the introdu
tion �rst makes pre
ise the rules of 
lassi
al andquantum statisti
s, and then introdu
e ea
h of the 
hapters of the thesis, and the
orresponding problemati
s, in the order given above.



1.1 Statisti
s 31.1 Statisti
s1.1.1 Classi
al Statisti
sLe Cam [1986℄ and van der Vaart [1998℄ may be 
onsulted for further referen
es,among many other books on statisti
s. We summarize in Table 1.1, on page 24,the most basi
 ingredients of 
lassi
al statisti
s. The sister Table 1.2 gives the
orresponding quantum notions.What we haveIn 
lassi
al statisti
s, we are given data, that 
an be modeled as a random variable
X with probability law p. What we know beforehand is that p is a probabilitylaw in a set

E = {pθ, θ ∈ Θ} , (1.1)with no 
onstraint in general on the parameter set Θ. The pθ are all de�nedon the same probability spa
e (Ω,A). This E is 
alled the experiment or thestatisti
al model.Remarks:
• The data are often made of many measurements, yielding as many randomvariables X1, . . . , Xn, with probability laws p1, . . . , pn on potentially di�er-ent probability spa
es. However, we may still 
onsider all the data as a sin-gle random variableX = (X1, . . . , Xn) with probability law p = p1⊗· · ·⊗pn,and we stay in the 
urrent framework.
• Although there is no 
onstraint on Θ at this point of the theory, this setis often either �nite or a reasonable subset of Rd. The �rst 
ase leads todis
rete statisti
s, and some families of tests in parti
ular, the se
ond 
aseto parametri
 statisti
s. When the set Θ is in�nite-dimensional, we enterthe 
omplex realm of non-parametri
 statisti
s, the main fo
us of resear
hin re
ent years.Examples: Bernoulli experiment, Gaussian shift experimentThe most basi
 probability spa
e we may �nd is the two-element spa
e {0, 1}.An experiment 
orresponding to a 
oin toss would be

EBer = {pθ = (θ, 1 − θ), θ ∈ [0, 1]} . (1.2)



4 Introdu
tionAlternatively, we might toss the 
oin n times. Denoting X = (X1, . . . , Xn) theresults, we would get this experiment on {0, 1}⊗n:
EBin =

{
pθ : {X} 7→ θ

P

Xi(1 − θ)n−
P

Xi , θ ∈ [0, 1]
}
. (1.3)When dealing with 
ontinuous fun
tions, the most pervading of them all is theGaussian. We are espe
ially interested in Gaussian shift experiments, where thevarian
e of the Gaussian is �xed and the parameter is the mean:

Egs =
{
N (θ, I−1), θ ∈ R

d
}
, (1.4)where N means normal law, and I is any �xed positive matrix1.What we 
an doOn
e we have our data X , how 
an we pro
ess them?The most general pro
edure 
onsists in drawing a new random variable Y withprobability law pX depending only on X , and measurable as a fun
tion of X .We 
an view this proto
ol in two ways. The �rst is 
onsidering that Y is an answerto �what we want to know�. Then Y is a (randomized) estimator, typi
ally anestimator of θ, in whi
h 
ase we also denote it by θ̂.Alternatively, we 
an 
onsider that Y is a new random variable, and that we havetransformed our experiment. Our new experiment 
onsists of Y with probabilitylaw q in the set {qθ, θ ∈ Θ} on a spa
e (Ω1,B), with density2

qθ(y) = T (pθ)(y)=̂

∫

Ω

pX(y)dpθ(X). (1.5)The transformation T is a Markov kernel.In the 
lassi
al 
ase, the two notions are the same. However, I insist on separatingthem sin
e they will be di�erent in the quantum 
ase.1We use this strange notation be
ause this matrix is the inverse of the Fisher informationmatrix (1.13).2We 
ould equivalently work with non-dominated sets of probability laws, but that wouldonly make notations heavier. We then assume that all probability laws have a density, and usethe same letter for the law and the density.



1.1 Statisti
s 5ExamplesLet us go ba
k to our n-sample Bernoulli experiment EBin (1.3). Our probabilityspa
e is {0, 1}⊗n. We may use a Markov kernel from that spa
e to [0, n]∩N thatsimply send X = (X1, . . . , Xn) to Y =
∑
Xi. Here, the pX are merely deltafun
tions. We then obtain a binomial probability law for Y , that is qθ = B(n, θ).The 
orresponding experiment is E = {qθ, θ ∈ Θ}.Alternatively, we might want to build an estimator θ̂. The most obvious onewould be X 7→ ∑

Xi/n = Y . The law of our estimator is the above binomialdivided by n.We might also look for an estimator in Egs (1.4). The �rst thought is yet simpler:we just keep X . The 
orresponding Markov kernel would be the identity.What we want to knowWe usually want to have information on the unknown underlying pro
ess thatgave rise to our data. In other words, we want to guess the parameter3θ.We 
an give an answer either with a 
on�den
e interval, or with a guess of ourquantity, maybe with estimates on the varian
e of the estimate. This guess
orresponds to giving an estimator θ̂ of θ.We want to build a good estimator. We therefore need a way to rate estimators.In de
ision theory, we 
onsider a 
ost fun
tion c(θ, θ̂). That is the 
ost we have topay if our estimator yields θ̂ when the true parameter is θ. Hen
e, 
ost fun
tionsare usually zero on the diagonal, and grow when θ and θ̂ get farther apart insome sense.A typi
al 
ost fun
tion when Θ is dis
rete and 
ountable would be c(θ, θ̂) = δθ,θ̂.When Θ is an open subset of Rd, the most mathemati
ally tra
table 
ost fun
tionis the square of the Eu
lidean distan
e c(θ, θ̂) = ‖θ − θ̂‖2
2, or more generallyany quadrati
 
ost fun
tion (θ − θ̂)⊤G(θ − θ̂) for a positive matrix G, possiblydepending on θ.Sin
e θ̂ is a random variable, we want to minimize the expe
tation of the 
ost,
alled the risk at point θ:

rθ(θ̂) =

∫

Ω1

c(θ, θ̂)dqθ(θ̂). (1.6)3More generally, we may be interested merely in a fun
tion f of θ. However, we 
an alwaysuse (θ, f(θ)) as parameter. We then 
hoose the 
ost fun
tions introdu
ed below so that theydepend only on f(θ).



6 Introdu
tionHowever, we 
annot dire
tly minimize this expression, sin
e the best guess de-pends on θ, whi
h is unknown. We must then �nd a way to 
hoose an e�
ientestimator for any θ we are likely to en
ounter. There are mainly two approa
hes.A favourite of physi
ists is the Bayesian paradigm, where we assume the exis-ten
e of an a priori probability law on the parameter θ. Mathemati
ians oftenprefer minimax 
riteria, where a strategy is rated by the worst 
ase.Bayesian 
riteriaWe have 
onsidered our data to be X with probability law p. We assumed thatthe only information we had was the experiment, the set we know p belongs to.Suppose now that we have more information. Namely, we are told beforehandthat θ is 
hosen at random with a probability law π. Then, on average, the bestestimator would be the one that minimizes the average of the risk (1.6), that is:
Rπ(θ̂) =

∫

Θ

π(dθ)rθ(θ̂)

=

∫

Θ

∫

Ω1

c(θ, θ̂)dqθ(θ̂)π(dθ). (1.7)From the Bayes risk of a spe
i�
 estimator θ̂, we 
an write the Bayes risk asso-
iated to the prior π as the in�mum of the risks for all θ̂:
Rπ = inf

θ̂
Rπ(θ). (1.8)The weakness of this approa
h is that there is no reason why there should be ana priori probability law on Θ, ex
ept a delta fun
tion on the real θ... whi
h isexa
tly what we want to know. We have to 
hoose a prior and 
onsider it as thereal one. The risk of the �nal estimator will be underestimated, however.The main strength of a Bayesian estimator is the optimal use of the informationwe get from measurements, given the prior. The prior 
orresponds to a prioriinformation, whi
h is generally wrong. The best priors try then to minimizethe information in the prior4. For a �nite Θ, we usually 
hoose equiprobabilitya priori for ea
h possible θ. For an open pre
ompa
t subset of Rd, we 
hooseJe�reys [1946℄ prior, proportional to the square root of the Fisher information(1.13) de�ned below. A pointwise analysis shows that these estimators are oftenvery good estimators.4Subje
tive Bayesians 
onsider the probability laws as degrees of belief. Hen
e they 
an useany prior based on expert information.



1.1 Statisti
s 7Bayesian estimators 
an be 
omputed through the 
al
ulations of a posterioridistributions. In some simple 
ases, these 
an be 
arried out expli
itly and theestimator is the bary
enter of the θ with weights the likelihoods. In more 
omplexsituations, we 
an resort to Monte-Carlo Markov 
hains.Minimax 
riteriaThe mathemati
ian is either pessimisti
 or megalomania
, and assumes he playsagainst the Devil. Therefore, he wants to design a strategy that will be e�
ientwhatever the real θ is. Hen
e the ben
hmark of an estimator θ̂ is its value in theworst 
ase:
RM (θ̂) = sup

θ
rθ(θ̂). (1.9)The minimax risk is the risk of the best possible estimator:

RM = inf
θ̂
RM (θ̂) = inf

θ̂
sup
θ
rθ(θ̂). (1.10)The weakness of this method is that we might have to worsen mu
h an esti-mator on intuitively �many� θ for it to be e�
ient on some spe
ial 
ases. Theworkaround is to require adaptiveness, that is, minimax e�
ien
y on a whole 
lassof subsets of {pθ}. The latter te
hnique is essentially used for non-parametri
statisti
s.The interest of these methods is that they require no assumption. They give ane�
ien
y we know we attain in reality, as long as the experiment (or model) itselfwas right.Links between Bayesian and minimax 
riteriaThe main link between the two 
riteria 
omes from the following remark. If astrategy θ̂ is Bayes optimal, and su
h that the risk of θ̂ does not depend on θ,then θ̂ is also minimax optimal.Indeed, for any π, the Bayes risk of θ is more than the minimax risk:

Rπ(θ̂) ≤ sup
θ
rθ(θ̂) = RM (θ), (1.11)with equality if and only if the risk at θ is the same π-almost everywhere.Under some 
onditions, a 
onverse statement is true: a minimax estimator isoptimal for some pre
ise prior, the one for whi
h the Bayesian risk is maximal.We dis
uss similar points in Chapter 2.



8 Introdu
tionExampleWe 
ompute the risk of the aforementioned estimator for the Gaussian shiftfamily (1.4). The law of θ̂ is the law of the original data, that is the normal law
N (θ, I−1). So that

rθ(θ̂) = Eθ

[
(θ − θ̂)⊤G(θ − θ̂)

]

= Tr(GI−1). (1.12)This risk at point θ does not depend on θ, so that the same value is the minimaxrisk and the Bayesian risk for any prior of the estimator. We shall see below thatthe estimator is minimax for the model.The remainder of the se
tion gives a qui
k summary of what risks we 
an expe
tin regular enough 
ases, for quadrati
 
ost fun
tions.Fisher informationThe risks we give above depend on the question (the 
ost fun
tion) and on theexperiment {pθ, θ ∈ Θ}, but not on any parti
ular estimator. We may then readinformation about them dire
tly on the experiment.The most important notion to that end is the Fisher information matrix. It is alo
al notion, that 
an be interpreted as a measure of how fast we 
an distinguish
pθ from the surrounding pθ+dθ. The Cramér-Rao bound des
ribed in the nextse
tion makes that expli
it. Noti
e that in the following, we need some regularityin the model. Twi
e di�erentiable is more than enough.The Fisher information at point θ = (θα)α=1...d is given by

Iα,β(θ) =

∫

Ω

∂ ln(pθ(X))

∂θα

∂ ln(pθ(X))

∂θβ
dpθ(X). (1.13)The Fisher information matrix is positive de�nite, and de�nes a metri
 on Θ,whi
h is invariant by any smooth 
hange of variables. This fa
t 
an be viewed asthe most basi
 
onne
tion between statisti
s and di�erential geometry. Di�eren-tial geometry 
an be used to study higher-order asymptoti
s, as exempli�ed byAmari [1985℄.Developing the logarithms of produ
ts, it is easily seen that having n samples ofthe data multiplies the Fisher information by n, that is I(n)(θ) = nI(1)(θ) where

I(n) is the Fisher information matrix of the experiment E(n) = {p⊗nθ , θ ∈ Θ}.



1.1 Statisti
s 9Cramér-Rao boundWe 
an use the Fisher information matrix to derive a lower bound on the varian
ematrix of lo
ally estimators:
∫

Ω1

(θ − θ̂)(θ − θ̂)⊤dqθ(θ̂) ≥ I−1(θ). (1.14)The bound holds5 for all lo
ally unbiased estimators θ̂, that is as long as∫
θ̂dqθ(θ̂) = θ and ∂/∂θi ∫ θ̂jdqθ(θ̂) = δi,j .An immediate 
onsequen
e is that, for lo
ally unbiased estimators, and a quadrati

ost fun
tion (θ − θ̂)⊤G(θ − θ̂), we get this lower bound on the risk at point θ:

rθ(θ̂) ≥ Tr(GI−1). (1.15)This bound is known to be asymptoti
ally sharp. Indeed, a n-sample experimentin
reasingly resembles a Gaussian shift experiment, for whi
h it is sharp. Thepre
ise explanation 
omes from the theory of 
onvergen
e of experiments by LeCam, that we further sket
h in Se
tion 1.6.1.ExamplesWe 
ompute the Fisher information for the Bernoulli experiment, at point θdi�erent from 0 and 1. The expression is slightly easier sin
e we have only oneparameter.
I(θ) = θ

(
d ln(θ)

dθ

)2

+ (1 − θ)

(
d ln(1 − θ)

dθ

)2

=
1

θ
+

1

1 − θ

=
1

θ(1 − θ)
.From that and our previous remark for n samples, we see that I(θ) = n/(θ(1−θ))in the binomial experiment Ebin.A slightly more tedious 
al
ulation would show that the Fisher information ma-trix of a Gaussian shift experiment is the inverse of the varian
e of the Gaussians.5Supere�
ient estimators su
h as Stein estimator prove that we 
annot simply drop theunbiasedness 
ondition. However, adding some te
hni
ality (essentially 
onsidering e�
ien
yon a whole neighborhood of θ, through either a Bayesian or a minimax approa
h), we 
ansuppress the ne
essity of unbiasedness.
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tionHen
e our 
hoi
e of notation in equation (1.4). Moreover, after 
omparison be-tween the bound (1.15) and the risk (1.12) of the estimator 
onsisting in X itself,we obtain optimality of the latter estimator among the 
lass of lo
ally unbiasedestimators.We now try to give the equivalents of those notions in the quantum world.1.1.2 Quantum Obje
ts and OperationsThe books by Helstrom [1976℄ and Holevo [1982℄ are the usual referen
es forquantum statisti
s. We also add the more re
ent review arti
le by Barndor�-Nielsen et al. [2003℄. As already mentionned, we have summarized in Table 1.2,on page 25, the most basi
 ingredients of quantum statisti
s, with Table 1.1 for
lassi
al 
orrespondan
e on the page before.States, density operatorsThe basi
 obje
t in quantum probability is the state. The state is the equivalentof a probability law.We de�ne it over a Hilbert spa
e H. Its mathemati
al expression is given by adensity operator.De�nition 1.1.1. A density operator ρ over a Hilbert spa
e H is a tra
e-
lassoperator with the following properties:
• Self-adjointness: ρ is self-adjoint.
• Positivity: ρ is non-negative.
• Normalization: Tr(ρ) = 1.Those are the equivalent of 
onditions for probability measures: probability mea-sures are real (= self-adjointness), non-negative (= positivity) and normalizedto 1 (= normalization).For �nite-dimensional Hilbert spa
es, the operators are matri
es, and densitymatri
es also satisfy the above 
onditions. The real dimension of the manifold ofstates is d2 − 1 if the 
omplex dimension of H is d.
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s 11Example: QubitsThe most elementary situation arises when dim(H) = 2. Physi
ally, the system
ould be an ele
tron spin. Those states are 
alled qubit states and heavily usedin quantum information.We de�ne Pauli matri
es as
σx =

[
0 1
1 0

]
, σy =

[
0 i
−i 0

]
, σz =

[
1 0
0 −1

]
. (1.16)Self-adjointness implies that a density matrix must be a linear 
ombination ofthose matri
es and the identity 1. Positivity and normalization further imposethat:

ρ =
1

2

(
1 + ~θ · ~σ

)
, ‖~θ‖ ≤ 1, (1.17)with ~σ = (σx, σy, σz) a ve
tor of matri
es.We see that we already need three real parameters to des
ribe a qubit state,
onfer the one parameter we need to des
ribe a probability law on a 
lassi
altwo-out
ome spa
e.Pure statesThe set of 
lassi
al probability measures 
an be seen as the 
onvex hull of deltafun
tions. Similarly, the set of states is the 
onvex hull of pure states.Pure states are 
hara
terized by being rank-one operators, with eigenvalue one.We 
an write them |ψ〉 〈ψ|, where |ψ〉 is a norm-one ve
tor of H. Pure states 
anthus be represented as points of the proje
tive spa
e asso
iated to H.They are very important: many treatments of quantum me
hani
s feature onlypure states. General states 
an be seen as a 
lassi
al mixing of pure states.Unlike for delta fun
tions, where we merely draw a random variable with theunknown law, there is no measurement that 
an identify unambiguously anypure state, even if we know beforehand that the state is pure. This fundamentaldi�eren
e with the 
lassi
al world is a hallmark of non-
ommutativity betweendi�erent states. The study of pure states in themselves is already 
hallenging.For qubits with the above parameterization, the pure states 
orrespondto ‖~θ‖ = 1. This parameterization by a sphere, 
alled the Blo
h sphere, gives agraphi
al intuition for problems on qubits.The real dimension of the pure states is 2(d− 1) if dimH = d.
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tionExample: Coherent statesQubits are the paradigm for �nite-dimensional quantum states. The other fun-damental family of states is that of 
oherent states6.Those states live on the Fo
k spa
e7 F(C), that is the in�nite-dimensional Hilbertspa
e ℓ2(N). We denote {|k〉}k∈N the 
anoni
al basis on ℓ2(N). Physi
ists 
all
|k〉 the k-th Fo
k state.States on Fo
k spa
es are states of the harmoni
 os
illator, an example of whi
his the state of mono
hromati
 light (laser). We are thus on the playground ofquantum opti
s. Among those states, 
oherent states are in some way the most
lassi
al: they saturate Heisenberg un
ertainty relations.They are given by one 
omplex, hen
e two real, 
oe�
ient θ. Sin
e they are purestates, we 
an des
ribe them with a ve
tor in F(C), rather than an operator8:

|θ) = exp(−|θ|2/2)
n∑

k=0

θk√
k!

|k〉 . (1.18)Multipartite states, entangled statesLet us 
onsider two quantum obje
ts ρ1 and ρ2 on H1 and H2. They 
an be seenas a single quantum obje
t on H = H1 ⊗H2, with state ρ = ρ1 ⊗ ρ2.Any state on su
h 
omposite Hilbert spa
e is 
alled a multipartite state. Nowsome multipartite states 
annot be written as ∑ ciρ
i
1 ⊗ ρi2 with positive ci. Wemight need some negative ci. In other words, those states are not a 
lassi
al ran-domization of a 
hoi
e of a pair of states. They 
ontain an intrinsi
ally quantum
oupling. They are 
alled entangled states.Let us prove they do exist. We write dimH1 = d1 and dimH2 = d2. Hen
e

dimH = d1d2. Pure multipartite states are pure states on H, so they 
onstitutea 2(d1d2 − 1) manifold. On the other hand, a pure state of the form∑
ciρ

i
1 ⊗ ρi2with positive ci only allow one term in the sum, with both ρ1 and ρ2 pure states.The 
orresponding dimension is 2(d1 + d2 − 2) < 2(d1d2 − 1). Hen
e there aremany entangled pure states.6More generally, all possibly squeezed Gaussian states play an important role in quantumopti
s and, as we shall see, in quantum statisti
s. We sti
k to 
oherent states for simpli
ity ofthe example.7Multidimensional 
oherent states are tensor produ
ts of 
oherent states on the tensorizedFo
k spa
e F(Cd) = F(C)⊗d.8We use the notation |θ) instead of the usual ket |θ〉 so as to avoid 
onfusion with Fo
kstates, in parti
ular when θ happens to be a positive integer.



1.1 Statisti
s 13A typi
al example are maximally entangled states, that is states of the form
|Ψ〉 〈Ψ|, with |Ψ〉 = 1√

d

∑∣∣ψi
〉
⊗
∣∣ψi
〉, where H1 = H2 and {

∣∣ψi
〉
} is an or-thonormal basis of H1. As their name imply, they 
arry as mu
h entanglementas possible.Entanglement may be the single most basi
 and pervasive resour
e in quantuminformation. It lies at the heart of quantum teleportation, most quantum 
ryp-tography proto
ols and the in
reased pro
essing power of a quantum 
omputer.Literature on the subje
t is too daunting to be even s
rat
hed upon. In quantumstatisti
s, apart from the problems linked to estimating entangled states, they
an be used to speed up estimation of quantum transformations.A
tions on statesIn the 
lassi
al 
ase, we noti
ed that giving an estimator of a parameter θ ormore generally of any fun
tion of θ was the same as transforming our initial datato get a new random variable Y with law T (pθ).In the quantum 
ase, the two notions are distin
t. Indeed, transforming the datameans getting a new quantum state, that is an operator on a Hilbert spa
e. Statesundergo a transformation when they are sent through a 
hannel. An estimator ofa 
lassi
al parameter, on the other hand, is a 
lassi
al quantity. We then end upwith a 
lassi
al random variable. We retrieve this 
lassi
al data from the statethrough a measurement.If we merely want to 
onsider estimators, why are we also interested in 
hannels?Indeed, applying many 
hannels and then a measurement 
an be summed up tousing only a more 
omplex measurement.The �rst reason is that we might transform our states to a new family for whi
hwe know what measurement to use. In fa
t, the whole aim of strong lo
al asymp-toti
 normality, whose study 
onstitutes most of this thesis, is to transform anexperiment to a quasi-equivalent and easier one.Se
ondly, 
hannels des
ribe physi
al transformations. We might want to studythe transformation itself rather than the state. Typi
ally, the physi
al transfor-mation 
ould be generated by a for
e we want to measure. We dwell on thesematters in Chapter 3.We 
all instrument a fun
tion yielding 
lassi
al and quantum data out of a quan-tum input. Real measurement apparatuses are essentially instruments, even ifwe may forget about the out
ome state. In parti
ular, 
ontinuous-time mea-surements are 
ommon in pra
ti
e. Typi
ally, we measure the ele
tromagneti
�eld after intera
tion with matter, as in Chapter 7. These measurements 
an be
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tionseen as a sequen
e of in�nitesimal instruments, and writing the 
orrespondingevolution equations is the purpose of quantum �ltering, pioneered by Davies andBelavkin [Bouten et al., 2006, for an introdu
tion℄.Measurements, POVMsIf we want to make 
lassi
al statisti
al inferen
e on the unknown parameters, wehave to translate our quantum information to 
lassi
al information. To that end,we apply a measurement. Sin
e mixed states are 
lassi
al mixing of states, werequire linearity of the transformation. The out
ome should always be a 
lassi
alprobability law. We dedu
e from that the following form of physi
ally allowedmeasurements:De�nition 1.1.2. A positive operator valued measure, or POVM, over a mea-sured spa
e (Ω,A) is a set {M(A)}A∈A of bounded operators on H su
h that:
• M(Ω) = 1H.
• M(A) is positive.
• For any 
ountable 
olle
tion (Ai)i∈N of disjoint Ai, we have M(

⋃
Ai) =∑

M(Ai).We noti
e that those are exa
tly the usual axioms for a probability measure,ex
ept that we work with operators instead of real numbers. We 
all ea
h M(A)a POVM element.Applying a measurement M on a state ρ yields a probability law Pρ on (Ω,A),given by Born's rule:
Pρ(A) = Tr(ρM(A)). (1.19)In Chapter 4, we s
rutinize a spe
i�
 order relation on POVMs.A few remarks are in order. First of all, we 
an in
lude any 
lassi
al pro
essing ofthe data in the POVM. Indeed, applying a measurement M and then a Markovkernel T (de�ned by (1.5)) on the output random variable is the same as applyingthe measurement N on (Ω1,B) with N(B) =

∫
Ω pω(B)M(dω). So that workingon POVMs is equivalent to working on estimators.Se
ondly, we 
annot in general measure simultaneously M1 and M2 on (Ω1,A1)and (Ω2,A2). In 
ontrast to the 
lassi
al 
ase, where we 
ould have simultane-ously the results of applying T1 and T2. Indeed, measuring both M1 and M2means measuring N on (Ω1×Ω2) with N(A1×Ω2) = M1(A1) and N(Ω1×A2) =
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M2(A2). An easy 
ounterexample illustrating the role of non-
ommutativity isgiven by M1 and M2 both de�ned on {0, 1}, with

M1(0) =

[
1 0
0 0

]
, M1(1) =

[
0 0
0 1

]
,

M2(0) =
1

2

[
1 1
1 1

]
, M2(1) =

1

2

[
1 −1
−1 1

]
.All those matri
es are rank-one. We would now need N(0, 0)+N(0, 1) = M1(0).Sin
e all POVM elements are positive, we haveM1(0) ≥ N(0, 0). Sin
e moreover

M1(0) is rank-one, we have N(0, 0) = c1M1(0) for some 0 ≤ c1 ≤ 1. We alsoknow N(0, 0) +N(1, 0) = M2(0). So that N(0, 0) = c2M2(0). The only solutionis c1 = c2 = 0 and N(0, 0) = 0. The same holds for N(0, 1), N(1, 0) and N(1, 1).On the other hand we need N({0, 1}2) = 1C2 . Contradi
tion.Finally, all those measurements are believed to be physi
ally feasible. Howeverthey might be very hard to implement in pra
ti
e. In parti
ular, if the state is amultipartite state, it 
an make sense to restri
t our attention to smaller 
lassesof measurements. Notably, if di�erent people hold di�erent parti
les in di�erentpla
es, they 
annot implement a general measurement, even if they 
ooperate.The best they 
an do is: one of them measures his parti
le (possibly with anon-trivial output quantum state), tells the result to the other, who 
hooses ameasurement on his parti
le, keeps the output state and tells the result to the�rst one, and they iterate on the output states. Su
h measurements, using onlylo
al quantum operations and 
lassi
al 
ommuni
ation, are dubbed LOCC: Lo
alOperations, Classi
al Communi
ation.In quantum information when the (usually entangled) quantum state is dividedbetween several people, we naturally restri
t to LOCC measurements. In quan-tum estimation of a state with n 
opies of the initial state, we are at least in-terested in what 
an be a
hieved through LOCC measurements, mu
h easier toimplement than general (
olle
tive) measurements. We 
an in general really gainpre
ision with 
olle
tive measurements. This might be surprising from the pointof view of physi
ists, sin
e the n 
opies are totally independent. In some 
ases, no-tably when we know that the unknown state is pure [Matsumoto, 2002℄, 
olle
tivemeasurements do not yield mu
h improvement over LOCC measurements. Thismight be surprising from the point of view of mathemati
ians, sin
e the spa
e of
olle
tive measurements is mu
h bigger than that of LOCC measurements.Example: Spin zConsider the binary out
ome measurement on qubits given by
M(↑) =

[
1 0
0 0

]
=

1

2
(1 + σz), M(↓) =

[
0 0
0 1

]
=

1

2
(1− σz).
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tionThis measurement applied to the state ρ = 1+~θ·~σ
2 yields ↑ with probability

Tr(ρM(↑)) =
1

2

(
Tr(1M(↑)) +

∑

α=x,y,z

θαTr(σαM(↑))
)

=
1

2
(1 + θz).In parti
ular, if θz = 1, then the out
ome is always ↑. Conversely, if θz = −1, theout
ome is always ↓. On the other hand, if θx = 1, so that θz = 0, the out
omeis either ↑ or ↓ with probability one half, even though the state ρ is pure.This kind of measurements, where all the POVM elements are proje
tors, arealso 
alled observables. They only yield information on the basis in whi
h all thePOVM elements are diagonal. Noti
e that usual axioms of quantum me
hani
srestri
t measurements to observables. However, we get ba
k all the POVMs byapplying an observable on a multipartite state of whi
h our state is only a part(Naimark theorem).Heterodyne measurementThe heterodyne measurement gets its name from the te
hnique used to implementit in laboratory, with lasers that are o�-phase. This POVM with out
ome in Chas a mathemati
al expression given by:

M(A) =
1

π

∫

A

|z)(z|dz, (1.20)where |z) is a 
oherent state (1.18).The probability law of the out
ome when measuring ρ has thus a density (z|ρ|z)with respe
t to Lebesgue at point z. In parti
ular, the law of the result whenmeasuring a 
oherent state is a Gaussian:
qθ(dz) =

1

π
(z|θ)(θ|z) =

1

π
exp(−|θ − z|2). (1.21)If we 
onsider all the 
omplex θ, we re
ognize a 
lassi
al Gaussian shift experiment(1.4) in R2.More generally, the probability density fun
tion of the out
ome of the measure-ment on a state ρ is 
alled the Husimi fun
tion of the state:

Hρ(dz) =
1

π
(z|ρ|z). (1.22)States whose Husimi fun
tion is a Gaussian are 
alled Gaussian states.
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s 17ChannelsWe now des
ribe how to make a new quantum state out of the original state.Noti
e that the �rst state is destroyed in the pro
ess.A physi
al transformation of a quantum obje
t takes a state and yield anotherstate, possibly on a di�erent spa
e. It is des
ribed by a 
hannel, the equivalentof a Markov kernel.We re
all that a positive superoperator E is a map su
h that for any positiveoperator A, the output E(A) is also positive.De�nition 1.1.3. A 
hannel E is a map from the set T (H1) of tra
e-
lass op-erators to T (H2), with the following properties:
• Linearity: E is linear.
• Complete positiveness: for any auxiliary spa
e H3, the superoperator E⊗Id :

T (H1 ⊗H3) → T (H2⊗H3) given by (E ⊗ Id)(ρ⊗σ) = E(ρ)⊗σ is positive.
• Tra
e-preserving: Tr(E(A)) = Tr(A).Noti
e that Markov kernels satisfy all these 
riteria, when repla
ing operators bymeasures9.The ne
essity of linearity 
an be proved from the axiom of unitary evolution10and in
luding the observer in the system.We want the image of a state to be a state, so a positive operator must be sentto a positive operator. To understand why we need 
omplete positivity, we must
onsider a possibly entangled state on H1 ⊗ H3. If we transform states on H1,we also transform states on H1 ⊗H3, with E ⊗ Id as the 
hannel. Therefore thelatter transformation must be positive. Hen
e we need 
omplete positivity.Finally, the output is a state if the input is a state, and both are tra
e-one, sotra
e must be preserved.We often 
onsider the 
hannels in the (pre)dual pi
ture, that is as a
ting on theelements of B(H). So that Tr(E(ρ)A) = Tr(ρE∗(A)) for all state ρ and all boundedoperator A. In this 
ase E∗ is also a 
ompletely positive linear map, but we must9In the more general setting of C∗-algebras, the spa
es of fun
tions are 
ommutative C∗-algebras and all positive superoperator on those spa
es is 
ompletely positive.10Quantum me
hani
s state that the evolution of a system is given by ρ(t) = U(t)ρ(0)U∗(t),where U(t) is a unitary operator that 
an be 
omputed from the self-adjoint operator H 
alledthe Hamiltonian. If the Hamiltonian does not depend on time, then U(t) = eitH .
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tionrepla
e the tra
e-preserving 
ondition by the identity-preserving 
ondition, thatis E∗(1) = 1.Notations: We usually write E or F for 
hannels. Abusing notations, we usuallydrop the star for the pre-dual and also write E in that 
ase. However, thosestandard notations are also the standard notations for experiments. So that inthe 
hapters where we use that notion, we use for 
hannels the same notationsas for Markov kernels, that is T, Tn, S, Sn.Kraus representation, Stinespring theoremThe above de�nition does not make it obvious to deal with 
hannels. Fortunately,two representation theorems des
ribe 
ompletely positive maps in a more usableway. The book by Paulsen [1987℄ is a good referen
e on those matters.Kraus [1983℄ representation is the main tool when the Hilbert spa
es are �nite-dimensional.Theorem 1.1.4. A 
ompletely positive map E from M(Cd1) to M(Cd2) 
an bewritten as
E(A) =

∑

α

RαAR
∗
α, (1.23)with α running from 1 to at most d1d2, and Rα ∈Md2,d1(C). Star is the adjoint.Moreover, the 
hannel is tra
e-preserving if and only if ∑R∗

αRα = 1Cd1 .The de
omposition is not unique. The dual 
hannel is given by A 7→∑
R∗
αARα.In in�nite dimension, we rather use the more powerful Stinespring [1955℄ dilationtheorem11.Theorem 1.1.5. Let E : B(H1) → B(H2) be a 
ompletely positive map. Thenthere is a Hilbert spa
e K and a *-homomorphism (or representation) π : B(H1) →

B(H2) su
h that
E(A) = V π(A)V ∗, (1.24)where V : K → H is a bounded operator.Moreover, if E is identity-preserving, then V is an isometry, that is V V ∗ = 1H.If we further impose that K is the 
losed linear span of π(A)V ∗H, then thedilation is unique up to unitary transformations.11In fa
t, Stinespring theorem was proved for any unital C∗ algebra as initial spa
e. It 
an beshown to imply Kraus representation, but also the GNS representation, a staple of C∗-algebras.



1.1 Statisti
s 19InstrumentsWe give the representation of instruments for �nite dimensions12. To furthersimplify notations, we restri
t ourselves to the 
ase when the measurement hasa �nite number of out
omes.De�nition 1.1.6. An instrument is given by a set {Nω,k} of matri
es from H1to H2, su
h that
∑

ω

∑

k

N∗
ω,kNω,k = 1H1 .The 
orresponding measurement is given by

M(ω) =
∑

k

N∗
ω,kNω,k,and the output state when the result of the measurement is ω is given by

N (ρ, ω) =

∑
kNω,kρN

∗
ω,k

Tr(ρM(ω))
.The output state lives on H2.We now have another way to understand why we 
annot measure two POVMssimultaneously: after measuringM , the quantum obje
t, that is our data, has ingeneral been perturbed. In fa
t, if the measurement is ri
h enough, the outputstate depends only on the out
ome ω, and not anymore on the input state.We now have all the tools to 
opy the setup from 
lassi
al statisti
s to quantumstatisti
s.1.1.3 Quantum statisti
sUsually, we work on quantum states; o

asionally we may want to gain knowledgeon a 
hannel. We treat the two 
ases separately.States: What we have, what we 
an do, what we want to knowIn analogy with the 
lassi
al 
ase, we are usually given a quantum state ρ, thatwe know to be in a set

E = {ρθ, θ ∈ Θ} . (1.25)12In in�nite dimension, we have to use the C∗-algebra setting and an instrument is merely a
hannel between C∗-algebras.
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tionWe again 
all this set an experiment, or a model.With the examples of the qubits, the usual models would be the 3D full mixedmodel Em = {ρθ, ‖θ‖ < 1} and the 2D pure state model Ep = {ρθ, ‖θ‖ = 1},where we have used our former parameterization for the state ρθ (1.17). Whenhaving n 
opies of the state, we repla
e ρθ by ρ⊗nθ .Another typi
al experiment would be Et = {ρθ, θ ∈ {θ1, θ2}}, where the usualquestion is to dis
riminate between the two possible θ. We study this kind ofproblem in Se
tion 1.2 and Chapter 2.We 
an a priori use any sequen
e of instruments on the state. If we merely want
lassi
al information on θ, we may restri
t to measurements M , that is POVMs.We then asso
iate to M an estimator, say θ̂, with law depending on the trueparameter θ through
qθ(B) =̂ Pθ

[
θ̂ ∈ B

]
= Tr(ρθM(B)).Depending on the 
ir
umstan
es, we might allow any physi
al measurement, ora smaller 
lass, su
h as separate or LOCC measurement.Finally, what we want to know is the same as in the 
lassi
al 
ase. We wantto know some fun
tion of the parameter θ. So that we want to estimate θ, andwe rate our estimator θ̂ through a 
ost fun
tion c(θ, θ̂). As before, the most
ommon 
ost fun
tions are (1− δθ,θ̂), if the parameter set is �nite, and quadrati

ost fun
tions (θ̂− θ)⊤G(θ̂− θ) for a positive matrix G, if the parameter lives onan open subset of Rd. The weight matrix G might depend on θ.We 
an again write the risk (1.6) of an estimator at point θ. Sin
e we do notknow θ, we then either use the Bayesian risk (1.7) for an appropriate prior, orthe minimax risk (1.9), and optimize (1.8, 1.10) over the available estimators.Noti
e that the last stage depend on the set of allowed estimators.Quantum Fisher information and Cramér-Rao boundsWe 
an try to mimi
 the de�nition of 
lassi
al Fisher information and get similarbounds on varian
e of estimators. In fa
t, we 
an build su
h an equivalent forany 
hoi
e of a logarithmi
 derivative. We 
hoose the right logarithmi
 derivative(RLD), de�ned for ea
h θ and ea
h 
oordinate θα as a matrix λα,θ su
h that:

∂ρθ
∂θα

= ρθλα,θ (1.26)on the support of ρθ.



1.1 Statisti
s 21Then, s
rutinizing de�nition (1.13) while keeping in mind that Born's rule (1.19)is an equivalent of 
lassi
al expe
tation, we de�ne the quantum Fisher informa-tion matrix by:
Jα,β(θ)=̂ Tr(ρθλβ,θλ

∗
α,θ). (1.27)Helstrom [1976℄ proved that the 
ovarian
e matrix of any lo
ally unbiased esti-mator θ̂ was bigger than the inverse of the quantum Fisher information matrix.Hen
e, for any quadrati
 
ost fun
tion (θ − θ̂)⊤G(θ − θ̂) we have the followingbound on the risk (1.6):

rθ(θ̂) ≥ Tr
(
Re(G1/2J −1(θ)G1/2) +

∣∣Im(G1/2J −1(θ)G1/2)
∣∣
)
. (1.28)Noti
e that we do not simply write the right-hand-side as Tr(GJ −1(θ)) sin
e ourFisher information matrix is self-adjoint, but not real.Holevo [1982℄ further improved13 on this bound for a parameter of dimension pand a system on a Hilbert spa
e of dimension d:

rθ(θ̂) ≥ inf
~X

Tr
(
Re(G1/2Z( ~X)G1/2) +

∣∣Im(G1/2Z( ~X)G1/2)
∣∣
)
, (1.29)where Zi,j = Tr(ρθXiXj), and ~X = (X1, . . . , Xp) is a ve
tor of d× d self-adjointmatri
es 
onstrained by ∂/∂θi(Tr(ρXj)) = δi,j . The bound applies for all lo
allyunbiased estimators. Hayashi and Matsumoto [2004℄ proved that this bound isasymptoti
ally sharp for all qubit models. Like in the 
lassi
al 
ase, the under-lying reason is 
onvergen
e to a quantum Gaussian shift experiment. Hayashiand Matsumoto's proved that the optimal risk rθ(θ̂) was 
onverging to that ofthe Gaussian shift experiment. In Part II, we build a theory showing that anyreasonable fun
tion of the qubit models 
onverges to its value on a Gaussian shiftexperiment.The bound might look horrible, but it is often 
omputable. For example, if theparameter θ is d(d − 1) dimensional, there is only one possible ~X. That is the
ase when our experiment is the full mixed model. Moreover, it 
an be provedto s
ale like n when we have n samples. We get ba
k the square root speed of
onvergen
e of regular 
lassi
al models.These bounds are valid for all physi
ally allowed measurements. If we restri
tto smaller 
lasses, we might get tighter bounds [Nagaoka, 1991, Hayashi, 2005a,Gill and Massar, 2000℄.13The Fisher information matrix (1.27) is an a

eptable Z( ~X), implying both existen
e ofthe right-hand-side of equation (1.29), and that it is better than Helstrom bound (1.28).
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tionExample: Coherent shift experimentWe 
onsider the following quantum experiment on the Fo
k spa
e:
Eqgs = {|θ)(θ|, θ ∈ C}.Then Yuen and Lax, M. [1973℄ and Holevo [1982℄14 have 
omputed the Cramér-Rao bound (1.28) and obtained Tr(G)/2 +

√
det(G). If G = 1, this is 2.Using the heterodyne measurement (1.20), we transform our quantum experimentinto a 
lassi
al Gaussian shift experiment Egs = {N (θ, 2 ·1), θ ∈ C}. Hen
e, with

G = 1, we read on our 
al
ulation for the 
lassi
al 
ase (1.12) that the risk atpoint θ is 2.Hen
e the heterodyne measurement saturates the Cramér-Rao bound for theidentity weight matrix. Slight modi�
ations of this measurement, using so-
alledsqueezed 
oherent states instead of the 
oherent states (1.18), a
hieve optimalityfor any weight matrix. It should be noti
ed, however, that unlike in the 
lassi
al
ase, the optimal measurement depends on the weight matrix.Example 2: Full mixed model for qubitsIn the full mixed model for qubits Em, the Cramér-Rao bound15 for the 
ostfun
tion (θ − θ̂)T (θ − θ̂) is known to be 3 − 2 ‖θ‖.On the other hand, we also know that [Hayashi and Matsumoto, 2004, for this pre-
ise form℄, when only lo
al measurements are allowed, the bound is (2
√

1 − ‖θ‖)2.We have here an example where using 
olle
tive measurements improves the speedof approximation, for all ‖θ‖ ≤ 1, that is for all mixed states.Channels: What we have, what we 
an doWe have set up our framework when we are given quantum states. In otherappli
ations, we want to learn about ma
hines that transform quantum states.In 
lassi
al statisti
s, this problem 
orresponds to understanding what a bla
k boxdoes. Mathemati
ally, those ma
hines are quantum 
hannels. Ballester [2005a℄notably 
ondu
ted his thesis on the estimation of unitary 
hannels, 
orrespondingto natural evolution of a quantum system. Ji et al. [2006℄ provide another ni
ere
ent resour
e.14For arbitrary weight matrix G.15Hayashi and Matsumoto [2004℄ have 
omputed it for a general weight matrix, and provedits attainability in all 
ases.



1.1 Statisti
s 23In that 
ase, we are not given anymore a �quantum probability law� ρ, but rathera 
hannel T : B(H1) → B(H2) within a set
E = {Tθ, θ ∈ Θ} .To gain knowledge on T , we must send a state through it, and we get a moreusual quantum experiment. However, we might use several methods. The mostobvious would just be to send a well-
hosen state ρ. We get T (ρ) as an output,and we remain with the model

E1
ρ = {Tθ(ρ), θ ∈ Θ} .However, we may also use an an
illa: instead of learning about T , we equivalentlylearn about T ⊗ Id : B(H1 ⊗ H3) → B(H2 ⊗ H3). We send in a multipartite,entangled state ρ and get:

E2
ρ = {(Tθ ⊗ Id)(ρ), θ ∈ Θ} .When allowed to probe several times the 
hannel, a �rst re�ex might be just tosend in n 
opies of the same state. We get:
E3
ρ =

{
(Tθ(ρ))

⊗n, θ ∈ Θ
}
.However it might be more e�
ient to send in a big entangled state ρ ∈ B(H1)

⊗n.We would then get the very general experiment:
E4
ρ =

{
(Tθ)

⊗n(ρ), θ ∈ Θ
}
.To top it all, we might want to add an an
illa to the latter setup:

E5
ρ =

{
((Tθ)

⊗n ⊗ Id)(ρ), θ ∈ Θ
}
.All these distin
tions are not super�uous16. The �rst strategy is easier than these
ond, but Fujiwara [2001℄ proved that sending half of a maximally entangledstate through an unknown qubit 
hannel and keeping the other half as an
illaallows to estimate three times faster asymptoti
ally than any strategy of the �rst,or third types.In a yet mu
h more impressive way, the use of entanglement (fourth and �fthstrategy) allows estimations of unitary operations with quadrati
 square errors
aling as 1/n2. In 
ontrast, any of the �rst strategies would yield n 
opies of a16Even more 
ompli
ated strategies involve feeding in again the output state...
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Classi
al Simple 
lassi
al exampleProbability spa
e

(Ω,A)
{0, 1}Probability measure

pθ

(
1

2
(1 + θ),

1

2
(1 − θ)

)with −1 ≤ θ ≤ 1.Dira
 measure
(1, 0) or (0, 1)given by θ = −1 or 1.Estimator with value in measuredspa
e (X ,A)

X : Ω ⊗ Ω2 → Xwhere (Ω2,B, q) is a probability spa
ewith known q. X : i 7→ Xi(ω2)with Xi : Ω2 → X for i = 0, 1,where (Ω2,B, q) is a probability spa
ewith known q.Probability law of the estimator
Pθ [X ∈ A] = (pθ ⊗ q)(X−1(A)). Pθ [X ∈ A] =

1

2
(1 − θ)q(X−1

0 (A))

+
1

2
(1 + θ)q(X−1

1 (A)).Markov kernel (given by (1.5))
τ

pθ 7→ pθ(0)τ0 + pθ(1)τ1with τ0 and τ1 probability laws on thesame spa
eFigure 1.1: Basi
 
orresponding quantum and 
lassi
al notions
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Quantum Simple quantum exampleHilbert spa
e

H
C

2State (given by De�nition 1.1.1)
ρθ

1

2

(
1C2 +

3∑

i=1

θiσi

)with σi given by (1.16) and ‖θ‖ = 1.Pure state
|ψ〉 〈ψ|with 〈ψ|ψ〉 = 1. Rank-one ρθ, equivalent to ‖θ‖ = 1 inthe previous formula.POVM (given by de�nition 1.1.2),with values in measured spa
e (X ,A)

M = {M(A)}A∈A

No simpli�
ation
Probability law of the measurement

Pθ [X ∈ A] = Tr(ρθM(A)).

No simpli�
ationChannel (given by De�nition 1.1.3)
E : T (H) → T (K).

If dim(K) = d <∞, then
E(ρθ) =

2d∑

α=1

RαρθR
∗
αwith Rα ∈Md,2(C) and ∑αR

∗
αRα =

1C2 .Figure 1.2: Basi
 
orresponding quantum and 
lassi
al notions
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tionstate, and the quantum Cramér-Rao bound (1.29) ensures that the rate 
annotbe any better than 1/n.In any 
ase, 
hoosing what we allow is only part of the problem. The most
hallenging question remains to know what state to send in. The output quan-tum experiment does depend a lot on that 
hoi
e. When using only an an
illa,maximally entangled states are the natural 
hoi
e. When we deal with the hugeentangled input states of the fourth experiment, group theory provides guidelines.We study dis
rimination between two Pauli 
hannels in Chapter 2.Chapter 3 deals with estimation of unitary 
hannels on �nite-dimensional spa
es,and the 
orresponding se
tion 1.3 of the introdu
tion dwells further on the historyand referen
es.1.2 Dis
rimination1.2.1 MotivationAli
e and Bob want to establish and share a se
ure 
ryptographi
 key. Ali
e thensends a sequen
e of parti
les to Bob, where ea
h parti
le is either in state |ψ1〉or in state |ψ2〉. These states are not orthogonal. Yet, Bob 
an measure ea
h ofthem and get one of three possible results: the state is |ψ1〉, |ψ2〉, or �I don't knowthe state�. When he gets a de�nite result, the state is always 
orre
tly identi�ed.When he gets the in
on
lusive result, Bob merely phones Ali
e to dis
ard thisparti
ular bit. For maximal e�
ien
y, Bob wants a measurement that yields a
on
lusive result as often as possible.As it happens, Eve is eavesdropping. If she is to have any hope not to be noti
ed,she must send a state to Bob, whatever the 
on
lusion of her measurement. In
ontrast to Bob, she is not allowed to say �I don't know�. Hen
e, her best strategy
onsists in using the measurement that is most often right, even if she does notknow for sure when it is right. As the states are not orthogonal, she will anyhowmake a mistake in the long run and she will be spotted.This quantum-key-dis
rimination proto
ol was suggested by Bennett et al. [1992℄.It features two basi
 examples of quantum dis
rimination problems. The generalframework is the following. We are given a quantum obje
t, generally a state.We know it belongs to a �nite set. We must guess whi
h one it is. To 
hoosean optimal strategy, we need a 
ost 
riterion. The most natural two are thoseappearing in the above example. Bob's 
riterion is 
alled optimal unambiguousdis
rimination, Eve's is state dis
rimination with minimum error.



1.2 Dis
rimination 27Histori
ally minimum error was studied �rst, already by Helstrom [1976℄. In-deed, it 
orresponds to hypothesis testing, a very important subje
t in 
lassi
alstatisti
s. Ivanovi
 [1987℄ introdu
ed unambiguous dis
rimination. In 
ontrastto minimum error dis
rimination, the 
orresponding 
lassi
al problem is triv-ial. However, there are more obvious 
onne
tions to other quantum informationsubje
ts, su
h as exa
t 
loning [Che�es and Barnett, 1998b℄ or entanglement
on
entration [Che�es and Barnett, 1997℄.1.2.2 Former resultsChe�es [2000℄ and Bergou et al. [2004℄ have written re
ently two reviews on thesubje
t. They are my main sour
es for this histori
al part.As a �rst remark, all previous work made use of the Bayesian framework. Wemay then state more pre
isely Eve's minimum error dis
rimination problem astrying to �nd a POVM P = (P1, P2) that minimizes the average error probability,or equivalently maximizes the average su

ess probability:
pS = π1 Tr(ρ1P1) + π2 Tr(ρ2P2), (1.30)with π the a priori probability and ρi = |ψi〉〈ψi|.Bob must maximize the same expression (1.30), but with a POVM P = (P1, P2, P?),and the additional 
onstraint that Tr(ρ2P1) = Tr(ρ1P2) = 0. Here P? 
orrespondsto the in
on
lusive result. With our de�nition of a pra
ti
al statisti
al problemas the three points (what we have, what we are allowed to, what we want), thedi�eren
e with minimum error dis
rimination lies in the se
ond point: what weare allowed to.Let us �rst follow Helstrom [1976℄ on the minimum error dis
rimination. Sin
e

P2 = 1 − P1, writing ρ1 = |ψ1〉 〈ψ1| and |ψ2〉 〈ψ2|, we get
pS = π2 Tr(ρ2) + Tr(P1(π1ρ1 − π2ρ2)).Hen
e an optimal POVM is given by P1 the proje
tor on the support of thepositive part of π1ρ1−π2ρ2. Notably, the POVM is a Von Neumann measurement.This solves the minimum error dis
rimination for two possible states, even if theyare mixed. The same strategy would also work if we added weights for di�erenterrors.Di�
ulties arise for minimum error when we deal with more than two states, say

N . We 
an write the fun
tion to be maximized in a way similar to (1.30), thatis ∑i πi Tr(Piρi). However, the tri
k of repla
ing P1 by 1 − P2 
annot be used,and there is no known general solution to this maximization problem. Let ussummarize what we do know, though.



28 Introdu
tionFor one thing, Eldar [2003℄ has shown that one of the optimal POVMs is alwaysa Von Neumann measurement, as long as all the ρi are linearly independent.Through the use of Lagrange multipliers, Holevo [1973℄ and Yuen et al. [1975b℄have given an impli
it solution: the following is a ne
essary and su�
ient 
ondi-tion for the POVM to be optimal:
Pi(πiρi − πjρj)Pj = 0,

N∑

k=1

(πkρk)Pk − πiρi ≥ 0,for all 1 ≤ i, j ≤ N .We have analyti
al solutions in a few spe
ial 
ases [Barnett, 2001, Yuen et al.,1975b, Andersson et al., 2002℄. The most interesting 
ase is when we have 
ovari-an
e. That is, when πi = 1/N for all i, and there is a unitary operator V su
hthat V N = I and ρi = V i−1ρ1V
1−i, we 
an apply Holevo [1982℄ and look for asolution of the form Pi = V iΞV −i, where Ξ is 
alled the seed of the POVM. Thisstarting point enabled �rst Ban et al. [1997℄ for pure states, then Eldar et al.[2004℄ and Chou and Hsu [2003℄ for the general mixed 
ase, to derive an analyt-i
al solution. They get the famous �square-root measurement�, whi
h reads forpure states |ψ1〉:

Pi = B−1/2|ψi〉〈ψi|B−1/2with B =
∑

i

|ψi〉〈ψi|.Though we have an expli
it solution for testing two states, it is hard to know ex-a
tly the rate at whi
h our guesses get better if we have n 
opies of the same state,so that we have to dis
riminate between ρ⊗n1 and σ⊗n
1 . Re
ent work has fo
usedon knowing this rate, and what 
lasses of measurements 
an attain it [Hayashi,2002b, Nagaoka and Hayashi, 2007, Nussbaum and Szkola, 2006, Audenaert et al.,2007, Kargin, 2005℄. They essentially make use of quantum Cherno� bounds orSanov's theorem, that is quantum large deviations theory. These results alsoapply to the minimax setting.Finally, sin
e we try to maximize a linear fun
tional under linear 
onstraints(that is P must be a POVM), semi-de�nite linear programming yields e�
ientnumeri
al treatment [Jezek et al., 2002℄.Riis and Barnett [2001℄ have experimentally implemented Eve's situation, thatis dis
riminating two qubits, whereas Clarke et al. [2001b℄ has realized the dis-
rimination of the trine and tetrad states, i.e. three and four pure states thatare the verti
es of a regular triangle and a regular tetahedron.



1.2 Dis
rimination 29Let us go ba
k to Bob's problem, unambiguous dis
rimination of two pure states
|ψ1〉 and |ψ2〉. For the equiprobable prior π1 = π2 = 1/2, Ivanovi
 [1987℄, Dieks[1988℄ and Peres [1988℄ have found the optimal measurement. The 
orrespondingprobability of getting a 
on
lusive result is then 
alled the IDP limit:

pS = 1 − |〈ψ1|ψ2〉|. (1.31)How do we get there? For one thing, the only relevant part of the spa
e isthat spanned by |ψ1〉 and |ψ2〉, so that it is two-dimensional. We may thus
onsider the basis biorthogonal to (ψ1, ψ2), that is a non-orthogonal basis (ω1, ω2)
hara
terized by 〈ωi|ψj〉 = δij for 1 ≤ i, j ≤ 2. Moreover, the POVM element
P1 must satisfy Tr(P1ρ2) = 0, or equivalently have its support orthogonal to
|ψ2〉. Hen
e P1 = c1|ω1〉〈ω1|. Similarly, P2 = c2|ω2〉〈ω2|. We must now merely�nd the best c1 and c2 to maximize (1.30) while keeping P1 + P2 ≤ I. Then
P? = I −P1 − P2. By a symmetry argument, for π1 = π2, we must have c1 = c2.So that we take the maximal c1 su
h that P1 +P2 ≤ I. Cal
ulations yield (1.31).Unambiguous dis
rimination, unlike minimum error dis
rimination, essentiallygeneralizes to several pure states. On the other hand, even dis
riminating 
on-
lusively between two mixed states is 
hallenging.Jaeger and Shimony [1995℄ have generalized to the 
ase when π1 6= π2. For morethan two pure states, we 
an start in the same way: we write Pi = ci|ωi〉〈ωi|,with {ωi}1≤i≤N the bi-orthogonal basis of {ψi}1≤i≤N . We have then to deal with
N 
oe�
ients only. However there is no expli
it general solution. Spe
ial solved
ases in
lude the 
ovariant one, when |ψi〉 = V i−1|ψN 〉, and V N = I = V V ∗[Che�es and Barnett, 1998a℄. The main theoreti
al results for several pure statesare upper and lower bounds on the su

ess probability. Zhang et al. [2001℄ haveproved that:

pS ≤ 1 − 1

N − 1

∑

1≤j,k≤N
j 6=k

√
πjπk|〈ψi|ψj〉|.We noti
e that the IDP limit saturates this bound. On the other side, Sun et al.[2002℄ have shown that pS was bigger than the lowest eigenvalue of the N × Nmatrix whose elements are the s
alar produ
ts 〈ψi|ψj〉. They have used formerwork from Duan and Guo [1998℄, on 
loning.However, most of the literature revolves around dis
riminating two, or more,mixed states. I shall be brief enough sin
e I have not worked on that 
ase.Rudolph et al. [2003℄ have given lower and upper bounds on the su

ess proba-bility pS , and shown that they agree in many 
ases. As a by-produ
t, they givea solution when the rank of the density matri
es is the dimension of the Hilbertspa
e minus one. Moreover Raynal et al. [2003℄ have shown we 
ould redu
ethe study of dis
rimination to that of two density matri
es with same rank in
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tiona Hilbert spa
e of dimension twi
e this rank. Moreover, Feng et al. [2005℄ hasgiven upper bounds for dis
riminating between N mixed states, and Qiu [2007℄ alower bound. Herzog and Bergou [2005℄, Raynal and Lütkenhaus [2005℄, Herzog[2007℄ have given expli
it solutions for a number of spe
ial 
ases.Like for minimum error dis
rimination, Eldar [2003℄ has shown we 
an apply semi-de�nite programming te
hniques. Furthermore, Huttner et al. [1996℄, Clarke et al.[2001a℄ implemented experimentally Bob's 
ase, that is dis
riminating betweentwo pure states. Mohseni et al. [2004℄ also experimentally demonstrated the more
ompli
ated situation where we distinguish between one pure and one mixedstate.Up to this point, we have only studied dis
rimination between states. We 
analso dis
riminate between other quantum obje
ts, namely 
hannels. We have a
hannel E and we know it belongs to the �nite set {Ei}1≤i≤k. We must then senda known probe state ρ through our unknown bla
k box E . The output state is
E(ρ) and we 
an now dis
riminate between the states Ei(ρ). We are ba
k to theformer situation, ex
ept that we must 
hoose our input state to get the mosteasily distinguishable output states. The 
hoi
e of the input state may be themost 
hallenging part, and raises spe
i�
 questions, notably whether using anan
illa is useful.Childs et al. [2000b℄ have �rst studied minimum error dis
rimination for uni-tary 
hannels, with an emphasis on quantum 
omputation appli
ations, su
h asGrover's [1996℄ algorithm for database sear
hing. Sa

hi [2005b℄ has 
onsideredPauli 
hannels, as a basi
 example of non-unitary 
hannel. More re
ently, un-ambiguous dis
rimination has been applied, with Wang and Ying [2006℄ �ndingunder whi
h 
onditions 
hannels may be unambiguously distinguished, eitherwith one input, or several inputs. In the latter 
ase, entangling the input stateusually improves results. Finally, Che�es et al. [2007℄ have gathered known re-sults on unambiguous dis
rimination, and then some, in an arti
le with quantum
omputation motivations 
learly stated. More work is required on the question.Though they do not appear in this thesis, dis
rimination 
overs other aspe
ts. A�rst 
lass of problems stems from using another optimality 
riterion [for exampleFiurasek and Jezek, 2003, Touzel et al., 2007, Sasaki et al., 2002℄. Herzog andBergou [2002℄ have also investigated dis
rimination between 
lasses of states, or�ltering. A very topi
al extension is the following: here, we have always assumedwe 
ould use any physi
ally feasible measurement. If we have a produ
t state,we might be unable to 
arry out the most general measurements and may haveto restri
t to LOCC measurements. A possible appli
ation is se
ret sharing: �nda s
heme where Ali
e and Bob 
an �nd what the state is if they 
ooperate, but
annot individually. Su
h a s
heme should be symmetri
al. A starting pointfor bibliography is the review arti
le of [Bergou et al., 2004℄, and the referen
estherein, or the more 
urrent work by [Owari and Hayashi, 2008℄.



1.3 Fast Estimation of Unitary Operations 311.2.3 Contributions of the thesisAs I already mentionned, all previous work made use of the Bayesian paradigm,requiring an a priori probability. My work, in 
ollaboration with G.M. d'Arianoand M.F. Sa

hi, has been to study the minimax 
ase, espe
ially useful if thereis no �physi
al� reason to 
hoose a prior.Using the link between Bayesian and minimax risks, provided in Se
tion 1.1.1,we have given the solutions when the states are 
ovariant. The solution is thesame as that for the uniform prior. Here 
omes an important di�eren
e withthe Bayesian s
enario. Even for two states in minimum error dis
rimination, theoptimal measurement is not, in general, a Von Neumann measurement.We have also proved that there was always a solution to the minimax minimumerror dis
rimination problem for any �nite set of possibly mixed states ρi, withall states having the same probability of being su

essfully identi�ed, that is
Tr(ρiPi) does not depend on i.Minimax unambiguous dis
rimination turns out to be easier than Bayesian dis-
rimination for multiple pure states: we have always an expli
it solution. Sim-ilarly to what we explain below equation (1.31), we 
an prove that the POVMelements must be of the form Pi = ci|ωi〉 〈ωi|, with {ωi} a basis biorthogonal17 to
{ψi}. Then the ci are all given by the minimum eigenvalue of a matrix dependingon ωi. When there are several solutions, we 
an re�ne our minimax 
riterion to
hoose a unique one.We have also studied minimum error dis
rimination between two Pauli 
hannels.When we 
an make use of an an
illa, we have shown that maximal e�
ien
y
ould always be a
hieved by sending a maximally entangled state, just like in theBayesian 
ase. We have also 
hara
terized the Pauli 
hannels for whi
h usingan an
illa improves the su

ess probability. Interestingly, whereas a Bayesianoptimal input state 
an always be 
hosen as an eigenstate of one of the Paulimatri
es, su
h states might not be minimax optimal.1.3 Fast Estimation of Unitary Operations1.3.1 MotivationEvolution of a quantum system without measurement is unitary. Therefore,
onsidering this evolution as a bla
k box to be estimated means estimating a17That is 〈ψi|ωj〉 = δij .
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tionunitary operator. This may yield relevant information on the physi
s of thesystem.There are also many 
ases in quantum information where we have to estimatea unitary operation, most often be
ause it 
orresponds to an orientation of theeigenve
tors, that is the purely quantum part of a state.With these two main 
ategories in mind, we may give more details on the variousappli
ations. Some of them require estimating only one parameter:Quantum 
lo
ks Evolution of a system is given by Ut = eitH . A quantum 
lo
k
onsists in estimating the free parameter t, that is the time. Hen
e, we haveto dis
riminate between a one-parameter family of unitary operators [Buzeket al., 1999℄.Pre
ision measurements More generally, small for
es of known form and un-known intensity show up as a phase in the evolution operator U = eiφH .Finding φ is �nding the for
e. We 
an notably use that for a

elerometers[Yurke, 1986℄.Others ask for knowing the full operator:Transmission of referen
e frames When Ali
e and Bob want to 
ommuni-
ate by ex
hanging qubits, or more generally d-dimensional states, theymust agree on what are the axes of measurement, that is the referen
eframe [Holevo, 1982℄. These will be rotated when sent from Ali
e to Bob.Hen
e, Bob must estimate the rotation of these axes, that is the unitaryevolution of the qubits. Noti
e, however, that there are s
hemes for 
ommu-ni
ating without referen
e frames, through the use of group representations[Bartlett et al., 2003℄.Estimation of maximally entangled states Maximally entangled states area fundamental resour
e for quantum teleportation [Bennett et al., 1993℄and quantum 
ryptography [Ekert, 1991℄. To a
hieve optimal e�
ien
y,however, Ali
e and Bob must know whi
h maximally entangled state theyshare, that is, what is the unitary U su
h that |ψ〉 = 1
d

∑ |i〉 ⊗ U |i〉.1.3.2 Former resultsTo my knowledge, Yurke [1986℄ �rst noti
ed that a parameter in a quantum evolu-tion 
ould be estimated at speed 1/N2 (for square errors), where N is the numberof states that have undergone the evolution. This is extremely remarkable, sin
eparameters 
an only be estimated at rate 1/N in usual 
lassi
al settings.



1.3 Fast Estimation of Unitary Operations 33This kind of fast estimation, that makes use of entanglement between the inputstates, saturates what the physi
ists 
all the Heisenberg limit, the fundamentallimitation on the pre
ision of quantum measurements. Giovannetti et al. [2004℄have re
ently written a review paper about this kind of speed-up, mentioningexperiments. Most pra
ti
al methods involve either photons obtained throughparametri
 down-
onversion [e.g. Eisenberg et al., 2005℄, ion traps [e.g Dalvitet al., 2006℄ or atoms in 
avity QED [e.g. Vitali et al., 2006℄.A
in et al. [2001℄ �rst gave the general form of an optimal input state, with non-spe
i�ed 
oe�
ients depending on the 
ost fun
tion, for any uniform Bayesianoptimization problem with a SU(d)-
ovariant 
ost fun
tion. When we are allowedto send N parti
les through the unitary operator, it reads:
|Φ〉 =

⊕

~λ:|~λ|=N

c(~λ)√
D(~λ)

D(~λ)∑

i=1

|ψ~λi 〉 ⊗ |ψ~λi 〉, (1.32)where we use the notations of Chapter 3 on group representations. The 
oe�-
ients c(~λ) depend on the optimization fun
tion, and the |ψ~λi 〉 are an orthonormalbasis of Hλ. Only the �rst N parti
les, 
orresponding to the right of the tensorprodu
t, are sent through the unitary operator. Sin
e we start from a problemwhere everything is invariant under a
tion of SU(d), it should 
ome as no sur-prise that the solution also is. Later on, Chiribella et al. [2005℄ generalized thisequation to other symmetries, and give the pre
ise 
oe�
ients as 
oordinates ofan eigenve
tor of a matrix depending on Clebs
h-Gordan 
oe�
ients.Subsequent work has fo
used on SU(2). Peres and S
udo [2001℄ �rst gave astrategy 
onverging at rate 1/N2 with �delity as �gure of merit, though the inputstate and measurement were not 
ovariant. Bagan et al. [2004a℄ then found theright 
oe�
ients in equation (1.32) and a
hieved the same rate, with optimal
onstant π2/N2. Then Bagan et al. [2004b℄ and Chiribella et al. [2004℄ bothnoted that an an
illa was unne
essary. We then have to prepare half less parti
les.They repla
e entanglement with external parti
les by �self-entanglement�, usingthe fa
t that the multipli
ity M(~λ) of most irredu
ible representations is highenough in the N -tensor produ
t representation.Hayashi [2004℄ established similar results with minimax 
riteria. When it 
omesto SU(d), Ballester [2005b℄ has given the only indi
ation that the same speed
ould be a
hieved. He has found an input state su
h that the Quantum FisherInformation (1.27) s
ales like 1/N2. He 
ould not �nd a 
omplete estimationpro
edure, though.Noti
e that these high speeds 
annot be generalized to estimation of arbitrary
hannels. Indeed, many 
ontinuous families of 
hannels 
an be programmed by a
ontinuous family of states ρθ, that is we may 
hoose a unitary operation a
ting
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tionon σ ⊗ ρθ, and look only at the e�e
t on σ. Then estimating θ on the 
hannelsalso estimate it for ρθ. Be
ause of the 
lassi
al Cramér-Rao inequality (1.15), thelatter estimation is always slower than 1/N [Ji et al., 2006℄. [Fujiwara and Imai,2003℄ have given an expli
it derivation of maximum 1/N rate for generalizedPauli 
hannels, and mentionned an equivalent remark by [Hayashi, 2006℄.1.3.3 Contributions of the thesisA
in et al. [2001℄ and Chiribella et al. [2005℄ have given the general form forestimating optimally a unitary operation. However, the speed 
annot be readthereon. My work has 
onsisted in �nding 
oe�
ients c(~λ) in the state (1.32)with whi
h 
omputations were possible, and proving that we again attain 1/N2rate, in both the Bayesian and minimax frameworks. [Imai and Fujiwara, 2007℄have sin
e independently given a di�erential geometri
 interpretation on this rate.The idea was the following: 
omputations show that c(~λ) must be almost equalto c(~λ)′ for ~λ and ~λ′ di�ering by only one box. When λi = λi+1 for some i, weshould also take a small ~λ. We then 
hoose the 
oe�
ients proportional to
c(~λ) =

d∏

i=1

(λi − λi+1),and we 
he
k that we get the right rate.1.4 Clean Positive Operator Valued Measures1.4.1 MotivationWe have a measurement apparatus P. We might want to re-use this 
ostlyapparatus for di�erent measurements. To a
hieve this, we may �rst transform
ρ, and then use our apparatus. The 
ombination of the transformation and themeasurement 
orresponds to a new measurement apparatus Q.This s
enario, illustrated by Fig. 1.4.1, raises a few natural questions. Math-emati
ally, we have a POVM P, and we obtain another POVM Q = E(P) byapplying beforehand a 
hannel E to the input state ρ. We then say that P is
leaner than Q. This is a pre-order relation, denoted P < Q. We may wonderwhether, for given P and Q, there is a 
hannel E su
h that Q = E(P). For agiven P, what are the POVMs Q 
leanness-equivalent to P, i.e. su
h that both
P < Q and Q < P? Yet, the �rst stage in understanding this relation would beto �nd its maximal points: what are the 
lean POVMs, i.e. the POVMs P su
hthat Q < P implies P < Q?



1.4 Clean Positive Operator Valued Measures 35
ρ
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Figure 1.3: We apply a 
hannel E to ρ before feeding it into a POVM P. Theglobal operation, yielding 
lassi
al data i from the state ρ, 
an be seen as mea-suring the state ρ with a POVM Q. We say that P is 
leaner than Q.1.4.2 Former resultsThe pre-order �
leaner than� was introdu
ed by Bus
emi et al. [2005℄, as a way toformalize prepro
essing of POVMs, as opposed to postpro
essing, that is 
lassi
alpro
essing of the 
lassi
al output.To give some perspe
tive, let us mention some other 
lassi
al orderings on POVMs[Heinonen, 2005℄:
• A POVM P gives more information than a POVM Q if it 
an distinguishall the pairs of states that Q 
an distinguish. A POVM 
an distinguishtwo states if the probability distributions of the output are di�erent. Max-imal POVMs for this order relation are 
alled informationally 
omplete, orinfo
omplete [Prugorev£ki, 1977℄.
• The weaker order relation �having greater state determination power than�yields also info
omplete POVMs as maximal elements. A POVM deter-mines a state if the probability distribution of the output 
an be obtainedonly with this input state [Bus
h and Lahti, 1989, Davies, 1970℄.
• A POVM Q is a fuzzy version [Martens and de Muyn
k, 1990℄ of P if we
an obtain it by postpro
essing the out
ome of P. The maximal POVMsare the rank-one POVMs [Bus
emi et al., 2005℄.Noti
e that if Q is a fuzzy version of P, then P gives more information than

Q. However, there is no relation between the maximal elements. We shouldalso noti
e that rank-one POVMs are the extremal points of the 
onvex set ofPOVMs, and sin
e many optimization fun
tions are 
onvex, the 
orrespondingsolutions to the optimization problem are rank-one [Helstrom, 1976℄.
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tionIt turns out that the relation �
leaner than� has little to do with the formerrelations. Chara
terization of their maximal points is also a di�
ult problem. Wealready have some partial results, however. Namely, Bus
emi et al. [2005℄ haveproved that rank-one POVMs are 
lean, as well as POVMs where the maximaleigenvalue of ea
h POVM element is one. The latter 
ase assumes that P hasthe same number of out
omes as Q. If we allow P to have more, then the latterPOVMs are not 
lean, unless they are observables. Indeed, no prepro
essing 
anin
rease the number of out
omes, whereas a prepro
essed observable 
an yieldany POVM with no more than d out
omes: we merely measure Q and preparethe eigenstate i as input for the observable.Bus
emi et al. [2005℄ have also proved that if Q is info
omplete and P < Q, then
P is also info
omplete, and that a two-out
ome POVM P = {P1, 1−P1} is 
leanerthan another two-out
ome Q = {Q1, 1 − Q1} if and only if [λm(P1), λM (P1)] ⊃
[λm(Q1), λM (Q1)], where λm and λM are the smallest and biggest eigenvalues.The remainder of their work makes use of related equivalen
e or order notions.The most basi
 is unitary equivalen
e. The POVMs P and Q are unitarilyequivalent if we 
an obtain Q from P by using a unitary 
hannel, that is UPiU∗ =
Qi for all POVM elements. We 
an then go ba
k to P by using the inverse
hannel. Thus, unitary equivalen
e entails 
leanness-equivalen
e. The 
onverseis not true: take for example two e�e
ts in dimension three, with P1 = |φ〉 〈φ| =
1 − Q1. Then we do not have unitary equivalen
e, yet λm(P1) = 0 = λm(Q1)and λM (P1) = 1 = λM (Q1), so that P and Q are 
leanness-equivalent. However,unitary and 
leanness-equivalen
e are the same in a number of spe
ial 
ases: forinfo
omplete POVMs, for qubits (that is, with a two-dimensional Hilbert spa
e)and for rank-one POVMs.To give a taste of the methods, let us prove the latter assertion on rank-onePOVMs. Then we 
an write Qi = λM (Qi)|ψi〉〈ψi| with |ψi〉 normalized. We
an write λM (Qi) = Tr(Qi |ψi〉 〈ψi|) = Tr(PiE(|ψi〉 〈ψi|)). Sin
e E(|ψi〉 〈ψi|) isa state, the latter expression is less than λM (Pi) ≤ Tr(Pi). Sin
e the POVMsare normalized, we know that ∑i λM (Qi) = d =

∑
i Tr(Pi), where d is thedimension of the Hilbert spa
e. Hen
e Tr(Pi) = λM (Qi) = λM (Pi), so that

Pi = λM (Qi) |φi〉 〈φi| for some normalized |φi〉. Hen
e E(|ψi〉 〈ψi|) = |φi〉 〈φi|.So that E(Id) =
∑

i λM (Qi)E(|ψi〉 〈ψi|) =
∑
i Pi = Id, that is, E is both tra
e-preserving and unital. Hen
e so is its dual, that sends ba
k |φi〉 on |ψi〉. We �nishby re
alling that there are two 
hannels mapping a set of pure states on another,and ba
k, if and only if they are unitarily equivalent [Che�es et al., 2003℄.The main other relation they use is �having a larger range�, denoted P ⊃r Q,where the range is the set of possible probability distribution of out
omes, i.e.

{(Tr(ρPi))i : ρ state}. Sin
e we may feed E(ρ) in P and get the same result asif using ρ as input for Q, the relation �
leaner than� is stronger than �having
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onverse is not true. However, if there is an info
ompletePOVM M on the same Hilbert spa
e, su
h that P⊗M ⊃r Q⊗M, then P < Q.The presen
e of M ensures that the map de�ned on the span of the POVMelements {Pi} by E(Pi) = Qi is 
ompletely positive, and hen
e 
an be extendedto the whole spa
e, by Arveson's [1969℄ extension theorem.Finally, Bus
emi et al. [2005℄ have also proved that the set CP,Q of 
hannels
E su
h that E(P) = Q is a 
onvex set. We have little more expli
it generalinformation that would also hold for non ne
essarily 
lean POVMs.1.4.3 Contributions of the thesisWe have seen that we do not have, to this day, a 
hara
terization of 
lean POVMs.This thesis gives a su�
ient 
ondition, and proves that this 
ondition is alsone
essary for a 
ategory of POVMs, that in
ludes all the POVMs for qubits. Wehave thus 
hara
terized the 
lean POVMs for qubits.We make use of two main ideas. Let us start with a POVM P. We want to provethat it is 
lean. In other words, given Q su
h that Q < P, we want to provethat the 
onverse P < Q is also true. The easiest 
ase is when P = E(Q) with
E unitary. We then try to �nd a 
ondition on P under whi
h E is unitary for all
Q.Now, using Kraus de
omposition (1.23), we know that Pi =

∑
αR

∗
αQiRα. Allelements of the sum are non-negative, so that Pi ≥ R∗

αQiRα for all i and α.Notably the support of R∗
αQiRα must be in
luded in that of Pi, as an operatoron the Hilbert spa
e H. This yields d − dim(Supp(Pi)) homogeneous linearequations on the matrix elements of Rα, for ea
h given ve
tor in the supportof Qi. If we thus get d2 − 1 independent equations, the matri
es Rα will bedetermined up to a 
onstant, and the 
onstraint ∑R∗

αRα = Id will prove that
E is unitary.The di�
ulty in the above s
enario is that the equations depend on Q. I thusintrodu
e the following de�nition: a set of subspa
es of H totally determines Hif they yield enough independent equations when they are the support of Pi forany possible set of ve
tors |φi〉 in the supports of any Qi. It turns out that a setof ve
tors {|φi〉} (i.e one-dimensional supports) totally determine H if and onlyif, for any two proper supplementary subspa
es V and W , there is an i su
h that
|ψi〉 6∈ V and |ψi〉 6∈ W .This yields a su�
ient 
ondition for POVMs to be 
lean, that 
an be readily
he
ked algorithmi
ally. I have also proved that being a rank-one POVM, orsatisfying this 
ondition, is ne
essary if all POVM elements are either rank-one,
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tionor full-rank. I have named su
h POVMs quasi-qubit POVMs, sin
e all POVMsfor qubits are quasi-qubit.The ne
essity is proved by 
onsidering 
hannels E that are near the identity, andtaking their inverse as positive maps. We 
an then 
onsider Q = E−1(P) andwe have to prove that Q is a POVM. By a 
areful 
hoi
e of E , based on thesubspa
es V and W given in the above paragraphs, we 
an ensure it.For qubits, the 
lean POVMs are then the rank-one POVMs on the one hand,and the POVMs with at least three non-
olinear rank-one elements. The latter
ondition is a more intuitive translation of �totally determines� in the 
ase ofqubits.1.5 Complementary subalgebras1.5.1 MotivationWe are given two entangled qubits. We may let them evolve the way we want,and then measure only one of them. How do we let them evolve, if we want tore
onstru
t the state of these two qubits with as few di�erent evolutions, and ase�
iently as possible?Formally, this translates as having a state on C2 ⊗ C2. We have �fteen real pa-rameters to estimate. We may measure the redu
ed state on a two-dimensionalsubspa
e, that is on the two �rst 
oordinates of WC4, where W is unitary, 
or-responding to the evolution. Ea
h W yields a redu
ed state, 
orresponding tothree parameters. We aim at using as few di�erent transformationsW as we 
an.We obviously need at least �ve di�erent W . We may �rst wonder if that issu�
ient. We may also ask for a set of optimal ones. Those two questions arebest answered by noti
ing that knowing a state is knowing its mean value on thealgebra of observables M2(C) ⊗M2(C). Knowing the redu
ed state on di�erentsubspa
es is knowing the original state on the subalgebra Ai = Wi(M2(C) ⊗
Id)W ∗

i , for di�erentWi. Hen
e the redu
ed states generally determine the initialstate if and only if the subalgebras Ai span, as a ve
tor spa
e, the initial algebra
M2(C) ⊗M2(C).Intuitively, we get as mu
h information as possible if the subalgebras Ai di�eras mu
h as possible one from the other. Mathemati
ally, we translate that byasking that the subalgebras are 
omplementary, that is (Ai − C1) is orthogonalto (Aj − C1) for i 6= j and the s
alar produ
t 〈A|B〉 = Tr(A∗B) on M4(C).As a summary, we seek �ve subalgebras of M4(C), ea
h of them isomorphi
 to
M2(C), and pairwise 
omplementary.



1.5 Complementary subalgebras 391.5.2 Former resultsPetz, Hangos, Szántó, and Szöll®si [2006℄ have introdu
ed the former notionsand problem. They were also motivated by an analogy with 
omplementaryobservables, su
h as position and momentum. S
hwinger [1960℄ might have �rstprovided a mathemati
ally rigorous approa
h in �nite-dimensional Hilbert spa
es.Two observables on a d-dimensional Hilbert spa
e are 
omplementary if theireigenbases satisfy 〈φ|ψ〉 = 1/d for all φ in the �rst eigenbasis and ψ in the otherone . Those bases are frequently used in quantum information, be it for statedis
rimination [Ivanovi
, 1981℄, for �the Mean King's problem� [Kimura et al.,2006℄ or quantum 
ryptography [Bruss, 1998℄. Now, we 
an asso
iate to anobservable the 
ommutative algebra of elements diagonal in the same eigenbasis.Two observables are 
omplementary if and only if the 
orresponding 
ommutativealgebras are 
omplementary. The ubiquity of 
omplementary observables givessome hope of usefulness for 
omplementary M2(C) subalgebras.Ba
k to our initial problem, Petz et al. [2006℄ have proved that �ve di�erentsubalgebras were indeed su�
ient to span M2(C)⊗M2(C). They have exhibitedfour 
omplementary subalgebrasM2(C). However they 
ould not �nd �ve. Theyhave also 
onsidered n qubits, with the 
orresponding algebra M2(C)⊗n. Wethen need at least (22n − 1)/3 subalgebras isomorphi
 to M2(C) to span theoriginal algebra. They have proved that, if we restrain to subalgebras generatedby elements of the form σ1 ⊗σ2 ⊗· · ·⊗σn, where ea
h σ is a Pauli matrix (1.16),then this bound is not saturated, and we need at least one more subalgebra.As 
hoosing subalgebras with su
h generators is the easiest way to get 
omple-mentary subalgebras, this might be interpreted as an indi
ation that we 
annotspan the whole algebraM2(C)⊗n with 
omplementary subalgebras isomorphi
 to
M2(C).1.5.3 Contributions of the thesisThis is joint work with Dénes Petz. We have proved that the maximal numberof 
omplementary subalgebras isomorphi
 toM2(C) inM2(C)⊗M2(C) was four.The idea is the following: we 
onsider an orthonormal basis of a subalgebra Aisomorphi
 to M2(C) of the form 1, A1, A2, A3. Sin
e the basis is orthonormal,the Ai are tra
eless. Let us also take 1, B1, B2, B3 as an orthonormal basis of
1⊗M2(C). If A is 
omplementary to M2(C)⊗ 1, then∑i,j |Tr(A∗

iBj)| ≥ 1. Onthe other hand, for {Ci}i≤16 an orthonormal basis of M2(C) ⊗M2(C), we have∑
i,j |Tr(C∗

i Bj)| = 3. Hen
e, there are at most three 
omplementary subalgebrasisomorphi
 to M2(C), that are also 
omplementary to M2(C) ⊗ 1.
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tionFor the sake of 
ompleteness, I have to mention that sin
e this work has beenpublished, Petz [2006℄ has proved that the spa
e orthogonal to the four sub-algebras, plus the identity, was always again a subalgebra, but a 
ommutativesubalgebra.1.6 Quantum lo
al asymptoti
 normality1.6.1 Classi
al lo
al asymptoti
 normalityAs ba
kground and motivation, we give a very brief survey of Le Cam's [1986℄theory of distan
e and 
onvergen
e of experiments, and espe
ially lo
al asymp-toti
 normality.Wald [1943℄ �rst had the idea of approximating a sequen
e of experiments byGaussian experiments. Le Cam [1960, 1964℄ then gave a pre
ise set of 
onditionsunder whi
h these approximations 
ould be made, de�ned a notion of distan
ebetween experiments, and explored the 
onsequen
es for approximation.Let us start with two experiments E = {pθ : θ ∈ Θ} and F = {qθ : θ ∈ Θ} withthe same parameters set Θ. We 
an de�ne Le Cam de�
ien
y between E and
F from de
ision theoreti
 ideas. We 
onsider 
ost fun
tions c(θ, θ′) boundedbetween 0 and 1. The de�
ien
y is de�ned as the in�mum of the ǫ su
h that forany su
h 
ost fun
tion, for any estimator θ̂E in the se
ond experiment F , thereis an estimator θ̂F in the se
ond experiment satisfying:

rθ(θ̂E) ≤ rθ(θ̂F ) + ǫ ∀θ ∈ Θ,where we have used the former notations (1.6) for the risk of an estimator at agiven point θ.In other words, up to ǫ, we 
an do as good in experiment E as in experiment
F for any question we may ask, whatever the true value of the parameter. Thede�
ien
y is denoted δ(E ,F).Consider now a Markov kernel T (given by equation (1.5)) su
h that
‖T (pθ) − qθ‖1 = 2ǫ for all θ ∈ Θ. This means approximating the probabilitydistributions of F by those of E . Then for any 
ost fun
tion c as above and anyestimator θ̂F , we may 
onsider the estimator θ̂E de�ned as applying θ̂F to the
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al asymptoti
 normality 41random variable with law T (pθ). We obtain
rθ(θ̂E) − rθ(θ̂F ) =

∫
c(θ, θ̂(x))T (pθ)(dx) −

∫
c(θ, θ̂(x))qθ(dx)

≤ (sup c(θ, θ′))

∫
(T (pθ) − qθ)

+(dx)

≤ 1 × ‖T (pθ) − qθ‖1 /2

≤ ǫ.So that the de�
ien
y is no more than ǫ. In fa
t, the 
onverse is true18. We 
an�nd a Markov kernel that transforms all pθ in qθ, up to twi
e the de�
ien
y. Inother words, we 
an write:
δ(E ,F) =

1

2
inf
T

sup
θ

‖T (pθ) − qθ‖1 .When we symmetrize the de�
ien
y, we get a distan
e, 
alled Le Cam distan
e
∆(E ,F). We 
an then 
onsider a sequen
e of experiments En = {pn,θ) that
onverges to a limit experiment F for this distan
e. In other words, there aretwo families Tn and Sn of Markov kernels su
h that ‖Tn(pn,θ) − qθ‖1 → 0 and
‖pn,θ − Sn(qθ)‖1 → 0 uniformly on θ.This 
onvergen
e with kernels is 
alled strong 
onvergen
e. There is another typeof 
onvergen
e, known as weak 
onvergen
e, based on likelihood ratios.Let us 
onsider experiments E = {pθ} with a �nite parameter set Θ. Then thelikelihood ratios are the sto
hasti
 pro
ess ΛΘ(E) =

{
pθ

P

θ pθ

}

θ∈Θ
. With in�niteparameter sets Θ, we say that En 
onverges weakly to F if the law of the pro
esses

ΛI(En) 
onverges weakly to the law of ΛI(F) for any �nite subset I of Θ.It turns out that weak 
onvergen
e is the same as strong 
onvergen
e for �nite pa-rameter sets. Hen
e for 
ountable sets. Modest regularity 
onditions are neededto extend that to un
ountable parameter sets Θ.Why so many di�erent de�nitions? The de�nition with risk fun
tions gives thereal motivation: if En 
onverges to F , we 
an answer questions asymptoti
allyin the same way for En and for F . Strong 
onvergen
e, with Markov kernels,gives a dire
t way of translating estimators from one experiment to the other: wetransform the �rst experiment, and apply the estimator of the se
ond experiment.It ensures that we get the same risks. On the other hand, exhibiting Markovkernels in real experiments 
an be non-obvious. Convergen
e of likelihood ratios,18Stri
tly speaking, without a domination hypothesis, we have to resort to obje
ts slightlymore general than Markov kernels, 
alled transitions. The ideas remain the same.
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tionon the other hands, is relatively easy to establish. They thus prove existen
e ofthe kernels. Even if we do not know these kernels, and hen
e 
annot translatedire
tly methods from one experiment to the other, we know that the optimalrisks are the same for all problems, whether in a Bayesian or a minimax setting.The pra
ti
al bene�ts of this theory are maximal if the limit experiment is easyand well-understood. Independent identi
ally distributed (i.i.d.) data is themost usual situation in statisti
s, and 
an be viewed as random variables withlaw p⊗nθ . Under some regularity 
onditions, we have 
onvergen
e to Gaussianshift experiments, whi
h are indeed well-known.Theorem 1.6.1. Lo
al asymptoti
 normality[Le Cam, 1960℄Let Θ be an open subset of Rk. Let
En =

{
p⊗n
θ0+h/

√
n

: h ∈ R
k
}
.Then if the family {pθ} is su�
iently regular19 around 0, the sequen
e of exper-iments En 
onverges weakly to a Gaussian shift experiment

F =
{
N (h, I−1

θ0
) : h ∈ R

k
}
,where N (h, I−1

θ0
) is the normal law on Rk, with mean h and 
ovarian
e matrix

I−1
θ0

the inverse Fisher information (1.13) at point θ0.There are two di�eren
es with a 
entral limit theorem. First, 
onvergen
e to thelimit is uniform20 on sets not growing too fast. Se
ond, the 
ovarian
e matrixis the same for all the Gaussians in the limit experiment. The name �shift ex-periment� stems from that observation: the parameter is merely the mean of theGaussian.Why is that ni
e? Be
ause we know the answer to most usual statisti
al ques-tions for Gaussian shift experiments. In parti
ular, we know an optimal minimaxestimator for quadrati
 
ost fun
tion, and we 
an translate that to i.i.d. experi-ments. This observation is the way to prove asymptoti
 optimality of maximumlikelihood estimators in this setting, for example. This is the theorem that wewould like to imitate in the quantum world.The astute reader has probably noti
ed that the quadrati
 
ost fun
tion is notbounded in general, and that we res
ale the parameter h in our de�nition of En.The former theorem is essentially lo
al in nature. This is su�
ient to show that19The right 
ondition is 
alled di�erentiability in quadrati
 mean. Twi
e di�erentiable in θis more than enough.20For that, we must use a version with strong 
onvergen
e.



1.6 Quantum lo
al asymptoti
 normality 43the Cramér-Rao bounds (1.15) bounds 
annot be better than in the limit exper-iment. However, we 
annot dire
tly translate the strategy used in the Gaussianlimit experiment to the initial experiment.In pra
ti
e, we over
ome those di�
ulties by using a two-step strategy: we use avanishing part of our n-data set to make a �rst rough estimate, and then use theoptimal estimator yielded by lo
al asymptoti
 normality. We must �nally provethat the non-boundedness of the 
ost fun
tion results in a vanishing error fa
tor.Le Cam later further developed to a mu
h larger extent his theory of 
onvergen
eof experiments, for di�erent regularity 
onditions, yielding di�erent approxima-tions, and in very general settings, based on Riesz latti
es. The depth and breadthof the theory are suggested by the sheer size of his 1986 book.1.6.2 MotivationIn a physi
al experiment, we frequently have as output n 
opies of a state pre-pared in the same way, and want to know something about that state, typi
allywhat the state is.A quantum lo
al asymptoti
 normality would allow us to answer all the questionsabout those repeated experiments by looking at only one experiment, that wehope to be easier. By analogy with the 
lassi
al 
ase, we would expe
t to get aquantum Gaussian shift experiment, whi
h is indeed well-understood.Like for strong 
onvergen
e with Markov kernels, we would like to �nd 
hannelstransforming approximately the states we are given in a Gaussian state, and ba
k.A drawba
k of this strategy is that the equivalen
e results hold when we areallowed everything physi
ally possible, that is 
olle
tive measurements and pro-
edures. Those 
an be hard to implement in pra
ti
e. Moreover, we 
annot studyseparate or LOCC measurements dire
tly through lo
al asymptoti
 normality.The 
orresponding bene�t of exhibiting 
hannels is that, provided the 
hannel
an be implemented in laboratory, we 
an translate methods from the Gaussianexperiments to the initial experiment in pra
ti
e.1.6.3 Former and related resultsThe �rst step towards similar results in the quantum world dates ba
k to Dyson[1956℄, who observed that the �u
tuations of the total spin 
omponents orthogo-nal to the z axis of n pure �up� spins behaved like the ground state of a quantum
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tionos
illator, that is a quantum Gaussian state. Generally speaking, the physi
iststreat 
oherent spin states [Holtz and Hanus, 1974℄ as Gaussians. Kitagawa andUeda [1993℄, Geremia et al. [2004℄ extend this situation for types of entanglementthat look like squeezed states.This kind of results 
an be seen as quantum 
entral limit theorems, the �rstrigorous proof being that of Cushen and Hudson [1971℄. Hayashi [2003℄, Hayashiand Matsumoto [2004℄ have proved some lo
al regularity of these limits and usedthat to give the �rst optimal estimation method for a totally unknown qubit stateor for parametri
 submodels, when 
olle
tive measurements are allowed.Finding and explaining su
h optimal estimation pro
edures for various problemsis a big motivation of quantum lo
al asymptoti
 normality. The problem of esti-mating qubits from multiple 
opies has generated a huge bibliography, sin
e it isvery basi
. Studies range from separate measurements to adaptive and 
olle
tivemeasurements. Bayesian referen
es for pure states in
lude [Jones, 1994, Massarand Popes
u, 1995, Latorre et al., 1998, Fisher et al., 2000, Hannemann et al.,2002b, Bagan et al., 2002, Emba
her and Narnhofer, 2004, Bagan et al., 2005℄,and for mixed states [Cira
 et al., 1999, Vidal et al., 1999, Ma
k et al., 2000, Keyland Werner, 2001, Bagan et al., 2004
, Zy
zkowski and Sommers, 2005, Baganet al., 2006℄. Pointwise approa
h is featured in [Hayashi, 2002a, Gill and Massar,2000, Barndor�-Nielsen and Gill, R., 2000, Matsumoto, 2002, Barndor�-Nielsenet al., 2003, Hayashi and Matsumoto, 2004℄. The main points to remember are thefollowing: for pure states, and not spe
i�
ally qubits, the easily implementableseparate measurements are asymptoti
ally just as e�
ient as 
olle
tive measure-ments [Matsumoto, 2002℄; however, for general mixed states, we 
an expe
t a realspeed-up from using 
olle
tive measurements [Gill and Massar, 2000℄; Bayesianmethods usually use group theory, so are valid only for 
ovariant priors; Baganet al. [2006℄ give an optimal measurement with �delity as 
ost fun
tion, and provethat it is also asymptoti
ally minimax optimal.However, the latter 
ovariant measurement might not be easy to implement inpra
ti
e.On a more fundamental level, Petz and Jen£ová [2006℄ have 
hara
terized quan-tum su�
ien
y. Classi
ally, an experiment E is su�
ient for another F if itsde�
ien
y δ(E ,F) is zero. Petz and Jen£ová have given 
hara
terizations of suf-�
ien
y notably through 
hannels (equivalent to Markov kernels) and throughConnes 
o
y
les, that may be seen as equivalents of likelihood ratios.Building on this work, Guµ  and Jen£ová [2007℄ have proved quantum lo
alasymptoti
 normality in the sense of 
onvergen
e of Connes 
o
y
les, 
orrespond-ing to weak 
lassi
al lo
al asymptoti
 normality. Namely, an experiment of statesover a �nite-dimensional spa
e, depending smoothly on a parameter θ in an open
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al asymptoti
 normality 45subset Θ ⊂ Cd 
onverges to a d-dimensional quantum Gaussian shift experi-ment21. The latter experiment is an experiment where the state is a Gaussianstate22 over the Fo
k spa
e F(Cd), whose Husimi fun
tion (1.22) has mean θ and�xed 
ovarian
e matrix.We have seen in se
tion 1.1.3 that the heterodyne measurement was saturatingthe Holevo bound (1.29) for quantum Gaussian shift experiments. However, thereis no established link yet between weak lo
al asymptoti
 normality and de
isiontheory, so we 
annot immediately use those bounds for the �nite-dimensionalexperiments.1.6.4 Contributions of the thesisTogether with M d lin Guµ , I have established strong quantum lo
al asymptoti
normality for qubits [2006℄. Namely, we have exhibited families of 
hannels Tnand Sn from M2(C)⊗n to T (F(C)) ⊗ L1(R), and ba
k, that send the i.i.d. den-sity matri
es ρ⊗n
θ0+h/

√
n
near the produ
t of a one-dimensional 
lassi
al Gaussian,
orresponding to the eigenvalues, and a one-dimensional quantum Gaussian, 
or-responding to the eigenve
tors. Derivation of these 
hannels, obtained throughgroup theory, is heavily inspired from the work of Hayashi and Matsumoto [2004℄.We have proved that the 
onvergen
e in L1 operator norm was uniform for ‖h‖ ≤

n1/4−ǫ. This large domain of validity ensures that we 
an use two-step strategiesto translate pro
edures from the limit experiment to the initial experiment.We have made this two-step strategy more expli
it, together with Guµ  andBas Janssens [2008℄, by 
onsidering a 
ontinuous-time intera
tion of the qubitswith the ele
tromagneti
 �eld. Using quantum sto
hasti
 di�erential equations[Hudson and Parthasarathy, 1984℄, we have proved that the state of the �eld,or mono
hromati
 light, was the quantum part of Tn(ρ⊗n) for time longer than
lnn.We 
an then use the heterodyne measurement on that light and get optimalestimation of the quantum part. The 
lassi
al part remain in the qubits, and 
anbe retrieved by a total spin measurement. This 
an be a
hieved in pra
ti
e withanother 
oupling to the �eld and a homodyne measurement.This estimation strategy is asymptoti
ally globally optimal, both in minimax andBayesian sense for 
ovariant priors, as long as we are away from the totally mixedstate. We believe it 
ould be implemented in pra
ti
e.21To be perfe
tly exa
t, a part of the quantum experiment might degenerate to a 
lassi
alGaussian shift experiment, 
orresponding to determining the eigenvalues with �xed eigenve
-tors.22Gaussian states 
an be viewed as Gaussian mixtures of 
oherent states (1.18).
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tionFinally, M d lin Guµ  and I have generalized the 
onstru
tion of the 
hannels toqudits, for any dimension [2008℄. Here again, the lo
al parameter h is allowed togrow as a small power fun
tion, enabling translation of the results from the limitexperiment to the initial one.1.6.5 OutlookFurther resear
h on the subje
t 
an follow numerous paths:Equivalen
e between weak and strong 
onvergen
e of experimentsThe limit experiments are the same for strong and weak 
onvergen
e. Themain fragment of 
lassi
al lo
al asymptoti
 normality still missing a quan-tum 
ounterpart is the quasi equivalen
e of the two notions. Sin
e weak
onvergen
e is relatively easier to prove, we would get the same bene�ts asin the 
lassi
al 
ase.Remove singularities from strong quantum lo
al asymptoti
 normalityNotably, our proofs of strong 
onvergen
e involve using group representa-tions. They introdu
e a singularity for equal eigenvalues, that is not im-portant at the level of algebras, used for weak 
onvergen
e. This is whywe ask for the eigenvalues to be pairwise di�erent with strong 
onvergen
e,though it is most likely an artefa
t of the proof.Trying to �nd a method for strong 
onvergen
e using only C∗ algebrasseems hard. It would automati
ally yield an equivalent of the 
lassi
al no-tion �di�erentiable in quadrati
 mean�, though.On the other hand, the singularity generated by equal eigenvalues has aphysi
al meaning in our �pra
ti
al implementation� s
heme. It 
orrespondsto equal energy levels for the qubits. Sin
e the mono
hromati
 light is givenby atomi
 transitions between the two levels, the 
oupling we use would getdegenerate.Treat other 
ases Other resear
h dire
tions in
lude making expli
it 
onver-gen
e of experiments for other, non i.i.d. 
ases, su
h as squeezed 
oherentspin states, or quantum Markov 
hains.Quantum 
onvergen
e of experiments with lo
al operations Amore am-bitious aim would be to de�ne a LOCC distan
e between experiments, andthe 
orresponding 
onvergen
e. In other words de�ne equivalen
e betweenmodels when we are allowed to use only LOCC methods, and not all 
olle
-tive operations. The ubiquity of s
enarios using LOCC in quantum infor-mation in parti
ular, and the fa
t that these methods are pra
ti
ally easierto implement, would make all the pri
e of this theory.Pra
ti
al implementation To end on a more feasible idea, it should be fairlyeasy to 
onvert the �pra
ti
al implementation� of quantum lo
al asymptoti
normality for qubits to the qudits 
ase.
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Chapter 2Dis
rimination
This 
hapter is a merge of the arti
les [D'Ariano et al., 2005a℄ and [D'Arianoet al., 2005b℄.Abstra
t: We derive the optimal measurement for quantum statedis
rimination, as well as for dis
rimination between Pauli 
hannels,in a minimax strategy. For states, we 
onsider both minimal-errorand unambiguous dis
rimination problems, and provide the relationbetween the optimal measurements a

ording to the two s
hemes.We show that there are instan
es in whi
h the minimum risk 
annotbe a
hieved by an orthogonal measurement, and this is a 
ommonfeature in the minimax estimation strategy.For Pauli 
hannels, we 
onsider only the minimal-error problem, thatis we maximize the smallest of the probabilities of 
orre
t identi�
a-tion of the 
hannel. We �nd the optimal input state at the 
hanneland show the 
onditions under whi
h using entanglement stri
tly en-han
es distinguishability. We �nally 
ompare the minimax strategywith the Bayesian one.2.1 Introdu
tionThe 
on
ept of distinguishability applies to quantum states [Wootters, 1981,Braunstein and Caves C. M., 1994℄ and quantum pro
esses [Gil
hrist et al., 2004,



50 Dis
riminationBelavkin et al., 2005℄, and is stri
tly related to quantum nonorthogonality, abasi
 feature of quantum me
hani
s. The problem of dis
riminating nonorthog-onal quantum states has been extensively addressed [Bergou et al., 2004, andreferen
es therein℄, also with experimental demonstrations. Typi
ally, two dis-
rimination s
hemes are 
onsidered: the minimal-error probability dis
rimination[Helstrom, 1976℄, where ea
h measurement out
ome sele
ts one of the possiblestates and the error probability is minimized, and the optimal unambiguous dis-
rimination [Ivanovi
, 1987℄, where unambiguity is paid by the possibility ofgetting in
on
lusive results from the measurement. The problem has been ana-lyzed also in the presen
e of multiple 
opies [A
in et al., 2005℄, and for bipartitequantum states, and global joint measurements have been 
ompared to LOCCmeasurements, i.e. lo
al measurements with 
lassi
al 
ommuni
ation [Walgateet al., 2000, Virmani et al., 2001, Ji et al., 2005℄.The problem of dis
rimination 
an be addressed also for quantum operations[Sa

hi, 2005a℄. This may be of interest in quantum error 
orre
tion [Knill et al.,2002, and referen
es therein℄, sin
e knowing whi
h error model is the proper onein�uen
es the 
hoi
e of the 
oding strategy as well as the error estimation em-ployed. Clearly, when a repeated use of the quantum operation is allowed, a fulltomography 
an identify it. On the other hand, a dis
rimination approa
h 
anbe useful when a restri
ted number of uses of the quantum operation is available.Di�erently from the 
ase of dis
rimination of unitary transformations [Childset al., 2000b℄, for quantum operations there is the possibility of improving thedis
rimination by means of an
illary-assisted s
hemes su
h that quantum entan-glement 
an be exploited [Sa

hi, 2005a℄. Notably, entanglement 
an enhan
e thedistinguishability even for entanglement-breaking 
hannels [Sa

hi, 2005
℄. Theuse of an arbitrary maximally entangled state turns out to be always an optimalinput when we are asked to dis
riminate two quantum operations that generalizethe Pauli 
hannel in any dimension. Moreover, in the 
ase of Pauli 
hannels forqubits, a simple 
ondition reveals if entanglement is needed to a
hieve the ul-timate minimal error probability [Sa

hi, 2005a,b℄. All the previous statementsrefer to a Bayesian approa
h.We address here the problem of optimal dis
rimination of quantum states, and oftwo Pauli 
hannels, in the minimax game-theoreti
al s
enario. In this strategy noprior probabilities are given. The relevan
e of this approa
h is both 
on
eptual,sin
e for a frequentist statisti
ian the a priori probabilities have no meaning, andpra
ti
al, be
ause the prior probabilities may be a
tually unknown, as in a non
ooperative 
ryptographi
 s
enario. We shall derive the optimal measurementfor minimax state dis
rimination both for minimal-error and unambiguous dis-
rimination problems. We shall also provide the relation between the optimalmeasurements a

ording to the minimax and the Bayesian strategies. We shallshow that, quite unexpe
tedly, there are instan
es in whi
h the minimum risk 
anbe a
hieved only by non orthogonal POVM measurement, and this is a 
ommonfeature of the minimax estimation strategy. Similarly, for 
hannels dis
rimina-



2.1 Introdu
tion 51tion, we shall give the optimal input states and measurements whether or not weallow using an an
illa, and show that in the latter 
ase, the optimal input statemight di�er from the usual Bayesian ones.In more detail, in Se
tion 2.2, we pose the problem of dis
rimination of twoquantum states in the minimax s
enario. Su
h an approa
h is equivalent to aminimax problem, where one should maximise the smallest of the two probabil-ities of 
orre
t dete
tion over all measurement s
hemes. For simpli
ity we will
onsider equal weights (i.e. equal pri
es of misidentifying the states), and we willprovide the optimal measurement for the minimax dis
rimination, along with the
onne
tion with the optimal Bayesian solution. As mentioned, a striking resultof this se
tion is the existen
e of 
ouples of mixed states for whi
h the optimalminimax measurement is unique and non orthogonal.In Se
tion 2.3 we generalize the results for two-state dis
rimination to the 
aseof N ≥ 2 states and arbitrary weights. First, we 
onsider the simplest situationof 
ovariant state dis
rimination problem. Then, we address the problem ingenerality, resorting to the related 
onvex programming method.In Se
tion 2.4 we provide the solution of the minimax dis
rimination problem inthe s
enario of unambiguous dis
rimination. We re�ne, if need be, the minimax
riterion, so that the solution be
omes unique.From Se
tion 2.5, we turn our attention from states to Pauli 
hannels. We �rstbrie�y review the problem of dis
rimination of two Pauli 
hannels in the Bayesianframework, where the 
hannels are supposed to be given with assigned a prioriprobabilities. We report the result for the optimal dis
rimination, along with the
ondition for whi
h entanglement with an an
illary system at the input of the
hannel stri
tly enhan
es the distinguishability.In Se
tion 2.6 we study the problem of dis
rimination of two Pauli 
hannels in theminimax approa
h. We show that when an entangled-input strategy is adopted,the optimal dis
rimination 
an always be a
hieved by sending a maximally en-tangled state into the 
hannel, as it happens in the Bayesian approa
h. On the
ontrary, the optimal input state for a strategy where no an
illary system is used
an be di�erent in the minimax approa
h with respe
t to the Bayesian one. Inthe latter the optimal input 
an always be 
hosen as an eigenstate of one of thePauli matri
es, whereas in the former this may not be the 
ase.
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rimination2.2 Optimal minimax dis
rimination of two quan-tum statesWe are given two states ρ1 and ρ2, generally mixed, and we want to �nd theoptimal measurement to dis
riminate between them in a minimax strategy. Themeasurement is des
ribed by a positive operator-valued measurement (POVM)with two out
omes, namely ~P ≡ (P1, P2), where Pi for i = 1, 2 are non-negativeoperators satisfying P1 + P2 = I.In the usually 
onsidered Bayesian approa
h to the dis
rimination problem, thestates are given with a priori probability distribution ~π ≡ (π1, π2), respe
tively,and one looks for the POVM that minimizes the average error probability
pE = π1Tr[ρ1P2] + π2Tr[ρ2P1]. (2.1)The solution 
an then be a
hieved by taking the orthogonal POVM made bythe proje
tors on the support of the positive and negative part of the Hermitianoperator π1ρ1 − π2ρ2, and hen
e one has [Helstrom, 1976℄

p
(Bayes)
E =

1

2
(1 − ‖π1ρ1 − π2ρ2‖1) , (2.2)where ‖A‖1 denotes the tra
e norm of A.In the minimax problem, one does not have a priori probabilities. However,one de�nes the error probability εi(~P ) = Tr[ρi(I − Pi)] of failing to identify ρi.The optimal minimax solution 
onsists in �nding the POVM that a
hieves theminimax

ε = min
~P

max
i=1,2

εi(~P ), (2.3)or equivalently, that maximizes the worst probability of 
orre
t dete
tion
1 − ε = max

~P
min
i=1,2

[1 − εi(~P )] = max
~P

min
i=1,2

Tr[ρiPi]. (2.4)The minimax and Bayesian strategies of dis
rimination are 
onne
ted by thefollowing theorem.Theorem 2.2.1. If there is an a priori probability ~π = (π1, π2) for the states ρ1and ρ2, and a measurement ~P that a
hieves the optimal Bayesian average errorfor ~π, with equal probabilities of 
orre
t dete
tion, i.e.
Tr[ρ1P1] = Tr[ρ2P2], (2.5)then ~P is also the solution of the minimax dis
rimination problem.



2.2 Optimal minimax dis
rimination of two quantum states 53Proof. In fa
t, suppose on the 
ontrary that there exists a POVM ~P su
hthat mini=1,2 Tr[ρiPi] > mini=1,2 Tr[ρiBi]. Due to assumption (2.5) one has
Tr[ρiPi] > Tr[ρiBi] for both i = 1, 2, when
e

∑

i

πi Tr(ρiPi) >
∑

i

πi Tr(ρiBi) (2.6)whi
h 
ontradi
ts the fa
t that ~P is optimal for ~a.The existen
e of an optimal ~P as in Theorem 2.2.1 will be shown in the following.First, by labeling with ~P (π) an optimal POVM for the Bayesian problem withprior probability distribution ~π = (π, 1 − π), and de�ning
χ(π, ~P )

.
= πTr(ρ1P1) + (1 − π)Tr(ρ2P2), (2.7)we have the lemma:Lemma 2.2.2. The fun
tion f(π)

.
= Tr(ρ1P

(π)
1 ) − Tr(ρ2P

(π)
2 ) is monotoni
allynonde
reasing, with minimum value f(0) ≤ 0, and maximum value f(1) ≥ 0.In fa
t, 
onsider ~P (π) and ~P (̟) for two values π and ̟ with π < ̟ and de�ne

~D = ~P (̟) − ~P (π). Then
χ(π, ~P (̟)) = χ(π, ~P (π)) + χ(π, ~D)

χ(̟, ~P (π)) = χ(̟, ~P (̟)) − χ(̟, ~D).
(2.8)Now, sin
e χ(π, ~P (π)) is the optimal probability of 
orre
t dete
tion for prior π,and analogously χ(̟, ~P (̟)) for prior ̟, then χ(π, ~D) ≤ 0 and χ(̟, ~D) ≥ 0, andhen
e

0 ≤ χ(̟, ~D) − χ(π, ~D) = (̟ − π)[Tr(ρ1D1) − Tr(ρ2D2)].It follows that Tr(ρ1D1) ≥ Tr(ρ2D2), namely
Tr(ρ1P

(̟)
1 ) − Tr(ρ1P

(π)
1 ) ≥ Tr(ρ2P

(̟)
2 ) − Tr(ρ2P

(π)
2 ) (2.9)or, equivalently

Tr(ρ1P
(̟)
1 ) − Tr(ρ2P

(̟)
2 ) ≥ Tr(ρ1P

(π)
1 ) − Tr(ρ2P

(π)
2 ). (2.10)Equation (2.10) states that the fun
tion f(π) is monotoni
ally nonde
reasing.Moreover, for π = 0 the POVM dete
ts only the state ρ2, when
e Tr(ρ2P

(0)
2 ) = 1,and one has f(0) = −1+Tr[ρ1P

(0)
1 ] ≤ 0. Similarly one 
an see that f(1) ≥ 0.We 
an now prove the theorem:
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riminationTheorem 2.2.3. An optimal ~P as in Theorem 2.2.1 always exists.Proof. Consider the value π0 of π where f(π) 
hanges its sign from negative topositive, and there take the left and right limits
~P (∓) = lim

π→π∓
0

~P (π). (2.11)For f(π+
0 ) = f(π−

0 ) = 0 just de�ne ~P = ~P (π0).For f(π+
0 ) > f(π−

0 ) de�ne the POVM ~P

~P =
f(π+

0 )~P (−) − f(π−
0 )~P (+)

f(π+
0 ) − f(π−

0 )
. (2.12)In fa
t, one has

Tr[ρ1P1] − Tr[ρ2P2] = [f(π+
0 ) − f(π−

0 )]−1×
{Tr[ρ1P

(−)
1 − ρ2P

(−)
2 ]f(π+

0 )−
Tr[ρ1P

(+)
1 − ρ2P

(+)
2 ]f(π−

0 )} = 0 ,

(2.13)namely Eq. (2.5) holds.Noti
e that the value π0 is generally not unique, sin
e the fun
tion f(π) 
an belo
ally 
onstant. However, on the Hilbert spa
e Supp(ρ1)∪Supp(ρ2), the optimalPOVM for the minimax problem is unique, apart from the very degenerate 
asein whi
h D = π0ρ1 − (1 − π0)ρ2 has at least two-dimensional kernel. In fa
t,upon denoting by Π+ and K the proje
tor on the stri
tly positive part and thekernel of D, respe
tively, any Bayes optimal POVM writes (P1 = Π+ +K ′, P2 =
I−P1), with K ′ ≤ K. Sin
e for the optimal minimax POVM we need Tr[ρ1P1] =
Tr[ρ2P2], one obtains Tr[(ρ1 + ρ2)K

′] = 1−Tr[(ρ1 + ρ2)Π+], whi
h has a uniquesolution K ′ = αK if K is a one-dimensional proje
tor.Corollary 2.2.4. There are 
ouples of mixed states for whi
h the optimal mini-max POVM is unique and non orthogonal.For example, 
onsider the following states in dimension two
ρ1 =

[
1 0
0 0

]
, ρ2 =

[
1
2 0
0 1

2

]
. (2.14)Then an optimal minimax POVM is given by

P1 =

[
2
3 0
0 0

]
, P2 =

[
1
3 0
0 1

]
. (2.15)



2.3 Optimal minimax dis
rimination of N ≥ 2 quantum states 55In fa
t, 
learly there is an optimal POVM of the diagonal form. We need tomaximize mini=1,2 Tr[ρiPi], when
e, a

ording to Theorem 2.2.3, we need tomaximize Tr[ρ1P1] with the 
onstraints Tr[ρ1P1] = Tr[ρ2P2] and P2 = I − P1.Su
h an optimal POVM is unique, otherwise there would exists a 
onvex 
ombi-nation π0ρ1−(1−π0)ρ2 with kernel at least two-dimensional, whi
h is impossiblein the present example (see 
omments after the proof of Theorem 2.2.3).Noti
e that when the optimal POVM for the minimax strategy is unique andnon-orthogonal, then there is a prior probability distribution ~π for whi
h theoptimal POVM for the Bayes problem is not unique, and the non-orthogonalPOVM whi
h optimizes the minimax problem is also optimal for the Bayes' one.In the example of remark 2.2.4 the optimal POVM (2.15) is also optimal forthe Bayes problem with ~π = (1
3 ,

2
3 ) as one 
an easily 
he
k. However, in theBayes 
ase one 
an always 
hoose an optimal orthogonal POVM, whereas in theminimax 
ase you may have to 
hoose a non-orthogonal POVM.Finally, noti
e that, unlike in the Bayesian 
ase, the optimal POVM for theminimax strategy may be also not extremal.2.3 Optimal minimax dis
riminationof N ≥ 2 quantum statesWe now 
onsider the easiest 
ase of dis
rimination with more than two states,namely the dis
rimination among a 
ovariant set. In a fully 
ovariant statedis
rimination, one has a set of states {ρi} with ρi = Uiρ0U

†
i ∀i, for �xed ρ0and {Ui} a (proje
tive) unitary representation of a group. In the Bayesian 
asefull 
ovarian
e requires that the prior probability distribution {πi} is uniform.Then, one 
an easily prove (see, for example, Ref. [Holevo, 1982℄) that also theoptimal POVM is 
ovariant, namely it is of the form Pi = UiKU

†
i , for suitable�xed operator K ≥ 0.Theorem 2.3.1. For a fully 
ovariant state dis
rimination problem, there is anoptimal measurement for the minimax strategy that is 
ovariant, and 
oin
ideswith an optimal Bayesian measurement.Proof. A 
ovariant POVM {Pi} gives a probability p = Tr[ρiPi] independentof i. Moreover, there always exists an optimal Bayesian POVM that is 
ovari-ant and maximizes p, whi
h then is also the maximum over all POVM's of theaverage probability of 
orre
t estimation Tr[ρiPi] for uniform prior distribution[Holevo, 1982℄. Now, suppose by 
ontradi
tion that there exists an optimal min-imax POVM {P ′

i} maximizing p′ = miniTr[ρiP
′
i ], for whi
h p′ > p. Then, onehas p < p′ ≤ Tr[ρiP ′

i ], 
ontradi
ting the assertion that an optimal Bayesian



56 Dis
riminationPOVM maximizes Tr[ρiPi] over all POVM's. Therefore, p = p′, and the 
ovari-ant Bayesian POVM also solves the minimax problem. Noti
e thatin the 
ovariant 
ase also for any optimal minimax POVM {Pi} one has Tr[ρiPi]independent of i, sin
e the average probability of 
orre
t estimation is equal tothe minimum one.As an immediate 
onsequen
e of Theorem 2.3.1 we derive the 
ase of optimaldis
rimination of two pure states:Corollary 2.3.2. For two pure states the optimal POVM for the minimax dis-
rimination is orthogonal and unique (up to trivial 
ompletion of Span{|ψi〉}i=1,2to the full Hilbert spa
e of the quantum system).Proof. Any set of two pure states {|ψi〉}i=1,2 is trivially 
ovariant under thegroup {I, U} with |ψ2〉 = U |ψ1〉. Then, there exists an optimal POVM forthe minimax dis
rimination whi
h 
oin
ides with the optimal Bayesian POVM,whi
h is orthogonal. Uniqueness of the minimax optimal POVM follows from theassertion after Theorem 2.2.3 when restri
ting to the subspa
e spanned by thetwo states.In the following we generalize Theorem 2.2.1 for two states to the 
ase of N ≥ 2states and arbitrary weights. We haveTheorem 2.3.3. For any set of states {ρi}2≤i≤N and any set of weights wij(pri
e of misidentifying i with j) the solution of the minimax problem
RM = inf

~P
sup
i

∑

j

wij Tr[ρiPj ] (2.16)is equivalent to the solution of the problem
RM = max

~π
RB(π), (2.17)where RB(~π) is the Bayesian risk

RB(~π)
.
= max

~P

∑

i

πi
∑

j

wij Tr[ρiPj ]. (2.18)Proof. The minimax problem in Eq. (2.16) is equivalent to look for the minimumof the real fun
tion δ = f(~P ) over ~P , with the 
onstraints
∑

j wij Tr[ρiPj ] ≤ δ, ∀i
Pj ≥ 0, ∀j
∑
j Pj = I. (2.19)



2.3 Optimal minimax dis
rimination of N ≥ 2 quantum states 57Upon introdu
ing the Lagrange multipliers:
µi ∈ R

+ , ∀i
0 ≤ Zi ∈Md(C), ∀i
Y † = Y ∈Md(C),

(2.20)
Md(C) denoting the d×dmatri
es on the 
omplex �eld, the problem is equivalentto

RM = inf
~P ,δ

sup
~µ,~Z,Y

′ l(~P , δ, ~µ, ~Z, Y ),

l(~P , δ, ~µ, ~Z, Y )
.
= δ +

∑

i

[µi(
∑

j

wij Tr[ρiPj ] − δ)]

−
∑

i

Tr[ZiPi] + Tr[Y (I −
∑

i

Pi)], (2.21)where sup′ denotes the supremum over the set de�ned in Eqs. (2.20). Theproblem is 
onvex (namely both the fun
tion δ and the 
onstraints (2.19) are
onvex) and meets Slater's 
onditions [Boyd and Vandenberghe, 2004℄ (namelyone 
an �nd values of ~P and δ su
h that the 
onstraints are satis�ed with stri
tinequalities), and hen
e in Eq. (2.21) one has
inf
~P ,δ

sup
~µ,~Z,Y

′ l(~P , δ, ~µ, ~Z, Y ) = max
~µ,~Z,Y

′ inf
~P ,δ

l(~P , δ, ~µ, ~Z, Y ). (2.22)It follows that
RM = max

~µ,~Z,Y

′ Tr Y (2.23)under the additional 
onstraints
∑

i

µi = 1 ,

∑

i

wijµiρi − Zj − Y = 0 , ∀j. (2.24)The 
onstraints 
an be rewritten as
µi ≥ 0 ,

∑

i

µi = 1 ,

Y ≤
∑

i

wijµiρi , ∀j. (2.25)Now, noti
e that for the Bayesian problem with prior ~π, along the same reasoning,one writes the equivalent problem
RB(~π) = max

Y

′ TrY, (2.26)
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riminationwith the 
onstraint
∑

i

wijπiρi − Zj − Y = 0 , ∀j (2.27)
πi ≥ 0 ,

∑

i

πi = 1 ,

Y ≤
∑

i

wijπiρi , ∀j, (2.28)whi
h is the same as the minimax problem, with the role of the Lagrange multi-pliers {µi} now played by the prior probability distribution {πi}. Clearly, aPOVM that attains RM in the minimax problem (2.16) a
tually exists, being thein�mum over a (weakly) 
ompa
t set�the POVMs' 
onvex set�of the (weakly)
ontinuous fun
tion supi
∑

j wij Tr[ρiPj ].2.4 Optimal minimax unambiguous dis
riminationIn this se
tion we 
onsider the so-
alled unambiguous dis
rimination of states[Ivanovi
, 1987℄, namely with no error, but possibly with an in
on
lusive out
omeof the measurement. We fo
us attention on a set of N pure states {ψi}i∈S. Insu
h a 
ase, it is possible to have unambiguous dis
rimination only if the statesof the set S are linearly independent, when
e there exists a biorthogonal set ofve
tors {|ωi〉}i∈S, with 〈ωi|ψj〉 = δij , ∀i, j ∈ S. We shall 
onveniently restri
t ourattention to Span{|ψi〉}i∈S ≡ H (otherwise one 
an trivially 
omplete the optimalPOVM for the subspa
e to a POVM for the full Hilbert spa
e of the quantumsystem). While in the Bayes problem the probability of in
on
lusive out
omeis minimized, in the minimax unambiguous dis
rimination we need to maximize
mini〈ψi|Pi|ψi〉 over the set of POVM's with 〈ψi|Pj |ψi〉 = 0 for i 6= j ∈ S, andthe POVM element that pertains to the in
on
lusive out
ome will be given by
PN+1 = I −∑i∈S

Pi. We have the following theorem.Theorem 2.4.1. The optimal minimax unambiguous dis
rimination of N purestates {ψi}i∈S is a
hieved by the POVM
Pi =κ|ωi〉〈ωi|, i ∈ S ,

PN+1 =I −
∑

i∈S

Pi ,
(2.29)where κ is given by

κ−1 = max eigenvalue of ∑
i∈S

|ωi〉〈ωi| . (2.30)



2.5 Bayesian dis
rimination of two Pauli 
hannels 59Proof. We need to maximize mini〈ψi|Pi|ψi〉 over the set of POVM's with
〈ψi|Pj |ψi〉 = 0 for i 6= j ∈ S, when
e 
learly Pj = κj |ωj〉〈ωj |. Then the problemis to maximize mini∈S κi. This 
an be obtained by taking κi = κ independentof i and then maximizing κ. In fa
t, if there is a κi > κj for some i, j, thenwe 
an repla
e κi with κj , and iteratively we get κi = κ independently of i.Finally, the maximum κ giving PN+1 ≥ 0 is the one given in the statement ofthe theorem.As regards the uniqueness of the optimal POVM, we 
an show the following.Theorem 2.4.2. The optimal POVM of Theorem 2.4.1 is non-unique if andonly if |ωi〉 ∈ Supp(PN+1) for some i ∈ S.Proof. In fa
t, if there exists an i ∈ S su
h that |ωi〉 ∈ Supp(PN+1), this meansthat there exists ε > 0 su
h that ε|ωi〉〈ωi| ≤ PN+1. Then the following is aPOVM

Qj = Pj , for j 6= i

Qi = Pi + ε|ωi〉〈ωi|,
QN+1 = PN+1 − ε|ωi〉〈ωi|,

(2.31)and is optimal as well. Conversely, if there exists another equivalently optimalPOVM {Qj}, then there exists an i ∈ S su
h that Qi > Pi (sin
e both areproportional to |ωi〉〈ωi|, and mini〈ψi|Qi|ψi〉 has to be maximized). Then |ωi〉 ∈
Supp(PN+1).When the optimal POVM a

ording to Theorem 2.4.2 is not unique, one 
anre�ne the optimality 
riterion in the following way. De�ne the set S1 ⊂ S forwhi
h one has |ωi〉 ∈ Supp(PN+1). Denote by P1 the set of POVM's whi
h areequivalently optimal to those of Theorem 2.4.1. Then de�ne the set of POVM's
P2 ⊂ P1 whi
h maximizes mini∈S1〈ωi|Pi|ωi〉. In this way one iteratively rea
h aunique optimal POVM, whi
h is just the one given in Eqs. (2.29) and (2.30).2.5 Bayesian dis
rimination of two Pauli 
hannelsThe problem of optimally dis
riminating two quantum operations E1 and E2 
anbe reformulated into the problem of �nding the state ρ in the input Hilbert spa
e
H, su
h that the error probability in the dis
rimination of the output states E1(ρ)and E2(ρ) is minimal. The possibility of exploiting entanglement with an an
illarysystem 
an in
rease the distinguishability of the output states [Sa

hi, 2005a℄.In this 
ase the output states to be dis
riminated will be of the form (E1 ⊗IK)ρand (E2 ⊗ IK)ρ, where the input ρ is generally a bipartite state of H ⊗ K, and
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riminationthe quantum operations a
t just on the �rst party whereas the identity map IKa
ts on the se
ond.We nowmake use of the expression for the Bayesian risk of dis
rimination betweenstates (2.2). Upon denoting with R′
B(π) the minimal error probability when astrategy without an
illa is adopted, one has

R′
B(π) =

1

2

(
1 − max

ρ∈H
‖π1E1(ρ) − π2E2(ρ)‖1

)
. (2.32)On the other hand, by allowing the use an an
illary system, we have

RB(π) =
1

2

(
1 − max

ξ∈H⊗K
‖π1(E1 ⊗ I)ξ − π2(E2 ⊗ I)ξ‖1

)
. (2.33)The maximum of the tra
e norm in Eq. (2.33) with the supremum over thedimension of K is equivalent to the norm of 
omplete boundedness [Paulsen,1987℄ of the map π1E1−π2E2, and in fa
t for �nite-dimensional Hilbert spa
e thesupremum is a
hieved for dim(K) = dim(H) [Paulsen, 1987℄, and in the followingwe shall drop the subindex K from the identity map. Moreover, due to linearityof quantum operations and 
onvexity of the tra
e norm, the maximum in bothEqs. (2.32) and (2.33) is a
hieved on pure states.Clearly, RB(π) ≤ R′

B(π). In the 
ase of dis
rimination between two unitarytransformations U and V [Childs et al., 2000b℄, one has RB(π) = R′
B(π), namelythere is no need of entanglement with an an
illary system to a
hieve the ultimateminimum error probability, whi
h is given by

RB(π) = min
|ψ〉∈H

1

2

(
1 −

√
1 − 4π1π2|〈ψ|U †V |ψ〉|2

)

=
1

2

(
1 −

√
1 − 4π1π2D2

)
, (2.34)where D is the distan
e between 0 and the polygon in the 
omplex plane whoseverti
es are the eigenvalues of U †V .In the 
ase of dis
rimination of two Pauli 
hannels for qubits, namely

Ei(ρ) =

3∑

α=0

q(i)α σαρσα i = 1, 2 , (2.35)where ∑3
α=0 q

(i)
α = 1, σ0 = I, and {σ1 , σ2 , σ3} = {σx , σy , σz} denote the 
us-tomary spin Pauli matri
es, the minimal error probability 
an be a
hieved byusing a maximally entangled input state, and one obtains [Sa

hi, 2005a℄

RB(π) =
1

2

(
1 −

3∑

α=0

|rα|
)
, (2.36)



2.6 Minimax dis
rimination of Pauli 
hannels 61with
rα = π1q

(1)
α − p2q

(2)
α = π(q(1)α + q(2)α ) − q(2)α , (2.37)where we �xed the prior π = π1 and π2 = 1−π1. For a strategy with no an
illaryassistan
e one has [Sa

hi, 2005a℄

R′
B(π) =

1

2
(1 − C) , (2.38)where

C = max {|r0 + r3| + |r1 + r2| , |r0 + r1| + |r2 + r3| , |r0 + r2| + |r1 + r3|} ,(2.39)and the three 
ases inside the bra
kets 
orresponds to using an eigenstate of σz ,
σx, and σy, respe
tively, as the input state of the 
hannel. More generally, forpure input state ρ = 1

2 (I+~σ ·~n), with ~n = (sin θ cosφ, sin θ sinφ, cos θ), the Bayesrisk for dis
riminating the outputs will be [Sa

hi, 2005a,b℄
R′
B(π, ~σ · ~n) =

1

2

(
1 − max

{
|a+ b|,

√
cos2 θ(a− b)2 + sin2 θ(c2 + d2 + 2cd cos(2φ))

})
,(2.40)with a = r0 + r3, b = r1 + r2, c = r0 − r3, and d = r1 − r2. Noti
e that the term

|a+b| = |2π−1| 
orresponds to the trivial guessing {E1 if π1 = π > 1/2 , E2 if π <
1/2}.We 
an also rewrite Eq. (2.38) as

R′
B(π) = min

i=1,2,3
R′
B(π, σi) . (2.41)From Eqs. (2.36�2.39) one 
an see that entanglement is not needed to a
hievethe minimal error probability as long as C =

∑3
i=0 |ri|, whi
h is equivalent tothe 
ondition Π3

i=0ri ≥ 0. On the other hand, we 
an �nd instan
es wherethe 
hannels 
an be perfe
tly dis
riminated only by means of entanglement, forexample in the 
ase of two 
hannels of the form
E1(ρ) =

∑

α6=β
qασαρσα , E2(ρ) = σβρσβ , (2.42)with qα 6= 0, and arbitrary a priori probability.2.6 Minimax dis
rimination of Pauli 
hannelsAs in the Bayesian approa
h, the minimax dis
rimination of two 
hannels 
onsistsin �nding the optimal input state su
h that the two possible output states are
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riminationdis
riminated with minimum risk. Again, we will 
onsider the two 
ases withand without an
illa, upon de�ning
RM = min

ξ∈H⊗K
RM ((E1 ⊗ I)(ξ), (E2 ⊗ I)(ξ)) ,

R′
M = min

ρ∈H
RM (E1(ρ), E2(ρ)) , (2.43)where RM (ρ1, ρ2) is given in Eq. (2.17). Sin
e for all ~M , ρ, and π, one has

max{Tr[(E1 ⊗ I)(ρ)M2],Tr[(E2 ⊗ I)(ρ)M1]}
≥ πTr[(E1 ⊗ I)(ρ)M2] + (1 − π)Tr[(E2 ⊗ I)(ρ)M1] , (2.44)then RM ≥ RB(π) for all π. Analogously, R′

M ≥ R′
B(π) for all π.Theorems 2.2.3 and 2.3.3 
an be immediately applied to state that the minimaxdis
rimination of two unitaries is equivalent to the Bayesian one. In fa
t, theoptimal input state in the Bayesian problem whi
h a
hieves the minimum errorprobability of Eq. (2.34) does not depend on the a priori probabilities. Thereforeit is also optimal for the minimax problem and there is no need of entanglement[and the minimax risk RM will be equivalent to the Bayes risk RB(1/2)℄.Let us now 
onsider the problem of dis
riminating the Pauli 
hannels of Eq.(2.35) in the minimax framework. In the following theorem, we show that an(arbitrary) maximally entangled state always allows to a
hieve the optimal min-imax dis
rimination as in the Bayesian problem.Theorem 2.6.1. The minimax risk RM for the dis
rimination of two Pauli
hannels 
an be a
hieved by using an arbitrary maximally entangled input state.Moreover, the minimax risk is then the Bayes risk for the worst a priori proba-bility:

RM = max
π

RB(π) . (2.45)Proof. Let us dis
riminate between the states ρi = (Ei ⊗ I)(ξe), where ξe is amaximally entangled state. By Theorem 2.2.1 there are a priori probabilities
(π∗, 1 − π∗) whose optimal Bayes measurement ful�lls

Tr[ρ1P1] = Tr[ρ2P2] . (2.46)Sin
e the input state ξe is always optimal in the Bayes problem we inferRB(π∗) =
Tr[ρ1P2], and moreoverRM (ρ1, ρ2) = RB(π∗). Now, one has alsoRM = RM (ρ1, ρ2),sin
e if it would not be true, then there would be an input state ρ and a mea-surement ~M for whi
h max{Tr[(E1 ⊗ I)(ρ)M2],Tr[(E2 ⊗ I)(ρ)M1]} < RB(π∗),and hen
e π∗ Tr[(E1 ⊗I)(ρ)M2] + (1− π∗)Tr[(E2 ⊗I)(ρ)M1] < RB(π∗), whi
h isa 
ontradi
tion. Equation (2.45) simply 
omes from the relation RM ≥ RB(π)for all π, along with RM = RB(π∗).



2.6 Minimax dis
rimination of Pauli 
hannels 63Noti
e the ni
e 
orresponden
e between Eqs. (2.17) and (2.45). Theorem 2.6.1holds true also in the 
ase of generalized Pauli 
hannels in higher dimension, sin
eentangled states again a
hieve the optimal Bayesian dis
rimination, whatever thea priori probability [Sa

hi, 2005a℄. More generally, Eq. (2.45) will hold in thedis
rimination of any 
ouple of quantum operations for whi
h the minimal Bayesrisk RB(π) 
an be a
hieved by the same input state for any π.
(0)ππ(0) π(3)π(2)π(1)

B
(π)

π

R

0 1
0

0.5

Figure 2.1: The optimal Bayes risk RB(π) in the dis
rimination of two Pauli
hannels versus the a priori probability π will usually look like this. Noti
e thatthe rightmost and leftmost segments have slope 1 and (−1), respe
tively. Theminimal risk for the minimax dis
rimination 
orresponds to RM = maxπRB(π),and is a
hieved at one of the breakpoints π(α).Now we establish some visual images on whi
h to read the minimax risks. Wemust look at the fun
tion RB(π) given in Eq. (2.36) drawn on [0, 1]. By Eq.(2.45), we know that its maximum isRM . As the rα de�ned in (2.37) are in
reas-ing a�ne fun
tions of π, their absolute value is a 
onvex pie
ewise a�ne fun
tion,and hen
e RB(π) is a 
on
ave pie
ewise a�ne fun
tion (see Fig. 2.1). The fourbreakpoints 
orrespond to the four values of π for whi
h ea
h rα vanishes. Wede�ne tα = q
(1)
α + q

(2)
α as the slopes of the fun
tions rα and π(α) = q

(2)
α / tα as thevalue of π for whi
h rα = 0. We denote by π∗ the point at whi
h RB(π) rea
hesits maximum (the maximum will be attained at one of the breakpoints π(α)). Wealso reorder the index α su
h that π(0) ≤ π(1) ≤ π(2) ≤ π(3). In this way, RB(π)rewrites

RB(π) =
1

2

(
1 −

3∑

α=0

tα|π − π(α)|
)
. (2.47)Let us now look at the dis
rimination strategy without any an
illary system. An-other pi
ture, that should be superimposed on Fig. 2.6, is the Bayes risk R′

B(π)of Eq. (2.38) versus π for the strategy with no an
illary system. One 
an see
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riminationthat R′
B(π) is the minimum of the three pie
ewise a�ne fun
tions R′

B(π, σx),
R′
B(π, σy), R′

B(π, σz), 
orresponding to the Bayes risks when sending an eigen-state of the Pauli matri
es. Here again R′
B(π) is the minimum of 
on
ave fun
-tions, so it is 
on
ave as well, and the maximum will be attained at a breakpoint

π = π′
∗ (see Fig. 2.6). To �read� more on these pi
tures, on
e again we prove that

B
(π)

π

R’

0

0.5

0 1Figure 2.2: An example for the Bayes risksR′
B(π, σi) with i = x, y, z versus the apriori probability π, for dis
rimination without an
illa. Ea
h of the three di�erentdotted lines 
orrespond to the Bayes riskR′

B(π, σi) when sending an eigenstate ofthe Pauli matrix σi through the 
hannel. The solid line is the optimal Bayes risk
R′
B(π) without an
illary assistan
e, and 
orresponds at any π to the minimumof the three R′

B(π, σi). The minimal risk for the minimax dis
rimination withno an
illa 
orresponds to R′
M = maxπR′

B(π), and is a
hieved at one of thebreakpoints of R′
B(π).the optimal minimax risk R′

M for dis
rimination without an
illa 
orresponds tothe optimal Bayes risk without an
illa for the worst a priori probability π′
∗:Theorem 2.6.2. The optimal minimax dis
rimination with no an
illa is equiv-alent to the solution of the problem

R′
M = max

π
R′
B(π) ≡ R′

B(π′
∗) . (2.48)Proof. Noti
e again the similarity between equations (2.17), (2.45) and (2.48).For any ρ one has

RM (E1(ρ), E2(ρ)) ≥ R′
M ≥ max

π
R′
B(π) . (2.49)If we �nd an input state ρ~n = 1

2 (I + ~σ · ~n) su
h that
max
π

R′
B(π) = max

π
R′
B(π, ~σ · ~n) (2.50)



2.6 Minimax dis
rimination of Pauli 
hannels 65from Eq. (2.17) of Theorem 2.3.3 it follows that
RM (E1(ρ~n), E2(ρ~n)) = max

π
R′
B(π, ~σ · ~n) , (2.51)whi
h, along with Eqs. (2.49) and (2.50), provides the proof. Moreover, ρ~n willbe the optimal input state for the minimax dis
rimination without an
illa.Now we have just to �nd a state su
h that 
ondition (2.50) holds. We alreadynoti
ed that π′

∗ is a breaking point of R′
B(π). Either this breakpoint is also abreakpoint (and the maximum) of R′

B(π, σi) for some i ∈ x, y, z, or else at leasttwo of the R′
B(π, σi) are 
rossing in π′

∗, one in
reasing and the other de
reasing(Fig. 2.6). In the �rst 
ase Eq. (2.50) is immediately satis�ed, and an eigenstateof σi will be the optimal input state. In the se
ond 
ase, we show that when two
R′
B(π, σi) are 
rossing at π′

∗ we 
an �nd a state ρ~n su
h that
R′
B(π′

∗, ~σ · ~n) = R′
B(π′

∗, σi) ,

∂πR′
B(π, ~σ · ~n)|π=π′

∗ = 0 , (2.52)and therefore has the maximum at π′
∗ by 
on
avity. In fa
t, the 
rossing, andtherefore non-equality of the R′

B(π, σi) in a neighborhood of π′
∗, implies that forea
h of the twoR′

B(π, σi), the maximum in (2.40) for π′
∗ is attained by the squareroot term (sin
e the term |a+ b| is just a fun
tion of π). Let us assume that the

σi that give su
h a 
rossing are σx and σy. Then looking at (2.40), we have atpoint π′
∗

|c+ d| = |c− d| ,
∂π |c+ d| ∂π|c− d| < 0 (2.53)(noti
e that all fun
tions are linear, i.e. di�erentiable in π′

∗). Indeed, the �rstof Eqs. (2.53) implies that any linear 
ombination of eigenstate of σx and σysatis�es the �rst of Eqs. (2.52). By taking an input state with θ = π/2 and φsu
h that
tan2 φ = − ∂π|c+ d|

∂π|c− d|

∣∣∣∣
π=π′

∗

, (2.54)the se
ond equation in (2.52) is satis�ed as well. Similarly, if the σi are σz, σxone 
an take the input state with φ = 0 or π and θ su
h that
tan2 θ = − ∂π|a− b|

∂π|c+ d|

∣∣∣∣
π=π′

∗

. (2.55)Finally, for σz, σy one has φ = ±π/2 and
tan2 θ = − ∂π|a− b|

∂π |c− d|

∣∣∣∣
π=π′

∗

. (2.56)



66 Dis
riminationAs a remark, no eigenstate of σi for i = x, y, z 
an be an optimal input inthe minimax sense in this situation. This is a typi
al result of the minimaxdis
rimination. As in the 
ase of dis
rimination of states, when the 
orrespondentBayes problem presents a kind of degenera
y and have multiple solutions, in theminimax problem the degenera
y is partially or totally removed. In the presentsituation, if we have the maximum of R′
B(π) at the 
rossing point of exa
tlytwo R′

B(π, σi), one in
reasing and the other de
reasing, we �nd just four optimalinput states: two non-orthogonal states and their respe
tive orthogonal states.We shall give an expli
it example at the end of the se
tion.If we want to �nd in whi
h 
ase entanglement is not ne
essary for optimal mini-max dis
rimination, then we have just to 
hara
terize when R′
B(π′

∗) = RB(π∗).We already noti
ed that we 
an 
hoose π∗ to be one of the π(α). The 
orrespond-ing rα is zero, and hen
e C =
∑

α |rα|, namely R′
B(π∗) = RB(π∗). Sin
e onehas

R′
B(π′

∗) = R′
M ≥ RM = RB(π∗) = R′

B(π∗) , (2.57)we only have to 
he
k that π∗ is a maximum of R′
B(π), re
alling that the fun
tionis 
on
ave (see Fig. 2.6).

B
(π)

B
(π)

π

R

R

’

0

0.5

0 1Figure 2.3: Optimal Bayes risks versus the a priori probability π for the dis
rim-ination of the Pauli 
hannels with parameters given in Eq. (2.64). The solid linegives RB(π) for an entanglement-assisted strategy; the dotted lines gives R′
B(π)for strategy without an
illa. The minimal risk in the optimal minimax dis
rimina-tion 
orresponds in both strategies toR′

M = maxπR′
B(π) = maxπRB(π) = RM ,namely there is no need of an an
illary system.Ultimately, we shall have to list down 
ases. Reading them might be 
learerwith the quantities appearing in Eqs. (2.36�2.39) expli
itly written as a fun
tion



2.6 Minimax dis
rimination of Pauli 
hannels 67of π. The most useful segmentation of [0, 1] is based on the π(α), that is thepoints where the rα vanish, and RB(π) breaks. Re
all that rα = tα(π − π(α)),and rα > 0 for π > π(α). As we have four α, we have �ve segments (theymay get degenerated). Remember that knowing C in Eq. (2.39) and ∑α |rα| istantamount to knowing R′
B(π) or RB(π). Here is a list of the signs of the rαand the value of C on ea
h open segment (so that all rα 6= 0):

• (0, π(0)): ∑α |rα| = −∑α rα = C. Noti
e that R′
B(π) = RB(π) and thattheir 
ommon slope is 1.

• (π(0), π(1)): ∑α |rα| = r0 − r1 − r2 − r3, so that C = r0 − r1 − r2 − r3 −
2 infα=1,2,3 |rα|. On this segment, R′

B(π) > RB(π).
• (π(1), π(2)) : ∑α |rα| = r0 + r1 − r2 − r3 = C, so that R′

B(π) = RB(π).
• (π(2), π(3)): ∑α |rα| = r0 + r1 + r2 − r3, so that C = r0 + r1 + r2 − r3 −

2 infα=0,1,2 rα and R′
B(π) > RB(π).

• (π(3), 1): ∑α |rα| =
∑

α rα = C and R′
B(π) = RB(π). Their 
ommon slopeis (−1).A 
lose look at these expressions, as we shall show in the following, proves that

R′
B(π) is derivable at π(α) unless there is β 6= α su
h that π(α) = π(β). With thisin mind, we see that π∗ 
annot be a maximum of π(α) unless several rα are nullat the same point (with supplementary 
onditions) or π∗ = π(1) and the segment

(π(1), π(2)) is �at. Here is the full-�edged study, using repeatedly the list above.It is 
omplete as any other 
ase 
an be handled by symmetry (swit
hing 
hannels,that is mapping π to 1 − π).
• π∗ = π(0) < π(1): At π(0), we have r0 = 0 and rα < 0 for α 6= 0. Sothat infα |rα| = |r0| on a neighborhood of π(0). On that neighborhood,we dedu
e C = −∑α rα, and hen
e ∂πR′

B(π)|π=π(0) = 1, so that π(0) isnot a maximum of R′
B(π). Entanglement is then ne
essary for optimaldis
rimination.

• π∗ = π(0) = π(1) < π(2): On (0, π(0))∪(π(1), π(2)), equalityR′
B(π) = RB(π)holds. Thus, the two fun
tions are equal on a neighborhood of π∗, and sin
e

π∗ is a (lo
al) maximum of RB(π), it is also a lo
al maximum of R′
B(π).In this 
ase an unentangled strategy is then as e�
ient as any entangledone.

• π∗ = π(0) = π(1) = π(2) < π(3): The risk R′
B(π) is nonde
reasing onthe left of π∗ (slope 1), we then want it to be non-in
reasing on a rightneighborhood of π∗. Now this is part of the segment (π(2), π(3)), where

C = r0 + r1 + r2 − r3 − 2 infα=0,1,2 rα. Re
all that rα = tα(π− π(α)). Sin
e
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rα = 0 for α 6= 3 at π∗, and they are all nonde
reasing, infα=0,1,2 rα is theone with the smallest slope tα. It follows that the slope of R′

B(π) on theright of π∗ is t3 − t0 − t1 − t2 + 2 infα=0,1,2 tα, and so entanglement is notneeded if and only if
t3 + 2 inf

α=0,1,2
tα ≤

∑

α=0,1,2

tα (2.58)
• π∗ = π(0) = π(1) = π(2) = π(3): This is the trivial 
ase where both 
hannelsare the same. Of 
ourse, entanglement is useless.
• π(0) < π∗ = π(1) < π(2): In this 
ase R′

B(π) is derivable at π∗. Indeed,on (π(1), π(2)), we have C = r0 + r1 − r2 − r3 whereas on (π(0), π(1)),
C = r0 − r1 − r2 − r3 − 2 infα=1,2,3 |rα|. In a neighborhood of π∗, onehas infα=1,2,3 |rα| = r1, as it is the only one whi
h is 0 at π∗; hen
e C =
r0 + r1 − r2 − r3 also on a left neighborhood of π∗ and the slope of R′

B(π)at π∗ is t3 + t2 − t1 − t0. Sin
e π∗ is a maximum if and only if this slope isnull, we get the 
ondition
t0 + t1 = t2 + t3 . (2.59)

• π(0) < π∗ = π(1) = π(2) < π(3): On the left of π∗, we are on the segment
(π(0), π(1)), so that C = r0−r1−r2−r3−2 infα=1,2,3 |rα|. On the right, weare on the segment (π(2), π(3)) and C = r0 + r1 + r2 − r3 − 2 infα=0,1,2 rα.In a neighborhood of π∗, the rα with the smallest absolute value will beeither r1 or r2 (more pre
isely, the one with the smallest slope tα), so thatwe 
an write in a neighborhood of π∗ for both sides C = r0 − r3 + |r2 − r1|.The slope of R′

B(π) is then t3− t0 + |t2− t1| and t3− t0−|t2− t1| on the leftand on the right of π∗, respe
tively. Entanglement is not ne
essary when
π∗ is a maximum of R′

B(π), and hen
e we get the ne
essary and su�
ient
ondition
|t0 − t3| ≤ |t1 − t2| . (2.60)We 
an summarize the above dis
ussion as followsTheorem 2.6.3. The minimax risk without using an
illa is stri
tly greater thanthe minimax risk using entanglement, ex
ept in the following 
ases:

• the trivial situation where both 
hannels are the same, so that π∗ = π(α) = 1
2for all α.

• if π∗ = π(0) ≤ π(1) < π(2)

• if π∗ = π(0) = π(1) = π(2) < π(3) and
t3 + 2 inf

α=0,1,2
tα ≤

∑

α=0,1,2

tα (2.61)
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• if π(0) < π∗ = π(1) < π(2) and

t0 + t1 = t2 + t3 (2.62)
• if π(0) < π∗ = π(1) = π(2) < π(3) and

|t0 − t3| ≤ |t1 − t2| (2.63)
• The symmetri
 
ases (obtained by ex
hanging 
hannels 1 and 2, i.e. ex-
hanging indexes 0 and 1 with 3 and 2, respe
tively, both in π(α) and tα.Di�erently from the Bayesian result, we noti
e that when entanglement is notne
essary to a
hieve the optimal minimax dis
rimination, the optimal input statemay not be an eigenstate of the Pauli matri
es. Consider, for example, the twoPauli 
hannels featured in Fig. 2.6 that 
orrespond to the parameters

q
(1)
0 = 0.3 q

(1)
1 = 0.4 q

(1)
2 = 0.2 q

(1)
3 = 0.1

q
(2)
0 = 0.1 q

(2)
1 = 0.3 q

(2)
2 = 0.15 q

(2)
3 = 0.45 (2.64)We 
an 
ompute π(α) = q

(2)
α /(q

(1)
α + q

(2)
α ) and get π(α) = (1/4, 3/7, 3/7, 9/11).Here π∗ = 3/7, and we are in the situation of Eq. (2.63), sin
e tα = (q

(1)
α +

q
(2)
α ) = (0.4, 0.7, 0.35, 0.55). Hen
e, entanglement is not ne
essary to a
hieve theoptimal minimax risk, but the state to be used is not an eigenstate of the Paulimatri
es. In fa
t, we are in the 
ase of the proof of Theorem 3, where R′

B(π, σx)and R′
B(π, σy) are 
rossing in π∗. The optimal input state for the minimaxdis
rimination will be given by θ = π/2 and φ as in Eq. (2.54), whi
h gives

tan2 φ = 2/5. Then, we have four optimal input states that lie on the equator ofthe Blo
h sphere, with ~n = (±
√

5/7,±
√

2/7, 0).





Chapter 3Fast estimation of unitaryoperations
This 
hapter is derived from the arti
le [Kahn, 2007b℄.Abstra
t: We give an expli
it pro
edure based on entangled inputstates for estimating a SU(d) operation U with rate of 
onvergen
e

1/N2 when sending N parti
les through the devi
e. We prove thatthis rate is optimal. We also evaluate the 
onstant C su
h that theasymptoti
 risk is C/N2. However other strategies might yield abetter 
onstant C.3.1 Introdu
tionThe question that we are investigating in this 
hapter is: �What is the best wayof estimating a unitary operation U?�By �unitary operation�, we mean a devi
e (or a 
hannel) that sends a densityoperator ρ0 on Cd to another density operator ρ = Uρ0U
∗, where U ∈ SU(d), aspe
ial unitary matrix.We immediately stress that the solution to this estimation problem 
an be dividedinto two parts: what is the input state, and whi
h measurement (POVM) to applyon the output state? Indeed, in order to estimate the 
hannel U , we have to let it



72 Fast estimation of unitary operationsa
t on a state (the input state). And on
e we have the output state, the problem
onsists in dis
riminating states in the family of possible output states.This estimation of unitary operation has been extensively studied over the lastfew years.The �rst invitation was [Childs et al., 2000a℄, featuring numerous spe
ial 
ases.In most of those, the unitary U is known to belong to some subset of SU(2).Then A
in et al. [2001℄ provided the form of an optimal state to be sent in withnon-spe
i�ed 
oe�
ients depending on the 
ost fun
tion (we give the formula ofthis state in equation (3.2)). In that paper the authors 
onsider the situationwhere the unitary operation is performed independently on N systems. Thatstudy applied to any SU(d), and any 
ovariant loss fun
tion, in parti
ular �delity,in a Bayesian framework. The proposed input state uses an an
illa, that isan auxiliary system that is not sent through the unitary 
hannel with Hilbertspa
e (Cd)⊗N . The state is prepared as a superposition of maximally entangledstates, one for ea
h irredu
ible representation of SU(d) appearing in (Cd)⊗n. Weemphasize that the state is an entangled state of (Cd)⊗N ⊗ (Cd)⊗N : we do notsend N 
opies of an entangled state through the devi
e, but all the N systemsthat are sent through the 
hannel together with the N parti
les of the an
illaare part of the same entangled state, yielding the most general possible strategy.There was no evaluation of the rate of 
onvergen
e, though.Subsequent works mainly fo
used on SU(2), as the 
ase is simpler and yieldsmany appli
ations, e.g. transmission of referen
e frames in quantum 
ommuni-
ation. Indeed, the latter is equivalent to the estimation of a SU(2) operation.The �rst strategy to be proved to 
onverge (in �delity) at 1/N2 rate was not
ovariant [Peres, 1993℄. It made no use of an an
illa. Later, Bagan et al. [2004a℄a
hieved the same rate for a 
ovariant measurement with an an
illa through ajudi
ious 
hoi
e of the 
oe�
ients left free in the state proposed by A
in et al.[2001℄. The optimal 
onstant (π2/N2 for the �delity) was also 
omputed. Itwas almost simultaneously noti
ed [Bagan et al., 2004b, Chiribella et al., 2004℄that asymptoti
ally the an
illa is unne
essary. Indeed what we need is entan-gling di�erent 
opies of the same irredu
ible representation. Now ea
h irredu
iblerepresentation appears with multipli
ity in (Cd)⊗N , most of them with highermultipli
ity than dimension, whi
h is the 
ondition we need. This method wasdubbed �self-entanglement�. The advantage is that we need to prepare half thenumber of parti
les, as we do not need an an
illa. In all these arti
les, theBayesian paradigm with uniform prior was used. The same 1/N2 rate was shownto hold true in a minimax sense, in pointwise estimation [Hayashi, 2004℄. Westress the importan
e of this 1/N2 rate, proving how useful entanglement 
anbe. Indeed, in 
lassi
al data analysis, we 
annot expe
t a better rate than 1/N .Similarly the 1/N bound holds for any strategy where the N parti
les we sendthrough the devi
e are not entangled �among themselves� (that is, even if there



3.1 Introdu
tion 73is an an
illa for ea
h of these N parti
les).Another popular theme has been the determination of the phase φ for unitaries ofthe form Uφ = eiφH . This very spe
ial 
ase already has many appli
ations, espe-
ially in interferometry or measurement of small for
es, as featured in the reviewarti
le by Giovannetti et al. [2004℄ and referen
es therein. A 
ommon feature ofthe most e�
ient te
hniques is the need for entangled states of many parti
les,and mu
h experimental work has aimed at generating su
h states. These methodsessentially involve either manipulation of photons obtained through parametri
down-
onversion (for example [Eisenberg et al., 2005℄), ions in ion traps (for ex-ample [Dalvit et al., 2006℄) or atoms in 
avity QED (for example [Vitali et al.,2006℄).In re
ent years, there has been renewed interest in the SU(d) 
ase. Notably,Chiribella et al. [2005℄ takes o� from [A
in et al., 2001℄, allowing for more gen-eral symmetries and making expli
it for natural 
ost fun
tions both the free
oe�
ients � as the 
oordinates of the eigenve
tor of a matrix � and the POVM(see Theorem 3.2.1 below). With a 
ompletely di�erent strategy, aiming ratherat pointwise estimation (and therefore minimax theorems), an input state for
U⊗n was found [Ballester, 2005b,a℄ su
h that the Quantum Fisher Informationmatrix is s
aling like 1/N2, yielding hopes of getting as fast an estimator for
SU(d). No asso
iated measurement was found in that paper.Given the state of the art, a natural question is whether we 
an obtain, as for
SU(2), this dramati
 in
rease in performan
e when using entanglement for gen-eral SU(d). That is, do we have an estimation pro
edure whose rate is 1/N2,instead of 1/N? Neither Chiribella et al. [2005℄, who do not study the asymp-toti
s for SU(d), nor Ballester [2005b℄, who does not give any measurement,answer this question.In this 
hapter, we �rst prove that we 
annot expe
t a better rate than 1/N2.This kind of bound based on the laws of quantum physi
s, without any a priorion the experimental devi
e, is traditionally 
alled the Heisenberg limit of theproblem. Then we 
hoose a 
ompletely expli
it input state of the form (3.2) (asin [A
in et al., 2001℄), by spe
ifying the 
oe�
ients. By using the asso
iatedPOVM, the estimator of a unitary quantum operation U ∈ SU(d) 
onverges atrate 1/N2. The 
onstant is not optimal, but is brie�y studied at the end ofthe 
hapter. We obtain these results with �delity as a 
ost fun
tion, both in aBayesian setting, with a uniform prior, and in a minimax setting. Noti
e that weshall not need an an
illa.The next se
tion 
onsists in formulating the problem and restating Theorem 2of [Chiribella et al., 2005℄ within our framework. Se
tion 3.3 then shows that itis impossible to 
onverge at rate faster than O(N−2). In se
tion 3.4, we write ageneral formula for the risk of a strategy as des
ribed in Theorem 3.2.1, and in



74 Fast estimation of unitary operationsse
tion 3.5 we spe
ify our estimators by 
hoosing our 
oe�
ients in (3.2). Wethen prove that the risk of this estimator is O(N−2). The last se
tion (3.6)
onsists in �nding the pre
ise asymptoti
 speed of our pro
edure, that is the
onstant C in CN−2. We �nish by stating in Theorem 3.6.1 the results of the
hapter.3.2 Des
ription of the problemWe are given an unknown unitary operation U ∈ SU(d) and must estimate it �aspre
isely as possible�. We are allowed to let it a
t on N parti
les, so that we aredis
riminating between the possible U⊗N . We shall work both with pointwiseestimation (as preferred by mathemati
ians) and with a Bayes uniform prior (afavorite of physi
ists).Any estimation pro
edure 
an be des
ribed as follows (see Figure 3.1): the unitary
hannel U⊗N a
ts as
U⊗N ⊗ 1 : (Cd)⊗N ⊗K → (Cd)⊗N ⊗K,on the spa
e of the N systems together with a possible an
illa. The input state

ρn ∈ M((Cd)⊗n ⊗ Kn) is mapped into an output state on whi
h we perform ameasurement M whose result is the estimator Û ∈ SU(d).
U U U U U

? ? ? ? ?

? ? ? ? ? ?Measurement Apparatus
?

ÛFigure 3.1: Most general estimation s
heme of U when n 
opies are available atthe same time, and using entanglement.



3.2 Des
ription of the problem 75In order to evaluate the quality of an estimator Û , we �x a 
ost fun
tion ∆(U, V ).The global pointwise risk of the estimator is
RP (Û) = sup

U∈SU(d)

EU [∆(U, Û)].The probability distribution of Û depends on U , and we take expe
tation withrespe
t to this probability distribution.On the other hand, the Bayes risk with uniform prior is:
RB(Û) =

∫

SU(d)

EU [∆(U, Û)]dµ(U).where µ is the Haar measure on SU(d).As 
ost fun
tion, we 
hoose the �delity F (or rather 1−F ), whi
h for an elementof SU(d) is de�ned as:
∆(U, Û) = 1 − |Tr(U−1Û)|2

d2

= 1 − |χ2(U−1Û)|2
d2where χ2 is the 
hara
ter of the de�ning representation of SU(d), whose Youngtableau 
onsists in only one box. In other words, χ2(U) = Tr(U).Before really addressing the problem, we make a few remarks on why this 
hoi
eof distan
e is suitable for mathemati
al analysis.Firstly, this 
ost fun
tion is 
ovariant, i.e. ∆(U, Û) = ∆(1Cd , U−1Û).Se
ondly, a useful feature within the Bayesian framework is that ∆ is of theform (3.1), as required in Theorem 3.2.1. Indeed we 
an rewrite ∆(U, Û) as

1 − χ2(U−1Û)χ∗
2
(U−1Û)/d2. Now the 
onjugate of a 
hara
ter is the 
hara
terof the adjoint representation, the produ
t of two 
hara
ters is again the 
hara
terof a possibly redu
ible representation π. This 
hara
ter is equal to the sumof the 
hara
ters of the irredu
ible representations appearing in the Clebs
h-Gordan development of π, in whi
h all 
oe�
ients are non-negative. Therefore

∆ = 1− (
∑
~λ a~λχ

∗
~λ
) where a~λ ≥ 0 and ~λ runs over all irredu
ible representationsof SU(d). That is the 
ondition (3.1) that we shall need for applying Theorem3.2.1, given at the end of the se
tion.On the other hand, the theory of pointwise estimation deals usually with thevarian
e of the estimated parameters when we use a smooth parameterization of

SU(d). As we want to use the Quantum Cramér-Rao Bound (3.9), we need ∆ to
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 in the parameters to the �rst order, and positive lower bounded for
Û outside a neighborhood of U . As ∆ is 
ovariant, it is su�
ient to 
he
k this with
U = 1Cd . Now an example of a smooth parameterization in a neighborhood of theidentity is U(θ) = exp(

∑
α θαTα) where θ ∈ Rd

2−1 and the Tα are generators ofthe Lie algebra, so that Tr(Tα) = 0. Now Tr[exp(
∑

α θαTα)] = d+
∑
α θαTr(Tα)+

O(‖θ‖2), so that the tra
e minus d, and 
onsequently ∆, is quadrati
 in θ to the�rst order.As stated at the beginning of this se
tion, we are working with U⊗N . TheClebs
h-Gordan de
omposition of the n-th tensor produ
t representation is
U⊗N =

⊕

~λ:|~λ|=N

U
~λ ⊗ 1

CM(~λ)a
ting on ⊕~λ:|~λ|=N H~λ ⊗ CM(~λ), where H~λ = CD(~λ) is the representation spa
eof ~λ, M(~λ) is the multipli
ity of ~λ in the n-th tensor produ
t representation, and
D(~λ) the dimension of ~λ. We refer to CM(~λ) as the multipli
ity spa
e of ~λ. Wehave indexed the irredu
ible representations of SU(d) by ~λ = (λ1, . . . , λd), andwritten |~λ| =

∑d
i=1 λi. Noti
e that this labelling of irredu
ible representationsis redundant, but that if |~λ1| = |~λ2|, then ~λ1 and ~λ2 are equivalent (denoted

~λ1 ≡ ~λ2) if and only if ~λ1 = ~λ2.The starting point of our argument will be the following reformulation of theresults of [Chiribella et al., 2005℄, with less generality, and without the formulafor the risk whose form is not adapted to our subsequent analysis:Theorem 3.2.1. [Chiribella et al., 2005℄ Let U ∈ SU(d) be a unitary operationto be estimated, through its a
tion on N parti
les. We may use entanglementand/or an an
illa.Then, for a uniform prior and any 
ost fun
tion of the form
c(U, Û) = a0 −

∑

~λ

a~λχ
∗
~λ
(U−1Û), (3.1)we 
an �nd as optimal input state a pure state of the form

|Ψ〉 =
⊕

~λ:|~λ|=N

c(~λ)√
D(~λ)

D(~λ)∑

i=1

|ψ~λi 〉 ⊗ |φ~λi 〉 (3.2)with c(~λ) ≥ 0, and the normalization 
ondition,
∑

~λ

c(~λ)2 = 1. (3.3)



3.2 Des
ription of the problem 77Moreover |ψ~λi 〉 is an orthonormal basis of Hλ and |φ~λi 〉 are orthonormal ve
torsof the multipli
ity spa
e, whi
h may be augmented by an an
illa if ne
essary (seeremark below on the dimensions).The 
orresponding measurement is the 
ovariant POVM with seed Ξ = |η〉〈η|given by:
|η〉 =

⊕

~λ|c(~λ) 6=0

√
D(~λ)

D(~λ)∑

i=1

|ψ~λi 〉 ⊗ |φ~λi 〉, (3.4)that is a POVM whose density with respe
t to the Haar measure is given by
m(U) = U |η〉〈η|U∗ with

U |η〉 =
⊕

~λ|c(~λ) 6=0

√
D(~λ)

D(~λ)∑

i=1

U
~λ|ψ~λi 〉 ⊗ |φ~λi 〉.Remark: We use D(~λ) orthonormal ve
tors in the multipli
ity spa
e of ~λ. Thisrequires M(~λ) ≥ D(~λ). If this is not the 
ase, we must in
rease the dimension ofthe multipli
ity spa
e by using an an
illa in Cδ. Then the a
tion of U is U⊗N⊗1Cδwhose Clebs
h-Gordan de
omposition is⊕~λ||~λ|=N U

~λ⊗1
CδM(~λ) . With big enough

δ, we have δM(~λ) ≥ D(~λ). Noti
e that an an
illa is not ne
essary if c(~λ) = 0 forall ~λ su
h that D(~λ) >M(~λ).Another remark is that, as de�ned, our POVM is not properly normalized:
M(SU(d)) 6= 1, but is equal to the proje
tion on the spa
e spanned by the
U |Ψ〉. As this is the only subspa
e of importan
e, we 
an 
omplete the POVM(through the seed, for example) ad libitum.Our estimator Û is the result of the measurement with POVM de�ned by (3.4)and input state of the form (3.2), with spe
i�
 c(~λ). Su
h an estimator is 
o-variant, that is pU (Û) = p1

Cd
(U−1Û), where pU is the probability distributionof Û when we are estimating U . The 
ost fun
tion is also 
ovariant, so that

EU [∆(U, Û)] does not depend on U . This implies that the Bayesian risk and thepointwise risk 
oin
ide. With the se
ond equality true for all U ∈ SU(d), wehave:
RB(Û) = RP (Û) = EU [∆(U, Û)]. (3.5)Theorem 3.2.1 states that there exists an optimal (Bayes uniform) estimator Ûoof this form (
orresponding to the optimal 
hoi
e of c(~λ)), so that it obeys (3.5).From this we �rst prove that no estimator whatsoever 
an have a better ratethan 1/N2.



78 Fast estimation of unitary operations3.3 Why we 
annot expe
t better rate than 1/N2For proving this result, we need the Bayesian risk for priors π other than theuniform prior:
Rπ(Û) = Eπ[EU [∆(U, Û)]].As Ûo is Bayesian optimal for the uniform prior, we only have to prove that

RB(Ûo) = O(N−2). This is also su�
ient for pointwise risk as, for any estimator
Û , we have RB(Û) ≤ RP (Û). Moreover, as EU [∆(U, Ûo)] does not depend on U ,
Rπ(Ûo) = RB(Ûo). It is then su�
ient to prove, for a π of our 
hoi
e, that:

Rπ(Ûo) = O(N−2). (3.6)The idea is to �nd a Cramér-Rao bound that we 
an apply to some π. We shall
ombine the Braunstein and Caves information inequality (3.8) and the Van Treesinequality (3.7) to obtain the desired Quantum Cramér-Rao Bound, mu
h in thespirit of Gill [2005b℄. This bound will yield an expli
it rate through a result ofBallester [2005b℄.Van Trees' inequality states that given a 
lassi
al statisti
al model smoothlyparameterized by θ ∈ Θ ⊂ Rp, and a smooth prior with 
ompa
t support Θ0 ⊂ Θ,then for any estimator θ̂, we have:
Eπ [Tr(Vθ(θ̂))] ≥

p2

Eπ [Tr(I(θ))] − Iπ
, (3.7)where I(θ) is the Fisher information matrix of the model at point θ, Iπ is a�nite (for reasonable π) 
onstant depending on π (quantifying in some way theprior information), and Vθ(θ̂) ∈ Mp(R) is the mean square error (MSE) of theestimator θ̂ at point θ given by:

Vθ(θ̂)α,β = E[(θα − θ̂α)(θβ − θ̂β)].This form of Van Trees inequality is obtained by setting N = 1, G = C = Id and
ψ = θ in (12) of [Gill, 2005b℄.Now the Braunstein and Caves C. M. [1994℄ information inequality yields anupper bound on the information matrix IM (θ) of any 
lassi
al statisti
al modelobtained by applying the measurement M to a quantum statisti
al model. Forany family of quantum states parameterized by a p-dimensional parameter θ ∈
Θ ∈ Rp, for any measurement M on these states, the following holds:

IM (θ) ≤ H(θ), (3.8)where H(θ) is the quantum Fisher information information matrix at point θ.



3.3 Why we 
annot expe
t better rate than 1/N2 79Now it was proved by Ballester [2005b℄ that for a smooth parameterization of anopen set of SU(d), and for any input state, the quantum Fisher information ofthe output states ful�ls:
H(θ) = O(N2).Inserting in (3.7) together with (3.8) we get as quantum Cramér-Rao bound

Eπ [Tr(Vθ(θ̂))] = O

(
1

N2

)
. (3.9)We now want to apply this bound to obtain (3.6). There are a few small te
hni
aldi�
ulties. First of all, we 
annot use the uniform prior for π as SU(d) is nothomeomorphi
 to an open set of Rp. We then have to de�ne two neighborhoods ofthe identity Θ0 ⊂ Θ, allowing to use the Van Trees inequality. Now our estimator

Ûo need not be in Θ, so that we shall in fa
t apply Van Trees inequality to amodi�ed estimator Ũ . Finally, this bound is on the varian
e, and we must relateit to ∆.Our �rst task 
onsists in restri
ting our attention to a neighborhood Θ of 1Cd . It
orresponds to a neighborhood Θ (we use the same notation) of 0 ∈ Rp through
U = exp(

∑
α θαTα). This holds if the neighborhood is small enough, so we de�neit by U ∈ Θ if and only if ∆(1Cd , U) < ǫ for a �xed small enough ǫ. We de�ne

Θ0 through U ∈ Θ0 for ∆(1Cd , U) ≤ ǫ/3, and take a smooth �xed prior π withsupport in Θ0, su
h that Iπ <∞.Now we modify our estimator Ûo into an estimator Ũ given by Ũ = Ûo for Ûo ∈ Θand Ũ = 1Cd for Ûo 6∈ Θ. Then, by the triangle inequality, for any U ∈ Θ0, wehave ∆(U, Ûo) ≥ ∆(U, Ũ).The fundamental point of the reasoning (used at (3.10)) is that, as ∆ is quadrati
at the �rst-order, there is a positive 
onstant c su
h that, for any U1, U2 ∈ Θ,
orresponding to θ1, θ2, we have ∆(U1, U2) ≥ c
∑
α(θ1α − θ2α)2.Finally we get

Rπ(Ûo) = Eπ [EU [∆(U, Ûo)]]

≥ Eπ [EU [∆(U, Ũ)]]

≥ cEπ[Vθ̃ ] (3.10)
= O(N−2).We have thus proved (3.6), and hen
e our bound on the e�
ien
y of any estima-tor.We now write formulas for the risk of any estimator of the form given in Theorem3.2.1.



80 Fast estimation of unitary operations3.4 Formulas for the riskBy (3.5), our risk RP (Û) is equal to the pointwise risk at 1Cd , with whi
h weshall work:
∫

SU(d)

p1
Cd

(Û)

{
1 − |χ2(Û)|2

d2

}
dµ(Û ). (3.11)Now we 
ompute the probability distribution of Û for a given |Ψ〉 of the form(3.2), that is

p1
Cd

(Û) = 〈Ψ|ÛΞÛ∗|Ψ〉

=

∣∣∣∣∣∣

∑

~λ:|~λ|=N

c(~λ)

D(~λ)
D(~λ)

D(~λ)∑

i=1

〈ψ~λi |U |ψ~λi 〉

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

~λ:|~λ|=N

c(~λ)χ~λ(Û)

∣∣∣∣∣∣

2

,where we have used that the 
hara
ter χ~λ of ~λ is the tra
e of U in the represen-tation.Then, using (3.11), re
alling that p1
Cd

is a probability density for Haar measure
µ on SU(d), and that χ~λ1χ~λ2 = χ~λ1⊗~λ2 (for the se
ond term), we get:

RP (Û) = 1 − 1

d2

∫

SU(d)

∣∣∣∣∣∣

∑

~λ:|~λ|=N

c(~λ)χ~λ⊗2
(Û)

∣∣∣∣∣∣

2

dµ(Û). (3.12)In order to evaluate the se
ond term, we use the following orthogonality relationsfor 
hara
ters: ∫

SU(d)

dµ(U)χ~λ1
(U)χ~λ2

(U)∗ = δ~λ1≡~λ2
. (3.13)To do so we need the Clebs
h-Gordan series of ~λ⊗ 2:

~λ⊗ 2 = ⊕{1≤i≤d|λi>λi+1}
~λ+ ei, (3.14)where 
onventionally λd+1 = 0. Here we see ~λ as a d-dimensional ve
tor and eias the i-th basis ve
tor.



3.5 Choi
e of the 
oe�
ients c(~λ) and proof of their e�
ien
y 81We then reorganize the sum of 
hara
ters as:
∑

~λ:|~λ|=N

c(~λ)χ~λ⊗2
(Û) =

∑

~λ′:|~λ′|=N+1

∑

i∈S(~λ′)

c(~λ′ − ei)χ~λ′ (Û),where S(~λ′) is the set of i between 1 and d su
h that ~λ′−ei is still a representation,that is λ′i > λ′i+1. We shall write #S(~λ′) for its 
ardinality.Inserting in (3.12) and remembering (3.13), we are left with
RP (Û) = 1 −

∑
~λ′:|~λ′|=N+1 |

∑
i∈S(~λ′) c(

~λ′ − ei)|2

d2
. (3.15)To go any further, we must work with spe
i�
 c(~λ).3.5 Choi
e of the 
oe�
ients c(~λ) and proof oftheir e�
ien
yWe now have to 
hoose the 
oe�
ients c(~λ) so that the right-hand side of (3.15)is small.It appears useful to introdu
e subsets of the set of all irredu
ible representations.Let PN = {~λ| |~λ| = N ;λ1 > · · · > λd > 0}. Obviously, if ~λ′ ∈ PN+1, then

#S(~λ′) = d, and the 
onverse is true. We 
an see them intuitively as points on a
(d− 1)-dimensional surfa
e, and with this pi
ture in mind, we shall speak of theborder of PN (when λi = λi+1 + 1 for some i), or of being far from the border(without pre
ise mathemati
al meaning).We are ready to give heuristi
 arguments on how good 
oe�
ients should behave.We must try to get the fra
tion in (3.15) 
lose to one. Now

∑
~λ′:|~λ′|=N+1 |

∑
i∈S(~λ′) c(

~λ′ − ei)|2

d2

≤
∑

~λ′:|~λ′|=N+1

#S(~λ′)

d

∑
i∈S(~λ′) |c(~λ′ − ei)|2

d

≤
∑

~λ′:|~λ′|=N+1

∑
i∈S(~λ′) |c(~λ′ − ei)|2

d

≤
∑

~λ:|~λ|=N

|c(~λ)|2 = 1.



82 Fast estimation of unitary operationsThe �rst inequality was obtained using Cau
hy-S
hwarz inequality for ea
h innersum. There is equality if c(~λ′ − ei) does not depend on i. From this, we dedu
ethat for most ~λ′, the c(~λ′ − ei) must be approximately equal, espe
ially if theyare large. The se
ond inequality follows from #S(~λ′) ≤ d. From this we dedu
ethat for ~λ 6∈ PN+1, the 
oe�
ients c(~λ − ei) must be small. Remark that about
1/N of the ~λ′ su
h that |~λ′| = N + 1 are not in PN+1, so that if all c(~λ) wereequal, these border terms would 
ause our rate to be 1/N . The key of the thirdinequality is to noti
e that ea
h c(~λ) is appearing in the sum on
e for ea
h termin its Clebs
h-Gordan series (3.14), and that there are at most d terms. Pleasenote that there are d terms if ~λ ∈ PN , and if ~λ′ is in PN+1, far from the border,then ~λ′ − ei is in PN , far from the border.The 
on
lusion of these heuristi
s is that we must 
hoose 
oe�
ients �lo
ally�approximately equal (at most 1/N variation in ratio), and that the 
oe�
ientsmust go to 0 when we are approa
hing the border of PN .One weight satisfying these heuristi
s is the following.

c(~λ) = N
d∏

i=1

pi, (3.16)where N is a normalization 
onstant to ensure that (3.3) is satis�ed and pi =
λi − λi+1. We shall use it below, and prove that it delivers the 1/N2 rate.A �rst remark about these weights is that c(~λ) = 0 if ~λ 6∈ PN . Now, for any
~λ ∈ PN , we have D(~λ) ≥ M(~λ), so that we do not need an an
illa.Indeed, using hook formulas (see [S
hensted, 1976℄), we get

M(~λ)/D(~λ) = N !
d∏

i=1

(λi + d− i)!

(d− i)!
.Now for ~λ ∈ PN , we know that λi 6= 0. Under this 
onstraint and∑λi = N , themaximum is attained by λ1 = N − d+ 1 and λi = 1 for i 6= 1. We end up withexa
tly 1.We shall now use (3.16) and express the numerator of (3.15) with our 
hoi
e of

pi. Noti
e �rst that if pj 
hara
terize ~λ′ then those whi
h 
hara
terize ~λ′− ei aregiven by p(i)
j = pj + δj,i−1 − δj,i. So

N−1c(~λ′ − ei) =

d∏

j=1

pj + r~λ′(i),



3.5 Choi
e of the 
oe�
ients c(~λ) and proof of their e�
ien
y 83with
r~λ′ (i) = −

∏

j 6=i
pj + δj>1




∏

j 6=i−1

pj −
∏

j 6=i,i−1

pj



 .Introdu
ing another notation will make this slightly more 
ompa
t. For a ve
tor
~x with d 
omponents and E a subset of {1, . . . , d}, de�ne:

xE =
∏

j 6=E
xj . (3.17)Then

r~λ′(i) = −p{i} + δj>1

(
p{i−1} − p{i,i−1}

)
.Noti
e now that for ~λ ∈ PN , there are exa
tly d irredu
ible representationsappearing in the Clebs
h-Gordan de
omposition of ~λ ⊗ 2 (3.14). So that c(~λ)2appears exa
tly d times in∑~λ′:|~λ′|=N+1

∑
i∈S(~λ′) c(

~λ′−ei)2. We may then rewritethe renormalization 
onstant N as
d−1

∑

~λ′:|~λ′|=N+1

∑

i∈S(~λ′)

d∏

j=1

p
(i)2
j .Therefore, rewriting the se
ond term in (3.15) with our values of c(~λ), we aim atproving:

∑
~λ′:|~λ′|=N+1

(∑
i∈S(~λ′)

∏d
j=1 pj + r~λ′(i)

)2

d
∑
~λ′:|~λ′|=N+1

∑
i∈S(~λ′)

(∏d
j=1 pj + r~λ′ (i)

)2 = 1 +O(N−2). (3.18)Let us expand the numerator:
∑

~λ′:|~λ′|=N+1




∑

i∈S(~λ′)

d∏

j=1

pj + r~λ′(i)




2

= Ct (1 + t1 + t2) ,with
Ct =

∑

~λ′

(#S(~λ′))2
d∏

j=1

p2
j ,

t1 =
2
∑
~λ′
∑
i∈S(~λ′) #S(~λ′)r~λ′ (i)

∏d
j=1 pj

Ct
,

t2 =

∑
~λ′

(∑
i∈S(~λ′) r~λ′(i)

)2

Ct
.



84 Fast estimation of unitary operationsSimilarly the denominator 
an be read as:
d

∑

~λ′:|~λ′|=N+1

∑

i∈S(~λ′)




d∏

j=1

pj + r~λ′(i)




2

= Cu (1 + u1 + u2) ,with
Cu =

∑

~λ′

d#S(~λ′)
d∏

j=1

p2
j ,

u1 =
2d
∑
~λ′
∑
i∈S(~λ′) r~λ′ (i)

∏d
j=1 pj

Cu
,

u2 =

∑
~λ′ d

∑
i∈S(~λ′) r~λ′(i)

2

Cu
.With these notations, we aim at proving the set of estimates given in Lemma3.5.1. Indeed they imply:

∑
~λ′:|~λ′|=N+1

(∑
i∈S(~λ′)

∏d
j=1 pj + r~λ′(i)

)2

d
∑
~λ′:|~λ′|=N+1

∑
i∈S(~λ′)

(∏d
j=1 pj + r~λ′ (i)

)2

= 1 + t2 − u2 +O(N−3)

(3.19)with (t2−u2) of order N−2. By (3.18), the risk of the estimator is then u2− t2 +
O(N−3). Thus proving Lemma 3.5.1 amounts at proving 1/N2 rate.We shall make use of the notation Θ(f), meaning that there are universal positive
onstants m and M su
h that:

mf ≤ Θ(f) ≤Mf.Lemma 3.5.1. With the above notations,
Cu = Ct = d2

∑

~λ′:|~λ′|=N+1




d∏

j=1

pj




2

= Θ(N3d−1)

t1 = u1 = O(N−1)

t2 = O(N−2)

u2 = O(N−2).



3.6 Evaluation of the 
onstant in the speed of 
onvergen
e and �nal result85Proof. We �rst prove the �rst line.Indeed for ~λ′ ∈ PN+1, all i are in S(~λ′), and



∑

i∈S(~λ′)

d∏

j=1

pj




2

= d
∑

i∈S(~λ′)

d∏

j=1

p2
j = d2

d∏

j=1

p2
j .But if ~λ′ 6∈ PN+1, there is at least one pj equal to zero, so they do not 
ontributeto the sum. So that Cu = Ct = d2

∑
~λ′:|~λ′|=N+1

(∏d
j=1 pj

)2.We have then equality of the denominators of t1 and u1. The same argumentgives equality of the numerators. On PN+1, #S(~λ′) = d so that
∑

i∈S(~λ′)

#S(~λ′)r~λ′ (i)

d∏

j=1

pj = d
∑

i∈S(~λ′)

r~λ′(i)

d∏

j=1

pj ,and outside PN+1,∏d
j=1 pj = 0 so that the equality still holds. Therefore t1 = u1.Now pj ≤ N+1 so that∏d

j=1 pj ≤ (N+1)d and |r~λ′(i)| ≤ 2(N+1)d−1. Moreover,as 1 ≤ λi ≤ N + 1 and λd is known if the other λi are known, the number ofelements ~λ′ in PN+1 satis�es #PN+1 ≤ (N + 1)d−1. Thus the numerator of t1and u1 is O(N3d−2) and that of t2 and u2 is O(N3d−3). To end the proof of thelemma, it is then su�
ient to show that Cu = Θ(N3d−1).Let us write N + 1 = a(1 + d(d + 1))/2 + b with a and b natural integers and
b < (1 + d(d + 1)). We then sele
t hi for i = 1 to d su
h that ∑hi = a/2.The number of ways of partitioning a/2 in d parts is (a/2+d−1

d−1

), and this is
Θ(ad−1) = Θ(Nd−1). To ea
h of these partitions, we asso
iate a di�erent ~λ′ in
PN+1 through λi = (d − i + 1)a + δi=1b + hi. For ea
h of these ~λ′, we have
pj = λj − λj+1 ≥ a/2, so that ∏d

j=1 p
2
j = Θ(N2d). We may lower bound Cu bythe sum over these ~λ′ of ∏d

j=1 p
2
j , so that we have proved Cu = Θ(N3d−1).3.6 Evaluation of the 
onstant in the speed of 
on-vergen
e and �nal resultThe strategy we study is asymptoti
ally optimal up to a 
onstant, but a better
onstant 
an probably be obtained. Anything like c(~λ) = (

∏
pj)

α with α ≥
1/2 should yield the same rate, though it would be more 
umbersome to prove.



86 Fast estimation of unitary operationsPolynomials in the pj 
ould also bring some improvement. All the same we givein this se
tion a qui
k evaluation of the 
onstant, that may serve as a ben
hmarkfor more pre
ise strategies.Write pj = (N + 1)xj . Then, re
alling our notation 3.17,
d∏

j=1

p2
j = (N + 1)2d

d∏

j=1

x2
j

r~λ′ (i) = (N + 1)d−1
(
−x{i} + δi>1x{i−1} +O(N−1)

)
.Similarly, the set of allowed ~x = (x1, . . . , xn) may be des
ribed as

SN+1 =




~x |xj(N + 1) ∈ N;

d∑

j=1

(d− j + 1)xj = 1




 .We may then rewrite:
u2 =

∑
~x∈SN+1

d
∑d

i=1

(
x{i} − δi>1x{i−1}

)2

d2(N + 1)2
∑
~x∈SN+1

∏d
j=1 x

2
j

+O(N−3)

t2 =

∑
~x∈SN+1

(
x{i} − δi>1x{i−1}

)2

d2(N + 1)2
∑
~x∈SN+1

∏d
j=1 x

2
j

+O(N−3).Subtra
ting, we obtain (the �rst sums being on SN+1)
u2 − t2 +O(N−3) = (3.20)
∑
~x 2d

(∑d
i=1(x{i})

2 −∑d
i=2 x{i}x{i−1}

)
− (d+ 1)(x{d})

2

n2 d2
∑
~x

∏d
j=1 x

2
j

. (3.21)Now SN+1 is the interse
tion S of the latti
e in [0, 1]d with mesh size 1/(N + 1)with the hyperplane given by the equation ∑(d − j + 1)xj = 1. Therefore thepoints of SN+1 are a regular paving of a �at (d − 1)-dimensional volume, withmore and more points (we know that #SN+1 = O(Nd−1)). Therefore bothdenominator and numerator of (3.20) are Riemannian sums with respe
t to theLebesgue measure, with a multipli
ative 
onstant that is the same for both.Therefore we have proved:Theorem 3.6.1. The estimator Û 
orresponding to (3.16) has the following risk:
RB(Û) = RP (Û) = E1

Cd

[
∆(1Cd , Û)

]
= CN−2 +O(N−3)
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lusion 87where C is the fra
tion
∫
S 2d

(∑d
i=1(x{i})

2 −∑d
i=2 x{i}x{i−1}

)
− (d+ 1)(x{d})

2d~x

d2
∫
S
∏d
j=1 x

2
jd~x

.Up to a multipli
ative 
onstant, this risk is asymptoti
ally optimal, both for aBayes uniform prior and for global pointwise estimation.Numeri
al estimation, up to two digits, for the low dimensions yields:
10 for d = 2

75 for d = 3

2.7 × 102 for d = 4.3.7 Con
lusionWe have given a strategy for estimating an unknown unitary 
hannel U ∈ SU(d),and proved that the 
onvergen
e rate of this strategy is 1/N2. We have furtherproved that this rate is optimal, even if the 
onstant may be improved.The interest of this result lies in that su
h rates are mu
h faster than the 1/Na
hieved in 
lassi
al estimation and, though they had already been obtained for
SU(2), they were never before shown to hold for general SU(d).





Chapter 4Clean positive operator valuedmeasures
This 
hapter is derived from the arti
le [Kahn, 2007a℄.Abstra
t: In a re
ent paper Bus
emi et al. [2005℄ have de�ned anotion of 
lean positive operator valued measures (POVMs). Wehere 
hara
terize whi
h POVMs are 
lean in some 
lass that we 
allquasi-qubit POVMs, namely POVMs whose elements are all rank-oneor full-rank. We give an algorithm to 
he
k whether a given quasi-qubit POVM satis�es to this 
ondition. We des
ribe expli
itly all thePOVMs that are 
lean for the qubit. On the way we give a su�
ient
ondition for a general POVM to be 
lean.4.1 Introdu
tionThe laws of quantum me
hani
s impose restri
tions on what measurements 
anbe 
arried out on a quantum system. All the possible measurements 
an bedes
ribed mathemati
ally by �positive operator-valued measures�, POVMs forshort. Apart from measuring a state, we 
an also transform it via a quantum
hannel. Now suppose we have at our disposal a POVM P and a 
hannel E . Wemay �rst send our state through E and then feed the transformed state in ourmeasurement apparatus P. This pro
edure is a new measurement pro
edure, and
an therefore be en
oded by a POVM Q. Now transforming the state with E 
an



90 Clean positive operator valued measuresbe seen as a kind of noise on the POVM P. We may then view Q as a disturbedversion of P, and we say that P is 
leaner than Q. Now, what are the maximalelements for this order relation?The order relation �
leaner than� has been introdu
ed in a re
ent arti
le ofBus
emi et al. [2005℄. Herein they look at whi
h POVMs 
an be obtained fromanother, either by pre-pro
essing (the situation we just des
ribed, where we �rstsend our state through a 
hannel) or by 
lassi
al post-pro
essing of the data.Espe
ially, they try to �nd whi
h POVMs are biggest for these order relations(in the former 
ase, the POVM is said to be 
lean; there is no �extrinsi
� noise).For pre-pro
essing they get a number of partial answers. One of those is that aPOVM on a d-dimensional spa
e with n out
omes, with n ≤ d, is 
lean if andonly if it is an observable. They do not get a 
omplete 
lassi�
ation, though.The obje
t of the present 
hapter is to 
hara
terize whi
h POVMs are 
lean ina spe
ial 
lass of measurements. Namely, we are interested in POVMs su
h thatall their elements (see de�nition below) are either full-rank or rank-one. We 
allthese POVMs quasi-qubit POVMs. Noti
e that all the POVMs for qubits satisfyto this 
ondition.On the way we prove a su�
ient 
ondition for a POVM to be 
lean, that is usablealso for POVMs that are not quasi-qubit.It turns out that 
leanness for quasi-qubit POVMs 
an be read on the span ofthe rank-one elements. Moreover,if a (non ne
essarily quasi-qubit) POVM is
leaner than a 
lean quasi-qubit POVM, the latter was in fa
t obtained by a
hannel that is a unitary transform. In other words, for quasi-qubit POVMs,
leanness-equivalen
e is unitary equivalen
e.We give an algorithm to 
he
k whether a quasi-qubit POVM is 
lean or not.This algorithm may be the main 
ontribution of the 
hapter, as almost all thefollowing theorems 
an be summed up by saying the algorithm is valid.In the end we apply these results to the qubit, for whi
h all POVMs are quasi-qubit. We are then left with a very expli
it 
hara
terization of 
lean POVMs forqubits.Se
tion 4.2 gives pre
ise de�nitions of all the obje
ts we 
ited in this introdu
tion.We de�ne the algorithm, give heuristi
ally the main ideas and de�ne the impor-tant notion �totally determined� (De�nition 4.3.2) in Se
tion 4.3.Se
tion 4.4 gives a su�
ient 
ondition for a POVM to be 
lean, namely thatthe supports of the elements of the POVM �totally determine� the spa
e (seeDe�nition 4.3.2). We use this 
ondition to show that when the algorithm exitswith a positive result, the quasi-qubit POVM is really 
lean.



4.2 De�nitions and notations 91Se
tion 4.5 proves that the above su�
ient 
ondition is in fa
t ne
essary forquasi-qubit POVMs. It 
he
ks that when the algorithm exits with a negativeresult, the POVM is truly not 
lean.Se
tion 4.6 gathers the results relative to quasi-qubit POVMs in Theorem 4.6.1and deals with the qubit 
ase in Corollary 4.6.2.Ultimately se
tion 4.7 gives a very rough idea for making expli
it more expli
itthe su�
ient 
ondition for a POVM to be 
lean we have given in se
tion 4.4.If one wishes to look for the results of this 
hapter without bothering with thete
hni
al proofs, the best would be to read the algorithm of se
tion 4.3 and thento read Theorem 4.6.1 and Corollary 4.6.2. You would also need Lemma 4.5.3that you 
ould use as a de�nition of �totally determined� if you are only interestedin quasi-qubit POVMs.If you also want the supplementary results that apply to other POVMs, furtherread De�nitions 4.3.1 and 4.3.2, and Theorem 4.4.1.4.2 De�nitions and notationsWe 
onsider POVMs on a Hilbert spa
e H of dimension d ≥ 2. Dimension 2 isthe qubit 
ase. The set {|ei〉}1≤i≤d will be an orthonormal basis of H. If V isa subspa
e of H then V⊥ is the subspa
e orthogonal to V in H. If we are givenve
tors {vi}i∈I , we denote by Span(vi, i ∈ I) the spa
e they generate. The set ofoperators on H is denoted by B(H).A POVM P (with �nite out
omes, 
ase to whi
h we restri
t) is a set {Pi}i∈Iof non-negative operators on H, with I �nite, su
h that ∑i∈I Pi = 1. The Piare 
alled POVM elements. We write Supp(Pi) for the support of this element.This support is de�ned by its orthogonal. The set of |φ〉 ∈ Supp(Pi)
⊥ is exa
tlythe set of |φ〉 su
h that 〈φ|Pi|φ〉 = 0. The rank of a POVM element is its rankas an operator. In parti
ular, rank-one elements are of the form λi|ψi〉〈ψi| andfull-rank POVMs are invertible. Spe
ial 
ases of POVMs are rank-one POVMs,that is POVMs whose elements are all rank-one, and full-rank POVMs, that isPOVMs whose elements are all full-rank. We are espe
ially interested in a 
lassof POVMs that in
ludes both:De�nition 4.2.1. Quasi-qubits POVMsA POVM P is a quasi-qubit POVM if all its elements Pi are either full-rank orrank-one.Similarly, we shall speak of stri
t quasi-qubit POVMs for quasi-qubit POVMswhi
h are neither rank-one nor full-rank.



92 Clean positive operator valued measuresA 
hannel E is a 
ompletely positive identity-preserving map on B(H) the set ofbounded operators on H (in this 
hapter, 
hannels are always intended as goingfrom B(H) to the same B(H)). As a remark, this implies that the subspa
e ofself-adjoint operators Bsa(H) is stable by E . We know we 
an write it using Kraus[1983℄ de
omposition, that is we 
an �nd a �nite number of operators Rα ∈ B(H)su
h that
E(A) =

∑

α

R∗
αARα, with

∑

α

R∗
αRα = 1. (4.1)Here the star is the adjoint.We shall write E = {Rα}α. This de
omposition is not unique.Using the 
hannel E before the measurement P is the same as using the POVM

Q = E(P) de�ned by its POVM elements Qi = E(Pi).De�nition 4.2.2. A POVM P is 
leaner than a POVM Q if and only if thereexists a 
hannel E su
h that E(P) = Q. We shall also write P ≻ Q.De�nition 4.2.3. Clean POVMA POVM P is 
lean if and only if, for any Q su
h that Q ≻ P, then P ≻ Q alsoholds.We shall further say that two POVMs are 
leanness-equivalent if both Q ≻ Pand P ≻ Q hold. A spe
ial 
ase of this (but not the general 
ase, as proved in[Bus
emi et al., 2005℄) is unitary equivalen
e, when there is a unitary operator Usu
h that for any i ∈ I, we have UPiU∗ = Qi.4.3 Algorithm and Ideas4.3.1 AlgorithmWe propose the following algorithm to 
he
k whether a quasi-qubit POVM P is
lean or not.(i) We 
he
k whether P is rank-one. If it is, exit with result �P is 
lean�.Otherwise:(ii) Write the rank-one elements Pi = λi|ψi〉〈ψi| for 1 ≤ i ≤ n. Che
k whetherthese |ψi〉 generate H. If not, exit with result �P is not 
lean�. Else:



4.3 Algorithm and Ideas 93(iii) We 
an �nd a basis of H as a subset of those |ψi〉. We assume that thisbasis 
onsists of |ψi〉 for 1 ≤ i ≤ d. We de�ne a variable C = {Vj}j∈J ,
onsisting in a 
olle
tion of subspa
es whose dire
t sum is the Hilbert spa
e
H =

⊕
j Vj . We initialize C with Vi = Span(|ψi〉) for 1 ≤ i ≤ d.(iv) For i from d+ 1 to n, do:(v) Write |ψi〉 =

∑
j vj with vj ∈ Vj . Call J(i) = {j|vj 6= 0}.(vi) Update {Vj}: Suppress all Vj for j ∈ J(i). Add Vi =

⊕
j∈J(i) Vj .(vii) Che
k whether C = {H}. If so, exit with result �P is 
lean�. Otherwise:(viii) End of the �For� loop.(ix) Exit with result �P is not 
lean�.Noti
e that the algorithm terminates: every stage is �nite and we enter the loopa �nite number of times.4.3.2 Heuristi
s: what the algorithm really testsIn the Kraus de
omposition (4.1), ea
h of the terms R∗

αARα is non-negative if
A is non-negative, so that E(A) ≥ R∗

αARα for any α. Hen
e if E(Q) = P, then
R∗
αQiRα must have support in
luded in Supp(Pi) for all α and e ∈ E.The 
entral idea of the 
hapter is the following: the 
ondition Supp(R∗

αQiRα) ⊂
Supp(Pi) yields d− dim(Supp(Pi)) homogeneous linear equations on the matrixentries of Rα, where you should remember that d = dim(H). Now Rα is deter-mined up to a 
onstant by d2 − 1 homogeneous independent linear equations. Insu
h a 
ase, the additional 
ondition∑R∗

αRα = 1 yields all Rα are proportionalto the same unitary U , so that the 
hannel E is unitary, and P ≻ Q.There is still one di�
ulty: the equations mentioned above depend not only on
P, but also on Q. We would then like 
onditions on the supports of Pi su
h thatthe system of equations mentioned above is at least of rank d2 − 1 for all Q. Weformalize this requirement with the following de�nitions.De�nition 4.3.1. CorrespondingLet V be a Hilbert spa
e and {Fi}i∈I a 
olle
tion of subspa
es of V. Let {vi}i∈Ibe a 
olle
tion of ve
tors of V. This set of ve
tors 
orresponds to {Fi}i∈I if forany i ∈ I, there is a linear transform Ri su
h that Ri(vi) 6= 0 and, for all j ∈ I,the transform is taking vj within Fj , that is Ri(vj) ∈ Fj .In the text, we usually drop the referen
e to {Fi}i∈I and write that the {vi}i∈Iare a 
orresponding 
olle
tion of ve
tors.



94 Clean positive operator valued measuresDe�nition 4.3.2. Totally determinedLet V be a Hilbert spa
e and {Fi}i∈I a 
olle
tion of subspa
es of V.If for all 
orresponding 
olle
tions of ve
tors {vi}i∈I there is only one (up toa 
omplex multipli
ative 
onstant) linear transform R su
h that R(vi) ∈ Fi forall i ∈ I, we say that V is totally determined by {Fi}i∈I , or alternatively that
{Fi}i∈I totally determines V.If Fi is one-dimensional with support ve
tor wi, this means there is only one Rsu
h that R(vi) is 
olinear to wi for all i ∈ I.What the algorithm does is 
he
king that a quasi-qubit POVM P is rank-one(stage (i)), or that P totally determines H.More pre
isely, Proposition 4.4.9 states that ea
h of the Vj belonging to C (ap-pearing at stage (iii) and updated at stage (vi)) is totally determined by the |ψi〉su
h that |ψi〉 ∈ Vj . When the algorithm exits at stage (vii), then C = {H},so H is totally determined. If the algorithm does not exit at stage (vii), on theother hand, then C has at least two elements at the last stage, and ea
h |ψi〉is in
luded in one of those two elements, whi
h entails, from Lemma 4.5.3, that
{Supp(Pi)} does not totally determine H.The equivalen
e with 
leanness for quasi-qubit POVMs is still needed to getvalidity of the algorithm. This equivalen
e stems from Theorem 4.4.1 and Theo-rem 4.5.1. The former is the su�
ient 
ondition, for any POVM, not ne
essarilyquasi-qubit. We have given the intuition for this theorem at the beginning of these
tion. Complementarily, Theorem 4.5.1 states that a stri
t quasi-qubit POVMis not 
lean if its supports do not totally determine H.The proof of Theorem 4.5.1 features the last important idea of the 
hapter. A
hannel E whi
h is near enough the identity may be inverted as a positive mapon B(H), even though E−1 is not a 
hannel. Now if we denote Q = E−1(P), wehave E(Q) = P. We are then left with two questions: is Q a POVM, and 
an we�nd a 
hannel F su
h that F(P) = Q?The main possible obsta
le to Q being a POVM is the need for ea
h of the Qito be non-negative. Now, if E is near enough the identity, if Pi was full-rank,then Qi is still full-rank non-negative. The remaining 
ase is Qi = E−1(Pi) =
λiE−1 (|ψi〉〈ψi|). Now, we shall see that we may use the set of subspa
es C = {Vj}given by the algorithm to build 
hannels ensuring that these Qi are still rank-onenon-negative matri
es. Furthermore, these Qi will have a bigger �rst eigenvaluethan Pi, so that we are sureQ is stri
tly 
leaner thanP, as 
hannels are spe
trum-width de
reasing (see Lemma 4.5.2).We now turn to the fully rigorous treatment.



4.4 Su�
ient 
ondition 954.4 Su�
ient 
onditionWe start by proving the following theorem, announ
ed in the previous se
tion.Theorem 4.4.1. If the supports {Supp(Pi)}i∈I of the elements Pi of a POVMP totally determine H, then P is 
lean and any 
leanness-equivalent POVM Qis in fa
t unitarily equivalent to P.Proof. It is enough to prove that if Q ≻ P, then Q is unitarily equivalent to P.Let Q be a POVM and E = {Rα}α a 
hannel su
h that E(Q) = P.For all i ∈ I, we may write Qi =
∑

k µi,k|φki 〉〈φki |. Then we have
Pi =

∑

α

∑

k

µi,kR
∗
α|φki 〉〈φki |Rα.Now µi,kR∗

α|φki 〉〈φki |Rα ≥ 0 for all k and α, and 
onsequently µi,kR∗
α|φki 〉〈φki |Rα ≤

Pi. Hen
e R∗
α|φki 〉 ∈ Supp(Pi).Moreover Pi is nonzero. So that there is at least one k(i) and one α(i) for ea
h

i su
h that R∗
α|φk(i)i 〉 is nonzero. Thus {φk(i)i }i∈I 
orresponds to {Supp(Pi)}i∈I .As {Supp(Pi)}i∈I totally determines H, there is only one R, up to a 
onstant,su
h that R|φk(i)i 〉 ∈ Supp(Pi) for all i. So that Rα = c(α)R for all α. Sin
e∑

αR
∗
αRα = 1, there is a 
onstant su
h that λR1 is unitary, and E = {λR1}. Sothat P and Q are unitarily equivalent.Before proving in Theorem 4.4.9 that �when the algorithm exits at stage (vii),then the supports of the POVM P totally determine H�, we need a few moretools.We �rst need the notion of proje
tive frame. Indeed, in the algorithm, we are deal-ing with supports of rank-one POVMs, that is essentially proje
tive lines. Andwe want them to totally determine the spa
e, that is essentially �x it. Proje
tiveframes are the most basi
 mathemati
al obje
t meeting these requirements. Werede�ne them here, and reprove what basi
 properties we need; further informa-tion on proje
tive frames may be found in most geometry or algebra textbooks,e.g. [Audin, 2002℄.De�nition 4.4.2. A proje
tive frame {vi}1≤i≤d+1 of a ve
tor spa
e V is a set of

(dim(V) + 1) ve
tors in general position, that is, su
h that any subset of dim(V)ve
tors is a basis of V.



96 Clean positive operator valued measuresRemark 4.4.3. Equivalently we may say that {vi}1≤i≤n is a basis of V and
vd+1 =

∑n
i=1 civi with all ci 6= 0.Proposition 4.4.4. A proje
tive frame Ψ = {ei}1≤i≤(n+1)of V totally deter-mines V.Proof. First we prove that if Φ = {vi}1≤i≤(n+1) is not a proje
tive frame, the setof ve
tors {vi}1≤i≤(n+1) does not 
orrespond to Ψ. Indeed, as Φ is not a proje
tiveframe, we may �nd n ve
tors, say the n �rst, su
h that ∑n

i=1 aivi = 0 with atleast one ai non-zero, say a1. Then for any R su
h that R(vi) is 
olinear to eifor all i, we still have∑n
i=1 aiR(vi) = 0. As {ei}1≤i≤n is a basis, aiR(vi) = 0 forall i, so that R(v1) = 0. Hen
e {vi}1≤i≤n+1 does not 
orrespond to {ei}1≤i≤n+1.Let now Φ = {vi}1≤i≤(n+1) be 
orresponding to Ψ. Notably, this implies that Φis a proje
tive frame. Furthermore, there is a nonzero linear transform R su
hthat R(vi) is 
olinear to ei for all i. We must show that R is unique up to a
onstant.We know that {ei}1≤i≤n and {vi}1≤i≤n are both bases of V . Hen
e there is aunique transfer matrix X from the latter basis to the former. Sin
e R(vi) = Dieifor some Di, we know that R is of the form DX where D is a diagonal matrixwith diagonal values Di.We still have not used our (n + 1)th 
ondition. We are dealing with proje
tiveframes, so that en+1 =
∑n

i=1 biei and vn+1 =
∑n

i=1 civi with all bi and ci non-zero. Now R(vn+1) =
∑n
i=1 ciR(vi) =

∑n
i=1 ciDiei, so that ciDi/bi must beindependent on i and D and hen
e R is �xed up to a 
omplex multipli
ative
onstant.We now turn to a few observations about totally determined spa
es.Remark 4.4.5. If {Fi}i∈I totally determines H, and if {vi}i∈I 
orresponds to

{Fi}, then the up to a 
onstant unique nonzero R su
h that Rvi ∈ Fi for all i ∈ Iis invertible.Proof. Let us de�ne Π(kerR)⊥ the proje
tor on the orthogonal of the kernel of
R along its kernel, and ΠkerR the proje
tor on the kernel of R along (kerR)⊥.We have R = RΠ(kerR)⊥ , so that RΠ(kerR)⊥vi = Rvi. Thus {Π(kerR)⊥vi}i∈Iis 
orresponding to {Fi}i∈I . On the other hand, ΠkerRΠ(kerR)⊥ = 0, so that
(R + ΠkerR)(Π(kerR)⊥vi) = R(Π(kerR)⊥vi) ∈ Fi. As {Π(kerR)⊥} is 
orrespondingto {Fi}, the latter equality implies that R is proportional to (R + ΠkerR). Thisis only possible if ΠkerR = 0. Hen
e R is invertible.
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ient 
ondition 97Remark 4.4.6. If {vl}l∈I∪J is 
orresponding to {Fl}l∈I∪J , then {vi}i∈I (resp.
{vj}j∈J) is 
orresponding to {Fi}i∈I (resp. {Fj}j∈J .Proof. The set I is a subset of I ∪ J , thus, for all i ∈ I, there is an Ri su
h that
Rivi 6= 0 and Rivl ∈ Fl for all l ∈ I ∪ J . A fortiori Rivk ∈ Fk for all k ∈ I.Hen
e {vi}i∈I is 
orresponding to {Fi}i∈I . The same proof yields the result for
J .Remark 4.4.7. If {vi}i∈I is 
orresponding to {Fi}i∈I , then there exists R su
hthat Rvi ∈ Fi and Rvi 6= 0 for all i simultaneously.Proof. By the de�nition of �
orresponding to�, we have a set {Ri}i∈I of trans-forms su
h that Rivi 6= 0 and Rivj ∈ Fj for all j ∈ I. Now, for any set of
oe�
ients {ai}i∈I the matrix R =

∑
i aiRi ful�ls Rvi ∈ Fi for all i. If we 
hooseappropriately {ai} we also have Rvi 6= 0. For example, we may write all the

Rivi in the same basis, take note of all 
oordinates, and 
hoose the ai as any realnumbers algebrai
ally independent of those 
oordinates.Lemma 4.4.8. If V and W are both totally determined by sets of subspa
es
{Fi}i∈I and {Fj}j∈J and if V and W interse
t (apart from the null ve
tor), thentheir sum U = V + W is totally determined by {Fl}l∈I∪J .Proof. Let {ul}l∈I∪J ve
tors of U 
orrespond to {Fl}l∈I∪J . In other words, thereis an R∗ su
h that R∗ul ∈ Fl for all l ∈ I ∪ J . By Remark 4.4.7, we may assumethat R∗ul 6= 0 for all l. We must show that R∗ is unique up to a 
onstant. Noti
ethat the restri
tion R∗ul 6= 0 does not play a role: if we �nd another R nonproportional to R∗, su
h that Rul ∈ Fl for all l, then R∗ + aR for appropriate aalso ful�ls 0 6= (R∗ + aR)ul ∈ Fl for all l, and is not proportional to R∗.We need a few notations. First, we 
onsider the spa
e X = V ∩ W . We alsode�ne Y by V = Y ⊕ X and Z by W = Z ⊕ X . We write IV and IW for thenatural in
lusions of V and W in U . We also denote by ΠV for the proje
tor on
V along Z, by ΠW the proje
tor on W along Y, and by ΠX the proje
tor on Xalong Y + Z.Please be aware that we do not de�ne ΠV and ΠW as endomorphisms of U , but asappli
ations from U to V andW , respe
tively. The 
orresponding endomorphismsare IVΠV and IWΠW .As a �rst step, we show that IVΠVR∗ is unique up to a 
onstant.The rank of IVΠVR∗ is at most dim(V), so we 
an fa
torize it by V : thereexists two linear appli
ations LU

V from U to V and LV
U from V to U , su
h that

IVΠVR∗LV
UL

U
V = IVΠVR∗.



98 Clean positive operator valued measuresNow for all i ∈ I, we have R∗ui ∈ Fi ⊂ V , so that R∗ui = IVΠVR∗ui =
IVΠVR∗LV

UL
U
Vui, so that for all i ∈ I we have the in
lusion 0 6= (ΠVR∗LV

U)(LU
Vui) ∈

Fi, where we have used R∗ul 6= 0.. Thus {LU
Vui}i∈I is 
orresponding to {Fi}i∈I .On the other hand, we know that {Fi}i∈I totally determine V . Hen
e thereis a nonzero 
onstant λV , and a RV depending only on {Fi}i∈I , su
h that

ΠVR∗LV
U = λVRV . Moreover, by Remark 4.4.5, RV is invertible. So that �-nally IVΠVR∗ = λVIVRVLU

V , with image im(λVIVRVLU
V) = V . Repla
ing V with

W , we get similarly IWΠWR∗ = λWIWRWLU
W .The last step 
onsists in proving that the two 
onstants λV and λW are propor-tional, independently of R∗.We noti
e that ΠX IVΠV = ΠX = ΠX IWΠW . Hen
e λVΠX IVRVLU

V =
λWΠX IWRWLU

W . As X ⊂ V and im(λVIVRVLU
V) = V , we know that

λVΠX IVRVLU
V 6= 0. The equality λVΠX IVRVLU

V = λWΠX IWRWLU
W then yieldsthe proportionality of λW and λV .We 
on
lude by re
alling that V + W = U , so that knowing both IVΠVR∗ and

IWΠWR∗ is equivalent to knowing R∗. As our only free parameter is the multi-pli
ative 
onstant λV , we have proved uniqueness of R∗, up to a 
onstant.Lemma 4.4.8 and Proposition 4.4.4 are the two ingredients for proving the fol-lowing proposition, 
entral for the validity of the algorithm.Proposition 4.4.9. In the algorithm, the spa
es in the set C = {Vj}j∈J arealways totally determined by the supports K(j) = {Span(|ψi〉) : |ψi〉 ∈ Vj} of theone-dimensional POVM elements they 
ontain.Proof. We prove the proposition by indu
tion on the stronger property Prop =� all Vj are totally determined by K(j), and they are spanned by ve
tors of theinitial basis, that is, they are of the form Span(|ψi〉 : i ∈ I(j)), where I(j) is asubset of {1, . . . , d}�.Initialization: We initialize C at step (iii). At this stage Vj is de�ned for j ∈
{1, . . . , d} by Vj = Span(|ψj〉). So that on the one hand Vj is of the form
Span(|ψi〉 : i ∈ I(j)), where I(j) is a subset of {1, . . . , d}, and on the other hand
Vj is totally determined by K(j), as it is one-dimensional and |ψj〉 is nonzero.Update: We update C at stage (vi). We must prove that Vi =

⊕
j∈J(i) Vj stillful�ls Prop.For one thing, the spa
e Vi is a sum of spa
es of the form Span(|ψi〉 : i ∈ I(j)),where I(j) is a subset of {1, . . . , d}, hen
e Vi is also of this form with I(i) =⋃

j∈J(i) I(j).
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essary 
ondition for quasi-qubit POVMs 99Now let us 
onsider the set Iint = {j : j ∈ {1 . . . d}, 〈ψi|ψj〉 6= 0}, and the spa
e
Vint = Span(|ψj〉 : j ∈ Iint). Sin
e the |ψj〉 for j ∈ Iint are part of the initial basis
{|ψj〉}1≤j≤d}, they are independent. The de�nition of Iint also ensures |ψi〉 =∑

j∈Iint
cj |ψj〉 with j nonzero, hen
e, by Remark (4.4.3), the set {|ψk〉 : k = k ∈

Iint ∪ {i}} is a proje
tive frame of Vint. So that, by Proposition 4.4.4, the spa
e
Vint is totally determined by {|ψj〉}j∈Iint∪{i}. We initialize Kint = Iint ∪ {i}.Finally, by de�nition of J(i), we know that Vint∩Vj 6= 0 for all j ∈ J(i). Both aretotally determined, by K(j) and Kint. Hen
e by Lemma 4.4.8, Vint∪Vj is totallydetermined by K(j)∪Kint. We update Vint = Vint ∪Vj and Kint = Kint ∪K(j).We iterate the latter step for all j ∈ J(i) and we end up with Vint = Vi totallydetermined by ⋃j∈j(i) K(j) ∪ Iint ∪ {i} ⊂ I(i).Corollary 4.4.10. When the algorithm ends at stage (vii), the POVM P is
lean.Proof. The algorithm ends at stage (vii) only if C = {H}. By the above proposi-tion, this 
ondition implies that H is totally determined by {Span(|ψj〉) : |ψj〉 ∈
H}. This amounts at saying that H is totally determined by the supports of thePOVM elements Pi, and we 
on
lude by Theorem 4.4.1.This se
tion aims at giving su�
ient 
onditions for a POVM to be 
lean, and atproving that one of these 
onditions is ful�lled if the algorithm exits with result�P is 
lean�. We thus 
on
lude the se
tion with the 
ase when the algorithmexits at stage (i). In other words, we must show that a rank-one POVM is 
lean.Now, this has already been proved as Theorem 11.2 of [Bus
emi et al., 2005℄:Theorem 4.4.11. [Bus
emi et al., 2005℄ If P is rank-one, then Q≻P if andonly if P and Q are unitarily equivalent. Thus, rank-one POVMs are 
lean.For a quasi-qubit POVM P, we prove in the following se
tion that P is 
leanonly if it ful�ls the 
onditions either of Theorem 4.4.11 or of Theorem 4.4.1.4.5 Ne
essary 
ondition for quasi-qubit POVMsThis se
tion proves that a 
lean quasi-qubit POVM either is rank-one, or thesupports of its elements totally determine the spa
e:Theorem 4.5.1. A non-rank-one quasi-qubit POVM where {Supp(Pi)i∈I} doesnot determine H is not 
lean.



100 Clean positive operator valued measuresWe need a few more tools to prove the theorem.To begin with, we need a way to prove in spe
i�
 situations that a POVM is not
leaner than another. Using the fa
t that 
hannels are spe
trum-width de
reasingis the easiest method. This is Lemma 3.1 of [Bus
emi et al., 2005℄:Lemma 4.5.2. If the minimal (resp. maximal) eigenvalue of X is denoted
λm(X) (resp. λM (X)), then λm(X) ≤ λm(E(X)) ≤ λM (E(X)) ≤ λM (X) forany 
hannel E.This lemma implies that existen
e of Q ≻ P su
h that for some i ∈ I, either
λm(Qi) < λm(Pi) or λM (Qi) > λM (Pi) entails that Q is stri
tly 
leaner than P,so that P is not 
lean.We now give a 
hara
terization of the fa
t thatH is totally determined by {Fj}j∈Jwhen all the Fj are one-dimensional, that is of when the Fj 
an be seen as ve
tors.This 
hara
terization applies to {Supp(Pi)}i∈I for quasi-qubit POVMs, and maybe more intuitive than De�nition 4.3.2. Moreover it is more adapted to ourstrategy of proof.Lemma 4.5.3. A set of ve
tors {|ψj〉}j∈J totally determine the spa
e H, if andonly if, for any two supplementary proper subspa
es V and W, there is a j ∈ Jsu
h that |ψj〉 6∈ V and |ψj〉 6∈ W.Moreover, when the algorithm exits with result �P is not 
lean�, the supports ofP do not totally determine H.Proof. The proof is made of four steps:(a) For any �nite set of ve
tors {|ψj〉}j∈J , there is a POVM whose supports ofthe rank-one elements are these ve
tors.(b) if we feed into the algorithm a non-rank-one quasi-qubit POVM whosesupports of rank-one elements are the |ψj〉 and if {|ψj〉} does not totallydetermine H, then the algorithm exits with result �P is not 
lean�.(
) if the algorithm exits with result �P is not 
lean�, then we 
an �nd twosupplementary proper subspa
es su
h that |ψj〉 ∈ V or |ψj〉 ∈ W for allsupports of rank-one elements.(d) �nding two supplementary proper subspa
es su
h that |ψj〉 ∈ V or |ψj〉 ∈ Wfor all j ∈ J implies that {|ψj〉}j∈J does not totally determine H.The equivalen
e in the lemma is then proved by 
ontraposition, and the laststatement by 
ombining (
) and (d).
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essary 
ondition for quasi-qubit POVMs 101Step (a): A valid example is given by Pj = 1
2#J |ψj〉〈ψj | for j ∈ J and P#J+1 =

1−∑j Pj . Indeed the latter element is positive sin
e ∑j Pj ≤ 1
2#J#J1 = 1

21.Step (b): Sin
e the quasi-qubit POVM is assumed not to be rank-one, we do notexit at stage (i). The only other possible exit with result �P is 
lean� is at stage(vii). Now the proof of Corollary 4.4.10 states that the algorithm exits at stage(vii) only if the supports of the rank-one elements totally determine H. Hen
e,the algorithm exits with result �P is not 
lean�.Step (
): Exiting at stage (ii) means that the |ψj〉 do not generate H. Then,if J = ∅, we may 
hoose any two supplementary proper subspa
es V and W .Anyhow |ψj〉 ∈ V for all j ∈ J . If J 6= ∅, then V = Span(|ψi〉, i ∈ I) is a propersubspa
e of H. Sin
e |ψj〉 ∈ V for all j ∈ J , any supplementary subspa
e W of
V will turn the tri
k.If the algorithm does not exit at stage (ii), then there is a basis in
luded in
{|ψj〉}j∈J . We assume that it 
orresponds to 1 ≤ j ≤ d.Sin
e the algorithm exits with result, �P is not 
lean�, it exits at stage (ix). Weend the algorithm with a 
olle
tion C = {Vk} of subspa
es su
h that⊕k Vk = H.Sin
e we have not exited at stage (vii), we know that C 6= {H}. Hen
e C 
ountsat least two non-trivial elements. We take V = V1 and W =

⊕
k 6=1 Vk.The Vk are dire
t sums of the original Vj = Span(|ψj〉) for 1 ≤ j ≤ d. Hen
e,for 1 ≤ j ≤ d, either |ψj〉 ∈ V or |ψj〉 ∈ W . On the other hand if |ψj〉 is notone of the original basis ve
tors, it was used in the �For� loop. At the end of thisloop, C was then 
ontaining a spa
e V =

⊕
k∈J(j) Vk. And |ψj〉 was in
luded inthis spa
e. This V is then in
luded in one of the �nal Vj and a fortiori either in

V or in W . We have thus proved that when the algorithm exits with a negativevalue we may �nd two supplementary proper subspa
es V and W su
h that forall i ∈ I, either |ψi〉 ∈ V or |ψi〉 ∈ W .Step (d): Sin
e 1|ψj〉 = |ψj〉 for all j, by De�nition 4.3.1 the set of ve
tors
{|ψj〉}j∈J is 
orresponding to the subspa
es {|ψj〉}j∈J . On the other hand, de-noting by ΠV the proje
tion on V parallel to W , we get that ΠV |ψj〉 is 
olinearto |ψj〉 for all j ∈ J . Moreover ΠV is not proportional to 1, so that, by de�nition4.3.2, the set of ve
tors {|ψj〉} does not totally determine H.Finally, as explained in Se
tion 4.3, we want to build our 
leaner POVMs as
E−1(P) where the 
hannel is inverted as a positive map. We need to know some
onditions under whi
h a 
hannel 
an be inverted. This is the purpose of Lemma4.5.4, for whi
h we need the following norms.



102 Clean positive operator valued measuresThe Hilbert-S
hmidt norm on B(H) is de�ned as ‖M‖2
HS = Tr(MM∗). Notably,in any orthogonal basis,

‖M‖2
HS =

∑

1≤i,j≤d
|Mi,j |2.Moreover ‖M‖HS = ‖M∗‖HS .We also de�ne a norm on B(B(H)), spa
e to whi
h the 
hannels belong:

‖O‖1 = sup
{M|‖M‖HS=1}

‖O(M)‖HS .Lemma 4.5.4. If in the Kraus representation of a 
hannel E = {Rα} one of the
Rα ful�ls

‖1−Rα‖HS ≤ ǫ,then
‖1− E‖1 ≤ 2(1 +

√
d)ǫ+ 2ǫ2 = f(ǫ) −→

ǫ→0
0. (4.2)As a 
onsequen
e, if f(ǫ) < 1, then E is invertible (as a map on B(H)) and

‖E−1 − 1‖1 ≤ f(ǫ)/(1 − f(ǫ)). This inverse lets Bsa(H) stable.This in turn shows that for any X ∈ Bsa(H) su
h that λm(X) ≥ 0, the spe
trumof the image by the inverse is bounded through
λm(X) − λM (X)f(ǫ)

√
d/(1 − f(ǫ)) ≤ λm(E−1(X)). (4.3)So that for all X > 0, when ǫ small enough, E−1(X) ≥ 0.Remark: The bound 4.2 is probably far from sharp, but su�
ient for our needs.Proof. Without loss of generality, we assume that

‖1−R1‖HS ≤ ǫ.We write S = R1 − 1H and O = E − 1B(H).Then
O : M 7→ S∗MS + S∗M +MS +

∑

α6=1

R∗
αMRα.
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‖O‖1 = sup

{M|‖M‖HS=1}

∥∥∥∥∥∥
S∗MS + S∗M +MS +

∑

α6=1

R∗
αMRα

∥∥∥∥∥∥
HS

≤ sup
{M|‖M‖HS=1}

‖S∗‖‖M‖‖S‖+ ‖S∗‖‖M‖

+ ‖M‖‖S‖+
∑

α6=1

‖R∗
α‖‖M‖‖Rα‖

= ‖S‖2
HS + 2‖S‖HS +

∑

α6=1

‖Rα‖2
HS .Now, for one thing, by hypothesis, ‖S‖HS ≤ ǫ. Furthermore

∑

α6=1

‖Rα‖2
HS =

∑

α6=1

Tr(R∗
αRα) = Tr(1−R∗

1R1) = −Tr(S∗S + S + S∗).We �nish our proof of 4.2 with the observation that −Tr(S+S∗) ≤ 2
√
d‖S‖HS =

2
√
dǫ.If ‖O‖1 < 1, we know that E = 1 + O is invertible and E−1 =

∑
n≥0(−O)n. Bytaking the norm, ‖E−1 − 1‖1 ≤∑n≥1 ‖O‖n1 = f(ǫ)/(1 − f(ǫ)).Channels stabilize Bsa(H); as E is furthermore invertible, equality of dimensionshows that E(Bsa(H)) = Bsa(H) and E−1(Bsa(H)) = Bsa(H).Now,X is positive, so that ‖X‖HS ≤

√
dλM (X). This implies ‖(E−1−1)(X)‖HS ≤√

dλM (X)f(ǫ)/(1−f(ǫ)), and in turn E−1(X) ≥ X−
√
dλM (X)f(ǫ)/(1−f(ǫ))1.Taking the bottom of the spe
trum ends the proof.We are now ready to prove Theorem 4.5.1.Proof of Theorem 4.5.1. We aim at exhibiting a 
hannel E and a POVM Qsu
h that E(Q) = P and Qi has a wider spe
trum than Pi for some e ∈ E. ThenLemma 4.5.2 proves that Q is stri
tly 
leaner than P, and in turn that P is not
lean.The building blo
ks are the subspa
es supplied by Lemma 4.5.3. Sin
e H is notdetermined by {Supp(Pi)}i∈I , there are two supplementary proper subspa
es Vand W su
h that ea
h rank-one element has support in
luded either in V or in

W .



104 Clean positive operator valued measuresWe shall write expli
itly several matri
es in the forth
oming proof. All of themshall be written on an orthonormal basis {ej}1≤j≤d of H, 
hosen so that
{ej}1≤j≤dim(V) is a basis of V . We shall express the matri
es as two-by-twoblo
k matri
es, the blo
ks 
orresponding to the subspa
es V and V⊥.We study separately the following 
ases:(a) All POVM elements Pi are proportional to the identity, that is Pi = µi1.(b) The POVM is not full-rank, ea
h rank-one element has support either in Vor in V⊥, and all POVM elements are blo
k-diagonal in V and V⊥.(
) Ea
h rank-one element has support either in V or V⊥, and at least onePOVM element is not blo
k-diagonal.(d) At least one rank-one element has support neither in V nor in V⊥.As a sanity 
he
k, let us prove we did not forget any 
ase. Either our POVM isfull-rank, or it is not. In the latter situation, either there is a rank-one elementwhose support is not in
luded in V nor in V⊥ � and we are in 
ase (d) �, orall rank-one elements are in
luded in V or V⊥. Then either there is a POVMelement that is not blo
k-diagonal � and we are in 
ase (
) � or all POVMelements are blo
k-diagonal � and we are in 
ase (b). On the other hand, if P isfull-rank, we may 
hoose the subspa
es V and W any way we like. Notably, if onePOVM element Pi is not proportional to the identity, so that it has non-trivialeigenspa
es, we may 
hoose V su
h that Pi is not blo
k-diagonal in V and V⊥� and we are in 
ase (
). Finally, if on the 
ontrary, all POVM elements areproportional to the identity, we are in 
ase (a).Case (a): If all POVM elements are of the form Pi = µi1, then, for any E = {Rα},we have E(Pi) =

∑
αR

∗
α(µi1)Rα = µi

∑
αR

∗
αRα = µi1 = Pi. No 
hannel 
an
hange the wholly uninformative measurement P.On the other hand, many POVMs 
an be degraded to P. Consider for examplethe POVM given by Q1 = µ1|e1〉〈e1| +

∑d
j=2 |ej〉〈ej | and Qi = µi|e1〉〈e1| for

i > 1. Then Q 6= P, so that P 6≻ Q. Yet, with Rα = |e1〉〈eα| for 1 ≤ α ≤ d, wehave E(Q) = P, and Q ≻ P. Hen
e P is not 
lean.Case (b): Sin
e all rank-one elements are in
luded either in V or in V⊥, we take
W = V⊥. We further 
hoose V to be the smaller of the two subspa
es, thatis dim(V) ≤ d/2 ≤ dim(W). Then there is a matrix A : V → W su
h that
AA∗ = 1V . If all rank-one elements have support in W , we further impose thatat least one of these supports is not in
luded in the kernel of A.
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V and R∗

W as:
R∗

V(ǫ) =

[
1V ǫA
0 0

]
,

R∗
W(ǫ) =

[
0 0
0 1W

]
.Their images are respe
tively V and W .From RV(ǫ) and RW(ǫ), we de�ne the 
hannel Eǫ = {R1(ǫ), R2(ǫ), R3(ǫ)}:

R∗
1(ǫ) =

√
ǫ2

1+ǫ2R
∗
V(ǫ) +

√
1−ǫ2
1+ǫ2R

∗
W(ǫ) =





√
ǫ2

1+ǫ2 1V
√

ǫ4

1+ǫ2A

0
√

1−ǫ2
1+ǫ2 1W



 ,

R∗
2(ǫ) =

√
ǫ2

1+ǫ2R
∗
W(ǫ) =

[
0 0

0
√

ǫ2

1+ǫ2 1W

]
,

R∗
3(ǫ) =

√
1−ǫ2
1+ǫ2R

∗
V(ǫ) −

√
ǫ2

1+ǫ2R
∗
W(ǫ) =





√
1−ǫ2
1+ǫ2 1V

√
ǫ2−ǫ4
1+ǫ2 A

0 −
√

ǫ2

1+ǫ2 1W



 .Sin
e AA∗ = 1V , we have ∑αR
∗
αRα = 1, hen
e these matri
es {Rα} de�ne agenuine 
hannel. A few 
al
ulations show that the e�e
t of this 
hannel is:

Eǫ :

[
B C
C∗ D

]
→
[

1
1+ǫ2

(
B + ǫ(AC∗ + CA∗) + ǫ2ADA∗) 0

0 D

]
. (4.4)Now, for any w ∈ W , we have

[
−ǫAw
w

] [
−ǫAw
w

]∗
=

[
ǫ2Aww∗A∗ −ǫAww∗

−ǫww∗A∗ ww∗

]
,so that for any sequen
e of wj ∈ W , the matrix∑j,k

[
ǫ2Awjw

∗
kA

∗ −ǫAwjw∗
k

−ǫwjw∗
kA

∗ wjw
∗
k

]is non-negative. As any non-negative endomorphism D of W 
an be written∑
j,k wjw

∗
k for appropriate wj , we get that for any non-negative D, the matrix[

ǫ2ADA∗ −ǫAD
−ǫDA∗ D

] is non-negative. Moreover applying equation (4.4) yieldsthat its image by Eǫ is [ 0 0
0 D

].Similarly, if B ∈ B(V) is non-negative, then [ (1 + ǫ2)B 0
0 0

] is non-negativeand its image by Eǫ is [ B 0
0 0

].



106 Clean positive operator valued measuresWe use these observations to de�ne a map (not a 
hannel) Fǫ on the blo
k-diagonal matri
es:
Fǫ :

[
B 0
0 D

]
→
[

(1 + ǫ2)B + ǫ2ADA∗ −ǫAD
−ǫDA∗ D

]
. (4.5)We get that Eǫ(Fǫ(M)) = M for all blo
k-diagonal M and that if furthermore

M ≥ 0 then Fǫ(M) ≥ 0.We now isolate one full-rank element of P, say P1. For all i 6= 1, we de�ne
Qi(ǫ) = Fǫ(Pi). They are non-negative and ful�l Eǫ(Qi(ǫ)) = Pi. De�ne now
Q1(ǫ) = 1 − ∑i6=1Qi(ǫ). The 
losure relation ensures that Eǫ(Q1(ǫ)) = P1.What's more, re
alling that ∑iBi = 1V and ∑iDi = 1W , we obtain:
Q1(ǫ) =

[
1V − (1 + ǫ2)

∑
i6=1 Bi − ǫ2A(

∑
i6=1Di)A

∗ ǫA
∑
i6=1Di

−ǫ∑i6=1DiA
∗ 1W −∑i6=1Di

]

=

[
(1 + ǫ2)B1 + ǫ2AD1A

∗ − 2ǫ21V ǫA(1W −D1)
ǫ(1W −D1)A

∗) D1

]

−→
ǫ→0

[
B1 0
0 D1

]

= P1.Sin
e P1 is positive, this 
onvergen
e entails the non-negativity of Q1(ǫ) for ǫsmall enough. As Q1(ǫ) has been 
hosen so that ∑iQi(ǫ) = 1, we have de�neda genuine POVM Q(ǫ) = {Qi(ǫ)}i∈I su
h that Eǫ(Q(ǫ)) = P, hen
e Q ≻ P.We end the study of this 
ase by 
onsidering a rank-one element Pi = µi|ψi〉〈ψi|whose support is not in the kernel of A. Using formula (4.5), if |ψi〉 ∈ V , weget Tr(Qi(ǫ)) = (1 + ǫ2)Tr(Pi) > Tr(Pi), else |ψi〉 ∈ W and we get Tr(Qi(ǫ)) =
Tr(Pi) + ǫ2 Tr(A|ψi〉〈ψi|A∗) > Tr(Pi). In both 
ases, bigger tra
e implies thatthe spe
trum of Qi(ǫ) is wider than that of Pi and Lemma 4.5.2 yields P 6≻ Q.So that P is not 
lean.Case (
): Sin
e all rank-one elements are in
luded either in V or in V⊥, we take
W = V⊥.We now de�ne the 
hannel Eǫ through:

R1(ǫ) = ǫΠV , R2(ǫ) = ǫΠW = ǫΠV⊥ , R3(ǫ) =
√

1 − ǫ21,where Π denotes here orthogonal proje
tion.For ǫ small enough, by Lemma 4.2, the 
hannel is invertible as a positive map.We then de�ne Qi = E−1
ǫ (Pi).
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essary 
ondition for quasi-qubit POVMs 107Through the formula Eǫ(Qi) = Pi, we 
he
k:
If Pi =

[
B C
C∗ D

]
, then Qi(ǫ) =

[
B (1 − ǫ2)−1C

(1 − ǫ2)−1C∗ D

]
. (4.6)The �rst remark is that the 
losure relation ensures ∑Qi(ǫ) = 1.We also noti
e that, sin
e rank-one elements have support either in V or in

W = V⊥, the rank-one elements are blo
k-diagonal and Qi(ǫ) = Pi .We know that at least one POVM element is not blo
k-diagonal. So that thereis an i ∈ I su
h that Pi is full-rank and C is non-zero (say [C]j,k 6= 0). Then,writing n = dim(V), there is an ǫ+ ∈ (0, 1) su
h that
[Qi(ǫ+)]j,j [Qi(ǫ+)]n+k,n+k = [B]j,j [D]k,k

< 1
1−ǫ2+

|[C]j,k|2 = [Qi(ǫ+)]j,n+k[Qi(ǫ+)]n+k,jso that we 
annot have positivity of Qi(ǫ+).We de�ne the bottom of the spe
trum of the images Qi of the full-rank elementsof P:
λm(ǫ) = inf

i|Pi full−rank
λm(Qi(ǫ)).Equation (4.6) implies that the matrix Qi(ǫ) is a 
ontinuous fun
tion of ǫ for

ǫ ∈ [0, 1). Hen
e its spe
trum is also a 
ontinuous fun
tion of ǫ. A

ordingly, thefun
tion λm(ǫ) is the minimum of a �nite number of 
ontinuous fun
tion of ǫ,therefore λm(ǫ) is 
ontinuous. Its value in 0 is the bottom of the spe
trum of thefull-rank elements of P, that is λm(0) = infi|Pi full−rank λm(Pi(ǫ)) > 0. Moreoverwe have just proved that λm(ǫ+) < 0. Thus, by the intermediate value Theorem,there is an ǫ+ > ǫ > 0 su
h that 0 < λm(ǫ) < λm(0).As λm(ǫ) > 0, the Qi(ǫ) = Eǫ(Pi) for Pi full-rank are non-negative, and validPOVM elements. Likewise, we already know that Qi(ǫ) = Pi is a valid POVMelement if Pi is rank-one. Sin
e we have also shown that ∑Qi(ǫ) = 1, we haveproved that Q(ǫ) is a POVM. Furthermore Eǫ(Q(ǫ)) = P, thus Q(ǫ) ≻ P.As λm(ǫ) < λm(0), there is a full-rank element Pi su
h that λm(Qi(ǫ)) < λm(Pi).Hen
e, using Lemma 4.5.2, we get P 6≻ Q(ǫ) and P is not 
lean.Hen
e λm(ǫ+) ≤ 0 < λm. By the intermediate value Theorem, we 
an �nd an
ǫ0 ∈ (0, ǫ+) su
h that λm(ǫ0) = 0. As 0 ≤ λm(ǫ0) < λm we have proved that
Q(ǫ0) ≻ P and that P is not 
lean.



108 Clean positive operator valued measuresCase (d): As V and W are supplementary we may 
hoose a matrix
A ∈ Mdim(V),d−dim(V)(C) su
h that the non-zero 
olumns of the following blo
kmatrix form an orthogonal (though not orthonormal) basis of W :

R∗
W =

[
0 A
0 1

]
.We know that the image of a matrix is spanned by its 
olumns, so the image of

R∗
W is W .We then de�ne

B(ǫ) =

√

1 −
(

ǫ4

1 − ǫ2
+

ǫ2

(1 − ǫ2)2

)
AA∗. (4.7)This de�nition is valid if the matrix under the square root is positive. Now(

ǫ4

1−ǫ2 + ǫ2

(1−ǫ2)2
) is going to 0 with ǫ, so that

lim
ǫ→0

1−
(

ǫ4

1 − ǫ2
+

ǫ2

(1 − ǫ2)2

)
AA∗ = 1.From this we 
on
lude that 1 −

(
ǫ4

1−ǫ2 + ǫ2

(1−ǫ2)2
)
AA∗ is positive for ǫ smallenough.A

ordingly, we 
an de�ne

R∗
V(ǫ) =

[
B(ǫ) − A

1−ǫ2
0 0

]
.Noti
e that the image of R∗

V is in
luded in V .We may now de�ne our 
hannel Eǫ by
R∗

1(ǫ) = ǫR∗
V(ǫ) =

[
ǫB(ǫ) − ǫ

1−ǫ2A
0 0

] (4.8)
R∗

2(ǫ) = ǫR∗
W =

[
0 ǫA
0 ǫ1

] (4.9)
R∗

3(ǫ) =
√

1 − ǫ2 (R∗
V(ǫ) +R∗

W) =

[ √
1 − ǫ2B(ǫ) − ǫ2√

1−ǫ2A

0
√

1 − ǫ21

]
. (4.10)Noti
e that ∑3

α=1R
∗
α(ǫ)Rα(ǫ) = 1 so that E(ǫ) is indeed a 
hannel.Moreover limǫ→0R3(ǫ) = 1H. Hen
e, for ǫ small enough, ‖R3 − 1‖HS is as smallas we want. So Lemma 4.5.4 allows us to invert the 
hannel Eǫ as a map on
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Bsa(H). We de�ne Q(ǫ) by its elements Qi(ǫ) = E−1

ǫ (Pi). Let us 
he
k that for
ǫ small enough, Q(ǫ) is still a bona �de POVM.First the 
losure relation still holds, as∑i∈I Qi =

∑
i∈I E−1(Pi) = E−1(1). Now

E(1) =
∑

αR
∗
αRα = 1 and taking the inverse E−1(1) = 1.Remains then to be shown that all Qi(ǫ) are non-negative.If Pi is full-rank, then its spe
trum is in
luded in [λm, 1], with λm > 0. If R3 isnear enough of the identity, that is, if ǫ is small enough, the inequality (4.3) thenensures that Qi(ǫ) is still positive.If Pi is rank-one Pi = λi|ψi〉〈ψi|, then by hypothesis |ψi〉 ∈ V or |ψi〉 ∈ W . As

R3 is invertible for ǫ small enough, we may 
onsider |φi〉 non-zero 
olinear to
(R∗

3(ǫ))
−1|ψi〉. Then R∗

3(ǫ)|φi〉 is 
olinear to |ψi〉, and non-zero. Noti
e that |φi〉depends on ǫ, even if we drop it in the notation. Now
R3(ǫ)

∗|ϕ〉 =
√

1 − ǫ2 (R∗
V(ǫ)|ϕ〉 +R∗

W |ϕ〉)
with R∗

V(ǫ)|φ〉 ∈ V and R∗
W |ϕ〉 ∈ W .Sin
e V and W are supplementary, the latter equality implies that R∗

V(ǫ)|ϕ〉 = 0when R∗
3(ǫ)|ϕ〉 ∈ W and R∗

W(ǫ)|ϕ〉 = 0 when R∗
3(ǫ)|ϕ〉 ∈ V . De�nitions (4.8, 4.9,4.10) then yield Eǫ(|φi〉〈φi|) = R∗

W(|φi〉〈φi|)RW if |ψi〉 ∈ W and Eǫ(|φi〉〈φi|) =
R∗

V(ǫ)(|φi〉〈φi|)RV (ǫ) if |ψi〉 ∈ V . In both 
ases, the output matrix is of the form
Eǫ(|φi〉〈φi|) = Ci|ψi〉〈ψi|. So that Qi(ǫ) = (λi/Ci)|φi〉〈φi| and is non-negative.Thus, for ǫ small enough, all Qi(ǫ) are non-negative. We have proved that Q(ǫ)is a POVM. Furthermore, sin
e Eǫ(Q(ǫ)) = P, we know Q(ǫ) ≻ P.We must still show that Q(ǫ) is stri
tly 
leaner P.By hypothesis, there is a rank-one element Pi = λi|ψi〉〈ψi| su
h that |ψi〉 ∈ Wand |ψi〉 6∈ V⊥. As above, we write |φi〉 su
h that Qi(ǫ) = (λi/Ci)|φi〉〈φi|. Westart by proving that Ci is less than one.We write |φi〉 = vi + v⊥i with vi ∈ V and v⊥i ∈ V⊥. Sin
e |ψi〉 ∈ W , we get:

Eǫ(|φi〉〈φi|) = R∗
W(|φi〉〈φi|)RW =

[
Av⊥i
v⊥i

] [
Av⊥i
v⊥i

]∗
.As the latter expression is also equal to Ci|ψi〉〈ψi|, we obtain that Ci is thesquare of the norm of [ Av⊥i

v⊥i

]. Therefore Ci = ‖Av⊥i ‖2 + ‖v⊥i ‖2. Noti
e thatthe squared norm of |φi〉 is 1 = ‖vi‖2 + ‖v⊥i ‖2. On the other hand, the image of
|φi〉 by R∗

V(ǫ) is 0, so that B(ǫ)vi − 1/(1 − ǫ2)Av⊥i = 0. From this we get:
Av⊥i = (1 − ǫ2)B(ǫ)vi.
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e |ψi〉 6∈ V⊥, this equality shows that vi 6= 0. Now, as AA∗ is non-negativewe see by (4.7) that B(ǫ) ≤ 1. A fortiori, for any ǫ > 0, we have (1−ǫ2)B(ǫ) < 1.So that:
‖vi‖ > ‖(1 − ǫ2)B(ǫ)vi‖ = ‖Av⊥i ‖.Thus, we �nally obtain

Ci = ‖Av⊥i ‖2 + ‖v⊥i ‖2 < ‖vi‖2 + ‖v⊥i ‖2 = 1.Hen
e the biggest eigenvalue of Qi(ǫ) = (λi/Ci)|φi〉〈φi|, that is λi/Ci, is stri
tlybigger than the biggest eigenvalue of Pi, that is λi. Lemma 4.5.2 then gives
P 6≻ Q(ǫ), and 
onsequently P is not 
lean.
4.6 Summary for quasi-qubit POVMs and a spe-
ial 
aseWe now gather all our results spe
i�
 to quasi-qubit POVMs.Theorem 4.6.1. A quasi-qubit POVM P is 
lean if and only if it is rank-oneor the supports of its rank-one elements totally determine H. The algorithm ofse
tion 4.3 �gures out if this is the 
ase. Moreover if Q is 
leanness-equivalentto P, the two POVMs are even unitarily equivalent.Proof. Rank-one POVMs are known to be 
lean (Theorem 4.4.11). If the supportof the rank-one elements of P totally determine H, we also know that P is 
leanby Theorem 4.4.1. In both 
ases the theorems state that for these 
lean POVMs,
leanness-equivalen
e is the same as unitary equivalen
e.Conversely, if P is neither rank-one nor have rank-one elements that totallydetermine H, then Theorem 4.5.1 applies and P is not 
lean.Stage (i) of the algorithm 
he
ks whether P is rank-one, in whi
h 
ase it doessay that P is 
lean. If P is not rank-one, the fa
t that it is 
lean or not dependson the support of its rank-one elements. The only remaining positive exit of thealgorithm is at stage (vii) and Lemma 4.4.9 proves that in this 
ase the rank-oneelements of P totally determine H.Conversely, if the algorithm exits with a negative value, Lemma 4.5.3 ensuresthat H is not totally determined.



4.7 Outlook 111To get further feeling of these 
onditions we �nish by making more expli
it thequbit 
ase, where the ni
e thing is that all POVMs are quasi-qubit.Corollary 4.6.2. A POVM P for a qubit is 
lean if and only if it is rank-one or ifone 
an �nd three rank-one elements whose supports are two-by-two non-
olinear(that is if they make a proje
tive frame). For these POVMs 
leanness-equivalen
eis the same as unitary equivalen
e.Proof. A POVM P for a qubit has non-zero elements whi
h 
an be either of rankone, or of rank two, as d = 2. In the latter 
ase, they are full-rank, so we mayapply Theorem 4.6.1 to P.The only question is when do the supports of the rank-one elements totallydetermine H? They do by Proposition 4.4.4 if they in
lude a proje
tive frame,that is a basis and a ve
tor with all 
oe�
ients non-zero in this basis. As thespa
e is of dimension 2, this amounts to saying a basis and a ve
tor non-
olinearto any basis ve
tor, that is three ve
tors two-by-two non-
olinear.Conversely, if we 
annot �nd a proje
tive frame, then we 
an �nd two ve
tors vand w su
h that the support of any rank-one element is v or w, and we 
an applyLemma 4.5.3 to obtain that H is not totally determined by the supports of therank-one elements of P. Thus P is not 
lean.
4.7 OutlookWe have solved the problem of 
leanness for quasi-qubit POVMs. The obvious
ontinuation would be to solve it in the general 
ase. However we do not thinkthat the 
ondition of Theorem 4.4.1 is then ne
essary. Moreover it must be madeexpli
it.The heuristi
s in Se
tion 4.3.2 suggest that, if the support of Pi are in �generalposition� then it is su�
ient for P to be 
lean that ∑i∈I d − dim[Supp(Pi)] ≥
d2−1. Yet, we still need to appropriately de�ne the �general position� for generalsubspa
es.





Chapter 5
Complementary subalgebras
This 
hapter is derived from the arti
le [Kahn and Petz, 2007℄.Abstra
t: Redu
tion of a state of a quantum system to a subsys-tem gives partial quantum information about the true state of thetotal system. In 
onne
tion with optimal state determination for twoqubits, the question was raised about the maximum number of pair-wise 
omplementary redu
tions. The main result of the paper tellsthat the maximum number is 4, that is, if A1,A2, . . . ,Ak are pair-wise 
omplementary (or quasi-orthogonal) subalgebras of the algebra

M4(C) of all 4 × 4 matri
es and they are isomorphi
 to M2(C), then
k ≤ 4. The proof is based on a Cartan de
omposition of SU(4). In theway to the main result, 
ontributions are made to the understandingof the stru
ture of 
omplementary redu
tions.5.1 Introdu
tionThere is an obvious 
orresponden
e between bases of an m-dimensional Hilbertspa
e H and maximal Abelian subalgebras of the algebra A ≡ B(H) ≃ Mm(C).Given a basis, the linear operators diagonal in this basis form a maximal Abelian(or 
ommutative) subalgebra. Conversely if |ei〉〈ei| are minimal proje
tions ina maximal Abelian subalgebra, then (|ei〉)i is a basis. From the points of viewof quantum me
hani
s, a basis 
an be regarded as a measurement. Woottersand Fields [1989℄ argued that two measurements 
orresponding to the bases
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ξ1, ξ2, . . . , ξm and η1, η2, . . . , ηm yield the largest amount of information aboutthe true state of the system in the average if

|〈ξi, ηj〉|2 =
1

m
(1 ≤ i, j ≤ m).Two bases satisfying this 
ondition are 
alled mutually unbiased. Mutuallyunbiased bases are interesting from many point of view, for example in quantuminformation theory, tomography and 
ryptography [Kraus, 1987, Bandyopadhyayet al., 2002, Kimura et al., 2006℄. The maximal number of su
h bases is not knownfor arbitrarym. Nevertheless, (m2−1)/(m−1) = m+1 is a bound being 
he
kedeasily [Parthasarathy, 2004, Pittenger and Rubin, 2004℄.The 
on
ept of mutually unbiased (or 
omplementary) maximal Abelian sub-algebras 
an be extended to more general subalgebras. In parti
ular, a 4-levelquantum system 
an be regarded as the 
omposite system of two qubits,M4(C) ≃

M2(C)⊗M2(C). A density matrix ρ ∈M4(C) des
ribes a state of the 
ompositesystem and ρ determines the �marginal� or redu
ed states on both tensor fa
tors.Sin
e the de
omposition M2(C) ⊗M2(C) is not unique, there are many redu
-tions to di�erent subalgebras, they provide partial quantum information aboutthe 
omposite system. It seems that the redu
tions provide the largest amountof information if the 
orresponding subalgebras are quasi-orthogonal or 
omple-mentary in a di�erent terminology. In [Petz et al., 2006℄ the state ρ was to bedetermined by its redu
tions. 4 pairwise 
omplementary subalgebras were givenexpli
itly, but the question remained open to know if 5 su
h subalgebras exist.The main result of this paper is to prove that at most 4 pairwise 
omplementarysubalgebras exist.5.2 PreliminariesIn this paper an algebrai
 approa
h and language is used. A k-level quantum sys-tem is des
ribed by operators of the algebra Mk(C) of k × k matri
es. Althoughthe essential part of the paper fo
uses on a 4-level quantum system, 
ertain 
on-
epts 
an be presented slightly more generally. Let A be an algebra 
orrespondingto a quantum system. The normalized tra
e τ gives the Hilbert-S
hmidt innerprodu
t 〈A,B〉 := τ(B∗A) on A and we 
an speak about orthogonality withrespe
t to this inner produ
t.The proje
tions in A may be de�ned by the algebrai
 properties P = P 2 = P ∗and the partial ordering P ≤ Q means PQ = QP = P . We 
onsider subalgebrasof A su
h that their minimal proje
tions have the same tra
e. (A maximalAbelian subalgebra and a subalgebra isomorphi
 to a full matrix algebra havethis property.) Let A1 and A2 be two su
h subalgebras of A. Then the following
onditions are equivalent:



5.3 Complementary subalgebras 115(i) If P ∈ A1 and Q ∈ A2 are minimal proje
tions, then TrPQ = TrP TrQ.(ii) The tra
eless subspa
es of A1 and A2 are orthogonal with respe
t to theHilbert-S
hmidt inner produ
t on A.The subalgebras A1 and A2 are 
alled 
omplementary (or quasi-orthogonal) ifthese 
onditions hold. This terminology was used in the maximal Abelian 
ase[A

ardi, 1984, Kraus, 1987, Ohya and Petz, D., 2004, Parthasarathy, 2004℄ andthe 
ase of non
ommutative subalgebras appeared in [Petz et al., 2006℄. Moredetails about 
omplementarity are presented in [Petz, 2006℄.Given a density matrix ρ ∈ A, its redu
tion ρ1 ∈ A1 to the subalgebra A1 ⊂ Ais determined by the formula
Tr ρA = Tr ρ1A (A ∈ A1).In most 
ases ρ1 is given by the partial tra
e but an equivalent way is based onthe 
onditional expe
tation [P. Bus
h and Mittelstaedt, 1991℄. The orthogonalproje
tion E : A → A1 is 
alled 
onditional expe
tation. ρ1 = E(ρ) and

E(AB) = AE(B) (A ∈ A1, B ∈ A)is an important property.The situation we are interested in is the algebra M4(C). In the paper M4(C) isregarded as a Hilbert spa
e with respe
t to the inner produ
t
〈A,B〉 =

1

4
TrA∗B = τ(A∗B). (5.1)

M4(C) has a natural orthonormal basis:
σi ⊗ σj (0 ≤ i, j ≤ 3),where σ1, σ2, σ3 are the Pauli matri
es and σ0 is the identity I:

σ0 :=

[
1 0
0 1

]
, σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
.5.3 Complementary subalgebrasAny subalgebra A1 of M4(C) isomorphi
 to M2(C) 
an be written CI ⊗M2(C)in some basis, hen
e there is a unitary operator W su
h that A1 = W (CI ⊗

M2(C))W ∗.
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tion is organized as follows: we �rst give a 
hara
terization of the Wsu
h that A1 is 
omplementary to A0 = W (CI ⊗ M2(C))W ∗ (Theorem 5.3.1for a general form and Theorem 5.3.2 for a form spe
i�
 to our problem). These
ond stage 
onsists in proving, using the form of W , that any su
h A1 has�a large 
omponent� along B = M2(C) ⊗ CI. Theorem 5.3.4 gives the pre
iseformulation. It entails that no more than four 
omplementary subalgebras 
onbe found (Theorem 5.3.5), whi
h was our initial aim, and hen
e is our 
on
lusion.Although our main interest is M4(C), our �rst theorem is more general. Eijstand for the matrix units.Theorem 5.3.1. Let W =
∑n

i,j=1 Eij ⊗Wij ∈ Mn(C) ⊗Mn(C) be a unitary.The subalgebra W (CI⊗Mn(C))W ∗ is 
omplementary to CI⊗Mn(C) if and onlyif {Wij : 1 ≤ i, j ≤ n} is an orthonormal basis in Mn(C) (with respe
t to theinner produ
t 〈A,B〉 = TrA∗B).Proof. Assume that TrB = 0. Then the 
ondition
W (I ⊗A∗)W ∗ ⊥ (I ⊗B)is equivalently written as

TrW (I ⊗A)W ∗(I ⊗B) =

n∑

i,j=1

TrWijAW
∗
ijB = 0.This implies

n∑

i,j=1

TrWijAW
∗
ijB = (TrA)(TrB) . (5.2)We 
an transform this into another equivalent 
ondition in terms of the leftmultipli
ation and right multipli
ation operators. For A,B ∈ Mn(C), the op-erator RA is the right multipli
ation by A and LB is the left multipli
ationby B: RA, LB : Mn(C) → Mn(C), RBX = XB, LAX = AX . Equivalently,

LA|e〉〈f | = |Ae〉〈f | and RB|e〉〈f | = |e〉〈B∗f |. From the latter de�nition one 
andedu
e that TrRALB = TrA TrB. Let |ei〉 be a basis. Then |ei〉〈ej | form abasis in Mn(C) and
TrRALB =

∑

ij

〈|ei〉〈ej |, RALB|ei〉〈ej |〉 =
∑

ij

〈|ei〉〈ej |, |Bei〉〈A∗ej |〉

=
∑

ij

〈ei, Bei〉〈ej , Aej〉.The equivalent form of (5.2) is the equation
n∑

i,j=1

〈Wij , RALBWij〉 = TrA TrB = TrRALB



5.3 Complementary subalgebras 117for every A,B ∈ Mn(C). Sin
e the operators RALB linearly span the spa
e ofall linear operators on Mn(C), we 
an 
on
lude that Wij form an orthonormalbasis.We shall 
all any unitary satisfying the 
ondition in the previous theorem a usefulunitary and we shall denote the set of all n2 × n2 useful unitaries by i(n2).We try to �nd a useful 4 × 4 unitary W , that is we require that the subalgebra
W

[
A 0
0 A

]
W ∗ (A ∈M2(C))is 
omplementary to A0 ≡ CI ⊗M2(C). We shall use the Cartan de
omposi-tion of W given by

W = (L1 ⊗ L2)N(L3 ⊗ L4) ,where L1, L2, L3 and L4 are 2 × 2 unitaries and
N = exp(αiσ1 ⊗ σ1) exp(βiσ2 ⊗ σ2) exp(γiσ3 ⊗ σ3) (5.3)is a 4 × 4 unitary in a spe
ial form, see equation (11) in [Zhang et al., 2003℄ or[D'Alessandro and Albertini, 2005℄. The subalgebra

W (CI ⊗M2(C))W ∗ = (L1 ⊗ L2)N(CI ⊗M2(C))N∗(L∗
1 ⊗ L∗

2)does not depend on L3 and L4, therefore we may assume that L3 = L4 = I.The orthogonality of CI ⊗M2(C) and W (CI ⊗M2(C))W ∗ does not depend on
L1 and L2. Therefore, the equations

TrN(I ⊗ σi)N
∗(I ⊗ σj) = 0should be satis�ed, 1 ≤ i, j ≤ 3. We know from Theorem 5.3.1 that these
onditions are equivalent to the property that the matrix elements of N form abasis.A simple 
omputation gives that

N =

3∑

i=0

ci σi ⊗ σi ,where
c0 = cosα cosβ cos γ + i sinα sinβ sin γ ,
c1 = cosα sinβ sin γ + i sinα cosβ cos γ ,
c2 = sinα cosβ sin γ + i cosα sinβ cos γ ,
c3 = sinα sinβ cos γ + i cosα cosβ sin γ .
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N =





c0 + c3 0 0 c1 − c2
0 c0 − c3 c1 + c2 0
0 c1 + c2 c0 − c3 0

c1 − c2 0 0 c0 + c3





=





eiγ cos(α− β) 0 0 ieiγ sin(α− β)
0 e−iγ cos(α+ β) ie−iγ sin(α+ β) 0
0 ie−iγ sin(α + β) e−iγ cos(α+ β) 0

ieiγ sin(α− β) 0 0 eiγ cos(α− β)



 .(5.4)Sin
e the 2 × 2 blo
ks form a basis (see Theorem 5.3.1), we have
(c0 + c3)(c0 − c3) + (c0 − c3)(c0 + c3) = 0 ,

(c1 − c2)(c1 + c2) + (c1 + c2)(c1 − c2) = 0 ,

|c0 + c3|2 + |c0 − c3|2 = 1 ,

|c1 + c2|2 + |c1 − c2|2 = 1 .These equations give
|c0|2 = |c1|2 = |c2|2 = |c3|2 =

1

4and we arrive at the following solution. Two of the values of cos2 α, cos2 β and
cos2 γ equal 1/2 and the third one may be arbitrary. Let N be the set of allmatri
es su
h that the parameters α, β and γ satisfy the above 
ondition, inother words two of the three values are of the form π/4+kπ/2. (k is an integer.)The 
on
lusion of the above argument 
an be formulated as follows.Theorem 5.3.2. W ∈ M(4) if and only if W = (L1 ⊗ L2)N(L3 ⊗ L4), where
Li are 2 × 2 unitaries (1 ≤ i ≤ 4) and N ∈ N .We now turn to the �se
ond stage�, that is proving that any su
h W (CI⊗M2(C)is far from being 
omplementary to M2(C) ⊗ CI. To get a quantitative result(Theorem 5.3.4), re
all that we 
onsider M4(C) as a Hilbert spa
e with Hilbert-S
hmidt inner produ
t (see (5.1)). For the proof of Theorem 5.3.4, we shall needthe following obvious lemma:Lemma 5.3.3. Let K1 and K2 be subspa
es of a Hilbert spa
e K and denote by
Pi : K → Ki the orthogonal proje
tion onto Ki (i = 1, 2). If ξ1, ξ2, . . . , ξr is anorthonormal basis in K1 and η1, η2, . . . , ηs is su
h a basis in K2, then

TrP1P2 =
∑

i,j

|〈ξi, ηj〉|2.



5.3 Complementary subalgebras 119Theorem 5.3.4. Let A0 ≡ CI ⊗M2(C) and B ≡M2(C)⊗CI. Assume that thesubalgebra A1 ⊂M2(C)⊗M2(C) is isomorphi
 to M2(C) and 
omplementary to
A0. If P is the orthogonal proje
tion onto the tra
eless subspa
e of A1 and Q isthe orthogonal proje
tion onto the tra
eless subspa
e of B, then

TrPQ ≥ 1.Proof. There is a unitary W = (L1 ⊗L2)N su
h that A1 = WA0W ∗, L1, L2 are
2 × 2 unitaries and N ∈ M(4). In the tra
eless subspa
e of B,

(L1σiL
∗
1) ⊗ I (1 ≤ i ≤ 3)form a basis, while

(L1 ⊗ L2)N(I ⊗ σi)N
∗(L∗

1 ⊗ L∗
2) (1 ≤ i ≤ 3)is a basis in the tra
eless part of A1. Therefore, we have to show

∑

ij

∣∣∣〈(L1⊗L2)N(I⊗σi)N∗(L∗
1⊗L∗

2), L
∗
1σjL1⊗I〉

∣∣∣
2

=
(
τ(N(I⊗σi)N∗(σj⊗I))

)2

≥ 1.In the 
omputation we 
an use the 
onditional expe
tation E : M4(C) → B.Re
all that it is de�ned as the linear operator whi
h sends σi ⊗ σj to σi ⊗ I, forall 0 ≤ i, j ≤ 3.Two of its main properties are that it preserves τ , and that E(AB) = E(A)Bwhen B ∈ B. Hen
e
τ
(
N(I ⊗ σi)N

∗(σj ⊗ I)
)

= τ
(
E
(
N(I ⊗ σi)N

∗
)
(σj ⊗ I)

)
.Elementary 
omputation in the basis σi ⊗ σj gives the following formulas:

E(N(I ⊗ σ1)N
∗) = sin 2β sin 2γ (σ1 ⊗ I),

E(N(I ⊗ σ2)N
∗) = sin 2α sin 2γ (σ2 ⊗ I),

E(N(I ⊗ σ3)N
∗) = sin 2α sin 2β (σ2 ⊗ I),where α, β and γ are from (5.3) and (5.4). Therefore,

TrPQ = sin2 2β sin2 2γ + sin2 2α sin2 2γ + sin2 2α sin2 2β.Re
all that two of the parameters α, β and γ have rather 
on
rete values, hen
eone of the three terms equals 1, and the proof is 
omplete.Our main results says that there are at most four pairwise 
omplementary sub-algebras of M4(C) if they are assumed to be isomorphi
 to M2(C). Given su
h afamily of subalgebras, we may assume that the above de�ned A0 belongs to thefamily.



120 Complementary subalgebrasTheorem 5.3.5. Assume that A0 ≡ CI ⊗ M2(C), A1, . . . , Ar are pairwise
omplementary subalgebras of M4(C) and they are isomorphi
 to M2(C). Then
r ≤ 3.Proof. Let Pi be the orthogonal proje
tion onto the tra
eless subspa
e of Ai from
M4(C), 1 ≤ i ≤ r. Under these 
onditions ∑iPi ≤ I. As in Theorem 5.3.4, let
Q the orthogonal proje
tion on the tra
eless subspa
e of B ≡M2(C) ⊗ CI. Theestimate

3 = TrQ ≥ Tr(P1 + P2 + · · · + Pr)Q =

r∑

i=1

TrPiQ ≥ ryields the proof.
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Chapter 6
Quantum lo
al asymptoti
normality for qubits
This 
hapter is derived from the arti
le [Guµ  and Kahn, 2006℄.Abstra
t: We 
onsider n identi
ally prepared qubits and study theasymptoti
 properties of the joint state ρ⊗n. We show that for allindividual states ρ situated in a lo
al neighborhood of size 1/

√
n of a�xed state ρ0, the joint state 
onverges to a displa
ed thermal equilib-rium state of a quantum harmoni
 os
illator. The pre
ise meaning ofthe 
onvergen
e is that there exist physi
al transformations Tn (tra
epreserving quantum 
hannels) whi
h map the qubits states asymp-toti
ally 
lose to their 
orresponding os
illator state, uniformly overall states in the lo
al neighborhood.A few 
onsequen
es of the main result are derived. We show thatthe optimal joint measurement in the Bayesian set-up is also op-timal within the pointwise approa
h. Moreover, this measurement
onverges to the heterodyne measurement whi
h is the optimal jointmeasurement of position and momentum for the quantum os
illator.A problem of lo
al state dis
rimination is solved using lo
al asymp-toti
 normality.



124 Quantum lo
al asymptoti
 normality for qubits6.1 Introdu
tionQuantum measurement theory brings together the quantum world of wave fun
-tions and in
ompatible observables with the 
lassi
al world of random phenomenastudied in probability and statisti
s. These �elds have 
ome ever 
loser due tothe te
hnologi
al advan
es making it possible to perform measurements on in-dividual quantum systems. Indeed, the engineering of a novel quantum state istypi
ally a

ompanied by a veri�
ation pro
edure through whi
h the state, orsome aspe
t of it, is re
onstru
ted from measurement data [S
hiller et al., 1996℄.An important example of su
h a te
hnique is that of quantum homodyne tomog-raphy in quantum opti
s [Vogel and Risken, H., 1989℄. This allows the estimationwith arbitrary pre
ision of the whole density matrix [D'Ariano et al., 1995, Leon-hardt et al., 1995, 1996, Artiles et al., 2005℄ of a mono
hromati
 beam of light byrepeatedly measuring a su�
iently large number of identi
ally prepared beams[Smithey et al., 1993, S
hiller et al., 1996, Zavatta et al., 2004℄.In 
ontrast to this �semi-
lassi
al� situation in whi
h one �xed measurement isperformed repeatedly on independent systems, the state estimation problem be-
omes more �quantum� if one is allowed to 
onsider joint measurements on nidenti
ally prepared systems with joint state ρ⊗n. It is known [Gill and Massar,2000℄ that in the 
ase of unknown mixed states ρ, joint measurements performstri
tly better than separate measurements in the sense that the asymptoti
 
on-vergen
e rate of the optimal estimator ρ̂n to ρ goes in both 
ase as C/√n witha stri
tly smaller 
onstant C in the 
ase of joint measurements.Let us look at this problem in more detail: we dispose of a number of n 
opiesof an unknown state ρ and the task is to estimate ρ as well as possible. The �rststep is to spe
ify a 
ost fun
tion d(ρ̂n, ρ) whi
h quanti�es the deviation of theestimator ρ̂n from the true state. Then one tries to devise a measurement andan estimator whi
h minimizes the mean 
ost or risk in statisti
s jargon:
R(ρ, ρ̂n) := 〈d(ρ̂n(X), ρ)〉 ,with the average taken over the measurement results X . Sin
e this quantity stilldepends on the unknown state one may 
hoose a Bayesian approa
h and try tooptimize the average risk with respe
t to some prior distribution π over the states
Rn,π =

∫
R(ρ, ρ̂n)π(dρ).Results of this type have been obtained in both the pure state 
ase [Jones, 1994,Massar and Popes
u, 1995, Latorre et al., 1998, Fisher et al., 2000, Hannemannet al., 2002b, Bagan et al., 2002, Emba
her and Narnhofer, 2004, Bagan et al.,2005℄ and the mixed state 
ase [Cira
 et al., 1999, Vidal et al., 1999, Ma
k et al.,
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tion 1252000, Keyl and Werner, 2001, Bagan et al., 2004
, Zy
zkowski and Sommers,2005, Bagan et al., 2006℄. However most of these papers use methods of grouptheory that depend on the symmetry of the prior distribution and the form ofthe 
ost fun
tion, and thus 
annot be extended to arbitrary priors.In the pointwise approa
h [Hayashi, 2002a, Gill and Massar, 2000, Barndor�-Nielsen and Gill, R., 2000, Matsumoto, 2002, Barndor�-Nielsen et al., 2003,Hayashi and Matsumoto, 2004℄ one tries to minimize R(ρ, ρ̂n) for ea
h �xed
ρ. We 
an argue that even for a 
ompletely unknown state, as n be
omes largethe problem 
eases to be global and be
omes a lo
al one as the error in estimat-ing the state parameters is of the order 1√

n
. For this reason it makes sense toparametrize the state as ρ := ρ(θ) with θ belonging to some set in Rk and torepla
e the original 
ost with its quadrati
 approximation at θ:

d(θ, θ̂n) = (θ − θ̂n)
TG(θ)(θ − θ̂n),where G is a k × k positive, real symmetri
 weight matrix.Although seemingly di�erent, the two approa
hes 
an be 
ompared [Gill, 2005a℄,and in fa
t for large n the prior distribution π of the Bayesian approa
h should be-
ome in
reasingly irrelevant and the optimal Bayesian estimator should be 
loseto the maximum likelihood estimator. An instan
e of this asymptoti
 equivalen
eis proven in Subse
tion 6.7.2.In this 
hapter we 
hange the perspe
tive and instead of trying to devise optimalmeasurements and estimators for a parti
ular statisti
al problem, we 
on
entrateour attention on the family of joint states ρ(θ)⊗n whi
h is the primary �
arrier� ofstatisti
al information about θ. As suggested by the lo
ality argument sket
hedabove, we 
onsider a neighborhood of size 1√

n
around a �xed but arbitrary pa-rameter θ0, whose points 
an be written as θ = θ0 +u/

√
n with u ∈ R

k the �lo
alparameter� obtained by zooming into the smaller and smaller balls by a fa
tor of√
n. Very shortly, the prin
iple of lo
al asymptoti
 normality says that for large

n the lo
al family
ρun := ρ

(
θ0 + u/

√
n
)⊗n

, ‖u‖ < C,
onverges to a family of displa
ed Gaussian states φu of a of a quantum system
onsisting of a number of 
oupled quantum and 
lassi
al harmoni
 os
illators.The term lo
al asymptoti
 normality 
omes from mathemati
al statisti
s [van derVaart, 1998℄ where the following result holds. We are given independent variables
X1, . . . , Xn ∈ X drawn from the same probability distribution P θ0+u/

√
n over Xdepending smoothly on the unknown parameter u ∈ Rk. Then the statisti
al in-formation 
ontained in our data is asymptoti
ally identi
al with the information
ontained in a single normally distributed Y ∈ Rk with mean u and varian
e
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I(θ0)

−1, the inverse Fisher information matrix. This means that for any statis-ti
al problem we 
an repla
e the original data X1, . . . , Xn ∈ X by the simplerGaussian one Y with the same asymptoti
 results!For the sake of 
larity let us 
onsider the 
ase of qubits with states parametrizedby their Blo
h ve
tors ρ(−→r ) = 1
2 (1 +−→r −→σ ) where −→σ = (σx, σy , σz) are the Paulimatri
es. De�ne now the two-dimensional family of identi
al spin states obtainedby rotating the Blo
h ve
tor −→r0 = (0, 0, 2µ− 1) around an axis in the x-y plane

ρun =

[
U

(
u√
n

)(
µ 0
0 1 − µ

)
U

(
u√
n

)∗]⊗n
, u ∈ R

2, (6.1)with unitary U(v) := exp(i(vxσx + vyσy)) and 1
2 < µ ≤ 1.Consider now a quantum harmoni
 os
illator with position and momentum op-erators Q and P on L2(R) satisfying the 
ommutation relations [Q,P ] = i1. Wedenote by {|n〉, n ≥ 0} the eigenbasis of the number operator and de�ne thethermal equilibrium state

φ0 = (1 − p)

∞∑

k=0

pk|k〉〈k|,where p = 1−µ
µ . We translate the state φ0 by using the displa
ement operators

D(z) = exp(za∗ − z̄a) with z ∈ C whi
h map the ground state |0〉 into the
oherent state |z〉:
φu := D(

√
2µ− 1αu)φ0D(

√
2µ− 1αu)∗, (6.2)where αu := −uy + iux.Theorem 6.1.1. Let ρun be the family of states (6.1) on the Hilbert spa
e (C2

)⊗nand φu the family (6.2) of displa
ed thermal equilibrium states of a quantumos
illator. Then for ea
h n there exist quantum 
hannels (tra
e preserving CPmaps)
Tn : M

((
C

2
)⊗n)→ T (L2(R)),

Sn : T (L2(R)) →M
((

C
2
)⊗n)

,
(6.3)with T (L2(R)) the tra
e-
lass operators, su
h that

lim
n→∞

sup
u∈I2

‖φu − Tn (ρun) ‖1 = 0,

lim
n→∞

sup
u∈I2

‖ρun − Sn (φu) ‖1 = 0.
(6.4)for an arbitrary bounded interval I ⊂ R.
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tion 127Let us make a few 
omments on the signi�
an
e of the above result.i) The �
onvergen
e� (6.4) of the qubit states holds in a strong way (uniformly in
u) with dire
t statisti
al and physi
al interpretation. Indeed the 
hannels Tn and
Sn represent physi
al transformations whi
h are analogues of randomizations of
lassi
al data [van der Vaart, 1998℄. The meaning of (6.4) is that the two quantummodels are asymptoti
ally equivalent from a statisti
al point of view.ii) Indeed for any measurement M on L2(R) we 
an 
onstru
t the measurement
M ◦Tn on the spin states by �rst mapping them to the os
illator spa
e and thenperforming M . Then the optimal solution of any statisti
al problem 
on
erningthe states ρun 
an be obtained by solving the same problem for φu and pullingba
k the optimal measurement M as above. We illustrate this in Se
tion 6.7 forthe estimation problem and for hypothesis testing.iii) The proposed te
hnique may be useful for appli
ations in the domain of 
oher-ent spin states [Holtz and Hanus, 1974℄ and squeezed spin states [Kitagawa andUeda, 1993℄. Indeed, it has been known sin
e Dyson [1956℄ that n spin- 12 parti
lesprepared in the spin up state | ↑〉⊗n behave asymptoti
ally as the ground stateof a quantum os
illator when 
onsidering the �u
tuations of properly normalizedtotal spin 
omponents in the dire
tions orthogonal to z. Our Theorem extendsthis to spin dire
tions making an �angle� u/

√
n with the z axis, as well as tomixed states, and gives a quantitative expression to heuristi
 pi
tures 
ommonin the physi
s literature (see Se
tion 6.3). We believe that a similar approa
h 
anbe followed in the 
ase of spin squeezed states and 
ontinuous time measurementswith feedba
k 
ontrol [Geremia et al., 2004℄.Next Se
tion gives an introdu
tion to the statisti
al ideas motivating our work.In Se
tion 6.3 we give a heuristi
 pi
ture of our main result based on the total spinve
tor representation of spin 
oherent states familiar in the physi
s literature.The proof of Theorem 6.1.1 extends over the Se
tions 6.4,6.5,6.6 and uses methodsof group theory and some ideas from [Hayashi and Matsumoto, 2004, Ohya andPetz, D., 2004, A

ardi and Ba
h, A., 1987, 1985℄.Se
tion 6.7 des
ribes a few appli
ations of our main result. In Subse
tion 6.7.2 we
ompute the lo
al asymptoti
 minimax risk for the statisti
al problem of qubitstate estimation. An estimation s
heme whi
h a
hieves this risk asymptoti
allyis optimal in the pointwise approa
h. We show that this �gure of merit 
oin
ideswith the risk of the heterodyne measurement and that it is a
hieved by theoptimal Bayesian measurement for the SU(2)-invariant prior [Bagan et al., 2006,Hayashi and Matsumoto, 2004℄. This proves the asymptoti
 equivalen
e of theBayesian and pointwise approa
hes.
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al asymptoti
 normality for qubitsIn Subse
tion 6.7.1 we 
ontinue the investigation of the optimal Bayesian mea-surement and show that it 
onverges lo
ally to the heterodyne measurement onthe os
illator, whi
h is an optimal joint measurement of position and momentum[Holevo, 1982℄.Another appli
ation is the problem dis
riminating between two states ρ±u
n whi
hasymptoti
ally 
onverge to ea
h other at rate 1/

√
n. In this 
ase the optimalmeasurement for the parameter u is not optimal for the testing problem, showingin parti
ular that the quantum Fisher information in general does not en
ode allstatisti
al information.6.2 Lo
al asymptoti
 normality in statisti
s andits extension to quantum me
hani
sIn this Se
tion we introdu
e some statisti
al ideas whi
h provide the motivationfor deriving the main result.Quantum statisti
al problems 
an be seen as a game between a statisti
ian orphysi
ist in our 
ase, and Nature. The latter tries to 
odify some informationby preparing a quantum system in a state whi
h depends on some parameter uunknown to the former. The physi
ist tries to guess the value of the parame-ter by devising measurements and estimators whi
h work well for all 
hoi
es ofparameters that Nature may make. In a Bayesian set-up Nature may build herstrategy by randomly 
hoosing a state with some prior distribution. In order tosolve the problem the physi
ist is allowed to use the laws of quantum physi
sas well as those of 
lassi
al sto
hasti
s and statisti
al inferen
e. In parti
ular hemay transform the quantum state by applying an arbitrary quantum 
hannel Tand obtain a new family T (ρu). In general su
h transformation goes with a lossof information so one should have a good reason to do it but there are non trivialsituations when no su
h loss o

urs [Petz and Jen£ová, 2006℄, that is when thereexists a 
hannel S whi
h reverses the e�e
t of T restri
ted to the states of interest

S(T (ρu)) = ρu. If this is the 
ase the we 
onsider the two families of states ρuand T (ρu) as statisti
ally equivalent.In statisti
s su
h transformations are 
alled randomizations and a useful parti
-ular example is a statisti
, whi
h is just a fun
tion of the data whi
h we want toanalyze. When this statisti
 
ontains all information about the unknown param-eter we say that it is su�
ient, be
ause knowing the value of this statisti
 alonesu�
es and given this information, the rest of the data is useless. For example if
X1, . . . Xn ∈ {0, 1} are results of independent 
oin tosses with a biased 
oin, then
X̄ = 1

n

∑
iXi is su�
ient statisti
 and may be used for any statisti
al de
isionwithout loss of e�
ien
y.
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s and its extension to quantum me
hani
s 129Quantum randomizations through quantum 
hannels allows us to 
ompare seem-ingly di�erent families of states and thus opens the possibility of solving a par-ti
ular problem by 
asting it in a more familiar setting. The example of this
hapter is that of state estimation for n identi
al 
opies of a state whi
h 
anbe 
ast asymptoti
ally into the problem of estimating the 
enter of a quantumGaussian whi
h has a rather simple solution [Holevo, 1982℄. The term �asymptot-i
ally� means that for large n we 
an �nd quantum 
hannels Tn, Sn whi
h almostmap the families of states into ea
h other as in equation (6.4).The se
ond main idea that we want to introdu
e is that of lo
al asymptoti
normality. Ba
k in the 
oin toss example we have that X̄ is a good estimator ofthe probability µ of obtaining a 1 and by the Central Limit Theorem the error
X̄ − µ has asymptoti
ally a Gaussian distribution

√
n(X̄ − µ) ; N(0, 1/µ(1 − µ)),in parti
ular the mean error is 〈(X̄ − µ)2〉 = 1/(nµ(1 − µ)). Now, if for ea
h nthe unknown parameter µ is restri
ted to a lo
al neighborhood of a �xed µ0 ofsize 1/

√
n, one might expe
t an improvement in the error be
ause we know moreabout the parameter and we 
an use that information to built better estimators.However this is not entirely true. Indeed if we write µ = µ0 + u/

√
n then theestimator of the lo
al parameter u is

ûn =
√
n(X̄ − µ0) ; N(u, 1/µ0(1 − µ0))whi
h says that the problem of estimating µ in the lo
al parameter model is asdi�
ult as the original problem, i.e. the varian
e of the estimator is the same.The reason for this is that the additional information about the lo
ation of theparameter is nothing new as we 
ould guess that dire
tly form the data with veryhigh probability. Thus without 
hanging the di�
ulty of the original problem we
an look at it lo
ally and then we see that it transforms into that of estimating the
enter of a Gaussian with �xed varian
e N(u, 1/µ0(1 − µ0)), whi
h is a 
lassi
alstatisti
al problem.In general we 
an formulate the following prin
iple: given X1, . . . , Xn ∈ X inde-pendent with distribution P θ0+u/

√
n depending smoothly on the unknown param-eter u ∈ Rk, then asymptoti
ally this model is statisti
ally equivalent (there existexpli
it randomizations in both dire
tions) with that of a single draw Y ∈ Rkfrom the Gaussian distribution N(u, I(θ0)

−1) with �xed varian
e equal to theinverse of the Fisher information matrix [van der Vaart, 1998℄.In the quantum 
ase we repla
e the randomizations by quantum 
hannels andthe Gaussian limit model by its quantum equivalent whi
h in the simplest 
ase isa family of displa
ed thermal states of a quantum os
illator (see Theorem 6.1.1),but in general is a Gaussian state on a number of 
oupled quantum and 
lassi-
al os
illators, with 
anoni
al variables satisfying general 
ommutation relations[Petz, 1990℄.
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al asymptoti
 normality for qubitsA simple extension of Theorem 6.1.1 is obtained by adding an additional lo
alparameter t ∈ R for the density matrix eigenvalues su
h that µ = µ0 + t/
√
n.This leads to a Gaussian limit model in whi
h we are given a quantum os
illa-tor is in state φu and additionally, a 
lassi
al Gaussian variable with distribu-tion N(t, 1/µ0(1 − µ0)). The meaning of this quantum-
lassi
al 
oupling is thefollowing: asymptoti
ally the problem of estimating the eigenvalues de
ouplesfrom that of estimating the dire
tion of the Blo
h ve
tor and be
omes a 
lassi-
al statisti
al problem (identi
al with the 
oin toss dis
ussed above), while thatof estimating the dire
tion remains quantum and 
onverges to the estimationof a Gaussian state of a quantum os
illator. Bagan et al. [2006℄, Hayashi andMatsumoto [2004℄ have also observed this de
oupling.6.3 The big ball pi
ture of 
oherent spin statesIn this se
tion we give a heuristi
 argument for why Theorem 6.1.1 holds whi
hwill guide our intuition in later 
omputations.It is 
ustomary to represent the state of two dimensional quantum system by ave
tor −→r in the Blo
h sphere su
h that the 
orresponding density matrix is

ρ =
1

2
(1 + −→r −→σ ) =

1

2
(1 + rxσx + ryσy + rzσz),where σi represent the Pauli matri
es and satisfy the 
ommutation relations

[σi, σj ] = 2iǫijkσk. In parti
ular if −→r = (0, 0,±1) then the state is given bythe spin up | ↑〉 and respe
tively spin down | ↓〉 basis ve
tors of C2, and the z-
omponent of the spin σz takes value ±1. As for the x and y spin 
omponents,ea
h one may take the values ±1 with equal probabilities su
h that on average
〈σx〉 = 〈σy〉 = 0 but the varian
es are 〈σ2

x〉 = 〈σ2
y〉 = 1. Moreover σx and σy donot 
ommute and thus 
annot be measured simultaneously.What happens with the Blo
h sphere pi
ture when we have more spins? Considerfor the beginning n identi
al spins prepared in a 
oherent spin up state | ↑〉⊗n,then we 
an think of the whole as a single spin system and de�ne the globalobservables L(n)

i =
∑n
k=1 σ

(k)
i for i ∈ x, y, z, where σ(k)

i is the spin 
omponentin the dire
tion i of the k's spin. Intuitively, we 
an represent the joint stateby a ve
tor of length n pointing to the north pole of a large sphere as in Figure6.1. However due to the quantum 
hara
ter of the spin observables, the x and y
omponents 
annot be equal to zero and it is more instru
tive to think in termsof a ve
tor whose tip lies on a small blob of the size of the un
ertainties in x and
y, sitting on the top of the sphere. Exa
tly how large is this blob? By using theCentral Limit Theorem we 
on
lude that in the limit n→ ∞ the distribution of
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Figure 6.1: (Color online) Quasi
lassi
al representation of n spin up qubitsthe ��u
tuation operator�
S(n)
x :=

1√
2n
L(n)
x =

1√
2n

n∑

k=1

σ(k)
x ,
onverges to a N(0, 1/2) Gaussian, that is 〈Sx〉 = 0 and 〈S2

x〉 ≈ 1/2, and similarlyfor the 
omponent S(n)
y . The width of the blob is thus of the order √n in both

x and y dire
tions.Now, the two �u
tuations do not 
ommute with ea
h other
[S(n)
x , S(n)

y ] =
i

n
L(n)
z ≈ i1, (6.5)whi
h is the well know 
ommutation relation for 
anoni
al variables of the quan-tum os
illator. In fa
t the quantum extension of the Central Limit Theorem[Ohya and Petz, D., 2004℄ makes this more pre
ise

lim
n→∞

⊗n〈↑ |
p∏

k=1

S
(n)
ik

|↑〉⊗n = 〈Ω,
p∏

k=1

Xik Ω〉, ∀ik ∈ {x, y},where Xx := Q and Xy := P satisfy [Q,P ] = i1 and Ω is the ground state of theos
illator.The above des
ription is not new in physi
s and goes ba
k to Dyson's [1956℄ the-ory of spin-wave intera
tion. More re
ently squeezed spin states [Kitagawa andUeda, 1993℄ for whi
h the varian
es 〈S2
x〉 and 〈S2

y〉 of spin variables are di�erenthave been found to have important appli
ations various �elds su
h as magnetom-etry [Geremia et al., 2004℄, entanglement between many parti
les [Sto
kton et al.,2003℄ The 
onne
tion with su
h appli
ations will be dis
ussed in more detail inSe
tion 6.7.
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al asymptoti
 normality for qubitsWe now rotate all spins by the same small angle for ea
h parti
le as in Figure6.2. As we will see, it makes sense to s
ale the angle by the fa
tor 1√
n
i.e. to

Figure 6.2: (Color online) Rotated 
oherent state of n qubits
onsider
ψu
n =

[
exp

(
i√
n

(uxσx + uyσy)

)
|↑〉
]⊗n

, u ∈ R
2.Indeed for su
h angles the z 
omponent of the ve
tor will 
hange by a smallquantity of the order √

n ≪ n so the 
ommutation relations (6.5) remain thesame, while the un
ertainty blob will just shift its 
enter su
h that the newaverages of the renormalized spin 
omponents are 〈S(n)
x 〉 ≈ −

√
2uy and 〈S(n)

y 〉 ≈√
2ux. All in all, the spins state 
onverges to the 
oherent state |αu〉 of theos
illator where αu = (−uy + iux) ∈ C and in general

|α〉 := exp
(
−|α|2/2

) ∞∑

j=0

αj

√
j!

|j〉,with |j〉 representing the j's energy level.We 
onsider now the 
ase of qubits in individual mixed state µ| ↑〉〈↑ |+(1−µ)| ↓
〉〈↓ | with < 1/2µ < 1. Then the �length� of Lz is n(2µ − 1) but the size of theblob is the same (see Figure 6.3). However the 
ommutation relations of Sx and
Sy do not reprodu
e those of the harmoni
 os
illator and we need to renormalizethe spin as

S(n)
x :=

1√
2(2µ− 1)n

Lx, S(n)
y :=

1√
2(2µ− 1)n

Ly.The limit state will be a Gaussian state of the quantum os
illator with varian
e
〈Q2〉 = 〈P 2〉 = 1

2(2µ−1) <
1
2 , that is a thermal equilibrium state

φ0 = (1 − p)
∞∑

k=0

pk|k〉〈k|, p =
1 − µ

µ
.
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Figure 6.3: (Color online) Quasi
lassi
al representation of n qubit mixed statesFinally the rotation by exp
(

i√
n
(uxσx + uyσy)

) produ
es a displa
ement of thethermal state su
h that 〈Q〉 = −
√

2(2µ− 1)uy and 〈P 〉 =
√

2(2µ− 1)ux.6.4 Lo
al asymptoti
 normality for mixed qubitstatesWe give now a rigorous formulation of the heuristi
s presented in the previousSe
tion. Let
ρ0 =

(
µ 0
0 1 − µ

) (6.6)be a density matrix on C2 with µ > 1/2, representing a mixture of spin upand spin down states, and for every u = (ux, uy) ∈ R2 
onsider the state ρu =
U(u) ρ0 U(u)∗where

U(u) := exp(i(uxσx + uyσy)) =

(
cos |u| −e−iϕ sin |u|

eiϕ sin |u| cos |u|

)
,with ϕ = Arg(−uy + iux). We are interested in the asymptoti
 behavior as

n→ ∞ of the family
Fn :=

{
ρun =

(
ρu/

√
n
)⊗n

,u ∈ I2

}
, (6.7)where I = [−a, a] is a �xed �nite interval.The main result is that Fn is asymptoti
ally normal, meaning that it 
onvergesas n→ ∞ to a limit family Gn := {φu,u ∈ I2} of Gaussian states of a quantum
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 normality for qubitsos
illator with 
reation and annihilation operators satisfying [a, a∗] = 1. Let
φ0 := (1 − p)

∑

k=0

pk|k〉〈k|, (6.8)be a thermal equilibrium state with |k〉 denoting the k's energy level of theos
illator and p = 1−µ
µ < 1. For every u ∈ I2 de�ne
φu := D(

√
2µ− 1αu)[φ0]D(−

√
2µ− 1αu), (6.9)where D(z) := exp(za∗−z∗a) is the displa
ement operator, mapping the va
uumve
tor |0〉 to the 
oherent ve
tor |z〉 and αu = (−uy + iux) .The exa
t formulation of the 
onvergen
e is given in Theorem 6.1.1. Thus thestate ρun of the n qubits whi
h depends on the unknown parameter u 
an bemanipulated by applying a quantum 
hannel Tn su
h that its image 
onverges tothe Gaussian state φu, uniformly in u ∈ I2. Conversely by using the 
hannel Sn,the state φu 
an be mapped to a joint state of n qubits whi
h is 
onverges to ρununiformly in u ∈ I2. By Stinespring's theorem we know that the 
hannels are ofthe form

T (ρ) = TrK (V ρV ∗) ,

S(φ) = TrK′ (WφW ∗) ,where the partial tra
es are taken over some an
illary Hilbert spa
es K,K′ and
V :

(
C

2
)⊗n → L2(R) ⊗K,

W : L2 (R) →
(
C

2
)⊗n ⊗K′,are isometries (V ∗V = 1 and W ∗W = 1).Our task is now to identify the isometries Vn and Wn implementing the 
hannels

Tn and respe
tively Sn satisfying (6.4). The �rst step towards identifying these
Vn is to use group representations methods so as to partially (blo
k) diagonalizeall the ρun simultaneously.6.4.1 Blo
k de
ompositionIn this Subse
tion we show that the states ρun have a blo
k-diagonal form givenby the de
omposition of the spa
e (C2

)⊗n into irredu
ible representations of therelevant symmetry groups. The main point is that for large n the weights ofthe di�erent blo
ks 
on
entrate around the representation with total spin jn =
n(µ− 1/2) .
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e (C2
)⊗n 
arries a unitary representation πn of the one spin symmetrygroup SU(2) with πn(u) = u⊗n for any u ∈ SU(2), and a unitary representationof the symmetri
 group S(n) given by the permutation of fa
tors

πn(τ) : v1 ⊗ · · · ⊗ vn 7→ vτ−1(1) ⊗ · · · ⊗ vτ−1(n), τ ∈ S(n).As [πn(u), πn(τ)] = 0 for all u ∈ SU(2), τ ∈ S(n) we have the de
omposition
(
C

2
)⊗n

=

n/2⊕

j=0,1/2

Hj ⊗Hj
n, (6.10)where the dire
t sum runs over all positive (half)-integers j up to n/2, and for ea
h�xed j, Hj

∼= C2j+1 is a irredu
ible representation of SU(2) with total angularmomentum J2 = j(j + 1), and Hj
n
∼= Cnj is the irredu
ible representation of thesymmetri
 group S(n) with nj =
(

n
n/2−j

)
−
(

n
n/2−j−1

). In parti
ular the densitymatrix ρun is invariant under permutations and 
an be de
omposed as a mixtureof �blo
k� density matri
es
ρun =

n/2⊕

j=0,1/2

pn(j)ρ
u
j,n ⊗ 1

nj
, (6.11)with probability distribution pn(j) given by [Bagan et al., 2006℄:

pn(j) :=
nj

2µ− 1
(1 − µ)

n
2 −j

µ
n
2 +j+1

(
1 − p2j+1

)
, (6.12)where p := 1−µ

µ . A key observation is that for large n and in the relevant rangeof j's, pn(j) is essentially a binomial distribution
Bn,µ(k) :=

(
n

k

)
µk (1 − µ)

n−k
, k = 0, . . . , n.Indeed we 
an rewrite pn(j) as

pn(j) := Bn,µ(n/2 + j) ×K(j, n, µ) (6.13)where the fa
tor K(j, n, µ) is given by
K(j, n, µ) :=

(
1 − p2j+1

) n+ (2(j − jn) + 1)/(2µ− 1)

n+ (j − jn + 1)/µand jn := n(µ − 1/2). As Bn,µ is the distribution of the sum of n independentBernoulli variables with individual distribution (1− µ, µ) over {0, 1}, we 
an usethe 
entral limit Theorem to 
on
lude that its mass 
on
entrates around theaverage µn with a width of order √n, in other words of any 0 < ǫ < 1/2 we have
lim
n→∞

n1/2+ǫ∑

p=−n1/2+ǫ

Bn,µ(µn+ p) = 1. (6.14)
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al asymptoti
 normality for qubitsLet us denote by Jn,ǫ the set of values j of the total angular momentum of nqubits whi
h lie in the interval [jn − n1/2+ǫ, jn + n1/2+ǫ]. Then for large n, thefa
tor K(j, n, µ) is 
lose to 1 uniformly over j ∈ Jn,ǫ and from formulas (6.13),(6.14) we 
on
lude that pn(j) 
on
entrates asymptoti
ally in an interval of order
n1/2+ǫ around jn:

lim
n→∞

pn(Jn,ǫ) = 1. (6.15)This justi�es the big ball pi
ture used in the previous se
tion.6.4.2 Irredu
ible representations of SU(2)Here we remind the reader some details about the representation πj of SU(2) on
Hj . Let σx, σy, σz be the Pauli matri
es and denote πj(σl) = Jj,l for l = x, y, zthen there exists an orthonormal basis {|j,m〉,m = −j, . . . , j} of Hj su
h that

Jj,z |j,m〉 = m|j,m〉.Moreover, with Jj,± := Jj,x ± iJj,y we have
Jj,+|j,m〉 =

√
j −m

√
j +m+ 1 |j,m+ 1〉,

Jj,−|j,m〉 =
√
j −m+ 1

√
j +m |j,m− 1〉.With these notations and p = 1−µ

µ as before, the state ρ0j,n 
an be written as[Hayashi and Matsumoto, 2004℄
ρ0j,n = cj(p)

j∑

m=−j
pj−m|j,m〉〈j,m|,where the normalizing fa
tor is cj(p) = (1 − p)/(1 − p2j+1). The rotated blo
kstates 
an be obtained by applying the unitary transformation

ρuj,n = Uj(u/
√
n) ρ0j,n Uj(u/

√
n)∗,with Uj(u) = exp (i(uxJj,x + uyJj,y)). Finally, we de�ne the ve
tors

|j,w〉 := Uj(w)|j, j〉 (6.16)whi
h will be used in later 
omputations, and noti
e that their 
oordinates withrespe
t to the |j,m〉 basis are given by [Hayashi and Matsumoto, 2004℄:
〈j,m|j,w〉 =

√(
2j

j +m

)
ζj−m(1 − |ζ|2) j+m

2 . (6.17)where ζ = eiϕw sin |w| with ϕw = Arg(−wy + iwx).
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hannels Tn 1376.5 Constru
tion of the 
hannels TnFor ea
h irredu
ible representation spa
e Hj we de�ne the isometry Vj : Hj →
L2(R) by

Vj : |j,m〉 7→ |j −m〉 (6.18)where {|n〉, n ≥ 0} represents the energy eigenbasis of the quantum os
illator witheigenfun
tions ψn(x) = Hn(x)e
−x2/2/

√√
π2nn! ∈ L2(R). Using the de
omposi-tion (6.10) we put together the di�erent blo
ks we 
onstru
t for ea
h n ∈ N the�global� isometry

Vn :=

n/2⊕

j=0,1/2

Vj ⊗ 1 :

n/2⊕

j=0,1/2

Hj ⊗ C
nj → L2(R) ⊗Kn,where Kn :=

⊕n/2
j=0,1/2 C

nj . By tra
ing over Kn we obtain the 
hannel Tn(ρ) :=

TrKn(VnρV
∗
n ) mapping a joint state of n spins into a state of the quantum os-
illator. This 
hannel satis�es the 
onvergen
e 
ondition (6.4) as shown by theestimate

‖Tn(ρun) − φu‖1 =

∥∥∥∥∥∥

n/2∑

j=0,1/2

pn(j)Vjρ
u
n,jV

∗
j − φu

∥∥∥∥∥∥
1

≤
n/2∑

j=0,1/2

pn(j)
∥∥Vjρun,jV ∗

j − φu
∥∥

1

≤ 2
∑

j /∈Jn,ǫ

pn(j) + sup
u∈I2

max
j∈Jn,ǫ

‖Vjρuj,nV ∗
j − φu‖1,where the �rst term on the right side 
onverges to 0 by (6.15), and for these
ond one we apply the following Proposition 6.5.1 whi
h is the major te
hni
al
ontribution of this 
hapter.Proposition 6.5.1. The following uniform 
onvergen
e holds

lim
n→∞

sup
u∈I2

max
j∈Jn,ǫ

‖Vjρuj,nV ∗
j − φu‖1 = 0.where Jn,ǫ is the set de�ned above equation (6.15).The proof of the Proposition requires a few ingredients whi
h in our opinion areimportant on their own for whi
h reason we formulate them apart and refer torelevant papers for the proofs.
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al asymptoti
 normality for qubitsTheorem 6.5.2. [Ohya and Petz, D., 2004℄ Let a, b ∈M(Cd), satisfying Tr(a) =
Tr(b) = 0 and de�ne

L(a, b) = exp(ia) exp(ib) − exp(ia+ ib) exp

(
1

2
[a, b]

)
.On (C2

)⊗n we de�ne the �u
tuation operator
Fn(a) =

1√
n

∑
ai,where ai = 1⊗· · ·⊗a⊗· · ·⊗1 with a a
ting on the i's position of the tensor prod-u
t. Noti
e that exp(iFn(a)) = exp(ia/

√
n)⊗n and √

n[Fn(a), Fn(b)] = Fn([a, b]).Then
lim
n→∞

‖L (Fn(a), Fn(b)) ‖ = 0.The 
onvergen
e is uniform over ‖a‖, ‖b‖ < C for some 
onstant C.This Theorem is a key ingredient of the quantum 
entral limit Theorem [Ohyaand Petz, D., 2004℄ and it is not surprising that it plays an important role in ourquantum lo
al asymptoti
 normality result whi
h is an extension of the latter.We apply the Theorem to two unitaries of the form U(u) = exp(i(uxσx+uyσy)).We thus get information on the e�e
t of the Uj(u) on the highest weight ve
tors
|j, j〉 of an irredu
ible representation.Corollary 6.5.3. For any unitary U and state τ let Ad[U ](τ) := UτU∗ and
onsider the rotated states

τ(u,v, j, n) := Ad

[
Uj

(
u√
n

)
Uj

(
v√
n

)]
(|jj〉〈jj|)

τ(u + v, j, n) := Ad

[
Uj

(
u + v√

n

)]
(|jj〉〈jj|) .Then the following uniform 
onvergen
e holds

lim
n→∞

sup
u,v∈I2

sup
j∈Jn,ǫ

‖τ(u,v, j, n) − τ(u + v, j, n)‖1 = 0.Proof. First noti
e that
[uxσx + uyσy , vxσx + vyσy] = 2(uxvy − uyvx)σz .Applying Theorem 6.5.2 to U(u), we get

∥∥∥∥∥U
(

u√
n

)⊗n
U

(
v√
n

)⊗n
− U

(
u + v√

n

)⊗n
exp

(
uxvy − uyvx√

n
Fn(σz)

)∥∥∥∥∥ −−−−→
n→∞

0.
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hannels Tn 139NowThe following Lemma is a slight strengthening of a theorem by Hayashi andMatsumoto [2004℄.Lemma 6.5.4. The uniform 
onvergen
e holds
lim
n→∞

sup
u∈I2

sup
j∈Jn,ǫ

∥∥∥∥VjUj
(

u√
n

)
|jj〉 −|

√
2µ− 1αu〉

∥∥∥ = 0,where |z〉 denotes a 
oherent state of the os
illator, and αu := (−uy + iux) .Moreover for any sequen
e jn → ∞ we have
lim
n→∞

∥∥Vjnρ0jnV
∗
jn − φ0

∥∥
1

= 0. (6.19)The 
onvergen
e holds uniformly over all sequen
es jn su
h that jn/n > c forsome �xed 
onstant c > 0, so in parti
ular for jn ∈ Jn,ǫ.Proof. We �rst prove the easier relation (6.19). As both density matri
es arediagonal we get
∥∥Vjnρ0jnV

∗
jn − φ0

∥∥
1

=
(1 − p)p2jn+1

1 − p2jn+1

2jn∑

k=0

pk −

(1 − p)

∞∑

k=2jn+1

pk ≤ p2jn+1

1 − p2jn+1
+ p2jn+1 → 0,as n→ ∞.As for the �rst relation, let us denote |u, j, n〉 := VjUj(

u√
n
)|j, j〉, then by (6.17)and (6.18) we have

〈k|u, j, n〉 =

√(
2j

k

)
(sin(|u|/√n)eiφ)k(cos(|u|/√n))2j−k.Now, the following asymptoti
 relations hold uniformly over j ∈ Jn,ǫ :

sin

( |u|√
n

)k
=

( |u|√
n

)k (
1 +O(|u|2n−1)

)
,

cos

( |u|√
n

)2j−k
= exp(− (2µ− 1)|u|2

2
)
(
1 +O(|u|2n−ǫ)

)
,

(
2j

k

)
=

((2µ− 1)n)k

k!
(1 +O(n−ǫ)),
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al asymptoti
 normality for qubitsand thus the 
oe�
ients 
onverge uniformly to those of the 
orresponding 
oher-ent states as n→ ∞

〈k|u, j, n〉 → exp

(
− (2µ− 1)|u|2

2

) (
eiφ|u|√2µ− 1

)k
√
k!

.Proof of Proposition 6.5.1. The main idea is to noti
e that φ0 is a thermalequilibrium state of the os
illator and 
an be generated as a mixture of 
oherentstates with 
entered Gaussian distribution over the displa
ements:
φ0 =

1√
2πs2

∫
e−|z|2/2s2 |z〉〈z| d2z. (6.20)The easiest way to see this is to think of the os
illator states in terms of theirWigner fun
tions. Indeed, the Wigner fun
tion of a 
oherent state is

Wz(q, p) = exp
(
−(q −

√
2Re z)2 − (p−

√
2Im z)2

)
,and thus the state given by (6.20) has Wigner fun
tion whi
h is the 
onvolutionof two 
entered Gaussians whi
h is again a 
entered Gaussian with varian
e equalto the sum of their varian
es 2s2 + 1/2 whi
h is equal to the varian
e of φ0 for

s2 := p/(2(1 − p)). Similarly,
φu =

1

2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|z〉〈z|) d2z. (6.21)Let us �rst remark that
∥∥VjnρujnV

∗
jn − φu

∥∥
1
≤

∥∥ρujn − V ∗
jnφ

uVjn
∥∥

1
+

‖φu − Pjnφ
uPjn‖1 ,where Pjn = VjnV

∗
jn is the proje
tion onto the image of Vjn , and

lim
n→∞

sup
jn∈Jn,ǫ

sup
u∈I2

‖φu − Pjnφ
uPjn‖1 = 0,be
ause jn → ∞ uniformly and Pjn 
onverges to the identity in strong operatortopology (a tightness property). Thus it is enough to show that

lim
n→∞

sup
jn∈Jn,ǫ

sup
u∈I2

∥∥ρujn − V ∗
jnφ

uVjn
∥∥

1
= 0.Now

∥∥ρujn − V ∗
jnφ

uVjn
∥∥

1
=

∥∥∥∥Ad

[
Ujn

(
u√
n

)] (
ρ0jn
)
− V ∗

jnφ
uVjn

∥∥∥∥
1

≤
∥∥ρ0jn − V ∗

jnφ
0Vjn

∥∥
1

+
∥∥∥∥Ad

[
Ujn

(
u√
n

)] (
V ∗
jnφ

0Vjn
)
− V ∗

jnφ
uVjn

∥∥∥∥
1

.
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tion of the 
hannels Tn 141The �rst term on the right side of the inequality 
onverges to zero by Lemma6.5.4, uniformly for any sequen
e (jn) su
h that jn ∈ Jn,ǫ and does not dependon u. Using (6.20) and (6.21) we bound the se
ond term by
1

s
√

2π

∫
e−|z|2/2s2‖∆(u, z, jn)‖1d

2zwhere the operator ∆(u, z, jn) is given by
∆(u, z, jn) := Ad

[
Ujn

(
u√
n

)](
V ∗
jn |z〉〈z|Vjn

)
−

V ∗
jn

∣∣∣z +
√

2µ− 1αu

〉〈
z +

√
2µ− 1αu

∣∣∣VjnWe analyze the expression under the integral. Let z̃ ∈ R2 be su
h that αz̃ =
z/

√
2µ− 1, then

∥∥∥∥Ad

[
Ujn

(
u√
n

)] (
V ∗
jn |z〉〈z|Vjn

)
− V ∗

jn |z +
√

2µ− 1αu〉〈z +
√

2µ− 1αu|Vjn
∥∥∥∥

1

≤
∥∥∥∥Ad

[
Ujn

(
u√
n

)
Ujn

(
z̃√
n

)]
(|jnjn〉〈jnjn|) − Ad

[
Ujn

(
u + z̃√
n

)]
(|jnjn〉〈jnjn|)

∥∥∥∥
1

+

∥∥∥∥VjnAd

[
Ujn

(
z̃√
n

)]
(|jnjn〉〈jnjn|)V ∗

jn − |z〉〈z|
∥∥∥∥

1

+

∥∥∥∥VjnAd

[
Ujn

(
u + z̃√
n

)]
(|jnjn〉〈jnjn|)V ∗

jn − |z +
√

2µ− 1αu〉〈z +
√

2µ− 1αu|
∥∥∥∥

1

.By Corollary 6.5.3, the �rst term on the right side 
onverges to zero uniformlyin (u, jn) ∈ I2 ×Jn,ǫ. By Lemma 6.5.4 we have that the last two terms 
onvergeto zero uniformly in (u, jn) ∈ I2 × Jn,ǫ. Thus if we denote
Fn(z) := sup

jn∈Jn,ǫ

sup
u∈I2

‖∆(u, z, jn)‖1then 0 ≤ Fn(z) ≤ 2, limn→∞ Fn(z) = 0 for all z ∈ R2, and by the Lebesguedominated 
onvergen
e theorem we get
lim
n→∞

1

s
√

2π

∫
e−|z|2/2s2Fn(z)d

2z = 0.This implies the statement of the Proposition 6.5.1.
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al asymptoti
 normality for qubits6.6 Constru
tion of the inverse 
hannel SnTo 
omplete our proof of asymptoti
 equivalen
e as de�ned by (6.4), we mustnow exhibit the inverse 
hannel Sn whi
h maps the displa
ed thermal states φuof the os
illator into approximations of the rotated spin states. As the latter areblo
k diagonal with weights pn(j) as de�ned in equation (6.12) , it is natural tolook for Sn of the form
Sn(φ) =

n/2⊕

j=0,1/2

pn(j)S
j
n(φ) ⊗ 1

nj
,where Sjn are 
hannels with outputs in Hj . Moreover be
ause Vj : Hj → L2(R)is an isometry we 
an 
hoose Sjn su
h that

Sjn
(
VjρV

∗
j

)
= ρ, (6.22)for all density matri
es ρ onHj . This property does not �x the 
hannel 
ompletelybut it is su�
ient for our purposes.Theorem 6.6.1. The following holds

lim
n→∞

sup
u∈I2

‖Sn(φu) − ρun‖1 = 0.Proof. As both ρun and φu are blo
k-diagonal we may de
ompose their distan
eas
‖Sn(φu) − ρun‖1 =

n/2∑

j=0,1/2

pn(j)‖Sjn(φu) − ρuj,n‖1

≤
∑

j 6∈Jn,ǫ

2pn(j) +
∑

j∈Jn,ǫ

pn(j)‖Sjn(φu) − Sjn
(
Vjρ

u
j,nV

∗
j

)
‖1

+
∑

j∈Jn,ǫ

pn(j)‖Sjn
(
Vjρ

u
j,nV

∗
j

)
− ρuj,n‖1

≤ 2
∑

j 6∈Jn,ǫ

pn(j) +
∑

j∈Jn,ǫ

pn(j)‖φu − Vjρ
u
j,nV

∗
j ‖1,where we have used at the last line that Sjn is a 
ontra
tion and property (6.22)of Sjn. Now the �rst sum is going to 0 by (6.15) and the se
ond sum is alsouniformly going to 0 by use of Proposition 6.5.1.



6.7 Appli
ations 1436.7 Appli
ations6.7.1 Lo
al asymptoti
 equivalen
e of the optimal Bayesianmeasurement and the heterodyne measurementIn this subse
tion we begin a 
omparison of the pointwise (lo
al) point of viewwith the global one used in the Bayesian approa
h. The result is that the optimal
SU(2) 
ovariant measurement [Bagan et al., 2006, Hayashi and Matsumoto, 2004℄
onverges lo
ally to the optimal measurement for the family of displa
ed Gaussianstates whi
h is a heterodyne measurement [Holevo, 1982℄. Together with theresults on the asymptoti
 lo
al minimax optimality of this measurement, this
loses a 
ir
le of ideas relating the di�erent optimality notions and the relationsbetween the optimal measurements.Let us re
all what are the ingredients of the state estimation problem in theBayesian framework [Bagan et al., 2006℄. We 
hoose as 
ost fun
tion the �delitysquared F (ρ, σ)2 = Tr(

√√
ρσ

√
ρ)2 and �x a prior prior distribution π over allstates in C

2 whi
h is invariant under the SU(2) symmetry group. Given n iden-ti
al systems ρ⊗n we would like to �nd a measurement Mn - whose out
ome isthe estimator ρ̂n - whi
h maximizes
Rπ,n :=

∫
〈F (ρ̂n, ρ)

2〉π(dρ).By the SU(2) invarian
e of π, the optimal measurement 
an be 
hosen to be
SU(2) 
ovariant i.e.

UMn(dσ)U∗ = Mn(U
∗dσU),and 
an be des
ribed as follows. First we use the de
omposition (6.10) to makea �whi
h blo
k� measurement and obtain a result j and the 
onditional state ρj,nas in (6.11). This part will provide us the eigenvalues of the estimator. Next weperform blo
k-wise the 
ovariant measurement Mj,n(d

−→s ) = mj,n(
−→s )d−→s with

mj,n(
−→s ) := (2j + 1)Uj(

−→s )∗|j〉〈j|Uj(−→s ) ⊗ 1jwhose result is a unit ve
tor −→s where U(−→s ) is a unitary rotating the ve
tor state
|−→s 〉 to | ↑〉. The 
omplete estimator is then ρ̂n = 1

2 (1 + 2j
n
−→s −→σ ).We pass now to the des
ription of the heterodyne measurement for the quantumharmoni
 os
illator. This measurement has out
omes u ∈ R2 and is 
ovariantwith respe
t to the translations indu
ed by the displa
ement operatorsD(z) su
hthat H(du) = h(u)du with

h(u) := (2µ− 1)D(−
√

2µ− 1αu)|0〉〈0|D(
√

2µ− 1αu).
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al asymptoti
 normality for qubitsUsing Theorem 6.1.1 we 
an map H into a measurement on the n-spin systemas follows: �rst we perform the whi
h blo
k step as in the 
ase of the SU(2)-
ovariant measurements. Then we map ρj,n into an os
illator state using theisometry Vj (see (6.18)), and subsequently we perform H . The result u willde�ne our estimator for the lo
al state, i.e.
ρ̂n = U

(
u√
n

)(
1
2 + j

n 0

0 1
2 − j

n

)
U

(
u√
n

)∗
. (6.23)We denote by Hn the resulting measurement with values in the states on C2.The next Theorem shows that in a lo
al neighborhood of a �xed state ρ0, the

SU(2)-
ovariant measurementMn and the heterodyne type measurement Hn areasymptoti
ally equivalent in the sense that the probability distributions P (Mn, ρ)and P (Hn, ρ) are 
lose to ea
h other uniformly over all lo
al states ρ su
h that
‖ρ− ρ0‖1 ≤ C√

n
for a �xed but arbitrary 
onstant C <∞.Theorem 6.7.1. Let ρ0 be as in (6.6), and let

Bn(I) =
{
ρv/

√
n : v ∈ I2

}
, , |I| <∞be a lo
al family of states around ρ0. Then

lim
n→∞

sup
ρ∈Bn(I)

‖P (Mn, ρ) − P (Hn, ρ)‖1 = 0Proof. Note �rst that both P (Mn, ρ) and P (Hn, ρ) are distributions over theBlo
h sphere and the marginals over the length of the Blo
h ve
tors are identi
albe
ause by 
onstru
tion the �rst step of both measurements is the same. Then
‖P (Mn, ρ) − P (Hn, ρ)‖1 =
∑

j

pn(j)

∫
|Tr(ρj,n(mj,n(

−→s ) − hj,n(
−→s )))| d−→s .A

ording to (6.15) we 
an restri
t the summation to the interval Jn,ǫ around

j = n(µ − 1
2 ). By Theorem 6.1.1 we 
an repla
e (whenever needed) the lo
alstates ρv/√nj,n by their limits in the os
illator spa
e φv with an asymptoti
allyvanishing error, uniformly over v ∈ I2.We make now the 
hange of variable −→s → u where u ∈ R2 belongs to the ball

|u| < 2
√
nπ, and is the smallest ve
tor su
h that U ( u√

n

)
= U(−→s ).The density of the SU(2) estimator with respe
t to the measure du is

mj,n(u) :=
2j + 1

n
Uj

(
u√
n

)∗
|j〉〈j|Uj

(
u√
n

)
J

(
u√
n

)
,
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ations 145where J is the determinant of a Ja
obian related with the 
hange of variablessu
h that J(0) = 1.Similarly the density of the homodyne-type estimator be
omes
hj,n(u) :=

∑

k∈N

V ∗
j h

(
u + 2k

√
nπ

u

|u|

)
Vj |Jk,n(u)|,be
ause displa
ements in the same dire
tion whi
h di�er by multiples of 2

√
nπlead to the same unitary on the qubits. Here Jk,n(u) is again the determinant ofthe Ja
obian of the map from the k-th ring to the disk, in parti
ular J0,n(u) = 1.The integral be
omes then

∫

|u|≤2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n (mj,n(u) − hj,n(u))
)∣∣∣ du.We bound this integral by the sum of two terms, the �rst one being

∫

|u|≤2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n (mj,n(u) − h̃j(u))
)∣∣∣ du,where h̃j(u) is just the term with k = 0 in hj,n(u). By Lemma 6.5.4, for any �xed

u we have mj,n(u) → h(u) uniformly over j ∈ Jn,ǫ. Using similar estimates asin Lemma 6.5.4 it 
an be shown that the fun
tion under the integral is boundedby a �xed integrable fun
tion g(u) uniformly over v ∈ I2, and then we 
an usedominated 
onvergen
e to 
on
lude that the integral 
onverges to 0 uniformlyover v ∈ I2 and j ∈ Jn,ǫ.The se
ond integral is
∫

|u|≤2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n (h̃j(u) − hj,n(u))
)∣∣∣ du,whi
h is smaller than

∫

|u|>2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n h (u)
)∣∣∣ du,whi
h 
onverges uniformly to 0. This 
an be seen by repla
ing the states with

φv whi
h are �
on�ned� to a �xed region of the size I2 in the phase spa
e, whilethe terms h(u) are Gaussians lo
ated at distan
e at least 2π
√
n from the origin.Putting these two estimates together we obtain the desired result.
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al asymptoti
 normality for qubitsRemark. The result in the above theorem holds more generally for all statesin a lo
al neighborhood of ρ0 but for the proof we need a slightly more generalversion of Theorem 6.1.1 where the eigenvalues of the density matri
es are not�xed but allowed to vary in a lo
al neighborhood of (µ, 1−µ). This result will bepresented in a future work 
on
erning the general 
ase of d-dimensional states.6.7.2 The optimal Bayes measurement is also lo
allyasymptoti
 minimaxIn this subse
tion we will introdu
e some ideas from the pointwise approa
h tostate estimation. We show that the measurement whi
h is known to be optimalfor a uniform prior in the Bayesian set-up, is also asymptoti
ally optimal in thepointwise sense.Using the jargon of mathemati
al statisti
s, we will 
all quantum statisti
al ex-periment (model) [Petz and Jen£ová, 2006℄ a family {ρθ ∈ M(Cd) : θ ∈ Θ} ofdensity matri
es indexed by a parameter belonging to a set Θ. The main exam-ples of quantum statisti
al experiments 
onsidered so far are that of n identi
alqubits
F :=

{
ρ⊗n : ρ ∈M(C2)

}
,the lo
al model

FI
n :=

{
ρun =

(
ρu/

√
n
)⊗n

,u ∈ I2

}
,and its �limit� model

GI := {φu,u ∈ I2},where I = [−a, a], and ρun and φu are de�ned by (6.1) and (6.2). More generallywe 
an repla
e the square I2 by an arbitrary region K in the parameter spa
eand obtain:
GK := {φu,u ∈ K ⊂ R

2}.We shall also make use of
G := {φu,u ∈ R

2}.A natural 
hoi
e of distan
e between density matri
es is the �delity square
F (ρ, σ)2 =

[
Tr (

√
ρσ

√
ρ)

1/2
]2
,whi
h is lo
ally quadrati
 in �rst order approximation, i.e.

F (ρun, ρ
v
n)

2 ≈ 1

n
‖u− v‖2.
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ations 147As we expe
t that reasonable estimators are in a lo
al neighborhood of the truestate we will repla
e the �delity square by the lo
al distan
e
d(u, û) = ‖û− u‖2.and de�ne the risk of a measurement-estimator pair as RM (u, û) = 〈d(u, û)〉,keeping in mind the fa
tor 1/n relating the risks expressed in lo
al and globalparameters.Similarly to the Bayesian approa
h, we are interested in estimators whi
h havesmall risk everywhere in the parameter spa
e and we de�ne a worst 
ase �gureof merit 
alled minimax risk.De�nition 6.7.2. The minimax risk of a quantum statisti
al experiment E overthe parameter spa
e Θ is de�ned as

C(E) = inf
û

sup
u∈Θ

RM (u, û). (6.24)where the in�mum is taken over all measurements and estimators (M, û).The minimax risk tells us how di�
ult is the model and thus we expe
t that if twomodels are �
lose� to ea
h other then their minimax risks are almost equal. The�statisti
al distan
e� between quantum experiments is de�ned in a natural waywith dire
t physi
al interpretation and su
h a problem has been already addressedby Che�es et al. [2003℄ for the 
ase of a quantum statisti
al experiment 
onsistingof a �nite family of pure states.De�nition 6.7.3. Let E = {ρθ ∈ M(Cd) : θ ∈ Θ} and F = {τθ ∈ M(Cp) :
θ ∈ Θ} be two quantum statisti
al experiments (models) with the same parameterspa
e Θ. We de�ne the dis
repan
ies

δ(E ,F) = inf
T

sup
θ∈Θ

‖T (ρθ) − τθ‖1,

δ(F , E) = inf
S

sup
θ∈Θ

‖ρθ − S(τθ)‖1,where the in�mum is taken over all tra
e preserving 
hannels T : M(Cd) →
M(Cp) and S : M(Cp) →M(Cd).With this terminology, our main result states that for any bounded interval I:

lim
n→∞

max
(
δ(FI

n,GI), δ(GI ,FI
n)
)

= 0. (6.25)As suggested above, the dis
repan
y has a dire
t statisti
al interpretation: if wewant to estimate θ in both statisti
al experiments E and F and we 
hoose abounded loss fun
tion d(θ, θ̂) ≤ K then for any measurement and estimator θ̂ for
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F with risk RM (θ, θ̂) = 〈d(θ, θ̂)〉 we 
an �nd a measurement N on E whose riskis at most RM (θ, θ̂) +Kδ(E ,F). Indeed if we 
hoose T su
h that the in�mum inthe de�nition of δ(E ,F) is a
hieved, we 
an map the state ρθ through the 
hannel
T and then perform M to obtain an estimator θ̃ for whi
h

RN (θ, θ̃) = 〈d(θ, θ̃)〉 =

∫

Θ

d(θ, θ̃)Tr
(
T (ρθ)M(dθ̃)

)
≤

∫

Θ

d(θ, θ̃)Tr
(
τθM(dθ̃)

)
+ ‖d‖∞‖T (ρθ) − τθ‖1 ≤

RM (θ, θ̂) +Kδ(E ,F).This means that asymptoti
ally the di�
ulty of estimating the parameter θ inthe two models is the same. With the above de�nition of the minimax risk andusing the 
onvergen
e (6.25) we obtain the following lemma.Lemma 6.7.4. Let I = [−a, a] with 0 < a <∞, then
lim
n→∞

C(FI
n) = C(GI)The minimax risk for the lo
al family FI
n is a �gure of merit for the �lo
al di�-
ulty� of the global model Fn. It asymptoti
ally 
onverges to the minimax riskof a family of thermal states. However this quantity depends on the arbitraryparameter I = [−a, a] whi
h we would like to remove as our last step in de�ningthe lo
al asymptoti
 minimax risk:

Cl.a.m.(Fn : n ∈ N) := lim
a→∞

lim
n→∞

C(FI
n) = lim

a→∞
C(GI).As one might expe
t, the minimax risks for the restri
ted families of thermalstates will 
onverge to that of the experiment with no restri
tions on the para-maters. The proof of this fa
t is however non-trivial.Lemma 6.7.5. Let I = [−a, a], then we have

lim
a→∞

C(GI) = C(G)Moreover the heterodyne measurement saturates C(G), and thus C(G) is equal tothe Holevo bound.Proof. The inequality in one dire
tion is easy. For any estimator,
supu∈I2 RM (u, û) ≤ supu∈R2 RM (u, û), so that C(GI) ≤ C(G) and the sameholds for the limit. By the same reasoning, for any K1 ⊂ K2 ⊂ R2 we have
C(GK1) ≤ C(GK2 ).When 
al
ulating minimax bounds we are interested in the worst risk of estima-tors within some parameter regionK, and this worst risk is obviously higher than
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ations 149the Bayes risk with respe
t to the probability distribution with 
onstant densityon K. We shall work on B(0, c+ b) the ball of 
enter 0 and radius (c+ b), with
b > c, and denote our measurementM with density m(û)dû. In generalM neednot have a density, but this will ease notations. Then

sup
u∈B(0,c+b)

RM (u, û) ≥
∫

B(0,c+b)×R2

du dû

π(c+ b)2
‖u− û‖2 Tr (φum(û)) . (6.26)We �x the following notations

f(D) =

∫

D
dudv‖x − y‖2 Tr (φum(v)) ,

g(D) =

∫

D
dudv Tr (φum(v)) ,and de�ne the domains

D1 = {(u, û)|u ∈ B(0, c+ b), û ∈ R
2}

D2 = {(u + k,k)|u ∈ B(0, c),k ∈ B(0, b)}
D3 = {(u,u + h)|u ∈ B(0, b− c),h ∈ B(0, c)}
D4 = {(u,u + h)|u ∈ B(0, b− c),h ∈ R

2\B(0, c)}.Noti
e the following relations:
D3 ⊂ D2 ⊂ D1, D4 ⊂ D1\D2. (6.27)Then (6.26) 
an be rewritten as
sup

u∈B(0,c+b)

RM (u, û) ≥ 1

π(b + c)2
f(D1).The following inequalities follow dire
tly from the de�nitions:

f(D2) ≤ c2g(D2) f(D3) ≤ c2g(D3)

f(D4) ≥ c2g(D4) g(D4) + g(D3) = π(b − c)2.
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al asymptoti
 normality for qubitsUsing these and (6.27), we may write:
1

π(c+ b)2
f(D1) ≥

1

π(c+ b)2
(f(D2) + f(D4))

≥ 1

π(c+ b)2
(
f(D2) + c2g(D4)

)

=
(b − c)2

(b + c)2

(
f(D2)

g(D2)

g(D2)

π(b − c)2
+ c2 − c2

g(D3)

π(b − c)2

)

≥ (b − c)2

(b + c)2

(
c2 +

g(D3)

π(b− c)2

(
f(D2)

g(D2)
− c2

))

≥ (b − c)2

(b + c)2
f(D2)

g(D2)
. (6.28)We analyze now the expression f(D2)/g(D2). By using the de�nition (6.2) of thedispla
ed thermal states φu we get that Tr

[
φu+km(l)

]
= Tr

[
φkmu(l)

], where
mu(l) := D(−

√
2µ− 1αu)m(l)D(

√
2µ− 1αu).Then

g(D2) =

∫

B(0,c)×B(0,b)

dudkTr
[
φu+km(k)

]
= Tr

[
φ̃cm̃b

]
,where we have written

φ̃c =

∫

B(0,c)

φudu, m̃b =

∫

B(0,b)

mk(k)dk.Upon writing vc :=
∫
B(0,c)

‖u‖2φudu, we get similarly f(D2) = Tr [vcm̃b]. Notethat by rotational symmetry vc and φ̃c are diagonal in the number operatoreigenbasis, so without restri
ting the generality we may assume that m̃b is alsodiagonal in that basis: m̃b =
∑
k pk|k〉〈k|. We have then

f(D2)

g(D2)
=

∑
k∈N

pk〈k|vc|k〉∑
k∈N

pk〈k|φ̃c|k〉
≥ inf

k∈N

〈k|vc|k〉
〈k|φ̃c|k〉

.The in�mum on the right side is a
hieved by the va
uum ve
tor. By Lemma6.7.6, this fa
t follows from the inequality
〈k|φu1 |k〉
〈k|φu2 |k〉 ≥ 〈0|φu1 |0〉

〈0|φu2 |0〉 , ‖u1‖ ≥ ‖u2‖,whi
h 
an be 
he
ked by expli
it 
al
ulations.Letting now c and b go to in�nity with c = o(b) and using (6.28), we obtain that
lim
a→∞

C(Ga) ≥
∫

R2〈0|φu|0〉 ‖u‖2du∫
R2〈0|φu|0〉 du ,
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ations 151whi
h is exa
tly the pointwise risk of the heterodyne measurement H(du) =
h(u)du whose density is

h(u) = (2µ− 1)D(−
√

2µ− 1αu)|0〉〈0|D(−
√

2µ− 1αu).By symmetry this pointwise risk does not depend on the point, so that C(G) ≤
RH(u, û). And we have our se
ond inequality: lima→∞C(Ga) ≥ C(G).Moreover, the heterodyne measurement is known to saturate the Holevo boundfor G = Id and the Cramér-Rao bound for lo
ally unbiased estimators [Holevo,1982, Hayashi and Matsumoto, 2004℄. We 
on
lude that the lo
al minimax riskfor qubits is equal to the minimax risk for the limit Gaussian quantum experimentwhi
h is a
hieved by the heterodyne measurement.Lemma 6.7.6. Let p and q be two probability densities on [0, 1] and assume that

p(x1)

p(x2)
≥ q(x1)

q(x2)
, x1 ≥ x2.Then ∫ x2p(x)dx ≥

∫
x2q(x)dx.Proof. It is enough to show that there exists a point x0 ∈ [0, 1] su
h that p(x) ≤

q(x) for x ≤ x0 and p(x) ≥ q(x) for x ≥ x0. Now, if p(x) ≤ q(x) then by usingthe assumption we get that p(y) ≤ q(y) for all y ≤ x. Similarly, if p(x) ≥ q(x)then p(y) ≤ q(y) for all y ≥ x. This implies the existen
e of the 
rossing point
x0.We end this se
tion with the 
on
lusion that the optimal measurement from theBayesian point of view is also asymptoti
ally optimal from the pointwise pointof view. Let us denote by (Mn, û) the measurement-estimator pair from [Baganet al., 2006, Hayashi and Matsumoto, 2004℄.Proposition 6.7.7. The optimal measurement-estimator pair (Mn, û) is a lo
alasymptoti
 minimax estimation s
heme. That is

lim
n→∞

RMcov (u, û) = Cl.a.m(Fn : n ∈ N).Proof. The pointwise risk ofMcov is known to 
onverge to that of the heterodynemeasurement [Bagan et al., 2006℄. The rest follows from Lemma 6.7.4 and Lemma6.7.5.
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al asymptoti
 normality for qubits6.7.3 Dis
rimination of statesAnother illustration of the lo
al asymptoti
 normality Theorem is the problemof dis
riminating between two states ρ+ and ρ−. When the two states are �xed,this problem has been solved by Helstrom [1976℄, and if we are given n systemsin state ρ⊗n± then the probability of error 
onverge to 0 exponentially. Here we
onsider the problem of distinguishing between two states ρ±n whi
h approa
hea
h other as n → ∞ with rate ‖ρ+
n − ρ−n ‖1 ≈ 1√

n
. In this 
ase the probabilityof error does not go to 0 be
ause the problem be
omes more di�
ult as we havemore systems, and 
onverges to the limit problem of distinguishing between two�xed Gaussian states of a quantum os
illator.This problem is interesting for several reasons. Firstly it shows that the 
onver-gen
e in Theorem 6.1.1 
an be used for �nding asymptoti
ally optimal pro
eduresfor various statisti
al problems su
h as that of parameter estimation and hypoth-esis testing. Se
ondly, for any �xed n the optimal dis
rimination is performedby a rather 
ompli
ated joint measurement and the hope is that the asymptoti
problem of dis
riminating between two Gaussian states may provide a more re-alisti
 measurement whi
h 
an be implemented in the lab. Thirdly, this exampleshows that a non-
ommuting one-parameter families of states is not �
lassi
al� asit is sometimes argued, but should be 
onsidered as a quantum �resour
e� whi
h
annot be transformed into a 
lassi
al one without loss of information. Moreexpli
itly, the optimal measurement for estimating the parameter is not optimalfor other statisti
al problems su
h as the one 
onsidered here, and thus di�erentstatisti
al de
ision problems are a

ompanied by mutually in
ompatible optimalmeasurements.Let is re
all the framework of quantum hypothesis testing for two states ρ±:we 
onsider two-out
omes POVM's M = (M−,M+) with 0 ≤ M+ ≤ 1 and

M− = 1 −M+ su
h that the probability of error when the state is ρ− is givenby Tr(M+ρ
−),and similarly for ρ+. As we do not know the state, we want tominimize our worst-
ase probability error. Our �gure of merit (the lower, thebetter) is therefore:

R(ρ+, ρ−) = inf
M

max {Tr(ρ+M−),Tr(ρ+M−)}Now we are interested in the 
ase when ρ± = ρ±u
n as de�ned in (6.1), and in thelimit ρ± = φ±u (re
all that both ρun and φu depend on µ). We then have:Theorem 6.7.8. The following limit holds

lim
n→∞

R(ρun, ρ
−u
n ) = R(φu, φ−u).Moreover for pure states this limit is equal to (1 − (1 − e−4|u|2)1/2

)
/2 whi
h isstri
tly smaller than 1/2 − erf(|u|) whi
h is the limit if we do not use 
olle
tive
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ations 153measurements on the qubits. Here we have used this 
onvention for the errorfun
tion: erf(x) =
∫ x
0
e−t

2

/
√
π dt.Proof. Let M be the optimal dis
rimination pro
edure φ±u. Then we use the
hannel Tn to send ρ±u

n to states of the os
illator and then perform the measure-ment M . By Theorem 6.1.1, ‖φ±u − Tn(ρ
±u
n )‖1 → 0 so that Tr (Tn(ρ

±u
n )M∓) →

Tr (φ±uM∓). Thus M ◦ Tn is asymptoti
ally optimal for ρ±u
n .Now for pure states |ψ+〉 and |ψ−〉 the optimal measurement is well-known [Guµ and Kahn, 2008, Che�es, 2000℄. It is unique on the span of these pure states andarbitrary on the orthogonal. If we 
hoose the phase su
h that 〈ψ−|ψ+〉 > 0, then

M+ is the proje
tor on the ve
tor
|ψ+〉 + |ψ−〉

2
√

1 + 〈ψ−|ψ+〉
+

|ψ+〉 − |ψ−〉
2
√

1 − 〈ψ−|ψ+〉and the asso
iated risk is
1

2
(1 −

√
1 − |〈ψ+|ψ−〉|2)Now in our 
ase, in the limit experiment, φu is the 
oherent state |ψu〉 =

e−|u|2/2∑
n |u|n/

√
n! |n〉. So that
〈ψu|ψ−u〉 = e−|u|2

∑

n

(−|u|2)n
n!

= e−2|u|2 ,and R(φu, φ−u) = 1
2

(
1 −

√
1 − e−4|u|2

)
.We would like to insist here that the best measurement for dis
rimination is notmeasuring the positive part of the position observableQ (we assume by symmetrythat ±u is on the �rst 
oordinate), as one might expe
t from the analogy withthe 
lassi
al problem. Indeed if we measure Q then we obtain a 
lassi
al Gaussianvariable with density p(x) = e−(x−|u|)2/
√
π and the best guess at the sign ± hasin this 
ase the risk 1/2 − erf(|u|).This may be a bit surprising 
onsidering that measuringQ preserves the quantumFisher information. The 
on
lusion is simply that the quantum Fisher informa-tion is not an exhaustive indi
ator of the statisti
al information in a family ofstates, as it may remain un
hanged even when there is a 
lear degradation in theinferen
e power. This example �ts in a more general framework of a theory ofquantum statisti
al experiments and quantum de
isions [Guµ ℄.



154 Quantum lo
al asymptoti
 normality for qubits6.7.4 Spin squeezed states and 
ontinuous time measure-mentsIn an emblemati
 experiment for the �eld of quantum �ltering and 
ontrol,Geremia et al. [2004℄ have shown how spin squeezed states 
an be prepared de-terministi
ally by using 
ontinuous time measurements performed in the environ-ment and real time feedba
k on the spins. Without going in the details, the basi
idea is to des
ribe the evolution of identi
ally prepared spins by passing �rst tothe 
oherent state pi
ture. There one 
an easily solve the sto
hasti
 S
hrödingerequation des
ribing the evolution (quantum traje
tory) of the quantum os
illator
onditioned on the 
ontinuous signal of the measurement devi
e. The solution isa Gaussian state whose 
enter evolves sto
hasti
ally while one of the quadraturesgets more and more squeezed as one obtains more information through the mea-surement. Using feedba
k one 
an then stabilize the 
enter of the state around a�xed point.This des
ription is of 
ourse approximative and holds as long as the errors inidentifying the spins with Gaussian states are not signi�
ant. The frameworkdeveloped in the proof of Theorem 6.1.1 
an then be used to make more pre
isestatements about the validity of the results, in
luding the squeezing pro
ess.Perhaps more interesting for quantum estimation, su
h measurements may beused to perform optimal estimation of spin states. The idea would be to �rstlo
alize the state in a small region by performing a weak measurement and thenin a se
ond stage one performs a heterodyne type measurement after rotating thespins so that they point approximately in the z dire
tion. We believe that thistype of pro
edure has better 
han
es of being implemented in pra
ti
e 
omparedwith the abstra
t 
ovariant measurement of Bagan et al. [2006℄, Hayashi andMatsumoto [2004℄.



Chapter 7Optimal estimation of qubitstates with 
ontinuous timemeasurements
This 
hapter is derived from [Guµ  et al., 2008℄.Abstra
t: We propose an adaptive, two steps strategy, for the esti-mation of mixed qubit states. We show that the strategy is optimalin a lo
al minimax sense for the tra
e norm distan
e as well as otherlo
ally quadrati
 �gures of merit. Lo
al minimax optimality meansthat given n identi
al qubits, there exists no estimator whi
h 
anperform better than the proposed estimator on a neighborhood ofsize n−1/2 of an arbitrary state. In parti
ular, it is asymptoti
allyBayesian optimal for a large 
lass of prior distributions.We present a physi
al implementation of the optimal estimation strat-egy based on 
ontinuous time measurements in a �eld that 
oupleswith the qubits.The 
ru
ial ingredient of the result is the 
on
ept of lo
al asymptoti
normality (or LAN) for qubits. This means that, for large n, thestatisti
al model des
ribed by n identi
ally prepared qubits is lo
allyequivalent to a model with only a 
lassi
al Gaussian distribution anda Gaussian state of a quantum harmoni
 os
illator.The term `lo
al' refers to a shrinking neighborhood around a �xedstate ρ0. An essential result is that the neighborhood radius 
an be
hosen arbitrarily 
lose to n−1/4. This allows us to use a two steps



156 Optimal estimation of qubit states with 
ontinuous time measurementspro
edure by whi
h we �rst lo
alize the state within a smaller neigh-borhood of radius n−1/2+ǫ, and then use LAN to perform optimalestimation.7.1 Introdu
tionState estimation is a 
entral topi
 in quantum statisti
al inferen
e [Holevo, 1982,Helstrom, 1976, Barndor�-Nielsen et al., 2003, Hayashi, 2005b℄. In broad termsthe problem 
an be formulated as follows: given a quantum system prepared inan unknown state ρ, one would like to re
onstru
t the state by performing ameasurementM whose random result X will be used to build an estimator ρ̂(X)of ρ. The quality of the measurement-estimator pair is given by the risk
Rρ(M, ρ̂) = E

(
d(ρ̂(X), ρ)2

)
, (7.1)where d is a distan
e on the spa
e of states, for instan
e the �delity distan
eor the tra
e norm, and the expe
tation is taken with respe
t to the probabilitydistribution PMρ of X , when the measured system is in state ρ. Sin
e the riskdepends on the unknown state ρ, one 
onsiders a global �gure of merit by eitheraveraging with respe
t to a prior distribution π (Bayesian setup)

Rπ(M, ρ̂) =

∫
π(dρ)Rρ(M, ρ̂), (7.2)or by 
onsidering a maximum risk (pointwise or minimax setup)

Rmax(M, ρ̂) = sup
ρ
Rρ(M, ρ̂). (7.3)An optimal pro
edure in either setup is one whi
h a
hieves the minimum risk.Typi
ally, one measurement result does not provide enough information in orderto signi�
antly narrow down on the true state ρ. Moreover, if the measurementis �informative� then the state of the system after the measurement will 
ontainlittle or no information about the initial state [Janssens, 2006℄ and one needs torepeat the preparation and measurement pro
edure in order to estimate the statewith the desired a

ura
y.It is then natural to 
onsider a framework in whi
h we are given a number nof identi
ally prepared systems and look for estimators ρ̂n whi
h are optimal, orbe
ome optimal in the limit of large n. This problem is the quantum analogue ofthe 
lassi
al statisti
al problem [van der Vaart, 1998℄ of estimating a parameter

θ from independent identi
ally distributed random variables X1, . . . , Xn with



7.1 Introdu
tion 157distribution Pθ, and some of the methods developed in this 
hapter are inspiredby the 
lassi
al theory.Various state estimation problems have been investigated in the literature andthe te
hniques may be quite di�erent depending on a number of fa
tors: thedimension of the density matrix, the number of unknown parameters, the purityof the states, and the 
omplexity of measurements over whi
h one optimizes. Ashort dis
ussion on these issues 
an be found in se
tion 7.2.In this 
hapter we give an asymptoti
ally optimal measurement strategy for qubitstates that is based on the te
hnique of lo
al asymptoti
 normality introdu
ed byGuµ  and Kahn [2006℄, Guµ  and Jen£ová [2007℄. The te
hnique is a quantumgeneralisation of Le Cam's [1986℄ 
lassi
al statisti
al result, and builds on pre-vious work of Hayashi and Matsumoto [2004℄. We use an adaptive two stagepro
edure involving 
ontinuous time measurements, whi
h 
ould in prin
iple beimplemented in pra
ti
e. The idea of adaptive estimation methods, whi
h hasa long history in 
lassi
al statisti
s, was introdu
ed in the quantum set-up byBarndor�-Nielsen and Gill, R. [2000℄, and was subsequently used by Gill andMassar [2000℄, Hayashi [2002a℄, Hayashi and Matsumoto [2005℄. The aim thereis similar: one wants to �rst lo
alize the state and then to perform a suitablytailored measurement whi
h performs optimally around a given state. A di�erentadaptive te
hnique was proposed independently by Nagaoka [2005℄ and furtherdeveloped by Fujiwara [2006℄.
Figure 7.1: After the �rst measurement stage the state ρ lies in a small ball
entered at ρ̃n.In the �rst stage, the spin 
omponents σx, σy and σz are measured separately ona small portion ñ ≪ n of the systems, and a rough estimator ρ̃n is 
onstru
ted.By standard statisti
al arguments (see Lemma 7.2.1) we dedu
e that with highprobability, the true state ρ lies within a ball of radius slightly larger than n−1/2,say n−1/2+ǫ with ǫ > 0, 
entered at ρ̃n. The purpose of the �rst stage is thus tolo
alize the state within a small neighborhood as illustrated in Figure 7.1 (up toa unitary rotation) using the Blo
h sphere representation of qubit states.
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ontinuous time measurementsThis information is then used in the se
ond stage, whi
h is a joint measurementon the remaining n− ñ systems. This se
ond measurement is implemented phys-i
ally by two 
onse
utive 
ouplings, ea
h to a bosoni
 �eld. The qubits are �rst
oupled to the �eld via a spontaneous emission intera
tion and a 
ontinuous timeheterodyne dete
tion measurement is performed in the �eld. This yields informa-tion on the eigenve
tors of ρ. Then the intera
tion is 
hanged, and a 
ontinuoustime homodyne dete
tion is performed in the �eld. This yields information onthe eigenvalues of ρ.We prove that the se
ond stage of the measurement is asymptoti
ally optimal forall states in a ball of radius n−1/2+η around ρ̃n. Here η 
an be 
hosen to be biggerthat ǫ > 0 implying that the two stage pro
edure as a whole is asymptoti
allyoptimal for any state as depi
ted in Figure 7.2.
Figure 7.2: The smaller domain is the lo
alization region of the �rst step. These
ond stage estimator is optimal for all states in the bigger domain.The optimality of the se
ond stage relies heavily on the prin
iple of lo
al asymp-toti
 normality or LAN, see [van der Vaart, 1998℄, whi
h we will brie�y explainbelow, and in parti
ular on the fa
t that it holds in a ball of radius n−1/2+ηaround ρ̃n rather than just n−1/2 as it was the 
ase in Guµ  and Kahn's 2006arti
le.Let ρ0 be a �xed state. We parametrize the neighboring states as ρu/√n, where
u = (ux, uy, uz) ∈ R

3 is a 
ertain set of lo
al parameters around ρ0. Then LANentails that the joint state ρun := ρ⊗n
u/

√
n
of n identi
al qubits 
onverges for n→ ∞to a Gaussian state of the form Nu ⊗ φu, in a sense explained in Theorem 7.3.1.By Nu we denote a 
lassi
al one-dimensional normal distribution 
entered at uz.The se
ond term φu is a Gaussian state of a harmoni
 os
illator, i.e. a displa
edthermal equilibrium state with displa
ement proportional to (ux, uy). We thushave the 
onvergen
e

ρun ; Nu ⊗ φu,to a mu
h simpler family of 
lassi
al � quantum states for whi
h we know howto optimally estimate the parameter u [Holevo, 1982, Yuen and Lax, M., 1973℄.



7.1 Introdu
tion 159The idea of approximating a sequen
e of statisti
al experiments by a Gaussian onegoes ba
k to Wald [1943℄, and was subsequently developed by Le Cam [1986℄ who
oined the term lo
al asymptoti
 normality. In quantum statisti
s the �rst ideasin the dire
tion of lo
al asymptoti
 normality for d-dimensional states appearedin a Japanese paper [Hayashi, 2003℄, as well as in Hayashi's 
onferen
es and weresubsequently developed by Hayashi and Matsumoto [2004℄. In Theorem 7.3.1 westrengthen these results for the 
ase of qubits, by proving a strong version ofLAN in the spirit of Le Cam's pioneering work. We then exploit this result toprove optimality of the se
ond stage. A di�erent approa
h to lo
al asymptoti
normality has been developed by Guµ  and Jen£ová [2007℄ to whi
h we refer fora more general exposition on the theory of quantum statisti
al models. A shortdis
ussion on the relation between the two approa
hes is given in the remarkfollowing Theorem 7.3.1.From the physi
s perspe
tive, our results put on a more rigorous basis the treat-ment of 
olle
tive states of many identi
al spins, the keyword here being 
oherentspin states [Holtz and Hanus, 1974℄. Indeed, it has been known sin
e Dyson [1956℄that n spin- 12 parti
les prepared in the spin up state |↑〉⊗n behave asymptoti
allyas the ground state of a quantum os
illator, when 
onsidering the �u
tuations ofproperly normalized total spin 
omponents in the dire
tions orthogonal to z. Weextend this to spin dire
tions making an �angle� of order n−1/2+η with the z axis,as illustrated in Figure 7.3, as well as to mixed states. We believe that a similarapproa
h 
an be followed in the 
ase of spin squeezed states and 
ontinuous timemeasurements with feedba
k 
ontrol [Geremia et al., 2004℄.

Figure 7.3: Total spin representation of the state of n ≫ 1 spins: the quantum�u
tuations of the x and y spin dire
tions 
oin
ide with those of a 
oherent stateof a harmoni
 os
illator.In Theorem 7.4.1 we prove a dynami
al version of LAN. The traje
tory in timeof the joint state of the qubits together with the �eld 
onverges for large n to the
orresponding traje
tory of the joint state of the os
illator and �eld. In other
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ontinuous time measurementswords, time evolution preserves lo
al asymptoti
 normality. This insures that forlarge n the state of the qubits �leaks� into a Gaussian state of the �eld, providinga 
on
rete implementation of the 
onvergen
e to the limit Gaussian experiment.The pun
h line of the 
hapter is Theorem 7.6.1 whi
h says that the estimator ρ̂nis optimal in lo
al minimax sense, whi
h is the modern statisti
al formulation ofoptimality in the frequentist setup [van der Vaart, 1998℄. Also, its asymptoti
risk is 
al
ulated expli
itly.The 
hapter is stru
tured as follows: in se
tion 7.2, we show that the �rst stageof the measurement su�
iently lo
alizes the state. In se
tion 7.3, we prove thatLAN holds with radius of validity n−1/2+η, and we bound its rate of 
onver-gen
e. se
tions 7.4 and 7.5 are 
on
erned with the se
ond stage of the mea-surement, i.e. with the 
oupling to the bosoni
 �eld and the 
ontinuous time�eld-measurements. Finally, in se
tion 7.6, asymptoti
 optimality of the estima-tion s
heme is proven.The te
hni
al details of the proofs are relegated to the appendi
es in order togive the reader a more dire
t a

ess to the ideas and results.7.2 State estimationIn this se
tion we introdu
e the reader to a few general aspe
ts of quantum stateestimation after whi
h we 
on
entrate on the qubit 
ase.State estimation is a generi
 name for a variety of results whi
h may be 
lassi�eda

ording to the dimension of the parameter spa
e, the kind or family of statesto be estimated and the preferred estimation method. For an introdu
tion toquantum statisti
al inferen
e we refer to the books by Helstrom [1976℄ and Holevo[1982℄ and the more re
ent review paper by Barndor�-Nielsen et al. [2003℄. The
olle
tion [Hayashi, 2005b℄ is a good referen
e on quantum statisti
al problems,with many important 
ontributions by the Japanese s
hool.For the purpose of this 
hapter, any quantum state representing a parti
ularpreparation of a quantum system, is des
ribed by a density matrix (positiveselfadjoint operator of tra
e one) on the Hilbert spa
eH asso
iated to the system.The algebra of observables is B(H), and the expe
tation of an observable a ∈
B(H) with respe
t to the state ρ is Tr(ρa). A measurement M with out
omesin a measure spa
e (X ,Σ) is 
ompletely determined by a σ-additive 
olle
tionof positive selfadjoint operators M(A) on H, where A is an event in Σ. This
olle
tion is 
alled a positive operator valued measure. The distribution of theresults X when the system is in state ρ is given by Pρ(A) = Tr(ρM(A)).



7.2 State estimation 161We are given n systems identi
ally prepared in state ρ and we are allowed toperform a measurement Mn whose out
ome is the estimator ρ̂n as dis
ussed inthe Introdu
tion.The dimension of the density matrix may be �nite, su
h as in the 
ase of qubits ord-levels atoms, or in�nite as in the 
ase of the state of a mono
hromati
 beam oflight. In the �nite or parametri
 
ase one expe
ts that the risk 
onverges to zeroas n−1 and the optimal measurement-estimator sequen
e (Mn, ρ̂n) a
hieves thebest 
onstant in front of the n−1 fa
tor. In the non-parametri
 
ase the rates of
onvergen
e are in general slower that n−1 be
ause one has to simultaneously es-timate an in�nite number of matrix elements, ea
h with rate n−1. An importantexample of su
h an estimation te
hnique is that of quantum homodyne tomogra-phy in quantum opti
s [Vogel and Risken, H., 1989℄. This allows the estimationwith arbitrary pre
ision [D'Ariano et al., 1995, Leonhardt et al., 1995, 1996℄ ofthe whole density matrix of a mono
hromati
 beam of light by repeatedly mea-suring a su�
iently large number of identi
ally prepared beams [Smithey et al.,1993, S
hiller et al., 1996, Zavatta et al., 2004℄. Artiles et al. [2005℄, Butu
eaet al. [2007℄ have shown how to formulate the problem of estimating in�nite di-mensional states without the need for 
hoosing a 
ut-o� in the dimension of thedensity matrix, and how to 
onstru
t optimal minimax estimators of the Wignerfun
tion for a 
lass of �smooth� states.If we have some prior knowledge about the preparation pro
edure, we may en
odethis by parametrizing the possible states as ρ = ρθ with θ ∈ Θ some unknownparameter. The problem is then to estimate θ optimally with respe
t to a distan
efun
tion on Θ.Indeed, one of the main problems in the �nite dimensional 
ase is to �nd optimalestimation pro
edures for a given family of states. It is known that if the state ρis pure or belongs to a one parameter family, then separate measurements a
hievethe optimal rate of the 
lass of joint measurements [Matsumoto, 2002℄. Howeverfor multi-dimensional families of mixed states this is no longer the 
ase and jointmeasurements perform stri
tly better than separate ones [Gill and Massar, 2000℄.In the Bayesian setup, one optimizes Rπ(Mn, ρ̂n) for some prior distribution
π. We refer to [Jones, 1994, Massar and Popes
u, 1995, Latorre et al., 1998,Fisher et al., 2000, Hannemann et al., 2002b, Bagan et al., 2002, Emba
her andNarnhofer, 2004, Bagan et al., 2005℄ for the pure state 
ase, and to [Cira
 et al.,1999, Vidal et al., 1999, Ma
k et al., 2000, Keyl and Werner, 2001, Bagan et al.,2004
, Zy
zkowski and Sommers, 2005, Bagan et al., 2006℄ for the mixed state
ase. The methods used here are based on group theory and 
an be applied onlyto invariant prior distributions and 
ertain distan
e fun
tions. In parti
ular, theoptimal 
ovariant measurement in the 
ase of 
ompletely unknown qubit stateswas found by Bagan et al. [2006℄ and Hayashi and Matsumoto [2004℄, but it hasthe drawba
k that it does not give any 
lue as to how it 
an be implemented in
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ontinuous time measurementsa real experiment.In the pointwise approa
h [Hayashi, 2002a, Hayashi and Matsumoto, 2005, Gilland Massar, 2000, Barndor�-Nielsen and Gill, R., 2000, Fujiwara and Nagaoka,H., 1995, Matsumoto, 2002, Barndor�-Nielsen et al., 2003, Hayashi and Mat-sumoto, 2004℄ one tries to minimize the risk for ea
h unknown state ρ. As theoptimal measurement-estimator pair 
annot depend on the state itself, one op-timizes the maximum risk Rmax(Mn, ρ̂n), (see (7.3)), or a lo
al version of thiswhi
h will be de�ned shortly. The advantage of the pointwise approa
h is thatit 
an be applied to arbitrary families of states and a large 
lass of loss fun
tionsprovided that they are lo
ally quadrati
 in the 
hosen parameters. The underly-ing philosophy is that as the number n of states is su�
iently large, the problem
eases to be global and be
omes a lo
al one as the error in estimating the stateparameters is of the order n−1/2.The Bayesian and pointwise approa
hes 
an be 
ompared [Gill, 2005a℄, and in fa
tfor large n the prior distribution π of the Bayesian approa
h be
omes in
reasinglyirrelevant and the optimal Bayesian estimator be
omes asymptoti
ally optimalin the minimax sense and vi
e versa.7.2.1 Qubit state estimation: the lo
alization prin
ipleLet us now pass to the quantum statisti
al model whi
h will be the obje
t ofour investigations. Let ρ ∈M2(C) be an arbitrary density matrix des
ribing thestate of a qubit. Given n identi
ally prepared qubits with joint state ρ⊗n, wewould like to optimally estimate ρ based on the result of a properly 
hosen jointmeasurementMn. For simpli
ity of the exposition we assume that the out
ome ofthe measurement is an estimator ρ̂n ∈M2(C). In pra
ti
e however, the result Xmay belong to a 
ompli
ated measure spa
e (in our 
ase the spa
e of 
ontinuoustime paths) and the estimator is a fun
tion of the �raw� data ρ̂n := ρ̂n(X). Thequality of the estimator at the state ρ is quanti�ed by the risk
Rρ(Mn, ρ̂n) := Eρ(d(ρ, ρ̂n)2),where d is a distan
e between states. The above expe
tation is taken with re-spe
t to the distribution Pρ(dx) := Tr(ρM(dx)) of the measurement results,where M(dx) represents the asso
iated positive operator valued measure of themeasurement M . In our exposition d will be the tra
e norm
‖ρ1 − ρ2‖1 := Tr(|ρ1 − ρ2|),but similar results 
an be obtained using the �delity distan
e. The aim is to �nda sequen
e of measurements and estimators (Mn, ρ̂n) whi
h is asymptoti
allyoptimal in the lo
al minimax sense: for any given ρ0

lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nRρ(Mn, ρ̂n) ≤ lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nRρ(Nn, ρ̌n),



7.2 State estimation 163for any other sequen
e of measurement-estimator pairs (Nn, ρ̌n). The fa
tor n isinserted be
ause typi
ally Rρ(Mn, ρ̂n) is of the order 1/n and the optimization isabout obtaining the smallest 
onstant fa
tor possible. The inequality says thatone 
annot �nd an estimator whi
h performs better that ρ̂n over a ball of size
n−1/2+ǫ 
entered at ρ0, even if one has the knowledge that the state ρ belongsto that ball!Here, and elsewhere in the 
hapter ǫ will appear in di�erent 
ontexts, as a generi
stri
tly positive number and will be 
hosen to be su�
iently small for ea
h spe
i�
use. At pla
es where su
h notation may be 
onfusing we will use additionalsymbols to denote small 
onstants.As set forth in the Introdu
tion, our measurement pro
edure 
onsists of two steps.The �rst one is to perform separate measurements of σx, σy and σz on a fra
tion
ñ = ñ(n) of the systems. In this way we obtain a rough estimate ρ̃n of thetrue state ρ whi
h lies in a lo
al neighborhood around ρ with high probability.The se
ond step uses the information obtained in the �rst step to perform ameasurement whi
h is optimal pre
isely for the states in this lo
al neighborhood.The se
ond step ensures optimality and requires more sophisti
ated te
hniquesinspired by the theory of lo
al asymptoti
 normality for qubit states [Guµ  andKahn, 2006℄. We begin by showing that the �rst step amounts to the fa
t that,without loss of generality, we may assume that the unknown state is in a lo
alneighborhood of a known state. This may serve also as an a posteriori justi�
ationof the de�nition of lo
al minimax optimality.Lemma 7.2.1. Let Mi denote the measurement of the σi spin 
omponent of aqubit with i = x, y, z. We perform ea
h of the measurements Mi separately on
ñ/3 identi
ally prepared qubits and de�ne

ρ̃n =
1

2
(1 + r̃σ), if |r̃| ≤ 1,where r̃ = (r̃x, r̃y, r̃z) is the ve
tor average of the measured 
omponents. If |r̃| > 1then we de�ne ρ̃n as the state whi
h has the smallest tra
e distan
e to the righthand side expression. Then for all ǫ ∈ [0, 2], we have

P
(
‖ρ̃n − ρ‖2

1 > 3n2ǫ−1
)
≤ 6 exp(− 1

2 ñn
2ǫ−1), ∀ρ.Furthermore, for any 0 < κ < ǫ/2, if ñ = n1−κ, the 
ontribution to the risk

E(‖ρ̃n − ρ‖2
1) brought by the event E = [ ‖ρ̃n − ρ‖1 >

√
3n−1/2+ǫ ] satis�es

E
(
‖ρ̃n − ρ‖2

1 χE
)
≤ 24 exp(− 1

2n
2ǫ−κ) = o(1).Proof. For ea
h spin 
omponent σi we obtain i.i.d 
oin tossesXi with distribution

P(Xi = ±1) = (1 ± ri)/2 and average ri.
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ontinuous time measurementsHoe�ding's inequality [van der Vaart and Wellner, J.A., 1996℄ then states thatfor all c > 0, we have P(|Xi − X̃|2 > c) ≤ 2 exp(− 1
2 ñc). By using this inequalitythree times with c = n2ǫ−1, on
e for ea
h 
omponent, we get

P

(
3∑

1

|r̃i − ri|2 > 3n2ǫ−1

)
≤ 6 exp(− 1

2 ñn
2ǫ−1) ∀ρ,whi
h implies the statement for the norm distan
e sin
e ‖ρ̃n−ρ‖2

1 =
∑
i |r̃i−ri|2.The bound on 
onditional risk follows from the previous bound and the fa
t that

‖ρ− ρ̃n‖2
1 ≤ 4.In the se
ond step of the measurement pro
edure we rotate the remaining n− ñqubits su
h that after rotation the ve
tor r̃ is parallel to the z-axis. Afterwards,we 
ouple the systems to the �eld and perform 
ertain measurements in the �eldwhi
h will determine the �nal estimator ρ̂n. The details of this se
ond step aregiven in se
tions 7.4 and 7.5, but at this moment we 
an already prove thatthe e�e
t of errors in the the �rst stage of the measurement is asymptoti
allynegligible 
ompared to the risk of the se
ond estimator. Indeed by Lemma 7.2.1we get that if ñ = n1−κ, then the probability that the �rst stage gives a �wrong�estimator (one whi
h lies outside the lo
al neighborhood of the true state) is ofthe order exp(− 1

2n
2ǫ−κ) and so is the risk 
ontribution. As the typi
al risk ofestimation is of the order 1/n, we see that the �rst step is pra
ti
ally �always�pla
ing the estimator in a neighborhood of order n−1/2+ǫ of the true state ρ, asshown in Figure 7.2. In the next se
tion we will show that for su
h neighborhoods,the state of the remaining n − ñ systems behaves asymptoti
ally as a Gaussianstate. This will allow us to devise an optimal measurement s
heme for qubitsbased on the optimal measurement for Gaussian states.

7.3 Lo
al asymptoti
 normalityThe optimality of the se
ond stage of the measurement relies on the 
on
ept oflo
al asymptoti
 normality [van der Vaart, 1998, Guµ  and Kahn, 2006℄. After ashort introdu
tion, we will prove that LAN holds for the qubit 
ase, with radius ofvalidity n−1/2+η for all η ∈ [0, 1/4). We will also show that its rate of 
onvergen
eis O(n−1/4+η+ǫ) for arbitrarily small ǫ.



7.3 Lo
al asymptoti
 normality 1657.3.1 Introdu
tion to LAN and some de�nitionsLet ρ0 be a �xed state, whi
h by rotational symmetry 
an be 
hosen of the form
ρ0 =

(
µ 0
0 1 − µ

)
, (7.4)for a given 1

2 < µ < 1. We parametrize the neighboring states as ρu/√n where
u = (ux, uy, uz) ∈ R3 su
h that the �rst two 
omponents a

ount for unitaryrotations around ρ0, while the third one des
ribes the 
hange in eigenvalues

ρv := U (v)

(
µ+ vz 0

0 1 − µ− vz

)
U (v)∗ , (7.5)with unitary U(v) := exp(i(vxσx + vyσy)). The �lo
al parameter� u shouldbe thought of, as having a bounded range in R3 or may even �grow slowly� as

‖u‖ ≤ nη.Then, for large n, the joint state ρun := ρ⊗n
u/

√
n
of n identi
al qubits approa
hesa Gaussian state of the form Nu ⊗ φu with the parameter u appearing solely inthe average of the two Gaussians. By Nu we denote a 
lassi
al one-dimensionalnormal distribution 
entered at uz whi
h relays information about the eigenvaluesof ρu/√n. The se
ond term φu is a Gaussian state of a harmoni
 os
illatorwhi
h is a displa
ed thermal equilibrium state with displa
ement proportional to

(ux, uy). It 
ontains information on the eigenve
tors of ρu/√n. We thus have the
onvergen
e
ρun ; Nu ⊗ φu,to a mu
h simpler family of 
lassi
al - quantum states for whi
h we know howto optimally estimate the parameter u. The asymptoti
 splitting into a 
lassi
alestimation problem for eigenvalues and a quantum one for the eigenbasis hasbeen also noti
ed by Bagan et al. [2006℄ and by Hayashi and Matsumoto [2004℄,the latter 
oming pretty 
lose to our formulation of lo
al asymptoti
 normality.The pre
ise meaning of the 
onvergen
e is given in Theorem 7.3.1 below. In short,there exist quantum 
hannels Tn whi
h map the states ρ⊗n

u/
√
n
into Nu ⊗φu withvanishing error in tra
e norm distan
e, and uniformly over the lo
al parameters

u. From the statisti
al point of view the 
onvergen
e implies that a statisti
alde
ision problem 
on
erning the model ρun 
an be mapped into a similar problemfor the model Nu ⊗ φu su
h that the optimal solution for the latter 
an betranslated into an asymptoti
ally optimal solution for the former. In our 
asethe problem of estimating the state ρ turns into that of estimating the lo
alparameter u around the �rst stage estimator ρ̃n playing the role of ρ0. For thefamily of displa
ed Gaussian states it is well known that the optimal estimationof the displa
ement is a
hieved by the heterodyne dete
tion [Holevo, 1982, Yuen



166 Optimal estimation of qubit states with 
ontinuous time measurementsand Lax, M., 1973℄, while for the 
lassi
al part it su�
ient to take the observationas best estimator. Hen
e the se
ond step will give an optimal estimator û of uand an optimal estimator of the initial state ρ̂n := ρû/
√
n. The pre
ise result isformulated in Theorem 7.6.17.3.2 Convergen
e to the Gaussian modelWe des
ribe the state Nu⊗φu in more detail. Nu is simply the 
lassi
al Gaussiandistribution

Nu := N(uz, µ(1 − µ)), (7.6)with mean uz and varian
e µ(1 − µ).The state φu is a density matrix on H = F(C), the representation spa
e of theharmoni
 os
illator. In general, for any Hilbert spa
e h, the Fo
k spa
e over h isde�ned as
F(h) :=

∞⊕

n=0

h ⊗s · · · ⊗s h, (7.7)with ⊗s denoting the symmetri
 tensor produ
t. Thus F(C) is the simplestexample of a Fo
k spa
e. Let
φ := (1 − p)

∑

k=0

pk|k〉〈k|, (7.8)be a thermal equilibrium state with |k〉 denoting the k-th energy level of theos
illator and p = 1−µ
µ < 1. For every α ∈ C de�ne the displa
ed thermal state

φ(α) := D(α)φD(−α),where D(α) := exp(αa∗− ᾱa) is the displa
ement operator, mapping the va
uumve
tor |0〉 to the 
oherent ve
tor
|α〉 = exp(−α2/2)

∞∑

k=0

αk√
k!
|k〉.Here a∗ and a are the 
reation and annihilation operators on F(C), satisfying

[a, a∗] = 1. The family φu of states in whi
h we are interested is given by
φu := φ(

√
2µ− 1αu), u ∈ R

3, (7.9)with αu := −uy + iux. Note that φu does not depend on uz.We 
laim that the �statisti
al information� 
ontained in the joint state of n qubits
ρun := ρ⊗n

u/
√
n
, (7.10)is asymptoti
ally identi
al to that 
ontained in the 
ouple (Nu, φu). More pre-
isely:
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al asymptoti
 normality 167Theorem 7.3.1. Let ρun be the family of states (7.5) on the Hilbert spa
e (C2
)⊗n,let Nu be the family (7.6) of Gaussian distributions, and let φu be the family (7.9)of displa
ed thermal equilibrium states of a quantum os
illator. Then for ea
h nthere exist quantum 
hannels (tra
e preserving CP maps)

Tn : T ((C2)⊗n) → L1(R) ⊗ T (F(C)),

Sn : L1(R) ⊗ T (F(C)) → T ((C2)⊗n)with T (H) the tra
e-
lass operators on H, su
h that, for any 0 ≤ η < 1/4 andany ǫ > 0,
sup

‖u‖≤nη

‖Nu ⊗ φu − Tn (ρun) ‖1 = O(n−1/4+η+ǫ), (7.11)
sup

‖u‖≤nη

‖ρun − Sn (Nu ⊗ φu) ‖1 = O(n−1/4+η+ǫ). (7.12)Moreover, for ea
h ǫ2 > 0 there exists a fun
tion f(n) of order O(n−1/4+η+ǫ)su
h that the above 
onvergen
e rates are bounded by f(n), with f independentof ρ0 as long as | 12 − µ| > ǫ2.Remark. Note that the equations (7.11) and (7.12) imply that the expressionson the left side 
onverge to zero as n → ∞. Following the 
lassi
al terminologyof Le Cam [1986℄, we will 
all this type of result strong 
onvergen
e of quantumstatisti
al models (experiments). Another lo
al asymptoti
 normality result hasbeen derived by Guµ  and Jen£ová [2007℄ based on a di�erent 
on
ept of 
onver-gen
e, whi
h is an extension of the weak 
onvergen
e of 
lassi
al (
ommutative)statisti
al experiments. In the 
lassi
al set-up it is known that strong 
onver-gen
e implies weak 
onvergen
e for arbitrary statisti
al models, and the two areequivalent for statisti
al models 
onsisting of a �nite number of distributions.These two approa
hes to lo
al asymptoti
 normality in quantum statisti
s arebased on 
ompletely di�erent methods and the results are 
omplementary inthe sense that the weak 
onvergen
e of Guµ  and Jen£ová [2007℄ holds for thelarger 
lass of �nite dimensional states while the strong 
onvergen
e has moredire
t 
onsequen
es as it is shown in this 
hapter for the 
ase of qubits. Bothresults are part of a larger e�ort to develop a general theory of lo
al asymptoti
normality in quantum statisti
s. Several extensions are in order: from qubits toarbitrary �nite dimensional systems (strong 
onvergen
e), from �nite dimensionalto 
ontinuous variables systems, from identi
al system to 
orrelated ones, andasymptoti
 normality in 
ontinuous time dynami
al set-up.Finally, let us note that the development of a general theory of 
onvergen
e ofquantum statisti
al models will set a framework for dealing with other importantstatisti
al de
ision problems su
h as quantum 
loning [Werner, 1998℄ and quan-tum ampli�
ation [Caves, 1982℄, whi
h do not ne
essarily involve measurements.
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ontinuous time measurementsRemark. The 
onstru
tion of the 
hannels Tn, Sn in the 
ase of �xed eigenval-ues (uz = 0) is given in Theorem 1.1 of Guµ  and Kahn [2006℄. It is also shownthat a similar result holds uniformly over ‖u‖ < C for any �xed �nite 
onstant
C. Guµ  and Jen£ová [2007℄ have shown that weak 
onvergen
e also holds in thegeneral 
ase, with unknown eigenvalues. A 
lassi
al 
omponent then appears inthe limit statisti
al experiment. In the above result we extend the domain ofvalidity of these Theorems from �lo
al� parameters ‖u‖ < C to �slowly growing�lo
al neighborhoods ‖u‖ ≤ nη with η < 1/4. Although this may be seen asmerely a te
hni
al improvement, it is in fa
t essential in order to insure that theresult of the �rst step of the estimation will, with high probability, fall insidea neighborhood ‖u‖ ≤ nη for whi
h lo
al asymptoti
 normality still holds (seeFigure 7.2).Proof. Following [Guµ  and Kahn, 2006℄ we will �rst indi
ate how the 
hannels
Tn are 
onstru
ted. The te
hni
al details of the proof 
an be found in Appendix7.A.The spa
e (C2

)⊗n 
arries two unitary representations. The representation πn of
SU(2) is given by πn(u) = u⊗n for any u ∈ SU(2), and the representation π̃n ofthe symmetri
 group S(n) is given by the permutation of fa
tors

π̃n(τ) : v1 ⊗ · · · ⊗ vn 7→ vτ−1(1) ⊗ · · · ⊗ vτ−1(n), τ ∈ S(n).As [πn(u), π̃n(τ)] = 0 for all u ∈ SU(2), τ ∈ S(n), we have the de
omposition
(
C

2
)⊗n

=

n/2⊕

j=0,1/2

Hj ⊗Hj
n. (7.13)The dire
t sum runs over all positive (half)-integers j up to n/2. For ea
h �xed

j, Hj
∼= C2j+1 is an irredu
ible representation Uj of SU(2) with total angularmomentum J2 = j(j + 1), and Hj

n
∼= Cnj is the irredu
ible representation of thesymmetri
 group S(n) with nj =
(

n
n/2−j

)
−
(

n
n/2−j−1

). The density matrix ρunis invariant under permutations and 
an be de
omposed as a mixture of �blo
k�density matri
es
ρun =

n/2⊕

j=0,1/2

pn,u(j) ρuj,n ⊗ 1

nj
. (7.14)The probability distribution pn,u(j) is given by [Bagan et al., 2006℄:

pn,u(j) :=
nj

2µu − 1
(1 − µu)

n
2 −j

µ
n
2 +j+1
u

(
1 − p2j+1

u

)
, (7.15)with µu := µ+ uz/

√
n, pu := 1−µu

µu

. We 
an rewrite pn,u(j) as
pn,u(j) := Bn,µu

(n/2 + j) ×K(j, n, µ,u), (7.16)
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Bn,ν(k) :=

(
n

k

)
νk (1 − ν)

n−k
, k = 0, . . . , nis a binomial distribution, and the fa
tor K(j, n, µ,u) is given by

K(j, n, µ,u) :=
(
1 − p2j+1

u

) n+ (2(j − jn −√
nuz) + 1)/(2µu − 1)

n+ (j − jn −√
nuz + 1)/µu

,for jn := n(µ− 1/2).Now K(j, n, µ,u) = 1+O(n−1/2+ǫ) on the relevant values of j, i.e. the ones in aninterval of order n1/2+ǫ around jn, as long as µu is bounded away from 1/2, whi
his automati
ally so for big n. As Bn,µu
(k) is the distribution of a sum of i.i.d.Bernoulli random variables, we 
an now use standard lo
al asymptoti
 normalityresults [van der Vaart, 1998℄ to 
on
lude that if j is distributed a

ording to pn,u,then the 
entered and res
aled variable

gn :=
j√
n
−√

n(µ− 1/2),
onverges in distribution to a normal Nu, after an additional randomizationhas been performed. The latter is ne
essary in order to �smooth� the dis
retedistribution into a distribution whi
h is 
ontinuous with respe
t to the Lebesguemeasure, and will 
onvergen
e to the Gaussian distribution in total variationnorm.The measurement �whi
h blo
k�, 
orresponding to the de
omposition (7.14), pro-vides us with a result j and a posterior state ρuj,n. The fun
tion gn = gn(j) (withan additional randomization) is the 
lassi
al part of the 
hannel Tn. The ran-domization 
onsists of �smoothening� with a Gaussian kernel of mean gn(j) andvarian
e 1/(2
√
n), i.e. with τn,j := (n1/4/

√
π) exp

(
−√

n(x− gn(j))
2
).Note that this measurement is not disturbing the state ρun in the sense that theaverage state after the measurement is the same as before.The quantum part of Tn is the same as in [Guµ  and Kahn, 2006℄ and 
onsists ofembedding ea
h blo
k state ρuj,n into the state spa
e of the os
illator by meansof an isometry Vj : Hj → F(C),

Vj : |j,m〉 7→ |j −m〉,where {|j,m〉 : m = −j, . . . , j} is the eigenbasis of the total spin 
omponent
Lz :=

∑
i σ

(i)
z , 
f. equation (5.1) of [Guµ  and Kahn, 2006℄. Then the a
tion ofthe 
hannel Tn is
Tn :

⊕

j

pn,u(j)ρuj,n ⊗ 1

nj
7→
∑

j

pn,u(j) τn,j ⊗ Vjρ
u
j,nV

∗
j .
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ontinuous time measurementsThe inverse 
hannel Sn performs the inverse operation with respe
t to Tn. Firstthe os
illator state is �
ut-o�� to the dimension of an irredu
ible representationand then a blo
k obtained in this way is pla
ed into the de
omposition (7.13)(with an additional normalization from the remaining in�nite dimensional blo
kwhi
h is negligible for the states in whi
h we are interested).The rest of the proof is given in Appendix 7.A.
7.4 Time evolution of the intera
ting systemIn the previous se
tion, we have investigated the asymptoti
 equivalen
e betweenthe states ρun and Nu⊗φu by means of the 
hannel Tn. We now seek to implementthis in a physi
al situation. The Nu-part will follow in se
tion 7.5.2, the φu-partwill be treated in this se
tion.We 
ouple the n qubits to a Bosoni
 �eld; this is the physi
al implementation ofLAN. Subsequently, we perform a measurement in the �eld whi
h will providethe information about the state of the qubits; this is the utilization of LAN inorder to solve the asymptoti
 state estimation problem.In this se
tion we will limit ourselves to analyzing the joint evolution of the qubitsand �eld. The measurement on the �eld is des
ribed in se
tion 7.5.7.4.1 Quantum sto
hasti
 di�erential equationsIn the weak 
oupling limit [Gardiner and Zoller, 2004℄ the joint evolution of thequbits and �eld 
an be des
ribed mathemati
ally by quantum sto
hasti
 di�er-ential equations (QSDE) [Hudson and Parthasarathy, 1984℄. The basi
 notionshere are the Fo
k spa
e, the 
reation and annihilation operators and the quan-tum sto
hasti
 di�erential equation of the unitary evolution. The Hilbert spa
eof the �eld is the Fo
k spa
e F(L2(R)) as de�ned in (7.7). An important linearly
omplete set in F(L2(R)) is that of the exponential ve
tors

e(f) :=

∞⊕

n=0

1√
n!
f⊗n :=

∞⊕

n=0

1√
n!
|f〉n, f ∈ L2(R), (7.17)with inner produ
t 〈e(f), e(g)〉 = exp(〈f, g〉). The normalized exponential states

|f〉 := e−〈f,f〉/2e(f) are 
alled 
oherent states. The va
uum ve
tor is |Ω〉 := e(0)and we will denote the 
orresponding density matrix |Ω〉〈Ω| by Φ. The quantum
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ting system 171noises are des
ribed by the 
reation and annihilation martingale operators A∗
t :=

a∗(χ[0,t]) and At := a(χ[0,t]) respe
tively, where χ[0,t] is the indi
ator fun
tionfor [0, t] and
a(f) : e(g) 7→ 〈f, g〉e(g).The in
rements dAt := a(χ[0,t+dt]) − a(χ[0,t]) and dA∗

t play the role of non-
ommuting integrators in quantum sto
hasti
 di�erential equations, in the sameway as the one 
an integrate against the Brownian motion in 
lassi
al sto
hasti

al
ulus.We now 
onsider the joint unitary evolution for qubits and �eld de�ned bythe quantum sto
hasti
 di�erential equation [Hudson and Parthasarathy, 1984,Bouten et al., 2004℄:
dUn(t) = (andA

∗
t − a∗ndAt −

1

2
a∗nandt)Un(t),where Un(t) is a unitary operator on (C2)⊗n ⊗F(L2(R)), and

an :=
1√
2jn

n∑

k=1

σ
(k)
+ , σ

(k)
+ := 1⊗· · ·⊗(σx+iσy)/2⊗· · ·⊗1, jn := (µ−1/2)n.As we will see later, the �
oupling fa
tor� 1/

√
jn of the order n−1/2, is ne
essaryin order to obtain 
onvergen
e to the unitary evolution of the quantum harmoni
os
illator and the �eld.We remind the reader that the n-qubit spa
e 
an be de
omposed into irredu
iblerepresentations as in (7.13), and the intera
tion between the qubits and �eldrespe
ts this de
omposition

Un(t) =

n/2⊕

j=0,1/2

Uj,n(t) ⊗ 1,where 1 is the identity operator on the multipli
ity spa
e Hj
n, and

Uj,n(t) : Hj ⊗F(L2(R)) → Hj ⊗F(L2(R)),is the restri
ted 
o
y
le
dUj,n(t) = (ajdA

∗
t − a∗jdAt −

1

2
a∗jajdt)Uj,n(t), (7.18)with aj a
ting on the basis |j,m〉 of Hj as

aj |j,m〉 =
√
j −m

√
(j +m+ 1)/2jn |j,m+ 1〉,

a∗j |j,m〉 =
√
j −m+ 1

√
j +m/2jn |j,m− 1〉.
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ontinuous time measurementsRemark. We point out that the lowering operator for Lz a
ts as 
reator for our
ut-o� os
illator sin
e the highest ve
tor |j, j〉 
orresponds by Vj to the va
uumof the os
illator. This 
hoi
e does not have any physi
al meaning but is onlyrelated with our 
onvention µ > 1/2. Had we 
hosen µ < 1/2, then the raisingoperator on the qubits would 
orrespond to 
reation operator on the os
illator.By (7.14) the initial state ρ⊗n de
omposes in the same way as the unitary 
o
y
le,and thus the whole evolution de
ouples into separate �blo
ks� for ea
h valueof j. We do not have expli
it solutions to these equations but based on the
on
lusions drawn from LAN we expe
t that as n → ∞, the solutions will bewell approximated by similar ones for a 
oupling between an os
illator and the�eld, at least for the states in whi
h we are interested. As a warm up exer
ise wewill start with this simpler limit 
ase where the states 
an be 
al
ulated expli
itly.7.4.2 Solving the QSDE for the os
illatorLet a∗ and a be the 
reation and annihilation operators of a quantum os
illatora
ting on F(C). We 
ouple the os
illator with the Bosoni
 �eld and the jointunitary evolution is des
ribed by the family of unitary operators U(t) satisfyingthe quantum sto
hasti
 di�erential equation
dU(t) = (adA∗

t − a∗dAt −
1

2
a∗adt)U(t).We 
hoose the initial (un-normalized) state ψ(0) := e(z) ⊗ |Ω〉, where z is any
omplex number, and we shall �nd the expli
it form of the ve
tor state of thesystem and �eld at time t: ψ(t) := U(t)ψ(0).We make the following ansatz: ψ(t) = e(αt) ⊗ e(ft), where ft(s) := f(s)χ[0,t](s)for some f ∈ L2(R). For ea
h β ∈ C, g ∈ L2(R), de�ne I(t) := 〈e(β)⊗e(g), ψ(t)〉.We then have I(t) = exp(β̄α(t) + 〈g, ft〉), so that it satis�es

dI(t) =
(
β̄ d
dtα(t) + ḡ(t)f(t)

)
I(t)dt . (7.19)We now 
al
ulate d

dtI(t) with the help of the QSDE. Sin
e Ate(f) = 〈χ[0,t], f〉e(f),we have, for 
ontinuous g, dAte(g) = g(t)e(g)dt. However, sin
e Ase(ft) is 
on-stant for s ≥ t, we have dAte(ft) = 0. Thus
dI(t) = 〈e(β)⊗ e(g), (adA∗

t − a∗dAt− 1
2a

∗adt)ψ(t)〉 = (ḡ(t)α(t)− 1
2 β̄α(t))I(t)dt .(7.20)Equating (7.19) with (7.20) for all t, β and 
ontinuous g, we �nd f(s) = α(s),

d
dtα(t) = − 1

2α(t). Thus α(t) = α(0)e−
1
2 t, ft(s) = α(0)χ[0,t](s)e

− 1
2 s with α(0) =

z.In 
on
lusion ψ(t) = e(ze−
1
2 t) ⊗ e(ze−

1
2 sχ[0,t](s)). For later use we denote thenormalized solution by ψz(t) := U(t)|z〉 ⊗ |Ω〉 = e−|z|2/2U(t)e(z) ⊗ |Ω〉.



7.4 Time evolution of the intera
ting system 1737.4.3 QSDE for large spinWe 
onsider now the unitary evolution for qubits and �eld:
dUn(t) = (andA

∗
t − a∗ndAt −

1

2
a∗nandt)Un(t).It is no longer possible to obtain an expli
it expression for the joint ve
tor state

ψn(t) at time t. However we will show that for the states in whi
h we areinterested, a satisfa
tory expli
it approximate solution exists.The tri
k works for an arbitrary family of unitary solutions of a quantum sto
has-ti
 di�erential equation dU(t) = GdtU(t), and the general idea is the following: if
ψ(t) is the true state ψ(t) = U(t)ψ and ξ(t) is a ve
tor des
ribing an approximateevolution (ψ(0) = ξ(0)) then with U tt+dt := U(t+ dt)U(t)−1 we get
ψ(t+ dt) − ξ(t+ dt) = ψ(t+ dt) − U tt+dtξ(t) + U tt+dtξ(t)

−ξ(t) + ξ(t) − ξ(t+ dt)

= U tt+dt [ψ(t) − ξ(t)] + [U(t+ dt) − U(t)]U(t)−1ξ(t)

+[ξ(t) − ξ(t+ dt)]

= U tt+dt [ψ(t) − ξ(t)] +Gdtξ(t) − dξ(t).By taking norms we get
d‖ψ(t) − ξ(t)‖ ≤ ‖Gdtξ(t) − dξ(t)‖. (7.21)The idea is now to devise a family ξ(t) su
h that the right side is as small aspossible.We apply this te
hnique blo
k-wise, that is to ea
h unitary Uj,n(t) a
ting on

Hj ⊗F(L2(R)) (see equation (7.18)) for a �typi
al� j ∈ Jn (see equation (7.39)).By means of the isometry Vj we 
an embed the spa
e Hj into the �rst 2j + 1levels of the os
illator and for simpli
ity we will keep the same notions as beforefor the operators a
ting on F(C). As initial states for the qubits we 
hoose theblo
k states ρuj,n.Theorem 7.4.1. Let ρuj,n(t) = Uj,n(t)
[
ρuj,n ⊗ Φ

]
U∗
j,n(t) be the j-th blo
k of thestate of qubits and �eld at time t. Let φu(t) := U(t) [φu ⊗ Φ] U(t)∗ be the jointstate of the os
illator and �eld at time t. For any η < 1/6, for any ǫ > 0,

sup
j∈Jn

sup
‖u‖≤nη

sup
t

‖ρuj,n(t) − φu(t)‖1 = O(n−1/4+η+ǫ, n−1/2+3η+ǫ). (7.22)Proof. From the proof of the lo
al asymptoti
 normality Theorem 7.3.1 we knowthat the initial states of the two unitary evolutions are asymptoti
ally 
lose toea
h other
sup
j∈Jn

sup
‖u‖≤nη

‖ρuj,n − φu‖1 = O(n−1/4+η+ǫ). (7.23)
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ontinuous time measurementsThe proof 
onsists of two estimation steps. In the �rst one, we will devise anotherinitial state ρ̃uj,n whi
h is an approximation of φu and thus also of ρuj,n:
sup
j∈Jn

sup
‖u‖≤nη

‖ρ̃uj,n − φu‖1 = O(e−n
ǫ

). (7.24)In the se
ond estimate we show that the evolved states ρ̃uj,n(t) and φu(t) areasymptoti
ally 
lose to ea
h other
sup
j∈Jn

sup
‖u‖≤nη

sup
t

‖ρ̃uj,n(t) − φu(t)‖1 = O(n−1/4+η+ǫ, n−1/2+3η+ǫ). (7.25)This estimate is important be
ause, the two traje
tories are driven by di�erentHamiltonians, and in prin
iple there is no reason why they should stay 
lose toea
h other.From (7.23), (7.24) and (7.25), and using triangle inequality we get
sup
j∈Jn

sup
‖u‖≤nη

sup
t

‖ρuj,n(t) − φu(t)‖1 = O(n−1/4+η+ǫ, n−1/2+3η+ǫ).The following diagram illustrates the above estimates. The upper line 
on
ernsthe time evolution of the blo
k state ρuj,n and the �eld. The lower line des
ribesthe time evolution of the os
illator and the �eld. The estimates show that thediagram is �asymptoti
ally 
ommutative� for large n.
S(Hj)

Idj⊗Φ−−−−→ S(Hj ⊗F)
Uj,n(t)−−−−→ S(Hj ⊗F)

Vj ·V ∗
j

y
y

y

S(F(C))
Id⊗Φ−−−−→ S(F(C) ⊗F)

U(t)−−−−→ S(F(C) ⊗F)For the rest of the proof, we refer to Appendix 7.B.We have shown how the mathemati
al statement of LAN (the joint state of qubits
onverges to a Gaussian state of a quantum os
illator plus a 
lassi
al Gaussianrandom variable) 
an in fa
t be physi
ally implemented by 
oupling the spins tothe environment and letting them �leak� into the �eld. In the next se
tion, we willuse this for the spe
i�
 purpose of estimating u by performing a measurement inthe �eld.
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ond stage measurement 1757.5 The se
ond stage measurementWe now des
ribe the se
ond stage of our measurement pro
edure. Re
all thatin the �rst stage a relatively small part ñ = n1−κ, 1 > κ > 0, of the qubits ismeasured and a rough estimator ρ̃n is obtained. The purpose of this estimatoris to lo
alize the state within a small neighborhood su
h that the ma
hinery oflo
al asymptoti
 normality of Theorem 7.3.1 
an be applied.In Theorem 7.4.1 the lo
al asymptoti
 normality was extended to the level oftime evolution of the qubits intera
ting with a bosoni
 �eld. We have proventhat at time t the joint state of the qubits and �eld is
ρun(t) :=

n/2⊕

j=0,1/2

pn,u(j)
1

2πs2

∫

C

dz e−|z−√
2µ−1αu|2/2s2 exp(−|z|2) ×

|e(ze−t/2)j〉〈e(ze−t/2)j | ⊗ |e(ze−u/2χ[0,t](u))〉〈e(ze−u/2χ[0,t](u))|
+O(nη−1/4+ǫ, n3η−1/2+ǫ),for ‖u‖ ≤ nη. The index j serves to remind the reader that the �rst exponentialstates live in di�erent 
opies F(C)j of the os
illator spa
e, 
orresponding to Hjvia the isometry Vj . We will 
ontinue to identify Hj with its image in F(C)j .We 
an now approximate the above state by its limit for large t, sin
e

exp(−|z|2)〈e(ze−t/2)j | j, j〉〈e(ze−u/2χ[0,t](u)) | e(ze−u/2)〉 = exp(−|z|2e−t).(7.26)As we are always working with ‖u‖ ≤ nη, the only relevant z are bounded by
nη+δ for small δ. (The remainder of the Gaussian integral has an exponentiallyde
reasing norm, as dis
ussed before). Thus, for large enough time (i.e. for
t ≥ ln(n)), we 
an write ρun(t) = ρun(∞) +O(nη−1/4+ǫ, n3η−1/2+ǫ) with

ρun(∞) :=

n/2⊕

j=0,1/2

pn,u(j)|j, j〉〈j, j|⊗

[
1

2πs2

∫

C

dz e−|z−√
2µ−1αu|2/2s2 |e(ze−u/2)〉〈e(ze−u/2)| exp(−|z|2)

]
.(7.27)Thus, the �eld is approximately in the state φu depending on (ux, uy), whi
his 
arried by the mode (u 7→ e−u/2χ[0,∞)(u)) ∈ L2(R) denoted for simpli
ity by

e−u/2. The atoms end up in a mixture of |j, j〉 states with 
oe�
ients pn,u(j),
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ontinuous time measurementswhi
h depend only on uz, and are well approximated by the Gaussian randomvariable Nu as shown in Theorem 7.3.1. Moreover sin
e there is no 
orrelationbetween atoms and �eld, the statisti
al problem de
ouples into one 
on
erningthe estimation of the displa
ement in a family of Gaussian states φu, and one forestimating the 
enter of Nu.For the former problem, the optimal estimation pro
edure is known to be theheterodyne measurement [Holevo, 1982, Yuen and Lax, M., 1973℄; for the latter,we perform a �whi
h blo
k� measurement. These measurements are des
ribed inthe next two subse
tions.7.5.1 The heterodyne measurementA heterodyne measurement is a �joint measurement� of the quadratures Q :=
(a+ a∗)/

√
2 and P := −i(a− a∗)/

√
2 of a quantum harmoni
 os
illator whi
h inour 
ase represents a mode of light. Sin
e the two operators do not 
ommute, thepri
e to pay is the addition of some �noise� whi
h will allow for an approximatemeasurement of both operators. The light beam passes through a beamsplitterhaving a va
uum mode as the se
ond input, and then one performs a homodyne(quadrature) measurement on ea
h of the two emerging beams. If Qv and Pvare the va
uum quadratures then we measure the following output quadratures

Q1 := (Q + Qv)/
√

2 and P2 := (P − Pv)/
√

2, with [Q1,P2] = 0. Sin
e thetwo input beams are independent, the distribution of √2Q1 is the 
onvolutionbetween the distribution of Q and the distribution of Qv, and similarly for√2P2.In our 
ase we are interested in the mode e−u/2 whi
h is in the state φu, upto a fa
tor of order O(nη−1/4+ǫ, n3η−1/2+ǫ). From (7.9) we obtain that thedistribution of Q is N(
√

2(2µ− 1)ux, 1/(2(2µ − 1))), that of P is
N(
√

2(2µ− 1)uy, 1/(2(2µ−1))), and the joint distribution of the res
aled output
(
(Q + Qv)/

√
2(2µ− 1) , (P − Pv)/

√
2(2µ− 1)

)
,is

N(ux, µ/(2(2µ− 1)2)) ×N(uy, µ/(2(2µ− 1)2)). (7.28)We will denote by (ũx, ũy) the result of the heterodyne measurement res
aled bythe fa
tor √
2µ− 1 su
h that with good approximation (ũx, ũy) has the abovedistribution and is an unbiased estimators of the parameters (ux, uy).Sin
e we know in advan
e that the parameters (ux, uy) must be within the ra-dius of validity of LAN we modify the estimators (ũx, ũy) to a

ount for thisinformation and obtain the �nal estimator (ûx, ûy):

ûi =

{
ũi if |ũi| ≤ 3nη

0 if |ũi| > 3nη
(7.29)
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ond stage measurement 177Noti
e that if the true state ρ is in the radius of validity of LAN around ρ̃, then
‖u‖ ≤ nη, so that |ûi−ui| ≤ |ũi−ui|. We shall use this when proving optimalityof the estimator.7.5.2 Energy measurementHaving seen the φu-part, we now move to the Nu-part of the equivalen
e between
ρun and Nu ⊗ φu. This too is a 
oupling to a bosoni
 �eld, albeit a di�erent
oupling. We also des
ribe the measurement in the �eld whi
h will provide theinformation on the qubit states.The �nal state of the previous measurement, restri
ted to the atoms alone (with-out the �eld), is obtained by a partial tra
e of equation (7.27) (for large time)over the �eld

τun =

n/2∑

j=0,1/2

pn,u(j)|j, j〉〈j, j| +O(nη−1/4+ǫ, n3η−1/2+ǫ) .We will take this as the initial state of the se
ond measurement, whi
h willdetermine j.A dire
t 
oupling to the J2 does not appear to be physi
ally available, but a
oupling to the energyJz is realizable. This su�
es, be
ause the above statesatis�es j = m (up to order O(nη−1/4+ǫ, n3η−1/2+ǫ)). We 
ouple the atoms to anew �eld (in the va
uum state |Ω〉) by means of the intera
tion
dUt = {Jz(dA∗

t − dAt) − 1
2J

2
z dt}Ut ,with Jz := 1√

n

∑n
k=1 σz. Sin
e this QSDE is `essentially 
ommutative', i.e. drivenby a single 
lassi
al noise Bt = (A∗

t −At)/i, the solution is easily seen to be
Ut = exp(Jz ⊗ (A∗

t −At)) .Indeed, we have df(Bt) = f ′(Bt)dBt+
1
2f

′′(Bt)dt by the 
lassi
al It� rule, so that
d exp(iJz ⊗Bt) = {iJzdBt − 1

2J
2
z dt} exp(iJz ⊗Bt) .For an initial state |j,m〉 ⊗ |Ω〉, this evolution gives rise to the �nal state

Ut|j,m〉 ⊗ Ω = |j,m〉 ⊗ exp((m/
√
n)(A∗

t −At))Ω

= |j,m〉 ⊗ |(m/√n)χ[0,t]〉,
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ontinuous time measurementswhere |f〉 ∈ F(L2(R)) denotes the normalized ve
tor exp(−〈f, f〉/2)e(f). Ap-plying this to the states |j, j〉〈j, j| in τun yields
Ut τ

u
n ⊗ ΦU∗

t =

n/2∑

j=0,1/2

pn,u(j)|j, j〉〈j, j| ⊗ |j/√nχ[0,t]〉〈j/
√
nχ[0,t]|

+O(nη−1/4+ǫ, n3η−1/2+ǫ) .The �nal state of the �eld results from a partial tra
e over the atoms; it is givenby
n/2∑

j=0,1/2

pn,u(j) |(j/√n)χ[0,t]〉〈(j/
√
n)χ[0,t]| +O(nη−1/4+ǫ, n3η−1/2+ǫ) . (7.30)We now perform a homodyne measurement on the �eld, whi
h amounts to adire
t measurement of (At + A∗

t )/2t. In the state |(j/√nχ[0,t]〉, this yields thevalue of j with 
ertainty for large time (i.e. t ≫ √
n). Indeed, for this state,

E((At + A∗
t )/2t) = j/

√
n, whereas Var(At + A∗

t )/2t) = 1/(4t). Thus the proba-bility distribution pn,u is reprodu
ed up to order O(nη−1/4+ǫ, n3η−1/2+ǫ) in L1-distan
e.The following is a reminder from the proof of Theorem 7.3.1. If we start with jdistributed a

ording to pn(j) and we smoothen j√
n
−√

n(µ−1/2)with a Gaussiankernel, then we obtain a random variable gn whi
h is 
ontinuously distributed on
R and 
onverges in distribution to N(uz, µ(1−µ)), the error term being of order
O(nη−1/2) + O(nǫ−1/2). For j distributed a

ording to the a
tual distribution,as measured by the homodyne dete
tion experiment, we 
an therefore state that
gn is distributed a

ording to
N(uz, µ(1 − µ)) + O(nη−1/4+ǫ, n3η−1/2+ǫ) +O(nη−1/2) +O(nǫ−1/2). (7.31)As in the 
ase of (ûx, ûy), we take into a

ount the range of validity of LAN byde�ning the �nal estimator

ûz =

{
gn if |gn| ≤ 3nη

0 if |gn| > 3nη . (7.32)Similarly, we note that if the true state ρ is in the radius of validity of LANaround ρ̃, then ‖u‖ ≤ nη, so that |ûz − uz| ≤ |ũz − uz|.7.6 Asymptoti
 optimality of the estimatorIn order to estimate the qubit state, we have proposed a strategy 
onsisting ofthe following steps. First, we use ñ := n1−κ 
opies of the state ρ to get a rough
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 optimality of the estimator 179estimate ρ̃n. Then we 
ouple the remaining qubits with a �eld, and performa heterodyne measurement. Finally, we 
ouple to a di�erent �eld, followed byhomodyne measurement. From the measurement out
omes, we 
onstru
t anestimator ρ̂n := ρûn/
√
n.This strategy is asymptoti
ally optimal in a global sense: for any true state ρeven if we knew beforehand that the true state ρ is in a small ball around aknown state ρ0, it would be impossible to devise an estimator that 
ould dobetter asymptoti
ally, than our estimator ρ̂n on a small ball around ρ. Morepre
isely:Theorem 7.6.1. Let ρ̂n be the estimator de�ned above. For any qubit state

ρ0 di�erent from the totally mixed state, for any sequen
e of estimators ˆ̺n, thefollowing lo
al asymptoti
 minimax result holds for any 0 < ǫ < 1/12:
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ρ̂n) ≤ lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ˆ̺n). (7.33)Let (µ0, 1 − µ0) be the eigenvalues of ρ0 with µ0 > 1/2. Then the lo
al asymptoti
minimax risk is
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ρ̂n) = Rminimax(µ0) = 8µ0 − 4µ2
0. (7.34)Proof. We write the risk as the sum of two terms 
orresponding to the events Eand Ec that ρ̃n is inside or outside the ball of radius n−1/2+ǫ around ρ. Re
allthat LAN is valid inside the ball. Thus

R(ρ, ρ̂n) = E(‖ρ− ρ̂n‖2
1 χEc) + E(‖ρ− ρ̂n‖2

1 χE),where the expe
tation 
omes from ρ̂n being random. The distribution of theresult ˆrhon of our measurement pro
edure applied to the true unknown state ρdepends on ρ. We bound the �rst part by R1 and the se
ond part by R2 as shownbelow.
R1 equals P(Ec) times the maximum error, whi
h is 4 sin
e for any pair of densitymatri
es ρ and σ, we have ‖ρ− σ‖2

1 ≤ 4. Thus
R1 = 4P(‖ρ− ρ̃n‖1 ≥ n−1/2+ǫ).A

ording to Lemma 7.2.1 this probability goes to zero exponentially fast, there-fore the 
ontribution brought by this term 
an be negle
ted.We 
an now assume that ρ̃n is in the range of validity of lo
al asymptoti
 nor-mality and we 
an write ρ⊗n = ρun with u the lo
al parameter around ρ̃n. We
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ontinuous time measurementsget the following inequalities for the se
ond term in the risk.
E(‖ρ− ρ̂n‖2

1 χE) ≤ E

[
‖ρ̂n − ρ‖2

1

∣∣∣ ‖ρ̃n − ρ‖1 ≤ n−1/2+ǫ
]

≤ sup
‖ρ−ρ0‖<n−1/2+ǫ

E

[
‖ρ̂n − ρ‖2

1

∣∣∣ ρ̃n = ρ0

]

≤ sup
‖ρ−ρ0‖<n−1/2+ǫ

Eρun(∞)

[
‖ρ̂n − ρ‖2

1

∣∣∣ ρ̃n = ρ0

]

+ sup
‖ρ−ρ0‖<n−1/2+ǫ

‖ρun(t) − ρun(∞)‖1 sup
ûn

‖ρ̂n − ρ‖2
1

≤ sup
‖ρ−ρ0‖<n−1/2+ǫ

Eρun(∞)

[
‖ρ̂n − ρ‖2

1

∣∣∣ ρ̃n = ρ0

]

+ cn−1+2η sup
‖ρ−ρ0‖<n−1/2+ǫ

‖ρun(t) − ρun(∞)‖1 = R2. (7.35)The �rst two inequalities are trivial. In the third inequality we 
hange the ex-pe
tation from the one with respe
t to the probability distribution of our data
Pρun(t) to the probability distribution Pρun(∞). In doing so, an additional term
‖Pρun(t) − Pρun(∞)‖1 appears whi
h is bounded from above by ‖ρun(t) − ρun(∞)‖1.In the last inequality we 
an bound ‖ρ̂n − ρ‖2

1 by cn−1+2η for some 
onstant c.Indeed from de�nitions (7.29) and (7.32) we know that ‖ρ̂n − ρ0‖1 ≤ c′n−1/2+ηand additionally we are under the assumption ‖ρ− ρ0‖1 ≤ n−1/2+ǫ with ǫ < η.For the following, re
all that all our LAN estimates are valid uniformly aroundany state ρ0 = ρ̃ as long as µ− 1/2 ≥ ǫ2 > 0. As we are working with ρ di�erentfrom the totally mixed state and ‖ρ− ρ̃‖ ≤ n−1/2+ǫ, we know that for big enough
n, µ̃− 1/2 ≥ ǫ2 for any possible ρ̃. We 
an then apply the uniform results of theprevious se
tions.The se
ond term in R2 is O(n−5/4+3η+δ , n−3/2+5η+δ) where δ > 0 
an be 
hosenarbitrarily small. Indeed in the end of se
tion 7.4 we have proven that after time
t ≥ lnn, the following holds: ‖ρun(t) − ρun(∞)‖1 = O(n−1/4+η+δ , n−1/2+3η+δ).The 
ontribution to nR(ρ, ρ̂n) brought by this term will not 
ount in the limit,as long as η and ǫ are 
hose su
h that 1/12 > η > ǫ.We now deal with the �rst term in R2. We write ρ in lo
al parametrizationaround ρ0 = ρ̃ as ρun/

√
n. We have

‖ρ̂n − ρ‖2
1 = ‖ρu/√n − ρûn/

√
n‖2

1

= 4
(uz − ûz)

2 + (2µ− 1)2((ux − ûx)
2 + (uy − ûy)

2)

n

+O(‖u − ûn‖3n−3/2). (7.36)The remainder term O(‖u − ûn‖3n−3/2) is negligible. It is O(n3η−3/2) whi
hdoes not 
ontribute to nR(ρ, ρ̂n) for η < 1/6. This is be
ause on the one hand
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 optimality of the estimator 181we have asked for ‖ρ̃n − ρ‖ < n−1/2+ǫ, and on the other hand, we have boundedour estimator ûn by using (7.29) and (7.32).We now evaluate Eρun(∞)

[
d(u, ûn)2

] with the notation
d(u,v)2 := 4

[
(uz − vz)

2 + (2µ− 1)2((ux − vx)
2 + (uy − vy)

2)
]
. (7.37)Note that the risk of ûn is smaller than that of ũn (see dis
ussion below (7.29)and (7.32)). Under the law Pρun(∞) the estimator ũn has a Gaussian distributionas shown in (7.28) and (7.31) with �xed and known varian
e and unknown expe
-tation. In statisti
s this type of model is known as a Gaussian shift experiment[van der Vaart, 1998℄. Using (7.28) and (7.31), we get Eρun(∞)

[
(uz − ûz)

2
]
≤

µ(1 − µ) and Eρun(∞)

[
(ui − ûi)

2
]
≤ µ/(2(2µ − 1)2) for i = x, y. Substitutingthese bounds in (7.36), we obtain (7.34).We will now show that the sequen
e ρ̂n is optimal in the lo
al minimax sense:for any ρ0 and any other sequen
e of estimators ˆ̺n we have

R0 = lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ˆ̺n) ≥ 8µ0 − 4µ2
0.We will �rst prove that the right hand side is the minimax risk Rminimax(µ0) forthe family of states Nu ⊗ φu whi
h is the limit of the lo
al families ρun of qubitstates 
entered around ρ0. We then extend the result to our sequen
e of quantumstatisti
al models ρun.The minimax optimality for Nu ⊗ φu 
an be 
he
ked separately for the 
lassi
aland the quantum part of the experiment. For the quantum part φu, the optimalmeasurement is known to be the heterodyne measurement. A proof of this fa
t
an be found in Lemma 7.4 of [Guµ  and Kahn, 2006℄. For the 
lassi
al part,whi
h 
orresponds to the measurement of Lz, the optimal estimator is simply therandom variable X ∼ Nu itself [van der Vaart, 1998℄.We now end the proof by using the other dire
tion of LAN. Suppose that thereexists a better sequen
e of estimators ˆ̺n su
h that

R0 < Rminimax(µ0) = 8µ0 − 4µ2
0.We will show that this leads to an estimator û of u for the family Nu ⊗ φuwhose maximum risk is smaller than the minimax risk Rminimax(µ0), whi
h isimpossible.By means of a beamsplitter one 
an divide the state φu into two independentGaussian modes, using a thermal state φ := φ0 as the se
ond input. If r and t arethe re�e
tivity and respe
tive transmitivity of the beamsplitter (r2+t2 = 1), thenthe transmitted beam has state φu

tr = φtu and the re�e
ted one φu
ref = φru. By
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ontinuous time measurementsperforming a heterodyne measurement on the latter, and observing the 
lassi
alpart Nu, we 
an lo
alize u within a big ball around the result ũ with highprobability, in the spirit of Lemma 7.2.1. More pre
isely, for any small ǫ̃ > 0 we
an �nd a > 0 big enough su
h that the risk 
ontribution from unlikely ũ's issmall
E(‖u− ũ‖2χ‖u−ũ‖>a) < ǫ̃.Summarizing the lo
alization step, we may assume that the parameter u satis�es

‖u‖ < a with an ǫ̃ loss of risk, where a = a(r, ǫ̃).Now let n be large enough su
h that nǫ > a, then the parameter u falls withinthe domain of 
onvergen
e of the inverse map Sn of Theorem 7.3.1 and by (7.12)(with ǫ repla
ing η and δ repla
ing ǫ) we have
‖ρtun − S(N tu ⊗ φtu)‖1 ≤ Cn−1/4+ǫ+δ,for some 
onstant C.Next we perform the measurement leading to the estimator ˆ̺n and equivalentlyto an estimator ûn of u. Without loss of risk we 
an implement the 
ondition

‖u‖ < a into the estimator ûn in a similar fashion as in (7.29) and (7.32). Therisk of this estimation pro
edure for φu is then bounded from above by the sumof three terms: the risk nRρ(ˆ̺n)/t2 
oming from the qubit estimation, the error
ontribution from the map Sn whi
h is a2n−1/4+ǫ+δ, and the lo
alization risk
ontribution ǫ̃. This risk bound uses the same te
hnique as the third inequalityof (7.35). The se
ond 
ontribution 
an be made arbitrarily small by 
hoosing nlarge enough, for ǫ < 1/4. From our assumption we have R0 < Rminimax(µ0)and we 
an 
hoose t 
lose to one su
h that R0/t
2 < Rminimax(µ0) and further
hoose ǫ̃ su
h that R0/t

2 + ǫ̃ < Rminimax(µ0).In 
on
lusion, we get that the risk for estimating u is asymptoti
ally smaller thatthe risk of the heterodyne measurement 
ombined with observing the 
lassi
alpart whi
h is known to be minimax [Guµ  and Kahn, 2006℄. Hen
e no su
hsequen
e ˆ̺n exists, and ρ̂n is optimal.Remark. In Theorem 7.33, we have used the risk fun
tion R(ρ, ρ̂) = E(d2(ρ, ρ̂)),with d the L1-distan
e d(ρ, ρ̂) = ‖ρ−ρ̂‖1. However, the obtained results 
an easilybe adapted to any distan
e measure d2(ρû, ρu) whi
h is lo
ally quadrati
 in û−u,i.e.
d2(ρû, ρu) =

∑

α,β=x,y,z

γαβ(uα − ûα)(uβ − ûβ) +O(‖u − û‖3) .For instan
e, one may 
hoose d2(ρ̂, ρ) = 1 − F 2(ρ̂, ρ) with the �delity F (ρ̂, ρ) :=

Tr(
√√

ρ̂ρ
√
ρ̂). For non-pure states, this is easily seen to be lo
ally quadrati




7.7 Con
lusions 183with
γ =




(2µ0 − 1)2 0 0

0 (2µ0 − 1)2 0
0 0 1

1−(2µ0−1)2



 .For the 
orresponding risk fun
tion RF (ρ, ρ̂n) := E(1 − F 2(ρ, ρ̂n)), this yields
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nRF (ρ, ρ̂n) = µ0 + 1/4 , (7.38)with the same asymptoti
ally optimal ρ̂. The asymptoti
 rate RF ∼ 4µ0+1
4n wasfound earlier by Bagan et al. [2006℄, using di�erent methods.7.7 Con
lusionsIn this 
hapter, we have shown two properties of quantum lo
al asymptoti
 nor-mality (LAN) for qubits. First of all, we have seen that its radius of validity isarbitrarily 
lose to n−1/4 rather than n−1/2. And se
ondly, we have seen howLAN 
an be implemented physi
ally, in a quantum opti
al setup.We use these properties to 
onstru
t an asymptoti
ally optimal estimator ρ̂nof the qubit state ρ, provided that we are given n identi
al 
opies of ρ. Com-pared with other optimal estimation methods [Bagan et al., 2006, Hayashi andMatsumoto, 2004℄, our measurement te
hnique makes a signi�
ant step in thedire
tion of an experimental implementation.The 
onstru
tion and optimality of ρ̂n are shown in three steps.I In the preliminary stage, we perform measurements of σx, σy and σz on afra
tion ñ = n1−κ of the n atoms. As shown in se
tion 7.2, this yields arough estimate ρ̃n whi
h lies within a distan
e n−1/2+ǫ of the true state ρwith high probability.II In se
tion 7.3, it is shown that lo
al asymptoti
 normality holds within a ballof radius n−1/2+η around ρ (η > ǫ). This means that lo
ally, for n → ∞,all statisti
al problems 
on
erning the n identi
ally prepared qubits areequivalent to statisti
al problems 
on
erning a Gaussian distribution Nuand its quantum analogue, a displa
ed thermal state φu of the harmoni
os
illator.Together, I and II imply that the prin
iple of LAN has been extended to a globalsetting. It 
an now be used for a wide range of asymptoti
 statisti
al problems,in
luding the global problem of state estimation. Note that this hinges on therather subtle extension of the range of validity of LAN to neighborhoods of radiuslarger than n−1/2.



184 Optimal estimation of qubit states with 
ontinuous time measurementsIII LAN provides an abstra
t equivalen
e between the n-qubit states ρ⊗n
u/

√
non the one hand, and on the other hand the Gaussian states Nu ⊗ φu. Inse
tions 7.4 and 7.5 it is shown that this abstra
t equivalen
e 
an be im-plemented physi
ally by two 
onse
utive 
ouplings to the ele
tromagneti
�eld. For the parti
ular problem of state estimation, homodyne and hetero-dyne dete
tion on the ele
tromagneti
 �eld then yield the data from whi
hthe optimal estimator ρ̂n is 
omputed.Finally, in se
tion 7.6, it is shown that the estimator ρ̂n, 
onstru
ted above, isoptimal in a lo
al minimax sense. Lo
al here means that optimality holds in aball of radius slightly bigger than n−1/2 around any state ρ0 ex
ept the tra
ialstate. That is, even if we had known beforehand that the true state lies withinthis ball around ρ0, we would not have been able to 
onstru
t a better estimatorthan ρ̂n, whi
h is of 
ourse independent of ρ0.For this asymptoti
ally optimal estimator, we have shown that the risk R 
on-verges to zero at rate R(ρ, ρ̂n) ∼ 8µ0−4µ2

0

n , with µ0 > 1/2 an eigenvalue of ρ.More pre
isely, we have
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ρ̂n) = 8µ0 − 4µ2
0.The risk is de�ned as R(ρ, ρ̂) = E(d2(ρ, ρ̂)), where we have 
hosen d(ρ̂, ρ) to bethe L1-distan
e ‖ρ̂− ρ‖1 := Tr(|ρ̂− ρ|). This seems to be a rather natural 
hoi
ebe
ause of its dire
t physi
al signi�
an
e as the worst 
ase di�eren
e between theprobabilities indu
ed by ρ̂ and ρ on a single event.Even still, we emphasize that the same pro
edure 
an be applied to a wide rangeof other risk fun
tions. Due to the lo
al nature of the estimator ρ̂n for large n,its rate of 
onvergen
e in a risk R is only sensitive to the lowest order Taylorexpansion of R in lo
al parameters û−u. The pro
edure 
an therefore easily beadapted to other risk fun
tions, provided that the distan
e measure d2(ρû, ρu) islo
ally quadrati
 in û − u.Remark. The totally mixed state (µ = 1/2) is a singular point in the param-eter spa
e, and Theorem 7.3.1 does not apply in this 
ase. The e�e
t of thesingularity is that the family of states (7.9) 
ollapses to a single degenerate stateof in�nite temperature. However this phenomenon is only due to our parti
u-lar parametrisation, whi
h was 
hosen for its 
onvenien
e in des
ribing the lo
alneighborhoods around arbitrary states, with the ex
eption of the totally mixedstate. Had we 
hosen a di�erent parametrisation, e.g. in terms of the Blo
h ve
-tor, we would have found that lo
al asymptoti
 normality holds for the totallymixed state as well, but the limit experiment is di�erent: it 
onsists of a threedimensional 
lassi
al Gaussian shift, ea
h independent 
omponent 
orrespond-ing to the lo
al 
hange in the Blo
h ve
tor along the three possible dire
tions.



7.A Appendix: Proof of Theorem 7.3.1 185Mathemati
ally, the optimal measurement strategy in this 
ase is just to observethe 
lassi
al variables. However this strategy 
annot be implemented by 
ouplingwith the �eld sin
e this 
oupling be
omes singular (see equation (7.18)).These issues be
ome more important for higher dimensional systems where theeigenvalues may exhibit more 
ompli
ated multipli
ities, and will be dealt within that 
ontext.7.A Appendix: Proof of Theorem 7.3.1Here we give the te
hni
al details of the proof of lo
al asymptoti
 normality with�slowly growing� lo
al neighborhoods ‖u‖ ≤ nη, with η < 1/4. We start with themap Tn.7.A.1 Proof of Theorem 7.3.1; the map TnLet us de�ne, for 0 < ǫ < (1/4 − η) the interval
Jn =

{
j : (µ− 1/2)n− n1/2+ǫ ≤ j ≤ (µ− 1/2)n+ n1/2+ǫ

}
. (7.39)Noti
e that j ∈ Jn satis�es 2j ≥ ǫ2n for all µ − 1/2 ≥ ǫ2 and n big enough,independently of µ.Then Jn 
ontains the relevant values of j, uniformly for µ− 1/2 ≥ ǫ2:

lim
n→∞

pn,u(Jn) = 1 −O(n−1/2+ǫ). (7.40)This is a 
onsequen
e of Hoe�ding's inequality applied to the binomial distribu-tion, and re
alling that pn,u(j) = B(n/2 + j)(1 +O(n−1/2+ǫ)) for j ∈ Jn.We upper-bound ‖Tn(ρun) −Nu ⊗ φu‖ by the sum
3
∑

j 6∈Jn

pun,j +

∥∥∥∥∥∥
Nu −

∑

j∈Jn

pn,u(j)τn,j

∥∥∥∥∥∥
1

+ sup
j∈Jn

‖Vjρuj,nV ∗
j − φu‖1.(7.41)The �rst two terms are �
lassi
al� and 
onverge to zero uniformly over ‖u‖ ≤ nη:for the �rst term, this is (7.40), while the se
ond term 
onverges uniformly on
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ontinuous time measurements
µ − 1/2 ≥ ǫ2 at rate nη−1/2 [Guµ  and Kahn, 2008℄. The third term 
an beanalyzed as in Proposition 5.1 of [Guµ  and Kahn, 2006℄:

∥∥Vjρun,jV ∗
j − φu

∥∥
1

≤
∥∥ρun,j − V ∗

j φ
uVj
∥∥

1
+ ‖φu − Pjφ

uPj‖1 , (7.42)where Pj := VjV
∗
j is the proje
tion onto the image of Vj . We will show thatboth terms on the right side go to zero uniformly at rate n−1/4+η+ǫ over j ∈ Jnand ‖u‖ ≤ nη. The tri
k is to note that displa
ed thermal equilibrium states areGaussian mixtures of 
oherent states
φu =

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|z〉〈z|) d2z, (7.43)where s2 := (1 − µ)/(4µ− 2).The se
ond term on the left side of (7.42) is bounded from above by
1√

2πs2

∫
e−|z−√

2µ−1αu|2/2s2‖|z〉〈z| − Pj |z〉〈z|Pj‖1 d
2z,whi
h after some simple 
omputations 
an be redu
ed (up to a 
onstant) to

∫
e−|z|2/2s2‖P⊥

j |z +
√

2µ− 1αu〉‖ d2z. (7.44)We now split the integral. The �rst part is integrating over |z| ≥ nη+δ with
0 < δ < 1/4 − η/2. The integral is dominated by the Gaussian and its valueis O(e−n

2(η+δ)/(2s2)). The other part is bounded by the supremum over |z| ≤
2nη+δ (as ‖u‖ ≤ nη) of ‖P⊥

j |z〉‖. Now ‖P⊥
j |z〉‖ ≤ |z|j/√j! = O(e−n(1/2−η−2δ))uniformly on j ∈ Jn, for any µ− 1/2 ≥ ǫ2 sin
e then 2j ≥ ǫ2n.The same type of estimates apply to the �rst term

∥∥ρun,j − V ∗
j φ

uVj
∥∥

1
=

∥∥∥∥Ad

[
Uj

(
u√
n

)](
ρ0n,j

)
− V ∗

j φ
uVj

∥∥∥∥
1

≤

∥∥ρ0n,j − V ∗
j φ

0Vj
∥∥

1
+

∥∥∥∥Ad

[
Uj

(
u√
n

)] (
V ∗
j φ

0Vj
)
− V ∗

j φ
uVj

∥∥∥∥
1

. (7.45)The �rst term on the right side does not depend on u. From the proof of Lemma5.4 of [Guµ  and Kahn, 2006℄, we know that
∥∥ρ0n,j − V ∗

j φ
0Vj
∥∥

1
≤
(

p2j+1

1 − p2j+1
+ p2j+1

)with p = (1 − µ)/µ. Now the left side is of the order p2j+1 whi
h 
onvergesexponentially fast to zero uniformly on µ− 1/2 ≥ ǫ2 and j ∈ Jn.



7.A Appendix: Proof of Theorem 7.3.1 187The se
ond term of (7.45) 
an be bounded again by a Gaussian integral
1√

2πs2

∫
e−|z|2/2s2‖∆(u, z, j)‖1d

2z, (7.46)where the operator ∆(u, z, j) is given by
∆(u, z, j) := Ad

[
Uj
(
u/

√
n
)] (

V ∗
j |z〉〈z|Vj

)
−V ∗

j |z+
√

2µ− 1αu〉〈z+
√

2µ− 1αu|Vj .Again, we split the integral along ‖z‖ ≥ nη+δ. The outer part 
onverges to zerofaster than any power of n, as we have already seen. The inner integral, on theother hand, 
an be bounded uniformly over ‖u‖ ≤ nη, µ− 1/2 ≥ ǫ2 and j ∈ Jnby the supremum of ‖∆(u, z, j)‖1 over |z| ≤ 2nη+δ, µ − 1/2 ≥ ǫ2, j ∈ Jn and
‖u‖ ≤ nη.Let z̃ ∈ R2 be su
h that αz̃ = z/

√
2µ− 1, and denote ψ(n, j,v) = VjUj(v/

√
n)|j, j〉.Then, up to a √

2 fa
tor, ‖∆(u, z, j)‖1 is bounded from above by the
‖ψ(n, j, z̃) − |z〉‖ +∥∥∥ψ(n, j,u + z̃) − |z +

√
2µ− 1αu〉

∥∥∥+
∥∥∥∥Uj

(
u√
n

)
Uj

(
z̃√
n

)
|jj〉 − Uj

(
u + z̃√
n

)
|jj〉

∥∥∥∥ . (7.47)This is obtained by adding and subtra
ting |ψ(n, j, z̃)〉〈ψ(n, j, z̃)| and |ψ(n, j,u+
z̃)〉〈ψ(n, j,u + z̃)| and using the fa
t that ‖|ψ〉〈ψ| − |φ〉〈φ|‖1 =

√
2‖ψ − φ‖ fornormalized ve
tors ψ, φ.The two �rst terms are similar, we want to dominate them uniformly: we repla
e

u + z̃ by z̃ with |z| ≤ 2nη+δ. We then write:
‖ψ(n, j, z̃) − |z〉‖2 =

∞∑

k=0

|〈k|ψ(n, j, z̃)〉 − 〈k|z〉|2

≤
r−1∑

k=0

|〈k|ψ(n, j, z̃)〉 − 〈k|z〉|2 + 2
∞∑

k=r

(
|〈k|ψ(n, j, z̃)〉|2 + |〈k|z〉|2

)
.(7.48)If z = |z|eiθ then we have [Hayashi and Matsumoto, 2004℄

〈k|ψ(n, j, z̃)〉 =

√(
2j

k

)(
sin(|z|/√n)eiθ

)k (
cos(|z|√n)

)2j−k
,

〈k|z〉 = exp

(
− (2µ− 1)|z|2

2

) (
eiθ|z|√2µ− 1

)k
√
k!

.
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ontinuous time measurementsIn (7.48) we 
hoose r = n2η+ǫ3 with ǫ3 satisfying the 
onditions 2δ + 2η + ǫ <
2η + ǫ3 + ǫ < 1/2 and η + ǫ3 < 1/4. Then the tail sums are of the order

∞∑

k=r

|〈k|z〉|2 ≤ |z|2r
r!

≤ (2n(η+δ))2n
2η+ǫ3

(n2η+ǫ3)!
= o

(
exp(−n2η+ǫ3)

)
,

∞∑

k=r

|〈k|ψ(n, j, z̃)〉|2 ≤
j∑

k=r

( |z|2
n

)k
(2j)!

(2j − k)!k!
≤ n

|z|2r
r!

= o
(
exp(−n2η+ǫ3)

)
.For the �nite sums we use the following estimates whi
h are uniform over all

|z| ≤ 2nη+δ, k ≤ r, j ∈ Jn:
√(

2j

k

)
=

((2µ− 1)n)k/2√
k!

(1 +O(n−1/2+ǫ+2η+ǫ3)),

(sin(|z|/√n))k = (|z|/√n)k(1 +O(n4η+ǫ3+2δ−1)),

(cos(|z|/√n))2j−k = exp

(
− (2µ− 1)|z|2

2

)
(1 +O(n2η−1/2+ǫ+2δ)),where we have used on the last line that (1+x/n)n = exp(x)(1+O(n−1/2x)) for

x ≤ n1/2−ǫ4 (
f. [Guµ  and Kahn, 2008℄). This is enough to show that the �nitesum 
onverges uniformly to zero at rate O(n2η−1/2+ǫ+ǫ3) (the worst if ǫ3 is smallenough) and thus the �rst se
ond terms in (7.47) as the square root of this, thatis O(nη−1/4+ǫ/2+ǫ3/2).Noti
e that the errors terms depend on µ only through j, and that 2j ≥ ǫn for
µ− 1/2 ≥ ǫ2. Hen
e they are uniform in µ.We pass now to the third term of (7.47). By dire
t 
omputation it 
an be shownthat if we 
onsider two general elements exp(iX1) and exp(iX2) of SU(2) with
Xi selfadjoint elements of M(C2) then

exp(−i(X1 +X2)) exp(iX1) exp(iX2) exp([X1, X2]/2) = 1 +O(Xi1Xi2Xi3),(7.49)where the O(·) 
ontains only third order terms in X1, X2. If X1, X2 are inthe linear span of σx and σy then all third order monomials are su
h linear
ombinations as well.In parti
ular we get that for z,u ≤ nη+ǫ3 :
U(β) := U

(
−u + v√

n

)
U

(
u√
n

)
U

(
v√
n

)
exp(i(uxvy − uyvx)σz/n)

=

[
1 +O(n−2+4η+4ǫ3) O(n−3/2+3η+3ǫ3)

O(n−3/2+3η+3ǫ3 ) 1 +O(n−2+4η+4ǫ3)

]
. (7.50)



7.A Appendix: Proof of Theorem 7.3.1 189Finally,using the fa
t that |j, j〉 is an eigenve
tor of Lz, the third term in (7.47)
an be written as
‖|j, j〉〈j, j| − Uj(β)|j, j〉〈j, j|Uj(β)∗‖and both states are pure, so it su�
es to show that the s
alar produ
t 
onvergesto to one uniformly. Using (7.50) and the expression of 〈j|Uj(β)|j〉 [Hayashi andMatsumoto, 2004℄ we get, as j ≤ n,

〈j, j|Uj(β)|j, j〉 = [U(β)1,1]
j

= 1 +O(n−1+4η+4ǫ3 ),whi
h implies that the third term in (7.47) is of orderO(n−1+4η+4ǫ3). By 
hoosing
ǫ3 and ǫ small enough, we obtain that all terms used in bounding (7.46) areuniformly O(n−1/4+η+ǫ) for any ǫ > 0.This ends the proof of 
onvergen
e (7.11) from the n qubit state to the os
illator.7.A.2 Proof of Theorem 7.3.1; the map SnThe opposite dire
tion (7.12) does not require mu
h additional estimation, sowill only give an outline of the argument.Given the state Nu ⊗ φu, we would like to map it into ρun or 
lose to this state,by means of a 
ompletely positive map Sn.Let X be the 
lassi
al random variable with probability distribution Nu. With
X we generate a random j ∈ Z as follows

j(X) = [
√
nX + n(µ− 1/2)].This 
hoi
e is evident from the s
aling properties of the probability distribution

pun whi
h we want to re
onstru
t. Let qun be the probability distribution of j(X).By 
lassi
al lo
al asymptoti
 normality results we have the 
onvergen
e
sup

‖u‖≤nη

‖qun − pun‖1 = O(nη−1/2). (7.51)Now, if the integer j is in the interval Jn then we prepare the n qubits in blo
kdiagonal state with the only non-zero blo
k 
orresponding to the j'th irredu
iblerepresentation of SU(2):
τun,j :=

(
V ∗
j φ

uVj + Tr(P⊥
j φ

u)1
)
⊗ 1

nj
.The transformation φu 7→ τun,j is tra
e preserving and 
ompletely positive [Guµ and Kahn, 2006℄.
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ontinuous time measurementsIf j /∈ Jn then we may prepare the qubits in an arbitrary state whi
h we alsodenote by τun,j . The total 
hannel Sn then a
ts as follows
Sn : Nu ⊗ φu 7→ τun :=

n/2⊕

j=0,1/2

qun,jτ
u
n,j .We estimate the error ‖ρun − τun ‖1 as

‖ρun − τun ‖1 ≤ ‖qun − pun‖1 + 2Ppun(j /∈ Jn) + sup
j∈Jn

‖τun,j − ρun,j‖1The �rst term on the r.h.s. isO(nη−1/2) (see (7.51)), the se
ond term isO(nǫ−1/2)(see (7.40)). As for the third term, we use the triangle inequality to write, for
j ∈ Jn,

‖τun,j − ρun,j‖1 ≤ ‖τun,j − V ∗
j φ

uV ∗
j ‖1 + ‖V ∗

j φ
uV ∗

j − ρun,j‖1 .The �rst term is O(e−n(1/2−η−2δ)), a

ording to the dis
ussion following equation(7.44). The se
ond term on the right is O(n−1/4+η+ǫ) a

ording to equations(7.45) through (7.50).Summarizing, we have ‖Sn(Nu ⊗ φu) − ρun‖1 = O(n−1/4+η+ǫ), whi
h establishesthe proof in the inverse dire
tion.
7.B Appendix: Proof of Theorem 7.4.1First estimate. We build up the state ρ̃uj,n by taking linear 
ombinations ofnumber states |m〉 to obtain an approximate 
oherent state |z〉, and �nally mixingsu
h states with a Gaussian distribution to get an approximate displa
ed thermalstate. Consider the approximate 
oherent ve
tor Pm̃|z〉, for some �xed z ∈ C and
m̃ = nγ , with γ to be �xed later. De�ne the normalized ve
tor

|ψnz,j〉 :=
1

‖Pm̃|z〉‖
m̃∑

m=0

|z|m√
m!

|m〉, (7.52)We mix the above states to obtain
ρ̃uj,n :=

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|ψnz,j〉〈ψnz,j |
)
d2z.



7.B Appendix: Proof of Theorem 7.4.1 191Re
all that s2 = (1 − µ)(4µ− 2), and
φu =

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|z〉〈z|) d2z.From the de�nition of |ψnz,j〉 we have
‖|ψnz,j〉 − |z〉‖ ≤

√
2
|z|m̃√
m̃!

∧ 2, (7.53)whi
h implies
‖ρ̃uj,n−φu‖1 ≤

√
2√
πs2

∫
e−|z|2/2s2

( |z +
√

2µ− 1αu|m̃√
m̃!

∧
√

2

)
d2z = O(e−n

2(η+ǫ)

),for any ǫ > 0, for any γ ≥ 2(η+ǫ). Indeed we 
an split the integral into two parts.The integral over the domain |z| ≥ nη+ǫ is dominated by the Gaussian fa
tor andis O(e−n
2(η+ǫ)

). The integral over the disk |z| ≤ nη+ǫ is bounded by supremumof (7.53) sin
e the Gaussian integrates to one, and is O(e−(γ/2−η−ǫ)nγ

). In thelast step we use Stirling's formula to obtain log
[
(nη+ǫ)n

γ

/
√
nγ !
]
≈ (η + ǫ −

γ/2)nγ logn. Note that the estimate is uniform with respe
t to µ− 1/2 > ǫ2 forany �xed ǫ2 > 0.Se
ond estimate. We now 
ompare the evolved qubits state ρ̃uj,n(t) and theevolved os
illator state φu(t). Let |ψnm,j(t)〉 = Uj,n(t) |m〉⊗ |Ω〉 be the joint stateat time t when the initial state of the system is |m〉 
orresponding to |j, j −m〉in the Lz basis notation. We 
hoose the following approximation of |ψnm,j(t)〉
|ξnm,j(t)〉 :=

m∑

i=0

cn(m, i)αi(t)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i, (7.54)where αi(t) = exp((−m+ i)t/2), cn(m, i) := cn(m, i− 1)
√

2j−m+i
2jn

√
m−i+1

i with
cn(m, 0) := 1, and |f〉n := f⊗n as de�ned in (7.17). In parti
ular for µ−1/2 > ǫ2and j ∈ Jn we have cn(m, i) ≤√(mi )(1 + 2

ǫ2
n−1/2+ǫ)i.We apply now the estimate (7.21). By dire
t 
omputations we get

d|ξnm,j(t)〉 = −1

2

m∑

i=0

cn(m, i)αi(t)(m − i)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉idt

+
m∑

i=1

cn(m, i)αi−1(t)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i−1 ⊗s |χ[t,t+dt]〉,(7.55)where
f⊗i ⊗s g :=

i+1∑

k=1

f ⊗ f ⊗ · · · ⊗ g ⊗ · · · ⊗ f.



192 Optimal estimation of qubit states with 
ontinuous time measurementsFrom the quantum sto
hasti
 di�erential equation we get
Gdt |ξnm,j(t)〉 =

− 1

2

m∑

i=0

cn(m, i)αi(t)(m− i)
2j −m+ i+ 1

2jn
|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉idt

+

m∑

i=0

cn(m, i)αi(t)

√
(m− i)(2j −m+ i+ 1)

2jn(i+ 1)
|m− i− 1〉⊗

|e−1/2uχ[0,t](u)〉i ⊗s |χ[t,t+dt]〉. (7.56)In the se
ond term of the right side of (7.56) we 
an repla
e cn(m, i)√ (m−i)(2j−m+i+1)
2jn(i+1)by cn(m, i + 1) and thus we obtain the same sum as in the se
ond term of theleft side of (7.55). Thus

Gdt|ξnm,j(t)〉 − d|ξnm,j(t)〉 =

1

2

m−1∑

i=0

cn(m, i)αi(t)(m− i)
2(jn − j) +m− i− 1

2jn
|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i dt.Then using cn(m, i) ≤

√(
m
i

)
(1 + (2/ǫ2)n−1/2+ǫ)i we get that ‖Gdtξnm,j(t) −

dξnm,j(t)‖ is bounded from above by
1

2

[
m−1∑

i=0

(
m

i

)
((1 + n−1/2+ǫ)(1 − e−t))i

e(m−i)t

(
(2(jn − j) +m− i− 1)(m− i)

2jn

)2
]1/2

dt.We have
(2(jn − j) +m− i− 1)(m− i)

2jn
= O(m(n−1/2+ǫ + n−1m))Inside the sum we re
ognize the binomial terms with the m'th term missing.Thus the sum is

(
1 + n−1/2+ǫ − e−tn−1/2+ǫ

)m
−
(
(1 − e−t)(1 + n−1/2+ǫ)

)m

≤ (1 + n−1/2+ǫ)m(1 − (1 − e−t)m) ≤ (1 + n−1/2+ǫ)mme−t.Then there exists a 
onstant C (independent of µ if µ− 1/2 ≥ ǫ2) su
h that
‖Gdtξnm,j(t) − dξnm,j(t)‖ ≤ C

2
e−t/2m3/2(n−1/2+ǫ +mn−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m/2By integrating over t we �nally obtain
‖ψnm,j(t) − ξnm,j(t)‖ ≤ Cm3/2(n−1/2+ǫ +mn−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m/2
. (7.57)



7.B Appendix: Proof of Theorem 7.4.1 193Note that under the assumption γ < 1/3− 2ǫ/3, the right side 
onverges to zeroat rate n3γ/2−1/2+ǫ for all m ≤ m̃ = nγ . Summarizing, the assumptions whi
hwe have made so far over γ are
2η + 2ǫ < γ < 1/3 − 2ǫ/3.Now 
onsider the ve
tor |ψnz,j〉 as de�ned in (7.52) and let us denote |ψnz,j(t)〉 =

Uj,n(t)|ψnz,j〉 ⊗ |Ω〉. Then based on (7.54) we 
hoose the approximate solution
|ξnz,j(t)〉 = e−|z|2/2

m̃∑

m=0

|z|m√
m!

m∑

i=0

cn(m, i)αi(t)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i.Note that the ve
tors |ψnk,j(t)〉 and |ξnk,j(t)〉 live in the �k-parti
le� subspa
e of
Hj ⊗F(L2(R)) and thus are orthogonal to all ve
tors |ψnp,j(t)〉 and |ξnp,j(t)〉 with
p 6= k. By (7.57), the error is

‖ψnz,j(t) − ξnz,j(t)‖

≤ Ce−|z|2/2
(

m̃∑

m=0

|z|2m
m!

m3(n−1/2+ǫ +mn−1)2
(

1 +
2

ǫ2
n−1/2+ǫ

)m)1/2

+
|z|2m̃
m̃!

≤ Cm̃3/2(n−1/2+ǫ + m̃n−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m̃/2
+

|z|2m̃
m̃!

. (7.58)We now 
ompare the approximate solution ξnz,j(t) with the �limit� solution ψz(t)for the os
illator 
oupled with the �eld as des
ribed in se
tion 7.4.2. We 
anwrite
ψz(t) = e−|z|2/2

∞∑

m=0

|z|m√
m!

m∑

i=0

√(
m

i

)
e−(m−i)t/2|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i.Then

‖ξnz,j(t) − ψz(t)‖2 =

e−|z|2
m̃∑

m=0

|z|2m
m!

m∑

i=0

e−(m−i)t

∣∣∣∣∣cn(m, i) −
√(

m

i

)∣∣∣∣∣

2

(1 − e−t)i + e−|z|2
∞∑

m=m̃

|z|2m
m!

.



194 Optimal estimation of qubit states with 
ontinuous time measurementsNow
∣∣∣∣∣cn(m, i) −

√(
m

i

)∣∣∣∣∣

2

≤
∣∣∣∣cn(m, i)

2 −
(
m

i

)∣∣∣∣

≤
(
m

i

) ∣∣∣∣∣1 −
i∏

p=1

(
1 +

2(j − jn) −m+ p

2jn

)∣∣∣∣∣

≤ C2

(
m

i

)
mn−1/2+ǫ,where C2 does not depend on µ as long as µ−1/2 ≥ ǫ2 (re
all that the dependen
ein µ is hidden in jn = (2µ− 1)n). Thus

‖ξnz,j(t)−ψz(t)‖2 ≤ C2n
−1/2+ǫe−|z|2

m̃∑

m=0

m|z|2m
m!

+
|z|2m̃
m̃!

≤ C2n
−1/2+ǫ|z|2+ |z|2m̃

m̃!
.(7.59)From (7.58) and (7.59) we get

‖ψnz,j(t) − ψz(t)‖ ≤ 2 ∧
[
Cm̃3/2(n−1/2+ǫ + m̃n−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m̃/2

+
|z|2m̃
m̃!

+

[
C2n

−1/2+ǫ|z|2 +
|z|2m̃
m̃!

]1/2 ]

:= E(m̃, n, z)We now integrate the 
oherent states over the displa
ements z as we did in the
ase of lo
al asymptoti
 normality in order to obtain the thermal states in whi
hwe are interested
ρ̃uj,n :=

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|ψnz,j〉〈ψnz,j |
)
d2z.We de�ne the evolved states

ρ̃uj,n(t) := Uj,n(t)ρ̃
u
j,nUj,n(t)

∗, and φu(t) := U(t)φuU(t)∗,Then
sup
j∈Jn

sup
‖u‖≤nη

‖ρ̃uj,n(t)−φu(t)‖1 ≤ sup
‖u‖≤nη

1√
πs2

∫
e−|z−√

2µ−1αu|2/2s2E(m̃, n, z) d2z.Here again we 
ut the integral in two parts. On |z| ≥ nη+ǫ, the Gaussian domi-nates, and this outer part is less than e−nη+ǫ . Now the inner part is dominated



7.B Appendix: Proof of Theorem 7.4.1 195by sup|z|≤nη+ǫ E(m̃, n, z). Now we want m̃ to be not too big for (7.58) to besmall, on the other hand, we want z2m̃/m̃! to go to zero. A 
hoi
e whi
h satis�esthe 
ondition is γ = 2η + 3ǫ. By renaming ǫ we then get
E(m̃, n, z) = O(nη−1/4+ǫ, n3η−1/2+ǫ),for any small enough ǫ > 0. Hen
e we obtain (7.22).





Chapter 8Quantum lo
al asymptoti
normality for d-dimensionalstatesThis 
hapter is derived from [Guµ  and Kahn, 2008℄.Abstra
t: We extend strong quantum lo
al asymptoti
 normalityto all �nite-dimensional systems. Like in Chapter 6, we 
onsiderstates of the form ρ⊗n
θ/

√
n
, and require that ρ0 has pairwise di�erenteigenvalues. We then build 
hannels to and from a limit family. Thislimit family is a produ
t of a 
lassi
al Gaussian shift experiment anda quantum Gaussian shift experiment, and more pre
isely a produ
tof displa
ed thermal states where the temperature does not dependon the parameter θ. Moreover, we allow the parameter spa
e to grow,and get polynomial rates of 
onvergen
e.The proof involves mu
h te
hni
al work with Young tableaux, andmakes use of an intermediate result that is of interest per se: thebasis on a representation of SU(d) yielded by semistandard Youngtableaux is �almost� orthogonal.8.1 Introdu
tionQuantum statisti
s is a young interdis
iplinary �eld dealing with problems ofstatisti
al inferen
e arising in quantum me
hani
s. The �rst signi�
ant results



198 Quantum lo
al asymptoti
 normality for d-dimensional statesin this area appeared in the seventies [Helstrom, 1969, Yuen and Lax, M., 1973,Yuen et al., 1975a, Belavkin, 1976, Holevo, 1982℄ and ta
kled issues su
h as quan-tum Cramér-Rao bounds for unbiased estimators, optimal estimation for familiesof states possessing a group symmetry, estimation of Gaussian states, optimaldis
rimination between non-
ommuting states. The more re
ent theoreti
al ad-van
es [Hayashi, 2005b, 2006, Paris and �ehá£ek, 2004, Barndor�-Nielsen et al.,2003℄ are 
losely related to the rapid development of quantum information andquantum engineering, and are often a

ompanied by pra
ti
al implementations[Armen et al., 2002, Hannemann et al., 2002a, Smith et al., 2006℄. In quantumopti
s a measurement method 
alled quantum homodyne tomography [Vogel andRisken, H., 1989, D'Ariano et al., 1995, Leonhardt et al., 1996℄ allows the estima-tion with arbitrary pre
ision [Artiles, L et al., 2005, Butu
ea et al., 2007℄ of thestate of a mono
hromati
 beam of light, by repeatedly measuring a su�
ientlylarge number of identi
ally prepared beams [Smithey et al., 1993, S
hiller et al.,1996, Zavatta et al., 2004℄.An important topi
 in quantum statisti
s is that of optimal estimation of anunknown state using the results of measurements performed on n identi
ally pre-pared quantum systems [Massar and Popes
u, 1995, Cira
 et al., 1999, Vidalet al., 1999, Gill and Massar, 2000, Keyl and Werner, 2001, Bagan et al., 2002,Hayashi and Matsumoto, 2004, 2005, Bagan et al., 2006, Gill, 2005a℄. In the 
aseof two dimensional systems, or qubits, the problem has been solved expli
itlyin the Bayesian set-up in the parti
ular 
ase of an invariant prior and �gure ofmerit (risk) based on the �delity distan
e between states [Bagan et al., 2006℄.However the method used there does not work for more general priors, loss fun
-tions or higher dimensions. In the pointwise approa
h, Hayashi and Matsumoto[2004℄ showed that the Holevo [1982℄ bound for the varian
e of lo
ally unbiasedestimators 
an be a
hieved asymptoti
ally, and provided a sequen
e of measure-ments with this property. Their results, building on earlier work [Hayashi, 2003,Hayashi℄, indi
ate for the �rst time the emergen
e of a Gaussian limit in theproblem of optimal state estimation for qubits.In [Guµ  and Kahn, 2006, Guµ  et al., 2008℄ we performed a detailed analysis ofthis phenomenon and showed that we deal with the quantum generalization of animportant 
on
ept in mathemati
al statisti
s 
alled lo
al asymptoti
 normality.Wald [1950℄ introdu
ed the idea of approximating a sequen
e of statisti
al modelsby a family of Gaussian distributions, and Le Cam [1986℄ developed it fully. He
oined the term �lo
al asymptoti
 normality�. Among the many appli
ations wemention its role in asymptoti
 optimality theory and in proving the asymptoti
normality of 
ertain estimators su
h as the maximum likelihood estimator.For qubits, lo
al asymptoti
 normality means roughly the following [Guµ  andKahn, 2006, Guµ  et al., 2008℄: for large n the model des
ribed by n qubits,identi
ally prepared in an unknown state, is asymptoti
ally equivalent to a model
onsisting of pairs of 
lassi
al Gaussian random variables and Gaussian states of a



8.2 Lo
al asymptoti
 normality for qubits 199quantum harmoni
 os
illator, both having known varian
es but unknown means.As in the 
lassi
al 
ase, this provides an asymptoti
ally optimal measurementstrategy for qubit states whi
h 
onsists in mapping them into states of a harmoni
os
illator, followed by a heterodyne measurement of the displa
ement. A morepre
ise formulation 
an be found in se
tion 8.2.Se
tion 8.3 gives the set-up in whi
h we work. We formalize the notion of statis-ti
al model, and re
all what transformations are possible on those models. Wethen explain what Le Cam distan
e is, and its relevan
e to statisti
s.In Se
tion 8.4, we des
ribe brie�y 
lassi
al lo
al asymptoti
 normality, both asa referen
e point, and be
ause quantum limits of experiments 
ontain a 
lassi
alpart, detailed in Example 8.4.1.We speak about quantum Gaussian states and Fo
k spa
es in Se
tion 8.5. Thesestates appear in the limit experiment, that we des
ribe at the end of the se
tion.We state there Theorem 8.5.1, the main result of the 
hapter, asserting that quan-tum statisti
al experiments on n identi
ally prepared states 
an be polynomiallyapproximated by experiments on quantum Gaussian states.Sin
e we need to parametrise states using a
tion of SU(d), we re
all basi
s ofgroup theory in Se
tion 8.6. The notions are mainly used in the proof of themain theorem. We also prove a possibly independently interesting result inLemma 8.6.9, establishing quasi-orthogonality of the basis given by semistan-dard tableaux.Se
tions 8.7 and 8.8 might be the heart of the 
hapter. In the former, we give thepre
ise form of the 
hannels (transformations of statisti
al experiments) that weuse to prove Theorem 8.5.1. In the latter, we give the main ideas of the proof, andsplit the main theorem in a series of te
hni
al lemmas. Proofs of those lemmasare supplied in Se
tion 8.9.Notation: Throughout the 
hapter, we shall denote C 
onstants that may
hange even within the same line.8.2 Lo
al asymptoti
 normality for qubitsFor a more pre
ise formulation let us parametrise the qubit states by their Blo
hve
tors ρ(−→r ) = 1
2 (1 + −→r −→σ ) where −→σ = (σx, σy, σz) are the Pauli matri
es. Theneighbourhood of the state ρ0 with −→r0 = (0, 0, 2µ − 1) and 1/2 < µ < 1, is athree-dimensional ball parametrised by the deviation u ∈ R of diagonal elementsand ζ ∈ C of the o�-diagonal ones
ρθ =

(
µ+ u ζ∗

ζ 1 − µ− u

)
, θ = (u, ζ). (8.1)



200 Quantum lo
al asymptoti
 normality for d-dimensional statesConsider now n identi
ally prepared qubits whose individual states are in a neigh-bourhood of ρ0 of size 1/
√
n, so that their joint state is ρnθ :=

[
ρθ/

√
n

]⊗n
. Wewould like to understand the stru
ture of the family (statisti
al experiment)

Qn := {ρnθ : ‖θ‖ ≤ C}, (8.2)as a whole, more pre
isely what is its asymptoti
 behaviour as n→ ∞?For this we 
onsider a quantum harmoni
 os
illator with position and momentumoperators Q and P a
ting on L2(R) and satisfying the 
ommutation relations
[Q,P] = i1. We denote by {|n〉, n ≥ 0} the eigenbasis of the number operatorand de�ne the thermal equilibrium state at inverse temperature β

G(β) = (1 − e−β)
∞∑

k=0

e−kβ |k〉〈k|, e−β =
1 − µ

µ
,whi
h has 
entred Gaussian distributions for both Q and P with varian
e 1/(4µ−

2) > 1/2. We de�ne a family of displa
ed thermal equilibrium states
G(ζ, β) := D(ζ/

√
2µ− 1)G(β)D(ζ/

√
2µ− 1)∗, (8.3)where D(ζ) := exp(ζa∗ − ζa) is the unitary displa
ement operator with ζ ∈ C.Additionally we 
onsider a 
lassi
al Gaussian shift model 
onsisting of the familyof normal distributions N(u, µ(1−µ)) with unknown mean u and �xed varian
e.The 
lassi
al-quantum statisti
al experiment to whi
h we alluded above is

R := {φθ := N(u, µ(1 − µ)) ⊗G(ζ, β) : ‖θ‖ ≤ C} (8.4)where the unknown parameters θ = (u, ζ) are the same as those of Qn.Theorem 8.2.1. Let Qn be the quantum statisti
al experiment (8.2) and let Rbe the 
lassi
al-quantum experiment (8.4). Then for ea
h n there exist quantum
hannels (normalized 
ompletely positive maps)
Tn : M

(
C

2n
)
→ L1(R) ⊗ T (L2(R)),

Sn : L1(R) ⊗ T (L2(R)) →M
(

C
2n
)
,with T (L2(R)) the tra
e-
lass operators, su
h that

lim
n→∞

sup
‖θ‖≤C

‖φθ − Tn (ρnθ ) ‖1 = 0,

lim
n→∞

sup
‖θ‖≤C

‖ρnθ − Sn (φθ) ‖1 = 0,for an arbitrary 
onstant C > 0.



8.3 Classi
al and quantum statisti
al experiments 201The lo
al asymptoti
 normality theorem show that from a statisti
al point ofview the joint qubits states are asymptoti
ally indistinguishable from the limitGaussian system. A 
onsequen
e of this insight is that one 
an design optimalstate estimators, and even propose a realisti
 measurement set-up for this purpose[Guµ  et al., 2008℄. The lo
al nature of the result is not a limitation but ratherthe 
orre
t normalization of the parameters with n → ∞. Indeed as n growswe have more information about the state and we 
an easily pin it down to aregion of size slightly larger that 1/
√
n by performing rough measurements on asmall proportion of the systems. In a se
ond stage we 
an use more sophisti
atedte
hniques to estimate the state within the lo
al neighbourhood of the �rst levelestimator, and it is here where we use results on lo
al asymptoti
 normality.8.3 Classi
al and quantum statisti
al experimentsLet X be a random variable with values in the measure spa
e (X ,ΣX ), and let usassume that its probability distribution P belongs to some family {Pθ : θ ∈ Θ}where the parameter θ is unknown. Statisti
al inferen
e deals with the questionof how to use the available data X in order to draw 
on
lusions about someproperties of θ. We shall 
all the family

E := (Pθ : θ ∈ Θ), (8.5)a statisti
al experiment or model over (X ,ΣX ) [Le Cam, 1986℄.In quantum statisti
s the data is repla
ed by a quantum system prepared in astate φ whi
h belongs to a family {φθ : θ ∈ Θ} of states over an algebra ofobservables. In order to make a statisti
al inferen
e about θ one �rst has tomeasure the system, and then apply statisti
al te
hniques to draw 
on
lusionsfrom the data 
onsisting of the measurement out
omes. An important di�eren
ewith the 
lassi
al 
ase is that the experimenter has the possibility to 
hoose themeasurement set-up M , and ea
h set-up will lead to a di�erent 
lassi
al model
{P (M)

θ : θ ∈ Θ}, where P (M)
θ is the distribution of out
omes when performingthe measurement M on the system prepared in state φθ.The guiding idea of this 
hapter is to investigate the stru
ture of the family ofquantum states

Q := (φθ : θ ∈ Θ),whi
h will be 
alled a quantum statisti
al experiment. We shall show that inan important asymptoti
 set-up, namely that of a large number of identi
allyprepared systems, the joint state 
an be approximated by a multidimensionalquantum Gaussian state, for all possible preparations of the individual systems.This will bring a drasti
 simpli�
ation in the problem of optimal estimation for
d-dimensional quantum systems, whi
h 
an then be solved in the asymptoti
framework.



202 Quantum lo
al asymptoti
 normality for d-dimensional states8.3.1 Classi
al and quantum randomizationsAny statisti
al de
ision 
an be seen as data pro
essing using a Markov kernel.Suppose we are given a random variable X taking values in (X ,ΣX ) and wewant to produ
e a �de
ision� y ∈ Y based on the data X . The spa
e Y maybe for example the parameter spa
e Θ in the 
ase of estimation, or just the set
{0, 1} in the 
ase of testing between two hypotheses. For every value x ∈ X we
hoose y randomly with probability distribution given byKx(dy). Assuming that
K : X ×ΣY → [0, 1] is measurable with respe
t to x for all �xed A ∈ ΣY , we 
anregard K as a map from probability distributions over (X ,ΣX ) to probabilitydistributions over (Y,ΣY) with

K(P )(A) =

∫
Kx(A)P (dx), A ∈ ΣY . (8.6)A statisti
 S : X → Y is a parti
ular example of su
h a pro
edure, where Kx issimply the delta measure at S(x).Besides statisti
al de
isions, there is another important reason why one wouldlike to apply su
h treatment to the data, namely to summarize it in a more
onvenient and informative way for future purposes as illustrated in the followingsimple example. Consider n independent identi
ally distributed random variables

X1, . . . , Xn with values in {0, 1} and distribution Pθ := (1 − θ, θ) with θ ∈ Θ :=
(0, 1). The asso
iated statisti
al experiment is

En := (Pnθ : θ ∈ Θ).It is easy to see that X̄n = 1
n

∑n
i=1Xi is an unbiased estimator of θ and moreoverit is a su�
ient statisti
 for En, i.e. the 
onditional distribution Pnθ (·|X̄n = x̄)does not depend on θ! In other words the dependen
e on θ of the total sample

(X1, X2, . . . , Xn) is 
ompletely 
aptured by the statisti
 X̄n whi
h 
an be usedas su
h for any statisti
al de
ision problem 
on
erning En. If we denote by P̄nθthe distribution of X̄n then the experiment
Ēn = (P̄nθ : θ ∈ Θ),is statisti
ally equivalent to En. To 
onvin
e ourselves that X̄n does 
ontain thesame statisti
al information as (X1, . . . , Xn), we show that we 
an obtain thelatter from the former by means of a randomized statisti
. Indeed for every �xedvalue x̄ of X̄n there exists a measurable fun
tion
fx̄ : [0, 1] → {0, 1}n,su
h that the distribution of fx̄(U) is Pnθ (·|X̄n = x̄). In other words

λ(f−1
x̄ (x1, . . . , xn)) = Pnθ (x1, . . . , xn|X̄n = x̄),
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al experiments 203where λ is the Lebesgue measure on [0, 1]. Then F (X̄n, U) := fX̄n
(U), hasdistribution Pnθ . To summarize, statisti
s, randomized statisti
s and Markovkernels, are ways to transform the available data for a spe
i�
 purpose. TheMarkov kernel K de�ned in (8.6) maps the experiment E of equation (8.5) intothe experiment

F := {Qθ : θ ∈ Θ},over (Y,ΣY) with Qθ = K(Pθ). For mathemati
al 
onvenien
e it is useful torepresent su
h transformations in terms of linear maps between linear spa
es. Apositive linear map
T∗ : L1(X ,ΣX , P ) → L1(Y,ΣY , Q)is 
alled a sto
hasti
 operator or transition if ‖T∗(g)‖1 = ‖g‖1 for every g ∈

L1
+(X ). A positive linear map

T : L∞(Y,ΣY , Q) → L∞(X ,ΣX , P )is 
alled a Markov operator if T1 = 1, and if for any fn ↓ 0 in L∞(Y) we have
Tfn ↓ 0. A pair (T∗, T ) as above is 
alled a dual pair if

∫
fT (g)dP =

∫
T∗(f)gdQ,for all f ∈ L1(X ) and g ∈ L∞(Y). It is a theorem that for any sto
hasti
 operator

T there exists a unique dual Markov operator T and vi
e versa.What is the relation between Markov operators and Markov kernels? Roughlyspeaking, any Markov kernel de�nes a Markov operator when we restri
t tofamilies of dominated probability measures. Let us assume that all distribu-tions Pθ of the experiment E de�ned in (8.5) are absolutely 
ontinuous withrespe
t to a �xed probability distribution P , su
h that there exist densities
pθ := dPθ/dP : X → R+. Su
h an experiment is 
alled dominated and in
on
rete situations this 
ondition is usually satis�ed. Let Kx(dy) be a Markovkernel (8.6) su
h that Qθ = K(Pθ), then we de�ne asso
iated Markov operator
(T (f))(x) :=

∫
f(y)kx(dy) and have

Qθ = Pθ ◦ T, ∀θ. (8.7)When the probability distributions of two experiments are related to ea
h otheras in (8.7), we say that F is a randomization of E . From the duality between
T and T∗ we obtain an equivalent 
hara
terization in terms of the sto
hasti
operator T∗ : L1(X ,ΣX , P ) → L1(Y,ΣY , Q) su
h that

T∗(dPθ/dP ) = dQθ/dQ, ∀θ .The 
on
ept of randomization is weaker than that of Markov kernel transforma-tion, but under the additional 
ondition that (Y,ΣY) is lo
ally 
ompa
t spa
e
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al asymptoti
 normality for d-dimensional stateswith 
ountable base and Borel σ-�eld, it 
an be shown that any randomization
an be implemented by a Markov kernel [Strasser, 1985℄.What is the analogue of randomizations in the quantum 
ase? In the languageof operator algebras L∞(X ,ΣX , P ) is a 
ommutative von Neumann algebra and
L1(X ,ΣX , P ) is the spa
e of (densities of) normal linear fun
tionals on it. Thesto
hasti
 operator T∗ is the 
lassi
al version of quantum 
hannel, i.e. a 
om-pletely positive normalized (tra
e-preserving) map

T∗ : A∗ → B∗where A∗,B∗ are the spa
es of normal states on the von Neumann algebra Aand respe
tively B. Completely positive means that for any algebra C, the map
T∗ ⊗ IdC∗ : A∗ ⊗ C∗ → B∗ ⊗ C∗ is positive. We give a list of 
lassi
al examples inSe
tion 8.9.2. Any normal state φ on A has a density ρ with respe
t to the tra
esu
h that φ(A) = Tr(ρA) for all A ∈ A. The dual of T∗ is

T : B → A,whi
h is a unital 
ompletely positive map and has the property that T (φ)(b) =
φ(T (b)) for all b ∈ B and φ ∈ A∗. We interpret su
h quantum 
hannels as possiblephysi
al transformations from input to output states.A parti
ular 
lass of 
hannels is that of measurements. In this 
ase the input isthe state of a quantum system des
ribed by an algebra A, and the output is aprobability distribution over the spa
e of out
omes (X ,ΣX ). Any measurementis des
ribed by a positive linear map

M : L∞(X ,ΣX , P ) → A,whi
h is 
ompletely spe
i�ed by the image of 
hara
teristi
 fun
tions of mea-surable sets, also 
alled positive operator valued measure (POVM). This map
M : ΣX → A has following properties1. Positive: M(A) ≥ 0, ∀A ∈ ΣX ;2. Countably additive: ∑∞

i=1M(Ai) = M(∪iAi), Ai ∩Aj = ∅, i 6= j;3. Normalized: M(X ) = 1.The 
orresponding 
hannel a
ting on states is a positive map M∗ : A∗ →
L1(X ,ΣX , P ) given by

M(φ)(A) = φ(M(A)) = Tr(ρM(A)),
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al experiments 205where ρ is the density matrix of φ. By applying the 
hannel M to the quantumstatisti
al experiment 
onsisting of the family of states Q = (φθ : θ ∈ Θ) on Awe obtain a 
lassi
al statisti
al experiment
QM := {M(φθ) : θ ∈ Θ},over the out
omes spa
e (X ,ΣX ).As in the 
lassi
al 
ase, quantum 
hannels 
an be seen as ways to 
ompare quan-tum experiments. The �rst steps in this dire
tion were made by Petz [1986℄,Petz and Jen£ová [2006℄ who developed the theory of quantum su�
ien
y deal-ing with the problem of 
hara
terizing when a sub-algebra of observables 
ontainsthe same statisti
al information about a family of states, as the original algebra.More generally, two experiments Q := (A, φθ : θ ∈ Θ) and R := (B, ψθ : θ ∈ Θ)are 
alled statisti
ally equivalent if there exist 
hannels T : A → B and S : B → Asu
h that

ψθ ◦ T = φθ and φθ ◦ S = ψθ.As 
onsequen
e, for any measurement M : L∞(X ,ΣX , P ) → A there existsa measurement T ◦ M : L∞(X ,ΣX , P ) → A su
h that the resulting 
lassi
alexperiments 
oin
ide QM = RT◦M . Thus for any statisti
al problem, and anypro
edure 
on
erning the experiment Q there exists a pro
edure for R with thesame risk (average 
ost), and vi
e versa.8.3.2 The Le Cam distan
e and its statisti
al meaningWe have seen that two experiments are statisti
ally equivalent when they 
an betransformed into ea
h other be means of quantum 
hannels. When this 
annot bedone exa
tly, we would like to have a measure of how 
lose the two experimentsare when we allow any 
hannel transformation. We de�ne the de�
ien
y of Rwith respe
t to Q as
δ(R,Q) = inf

T
sup
θ

‖φθ − ψθ ◦ T ‖ (8.8)where the in�mum is taken over all 
hannels T : A → B. The norm-one distan
ebetween two states on A is de�ned as
‖φ1 − φ2‖1 := sup{|φ1(a) − φ2(a)| : a ∈ A, ‖a‖ ≤ 1},and for A = B(H) it is equal to Tr(|ρ1 − ρ2|), where ρi is the density matrixof the state φi. When δ(R,Q) = 0 we say that R is more informative than Q.Note that δ(R,Q) is not symmetri
 but satis�es a triangle inequality of the form



206 Quantum lo
al asymptoti
 normality for d-dimensional states
δ(R,Q)+ δ(Q, T ) ≥ δ(R, T ). By symmetrizing we obtain a proper distan
e overthe spa
e of equivalen
e 
lasses of experiments, 
alled Le Cam's [1986℄ distan
e

∆(Q,R) := max (δ(Q,R) , δ(R,Q)) .What is the statisti
al meaning of the Le Cam distan
e? We shall show that if
δ(R,Q) ≤ ǫ then for any statisti
al de
ision problem with loss fun
tion between
0 and 1, any measurement pro
edure for Q 
an be mat
hed by a measurementpro
edure for R whose risk will be at most ǫ larger than the previous one.A de
ision problem is spe
i�ed by a de
ision spa
e (X ,ΣX ) and a loss fun
tion
Wθ : X → [0, 1] for ea
h θ ∈ Θ. We are given a quantum system prepared inthe state φθ ∈ A∗ with unknown parameter θ ∈ Θ and would like to performa measurement with out
omes in X su
h that the expe
ted value of the lossfun
tion is small. Let

M : L∞(X ,ΣX , P ) → A,be su
h a measurement, and P (M)
θ = φθ ◦M , then the risk at θ is

R(M, θ) :=

∫

X
Wθ(x)P

(M)
θ (dx).Sin
e the point θ is unknown one would like to obtain a small risk over all possiblerealizations

Rmax(M) = sup
θ∈Θ

R(M, θ).The minimax risk is then Rminmax := infM Rmax(M). In the Bayesian frame-work one 
onsiders a prior distribution π over Θ and then averages the risk withrespe
t to π
Rπ(M) =

∫

Θ

R(M, θ)π(dθ).The optimal risk in this 
ase is Rπ := infM Rπ(M).Coming ba
k to the experiments Q and R we shall 
ompare their a
hievablerisks for a given de
ision problem as above. Consider the measurement N :
L∞(X ,ΣX , P ) → B given by N = T ◦M where T : A → B is the 
hannel whi
ha
hieves the in�mum in (8.8). Then

R(N, θ) =

∫

X
W (θ, x)P

(N)
θ (dx) = ψθ(T ◦M(Wθ))

≤ ‖ψθ ◦ T − φθ‖ + φθ(M(Wθ)) ≤ δ(R,Q) +R(M, θ),where we have used the fa
t that 0 ≤Wθ ≤ 1.Lemma 8.3.1. For every a
hievable risk R(M, θ) for Q there exists a measure-ment N : L∞(X ,ΣX , P ) → B for R su
h that
R(N, θ) ≤ R(M, θ) + δ(R,Q).



8.4 Lo
al asymptoti
 normality in statisti
s 2078.4 Lo
al asymptoti
 normality in statisti
sIn this se
tion we des
ribe the notion of lo
al asymptoti
 normality and its signif-i
an
e in statisti
s [Le Cam, 1986, Torgersen, 1991, Strasser, 1985, van der Vaart,1998℄. Suppose that we observeX1, . . . , Xn with Xi taking values in a measurablespa
e (X ,ΣX ) and assume that Xi are independent, identi
ally distributed withdistribution Pθ indexed by a parameter θ belonging to an open subset Θ ⊂ Rm.The full sample is a single observation from the produ
t Pnθ of n 
opies of Pθ onthe sample spa
e (Ωn,Σn). Lo
al asymptoti
 normality means that for large nsu
h statisti
al experiments 
an be approximated by Gaussian experiments aftera suitable reparametrisation. Let θ0 be a �xed point and de�ne a lo
al parameter
u =

√
n(θ−θ0) 
hara
terizing points in a small neighbourhood of θ0, and rewrite

Pnθ as Pn
θ0+u/

√
n
seen as a distribution depending on the parameter u. Lo
alasymptoti
 normality means that for large n the experiments

(
Pθ0+u/

√
n : u ∈ R

m
)

and
(
N(u, I−1

θ0
) : u ∈ R

m
)
,have the same statisti
al properties when the models θ 7→ Pθ are su�
iently`smooth'. The point of this result is that while the original experiment maybe di�
ult to analyse, the limit one is a tra
table Gaussian shift experiment inwhi
h we observe a single sample from the normal distribution with unknownmean u and �xed varian
e matrix I−1

θ0
. Here

[Iθ0 ]ij = Eθ0

[
ℓ̇θ0,iℓ̇θ0,j

]
,is the Fisher information matrix at θ0, with ℓ̇θ,i := ∂ log pθ/∂θi the s
ore fun
tionand pθ is the density of Pθ with respe
t to some measure P .There exist two formulations of the result depending on the notion of 
onvergen
ewhi
h one uses. In this 
hapter we only dis
uss the strong version based on
onvergen
e with respe
t to the Le Cam distan
e, and we refer to van der Vaart[1998℄ for another formulation using the so 
alled weak 
onvergen
e (
onvergen
ein distribution of �nite dimensional marginals of the likelihood ratio pro
ess),and to Guµ  and Jen£ová [2007℄ for its generalization to quantum statisti
alexperiments.Before formulating the theorem, we explain what su�
iently smooth means. Theleast restri
tive 
ondition is that pθ is di�erentiable in quadrati
 mean, i.e. thereexists a measurable fun
tion ℓθ : X → R su
h that as u→ 0

∫ [
p
1/2
θ+u − p

1/2
θ − utℓ̇θp

1/2
θ

]2
dP → 0.Note that ℓ̇θ must still be interpreted as s
ore fun
tion sin
e under some regularity
onditions we have ∂p1/2

θ /∂θi = 1
2 (∂ log pθ/∂θi)p

1/2
θ .
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al asymptoti
 normality for d-dimensional statesTheorem 8.4.1. Let E := (Pθ : θ ∈ Θ) be a statisti
al experiment with Θ ⊂ Rdand Pθ ≪ P su
h that the map θ → pθ is di�erentiable in quadrati
 mean. De�ne
En = (Pnθ0+u/

√
n : ‖u‖ ≤ C), F = (N(u, I0) : ‖u‖ ≤ C),with I0 the Fisher information matrix of E at point θ0, and C a positive 
onstant.Then ∆(En,F) → 0. In other words, there are sequen
es of randomizations Tnand Sn su
h that:

lim
n→∞

sup
‖u‖≤C

∥∥∥Tn(Pnθ0+u/
√
n) −N(u, I0)

∥∥∥ = 0

lim
n→∞

sup
‖u‖≤C

∥∥∥Pnθ0+u/√n − Sn(N(u, I0))
∥∥∥ = 0.Remark. Note that the statement of the Theorem is mu
h more powerful thanthe Central Limit Theorem whi
h shows 
onvergen
e to a Gaussian distribution ata single point θ0. Indeed lo
al asymptoti
 normality states that the 
onvergen
eis uniform around the point θ0, and moreover the varian
e of the limit Gaussian is�xed whereas the varian
e obtained from the Central Limit Theorem depends onthe point θ. Additionally, the randomization transforming the data (X1, . . . , Xn)into the Gaussian variable is the same for all θ = θ0 + u/
√
n and thus does notrequire a priori the knowledge of θ.Remark. Lo
al asymptoti
 normality is the basis of many important resultsin asymptoti
 optimality theory and explains the asymptoti
 normality of 
er-tain estimators su
h as the maximum likelihood estimator. The quantum versionintrodu
ed in the next se
tion plays a similar role for the 
ase of quantum statis-ti
al model. Guµ  et al. [2008℄ have derived an asymptoti
ally optimal estimationstrategy from the qubit version of lo
al asymptoti
 normality as presented below.Example 8.4.1. Let Pµ = (µ1, . . . , µd) be a probability distribution with unknownparameters (µ1, . . . , µd−1) ∈ R

d−1
+ satisfying µi > 0 and ∑i≤d−1 µi < 1. TheFisher information at a point µ is

I(µ)ij =

d−1∑

k=1

µk(δikµ
−1
i · δjkµ−1

j ) + (1 −
d−1∑

l=1

µl)
−1 = δijµ

−1
i + (1 −

d−1∑

l=1

µl)
−1,and its inverse is

V (µ)ij := [I(µ)−1]ij = δijµi − µiµj . (8.9)Thus the limit experiment in this 
ase is F := (N(u, V (µ)) : u ∈ Rd−1, ‖u‖ ≤ C).This experiment will appear again in Theorem 8.5.1, as the 
lassi
al part of thelimit Gaussian shift experiment. Let us 
onsider as loss fun
tion the square of
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s 209the ℓ2 distan
e ‖µ − ν‖2
2 =

∑
i≤d(µi − νi)

2, then in the limit experiment this
orresponds to
W (u, v) =

d−1∑

i=1

(ui − vi)
2 + (

d−1∑

i=1

(ui − vi))
2.The optimal estimator of u for this loss fun
tion is the data itself û := X ∼

N(u, V (µ)) and the risk is independent of u
R =

d−1∑

i=1

µi(1 − µi) +

d−1∑

i=1

µi(1 − µi) −
∑

1≤i6=j≤d−1

µiµj =

d∑

i=1

µi(1 − µi), (8.10)where the last sum 
ontains d terms and we used the fa
t that µd = 1−∑i≤d−1 µi.8.5 Lo
al asymptoti
 normality in quantum statis-ti
sIn this se
tion we shall present the main result of the 
hapter, that of lo
alasymptoti
 normality for d-dimensional quantum systems, whi
h means roughlythe following: the sequen
e Qn of experiments 
onsisting of joint states ρ⊗n of nidenti
al quantum systems prepared independently in the same state ρ, 
onvergesto a limit experiment R whi
h is des
ribed by a family of Gaussian states on analgebra of 
anoni
al 
ommutation relations. The latter 
an be de
omposed intoa quantum part, on a Fo
k spa
e, and a 
lassi
al part, on a spa
e of boundedfun
tions.Consider a d-dimensional quantum system whose state is des
ribed by its densitymatrix ρ ∈ M(Cd). The joint state of n identi
ally prepared systems is givenby ρ⊗n ∈ M(Cd
n

). As our theory will be lo
al in nature, we �rst parametrisearound one parti
ular faithful state
ρ0 =





µ1 0 . . . 0

0 µ2
. . . ...... . . . . . . 0

0 . . . 0 µd




with µ1 > µ2 > · · · > µd > 0, (8.11)whi
h for te
hni
al reasons is 
hosen to have di�erent eigenvalues. We write

δ = inf1≤i≤d µi−µi+1, with µd+1 = 0, for the separation between the eigenvalues.The states in a neighbourhood of ρ0 are parametrised by θ = (~ζ, ~u). We shall usea parametrisation that separates 
learly the quantum and 
lassi
al parts of the
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al asymptoti
 normality for d-dimensional stateslimit, and that we give in equation (8.39). Up to the se
ond order in θ, it is ofthe form:
ρθ =





µ1 + u1 ζ∗1,2 . . . ζ∗1,d

ζ1,2 µ2 + u2
. . . ...... . . . . . . ζ∗d−1,d

ζ1,d . . . ζd−1,d µd −
∑d−1

k=1 uk




+O(‖θ‖2

), ζi,j ∈ C,uk ∈ R.(8.12)We shall investigate the properties of experiments
Qn := (ρ⊗n

θ/
√
n

: θ ∈ Θn), (8.13)
onsisting of n systems, ea
h one prepared in a state ρθ/√n situated in a lo
alneighbourhood of ρ0, as it was done in the 
lassi
al 
ase. The lo
al parameter
θ = (~ζ, ~u) belongs to a neighbourhood Θn of the origin of Cd(d−1)/2×Rd−1, whi
his allowed to grow slowly with n in a way that will be made pre
ise later. Beforestating the main result, we study the quantum Gaussian shift experiment thatwill be the limit of the sequen
e Qn.8.5.1 Quantum Gaussian shift experimentIn this se
tion we des
ribe the limit experiment appearing in the lo
al asymptoti
normality Theorem 8.5.1. It 
ontains a 
lassi
al part des
ribed by a (d − 1)-dimensional Gaussian shift experiment similar to the one appearing in Theorem8.4.1, and a quantum part des
ribed by a d(d−1)/2-dimensional quantum Gaus-sian shift experiment whi
h will be analysed in more detail below. The 
lassi
alpart 
orresponds to 
hanges in the diagonal parameters −→u = (u1, . . . , ud−1) of
ρθ. The quantum part is a produ
t of Gaussian states of d(d − 1)/2 quantumharmoni
 os
illators, the displa
ement of ea
h state being related to one of theo�-diagonal elements ζij of ρθ. For more ba
kground material on Fo
k spa
es,Gaussian states and more generally the algebra of 
anoni
al 
ommutation relation(CCR), we refer to Petz [1990℄.8.5.2 Symmetri
 Fo
k spa
esWe turn ba
k to our spe
ial orthonormal basis ψm. It turns L2(R) into theHilbert spa
e ℓ2(N), or equivalently the Fo
k spa
e F(C). We shall denote the
ψm by |m〉, as is usual for the number basis of the Fo
k spa
e.We now 
onsider the symmetri
 tensor produ
t of two spa
es H⊗sH, de�ned asthe tensor produ
t H⊗H with the relations h1 ⊗ h2 − h2 ⊗ h1 = 0 for all ve
tors
h1 and h2.
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 Fo
k spa
es on Cd, denoted by F(Cd), are the tensor produ
t of dFo
k spa
es on C, that is:
F(Cd) = F(C)⊗d.We get naturally the produ
t basis on F(Cd) of the form |m〉 = |m1,m2, . . . ,md〉 =

|m1〉 ⊗ |m2〉 ⊗ · · · ⊗ |md〉. Noti
e that {|m1, . . .md〉 :
∑
mi = n} is a basis of thesymmetri
 spa
e (Cd)⊗sn. So that F(Cd) 
an be seen as the bounded operatorson⊕n∈N

(Cd)⊗sn, hen
e the name �symmetri
 Fo
k spa
e�.We also get 
reation and annihilation operators a∗(v) and a(v) asso
iated to ea
hve
tor in |v〉 ∈ Cd. Creation operators a
t on states through
a∗(|v〉) |φ〉 = |v〉 ⊗s |φ〉 , |v〉 ∈ C

d, |φ〉 ∈ F(Cd),and annihilation operators are the adjoint operators of 
reation operators.We noti
e that 
reation annihilators take (Cd)⊗sn to (Cd)⊗sn+1 and hen
e anni-hilation operators to (Cd)⊗sn−1. Notably, the ve
tor |0〉 is an eigenve
tor witheigenvalue 0 for all annihilation operators. This spe
ial ve
tor is 
alled the va
-uum.8.5.3 Fo
k spa
esA pure state of a quantum system is des
ribed by a (norm-one) ve
tor on aHilbert spa
e H. Suppose now we have n parti
les. The state of the 
ompoundsystem is a ve
tor in H⊗n. However, bosons are undistinguishable. Hen
e f1⊗f2is the same state as f2 ⊗ f1. We must symmetrise the spa
e to get the rightdes
ription of the system.So that we de�ne the symmetri
 tensor produ
t H⊗s H as the quotient of H⊗2by the relations f1 ⊗ f2 − f2 ⊗ f1 for all f1 and f2 in H. We de�ne similarly the
n-symmetri
 spa
e H⊗sn. States of n undistinguishable parti
les are des
ribedby ve
tors of H⊗sn.Let us now 
onsider a system with a non-�xed number of undistinguishable par-ti
les. Then the 
orresponding Hilbert spa
e is 
alled the (symmetri
) Fo
k spa
ede�ned as

F(H) =
⊕

n∈N

H⊗sn,where H⊗s0 = C. Fo
k spa
es naturally inherit their s
alar produ
t from H.Noti
e that the n-symmetri
 spa
es are orthogonal.The simplest Fo
k spa
e is F(C), 
orresponding to the quantum harmoni
 os-
illator. Then the number of �parti
les� is the ex
itation number, or number of
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al asymptoti
 normality for d-dimensional statesphotons for a state of laser light. Noti
e that F(Cd) 
an be seen as a 
olle
tionof d harmoni
 os
illators F(C)⊗d.We shall usually denote states on Fo
k spa
es by φ, keeping the same notationfor the density operator and the 
orresponding linear form.There are 
olle
tions of operators that 
reate or annihilate parti
les in state
f ∈ H, taking n-symmetri
 spa
es respe
tively to (n+1)- and (n−1)-symmetri
spa
es. Creation operators are the adjoint of the 
orresponding annihilationoperator. These 
reation operators a∗(f) and annihilation operators a(f) a
tthrough:

a∗(f)(g1 ⊗s · · · ⊗s gn) =
√
n+ 1 f ⊗s g1 ⊗s · · · ⊗s gn,

a(f)(g1 ⊗s · · · ⊗s gn) =
1√
n

n∑

i=1

〈f |gi〉H g1 ⊗s · · · ⊗s ĝi ⊗s · · · ⊗s gn,where n ∈ N, gi ∈ H for 1 ≤ i ≤ n, and ĝi means that the term does not appearin the produ
t.Sin
e annihilation operators de
rease the number of parti
les, a ve
tor from
H⊗s0 = C is an eigenve
tor with eigenvalue 0 for all annihilation operators.Up to a multipli
ative 
onstant, this ve
tor is unique, and is 
alled the va
uum
|0〉.The other eigenve
tors of the annihilation operator a(f) are of the form

∑

n∈N

(Cf)⊗sn/
√
n! (8.14)for C ∈ C. They have eigenvalue C ‖f‖2

H. On
e normalised, they are 
alled
oherent states.For 
onvenien
e we now restri
t to H = Cd. For our future purposes, we shallneed a basis of the Fo
k spa
e F(Cd) known as the Fo
k basis. We build itfrom a basis {fi}di=1 of the underlying Hilbert spa
e Cd. Then our basis is givenby {⊗s f
⊗smi

i : mi ∈ N} where the symmetri
 produ
t runs over all i. Sin
ethis ve
tor depends only on the set of mi, we shall denote it by |m〉, where
m = (m1, . . . ,md), and where we have used the ket notation of physi
ists. Thesubset of |m〉's su
h that ∑mi = n is a basis of the n-symmetri
 spa
e.8.5.4 Gaussian statesThrough equation (8.14), we realize that 
oherent states are in one-to-one 
orre-sponden
e with ve
tors of H. We shall denote them as �kets with parentheses on
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s 213the right�, most often as |z) as they will appear as an integration variable. Theirformula in the Fo
k basis is:
|z) = exp(−‖z‖2 /2)

∑

m∈Nd

d∏

i=1

zmi

i√
mi

|m〉 , (8.15)where z =
∑
zifi ∈ H. Note that the va
uum 
an be viewed as both a Fo
kstate |0〉 and a 
oherent state |0).We write (z| for the linear form asso
iated to ve
tor |z). So that the densityoperator of a 
oherent state is |z)(z|. We 
an 
ompute the value of this state onan other 
oherent state |~ζ)(~ζ| seen as an observable, that is a bounded operatoron F(Cd). We get
Tr
[
|z)(z||~ζ)(~ζ|

]
= (~ζ|z)(z|~ζ) = exp

(
−
∥∥∥~ζ − z

∥∥∥
2
)
.This formula explains why 
oherent states are a spe
ial kind of Gaussian states.In fa
t, we 
an take as a de�nition of Gaussian states all states φQ,~ζ su
h that

φQ,
~ζ(|z)(z|) = C exp

[
−1

2
(z − ~ζ|Q−1|z − ~ζ)

]
, (8.16)where C is a 
onstant depending on ~ζ and Q. Here Q is a positive quadrati
form that 
an be thought of as the 
ovarian
e matrix of the Gaussian state, andthe ve
tor ~ζ ∈ Cd may be viewed as the mean of the Gaussian state.Heisenberg un
ertainty relations impose that

(〈f |Q|f〉 − ‖f‖2
)(〈g|Q|g〉 − ‖g‖2

) ≥ σ(f, g)2, f, g ∈ C
d,where σ is the symple
ti
 form 
oming from the s
alar produ
t on Cd, that is

σ(f, g) = Im(〈f, g〉). There exists a Gaussian state for all Q and ~ζ under this
onstraint.We shall be espe
ially interested in Gaussian states that are produ
ts of sym-metri
 Gaussian mixtures of 
oherent states, that is displa
ed thermal states.A thermal equilibrium state at inverse temperature β is de�ned on F(C) usingGibbs weights and an energy proportional to the number of parti
les, yielding:
φβ = (1 − e−β)

∑

m∈N

e−βm |m〉 〈m| . (8.17)Using the de�nition of 
oherent states (8.15) for the Fo
k spa
e F(C), we get:
φβ =

eβ − 1

π

∫

C

exp
(
−(eβ − 1)|z|2

)
|z)(z|dz. (8.18)
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onsider a 
olle
tion of operators 
alled Weyl operators, or displa
ementoperators. We asso
iate to ~ζ ∈ H the operator D(~ζ) with the properties:
D(~ζ)|0) = |~ζ) (8.19)

D(~ζ1)D(~ζ2) = D(~ζ1 + ~ζ2) exp(iσ(~ζ1, ~ζ2)/2),where σ is the symple
ti
 form 
oming from the s
alar produ
t on Cd, that is
σ(~ζ1, ~ζ2) = Im(〈~ζ1, ~ζ2〉). Given that 
oherent states are a 
omplete set of ve
tors,this de�nition determines 
ompletely the D(~ζ). We do not prove existen
e here.Note that D∗(~ζ) = D(−~ζ).We may let displa
ement operators a
t by intertwining on states, denoting thissuperoperator by D~ζ , that is D~ζ(φ)(A) = φ(D∗(~ζ)AD(~ζ)). From the de�nition ofdispla
ement operators and de�nition (8.16), we 
ompute the a
tion on Gaussianstates:

D
~ζ1(φQ,

~ζ2) = φQ,
~ζ1+~ζ2 . (8.20)We now understand why these operators are named displa
ement operators.They shift the mean of the Gaussian states by ~ζ1.We have now all the tools to give a ni
e des
ription of the quantum part of thestates that appear in our limit experiment. We de�ne them on F(Cd(d−1)/2) =

F(C)⊗d(d−1)/2. We use (i, j) for 1 ≤ i < j ≤ d as labels for the di�erent Fo
kspa
es. We have said we would use produ
ts of displa
ed thermal states. We useinverse temperature linked to the eigenvalues µi of ρ0, the state around whi
hwe parametrise, spe
i�
ally βi,j = ln(µi/µj). Then our states are de�ned for
~ζ ∈ Cd(d−1)/2 as:

φ
~ζ = D

~ζ




⊗

1≤i<j≤d
φβi,j



 =
⊗

1≤i<j≤d
Dζi,j (φβi,j ),where we have used notation (8.17) for thermal states.Using the integral form (8.18), we get the following working formula:

φ
~ζ =




∏

i<j

µi − µj
πµj




∫

Cd(d−1)/2

exp



−
∑

i<j

µi − µj
µj

|zi,j |2



∣∣∣z + ~ζ

)(
z + ~ζ

∣∣∣dz(8.21)
=
⊗

i<j

µi − µj
πµj

∫

C

exp

(
−µi − µj

µj
|zi,j |2

)
|zi,j + ζi,j) (zi,j + ζi,j | dzi,j .From this formula, we see that the 
ovarian
e matrix Q as in equation (8.16) ofthose states depends only the eigenvalues µi for 1 ≤ i ≤ d.
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s 215Our limit quantum experiment shall 
onsist on those states on F(Cd(d−1)/2)together with the 
lassi
al Gaussian family on L∞(Rd−1) given in Example 8.4.1.We then have states on F(Cd(d−1)/2 ⊗ L∞(Rd−1), that we denote by
Φθ = Φ

~ζ,~u = φ
~ζ ⊗ N(~u, Vµ), (8.22)where the 
ovarian
e matrix Vµ is given in equation (8.9). The limit experimentis then

R =
{
Φθ : θ = (~ζ, ~u) ∈ C

d(d−1)/2 ⊗ R
d−1
}
.This limit experiment should 
ome as no surprise, both be
ause we 
an see itas the natural generalisation of the qubit 
ase given in se
tion 8.2, and be
ausethe equivalent of 
lassi
al weak 
onvergen
e to this experiment has already beenproved by Guµ  and Jen£ová [2007℄.For ba
kground, weak 
onvergen
e means 
onvergen
e of the Connes 
o
y
lederivatives. Guµ  and Jen£ová [2007℄ stay at the level of CCR algebras, that isalgebras generated by displa
ement operators (8.19) asso
iated to any symple
ti
spa
e. Gaussian states 
an be de�ned dire
tly on those algebras, by the fa
t that

φ(D(h)) as a fun
tion of h ∈ H is the Fourier transform of a Gaussian.These CCR algebras en
ompass both B(F(H)) and L∞(Rd), and they get 
on-vergen
e even if some eigenvalues of ρ0 are equal, in whi
h 
ase a Fo
k spa
e
F(C) is repla
ed by a 
lassi
al spa
e L∞(R2). Our methods based on grouprepresentations do not give us this freedom.8.5.5 Main theoremWe now state the theorem of strong quantum lo
al asymptoti
 normality.We allow growing domains, as they are required for some appli
ations. Hen
e wede�ne the parameter sets

Θn,β,γ =
{

(~ζ, ~u) : ‖~ζ‖∞ ≤ nβ, ‖~u‖∞ ≤ nγ
}
.Re
all that δ is the separation between the eigenvalues of ρ0 given by equation(8.11). Though we use parametrisation (8.39) for density matri
es ρθ, re
all alsothat its �rst orders are given in equation (8.12). In fa
t, with yet a little morework, we 
ould prove the same theorem for the latter parametrisation.Theorem 8.5.1. Let δ > 0, let β < 1/9 and γ < 1/4. Let the quantum experi-ments

Qn =
{
ρθ,n : θ ∈ Θn,β,γ

}
,

R =
{
Φθ : θ ∈ Θn,β,γ

}
,
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al asymptoti
 normality for d-dimensional stateswhere ρθ,n = ρ⊗n
θ/

√
n
is the state on M(Cd)⊗n given by equation (8.39), where Φθis the produ
t of a quantum Gaussian state φ~ζ and a 
lassi
al Gaussian probabilitymeasure N (~u, Vµ). Here φ~ζ , that is given by equation (8.21), has mean ~ζ and�xed 
ovarian
e Q depending only on the eigenvalues {µi}di=1 of ρ0. On the otherhand N (~u, Vµ) has mean ~u and �xed 
ovarian
e matrix Vµ depending only on theeigenvalues of ρ0, with formula given in equation (8.9).Then, if n > n0/δ

k, with n0 and k depending only on β and γ, there are 
hannels
Tn : M(C) and Sn su
h that

sup
θ∈Θn,β,γ

∥∥Φθ − Tn(ρ
θ,n)
∥∥

1
≤ Cn−ǫ/δ, (8.23)

sup
θ∈Θn,β,γ

∥∥Sn(Φθ) − ρθ,n
∥∥

1
≤ Cn−ǫ/δ, (8.24)where C and ǫ > 0 depend only on δ, β and γ.In other words, we get polynomial speed of 
onvergen
e of the approximation,whi
h is enough to build two-step evaluation strategies in the �nite experimentsglobally asymptoti
ally equivalent to strategies in the limit experiment. We giveexpli
it 
onstants in Theorem 8.8.7, but they are probably fairly pessimisti
.We now 
onstru
t the parametrisation of ρθ,n we use for the theorem. Thisparametrisation separates 
learly the quantum part, that is the eigenve
tors,and the 
lassi
al part, that is the eigenvalue. We shall need some Lie grouptheory.8.6 Group theory primerWe review some basi
s of group theory, and more spe
i�
ally representations.Young tableaux are intensively used in the proofs in Se
tion 8.9. Our refer-en
es for the se
tion have been [S
hensted, 1976, Fulton and Harris, 1991℄, twotextbooks among many others.8.6.1 Irredu
ible unitary representationsIn this se
tion we present some basi
 results from group theory whi
h will beuseful in understanding the stru
ture of the irredu
ible representations of thespe
ial unitary group SU(d).Let G be a group with elements denoted g, h and produ
t gh. A unitary repre-sentation of G over a Hilbert spa
e H is a group homomorphism π from G to
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U(H), the group of unitary operators on H. This means that π(g)π(h) = π(gh)for all g, h ∈ G and π(e) = 1 where e ∈ G is the group unit.Representations 
an be 
ombined to 
onstru
t new ones by means of dire
t sumsand tensor produ
ts. If πa is a representation on Ha and πb a representation on
Hb, we de�ne their dire
t sum πa ⊕ πb a
ting on Ha ⊕Hb by

[πa ⊕ πb] (g) : |ψa〉 ⊕ |ψb〉 7→ πa(g)|ψa〉 ⊕ πb(g)|ψb〉.The tensor produ
t representation πa ⊗ πb a
ting on Ha ⊗Hb is de�ned through
[πa ⊗ πb] (g) : |ψa〉 ⊗ |ψb〉 7→ πa(g)|ψa〉 ⊗ πb(g)|ψb〉.The representations πa and πb are unitarily equivalent if there is an linear iso-metri
 isomorphism V : Ha → Hb su
h that V πa(g) = πb(g)V for all g ∈ G. Weshall write πa ≡ πb.A representation on H is irredu
ible if there is no non-trivial subspa
e of H whi
his left invariant by all π(g) for g ∈ G, that is if the π(g) 
annot be simultaneouslyblo
k-trigonalized. The following simple result is the well known S
hur Lemmaadapted to unitary representations.Lemma 8.6.1. Let π1 and π2 be two unitary irredu
ible representations of G over

H1 and respe
tively H2, and let L : H1 → H2 be a linear map whi
h 
ommuteswith the group a
tion, i.e. Lπ1(g) = π2(g)L for all g ∈ G. Then either L = 0 orthe two representations are unitarily equivalent.For �nite groups su
h as S(n) or 
ompa
t Lie groups su
h as SU(d), any repre-sentation 
an be de
omposed into �nite dimensional irredu
ible representations,that is all π(g) 
an be simultaneously blo
k-diagonalized with invariant sub-spa
es Hi, su
h that the restri
tion πi : g 7→ PHiπ (g)|Hi
is irredu
ible, where

PHi denotes the proje
tion onto Hi. If the equivalen
e 
lasses of irredu
ible rep-resentations are denoted by πλ, the multipli
ity Mλ of πλ in the representation
π is the number of i su
h that πi ≡ πλ. Grouping together unitarily equivalentrepresentations we �nd that there exists an isomorphism

U : H →
⊕

λ

C
dλ ⊗ C

Mλ , (8.25)under whi
h
π ≡

⊕

λ

πλ ⊗ 1CM(λ) , (8.26)where the dire
t sum runs over all irredu
ible representations. S
hur's lemmaimplies that the above de
omposition into irredu
ible representations is unique
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lassi�
ation of unitary representations of Gis redu
ed to the 
lassi�
ation of unitary irredu
ible representations.The group algebra is a very useful tool in representation theory. For �nite groups
G, the group algebra A(G) is de�ned as the 
omplex linear spa
e spanned bythe group elements endowed with the group produ
t. For two elements a =∑

g∈G a(g)g and b =
∑
g∈G b(g)g the produ
t is

ab =
∑

g,h

a(g)b(h)(gh) =
∑

k

(
∑

l

a(kl−1)b(l)

)
k.Alternatively one 
an see A(G) as the spa
e of fun
tions a : G → C withthe 
onvolution produ
t ab : k → ∑

l a(kl
−1)b(l). The adjoint of a given by

a∗ =
∑

g a(g
−1)g makes A(G) into a ∗-algebra. It is easy to see that unitary rep-resentations π of G give rise to ∗-representations of A(G) by π(a) :=

∑
a(g)π(g),i.e. satisfying π(a)π(b) = π(ab), π(a∗) = π(a)∗, and 
onversely any unital repre-sentation of A(G) arises in this way.De�nition 8.6.2. A proje
tion p is an element of A(G) satisfying p = p∗ and

p2 = p. A proje
tion is minimal if it 
annot be de
omposed as p = q + r with
q 6= 0 and r 6= 0 proje
tions. A proje
tion p is 
alled 
entral if it 
ommutes withall group algebra elements, that is ap = pa for all a ∈ A(G). Two proje
tions
p, q are equivalent if there exists v ∈ A(G) su
h that p = vv∗ and q = v∗v.The following theorem establishes the relation between group representations andproje
tions in the group algebra.Theorem 8.6.3. Let G be a �nite group. Then the group algebra A(G) is iso-morphi
 to the dire
t sum of matrix algebras

A(G) ∼=
⊕

λ

M(Cdλ), (8.27)where the dire
t sum runs over all irredu
ible representations of G and dλ is thedimension of the representation πλ. There is a one to one 
orresponden
e betweenequivalen
e 
lasses of minimal proje
tions and irredu
ible representations. Fur-thermore there is one-to one 
orresponden
e between minimal 
entral proje
tionsand irredu
ible representations.Thus the group algebra en
odes information about the dimensions of irredu
iblerepresentations through (8.27) and it is easy to see that minimal proje
tions
orrespond to one dimensional proje
tions in one of the summandsM(Cdλ) whileminimal 
entral proje
tions 
orrespond to the identity operator 1λ ∈M(Cdλ) andzero for the other 
omponents.
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λ πλ(a). Using this identi�
ation,and the general form (8.26) of unitary representations we 
on
lude that anyrepresentation of A(G) over a spa
e H is of the form

π :
⊕

λ

πλ(a) →
⊕

λ

πλ(a) ⊗ 1CMλ ,with H de
omposed as in (8.25).The following theorem whi
h uses S
hur's lemma, shows that the operators whi
h
ommute with the representation π are pre
isely those whi
h have the same blo
kdiagonal form as π(g) but a
t as identity on the representation spa
e Cdλ andarbitrarily on the multipli
ity spa
e CMλ . The 
ommutant of a set of operators
A ⊂ B(H) is

A′ := {b ∈ B(H) : ba = ab, ∀a ∈ A}.Theorem 8.6.4. Let π be the representation of the �nite group G given by (8.25),(8.26). Let Aπ be the algebra π(A(G)) and A′
π its 
ommutant. Then

A′
π =

⊕

λ

1Cdλ ⊗M(CMλ).To 
on
lude this brief introdu
tion to group representation theory, we mentionthat the notion of group algebra 
an also be de�ned for 
ompa
t Lie groups su
has SU(d) with most of the above results remaining valid.8.6.2 Irredu
ible representations of SU(d)Let M(Cd) be the algebra of d-dimensional 
omplex valued matri
es, and SU(d)be the group of unitary matri
es U ∈ M(Cd) with determinant Det(U) = 1.Re
all that a unitary matrix is de�ned by the property UU∗ = U∗U = 1 where
U∗ is the adjoint of U , i.e. transpose and 
omplex 
onjugate.
SU(d) is a Lie group, i.e. it is also a C∞-manifold, of dimension d2 − 1 withthe property that the group produ
t and inverse are 
ompatible with the smoothstru
ture. Sin
e SU(d) is a 
ompa
t group, the representation theory bearssome similarities with that of �nite groups. For instan
e, any unitary represen-tation 
an be de
omposed into a dire
t sum involving a 
ountable number ofnon-equivalent irredu
ible representations, ea
h of them of �nite dimension.The Lie algebra su(d) is the tangent spa
e of SU(d) at the origin, and 
an beidenti�ed with the real linear subspa
e of M(Cd) 
onsisting of skew-selfadjointmatri
es A∗ = −A with Tr(A) = 0. The identi�
ation relies on the fa
t that thedi�erentiable 
urve in SU(d) given by t 7→ U(t) = exp(tA), has tangent ve
tor
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A at the origin (t = 0). The Lie produ
t of su(d) is given by the 
ommutator
[A,B] = AB −BA and satis�es

[A,B] = lim
t→0

U(t)V (t)U(t)−1V (t)−1 − 1

t2
,where U(t) = exp(tA) and V (t) = exp(tB).In this 
hapter we mostly use the physi
s 
onvention and write U = exp(iH)instead of U = exp(A) where H = −iA is a self-adjoint operator. The groupelements in a su�
iently small neighbourhood of the identity 
an be parametrisedas

U = exp



i




∑

i=1,...,d−1

aiHi +
∑

1≤i6=j≤d
ai,jTi,j







where ai and ai,j are unique real 
oe�
ients in a neighbourhood of 0, and Hiand Ti,j are self-adjoint generators forming a basis of the linear spa
e of 
omplexmatri
es with tra
e equal to zero. The expli
it form of the generators is given by
Hj = Ej,j − Ej+1,j+1 for j ≤ d− 1;

Tj,k = iEj,k − iEk,j for 1 ≤ j < k ≤ d; (8.28)
Tk,j = Ej,k + Ek,j for1 ≤ j < k ≤ d.where Ei,j the matrix with entry (i, j) equal to 1, and all others equal to 0. Therelevant 
ommutators are

[Ek,k, Ei,j ] = (δi,k − δj,k)Ei,j , [Ei,j , Ek,l] = δk,jEi,l − δl,iEk,j . (8.29)Before studying the general 
ase, we shall brie�y des
ribe the irredu
ible represen-tations of SU(2). For simpli
ity we denote H1, E1,2, E2,1 by H,E, F respe
tively.Theorem 8.6.5. Let (π,H) be a irredu
ible unitary representation of SU(2),and hen
e of the Lie algebra su(2). Then if the dimension of H is n + 1, with
n ≥ 0, there exists 0 6= ψ0 ∈ H su
h that

π(H)ψ0 = nψ0, π(E)ψ0 = 0.De�ne ψk := (1/k!)π(F )kψ0. Then ψ0, . . . ψn form an orthogonal basis for Hand
π(H)ψk = (n− 2k)ψk

π(F )ψk = (k + 1)ψk+1, π(E)ψk = (n− k + 1)ψk−1.Before proving the theorem let us note that π(E) a
ts as a ladder operator on thebasis ve
tors by de
reasing their index by 1, and annihilating ψ0. The adjoint
π(F ) = π(E)∗ a
ts as a in
reasing operator and annihilates ψn.
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tor of π(H) with Hψ = hψ. By using the 
ommuta-tion relations [H,E] = 2E we get that
π(H)(π(E)ψ) = (h+ 2)π(E)ψ,hen
e h+2 is also an eigenvalue, or π(E)ψ = 0. By su

essively applying π(E) weget a sequen
e of eigenve
tors with eigenvalues h, . . . , h+2m, and sin
eH is �nitedimensional, there exists a minimal �nitem su
h that π(E)m+1ψ = 0. We denoteby ψ0 the ve
tor π(E)mψ 6= 0 and let Hψ0 = h0ψ0. De�ne ψk := (1/k!)π(F )kψ0as above. The following 
ommutation relations 
an be proved by indu
tion

[H,F k] = −2kF k, [E,F k] = kF k−1(H − k + 1).By applying them to the ve
tor ψk we get
k!π(H)ψk = π(F )kHψ0 + [π(H), π(F k)]ψ0 = (h0 − 2k)F kψ0

k!π(E)ψk = π(F )kEψ0 + [π(E), π(F )k ]ψ0 = k(h0 − k + 1)F k−1ψ0.This implies that all ψk are linearly independent sin
e they are eigenve
tors of Hwith di�erent eigenvalues. Moreover, sin
e H is �nite dimensional there exists aminimal �nite p su
h that π(F )n+1ψ0 = 0. The span of the ve
tors ψ0, . . . ψp isinvariant under π(su(2)), and sin
e π is irredu
ible, we 
on
lude that p = n and
ψk form an orthogonal basis in H.Finally,
0 = π(E)π(F )ψn = π(F )π(E)ψn + π(H)ψn = n(h0 − n+ 1)ψn + (h0 − 2n)ψn

= (n+ 1)(h0 − n)ψn,hen
e h0 = n.We would like to the extend the ideas used in the proof to representations of
SU(d). What are the ladder operators in this 
ase and how do they a
t on thebasis ve
tors? The generators H1, . . . , Hd−1 form a maximal set of 
ommutinggenerators of su(d). This implies that for any (�nite dimensional) irredu
ibleunitary representation (H, π) of SU(d), and hen
e of its Lie algebra, we 
an
hoose an orthonormal basis in whi
h all Hk are diagonal:

π(Hk)ψa = ha(k)ψa, a = 1, . . . ,dim(H), k = 1, . . . , d− 1.The ve
tor ha = (ha(1), . . . ha(d − 1)) is 
alled a weight ve
tor, and as we shallsee shortly, the set of weight ve
tors for the various basis ve
tors ψa 
ompletely
hara
terise the representation π.
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 normality for d-dimensional statesUsing the 
ommutation relations (8.29) we obtain
[Hk, Ei,j ] = ri,j(k)Ei,j , i 6= j,

π(Hk)(π(Ei,j)ψa) = (ri,j(k) + ha(k))(π(Ei,j)ψa),where ri,j = (ri,j(1), . . . , ri,j(d−1)) are d(d−1) root ve
tors and the expli
it formof their 
oe�
ients is ri,j(k) = δi,k − δi,k+1 − δj,k + δjk+1. Thus, if π(Ei,j)ψais non-vanishing, then ha + ri,j is a weight ve
tor as well, and π(Ei,j) a
ts as a`translation' or `ladder' operator on the set of weights. Sin
e the dimension ofan irredu
ible representation is �nite, and the su

essive appli
ation of π(Ei,j)leads to a new weight ve
tor, we 
on
lude that there exists a �nite integer p su
hthat π(Ei,j)
p = 0. Moreover, π being irredu
ible implies that for any given ψaone 
an �nd a path in the weight spa
e 
onne
ting ha with any other weight, thelatter being rea
hed by applying a produ
t of translation operators to the ve
tor

ψa. Thus, the di�eren
e between any pair of weights is of the form
ha − hb =

∑

i,j

ni,jri,j , ni,j ∈ N,and the set of weights is 
hara
terised by its boundary and a referen
e point ina (d− 1)-dimensional latti
e de�ned by the root ve
tors rij .What is the weight spa
e of the de�ning representation of SU(d) on Cd? Thebasis ve
tors f1, . . . , fd are eigenve
tors of Hk with weight ve
tors hi given by
hi(k) = δi,k − δi,k+1, i = 1, . . . , d− 1, (8.30)su
h that the root ve
tors rij 
an be written as rij = hi − hj . The a
tion of Eijon the basis fun
tion is simply Eijfj = fi and Eijfk = 0 for k 6= j, whi
h is
onsistent with the general notion of translation on the weight spa
e.Let us de�ne the set of simple roots
αi =: ri,i+1 = hi − hi+1, i = 1, . . . d− 1and note that any root ri,j with i > j 
an be expressed in terms of simple roots

ri,j = hi − hj = αi + · · · + αj−1,whi
h we 
all positive root, and similarly rj,i will be 
alled negative root.This notion of positivity de�nes a partial ordering on the weights: we say that
ha > hb if ha − hb is a sum of positive roots with natural 
oe�
ients. In par-ti
ular the weights (8.30) of the de�ning representation are ordered as follows
ω1 < ω2 · · · < ωd. We noti
e that fd is the unique ve
tor 
orresponding to the'highest weight' ωd and satis�es Eijfd = 0 for all i > j. The generalisationof this observation to arbitrary irredu
ible representations is the key to their
hara
terisation by means of highest weight.
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ible representation of SU(d). Thenthere is a unique highest weight h(π) su
h that h(π) > h for all other weights
h, and the 
orresponding eigenspa
e is one dimensional. If (π′,H′) is anotherirredu
ible representation with the same highest weight then π′ ≡ π.Proof. Let us denote by H(h) the joint eigenspa
e of Hi for the weight h. Thenwe have the de
omposition

H =
⊕

h

H(h)Let µ be a maximal weight with respe
t to the partial ordering and let ψ0 ∈
H(hπ). By using the 
ommutation relations as before we get that π(Ei,i+1)H(µ) ⊂
H(µ+ αi). Sin
e µ is maximal we 
on
lude that π(Eij)ψ0 = 0 for all i > j.Let us 
onsider one of the su(2) subalgebras of su(d) with generators Ei =
Ei,i+1, Fi = Ei+1,i, H = Hi. Note that Ei is di�erent form the diagonal elements
Ei,i. Sin
e ψ0 is annihilated by π(E), we 
an apply Theorem 8.6.5 to obtain
π(Hi)ψ0 = niψn with ni non-negative integer, and thus h(π) = (n1, . . . , nd−1).In order to show that H(h(π)) is one dimensional we 
onstru
t a subspa
e of Hwhi
h is invariant under π(su(d)) but 
ontains only one ve
tor with weight h(π),namely ψ0. Sin
e the representation is irredu
ible, the subspa
e will be the whole
H. Let

K := Span{π(Fi1 ) . . . π(Fip )ψ0 : 1 ≤ i1, . . . , ip ≤ d− 1, p = 0, 1 . . .} ⊂ H.To show that K is invariant under π(su(d)) it su�
es to show its invarian
eunder the a
tion of Ei, Fi whi
h generate su(d) as a Lie algebra. By de�nition
K is invariant under π(Fi), and from the 
ommutation relations [Ei, Fj ] = δi,jHiwe get

π(Ei)π(Fi1 ) . . . π(Fip)ψ0 = π(Fi1 ) . . . π(Fip )π(Ei)ψ0

+

p∑

j=1

δi,ijπ(Fi1 ) . . . π(Hi) . . . π(Fip)ψ0.The �rst term on the right side is zero sin
e ψ0 is maximal and ea
h term in thesum is in K sin
e the ve
tor on the right side of Hi is an eigenve
tor
π(Hi)π(Fij+1 ) . . . π(Fip)ψ0 = (h(π) − αij+1 − . . . αip)(i)π(Fij+1 ) . . . π(Fip)ψ0.In parti
ular, the last equation shows that the weight of the ve
tors spanning Kare of the form

h(π) − αi1 − . . . αip ,whi
h are smaller than h(π) with the only ex
eption of the ve
tor ψ0. Thus,
h(π) = (n1, . . . , nd−1) is the highest weight and H(h(π)) = Cψ0.
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al asymptoti
 normality for d-dimensional statesLet (π′,H′) be another representation with highest weight h(π). It 
an be easily
he
ked that the map
U : π(Fi1 ) . . . π(Fip )ψ0 → π′(Fi1 ) . . . π

′(Fip )ψ′
0extends to a unitary intertwining π and π′. Thus π ≡ π′.Remarks. We have seen that an irredu
ible representation (π,H) of SU(d) 
anbe des
ribed by means of a highest weight ve
tor ψ0H(h(π)), and the a
tion ofladder operators π(Ei,j) whi
h map the weight subspa
e H(h) into H(h + rij).This stru
ture is very similar with that of irredu
ible representations of SU(2)des
ribed in Theorem 8.6.5, but there are some important di�eren
es: unlike inthe SU(2) 
ase the subspa
es H(h) need not be one dimensional, and moreoverthe set of ve
tors π(Fi1 ) . . . π(Fip)ψ0 need not be orthogonal to ea
h other! Thisissue will play an important role later on.We now make the 
onne
tion between the notion of highest weight and that ofYoung diagram whi
h will be 
entral to the next se
tion.A Young diagram is de�ned by an ordered tuple of integers λ = (λ1, . . . , λd) with

λ1 ≥ · · · ≥ λd ≥ 0, and 
an be represented graphi
ally as a diagram of d lines,the i-th line having λi boxes. If we 
onsider the di�eren
es between su

essiverows we obtain a possible highest weight h = (n1, . . . , nd−1) with n1 = λi−λi+1.Thus, to ea
h Young diagram we 
an asso
iate an irredu
ible representation of
SU(d). For example, both λ = (2, 1), representation of SU(2), and λ = (2, 1, 0),representation of SU(3), would be represented as . Similarly (5, 3, 3) 
orre-sponds to the Young diagram . Conventionally, we set λd+1 = 0. Clearly,there is some redundan
y in this parametrisation of irredu
ible representations.Two Young diagrams λa and λb 
orrespond to equivalent irredu
ible representa-tions if and only if λai −λbi is independent on i. In other words, if we suppress oradd full 
olumns, we do not 
hange the representation. For instan
e, irredu
iblerepresentations of SU(2) are parametrised by only one parameter whi
h is thedi�eren
e between the number of boxes in the �rst and se
ond line.In the next se
tion we shall see that this asso
iation is very fruitful in under-standing the stru
ture of SU(d) representations.8.6.3 Tensor produ
t representationAfter studying the general properties of the irredu
ible representations of SU(d),we shall analyse a parti
ular representation asso
iated to n identi
al d-dimensional
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ribe 
ertain asymptoti
 properties of`typi
al' irredu
ible representations appearing in the de
omposition of the n-thtensor produ
t representation of SU(d) a
ting on (Cd)⊗N , when n tends to in-�nity.The n-th tensor produ
t representation of SU(d) is given by
πn(U) : (Cd)⊗N → (Cd)⊗N , πn(U) : |ψ1〉⊗ · · ·⊗ |ψn〉 7→ U |ψ1〉⊗ · · ·⊗U |ψn〉.By permuting the ve
tors in the tensor produ
t we obtain a unitary representation
π̃d of the permutation group S(n) over {1, 2 . . . , n}

π̃d(τ) : |ψ1〉 ⊗ · · · ⊗ |ψn〉 7→ |ψτ−1(1)〉 ⊗ · · · ⊗ |ψτ−1(n)〉, τ ∈ S(n).It is easy to see that the two group representations 
ommute, i.e. πn(U)π̃d(τ) =
π̃d(τ)πn(U) for all U ∈ SU(d) and τ ∈ S(n) whi
h means that they 
an blo
k-diagonalised simultaneously. In fa
t a stronger result holds whi
h is 
alled theS
hur-Weyl duality and shows that πn(SU(d)) and π̃d(S(n)) are ea
h other's
ommutant as 
hara
terised in Theorem 8.6.4.Theorem 8.6.7. Let πn and π̃d be the representations of SU(d) and respe
tively
S(n) on (Cd)⊗n. Then the representation spa
e de
omposes into a dire
t sumof tensor produ
ts of irredu
ible representations of SU(d) and S(n) indexed byYoung diagrams with d lines and n boxes:

(Cd)⊗n ∼=
⊕

λ

Hλ ⊗Kλ,

πn ≡
⊕

λ

πλ ⊗ 1Kλ
,

π̃d ≡
⊕

λ

1Hλ
⊗ π̃λ.In parti
ular, let us 
onsider a matrix in M((Cd)⊗n of the form ρ⊗n. Then ρ⊗nand p̃id(τ) 
ommute for all τ . Hen
e, we may write:

ρ⊗n =
⊕

λ

ρλ ⊗ 1Kλ
(8.31)for some matri
es ρλ.The fa
t that the irredu
ible representations whi
h appear in the sum are pre-
isely those given by Young diagrams with n boxes will be
ome 
lear in a moment.The expli
it expression of the dimension Mn(λ) of Kλ is

M(~λ) =
n!∏

l=1...d
m=1...λl

gl,m
,
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al asymptoti
 normality for d-dimensional stateswhere gl,m is the �hook length� of the box (l,m), de�ned as one plus the numberof boxes under plus the number of boxes to the right. For example the dia-gram (5, 3, 3) has the hook lengths : 7 6 5 2 1
4 3 2
3 2 1 . By noti
ing that ∏λl

m=1 gl,m =
(λl+d−l)

Qd
k=l+1 λl−λk+k−l , we rewrite M(~λ) in the following form whi
h is more adaptedto our needs:

M(~λ) =

(
n

λ1, . . . , λd

) ∏

l=1...d
k=l+1...d

λl − λk + k − l

λl + k − l
. (8.32)The dimension D(λ) of Hλ is:

D(~λ) =
∏

i=1...d
j=1...λi

j + d− i

gi,j
. (8.33)At this point we would like to gain more insight into the stru
ture of the irre-du
ible representations πλ. Theorem 8.6.3 shows that minimal proje
tions in thegroup algebra A(S(n)) are in one to one 
orresponden
e with irredu
ible repre-sentations, su
h that for any su
h p ∈ A(S(n)) we have π̃d(p) = 1λ ⊗ pλ for agiven λ and with pλ one-dimensional proje
tion. In parti
ular, π̃d(p) proje
tsonto a subspa
e whi
h 
arries an irredu
ible representation of SU(d). We shallnow identify one su
h proje
tion for ea
h index λ and then give a basis of ve
torsin this subspa
e.Young tableaux are Young diagrams �lled with integers. Two types of Youngtableaux will play a role in our dis
ussion.

• a standard Young tableau T is a Young diagram whose boxes are �lled withnumbers from 1 to n su
h that the numbers are in
reasing from left to rightand top to bottom.
• a semistandard Young tableau T is a Young diagram whose boxes are �lledwith numbers from 1 to d su
h that the numbers weakly in
rease from leftto right and in
rease from top to bottom.To ea
h standard Young tableau T we asso
iate two elements in the S(n) groupalgebra

PT =
∑

σ∈RT

σ, QT =
∑

τ∈CT

sgn(τ)τwhere RT is set of permutations in S(n) whi
h leave the rows of T invariant, and
CT is the set of permutations whi
h leave the 
olumns of T invariant.



8.6 Group theory primer 227
1 2 3
4 5

1 2 4
3 5

1 3 4
2 5

1 2 5
3 4

1 3 5
2 4

1 1 1
2 2

1 1 2
2 2Figure 8.1: Young tableaux for the (3, 2) Young diagram with d = 2, n = 5.top row: standard Young tableaux; bottom row: semistandard Young tableauxNote that

PλPλ = |Rλ|Pλ = (

d∏

i=1

λi!)Pλ, QλQλ = |C(λ)|Qλ = (

d∏

i=1

iλi−λi+1)Qλ.(8.34)and Pλ and Qλ are self-adjoint elements of the S(n) group algebra.The Young symmetriser is de�ned as
YT := QTPT .The following theorem is the basis of Weyl's 
onstru
tion of irredu
ible represen-tations.Theorem 8.6.8. The Young symmetriser YT is a rank one operator, i.e. upto normalisation fa
tors YTY ∗

T and Y ∗
T YT are equivalent minimal proje
tions andtheir asso
iated irredu
ible representation is λ = λ(T ). In parti
ular Y 2

T = NTYTfor some normalising fa
tor NT ∈ R.Let us denote yT = π̃d(YT ) and similarly for qT , pT . Theorems 8.6.7 and 8.6.8imply that the range of yT in (Cd)⊗n is the multipli
ity subspa
e
HT := {ψ ⊗ φT : ψ ∈ Hλ} ⊂ Hλ ⊗Kλwhi
h 
arries the irredu
ible representation λ(T ) of SU(d). Based on the identi�-
ation between the group algebra A(S(n)) and the matrix dire
t sum of Theorem8.6.3, we 
an see that the ve
tor φT ∈ Kλ belongs to the one dimensional subspa
ede�ned by the minimal proje
tion YTY ∗

T .We shall now give a (non-orthonormal) basis of HT when T = T0 is the stan-dard Young tableau with the numbers {1, . . . , n} �lling in in
reasing order therows from left to right and top to bottom. An example of su
h tableau is 1 2 3
4 5
6 .The 
onstru
tion 
an be extended to all (unitary equivalent) SU(d) irredu
iblerepresentation spa
es HT for the other standard tableaux T .
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al asymptoti
 normality for d-dimensional statesBy a slight abuse of notation we shall repla
e the subs
ript T0 by λ in all thefollowing arguments, so that the 
opy Hλ ⊗ φT0 is identi�ed with Hλ.Now, if {f1, . . . , fd} is an orthonormal basis of C
d then the ve
tors fa := fa(1) ⊗

· · · ⊗ fa(n) form an orthonormal basis of (Cd)⊗n with a(k) ∈ {1, . . . , d} an arbi-trary 
hoi
e of indi
es. We 
an represent ea
h basis ve
tor fa as a Young tableau�lled with indi
es in {1, . . . , d} obtained by repla
ing the integer k in T0 by theindex i(k) of the k'element of the tensor produ
t. We denote this Young tableauby ta. For example if fa = f2 ⊗ f2 ⊗ f1 ⊗ f2 ⊗ f1 then ta =
2 2 1
2 1 . Note thatthis di�ers from a semistandard Young tableau by the fa
t that indi
es are notne
essarily in
reasing along rows and 
olumns.Sin
e Hλ = Range(yλ), the ve
tors {yλfa : a ∈ {1, . . . , d}n} form a spanningset for Hλ, but in general they are not linearly independent and in fa
t some ofthem may be equal to zero. Indeed by using the Young tableau notation fromthe previous example we 
an see that yλ 2 2 1

2 1 = yλ
1 2 2
1 2 sin
e yλ = qλpλ and pλis the sum of all permutations leaving the rows of T invariant. Thus we mayrestri
t to basis ve
tors fa whose 
orresponding Young tableaux ta are weaklyin
reasing to the right. On the other hand, let us 
onsider a ve
tor fa whi
h hasthe property that any row permutation σ ∈ Rλ of its asso
iated Young tableau tagives rise to a tableau 
ontaining at least one 
olumn with two identi
al indi
es.Then sin
e qλ works as anti-symmetriser for the 
olumn ve
tors, we obtain that

yλfa = qλpλfa = 0.More generally, it 
an be proved (see for example [Fulton and Harris, 1991℄) thatthe ve
tors yλfa for whi
h ta is a semistandard Young tableaux are a basis of theirredu
ible representation (πλ,Hλ). The proof is somewhat involved, and we donot give it here. However, it 
an be seen that the dimension is right by 
omparingwith (8.32).For the following results it will be 
onvenient to use another notation for thebasis ve
tors yλfa indexed by semistandard Young tableaux. Sin
e the values inthe rows are nonde
reasing, there is a one-to-one 
orresponden
e between Youngtableaux with a given Young diagram λ, and ve
tors m = (mi,j)1≤i<j≤d where
mi,j is the number of j's appearing in line i of the Young tableau. Note thatwe need only mi,j for j > i, as there is no j in line i if j < i (the 
olumns arein
reasing), and the number of i in line i is λi−∑d

j=i+1 mi,j . By a slight abuse ofnotation we shall denote the 
orresponding ve
tors by yλfm and the normalisedve
tors
|mλ〉 := N (mλ)yλfmwhere N (mλ) = 1/‖yλfm‖ . This 
onstant is in general not easy to 
ompute.We shall des
ribe its asymptoti
 properties in se
tion 8.9.4.



8.6 Group theory primer 229The basis {|mλ〉} is not orthogonal. However, the following lemma states thatit is not very far from an orthogonal basis, at least for ve
tors that are not `toofar' from the highest weight ve
tor m = 0.Lemma 8.6.9. Let (m, λ) and (l, λ) be Young tableaux with diagram λ and let
|m| :=

∑
i<jmij and |l − m| :=

∑
i<j |li,j −mij |.If ∑

j>i

mi,j −
∑

j<i

mj,i 6=
∑

j>i

li,j −
∑

j<i

lj,ifor some 1 ≤ i ≤ d, then
〈m, λ|l, λ〉 = 0.Otherwise, let us suppose that λ be su
h that λi−λi+1 > δn for all 1 ≤ i ≤ d−1,and λd > δn, with δ > 0. Let η < 1/3 su
h that n3η−1 > C/δ for a 
onstant Cdepending only on d. If |l| ≤ |m| ≤ nη, then:

|〈m, λ|l, λ〉| ≤ (Cn)

(
(9η−2)|m−l|−3(|m|−|l|)

)
/12δ|m|−|l|−|m−l|/3(1 +O(n−1+3η/δ))where C and the 
onstant in the remainder term depends only on the dimension d.Notably, the result is of order less than n(9η−2)|m−l|/12 and the bound 
onvergesto zero for η < 2/9 when n→ ∞.The proof of the lemma is given in se
tion 8.9.3.Using (8.34)

〈yλfa|yλfb〉 = 〈qλpλfa|qλpλfb〉 = 〈pλfa|q2λpλfb〉 = (
d∏

i=1

iλi−λi+1)〈pλfa|yλfb〉.(8.35)In order to get further simpli�
ations, we examine some spe
ial ve
tor states,that we shall 
all by analogy with the Fo
k spa
es �nite-dimensional 
oherentstates.The �rst is the spe
ial ve
tor |0, λ〉, the highest weight ve
tor of the representation
(πλ,Hλ), whi
h later on will play the role of the �nite-dimensional va
uum. Thisve
tor, as we have seen, 
orresponds to the semistandard Young tableau whereall the entries in row i are i. An immediate 
onsequen
e is that

pλ|f0〉 = (

d∏

i=1

λi!)|f0〉. (8.36)



230 Quantum lo
al asymptoti
 normality for d-dimensional statesMoreover 〈f0|qλf0〉 = 1 sin
e any 
olumn permutation produ
es a ve
tor orthog-onal to f0. Thus the normalised ve
tor is:
|0λ〉 =

1
∏d
i=1 λi!

√
iλi−λi+1

yλ|f0〉.The �nite-dimensional 
oherent states are de�ned as πλ(U)|0λ〉 for U ∈ SU(d).From [pλ, πλ(U)] = 0 and (8.36), we get pλπλ(U)|0λ〉 = (
∏d
i=1 λi!)U |0λ〉, thus

〈yλfm|πλ(U)|0, λ〉 =

√√√√
d∏

i=1

iλi−λi+1〈pλfm|qλπλ(U)f0〉 (8.37)The latter expression holds for any linear 
ombination of fm on the left-hand side,that is for any ve
tor in Cd, in parti
ular πλ(V )f0 for another unitary operator
V . In Lemma 8.9.1, we shall examine asymptoti
s of (8.37) for spe
i�
 sequen
esof unitaries U when n is going to in�nity. One of the main tools will be formula(8.60).8.7 Parametrisation of the density matri
es and
onstru
tion of the 
hannels Tn8.7.1 The �nite-dimensional experimentRe
all we work with the quantum experiments Qn given in equation (8.13).To express the exa
t form of our ρθ, we use the following notations, for ~ζ ∈
Cd(d−1)/2 and ~ξ ∈ Rd−1:

U(~ζ, ~ξ) = exp



i




d−1∑

i=1

ξiHi +
∑

1≤j<k≤d

Re(ζj,k)Tj,k + Im(ζj,k)Tk,j
µj − µk









U(~ζ) = U(~ζ,~0), U(~ζ, ~ξ, n) = U(~ζ/
√
n, ~ξ/

√
n), U(~ζ, n) = U(~ζ/

√
n),

(8.38)where the Tj,k and Hi are the generators (8.28) of the Lie algebra of SU(d).We now parametrise our density matri
es ρθ as:
ρθ = U(~ζ)





µ1 + u1 0 . . . 0

0 µ2 + u2
. . . ...... . . . . . . 0

0 . . . 0 µd −
∑d−1

i=1 ui




U∗(~ζ), ui ∈ R, ζj,k ∈ C.(8.39)



8.7 Parametrisation of the density matri
es and 
onstru
tion of Tn 231We shall write ρθ,n = ρ
~ζ,~u,n for ρ⊗n

θ/
√
n
. We may use the de
omposition (8.31)over the representations λ to obtain:

ρθ,n =
⊕

λ

ρθ,nλ ⊗ pθ,nλ 1CMn(λ)

Mn(λ)
, (8.40)where we have used that Kλ had dimension Mn(λ) given by (8.32). As ρθ,n isnon-negative, so are all the ρθ,nλ . We then 
hoose pθ,nλ su
h that ρθ,nλ has tra
eone, i.e. is a density operator.Noti
e that if we take {fi} to be the eigenve
tors of the ρ~0,~u/√n, then ρ

~0,~u,nis diagonal in the tensor produ
t basis, with eigenvalues depending only on thenumber of times ea
h fi 
omes in. This number does not 
hange under the a
tionof π̃λ(τ), whatever the permutation τ , hen
e the ve
tors |mλ〉 are eigenve
torsof ρ~0,~u,n for all λ, with eigenvalues:
〈mλ|ρ~0,~u,n|mλ〉 =

d∏

i=1

(µ~u,ni )λi

d∏

j=i+1

(
µ~u,nj

µ~u,ni

)mi,j

, (8.41)where µ~u,ni = µi + ui/
√
n for 1 ≤ i ≤ (d− 1) and µ~u,nd = µd − (

∑
i ui)/

√
n.Let us de�ne the �nite-dimensional displa
ement operator as

∆
~ζ,~u,n(A) = U(~ζ, ~u, n)AU∗(~ζ, ~u, n). (8.42)We de�ne similarly ∆

~ζ,n. Then we see that ρ~ζ,~u,n = ∆
~ζ,n(ρ

~0,~u,n).When a
ting on representations λ of SU(d), we naturally de�ne Uλ(~ζ, ~u, n) and
onsequently∆
~ζ,~u,n
λ , and so on. Using the de
omposition (8.40) of ρ⊗n, we obtain:

ρ
~ζ,~u,n
λ = ∆

~ζ,n
λ (ρ

~0,~u,n
λ ). (8.43)Noti
e the similarity with equation (8.20). The �nite-dimensional displa
ementoperators on λ will be the analogue of the displa
ement operators on the Fo
kspa
e.With these notations, we 
an set about building the 
hannels Tn.8.7.2 Des
ription of TnWe look for Tn of the form:

Tn : ρθ,n 7→
∑

λ

Vλρ
θ,n
λ V ∗

λ ⊗ pθ,nλ τnλ . (8.44)
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al asymptoti
 normality for d-dimensional statesHere, Vλ is an isometry from M(Hλ) to F(Cd(d−1)/2), that is V ∗
λ Vλ = 1Hλ

. Onthe 
lassi
al side τnλ is a probability law on Rd−1. We may view τn as a Markovkernel (8.6) from the set of λ to Rd−1.Intuitively, this 
orresponds to �rst measuring the representation λ we are in.Then, on the one hand, we use a 
lassi
al randomization on the result λ, andon the other hand we use a 
hannel depending on our result λ on the remainingstate. It 
an be proved from the axioms of quantum me
hani
s that this state is
ρθ,nλ ⊗ 1CMn(λ)/(Mn(λ)).The underlying idea is the following: the probability distribution pθ,nλ is essen-tially a multinomial depending on ~u only, as 
an be dedu
ed from (8.41) and(8.32). As we have seen in Example 8.4.1, this 
onverges to a 
lassi
al Gaussianshift experiment. For the quantum part, we send the �nite-dimensional va
uum
|0λ〉 to the va
uum |0〉, and send the |mλ〉 near the |m〉. We then want to provethat the �nite-dimensional displa
ement operators a
t almost like the Fo
k spa
eones, and that Tλ(ρ~0,~u,nλ ) is almost φ~0. Formula 8.43 would end the proof. Finite-dimensional 
oherent states and formula 8.21 will be the stepping stone to thoseresults.We give in Se
tion 8.9.2 a proof that Tn of the form (8.44) is indeed a tra
e-preserving 
ompletely positive map.Lemma 8.7.1. Appli
ations of the form (8.44) are bona-�de 
hannels.After this sanity 
he
k, we 
an be more spe
i�
 about Tn, and give our Vλ and
τn.Let us begin with the Markov kernel τn. To obtain L1 
onvergen
e instead ofonly 
onvergen
e in distribution in Le Cam theory, the 
omponents τnλ must notbe Dira
 peaks. A slight smoothing is needed. The probability distribution τnλon Rd−1 is de�ned for all λ su
h that ∑λi = n by:

dτnλ (x) = τnλ (x)dx = dxδ∀1≤i≤d−1, |n1/2xi+nµi−λi|≤1/2. (8.45)For building an isometry Vλ meeting our requirements, we 
on
entrate on therelevant representations. Spe
i�
ally, de�ne
Λn,α = {λ|∀i ∈ [1, d], |λi − nµi| ≤ nα} .We 
an then prove:Lemma 8.7.2. Let η < 2/9. Suppose that λi−λi+1 ≥ δn for all 1 ≤ i ≤ d, withthe 
onvention λd+1 = 0. Then there is an isometry Vλ su
h that, if |m| ≤ nη,
〈m|Vλ =

1√
1 + (Cn)(9η−2)/12/δ1/3

〈mλ|
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onstant C depending only on η and the dimension d.We delay the proof to se
tion 8.9.3. The main tool is Lemma 8.6.9.We just take the Vλ given by the lemma as our Vλ, for all λ ∈ Λn,α. For thoserepresentations and n not too small, we have λi − λi+1 ≥ δn/2 and we merelyabsorb the 2 in the 
onstant C. For the other representations λ, any Vλ will do:those 
omponents do not matter asymptoti
ally.We shorthand a few notations: �rst we write Tλ for the 
hannel ρθ,nλ 7→ Vλρ
θ,n
λ V ∗

λ ,so that
Tn : ρθ,n 7→

∑

λ

Tλ(ρ
θ,n
λ ) ⊗ pθ,nλ τnλ .We shall write for the dual T ∗

λ : φ 7→ V ∗
λ φVλ. Noti
e that T ∗

λTλ is the identity onthe operators on the operators on the ve
tor spa
e Hλ.We shall write φθ,nλ = Tλ(ρ
θ,n
λ ) and bθ,nλ = pθ,nλ τnλ . The latter is merely a non-normalized measure. Re
all that pθ,nλ , and hen
e bθ,nλ , depends only on ~u, andnot on ~ζ.8.8 Main steps of the proof8.8.1 Why Tn does the workWe shall break (8.23) in small manageable pie
es (mu
h longer to write, of
ourse). The result and brief explanatory remarks, repeating those in the deriva-tion, are given from (8.47) on.We �rst expand (8.44) as

Tn(ρ
θ,n) =

∑

λ

φθ,nλ ⊗ bθ,nλ

= φ
~ζ ⊗N (~u, Vµ) − φ

~ζ ⊗
(
N (~u, Vµ) −

∑

λ

bθ,nλ

)
−
∑

λ

(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ .Proving (8.23) then amounts to proving

sup
θ∈Θn,β,γ

∥∥∥∥∥φ
~ζ ⊗

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)
+
∑

λ

(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ

∥∥∥∥∥
1

−−−−→
n→∞

0.



234 Quantum lo
al asymptoti
 normality for d-dimensional statesWe now upper bound this norm by other norms, until we rea
h �elementary�terms, ea
h of whi
h we shall bound in a lemma, whose (te
hni
al) proof 
an befound in the last se
tion.First
∥∥∥Tn(ρθ,n) − φ

~ζ ⊗N (~u, Vµ)
∥∥∥

=

∥∥∥∥∥φ
~ζ ⊗

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)
+
∑

λ

(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ

∥∥∥∥∥
1

≤
∥∥∥∥∥φ

~ζ ⊗
(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

+
∑

λ

∥∥∥
(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ

∥∥∥
1

≤
∥∥∥φ~ζ

∥∥∥
1

∥∥∥∥∥

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

+
∑

λ

∥∥∥
(
φ
~ζ − φθ,nλ

)∥∥∥
1

∥∥∥bθ,nλ
∥∥∥

1
.First remark that ‖φ~ζ‖1 = ‖N (~u, Vµ)‖1 = ‖φθ,nλ ‖ = 1, so that ∥∥∥(φ~ζ − φθ,nλ

)∥∥∥
1
≤

2 also holds. Similarly ∑λ ‖b
θ,n
λ ‖1 = 1 (indeed ‖bθ,nλ ‖1 = pθ,nλ ). Our next stageshall then 
onsist in repla
ing some of these norms by one or two. Notably, wesplit the sum over λ in two parts, depending on whether or not it belongs to

Λn,α. If it does, we expe
t that ∥∥∥(φ~ζ − φθ,nλ

)∥∥∥
1
is very small, and the sum of all

‖bθ,nλ ‖1 for the other λ is small. Then
∥∥∥Tn(ρθ,n) − φ

~ζ ⊗N (~u, Vµ)
∥∥∥

≤
∥∥∥∥∥

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

+ sup
λ∈Λn,α

∥∥∥
(
φ
~ζ − φθ,nλ

)∥∥∥
1
+ 2

∑

λ6∈Λn,α

‖bθ,nλ ‖1.(8.46)Let us pause a few se
onds and explain ea
h term. The �rst term 
orresponds tothe 
onvergen
e of the 
lassi
al probabilities, as in the usual Le Cam pi
ture. Ifthe se
ond term is small, then on Λn,α, the (purely quantum) family ρθ,nλ is nearthe family φ~ζ . The last term 
orresponds to the other representations. If it issmall, it says that there is 
on
entration of pθ,nλ around the representations withshape λi = nµi. In other words, the only representations that matter are thosein Λn,α, there is almost no mass on the other representations.The hardest term to dominate (noti
e that the two others are 
lassi
al) is the
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ond. We transform it until we rea
h tra
table fragments.
∥∥∥φ~ζ − φθ,nλ

∥∥∥
1

=
∥∥∥φ~ζ − Tλ(ρ

θ,n
λ )
∥∥∥

1

=
∥∥∥D~ζ(φ

~0) − [Tλ∆
~ζ,n
λ T ∗

λ ](Tλ(ρ
~0,~u,n
λ ))

∥∥∥
1

=
∥∥∥D~ζ(φ

~0) −D
~ζ(Tλ(ρ

~0,~u,n
λ )) +D

~ζ(Tλ(ρ
~0,~u,n
λ )) − [Tλ∆

~ζ,n
λ T ∗

λ ](Tλ(ρ
~0,~u,n
λ ))

∥∥∥
1

≤
∥∥∥D~ζ(φ

~0) −D
~ζ(Tλ(ρ

~0,~u,n
λ ))

∥∥∥
1

+
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](Tλ(ρ
~0,~u,n
λ ) − φ

~0)
∥∥∥

1

+
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1

≤ 3
∥∥∥Tλ(ρ

~0,~u,n
λ ) − φ

~0
∥∥∥

1
+
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1where we have used on the last line that the displa
ement operators are isometries.Let us pause again. Through this last expression, we are trying to prove that ourquantum parts φ~ζ and φ~ζ,~u,nλ with the following strategy: prove that when theparameter ~ζ is ~0, they are near. Re
all that the parameter ~ζ is obtained by lettinga displa
ement operator a
t on ~ζ = ~0, and prove that the ��nite-dimensional�displa
ement operator, after being taken to the Fo
k spa
e, is a
ting on φ~0 likethe in�nite-dimensional operator do.We shall still go one step further in the de
omposition for proving this last as-sertion, on the se
ond term.Using the formula for φ~0, we bound the se
ond term by
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1
≤
∫

Cd(d−1)/2

f(z)
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](|z)(z|)
∥∥∥

1
dzwith f(z) =

∏
i<j

µi−µj

πµj
exp

(
−µi−µj

µj
|zi,j |2

). Re
all that |z)(z| = Dz(|0)(0|), sothat [D
~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](|z)(z|) = [D
~ζDz − Tλ∆

~ζ,n
λ T ∗

λD
z](|0)(0|) .Now, f is a probability density, and the norm in the integrand is dominated bytwo. So that another bound on the se
ond term of the formula for φ~0 is given by

∥∥∥[D~ζ − Tλ∆
~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1
≤
∫

‖z‖1>nβ

f(z)dz+ sup
‖z‖≤nβ

∥∥∥[D~ζ − Tλ∆
~ζ,n
λ T ∗

λ ](|z)(z|)
∥∥∥

1
.
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al asymptoti
 normality for d-dimensional statesWe now inter
alate two terms in the operator:
D
~ζDz − Tλ∆

~ζ,n
λ T ∗

λD
z =D

~ζ+z − Tλ∆
~ζ+z,n
λ T ∗

λ

+ Tλ∆
~ζ+z,n
λ T ∗

λ − Tλ∆
~ζ,n
λ ∆z,n

λ T ∗
λ

+ Tλ∆
~ζ,n
λ ∆z,n

λ T ∗
λ − Tλ∆

~ζ,n
λ T ∗

λD
z.From this we dedu
e that

∥∥∥[D~ζ − Tλ∆
~ζ,n
λ T ∗

λ ](|z)(z|)
∥∥∥

1
≤
∥∥∥[D~ζ+z − Tλ∆

~ζ+z,n
λ T ∗

λ ](|0)(0|)
∥∥∥

1

+
∥∥∥[∆

~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1

+ ‖[∆z,n
λ T ∗

λ − T ∗
λD

z](|0)(0|)‖
1where we have re
alled that we were dealing with isometries to suppress some Tλand ∆

~ζ,n
λ . Noti
e that the �rst and third norms are essentially the same.

Saying that the �rst norm is small 
orresponds to saying that the��nite-dimensional� displa
ement operator a
ts on the va
uum like the in�nite-dimensional displa
ement operator. Saying that the se
ond norm is small amountsto asserting that the ��nite-dimensional� displa
ement operators multiply likethe in�nite-dimensional operators, at least when seen through their a
tion onthe va
uum. These two points together yield that the a
tion on 
oherent statesof ��nite-dimensional� and in�nite-dimensional displa
ement operators are thesame: a 
oherent state is obtained through the a
tion of a displa
ement oper-ator on the va
uum, and the 
omposition of two displa
ement operators is thedispla
ement operator with parameter the sum of the two parameters.



8.8 Main steps of the proof 237Putting all this together, our �expanded� form for (8.23) is
sup

θ∈Θn,β,γ

∥∥∥Tn(ρθ,n) − φ
~ζ ⊗N (~u, Vµ)

∥∥∥ (8.47)
≤ sup

θ∈Θn,β,γ

∥∥∥∥∥

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

(8.48)
+ 2 sup

θ∈Θn,β,γ

∑

λ6∈Λn,α

‖bθ,nλ ‖1 (8.49)
+ 3 sup

θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥φ~0 − Tλ(ρ
~0,~u,n
λ )

∥∥∥
1

(8.50)
+ sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[D~ζ+z − Tλ∆
~ζ+z,n
λ T ∗

λ ](|0)(0|)
∥∥∥

1
(8.51)

+ sup
‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

‖[Dz − Tλ∆
z,n
λ T ∗

λ ](|0)(0|)‖
1

(8.52)
+ sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[∆
~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1
(8.53)

+

∫

‖z‖≥nβ

f(z)dz. (8.54)Sin
e we integrate a Gaussian outside the ball where the exponent is less than
δn2β/d, the last term is less than C exp(−δn2β/d)/δ where C depends only onthe dimension d. Under the hypothesis n2β > 2d/δ, this 
an be bounded againby O(n−2β).We brie�y lie again on the signi�
an
e of ea
h term.

• The 
lassi
al part of the 
hannel 
orresponds to a Markov kernel making(quasi)-equivalent the out
ome of the measurement �Whi
h irredu
ible rep-resentation are we in?� and a Gaussian shift experiment (8.48). Re
all that
bθ,nλ depends only on ~u and not on ~ζ, so that we have the same parameterset for the two 
lassi
al experiments.

• We must prove 
on
entration around pre
ise values of λ (8.49), those forwhi
h the quantum 
hannel Tλ yields the right limit quantum experiment.We restri
t for the further points to these representations around whi
h we
on
entrate.
• For point ~0, the image of ρ~0,~u,nλ by Tλ is (almost) the expe
ted image φ~0(8.50). We shall then generalize the result to all ~ζ by re
alling that we ob-tain φ~ζ and ρ~ζ,~u,nλ from φ

~0 and ρ~ζ,~u,nλ by a
tions of displa
ement operators,and that we 
an de
ompose them in 
oherent states. See following points.
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• The a
tion on the va
uum of ��nite-dimensional� and �in�nite-dimensional�displa
ement operators are almost the same on not too �large� 
oherentstates. Notably, ��nite-dimensional� 
oherent states are brought by Tλnear the 
orresponding 
oherent states (8.51,8.52).
• �Finite-dimensional� displa
ement operators multiply as the 
orrespondingdispla
ement operators when a
ting on the va
uum. By the latter point,they thus a
t alike on any 
oherent state (8.53).
• The �large� displa
ement operators have little in�uen
e on the images ofthe ρθ,n for separated eigenvalues (8.54).The last se
tion deals with the proof of the lemmas 
orresponding to ea
h ofthese points.Lemma 8.8.1. With the above de�nitions, for any ǫ, for n > (C/δ)

1
1−α +

(C/δ)
2

1−2γ , for a 
onstant C depending only on the dimension and ǫ, we have
sup

θ∈Θn,β,γ

∥∥∥∥∥N (~u, Vµ) −
∑

λ

bθ,nλ

∥∥∥∥∥
1

≤ C
(
n−1/2+ǫ + n−1/4+γ

)
/δ.Lemma 8.8.2. With the above de�nitions, for n > (4/δ)

1
1−α , we have

sup
θ∈Θn,β,γ

∑

λ6∈Λn,α

‖bθ,nλ ‖1 ≤ C1 exp(−C2n
2α−1) −−−−→

n→∞
0,where C1 and C2 depend only on the dimension.Lemma 8.8.3. With the above de�nitions, for nη > C ln(n)/δ,

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥φ~0 − Tλ(ρ
~0,~u,n
λ )

∥∥∥
1

= O(n−1/2+γ+η/δ, n(9η−2)/24).Lemma 8.8.4. With the above de�nitions, for any ǫ, under the supplementary
onditions that 2β + ǫ ≤ η < 2/9, that ǫnβ+ǫ ≥ β, that ‖~ξ‖1 ≤ n−1/2+2β/δ andthat n−1/2+3β+2ǫ ≥ Cδ−3/2 where C depends only on the dimension d,
sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[D~ζ+z − Tλ∆
~ζ+z,~ξ,n
λ T ∗

λ ](|0)(0|)
∥∥∥

1
= R(n)with

R(n) = O
(
n(9η−2)/24δ−1/6, n−1/2+β+η/2δ−1/2, n−1/4+β/2δ−1/4,

n−1/2+α/2+β/2δ−1/2, n−1/2+α/2+η/2δ−1/2, n−1/2+3η/2δ−1/2, n−β/2
)
. (8.55)For estimating the terms (8.51, 8.52), the 
ase when ~ξ = ~0 is su�
ient. Thismore general form is useful for the proof of Lemma 8.8.5.



8.8 Main steps of the proof 239Lemma 8.8.5. With the above de�nitions, under the same hypotheses as inLemma 8.8.4,
sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[∆
~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1
= R(n)with R(n) given by equation (8.55).As implied by the dis
ussion in the bulk of this subse
tion, the role of the threelatter lemmas, together with the bound on the remainder integral (8.54), 
onsistsin proving the following lemma, whi
h we 
an plug into bound (8.46):Lemma 8.8.6. With the above notations and with the above 
onditions and

n2β > 2d/δ,
sup

θ∈Θn,β,γ

sup
λ∈Λn,α

‖φ~ζ − φθ,nλ ‖ = R(n) +O(n−1/2+γ+η/δ + n(9η−2)/24/δ1/6)with R(n) given by equation (8.55).Gathering all these results yield the following theoremTheorem 8.8.7. For any δ > 0, 1 > α > 1/2, η < 2/9, ǫ > 0, β < (η − ǫ)/2,
γ < 1/4, and n su
h that ǫnβ+ǫ > β, n1−α > C/δ, nη/ ln(n) > C/δ, n1/2−γ >
C/δ, the sequen
e of 
hannels Tn ensures

sup
θ∈Θn,β,γ

∥∥Tn(ρθ,n) − φ
∥∥

1
≤ C(n−1/2+β+η/2δ−1/2 + n−1/4+β/2δ−1/4+

n−1/2+α/2+η/2δ−1/2 + exp(−Cn2α−1) + n−1/2+3η/2δ−1/2+

n−β/2 + n−1/2+γ+η/δ + n(9η−2)/24/δ1/6) (8.56)where the 
onstants C depends only on the dimension d.With any expli
it α, β, γ, δ, we get an expli
it polynomial rate.8.8.2 De�nition of Sn and proof of its e�
ien
yWe use here the result on Tn to get qui
kly a 
orre
t Sn and (8.24) from (8.23).We need also the Markov kernel that is 
ompleting the equivalen
e between thefamily p~u,nλ and N (~u, Vµ). This is σn de�ned by
σn : x ∈ R

d−1 7→ δλx (8.57)
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al asymptoti
 normality for d-dimensional stateswhere λx is su
h that∑d
1 λi = n and for 2 ≤ i ≤ d, then |n1/2xi+nµi−λi| < 1/2,if it exists, else any admissible value, for example (n, 0, . . . , 0). Noti
e that with(8.45), σnτnσn = σn. Moreover any probability on the λ su
h that ∑d

1 λi = n isin the image of σn, so that σnτn(pθ,n) = pθ,n.Lemma 8.8.8. With the above de�nitions, for any ǫ, for n > (C/δ)
1

1−α +

(C/δ)
2

1−2γ , for a 
onstant C depending only on the dimension and ǫ, we have
sup

~u∈Ξn,ǫ

∥∥σnN (~u, Vµ) − p~u,n
∥∥

1
≤ C

(
n−1/2+ǫ + n−1/4+γ

)
/δ.We delay the proof of this lemma to the last se
tion.Now the 
hannel Sn is given by the following sequen
e of operations. We arestarting from a produ
t in T +

1 (F(Cd(d−1)/2))⊗L1(Rd−1). We 
an then a
t on thetwo parts independently. Spe
i�
ally, we shall sample the probability N (~u, Vµ)to de
ide whi
h 
hannel we are applying to φ~ζ . That is we are using σ on theGaussian and the sampling yield an irredu
ible representation λ.To λ, we asso
iate the 
hannel Sλ whose a
tion is
Sλ : φ 7→ S̃λ(φ) ⊗ 1CMn(λ)

Mn(λ)with
S̃λ : φ 7→ T ∗

λφ+ (1 − Tr(T ∗
λ(φ)))|0λ〉〈0λ|Of 
ourse the se
ond term is only a remainder and we 
ould have used any stateinstead of |0λ〉〈0λ|. What is important is that for any density operator ρλ on theve
tor spa
e λ, the operator S̃λ is a pseudo-inverse of Tλ:

S̃λTλ(ρλ) = T ∗
λTλ(ρλ) + (1 − Tr(T ∗

λTλ(ρλ)))|0λ〉〈0λ|
= ρλ + (1 − Tr(ρλ))|0λ〉〈0λ|
= ρλ.From this we prove (8.24). Indeed

Sn(φ
~ζ ⊗N (~u, Vµ)) =

⊕

λ

[σN (~u, Vµ)](λ)S̃λ(φ) ⊗ 1CMn(λ)

Mn(λ)
.So as to be more 
ompa
t, let us write σN ~u

λ = [σN (~u, Vµ))](λ) and q~u,nλ =

min(σN ~u
λ , p

~u,n
λ ). Then:

Sn(φ
~ζ ⊗N (~u,1)) − ρθ,n

=
⊕

λ

{
q~u,nλ (S̃λ(φ

~ζ) − ρθ,nλ ) + (σN ~u
λ − q~u,nλ )S̃λ(φ

~ζ) − (p~u,nλ − q~u,nλ )ρθ,nλ

}
⊗ 1CMn(λ)

Mn(λ)
.
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hni
al proofs 241Taking L1 norms, and re
alling that all φ and ρ have tra
e 1 and that 
hannels(su
h as S̃λ) have operator norm 1, we get the bound:
∥∥∥Sn(φ

~ζ ⊗N (~u, Vµ)) − ρθ,n
∥∥∥

1

≤
∑

λ

∥∥∥q~u,nλ (S̃λ(φ
~ζ) − ρθ,nλ )

∥∥∥
1
+
∑

λ

∣∣∣σN ~u
λ − p~u,nλ

∣∣∣

≤ 2
∑

λ6∈Λn,α

q~u,nλ + sup
λ∈Λn,α

∥∥∥S̃λ(φ
~ζ) − ρθ,nλ

∥∥∥
1

+
∥∥σN (~u, Vµ) − p~u,n

∥∥
1

≤ 2
∑

λ6∈Λn,α

q~u,nλ + sup
λ∈Λn,α

∥∥∥φ~ζ − Tλ(ρ
θ,n
λ )
∥∥∥

1
+
∥∥σN (~u, Vµ) − p~u,n

∥∥
1
.Now the �rst term is smaller than the remainder term of the Gaussian outsidea ball whose radius is nα. Hen
e this term is going to zero faster than anypolynomial, independently on δ and ~u for ~u ∈ Ξn,γ . The se
ond term is Lemma8.8.6 (re
alling that φθ,nλ = Tλ(ρ

θ,n
λ )). And the third term is Lemma 8.8.8.This ends the proof of (8.24).8.9 (Even more) te
hni
al proofs8.9.1 A few more toolsWe shall need for the proofs or Lemmas 8.6.9 and 8.8.4 good evaluations ofvarious 〈mλ | πλ(U) | lλ〉. The following se
tion gives the tools to obtain thoseevaluations.We shall usually drop the expli
it referen
e to the representation and write Uinstead of πλ(U). Apart from the identity, we shall be espe
ially interested inthe unitaries U of the form U(~ζ, ~ξ) or U(~ζ), as de�ned just below (8.38).We �rst introdu
e some new notations. We write l(c) for the length of the
olumn c in the Young diagram asso
iated to the representation. There arethen λi − λi+1 
olumns su
h that l(c) = i. An alternative de�nition would be

l(c) = inf{i|λi ≥ c}.Re
all that we 
alled fa basis fun
tions of the form fa1 ⊗ · · · ⊗ fan , and thatwe had asso
iated to it a Young tableau ta. We denote by tca the fun
tion fromthe integers [1, l(c)] to [1, d] that asso
iates to the row number r the value of the
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olumn c, row r. For example, with ta =
2 2 1
2 1 asin se
tion 8.6, we get the values:

t1a(1) = 2, t1a(2) = 2, t2a(1) = 2, t2a(2) = 1, t3a(1) = 1.We shall often be interested in the image sets tca([1, l(c)]), or 
ompare tca to Idcthe identity on the integers [1, l(c)].Now we de
ompose pλfm =
∑
σ∈Rλ

σfm. The set Rλ is a subgroup of Sn, thatwe let a
t on fm. Therefore pλfm =
∑
fa∈Oλ(m)

#Rλ

#Oλ(m)fa where Oλ(m) is theorbit in (Cd)⊗n of fm under Rλ.In order to 
ompute the s
alar produ
ts, we use the de
omposition pλfm =∑
σ∈Rλ

σfm. The set Rλ is the subgroup of Sn letting invariant the rows of theYoung tableau, that we let a
t on fm. Therefore pλfm =
∑

fa∈Oλ(m)
#Rλ

#Oλ(m)fawhere Oλ(m) is the orbit in (Cd)⊗n of fm under Rλ.Noti
e that Oλ 
onsists in the set of fa with su
h that there are exa
tly mi,jboxes with j in row i, and the remainder of the row is i.Sin
e we antisymmetrize with qλ, we are only interested in the fa in whose every
olumn all the entries are two by two di�erent. We 
all su
h fa admissible.We now de�ne Γ(fa) = |m| − #{tca 6= Idc, 1 ≤ c ≤ λ1}. We shall denote VΓ =
{admissible fa|Γ(fa) = Γ}, for any Γ ∈ N. Noti
e the dependen
e on m, that wedo not make expli
it in the notation.Noti
e �rst that Γ ≥ 0. Moreover, if Γ(fa) = 0, then all the tca are either Idc orof the form tca(r) = jδr=i + rδr 6=i for some i ≤ l(c) < j. A tca of this form will bedubbed an (i, j)-substitution.With these de�nitions, we prove in Lemma 8.9.1 many formulas that we shall usefor proving Lemmas 8.8.4 and 8.6.9.A main tool for the proof of these formulas will be the following �algorithm� tobuild all the possible fa for a �xed Γ. It enables us to estimate the 
ardinals ofthe sets VΓ.AlgorithmOur �rst observation is that what we are doing when designing fa is 
hoosingwhi
h 
ells in row i we �ll with a j. We 
an see that as having mi,j bri
ks (i, j).The question is where we put them, under the 
onstraint that in the end, notwo numbers in a 
olumn are the same (admissible fa). The value Γ(fa) is the
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hni
al proofs 243number of those bri
ks we put in a 
olumn where there was already (at least)one bri
k before, if we set them sequentially.We 
an have a slightly di�erent view of the pro
ess. Consider the notion of
olumn-modi�er κ, that is something we apply on a 
olumn to 
hange it. An
(i, j) bri
k is an elementary 
olumn-modi�er that 
hanges the i of row i in j.We shall denote it κ(i, j). But we 
an 
onsider 
omposite 
olumn-modi�ers withtwo or more bri
ks, 
hanging for example simultaneously i in j and k in l. Inthe end there are less than d! di�erent possible 
olumn-modi�ers (we 
annot
hange twi
e the 
ell in row i). An important remark is that a 
olumn-modi�eralways in
reases the value in the 
ells of the 
olumn. So that, for any �modi�ed�
olumn, the sets of entries in the 
ells is di�erent from the initial set, that is
tca([1, l(c)]) 6= [1, l(c)].Then fa is obtained by applying all our |m| bri
ks 
lustered in |m| − Γ 
olumn-modi�ers (there are mκ times the 
olumn-modi�er κ), and ea
h 
olumn-modi�erbeing applied to a di�erent 
olumn.We then give the following �algorithm�.1. Choose Γ bri
ks among our |m|. As we have d(d − 1)/2 di�erent types ofbri
k (re
all that i > j), we have at most [d(d − 1)/2]Γ possibilities. For

Γ = 0, we have only one.2. Consider the remaining bri
ks as a set of 
olumn-modi�ers. We 
hange thisset by adding sequentially ea
h of the Γ bri
ks sele
ted in stage 1 to one ofthese 
olumn-modi�ers. At ea
h stage, there are at most d! di�erent types of
olumn-modi�ers, so that we have overall at most (d!)Γ possibilities. Onlyone if Γ = 0. Noti
e that anyhow, at least |m|−2Γ of the 
olumn-modi�ersare elementary (one bri
k), and that mκ(i,j) ≤ mi,j .3. Apply the 
olumn-modi�ers to the 
olumns of f0, so that no two modi�ersare applied to the same 
olumn, and the resulting fa is admissible.Enumeration of the number of possibilities for the third stage would have beensomewhat too long for the item, so here it is.It is easier to apply the 
olumn-modi�ers sequentially. We shall then need todivide by the 
ombinatorial fa
tor 
oming from identi
al 
olumn-modi�ers, thatis ∏κmκ!.When inserting the 
olumn-modi�er κ, we have less than n possibilities. Let usbe more pre
ise for elementary 
olumn-modi�ers (i, j). We must have at least
i rows so that we 
an 
hange our 
ell i. We must have an admissible fa in theend, so no se
ond j in the 
olumn, so less than j rows. There are then λi − λj
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olumns. Among those, we must suppress the 
olumns already modi�ed,whi
h are less than |m| − Γ. We have then between λi − λj − |m| and λi − λjpossibilities when inserting ea
h (i, j) elementary 
olumn modi�er.Hen
e the number of possibilities at stage three of the algorithm is upper boundedby
n

P

κ6=κi,j
mκ
∏

i<j

(λi − λj)
mκi,j

mκi,j !
, (8.58)and in the 
ase when Γ = 0, it admits the following lower bound:

∏

i<j

(λi − λj − |m|)mi,j

mi,j !
. (8.59)Noti
e that the upper bound (8.58) depends on the set {mκ}, whi
h is not 
om-pletely �xed by Γ. For further referen
e, we shall denote Em = {mκ} and E0

m theset where mκi,j = mi,j for all i < j and the other mκ = 0. This E0
m 
orrespondsto Γ = 0. To any Em, we 
an asso
iate Γ(Em). Moreover, to ea
h fa, we mayasso
iate Em(fa).In a similar way, we shall asso
iate with ea
h κ the set S(κ) of suppressed andadded values in the 
olumn. If a value is both added and suppressed, it doesnot appear in the set. For example S(κ(i, j)) = ((i,−), (j,+)) and if κ is madeof the two bri
ks (ij) and (jk) then S(κ) = ((i,−), (k,+)). We shall write

mS =
∑
κ|S(κ)=Smκ.We now state our estimates.Lemma 8.9.1. The �rst remark is an exa
t formula, that is the main tool toprove some of the bounds below.1. For any unitary operator U , for any basis ve
tors fa and fb, we have

〈fa|qλUfb〉 =
∏

1≤c≤λ1

det(U l(c),t
c
a
,tc

b), (8.60)where U l(c),tca,tcb is the l(c) × l(c) submatrix of U given by [U l(c),t
c
a
,tc

b ]i,j =
Utc

a
(i),tc

b
(j).We now get bounds useful for estimating 〈mλ|U |lλ〉 on the interesting range of
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al proofs 245parameters. Suppose that
|m| ≤ nη (8.61)
λ ∈ Λn,α

inf
i
|µi − µi+1| ≥ δ

µd ≥ δ

‖~ζ‖1 ≤ Cnβ

‖~ξ‖1 ≤ n−1/2+2β/δ

n >

(
2

δ

)1/(1−α)

.Then, with the remainder terms all uniform in the eigenvalues µ•, the followingestimates hold:2. The number of admissible fa with Γ(fa) = 0 is
#V0 =

∏

j>i

(λi − λj)
mi,j

mi,j !
(1 +O(n−1+2η/δ)). (8.62)3. The number VEm of admissible fa with Em(fa) = Em and Γ(Em) = Γ isbounded by:

#VEm ≤ n−Γ−P

i<j(mi,j−mκi,j
)
∏

j>i

(λi − λj)
mκi,j

mκi,j !
. (8.63)4. The number of admissible fa with Γ(fa) = Γ is bounded by:

#VΓ ≤ CΓn−Γδ−2Γ|m|2Γ
∏

j>i

(λi − λj)
mi,j

mi,j !
(8.64)for a 
onstant C depending only on the dimension d.5. Let fa ∈ Oλ(l), with Γl(fa) = Γa. Let us �x Γb and 
onsider VΓb ∈ Oλ(m).Then:

∣∣∣∣∣∣

〈
fa

∣∣∣∣∣qλ
∑

fb∈VΓb

fb

〉∣∣∣∣∣∣
≤
{

0 if Γb 6= |m| − |l| + Γa

(C|m|)Γb otherwise , (8.65)with C depending only on the dimension d.
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 normality for d-dimensional states6. If fa ∈ Oλ(m) and Γ(fa) = 0, then
〈
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(m)

fb

〉
= 1. (8.66)7. If Γ(fa) = 0, then

Z(E0
m)

def
= 〈fa|qλU(~ζ, ~ξ, n)f0〉

= exp(iφ) exp

(
−‖~ζ‖2

2

2

)
∏

i<j

(
ζi,j√

n
√
µi − µj

)mi,j

r(n) (8.67)with the phase and error fa
tor
φ =

√
n

d−1∑

i=1

(µi − µi+1)~ξi,

r(n) = 1 +O
(
n−1+2β+ηδ−1, n−1/2+βδ−1/2, n−1+α+βδ−1

)
.8. If fa ∈ VΓ, and its set of 
olumn-modi�ers is given by Em = {mκ}, then

|Z(Em)| def
=
∣∣∣〈fa|qλU(~ζ, ~ξ, n)f0〉

∣∣∣

≤ exp

(
−‖~ζ‖2

2

2

)(
‖~ζ‖√
nδ

)P

i<j mi,j−mκi,j
−Γ∏

i<j

(
ζi,j√

n
√
µi − µj

)mκi,j

r(n)(8.68)with error fa
tor
r(n) = 1 +O

(
n−1+2β+ηδ−1, n−1/2+βδ−1/2, n−1+α+βδ−1

)
.9. Under the further hypotheses that |z| ≤ nβ, mi,j ≤ 2|ζi,j |nβ+ǫ for some

ǫ > 0, and n−1/2+3β+2ǫ ≥ δ−3/2C/2 where C is a 
onstant depending onlyon the dimension d, we have:
〈

∑

fa∈Oλ(|m|)
fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

= exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r(n)(8.69)with

r(n) = 1 +O
(
n−1+2β+ηδ−1, n−1+α+βδ−1, n−1+2ηδ−1,

n−1+α+ηδ−1, δ−3/2n−1/2+3β+2ǫ
)
.
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al proofs 24710. Under the further hypotheses that |l| ≤ |m| and n1−3η > 2C/δ, where Cdepends only on the dimension d,
〈

∑

fa∈Oλ(|l|)
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(|m|)
fb

〉

≤ (C|m|)|m|−|l|
∏

i<j

(λi − λj)
li,j

li,j !

(
C|l|2|m|
nδ2

)Γa
min(l,m) (8.70)with

Γamin(l,m) ≥
(
|l − m| + 3|l| − 3|m|

)
+

6
. (8.71)11. With n1−3η > 2C/δ, where C depends only on the dimension d,

〈
∑

fa∈Oλ(|m|)
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(|m|)
fb

〉
=
∏

i<j

(λi − λj)
mi,j

mi,j !

(
1 +O(n3η−1/δ)

)
.(8.72)Proof.Proof of (8.60):We �rst express 〈fa|Ufb〉 as a produ
t of matrix entries of U :

〈fa|Ufb〉 =
∏

1≤c≤λ1

∏

1≤r≤l(c)
〈ftc

a
(r)|Uftc

b
(r)〉

∏

1≤c≤λ1

∏

1≤r≤l(c)
Utc

a
(r),tc

b
(r).Then we noti
e that the set Cλ of permutations in Sn letting invariant the 
olumnsof the Young tableau λ is exa
tly the produ
t of the Sc for 1 ≤ c ≤ λ1, where Scis the set of permutations of the 
ells of the 
olumn c, that is the set of σ =

∏
c σc,with sc ∈ Sc. Finally, let us mention that if sc ∈ Sc, then its a
tion on the basisve
tors fb is given by (scfb)(c, r) = (fb)c,sc(r). In other words it transforms

tcb(r) into tcb(sc(r)).
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〈fa|Uqλfb〉 =

∑

σ∈Cλ

ǫ(σ)
∏

1≤c≤λ1

∏

1≤≤rl(c)
Utc

a
(r),tc

b
(sc(r))

=
∏

1≤c≤λ1

∑

sc∈Sc

ǫ(sc)
∏

1≤≤rl(c)
Utc

a
(r),tc

b
(sc(r))

=
∏

1≤c≤λ1

∑

sc∈Sc

ǫ(sc)
∏

1≤≤rl(c)
[U l(c),t

c
a
,tc

b ]r,sc(r)

=
∏

1≤c≤λ1

det(U l(c),t
c
a
,tc

b).Remembering that U 
ommutes with qλ and that U l(c),tca,tcb is the l(c) × l(c)submatrix of U given by [U l(c),t
c
a
,tc

b ]i,j = Utc
a
(i),tc

b
(j), we have proved formula(8.60).Proof of (8.62):The number of admissible fa su
h that Γ(fa) = 0 is given by the produ
ts ofthe possibilities at ea
h stage of the algorithm. For the �rst two stages, there isexa
tly one possibility when Γ = 0. Hen
e #V0 is the number of possibilities atthe third stage.Here the upper bound (8.58) reads as ∏j>i(λi − λj)
mi,j/mi,j!.On the other hand, we may use (8.59) as a lower bound, re
alling that λi −λj ≥

δn/2 with the 
onditions (8.61). This yields the result (8.62).Proof of (8.63):The number of fa in VEm is given by the third stage of the algorithm (the two�rst stages yield Em).We then obtain (8.63) by applying (8.58) while noti
ing that ∑κmκ = |m| − Γ.Proof of (8.64):The set VΓ is a union of VEm with Γ(Em) = Γ. Now the �rst two stages of thealgorithm imply that there are at most CΓ di�erent Em with the latter property,with C depending only on the dimension d.Sin
e ∑mκi,j ≥ |m| − 2Γ, we may write ∏κmκ! ≥ ∏
i<jmi,j ! supi<j m

−2Γ
i,j .Re
alling also (8.63) and that λi − λj ≥ δn/2, we obtain that the largest #VEmis smaller than

n−Γδ−2Γ|m|2Γ
∏

j>i

(λi − λj)
mi,j

mi,j !
.
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al proofs 249Multiplying by the number of possible Em yields the result.Proof of (8.65):Applying (8.60) with U = Id, sin
e the 
ells of both fa and fb are in the samebasis, we see that the s
alar produ
t 〈fa | qλfb〉 is equal to−1 or 1 if tca([1, l(c)]) =
tcb([1, l(c)]) for all 
olumns, and 0 otherwise.Now, sin
e a modi�ed 
olumn 
annot satisfy tca([1, l(c)]) = [1, l(c)] (or the samewith b), the ve
tors fa and fb are orthogonal unless they have the same numberof modi�ed 
olumns. Finally, that number is |l| − Γa for fa and |m| − Γb for fb.This yields the �rst line of (8.65).We now 
on
entrate on the 
ase when Γb = |m|−|l|+Γa. Sin
e ea
h |〈fa | qλfb〉|is bounded by one, we get a bound on the sum of s
alar produ
ts if we get a boundon the number of these produ
ts whi
h is non-zero.For building the relevant fb, we 
an imitate the algorithm with the further 
on-dition that, at stage three, all the 
olummn-modi�ers are applied on the 
olumnsthat were already modi�ed for fa.The �rst two stages of the algorithm are the same so they yield a CΓb fa
tor. Atthe following stage of the algorithm, we must ensure tca([1, l(c)]) = tcb([1, l(c)]),that is S(κca) = S(κcb), where we denote by κc{a,b} the 
olumn-modi�er appliedon 
olumn c of fa, resp. fb. We have therefore ( mS

mκ1 . . .mκk

) 
hoi
es for ea
h
S, where S(κi) = S for ea
h 1 ≤ i ≤ k.Moreover, for ea
h elementary 
olumn-modi�er κi,j , the set S(κi,j) is di�erent,and there are at most Γb non-elementary 
olumn-modi�ers. Hen
e∑

SmS − maxκ:S(κ)=Smκ ≤ Γb, so that
∏

S

(
mS

mκ1 . . .mκk

)
≤ |m|Γb

.Multiplying by the CΓ of the �rst stage, we get (8.65).Proof of (8.66):We may use the same strategy as above, noti
ing �rst that 〈fa | qλfb〉 = 0 if
fb 6= 0, se
ond that we must have the same modi�ed 
olumns. In that 
ase,sin
e Γb = 0, the 
onstant from the two �rst stages of the algorithm is 1, mS =
mi,j = mκi,j for all S 
orresponding to an elementary 
olumn-modi�er, and 0otherwise. So the 
ombinatorial fa
tor is again one: we do not have any 
hoi
e



250 Quantum lo
al asymptoti
 normality for d-dimensional statesin our pla
ement of 
olumn-modi�ers. In other words, the only fb su
h that
〈fa | qλfb〉 6= 0 is fa.Finally 〈fa | qλfa〉 = 1.Proof of (8.67):We plan to use (8.60). We �rst need a Taylor expansion of the unitary.Entry-wise, for all 1 ≤ i ≤ d on the �rst line, and all 1 ≤ i < j ≤ d on the se
ondand third lines:

Ui,i(~ζ, ~ξ, n) = 1 + i
ξiδi6=d − ξi−1δi6=1√

n
− 1

2n

∑

j 6=i

|ζi,j |2
|µi − µj |

+O(‖~ζ‖3n−3/2δ−3/2, ‖~ζ‖‖~ξ‖n−1δ−1/2)

Ui,j(~ζ, ~ξ, n) = − 1√
n

ζ∗i,j√
µi − µj

+O(‖~ζ‖2n−1δ−1, ‖~ζ‖‖~ξ‖n−1δ−1/2)

Uj,i(~ζ, ~ξ, n) =
1√
n

ζi,j√
µi − µj

+O(‖~ζ‖2n−1δ−1, ‖~ζ‖‖~ξ‖n−1δ−1/2).For ~ζ ∈ Θn,β and ‖~ξ‖ ≤ n−1/2+2β/δ, with β < 1/6, the remainder term are infa
t O(n−3/2+3βδ−3/2) and O(n−1−2βδ−1) respe
tively.Therefore, when our parameters are in this range, we 
an give pre
ise enoughevaluations of the determinants. The idea is to �nd the dominating terms in theexpansion of the determinant detA =
∑

σ

∏
ǫ(σ)Ai,σ(i).If tca = Idc, the summands with more than two non-diagonal terms are of orderthe remainder term, so that only the identity and the transpositions 
ount in∑

σ

∏
Ai,σ(i). Then,

det(U l(c),Idc,Idc(~ζ, ~ξ, n)) = 1+i
ξl(c)√
n
− 1

2n

∑

1≤i≤l(c)
l(c)+1≤j≤d

|ζi,j |2
µi − µj

+O(n−3/2−3βδ−3/2).For 
on
ise further referen
e, we shall denote this υ(l). Noti
e that for l(c) = d,the determinant must be 1.Similarly, if tca 6= Idc, as tca(r) ≥ r for all r, then there is a whole 
olumn of
U l(c),t

c
a
,Idc that is �lled with entries smaller in modulus than O(‖~ζ‖/

√
nδ) =

O(n−1/2+βδ−1). The same bound holds for the determinant.More spe
i�
ally, if tca is an (i, j)-substitution, that is if there is i ≤ l(c) < j su
hthat tca(r) = jδr=i + rδr 6=i, then the only summand that is of this order 
omes
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al proofs 251from the identity. So that
det(U l(c),t

c
a
,Idc(~ζ, ~ξ, n)) =

ζi,j√
n
√
µi − µj

+O(n−1+2βδ−1). (8.73)For further referen
e, we denote this υ(i, j). Noti
e that this approximation doesnot depend on l(c), but only on i and j.Now, if fa ∈ V0, then all tca are either Idc, or an (i, j)-substitution. They are
mi,j of them for ea
h i < j. The Idc su
h that l(c) = l are λl − λl+1 − Rl with
0 ≤ Rl ≤ |m|. The reason of these assertions is that there are mi,j boxes with a
j in row i, and if a 
olumn has no su
h substitution, then its entry in row i is i,and tca = Idc. Hen
e:
〈fa|qλU(~ζ, ~ξ, n)f0〉 =

d∏

l=1

(υ(l)))
λl−λl+1

∏

1≤i<j≤d
(υ(i, j))

mi,j

d∏

l=1

(υ(l))−Rl . (8.74)Now υ(l) = 1 + O(n−1+2βδ−1) and Rl ≤ m ≤ nη, so the last produ
t is (1 +
O(n−1+2β+ηδ−1)). Similarly, for λ ∈ Λn,α, by de�nition λl − λl+1 = n(µl −
µl+1) + O(nα), so that the �rst produ
t is, using lemma 8.9.2 (given at the endof this se
tion),

∏
(υ(l))λl−λl+1 =

∏
exp



iφl −
1

2

∑

1≤l
l+1≤j≤d

|ζi,j |2
µl − µl+1

µi − µj



 r(n)

= exp

(
iφ− ‖~ζ‖2

2

2

)
r(n)with r(n) = (1 +O(n−1+α+βδ−1, n−1/2+βδ−1/2))

φl = δl 6=d
√
n(µl − µl+1)ξl

φ =

d−1∑

l=1

(µl − µl+1)ξlWe turn our attention to υ(i, j)mi,j . This is
υ(i, j)mi,j =

ζi,j√
n
√
µi − µj

(
1 +O

(
n−1+2β+ηδ−1

))where we have re
alled that |m| ≤ nη.Repla
ing the fa
tors of (8.74) yields (8.67).
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al asymptoti
 normality for d-dimensional statesProof of (8.68):We may write, mu
h like in (8.74),
〈fa|qλU(~ζ, ~ξ, n)f0〉 =

d∏

l=1

(υ(l)))
λl−λl+1

∏

κ

(υ(κ))
mκ

d∏

l=1

(υ(l))−Rlwhere 0 ≤ Rl ≤ |m| − Γ and υ(κ) is the determinant of the partial matrix of U
orresponding to having applied the 
olumn-modi�er κ. Anyhow, if the entriesin the 
olumn have been modi�ed in an admissible way, then tca(i) = j > l(c) forsome i, so that υ(κ) = O(‖~ζ‖/
√
nδ) for any κ. Moreover, if κ = κ(i, j), we 
anuse formula (8.73) for υ(κ). Furthermore, noti
e that ∑non-elementary κmκ =∑

i<jmi,j −mκ(i,j) − Γ. Then:
∣∣∣∣
Z(Em)

Z(E0
m)

∣∣∣∣

≤ (1 +O(n−1+2β+ηδ−1))

(
‖~ζ‖√
nδ

)P

i<j mi,j−mκ(i,j)−Γ∏

i<j

( |ζi,j |√
n

)mκ(i,j)−mi,j

.(8.75)Multiplying by Z(E0
m) as given by (8.67) yields (8.68).Proof of (8.69):We merely 
ombine some of the previous entries of the lemma, after noti
ingthat (~ζ + z) plays the same role as ~ζ with the new 
onstant C + 1, that is

‖~ζ + z‖ ≤ (C + 1)nβ. So that all the former bounds in the lemma remain validwith ~ζ + z instead of ~ζ.Using (8.62) and (8.67) and remembering that λ ∈ Λn,α, we get:
〈
∑

fa∈V0

fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

= exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r(n)with error fa
tor:

r(n) = 1+O
(
n−1+2β+ηδ−1, n−1/2+βδ−1/2, n−1+α+βδ−1, n−1+2ηδ−1, n−1+α+ηδ−1

)
.
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al proofs 253Combining (8.68) and (8.63), on the other hand, we get:
∣∣∣∣∣∣∣∣∣∣

〈
∑

fa∈VEm fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

〈
∑
fa∈V0 fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

∣∣∣∣∣∣∣∣∣∣

≤ n−Γ
∏

i<j

(
λi − λj
n

)mκi,j
−mi,j mi,j !

mκi,j !

(
‖~ζ + z‖√

δn

)−Γ

×

∏

i<j

( √
δn|~ζ + z|i,j

‖~ζ + z‖√n√µi − µj

)mκi,j
−mi,j

r(n)

≤ O(n−Γ(1/2+β))δ−Γ/2
∏

i<j

(
|ζi,j |

√
µi − µj

mi,j‖~ζ + z‖

)mi,j−mκi,j

≤ O
(
(δ−3/2n−1/2+3β+2ǫ)Γ

)
,where we have used that ‖~ζ + z‖ = O(nβ) (we use the upper bound sin
e itappears a non-negative number of times in the expression), that ∑i<j mκi,j ≥∑

i<jmi,j − 2Γ and that mi,j ≤ 2|ζi,j |nβ+ǫ.Furthermore, for a given Γ, there are at most CΓ di�erent Em su
h that Γ(Em) =
Γ, 
orresponding to the possible 
hoi
es in the two �rst stages of the algorithm,where C depends on the dimension d only. Hen
e, under the hypothesis that
n−1/2+3β+2ǫ ≥ δ−3/2C/2, we have:
〈

∑

fa∈Oλ(m)

fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

=
∑

Γ

〈
∑

fa∈VΓ

fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

=
(
1 +O(δ−3/2n−1/2+3β+2ǫ)

)
exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
×

∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r(n)

= exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r2(n)
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 normality for d-dimensional stateswith, on the last line:
r2(n) = 1 +O

(
n−1+2β+ηδ−1, n−1+α+βδ−1, n−1+2ηδ−1,

n−1+α+ηδ−1, δ−3/2n−1/2+3β+2ǫ
)
.This is exa
tly (8.69).Proof of (8.70):By multiplying (8.64) and (8.65), we see that:

〈
∑

fa∈VΓ(|l|)
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(|m|)
fb

〉
≤ (C|m|)Γb∏

i<j

(λi − λj)
li,j

li,j !

(
C|l|2
nδ2

)Γa (8.76)
= (C|m|)|m|−|l|

∏

i<j

(λi − λj)
li,j

li,j !

(
C|l|2|m|
nδ2

)ΓaHen
e, if n1−3η > 2C/δ, the dominating term in the sum of bounds is that
orresponding to the smallest possible Γb, or equivalently Γa. What lower bound
an we give to Γa?A ne
essary 
ondition for fa not to be orthogonal to fb is that ma
S = lbS for all set

S of suppressed and added values in the 
olumn. On the one hand, we know that
Γb−Γa = |m|− |l|. On the other hand, we 
an bound from below Γ(fa)+Γ(fb).Indeed, this quantity in
reases by one if and only if we put another (ij) bri
k in a
olumn that was already modi�ed (say with S1). Now su
h an operation has thefollowing e�e
t on the mS (or lS) : the m(i,−),(j,+) andmS1 both de
rease by one,and mS1+((i,−),(j,+)) in
reases by one. Hen
e the distan
e∑S |lS−mS| de
reaseby at most three. We thus need at least ∑i<j |li,j − mi,j |/3 su
h operationsbefore getting the equalities mS = lS . That is, Γ(fa) + Γ(fb) ≥ |l − m|/3.Together with the other inequality Γb − Γa = |m| − |l|, this result yields Γa ≥
(|l − m| + 3|l| − 3|m|)/6. Moreover Γa is non-negative.Repla
ing in the above equation yields (8.70).Proof of (8.72):Sin
e l = m, equations (8.62) and (8.66) prove that the bound (8.76) is saturatedwhen Γa = 0, up to the error fa
tor (1 +O(n−1+2η/δ)

). Hen
e the remainderterm due to the other Γ 
onsist in a geometri
 series with reason (C|m|3
nδ2

)
=

O(n1−3η/δ).
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hni
al proofs 255The only part of the proof we have still postponed is the following te
hni
allemma:Lemma 8.9.2. If x = O(n1/2−ǫ), then
(1 +

x

n
)n = exp(x)(1 +O(n−ǫ))Proof. For any y su
h that |y| ≤ 1, for any n ∈ N (in fa
t even for any 
omplexnumber), we have the Taylor expansion (
onverging):

(1 + y)n =

∞∑

k=1

(
n

k

)
yk.Now (n − k)k/k! ≤

(
n
k

)
≤ nk/k! for n ≥ k. If k ≤ n1/2−ǫ/2, then (n − k)k =

nk(1 + O(n−ǫ)). If k ≥ n1/2−ǫ/2, then nk/k! = O(n(1/2+ǫ/2)k). So that if y =
x/n = O(n−1/2−ǫ),

(1 + x/n)n = (1 +O(n−ǫ))
n1/2−ǫ/2∑

k=0

xk

k!
+

∑

k>n1/2−ǫ/2

O(n(1/2+ǫ/2)k(x/n)k

= (1 +O(n−ǫ)) exp(x) +
∑

k>n1/2−ǫ/2

(O(n(1/2+ǫ/2)k − 1/k!)(x/n)k

= (1 +O(n−ǫ)) exp(x) +O(e−n
1/2−ǫ/2

)

= (1 +O(nǫ)) exp(x)as exp(x) ≥ exp(−O(n1/2−ǫ)).8.9.2 Proof of Lemma 8.7.1We want to prove that
Tn : ρθ,n 7→

∑

λ

Vλρ
θ,n
λ V ∗

λ ⊗ pθ,nλ τnλ .is a tra
e-preserving 
ompletely positive map.The following are 
ompletely positive maps:1. Composition of two 
ompletely positive maps is 
ompletely positive.2. If all Ti : Ai → Bi are 
ompletely positive, then T⊗ =
⊕
Ti :

⊕Ai →
⊕Biis 
ompletely positive. Similarly T⊗ =

⊗
Ti :

⊗Ai →
⊗Bi is 
ompletelypositive. If all the Ti preserve the tra
e and/or the identity, then T⊗ and

T⊕ preserve the tra
e and/or the identity.
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al asymptoti
 normality for d-dimensional states3. Any positive map to a 
ommutative algebra, notably Markov kernels.4. Representations of algebras, sending A to π(A) where π is a morphism of
C∗-algebras with value in B(H), preserving the identity.5. Interla
ing with a V : H → K, that is sending A to V ∗AV . If V ∗V = 1H,then it preserves identity. If V V ∗ = 1H, then it preserves the tra
e.In fa
t, Stinespring [1955℄ theorem states that all 
ompletely positive maps froma C∗-algebra A to an algebra of bounded operators B(H) 
an be written as

A 7→ V ∗π(A)V . If V ∗V = 1H, then the map preserves the identity.Let us give a few spe
ial 
ases. We let the reader �nd the 
orresponding π and/or
V : 6. Keeping only diagonal blo
ks: that is sending [ρ1,1 ρ1,2

ρ2,1 ρ2,2

]
∈M(H1 ⊕H2)to ρ1,1 ⊕ ρ2,2 ∈ M(H1) ⊕M(H2) by using proje
tions on both diagonalblo
ks. This map is 
learly both tra
e- and identity-preserving.7. Summing the images of the same algebra: that is sending ⊕i ρi to ∑ ρiwhere all ρi ∈ A. If the tra
e is de�ned, this transformation is tra
e-preserving.We 
an obtain Tn by �rst tra
ing out the non-diagonal blo
ks of ρθ,n, sin
e weknow the de
omposition (8.40). In other words, the right-hand-side of (8.40) isobtained through a tra
e-preserving 
ompletely positive map, by example 6 ofthe list. The 1CMn(λ) must be understood as an element of the one-dimensionalalgebra generated by the identity. Then sending this identity to any positivefun
tion Mn(λ)τ

n
λ on a 
ommutative spa
e is a 
ompletely positive transfor-mation by example 3. If τnλ has integral one, it is tra
e-preserving. On theother hand, by example 5, we know that ρθ,nλ 7→ V ρθ,nλ V ∗ is 
ompletely positiveand tra
e-preserving if V is an isometry. Using example 2, we have obtained⊕

λ Vλρ
θ,n
λ V ∗

λ ⊗ pθ,nλ τnλ . We rea
h the �nal form (8.23) by applying example 7.8.9.3 Proof of Lemmas 8.6.9 and 8.7.2 and workaroundsfor non-orthogonality issuesWe know that mλ is a sum of n-tensor produ
t ve
tors, in whose elements thebasis ve
tor fi appears exa
tly λi −∑j>imi,j +
∑

j<imj,i times. As two tensorbasis ve
tors are orthogonal if they do not have the same number of fi in thede
omposition, we get that 〈mλ|lλ〉 = 0 if ∑j>imi,j +
∑
j<imj,i 6=

∑
j>i li,j +∑

j<i lj,i for any 1 ≤ i ≤ d.
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hni
al proofs 257In the general 
ase,
〈mλ|lλ〉 =

〈qλpλfm|qλpλfl〉√
〈qλpλfm|qλpλfm〉〈qλpλfl|qλpλfl〉

. (8.77)We use (8.35) to erase qλ at the left of ea
h s
alar produ
t, and we de
omposethe pλf on orbits under the group Rλ. We noti
e that the multipli
ity of theelements in the orbits are the same in numerator and denominator, so that weend up with:
〈mλ|lλ〉 =

〈∑fa∈Oλ(m) fa|qλ
∑

fb∈Oλ(l) fb〉
〈∑fa∈Oλ(m) fa|qλ

∑
f
a′∈Oλ(m) fa′〉〈∑fb∈Oλ(l) fb|qλ

∑
f
b′∈Oλ(l) fb′〉(8.78)The value of the denominator is obtained through (8.72), for λ ∈ Λn,α, with |l|and |m| ≤ nη and n1−3η > 2C/δ with C depending only on the dimension d:

〈
∑

fa∈Oλ(m)

fa

∣∣∣∣∣qλ
∑

f
a′∈Oλ(m)

fa′

〉〈
∑

fb∈Oλ(l)

fb

∣∣∣∣∣qλ
∑

f
b′∈Oλ(l)

fb′

〉

=
∏

1≤i<j≤d

(λi − λj)
(mi,j+li,j)/2

√
mi,j !li,j !

(1 +O(n3η−1/δ))).The numerator is given by (8.70).So that, remembering |m| ≥ |l|:
|〈mλ|lλ〉| ≤

∏

i<j

(λi − λj)
(li,j−mi,j)/2

√
mi,j !

li,j !
(C|m|)|m|−|l|×

(
C|m|3
δ2n

)Γmin (
1 +

(
O(n3η−1/δ)

))
,where Γmin = ((|l − m| + 3|l| − 3|m|)/6) ∧ 0.We �nish the estimate with the following 
onsiderations: the fa
torials 
an bebounded by ∏i<j

mi,j !
li,j !

≤ |m|
P

(mi,j−li,j)
+ ≤ |m|(|m−l|+|m|−|l|)/2, and we haveassumed |l| ≤ |m| ≤ nη with η ≤ 1/3. Notably, we may forget that Γmin isnon-negative, sin
e we take an upper bound and C|m|/(δ2n) < 1. So that:

|〈mλ|lλ〉| ≤ δ−2Γmin(Cn)(|l|−|m|)/2−Γmin×
(C|m|)(|m−l|+5(|m|−|l|))/4+3Γmin)(1 +O(n−1+3η/δ))

≤ δ|m|−|l|−|m−l|/3(Cn)−|l−m|/6(Cn)η(3|l−m|−(|l|−|m|))/4(1 +O(n−1+3η/δ)),(8.79)
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al asymptoti
 normality for d-dimensional stateswhere C depends only on d and η.This is Lemma 8.6.9.A 
onsequen
e of these relations is the following lemma:Lemma 8.9.3. Let η ≤ 2/9.Let mλ su
h that |m| ≤ nη. Then
∣∣∣∣∣∣∣∣

∑

|l|≤nη

l6=m

〈mλ|lλ〉

∣∣∣∣∣∣∣∣
≤ (Cn)(9η−2)/12δ−1/3.Proof. Using (8.79), and the sum of geometri
 series, we only have to show thatthere are less than Ck(9η−2)/12 di�erent lλ su
h that |l − m| ≤ k for all k. Now,there are d(d− 1)/2 pairs 1 ≤ i < j ≤ d, so that the di�erent values |li,j −mi,j |satisfying∑ |li,j−mi,j | = k are at most (d(d−1)/2−1)k. As our only remaining
hoi
es are the signs, with 2d(d−1)/2 possibilities, we have ended the proof.àWe use this quasi-orthogonality to prove that we may build Vλ almost sendingthe relevant �nite-dimensional ve
tors to their Fo
k 
ounterparts.Lemma 8.9.4. Let A be a matrix from a �nite spa
e H to an in�nite spa
e K,su
h that A∗A ≤ 1. Then there is an R su
h that (A + R) is an isometry andIm(A) ⊥ Im(R).As a 
onsequen
e, for any unit ve
tor φ, we have ‖Rφ‖2 = 1 − ‖Aφ‖2.Proof. As K is in�nite-dimensional, we may 
onsider a subspa
e H′ of K, orthog-onal to Im(A), and the same dimension asH, so that we 
an �nd an isomorphism

I from H to H′. We then take R = I
√

1−A∗A.We 
an now prove Lemma 8.7.2.Proof. Let
A =

1√
1 + (Cn)(9η−2)/12/δ1/3

∑

|l|≤nη

|l〉 〈lλ| .
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hni
al proofs 259Then, using Lemma 8.9.3:
A∗A =

1

1 + (Cn)(9η−2)/12/δ1/3

∑

|l|≤nη

|lλ〉 〈lλ|

≤ 1Hλ
.Thus, we may apply Lemma 8.9.4, and �nd an R su
h that A+R is an isometry,and Im(R) ⊥ Im(A). So that 〈m|R = 0. We set Vλ = A+R. Then

〈m|Vλ = 〈m| (A+R)

= 〈m|A

=
1√

1 + (Cn)(9η−2)/12/δ1/3
〈m|

∑

|l|≤nη

|l〉 〈lλ|

=
1√

1 + (Cn)(9η−2)/12/δ1/3
〈mλ| .

8.9.4 Proof of Lemma 8.8.4First we know that D~ζ+z(|0)(0|) is the density matrix of a (
oherent) pure state
|~ζ + z〉 whose de
omposition on the Fo
k basis is given by (8.15).On the other hand Tλ∆~ζ+z,γ,n

λ T ∗
λ (|0)(0|) is the image by Tλ of the �nite-dimensional
oherent state U(~ζ + z, γ, n)|0λ〉. This is a pure state VλU(~ζ + z, γ, n)f0 (re
allthat f0 is the semistandard Young tableau with only i in row i). Its 
oordinatesin the Fo
k basis are given by:

〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 =






0 if m 6∈ λ,something not important if |m| > nη,
1√

1+(Cn)(9η−2)/12/δ1/3
〈mλ|U(~ζ + z, ~ξ, n)|0λ〉if |m| ≤ nη,(8.80)where we have used Lemma 8.7.2. It should ne noti
ed that we may re
ast

(1 + (Cn)(9η−2)/12/δ1/3)−1/2 as 1 +O(n(9η−2)/12δ−1/3).Now the L1 distan
e between two pure states |ψ〉 and |φ〉 
an be rewritten
2
√

1 − |〈φ|ψ〉|2. Hen
e, the lemma is equivalent to
sup

~ζ∈Θn,β

sup
‖~ξ‖≤n−1/2+2β/δ

sup
λ∈Λn,α

1 −
∣∣∣(z + ~ζ|VλU(~ζ + z, ~ξ, n)|0λ〉

∣∣∣ = R(n)2 (8.81)
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al asymptoti
 normality for d-dimensional statesunder the same 
onditions and with the same remainder R(n) as in the lemma.We shall prove formula (8.81) by de
omposing these ve
tors in the Fo
k basis,that is
(z + ~ζ|VλU(~ζ + z, ~ξ, n)|0λ〉 =

∑

m

(~ζ + z|m〉〈m|VλU(~ζ + z, ~ξ, n)|0λ〉. (8.82)As a remark, we are in the situation where we have two sets am and bm su
hthat ∑ |am|2 =
∑ |bm|2 = 1. Then for any subset M of the possible m, we havethe following upper bound on the sum on the 
omplementary subset:

∣∣∣∣∣∣

∑

m 6∈M
ambm

∣∣∣∣∣∣
≤ 1 −

∣∣∣∣∣
∑

m∈M
ambm

∣∣∣∣∣ . (8.83)We 
onsider separately the m on whi
h there is weight, that is those satisfyingfor all (i, j):
mi,j ≤ |(~ζ + z)i,j |2nǫ ≤ 2|(~ζ + z)i,j |nβ+ǫ. (8.84)We shall use the se
ond form, the 
ondition for applying formula (8.69). Wedenote this set by M. Noti
e that

∑

m6∈M
|(~ζ + z|m〉|2 ≤ d2n−β (8.85)as long as ǫnβ ≥ β. Indeed, we end up with exp(−x)∑k>xnǫ xk/k! ≤ n−ǫnβ if

x = |(~ζ + z)i,j | ≥ 1 and, if |(~ζ + z)i,j | < 1, the remainder series is dire
tly lessthan n−β.First, re
alling that η ≥ 2β + ǫ, we may use third line of (8.80):
〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 =

〈yλfm|yλU(~ζ + z, ~ξ, n)|0λ〉√
〈yλf0|yλf0〉

√
〈yλfm|yλfm〉

(1 +O(n(9η−2)/12δ−1/3)

=
〈pλfm|qλU(~ζ + z, ~ξ, n)f0〉√

〈pλfm|qλpλfm〉
(1 +O(n(9η−2)/12δ−1/3)where we have used (8.35) and (8.37).We write pλfm =

∑
fa∈Oλ(m)

#Rλ

#Oλ(m)fa where Oλ(m) is the orbit in (Cd)⊗n of
fm under Rλ.The multipli
ative 
onstant is the same on the numerator and denominator, so
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hni
al proofs 261that we 
an write, with Idc denoting the identity of [1, l(c)],
〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 =

∑
fa∈Oλ

〈fa|qλU(~ζ + z, ~ξ, n)f0〉√∑
fa,fb∈Oλ

〈fa|qλfb〉
(1 +O(n(9η−2)/12δ−1/3)(8.86)

= eiφ−‖~ζ+z‖2
2/2
∏

i≤j

(~ζ + z)mi,j
i,j√

mi,j !

(
n(µi − µj)

λi − λj

)mi,j/2

r(n).We made use of formulas (8.69) and (8.72). The 
orresponding remainder termis
r(n) = 1 +O

(
n(9η−2)/12δ−1/3, n−1+2β+ηδ−1, n−1/2+βδ−1/2,

n−1+α+βδ−1, n−1+α+ηδ−1, n−1+3ηδ−1
)and the phase is:

φ =
√
n
d−1∑

i=1

(µi − µi+1)ξi.The last pie
e to the puzzle lies in that (n(µi−µj)
λi−λj

)mi,j/2

= 1 + O(nα−1+η/δ)sin
e λ ∈ Λn,α and the eigenvalues are separated by δ. This loss 
an be absorbedin r(n).Finally, for m satisfying (8.84), we have:
〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 = r(n) exp(iφ)〈m|~ζ + z).Putting ba
k this result in (8.82), and using (8.83) and (8.85), we get

(z + ~ζ|VλU(~ζ + z, ~ξ, n)|0λ〉 = exp(iφ) +O



1 − r(n),
∑

m6∈M
|〈m|~ζ + z)|2





= exp(iφ) +R2(n)with
R2(n) = O

(
n(9η−2)/12δ−1/3, n−1+2β+ηδ−1, n−1/2+βδ−1/2,

n−1+α+βδ−1, n−1+α+ηδ−1, n−1+3ηδ−1, n−β).Through expression (8.81), noti
ing that R2(n) = R(n)2, we see that we haveproved the lemma.



262 Quantum lo
al asymptoti
 normality for d-dimensional states8.9.5 Proof of Lemma 8.8.2Multiplying the sum of eigenvalues (8.41) in the representation by the number oftimes it appears (8.32) yields the value of p~ζ,~u,nλ :
∏

(µ~u,ni )λi

∑

m

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

× cλnwith
cλn =

(
n

λ1, λ2, . . . , λd

) d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!Now, for n > (4/δ)
1

1−α , the µ~u,ni are non-in
reasing for all ‖~u‖ ≤ nγ , re
alling
γ ≤ α. Moreover mi,j ≤ n for all (i, j), so that

∑

m

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

≤ nd
2

.On the other hand m = 0 is always in the set of possible m, so that
∑

m

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

≥ 1.Similarly,
1 ≥

d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!
≥ 1

(n+ d)d2
.The remaining fa
tors are a multinomial law. We now show that this is thedominating part. Let us write (Y1, . . . , Yd) for the multinomial random variable.Indeed re
all Hoe�ding's inequality: for a sum of n independent variables Xiwith values bounded by 0 and 1, the following inequality on the deviations hold:

P[|
∑

Xi − E[Xi]| ≥ x] ≤ 2 exp(−2x2

n
).We apply this to the Bernoulli random variable that yields 1 with probability

µ~u,ni , and else 0, and we get an deviation inequality on the possible results of themultinomial law:
P[|Yi − nµ~u,ni | ≥ x] ≤ 2 exp(−2x2

n
). (8.87)
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hni
al proofs 263Now, for n > (4/δ)
1

1−α , for all ‖~u‖ ≤ nγ , and all λ 6∈ Λn,α, there is a i su
h that
|λi − nµ~u,ni | ≥ (1/2d)n2/3, so that

P[λ 6∈ Λn] ≤ (n(n+ d))d
2

d∑

i=2

P[|Yi − nµ~u,ni | ≥ (1/2d)nα]

≤ 2d(n(n+ d))d
2

exp(−n2α−1/(2d2))

8.9.6 Proof of Lemma 8.8.1 and Lemma 8.8.8We shall use multinomials as an intermediate step. Re
alling that bθ,nλ = pθ,nλ τnλ ,we 
an write:
∥∥∥∥∥N (~u, Vµ) −

∑

λ

bθ,nλ

∥∥∥∥∥
1

≤
∥∥∥pθ,n −Mn

µ~u,n
1 ,...,µ~u,n

d

∥∥∥
1
+

∥∥∥∥∥N (~u, Vµ) −
∑

λ

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ)τnλ

∥∥∥∥∥
1

, (8.88)where Mn
µ~u,n

1 ,...,µ~u,n
d

is the d-multinomial with 
oe�
ients µ~u,ni .For ba
kground, what we really prove in this lemma is the equivalen
e of thefollowing 
lassi
al experiments, together with an expli
it rate:
Pn =

{
p~u,n, ‖~u‖ ≤ nγ

}

Mn =
{
Mn
µ~u,n

1 ,...,µ~u,n
d

, ‖~u‖ ≤ nγ
}

Gn = {N (~u, Vµ), ‖~u‖ ≤ nγ} .Remember that pθ,n = p~u,n. We shall usually shorthand Mn,~u = Mn
µ~u,n

1 ,...,µ~u,n
d

.We �rst bound the �rst term in (8.88), planning to obtain:
sup

‖~u‖≤nγ

∥∥∥p~u,n −Mn
µ~u,n

1 ,...,µ~u,n
d

∥∥∥
1
≤ C

n−1/2+γ + nα−1

δ
. (8.89)
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al asymptoti
 normality for d-dimensional statesTo show this, we rewrite:
∥∥∥p~u,n −Mn

µ~u,n
1 ,...,µ~u,n

d

∥∥∥
1

=
∑

|λ|=n
|p~u,nλ −Mn

µ~u,n
1 ,...,µ~u,n

d

(λ)|

≤
∑

λ∈Λn,α

|p~u,nλ −Mn
µ~u,n

1 ,...,µ~u,n
d

(λ)|

+
∑

λ6∈Λn,α

p~u,nλ +Mn
µ~u,n

1 ,...,µ~u,n
d

(λ).Lemma 8.8.2 and (8.87) imply that for all ‖~u‖ ≤ nγ , and n > (4/δ)
1−α

? ,
∑

λ6∈Λn,α

p~u,nλ +Mn
µ~u,n

1 ,...,µ~u,n
d

(λ) ≤ C1 exp(−(C2n
2α−1)),with C1 and C2 depending only on the dimension. We end the proof of (8.89) byre
alling that

p~u,nλ =
d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!

∑

m∈λ

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ).Now, for all ‖~u‖ ≤ nγ and all λ ∈ Λn,α, the right hand side without the multi-nomial is
d∏

l=1

d∏

k=l+1

nµl − nµk +O(nα)

nµl +O(nα)

∑

m∈λ

∏

i<j

(
µj
µi

+O(n−1/2+γ)

)mi,j

.On Λn,α, for n > (4/δ)
1

1−α , the 
ube [0, n1/2]d(d−1)/2 ⊂ λ, so that
∏

i<j

1 − (
µj

µi
+O(n−1/2+γ))n

1/2

1 − µj

µi
+O(n−1/2+γ)

≤
∑

m∈λ

∏

i<j

(
µj
µi

+O(n−1/2+γ)

)mi,j

≤
∏

i<j

1

1 − µj

µi
+O(n−1/2+γ)

.Putting together yields
∣∣∣∣∣∣

d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!

∑

m∈λ

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

− 1

∣∣∣∣∣∣
≤ C

n−1/2+γ + nα−1

δ
.We have thus proved (8.89).We now turn our attention to the se
ond term of (8.88). Our main tool hereonwill be KMT Theorem:
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hni
al proofs 265Theorem 8.9.5. [Komlós et al., 1975, Bretagnolle and Massart, 1989℄ Let Xifor i ∈ N be independent uniform random variables on [0, 1]. Let F be the repar-tition fun
tion of this law (that is, the fun
tion x 7→ x on [0, 1]), let Fn be the
n-th empiri
al repartition fun
tion Fn(t) = 1

n

∑n
i=1 δXi≤t and let αn be the 
or-responding empiri
al pro
ess αn(t) =

√
n (Fn(t) − F (t)).Let B be a brownian bridge, that is a Gaussian sto
hasti
 pro
ess su
h that for

0 ≤ t ≤ u ≤ 1, we have E[B(t)] = 0 and E[B(t)B(u)] = t(1 − u).Then we may 
onstru
t these pro
esses on the same probability spa
e su
h that:
P

[
sup
t∈[0,1]

√
n |αn(t) −B(t)| > x+ c lnn

]
≤ K exp(−λx) (8.90)for all n and x, where c, K and λ are absolute positive 
onstants.We shall take x = c lnn below.Now noti
e that the distribution of the ve
tor

n[Fn(µ~u,n1 ), Fn(µ~u,n2 + µ~u,n1 ) − Fn(µ
~u,n
1 ), . . . , Fn(1) − Fn(1 − µ~u,nd )] is that of themultinomial with parameters n and µ~u,n. Now if we substra
t to this the ve
tor

nµ and divide by n−1/2, as we do in our transforms τn and σn, we obtain




αn(µ~u,n1 )

αn(µ~u,n2 + µ~u,n1 ) − αn(µ~u,n1 )...
αn(1) − αn(1 − µ~u,nd )




+





u1...
ud−1

−∑d
2 ui




. (8.91)The last part of the e�e
t of τn is keeping all the 
omponents of this ve
tor butthe �rst, and smear out with a (−n1/2/2, n1/2/2)d−1 box so that instead of a
olle
tion of peaks we have a histogram without holes between the bars.Let us also de�ne the Gaussian ve
tor

B~u,n=̂[B(µ~u,n1 ), B(µ~u,n2 + µ~u,n1 ) −B(µ~u,n1 ), . . . , B(1 − µ~u,nd ) −B(

d−2∑

i=1

µ~u,ni )]

+ [u1, . . . , ud−1].Its law is N (~u, Vµ~u,n), as 
an be easily shown with the formulas E[B(t)] = 0 and
E[B(t)B(u)] = t(1 − u). Re
all that Vµ~u,n is given by formula (8.9), with µ~u,ninstead of µ.



266 Quantum lo
al asymptoti
 normality for d-dimensional statesTo make use of Theorem 8.9.5, we must still smear out our fun
tions. We arewriting Un for the uniform probability on [ f(n)√
n
, f(n)√

n

]d−1 and shall 
onvolve. We
hoose later the pre
ise f(n).Then let us write an expression where all the terms of the proof of Lemma 8.8.1appear:
∥∥∥N (~u, Vµ) − τnMn

µ~u,n
1 ,...,µ~u,n

d

∥∥∥
1
≤
∥∥N (~u, Vµ) −B~u,n

∥∥
1

(8.92)
+
∥∥B~u,n −B~u,n ⋆ Un

∥∥
1

+
∥∥∥B~u,n ⋆ Un − τnMn

µ~u,n
1 ,...,µ~u,n

d

⋆ Un
∥∥∥

1

+
∥∥∥τnMn

µ~u,n
1 ,...,µ~u,n

d

⋆ Un − τnMn
µ~u,n

1 ,...,µ~u,n
d

∥∥∥
1
.Let us study the �rst term. We have already seen that ∥∥N (~u, Vµ) −B~u,n

∥∥
1

=∥∥N (~u, Vµ) −N (~u, Vµ~u,n)
∥∥

1
Hen
e we must bound the distan
e between two Gaus-sians with the same mean and di�erent varian
es. Sin
e µ~u,ni = µi+uin

−1/2 and
‖~u‖1 ≤ nγ , we have
‖Vµ − Vµ~u,n‖1 ≤

∑

k,l

∣∣∣[Vµ]k,l − [Vµ~u,n ]k,l

∣∣∣

≤
∑

1≤i,j≤d−1

|uiuj|n−1 + 2 ∗
∑

i

|ui|n−1/2
∣∣
∑

j

µj
∣∣+
∑

i

|ui|n−1/2

≤ 4n−1/2
∑

i

|ui|

≤ 4nγ−1/2.On the other hand we 
an bound from above the smallest eigenvalue of Vµ.Indeed, for all 1 ≤ k ≤ (d−1), we have [Vµ]k,k−
∑
l 6=k[Vµ]k,l = µk(1−

∑d
l=2 µl) =

µkµ1 ≥ δ/d. Hen
e Vµ ≥ (δ/d)1.So that (1 − Cn−1/2+γ/δ
)
Vµ ≤ Vµ~u,n ≤

(
1 + Cn−1/2+γ/δ

)
Vµ, where C dependsonly on the dimension d. We end the 
omputation of the bound for the �rst term
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hni
al proofs 267of (8.92) with:
‖N (~u, Vµ) −N (~u, Vµ~u,n)‖1 =

∫
∣∣∣∣∣∣

e−
1
2x

⊤V −1
µ x

√
(2π)d−1 det(Vµ)

− e−
1
2x

⊤(V
µ~u,n )−1x

√
(2π)d−1 det(V ~u,nµ )

∣∣∣∣∣∣
dx

≤
∫ exp

(
− x⊤V −1

µ x

2(1+Cn−1/2+γ/δ)

)

√
(2π(1 − Cn−1/2+γ/δ))d−1 det(Vµ)

−
exp

(
− x⊤V −1

µ x

2(1−Cn−1/2+γ/δ)

)

√
(2π(1 + Cn−1/2+γ/δ))d−1 det(Vµ)

=
1 + Cn−1/2+γ/δ

1 − Cn−1/2+γ/δ
− 1 − Cn−1/2+γ/δ

1 + Cn−1/2+γ/δ

≤ C2n
−1/2+γ/δ,where C2 still depends only on the dimension, as long as Cn−1/2+γ < δ/2.The se
ond term of (8.92) 
orresponds to 
onvolving Gaussians with sharper andsharper fun
tions. Now, we may upper bound ‖f ⋆ g‖1 by R supx ‖∇f(x)‖ for ga probability density supported on the ball of radius R. So that

∥∥B~u,n −B~u,n ⋆ Un
∥∥

1
≤ Cf(n)

δ
√
n
,where C depends only on the dimension, and where we have used nγ−1/2 ≤ δ/2.The third term is the one where we use KMT theorem. Indeed, for all ~u, forany positive x that, for all x, for all ~u ∈ Ξn,β , using as an intermediate step theprobability spa
e (Ω,A, q) on whi
h αn and B are built, we may write

∥∥∥B~u,n ⋆ Un − τnMn
µ~u,n

1 ,...,µ~u,n
d

⋆ Un
∥∥∥

1

≤
∫

Ω

‖B~u,n(ω) ⋆ Un − τnM
n
µ~u,n

1 ,...,µ~u,n
d

(ω) ⋆ Un‖1 dq(ω)

≤ P

[
sup
t∈[0,1]

|αn(t) −B(t)| > x+ c lnn√
n

]
+

sup
‖y‖∞≤ x+c ln n√

n

∫

Rd−1

|Un(z) − Un(z + y)|dz

≤ K exp(−λx) +

(
1 − f(n) − x− c lnn

f(n)

)d−1
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al asymptoti
 normality for d-dimensional statesWe now ta
kle the last term of (8.92). We break it in two parts, the �rst beingthe large deviations, and the se
ond 
oming expli
itly from the 
onvolution. Forany ǫ,
∥∥∥τnMn

µ~u,n
1 ,...,µ~u,n

d

⋆ Un − τnMn
µ~u,n

1 ,...,µ~u,n
d

∥∥∥
1

≤ 2




∑

λ6∈Λn,1/2+ǫ

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ) + sup
‖x‖≤nǫ

‖x−y‖∞≤f(n)/
√
n

∣∣∣∣∣∣

τnMn
µ~u,n

1 ,...,µ~u,n
d

(x)

τnMn
µ~u,n

1 ,...,µ~u,n
d

(y)
− 1

∣∣∣∣∣∣



Now, the se
ond term 
an be upper bounded by
(1 + f(n))

d∑

j=2

sup
λ∈Λn,1/2+ǫ

∣∣∣∣∣∣

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ1, . . . , λj , . . . , λd)

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ1 + 1, . . . , λj − 1, . . . , λd)
− 1

∣∣∣∣∣∣

≤ (1 + f(n))

d∑

j=2

sup
λ∈Λn,1/2+ǫ

∣∣∣∣∣
λ1µ

~u,n
j

λjµ
~u,n
1

− 1

∣∣∣∣∣

≤ (1 + f(n))Cn−1/2+ǫ/δ,where we have re
alled the assumption nγ−1/2 ≤ δ/2, and where C is a 
onstantdepending only on the dimension d.Putting the four losses together and spe
ifying f(n) = n1/4 and x = nǫ, we endup with
δ(Mn,Gn) ≤ C(n−1/4+ǫ + n−1/2+γ)/δfor n−1/2+γ > Cδ/2 and C depending only on the dimension d and the universal
onstants c,K, λ from Theorem 8.9.5.Adding the part (8.89), and noti
ing that α − 1 > ǫ − 1/2 for small enough ǫ,ends the proof of Lemma 8.8.1.From here, proving Lemma 8.8.8 (that is the inverse dire
tion) is easy enough.Indeed, remembering that σnτnpθ,n = pθ,n and that σn is a 
ontra
tion, we get

∥∥∥σnN (~u, Vµ) − p
~ζ,~u,n

∥∥∥
1

=
∥∥∥σnN (~u, Vµ) − σnτnp

~ζ,~u,n
∥∥∥

1

≤
∥∥∥N (~u, Vµ) − τnp

~ζ,~u,n
∥∥∥

1
.So that we have the same speed and 
onditions as those of Lemma 8.8.1.



8.9 (Even more) te
hni
al proofs 2698.9.7 Proof of Lemma 8.8.3First we 
ompute φ~0 in the Fo
k basis.Noti
e that φ~0 �fa
torizes� in mi,j , meaning that the number mi,j is indepen-dent of the other 
omponents of m. Indeed, remember that F(Cd(d−1)/2) =

F(C)⊗d(d−1)/2, and the se
ond expression for φ~ζ in (8.21).It is now easy to 
he
k that φ~0 is diagonal in the |m〉 basis. Indeed:
〈m0

i,j |
∫

C

exp

(
− µi − µj

µj
|zi,j |2

)
|zi,j)(zi,j |dzi,j |m1

i,j〉

=
1√

m0
i,j !mi,j1 !

∫ ∞

O

r exp

(
− µi
µj
r2
)
rm

1
i,j+m0

i,j dr

∫ 2π

0

ei(m
0
i,j−m1

i,j)ψdψ

= 0 if m0
i,j 6= m1

i,j .Now, if m1
i,j = m0

i,j + 1 for one pre
ise (i, j) and the other 
oordinates are equal,then
〈m1|φ~0|m1〉 =

µj
µi

〈m0|φ~0|m0〉.Indeed, we may re-use the former formula, and then integrate by parts:
〈m1

i,j |
∫

C

exp

(
− µi − µj

µj
|zi,j |2

)
|zi,j)(zi,j |dzi,j |m1

i,j〉

=
1

m1
i,j !

∫ 2π

0

dψ

∫ ∞

0

r exp

(
− µi
µj
r2
)
r2m

1
i,jdr

=
1

m1
i,j !

2π

∫ ∞

0

µj
2µi

exp

(
− µi
µj
r2
)

(2m1
i,j)r

2m1
i,j−1dr

=
µj
µi

1

m0
i,j !

2π

∫ ∞

0

r exp

(
− µi
µj
r2
)
r2m

0
i,jdr

=
µj
µi

〈m0
i,j |
∫

C

exp

(
− µi − µj

µj
|zi,j|2

)
|zi,j + ζi,j)(zi,j + ζi,j |dzi,j |m0

i,j〉

=
µj
µi

〈m0|φ~0|m0〉.Hen
e:
φ
~0 =

∑

m∈Nd(d−1)/2

∏

i<j

µi
µi − µj

(
µj
µi

)mi,j

|m〉〈m|. (8.93)We now approximate pre
isely enough Tλ(ρ~0,~u,nλ ). Using (8.41), we 
an write
Tλ(ρ

~0,~u,n
λ ) = C~uλ

∑

m∈λ

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

Tλ(|mλ〉〈mλ|) (8.94)
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al asymptoti
 normality for d-dimensional stateswith C~uλ a normalization 
onstant. Noti
e that we have absorbed into it thefa
tor ∏d
i=1

(
µ~u,ni

)λi .Sin
e nα−1 ≤ δ/2 and α > 1/2 > η, we know that all m su
h that |m| ≤ nη is in
λ. We 
an then 
ompute C~uλ , on the one hand, and divide the left hand side ofequation (8.94) in two parts. Furthermore, sin
e µ~u,ni = µi +O(n−1/2+γ), when
|m| ≤ nη, (

µ~u,nj

µ~u,ni

)mi,j

=

(
µj
µi

)mi,j

(1 +O(n−1/2+γ+η/δ)).We 
an also write:
(C~uλ )−1 =

∑

|m|≤nη

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

+
∑

m∈λ:|m|≥nη

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

.The se
ond part is less than δnηd2(1− δ)nη for nη > C ln(n)/δ, where C dependsonly on the dimension. In that 
ase, this term is negligible beforeO(n−1/2+γ+η/δ).Hen
e:
(C~uλ )−1 =

∑

m∈En

∏

i<j

(
µj
µi

)mi,j

+O(n−1/2+γ+η/δ)

=
∑

m∈Nd(d−1)/2

∏

i<j

(
µj
µi

)mi,j

+O(n−1/2+γ+η/δ)

=
∏

i<j

µi − µj
µi

+O(n−1/2+γ+η/δ)We then re
all that for unit ve
tors, we have ‖|ψ〉〈ψ|−|φ〉〈φ|‖1 = 2
√

1 − |〈ψ|φ〉|2.So that, using Lemma 8.7.2, we obtain
‖Vλ|mλ〉〈mλ|V ∗

λ − |m〉〈m|‖1 = O(n(9η−2)/24/δ1/6)when |m| ≤ nη.Putting that ba
k in formula (8.94), we obtain Tλ(ρ~0,~u,nλ ), so that
Tλ(ρ

~0,~u,n
λ ) =

∑

m∈Nd(d−1)/2

∏

i<j

µi
µi − µj

(
µj
µi

)mi,j

|m〉〈m|

+O(n−1/2+γ+η/δ, n(9η−2)/24/δ1/6). (8.95)Comparing with (8.93), we get the lemma.



8.9 (Even more) te
hni
al proofs 2718.9.8 Proof of Lemma 8.8.5The key is to noti
e that, as we are dealing with a group, there is a r su
hthat U−1(~ζ + z,~0, n)U(~ζ,~0, n)U(z,~0, n) = U(−~ζ + z,0, n)U(~ζ,0, n)U(z,0, n) =
U(r, s, n), or the same formula with ∆ instead of U . Now we shall prove belowthat, under the 
ondition that both ~ζ and z are smaller than nβ , then ‖r‖+‖s‖ =
O(n−1/2+2β/δ). Let us 
all this the domination hypothesis for further referen
e.Now, as the a
tions are unitary, we may rewrite the norm in Lemma 8.8.5:

A =
∥∥∥[∆

~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1

=
∥∥∥∆−(~ζ+z),n

λ [∆
~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1

= ‖[Id− ∆r,s,n
λ ](|0λ〉〈0λ|)‖1As Tλ is an isometry, we may also let it a
t the left and T ∗

λ on the right and get:
A = ‖|0)(0| − Tλ∆

r,s,n
λ T ∗

λ(|0)(0|)‖1

= ‖|0)(0| − |r) (r|‖1 + ‖|r) (r| − Tλ∆
r,s,n
λ T ∗

λ(|0)(0|)‖1By the domination hypothesis, the norm of r is dominated by n−1/2+2β/δ, hen
e
(r|0) = 1−O(n−1+4β/δ), so that the �rst term is O(n−1/2+2βδ−1/2). Noti
e thatthis is dominated by R(n) given in equation (8.55) sin
e η > 2β.For the se
ond term, we apply Lemma 8.8.4, with z = 0. By the dominationhypothesis, ‖s‖ ≤ n−1/2+2β/δ, so we may apply Lemma 8.8.4, and the remainderis given by R(n) in equation (8.55).We �nish the proof of the lemma, and simultaneously that of Theorem 8.5.1, byproving the domination hypothesis.By 
ontinuity of the produ
t, if x and y are small enough, then U(−x−y)U(x)U(y)belongs to C, the domain on whi
h the logarithm is de�ned, introdu
ed at thebeginning of se
tion 8.6. Hen
e, sin
e ‖~ζ‖+‖z‖/√n ≤ nβ−1/2/δ, for n1/2−β > Cδfor a 
onstant C depending only on the dimension, we know that
U(−(~ζ + z)/

√
n)U(~ζ/

√
n)U(z/

√
n) ∈ C, and

r/
√
n = log

[
U(−(~ζ + z)/

√
n)U(~ζ/

√
n)U(z/

√
n)
]
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al asymptoti
 normality for d-dimensional statesFor pra
ti
ality, we write
f(x,y) = log



exp



−i
∑

1≤i6=j≤d
(x + y)i,jTi,j



 exp



i
∑

1≤i6=j≤d
xi,jTi,j



 ×

exp



i
∑

1≤i6=j≤d
yi,jTi,j







 .and, for i 6= j, with x a 
omplex ve
tor,
g(x)i,j =

{
Re(xi,j)/

√
µi − µj if i < j

Im(xi,j)/
√
µi − µj if i < jWith these notations r =

√
nf(g(~ζ/

√
n), g(z/

√
n)).We have C∞ fun
tions, so we develop to the se
ond order around (x,y) = (0,0):

r/
√
n = f(0,0) +

∑

1≤i6=j≤d

g(~ζ)i,j√
n

∂f

∂xi,j
+
g(z)i,j√

n

∂f

∂yi,j
+

1

n
O
(
‖g(~ζ), g(z)‖2

)
.Noti
ing that f(0,0) = 0 and remembering that we suppose both ~ζ and z withnorms smaller than nβ we will have proved that ‖r‖ = O(n−1/2+2β/δ) when wehave proved that the �rst-order derivatives of f are null in (0,0).Now for any i 6= j, for all xi,j , if we de�ne xi,j = (0, . . . , 0,xi,j , 0, . . . , 0), then

f(xi,j ,0) = log [exp (−ixi,jTi,j) exp (ixi,jTi,j) exp (0)] .

= log [exp (i(xi,j − xi,j)Ti,j)]

= 0.We are allowed to write the se
ond line as Ti,j of 
ourse 
ommutes with itself.The same holds true for any yi,j , so that all �rst derivatives are zero.
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Samenvatting
Statistiek is de wetens
hap van het verkrijgen van informatie uit data. Hoewelstatistis
he problemen veel vers
hillende vers
hijningsvormen hebben, kunnen zeworden opgesplitst in drie 
omponenten: de studie van het obje
t, de studie vande gebruikte operaties, en de studie van het pre
ieze wiskundige vraagstuk. Inandere woorden, wat we hebben, wat we kunnen doen en wat we willen weten.Kwantum statistiek vers
hilt van de klassieke statistiek op het eerste punt, watwe hebben. Daarom vers
hilt zij ook op wat is toegestaan, omdat deze tweeverbonden zijn.In de klassieke statistiek beginnen we vaak met meetresultaten, welke gemodel-leerd worden door sto
hasten met kanswetten. Namelijk, als we grootheid Aof grootheid B kunnen meten, dan kunnen we theoretis
h beide ook gezamelijkmeten. Experimenten meten vaak elke bruikbare en toegankelijke grootheid. Intheorie, �wat we kunnen doen� is elke wiskundige methode toepassen om de datate transformeren. Wiskundig betekent dit het toepassen van elke fun
tie op dedata, zo mogelijk met een random uitkomst. In de praktijk is 
omputerkra
hthiervoor beperkend.In sommige gevallen, e
hter, moeten we reeds het studieobje
t bes
houwen enkiezen welke metingen we uitvoeren. Een kenmerkend voorbeeld is het proberente begrijpen wat een zwarte doos doet. We moeten het in�lteren met invoeren elke keer moeten we de invoer kiezen. Deze thematiek heet ontwerp vanhet experiment. `Wat we kunnen doen� kan sterk afhangen van het spe
i�ekeprobleem. De wiskundige bes
hrijving van deze keuze kan niettemin van zwartedoos tot zwarte doos vers
hillen. Maar to
h, zodra de meting is uitgevoerd, zijner wederom kanswetten en zijn we weer terug in het geval van de vorige alinea.In kwantum statistiek kan het ontwerp van het experiment niet buiten bes
hou-wing gelaten worden. Wanneer wij namelijk A of B kunnen meten, dan verbiedende wetten van de natuurkunde in het algemeen het meten van A én B. We moetendan die meting kiezen die de informatie oplevert die we het hardst nodig hebben.



290 SamenvattingNiettemin geeft kwantum statistiek een raamwerk parallel aan dat van de klassie-ke kansrekening, welke ons pre
ies vertelt �wat we kunnen doen�. Aanvankelijk,�wat ons gegeven wordt� is een kwantum obje
t, welke gemodelleerd wordt dooreen kwantumtoestand. �Wat we kunnen doen� is het meten van de toestand,resulterend in een sto
hast als resultaat, of meer algemeen het vervormen van dekwantum toestand.�Wat we willen weten� vers
hilt in de kwantum statistiek zelden van de klassiekestatistiek. Meestal willen we ofwel de informatie in de data samenvatten (sta-tistis
he inferentie), ofwel een hypothese weerleggen, ofwel zien welke hypothesehet beste de data bes
hrijft (toetsen), ofwel pre
ies s
hatten welke onderliggendevers
hijnselen de data genereren (s
hatten). Gewoonlijk kunnen deze allemaalbes
hreven worden door een klassieke parameter. Een uitzondering doet zi
hvoor wanneer onze ben
hmark intrinsiek kwantum is, bijvoorbeeld wanneer weeen kwantum toestand proberen na te bootsen.We bes
hrijven nu kort de wiskundige formulering van de kwantum statistiek,omdat het vers
hilt van de klassieke statistiek.Een kwantum obje
t wordt bes
hreven door een toestand, dat wil zeggen eenniet-negatieve operator ρ met spoor één op een Hilbert ruimte H.Metingen worden bes
hreven door Positieve Operator-Waardige Maten (POVM,�Positive Operator-Valued Measure� in het engels), dat wil zeggen een verzame-ling {M(A)}A∈A van operatoren, met (X ,A) een kansruimte. Deze operatorenhebben de volgende eigens
happen: ze zijn niet-negatief, M(X ) = 1H en voorelke disjun
te aftelbare 
olle
tie (Ai)i∈N geldt ∑M(Ai) = M(
⋃
Ai).Het resultaat van een meting M op de toestand ρ is een klassieke sto
hast X in

(X ,A), met kansverdeling P [X ∈ A] = Tr(ρA).Ten slotte worden kwantum transformaties bes
hreven door kanalen, dat wil zeg-gen spoor-behoudende volledig positieve afbeeldingen tussen matrix of operatoralgebra's.Dit proefs
hrift bestaat uit twee delen. In het eerste deel behandelen vers
hillendeproblemen uit de kwantum statiestiek. In het tweede deel 
on
entreren we ophet thema kwantum lokale asymptotis
he normaliteit.In hoofdstuk 2 bestuderen we dis
riminatie problemen in de minimax setting.Namelijk, gegeven een toestand, of een Pauli kanaal, moeten we de waarden be-palen in een eindige verzameling. Dit is reeds bestudeerd in het Bayesiaanseraamwerk. In het eerste s
enario willen we de fout van de voorspelling minima-lizeren. Nu 
orrespondeert de minimax oplossing met de Baysiaanse oplossing



291met een zo ongunstig mogelijke a priori verdeling. No
hthans, terwijl we met hetBeysiaanse 
riterium altijd de eenvoudigste meting � een observabele � kunnengebruiken, moeten we mogelijk onze toevlu
ht zoeken tot algemene metingen inde minimax setting. Wanneer we toestanden bes
houwen kunnen we ook pro-beren nooit een fout antwoord te geven, terwijl het ons we wel is toegestaan tebekennen �dat we het niet weten�. We moeten dan zo vaak mogelijk antwoorden.Als de toestand zuiver is, verkrijgen we altijd een expli
iete optimale meting inde minimax setting, in tegenstelling tot in het Beysiaanse geval. Dit werk is insamenwerking met d'Ariano and Sa

hi.In hoofdstuk 3 behandelen we de s
hatting van een geheel onbekend kanaal in
SU(d). We vinden s
hattingssnelheden in 1/n2. We hebben geen an
illa nodig,maar moeten gebruik maken van verstrengeling. Representaties van groepenvormen het belangrijkste wiskundige gereeds
hap.Hoofdstuk 4 behandelt een orde relatie op POVM's, geintrodu
eerd door Bus
emiet al. (2006). Een POVM P is zuiverder dan een andere POVM Q als we eenkanaal E kunnen vinden zodat het invoeren van een toestand in ρ and het metenvan de uitvoer met P equivalent is met het uitvoeren van de meting Q. Wegeven een voldoende voorwaarde waaronder een POVM extreem, of zuiver, is.We bewijzen dat deze voorwaarde noodzakelijk is als alle POVM elementen rangéén of volledige rang hebben. In het bijzonder voldoen alle POVM's op qubitsaan deze voorwaarde.Gemotiveerd door de situatie dat we sle
hts één deeltje van een verstrengeldsysteem kunnen meten, hebben Petz et al. (2006) het begrip van ge
omplemen-teerde subalgebra's geintrodu
eerd: A en B zijn ge
omplementeerd als A ⊖ 1orthogonaal is aan B. We bewijzen in hoofdstuk 5 dat het onmogelijk is vijfge
omplementeerde subalgebra's van M(C4) te vinden, die allemaal isomorf zijnaan M(C2). Dit is gezamenlijk werk met Petz.Deel II gaat over kwantum lokale asymptotis
he normaliteit. Lokale asymptoti-s
he normality is het simpelste voorbeeld van de 
onvergentie van experimententheorie van Le Cam. Het stelt ons bijvoorbeeld al in staat optimaliteit te bewij-zen van de meest aannemelijke s
hatter voor ges
hikte onderling onafhankelijkeen identiek verdeelde experimenten. We hebben de theorie gegeneraliseerd naarhet kwantum geval.Een experiment is een 
olle
tie E = {ρθ, θ ∈ Θ} van kwantum toestanden. Weweten dat de onbekende toestand ρ tot E behoort.Samen met Guµ  hebben we de sterke 
onvergentie van onderling onafhankelijkeen identiek verdeelde experimenten En =

{
ρ⊗n
θ/

√
n
, θ ∈ Θ

} bewezen, met ρ eentoestand op een eindig dimensionale Hilbert ruimte, die op een gladde manierafhangt van θ, met Θ een begrensde open deelverzameling van Rd. De limiet



292 Samenvattingis F = {φθ, θ ∈ Θ}, waar de φθ Gaussis
he toestanden zijn op een algebra vankanonieke 
ommutatie relaties, en θ een displa
ement parameter is.Met sterke 
onvergentie bedoelen we dat er kanalen Tn en Sn zijn, zodat
supθ

∥∥∥Tn(ρ⊗nθ/√n) − φθ
∥∥∥

1
en supθ

∥∥∥ρ⊗nθ/√n − Sn(φ
θ
∥∥∥

1
naar nul 
onvergeren. Ditimpli
eert dat alle besliskundige problemen (bijna) dezelfde antwoorden hebbenin En en in F .In feite krijgen we iets meer dan dat. We kunnen namelijk Θ laten groeien met

N , polynomiaal maar niet te snel, en we hebben ook polynomiale 
onvergentie-snelheden van bovenstaande normen. Dit staat toe dat we pro
edures globaalkunnen aanpassen, in plaats van rond een spe
i�eke ρ0. De kanalen Tn en Snhangen namelijk van ρ0 af en niet van ρ. Dus gebruiken we eerst een verdwijnenddeel van de n kopieën van ρ om een s
hatting ρ̃ te krijgen, en gebruiken dan hetkanaal Tn geasso
ieerd met ρ̃. We gebruiken dan dezelfde pro
edure die we bijeen gegeven φ ∈ F zouden gebruiken.Het kwantum Gaussis
he experiment F is erg bekend. We weten bijvoorbeeld deoptimale strategie om θ te s
hatten met kwadratis
he verlies fun
ties. We kunnendan asymptotis
h optimale pro
edures verkrijgen voor hetzelfde probleem voorieder eindig dimensionaal experiment.Hoofdstuk 6 maakt dit expli
iet voor qubits, namelijk als ρ gede�nieerd is op C2.Dit is gezamenlijk werk met Guµ .Hoofdstuk 7 suggereert een methode voor het implementeren van de kanalen Tnvoor qubits in een labotarium, door het koppelen van de spins met het ele
tro-magnetis
h veld. We laten zien dat de lange termijn oplossing van de kwantumsto
hastis
he di�erentiaalvergelijking 
orrespondeert met de toestand van spinsdie het veld in lekken. Dit is gezamenlijk werk met Guµ  en Janssens.Ten slotte geeft hoofdstuk 8 de bewijzen voor alle eindig dimensionale systemen,waarbij ρ0 vers
hillende eigenwaarden heeft. Het bewijs is erg te
hnis
h en maaktgebruik van representaties van groepen. Een opvallend lemma is dat de basis vaneen semi-standaard Young tableaux �bijna� orthogonaal is. Dit is gezamenlijkwerk met Guµ .



Résumé
Les statistiques, étymologiquement s
ien
es de l'État, peuvent être vues 
ommel'art de tirer des informations de données. Quoiqu'ils puissent prendre des formestrès variées, tout problème de statistiques peut se dé
omposer en trois mor
eaux :l'objet étudié, les opérations que nous pouvons e�e
tuer, et la question mathé-matique pré
ise. En d'autres termes, 
e que nous avons, 
e que nous pouvonsfaire, et 
e que nous voulons savoir.Les statistiques quantiques di�èrent des statistiques 
lassiques sur le premierpoint, 
e aue nous avons. Par ri
o
het, elles en di�èrent aussi sur le se
ond, 
eque nous pouvons faire.En statistiques 
lassiques, nous partons en général du résultat des mesuresphysiques, qui sont modélisées par des variables aléatoires et leurs lois de pro-babilité 
orrespondantes. En e�et, si nous pouvons mesurer les quantités A etB, nous pouvons en théorie mesurer les deux simultanément. Les expérien
esmesurent souvent toutes les quantités utiles et a

essibles. En théorie, �
e quenous pouvons faire� est appliquer n'importe quelle transformation mathématiqueaux données, éventuellement ave
 une 
omposante aléatoire supplémentaire. Enpratique, la puissan
e de 
al
ul peut être un fa
teur limitant.Dans 
ertains 
as, 
ependant, nous devons 
onsidérer d'ors-et-déjà l'objet étudié,et 
hoisir quelle mesure e�e
tuer. Par exemple, si nous voulons 
omprendre lefon
tionnement d'une boîte noire, nous devons la sonder ave
 di�érentes entrées,une nouvelle entrée à 
haque fois. Cette thématique relève des �plans d'expé-rien
e�. �Ce que nous pouvons faire� dépend largement du problème spé
i�que.Dans le 
as de la boîte noire, nous pouvons 
hoisir notre entrée. La des
riptionmathématique de 
e 
hoix peut varier d'une boîte noire à une autre, 
ependant.Toutefois, une fois la mesure e�e
tuée, nous avons de nouveau des probabilités,et sommes de retour au paragraphe pré
édent.En statistiques quantiques, le plan d'expérien
e est inévitable. En e�et, si nouspouvons mesurer A ou B, les lois même de la physique nous interdisent de me-surer simultanément A et B, en général. Nous devons don
 
hoisir quelle mesure



294 Résuménous apporte les informations les plus utiles. Néanmoins, la má
anique quantiquefournit un 
adre parallèle à 
elui des statistiques 
lassiques, qui nous dit exa
te-ment �
e que nous pouvons faire�. Initialement, �
e que noua avons� est un objetquantique, modélisé par un état quantique. �Ce que nous pouvons faire� est me-surer l'état, et obtenir une variable aléatoire 
lassique, ou bien plus généralementtransformer l'état quantique.�Ce que nous voulons savoir� ne di�ère guère en statistiques quantiques et 
las-siques. Le plus souvent, nous souhaitons soit résumer les informations 
ontenuesdans les données (inféren
e statistique), soit in�rmer une hypothèse ou 
hoisir lameilleure hypothèse dans un ensemble �ni (test), soit deviner ave
 pré
ision lephénomène qui a généré les données (estimation). Les réponses à 
es questionssont toutes dé
rites par un paramètre 
lassique. L'ex
eption est quand nous 
her-
hons à obtenir un objet intrinsèquement quantique, 
omme par exemple quandnous essayons de 
loner le plus pré
isément possible un état.Il est temps de dé
rire le formalisme mathématique des statistiques quantiques.Un objet quantique est dé
rit par un état, 
'est-à-dire un opérateur positif ρ, detra
e un, sur un espa
e de Hilbert H.Les mesures sont dé
rites par des mesures à valeur dans les opérateurs positifs(POVM), 
'est-à-dire un ensemble {M(A)}A∈A d'opérateurs, où (X ,A) est unespa
e de probabilité. Ces opérateurs sont positifs, M(X ) = 1H, et M est σ-additive, i.e. M(
⋃
Ai) =

∑
M(Ai) pour toute 
olle
tion dénombrable de Aidisjoints.Le résultat de la mesure M e�e
tuée sur l'état ρ est une variable aléatoire 
las-sique X à valeurs dans (X ,A), de loi P [X ∈ A] = Tr(ρA).En�n, les transformations quantiques sont dé
rites par des 
anaux, 
'est-à-diredes appli
ations 
omplètement positives qui préservent la tra
e, entre algèbres dematri
es ou d'opérateurs.Cette thèse 
omprend deux parties. La première traite de divers problèmes destatistiques quantiques, la se
onde est 
onsa
rée à la normalité asymptotiquelo
ale quantique.Au Chapitre 2, nous appliquons le 
ritère minimax à des problèmes de dis
rimi-nation qui n'avaient jusqu'i
i été traités que du point de vue bayésien. On nousdonne un état ou un 
anal et il s'agit de savoir duquel il s'agit parmi un ensemble�ni 
onnu à l'avan
e. Si on essaie de minimiser les erreurs, dans les deux 
as, lasolution minimax 
orrespond au pire 
as de Bayes. Toutefois, la mesure à e�e
-tuer pour deux états est toujours simple (une observable) dans le 
as bayésien, et



295peut être plus 
ompliquée en minimax. Pour les états, on peut aussi imposer dene répondre qu'à 
oup sûr, en permettant de dire �je ne sais pas�. Pour les étatspurs (de rang un), on a toujours une solution expli
ite en minimax, 
e qui n'estpas le 
as dans une appro
he bayésienne. Ce
i est un travail en 
ollaboration ave
d'Ariano et Sa

hi.Au Chapitre 3, nous nous intéressons à l'estimation d'un 
anal unitaire totale-ment in
onnu, paramétré par SU(d). Nous prouvons des vitesses de 
onvergen
equadratique en 1/n2, 
omme 
'était 
onnu pour SU(2). Il n'est pas besoin d'utili-ser un système auxiliaire. L'outil physique est l'intri
ation, l'outil mathématiqueles représentations de groupe.Le 
hapitre 4 a trait à une relation d'ordre sur les POVMs, introduite par Bus
emiet al. [2005℄. Une POVM P est plus propre qu'une autre Q si on peut obtenir
Q en faisant passer l'état à mesurer dans un 
anal, puis en le mesurant ave
 P.Nous établissons une 
ondition su�sante pour que P soit propre (extrémale), etmontrons qu'elle est né
essaire si tous ses éléments sont de rang un ou plein, 
equi est notamment le 
as sur les qubits.Motivé par le 
as où on ne peut mesurer qu'une seule parti
ule d'un systèmeintriqué, Petz et al. [2006℄ a introduit la notion de sous-algèbres 
omplémentaires :
A et B sont 
omplémentaires si A ⊖ 1 est orthogonale à B. Nous prouvons auChapitre 5 qu'il est impossible de trouver 
inq sous-algèbres isomorphes àM2(C)deux à deux 
omplémentaires dans M4(C) (
as de deux qubits intriqués). Ce
iest un travail en 
ollaboration ave
 Petz.La partie II est 
onsa
rée à la normalité asymptotique lo
ale quantique. La nor-malité asymptotique lo
ale. est le 
as le plus simple de la théorie de la 
onvergen
ed'expérien
es de Le Cam. Elle est déjà assez puissante pour montrer l'optimalitéasymptotique de l'estimateur du maximum de vraisemblan
e pour les expérien
es
i.i.d., par exemple. Nous avons généralisé 
ette théorie au 
as quantique.Une expérien
e est la donnée d'un ensemble E = {ρθ, θ ∈ Θ} d'états quantiques.Ce que nous savons est que l'état in
onnu ρ qui nous est donné est dans E .Nous avons prouvé ave
 Madalin Guµ  la 
onvergen
e forte des expérien
es i.i.d.dé�nies par En = {ρ⊗n

θ/
√
n
, θ ∈ Θ} pour ρ de dimension �nie dépendant de manièrelisse de θ, un paramètre à valeurs dans un ouvert borné de Rd, vers une expérien
e

F = {φθ, θ ∈ Θ}, où les φθ sont des états gaussiens sur l'algèbre des relations de
ommutation 
anoniques, et θ est un paramètre de dépla
ement.Convergen
e forte signi�e qu'il existe des 
anaux Tn et Sn tels que
supθ ‖Tn(ρ⊗nθ/√n)−φθ‖1 et supθ ‖ρ⊗nθ/√n−Sn(φθ)‖1 tendent vers 0. La 
onséquen
eest que tous les problèmes de théorie de la dé
ision ont (presque) les mêmes so-lutions dans En et F .



296 RésuméEn fait, nous obtenons un peu mieux. Nous pouvons laisser Θ grandir ave
 n,polynomialement quoique pas trop vite, et nous avons aussi des vitesses de 
onver-gen
e polynomiales pour les normes 
i-dessus. Cela permet de transposer globale-ment des pro
édures d'une expérien
e vers l'autre, au lieu de le faire uniquementautour d'un ρ0 parti
ulier. En e�et les 
anaux Tn et Sn dépendent de ρ0, bienqu'ils ne dépendent pas de ρ. De 
e fait, nous pouvons tout d'abord utiliser uneproportion négligeable de nos n 
opies de ρ pour en obtenir une estimation gros-sière ρ̃, et nous utilisons ensuite le 
anal Tn 
orrespondant à ρ̃. Nous appliquonsalors la même pro
édure que si on nous avait donné φ ∈ F .Or l'expérien
e gaussienne quantique F est très bien 
onnue. Par exemple, nous
onnaissons la stratégie optimale pour estimer θ ave
 une perte quadratique.Nous obtenons don
 une pro
édure asymptotiquement optimale pour le mêmeproblème dans l'expérien
e de dimension �nie.Le Chapitre 6 expli
ite 
e
i pour les qubits, 
'est-à-dire si ρ est dé�ni sur C2.Ce
i est un travail en 
ollaboration ave
 Guµ .Le Chapitre 7 suggère une méthode pour implanter les 
anaux Tn pour les qubitsen laboratoire, via un 
ouplage des spins ave
 le 
hamp éle
tromagnétique. Nousprouvons que la solution à long terme de l'équation di�érentielle sto
hastiquequantique 
orrespond au passage de l'état des spins dans le 
hamp. Ce
i est untravail en 
ollaboration ave
 Guµ  et Janssens.En�n, nous donnons les preuves pour tous les systèmes de dimension �nie auChapitre 8, quand ρ0 a des valeurs propres distin
tes deux à deux. La preuverepose sur un usage très te
hnique des représentations de groupe. Un lemmeintéressant per se relève que la base des tableaux de Young semi-standards est�presque� orthogonale. Ce
i est un travail en 
ollaboration ave
 Guµ .
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