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Chapter 1

Introduction

Statistics is the science of pulling information out of data. Though they can be
wildly polymorphic, any statistical problem may be split into three components:
the object we study, the operations we are allowed to use, and the exact mathe-
matical question. In other words, what we have, what we can do, and what we
want to know.

Quantum statistics diverge from classical statistics on the first point, what we
have. Hence they differ also on what is allowed, since the two are linked.

In classical statistics, we often immediately start from the result of measure-
ments, which are modeled by random variables with probability laws. Indeed,
if we can measure quantity A or quantity B, we can theoretically measure both
simultaneously. Experiments often measure every useful and easily accessible
quantity. In theory, “what we can do” is applying any mathematical treatment
on the data to transform it. Mathematically, this means applying any function
on the data, possibly with a random outcome. In practice, computational power
might bound such latitude.

In some cases, however, we must already consider the object under study, and
choose what measurement we carry out. A typical example would be trying to
understand what a black box does. We must probe it with inputs, and each time
we must choose the input. This thematic is called design of experiments. “What
we can do” may depend hugely on the problem at hand. In the black box case, we
can choose the input. The mathematical description of this choice might differ
from one black box to another, though. Yet, once the measurement is carried
out, we again have probability laws and we are back to the previous paragraph.

In quantum statistics, the design of experiments cannot be avoided. Indeed,
when we can measure A or B, the laws of physics themselves forbid us from
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measuring A and B, in general. We must then choose the measurement that
yields the information we need most. Nevertheless, quantum physics gives a
framework paralleling that of classical probability, which tells us exactly “what
we can do”. Initially, “what we are given” is a quantum object, which is modeled
by a quantum state. “What we can do” is measuring the state, getting a classical
random variable as a result, or more generally transforming the quantum state.
The sets of both measurements and transformations have precise and general
mathematical definitions, allowing to treat many questions in a unified way.

“What we want to know” seldom differs in quantum and classical statistics. Most
often, we want either to summarize the information in the data (statistical infer-
ence), to disprove a hypothesis or to see what hypothesis in a finite set best fits
the data (testing), or to guess with precision what the underlying phenomenon
was that generated the data (estimation). All these can usually be described by a
classical parameter. The exception would be when our benchmark is intrinsically
quantum, for example when trying to approximately clone a quantum state.

This thesis, in Part I, studies a number of particular systems. Namely we consider
in Chapter 2 how to best decide in which state among a finite set a quantum
object can be; in Chapter 3, we give a fast (1/n) procedure to estimate a black
box unitary transformation. Chapter 4 and Chapter 5 dwell more on the general
structure of quantum experiments: the former deals with an order relation on
measurements, and the latter on finding “maximally different” subsystems of a
quantum system, in the simplest case.

Now, we may have very different questions on a given system. For such a system,
or experiment,‘what we have” and “what we can do” will remain the same. We
may then wonder about what we can say directly on the system, without reference
to a particular question. The theory of convergence of experiments in classical
statistics works out how well we can approximate an experiment by another. We
can then translate all the procedures we use in one experiment to the other.
Hence we get answers to “what we want to know” in both experiments when
solving the question in one.

Part II, the main contribution of this thesis, generalizes to the quantum world the
most basic case of convergence of experiments, namely local asymptotic normal-
ity. We prove that a sufficiently smooth experiment with identical independent
(ii.d.) quantum states converge to a quantum Gaussian shift experiment. The
point is that this experiment is very well-known, and everything we know about
it can be translated to the large class of smooth i.i.d. experiments.

The remainder of the introduction first makes precise the rules of classical and
quantum statistics, and then introduce each of the chapters of the thesis, and the
corresponding problematics, in the order given above.
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1.1 Statistics

1.1.1 Classical Statistics

Le Cam [1986] and van der Vaart [1998] may be consulted for further references,
among many other books on statistics. We summarize in Table 1.1, on page 24,
the most basic ingredients of classical statistics. The sister Table 1.2 gives the
corresponding quantum notions.

What we have

In classical statistics, we are given data, that can be modeled as a random variable
X with probability law p. What we know beforehand is that p is a probability
law in a set

E=1{py,0 € O}, (1.1)

with no constraint in general on the parameter set ©. The py are all defined
on the same probability space (£2,.4). This £ is called the experiment or the
statistical model.

Remarks:

e The data are often made of many measurements, yielding as many random
variables X1,. .., X,,, with probability laws p', ..., p"™ on potentially differ-
ent probability spaces. However, we may still consider all the data as a sin-
glerandom variable X = (X7, ..., X,,) with probability law p = p'®- - -®@p",
and we stay in the current framework.

e Although there is no constraint on © at this point of the theory, this set
is often either finite or a reasonable subset of R?. The first case leads to
discrete statistics, and some families of tests in particular, the second case
to parametric statistics. When the set © is infinite-dimensional, we enter
the complex realm of non-parametric statistics, the main focus of research
in recent years.

Examples: Bernoulli experiment, Gaussian shift experiment

The most basic probability space we may find is the two-element space {0,1}.
An experiment corresponding to a coin toss would be

Eper = {po = (6,1 —0),0 € [0,1]}. (1.2)
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Alternatively, we might toss the coin n times. Denoting X = (Xi,...,X,,) the
results, we would get this experiment on {0, 1}®™:

Enin = {po + {X} = =X (1-0)" =X g€ 0,1)}. (1.3)

When dealing with continuous functions, the most pervading of them all is the
Gaussian. We are especially interested in Gaussian shift experiments, where the
variance of the Gaussian is fixed and the parameter is the mean:

Egs = {N(0,I7),0 e R}, (1.4)

where N’ means normal law, and Z is any fixed positive matrix'.

What we can do

Once we have our data X, how can we process them?

The most general procedure consists in drawing a new random variable Y with
probability law px depending only on X, and measurable as a function of X.

We can view this protocol in two ways. The first is considering that Y is an answer
to “what we want to know”. Then Y is a (randomized) estirnator, typically an
estimator of 6, in which case we also denote it by 6.

Alternatively, we can consider that Y is a new random variable, and that we have

transformed our experiment. Our new experiment consists of Y with probability
law ¢ in the set {gg,0 € ©} on a space (21, B), with density?

00(y) = T(po) ()= /Q px (4)dp(X). (1.5)

The transformation T is a Markov kernel.

In the classical case, the two notions are the same. However, I insist on separating
them since they will be different in the quantum case.

I'We use this strange notation because this matrix is the inverse of the Fisher information
matrix (1.13).

2We could equivalently work with non-dominated sets of probability laws, but that would
only make notations heavier. We then assume that all probability laws have a density, and use
the same letter for the law and the density.
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Examples

Let us go back to our n-sample Bernoulli experiment, €g;, (1.3). Our probability
space is {0,1}®". We may use a Markov kernel from that space to [0,n] "N that
simply send X = (X3,...,X,) to Y = > X;. Here, the px are merely delta
functions. We then obtain a binomial probability law for Y, that is go = B(n, 0).
The corresponding experiment is & = {gg,0 € O}.

Alternatively, we might want to build an estimator 6. The most obvious one
would be X — > X;/n =Y. The law of our estimator is the above binomial
divided by n.

We might also look for an estimator in g5 (1.4). The first thought is yet simpler:
we just keep X. The corresponding Markov kernel would be the identity.

What we want to know

We usually want to have information on the unknown underlying process that
gave rise to our data. In other words, we want to guess the parameter36.

We can give an answer either with a confidence interval, or with a guess of our
quantity, maybe with estimates on the variance of the estimate. This guess
corresponds to giving an estimator 6 of 6.

We want to build a good estimator. We therefore need a way to rate estimators.
In decision theory, we consider a cost function ¢(6,0). That is the cost we have to
pay if our estimator yields 6 when the true parameter is . Hence, cost functions
are usually zero on the diagonal, and grow when 6 and 6 get farther apart in
some sense.

A typical cost function when © is discrete and countable would be ¢(6,0) = 0.6+

When © is an open subset of R?, the most mathematically tractable cost function
is the square of the Euclidean distance ¢(6,0) = ||0 — 6]|2, or more generally
any quadratic cost function (8 — 6)TG(0 — 6) for a positive matrix G, possibly
depending on 6.

Since 6 is a random variable, we want to minimize the expectation of the cost,
called the risk at point 0:

ro(0) = /Q (0, 6)dqgo (8). (1.6)

3More generally, we may be interested merely in a function f of §. However, we can always
use (6, f(0)) as parameter. We then choose the cost functions introduced below so that they
depend only on f(0).
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However, we cannot directly minimize this expression, since the best guess de-
pends on 6, which is unknown. We must then find a way to choose an efficient
estimator for any 6 we are likely to encounter. There are mainly two approaches.
A favourite of physicists is the Bayesian paradigm, where we assume the exis-
tence of an a priori probability law on the parameter §. Mathematicians often
prefer minimax criteria, where a strategy is rated by the worst case.

Bayesian criteria

We have considered our data to be X with probability law p. We assumed that
the only information we had was the experiment, the set we know p belongs to.

Suppose now that we have more information. Namely, we are told beforehand
that 6 is chosen at random with a probability law 7. Then, on average, the best
estimator would be the one that minimizes the average of the risk (1.6), that is:

m@::éﬂmmm
://demww. (L.7)
e JO,

From the Bayes risk of a specific estimator 6, we can write the Bayes risk asso-
ciated to the prior 7 as the infimum of the risks for all 6:

R, = inf Ry(0). (1.8)
6

The weakness of this approach is that there is no reason why there should be an
a priori probability law on O, except a delta function on the real 6... which is
exactly what we want to know. We have to choose a prior and consider it as the
real one. The risk of the final estimator will be underestimated, however.

The main strength of a Bayesian estimator is the optimal use of the information
we get from measurements, given the prior. The prior corresponds to a priori
information, which is generally wrong. The best priors try then to minimize
the information in the prior*. For a finite ©, we usually choose equiprobability
a priori for each possible 6. For an open precompact subset of R?, we choose
Jeffreys [1946] prior, proportional to the square root of the Fisher information
(1.13) defined below. A pointwise analysis shows that these estimators are often
very good estimators.

4Subjective Bayesians consider the probability laws as degrees of belief. Hence they can use
any prior based on expert information.
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Bayesian estimators can be computed through the calculations of a posteriori
distributions. In some simple cases, these can be carried out explicitly and the
estimator is the barycenter of the 6 with weights the likelihoods. In more complex
situations, we can resort to Monte-Carlo Markov chains.

Minimax criteria

The mathematician is either pessimistic or megalomaniac, and assumes he plays
against the Devil. Therefore, he wants to design a strategy that will be efficient
whatever the real 6 is. Hence the benchmark of an estimator 6 is its value in the
worst case:

R (0) = sup ro(0). (1.9)

The minimax risk is the risk of the best possible estimator:

Ry = inf Rpr(0) = inf sup rg(6). (1.10)
0 6 0

The weakness of this method is that we might have to worsen much an esti-
mator on intuitively “many” 6 for it to be efficient on some special cases. The
workaround is to require adaptiveness, that is, minimax efficiency on a whole class
of subsets of {py}. The latter technique is essentially used for non-parametric
statistics.

The interest of these methods is that they require no assumption. They give an
efficiency we know we attain in reality, as long as the experiment (or model) itself
was right.

Links between Bayesian and minimax criteria

The main link between the two criteria comes from the following remark. If a
strategy 0 is Bayes optimal, and such that the risk of § does not depend on 6,
then 6 is also minimax optimal.

Indeed, for any 7, the Bayes risk of € is more than the minimax risk:
R.(0) < suprg(0) = Ra(0), (1.11)
6
with equality if and only if the risk at 6 is the same m-almost everywhere.

Under some conditions, a converse statement is true: a minimax estimator is
optimal for some precise prior, the one for which the Bayesian risk is maximal.
We discuss similar points in Chapter 2.
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Example

We compute the risk of the aforementioned estimator for the Gaussian shift
family (1.4). The law of 0 is the law of the original data, that is the normal law
N(9,Z71). So that

ro(0) =g [(0-8)TG(0 — 0)]
=Tr(GZ™Y). (1.12)

This risk at point 6 does not depend on 6, so that the same value is the minimax
risk and the Bayesian risk for any prior of the estimator. We shall see below that
the estimator is minimax for the model.

The remainder of the section gives a quick summary of what risks we can expect
in regular enough cases, for quadratic cost functions.

Fisher information

The risks we give above depend on the question (the cost function) and on the
experiment {pg, 0 € ©}, but not on any particular estimator. We may then read
information about them directly on the experiment.

The most important notion to that end is the Fisher information matrix. It is a
local notion, that can be interpreted as a measure of how fast we can distinguish
pp from the surrounding pgiqg- The Cramér-Rao bound described in the next
section makes that explicit. Notice that in the following, we need some regularity
in the model. Twice differentiable is more than enough.

The Fisher information at point 6 = (6,)a=1...q4 is given by

7,(60) = [ RSN SR ), (113

The Fisher information matrix is positive definite, and defines a metric on ©,
which is invariant by any smooth change of variables. This fact can be viewed as
the most basic connection between statistics and differential geometry. Differen-
tial geometry can be used to study higher-order asymptotics, as exemplified by
Amari [1985].

Developing the logarithms of products, it is easily seen that having n samples of
the data multiplies the Fisher information by n, that is Z(")(8) = nZ(!) () where
Z(") is the Fisher information matrix of the experiment £ = {ps",0 € O©}.
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Crameér-Rao bound

We can use the Fisher information matrix to derive a lower bound on the variance
matrix of locally estimators:

/ (0 —0)(0—0)"dge(d) > Z71(0). (1.14)
0

The bound holds® for all locally unbiased estimators 6, that is as long as
f@dL]g(e) =6 and 8/891f9JdQQ(9) = 5i,j-

An immediate consequence is that, for locally unbiased estimators, and a quadratic
cost function (0 — 6)TG(0 — 0), we get this lower bound on the risk at point 6:

ro(0) > Tr(GI ™). (1.15)

This bound is known to be asymptotically sharp. Indeed, a n-sample experiment
increasingly resembles a Gaussian shift experiment, for which it is sharp. The
precise explanation comes from the theory of convergence of experiments by Le
Cam, that we further sketch in Section 1.6.1.

Examples

We compute the Fisher information for the Bernoulli experiment, at point 6
different from 0 and 1. The expression is slightly easier since we have only one

parameter.
(d1;19(9)>2+ (1-0) <d1n((2119— 9))2

L1
1-46

1

0(1—0)

7(0) =

>

S

From that and our previous remark for n samples, we see that Z(0) = n/(6(1—0))
in the binomial experiment &y, .

A slightly more tedious calculation would show that the Fisher information ma-
trix of a Gaussian shift experiment is the inverse of the variance of the Gaussians.

5Superefficient estimators such as Stein estimator prove that we cannot simply drop the
unbiasedness condition. However, adding some technicality (essentially considering efficiency
on a whole neighborhood of 0, through either a Bayesian or a minimax approach), we can
suppress the necessity of unbiasedness.



10 Introduction

Hence our choice of notation in equation (1.4). Moreover, after comparison be-
tween the bound (1.15) and the risk (1.12) of the estimator consisting in X itself,
we obtain optimality of the latter estimator among the class of locally unbiased
estimators.

We now try to give the equivalents of those notions in the quantum world.

1.1.2 Quantum Objects and Operations

The books by Helstrom [1976] and Holevo [1982] are the usual references for
quantum statistics. We also add the more recent review article by Barndorff-
Nielsen et al. [2003]. As already mentionned, we have summarized in Table 1.2,
on page 25, the most basic ingredients of quantum statistics, with Table 1.1 for
classical correspondance on the page before.

States, density operators

The basic object in quantum probability is the state. The state is the equivalent
of a probability law.

We define it over a Hilbert space H. Its mathematical expression is given by a
density operator.

Definition 1.1.1. A density operator p over a Hilbert space H is a trace-class
operator with the following properties:

o Self-adjointness: p is self-adjoint.

e Positivity: p is non-negative.

e Normalization: Tr(p) = 1.
Those are the equivalent of conditions for probability measures: probability mea-

sures are real (= self-adjointness), non-negative (= positivity) and normalized
to 1 (= normalization).

For finite-dimensional Hilbert spaces, the operators are matrices, and density
matrices also satisfy the above conditions. The real dimension of the manifold of
states is d2 — 1 if the complex dimension of H is d.
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Example: Qubits

The most elementary situation arises when dim(H) = 2. Physically, the system
could be an electron spin. Those states are called qubit states and heavily used
in quantum information.

We define Pauli matrices as
0 1 0 1 1 0
Op = [1 O] , oy = [—i O] , 0, = {O _J . (1.16)

Self-adjointness implies that a density matrix must be a linear combination of
those matrices and the identity 1. Positivity and normalization further impose
that:

1 S -
= = T < .
p=35(1+0-5), A=<, (1.17)

with & = (04, 0y,0.) a vector of matrices.

We see that we already need three real parameters to describe a qubit state,
confer the one parameter we need to describe a probability law on a classical
two-outcome space.

Pure states

The set of classical probability measures can be seen as the convex hull of delta
functions. Similarly, the set of states is the convex hull of pure states.

Pure states are characterized by being rank-one operators, with eigenvalue one.
We can write them |¢) (1|, where |¢) is a norm-one vector of H. Pure states can
thus be represented as points of the projective space associated to H.

They are very important: many treatments of quantum mechanics feature only
pure states. General states can be seen as a classical mixing of pure states.

Unlike for delta functions, where we merely draw a random variable with the
unknown law, there is no measurement that can identify unambiguously any
pure state, even if we know beforehand that the state is pure. This fundamental
difference with the classical world is a hallmark of non-commutativity between
different states. The study of pure states in themselves is already challenging.

For qubits with the above parameterization, the pure states correspond
to ||f|| = 1. This parameterization by a sphere, called the Bloch sphere, gives a
graphical intuition for problems on qubits.

The real dimension of the pure states is 2(d — 1) if dim H = d.
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Example: Coherent states

Qubits are the paradigm for finite-dimensional quantum states. The other fun-
damental family of states is that of coherent statesS.

Those states live on the Fock space” F(C), that is the infinite-dimensional Hilbert
space /2(N). We denote {|k)}ren the canonical basis on ¢?(N). Physicists call
|k) the k-th Fock state.

States on Fock spaces are states of the harmonic oscillator, an example of which
is the state of monochromatic light (laser). We are thus on the playground of
quantum optics. Among those states, coherent states are in some way the most
classical: they saturate Heisenberg uncertainty relations.

They are given by one complex, hence two real, coefficient §. Since they are pure
states, we can describe them with a vector in F(C), rather than an operator®:

10) = exp(—|60]>/2) Z% k) . (1.18)
k=0

Multipartite states, entangled states

Let us consider two quantum objects p; and ps on H; and Ho. They can be seen
as a single quantum object on H = H; ® Ha, with state p = p1 ® p».

Any state on such composite Hilbert space is called a multipartite state. Now
some multipartite states cannot be written as Y ¢;p% ® p with positive ¢;. We
might need some negative ¢;. In other words, those states are not a classical ran-
domization of a choice of a pair of states. They contain an intrinsically quantum
coupling. They are called entangled states.

Let us prove they do exist. We write dim’H; = d; and dim’Hy; = ds. Hence
dim ’H = didy. Pure multipartite states are pure states on H, so they constitute
a 2(didy — 1) manifold. On the other hand, a pure state of the form > ¢;p} ® p}
with positive ¢; only allow one term in the sum, with both p; and ps pure states.
The corresponding dimension is 2(dy + d2 — 2) < 2(d1d2 — 1). Hence there are
many entangled pure states.

6More generally, all possibly squeezed Gaussian states play an important role in quantum
optics and, as we shall see, in quantum statistics. We stick to coherent states for simplicity of
the example.

"Multidimensional coherent states are tensor products of coherent states on the tensorized
Fock space F(C%) = F(C)®4,

8We use the notation |0) instead of the usual ket |0) so as to avoid confusion with Fock
states, in particular when 6 happens to be a positive integer.
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A typical example are mazimally entangled states, that is states of the form
|W) (U], with |¥) = ﬁ2}¢i> ® |¢"), where Hy = Hy and {[¢")} is an or-
thonormal basis of H;. As their name imply, they carry as much entanglement
as possible.

Entanglement may be the single most basic and pervasive resource in quantum
information. It lies at the heart of quantum teleportation, most quantum cryp-
tography protocols and the increased processing power of a quantum computer.
Literature on the subject is too daunting to be even scratched upon. In quantum
statistics, apart from the problems linked to estimating entangled states, they
can be used to speed up estimation of quantum transformations.

Actions on states

In the classical case, we noticed that giving an estimator of a parameter 6 or
more generally of any function of 6 was the same as transforming our initial data
to get a new random variable Y with law T'(py).

In the quantum case, the two notions are distinct. Indeed, transforming the data
means getting a new quantum state, that is an operator on a Hilbert space. States
undergo a transformation when they are sent through a channel. An estimator of
a classical parameter, on the other hand, is a classical quantity. We then end up
with a classical random variable. We retrieve this classical data from the state
through a measurement.

If we merely want to consider estimators, why are we also interested in channels?
Indeed, applying many channels and then a measurement can be summed up to
using only a more complex measurement,.

The first reason is that we might transform our states to a new family for which
we know what measurement to use. In fact, the whole aim of strong local asymp-
totic normality, whose study constitutes most of this thesis, is to transform an
experiment to a quasi-equivalent and easier one.

Secondly, channels describe physical transformations. We might want to study
the transformation itself rather than the state. Typically, the physical transfor-
mation could be generated by a force we want to measure. We dwell on these
matters in Chapter 3.

We call instrument a function yielding classical and quantum data out of a quan-
tum input. Real measurement apparatuses are essentially instruments, even if
we may forget about the outcome state. In particular, continuous-time mea-
surements are common in practice. Typically, we measure the electromagnetic
field after interaction with matter, as in Chapter 7. These measurements can be
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seen as a sequence of infinitesimal instruments, and writing the corresponding
evolution equations is the purpose of quantum filtering, pioneered by Davies and
Belavkin [Bouten et al., 2006, for an introduction].

Measurements, POVMs

If we want to make classical statistical inference on the unknown parameters, we
have to translate our quantum information to classical information. To that end,
we apply a measurement. Since mixed states are classical mixing of states, we
require linearity of the transformation. The outcome should always be a classical
probability law. We deduce from that the following form of physically allowed
measurements:

Definition 1.1.2. A positive operator valued measure, or POVM, over a mea-
sured space (Q, A) is a set {M(A)}aca of bounded operators on H such that:

o M(Q)=1y.
o M(A) is positive.

e For any countable collection (A;)ien of disjoint A;, we have M(|JA;) =

>0 M(A;).

We notice that those are exactly the usual axioms for a probability measure,
except that we work with operators instead of real numbers. We call each M (A)
a POVM element.

Applying a measurement M on a state p yields a probability law P, on (2, A),
given by Born’s rule:
P,(A) =Tr(pM(A)). (1.19)

In Chapter 4, we scrutinize a specific order relation on POVMs.

A few remarks are in order. First of all, we can include any classical processing of
the data in the POVM. Indeed, applying a measurement M and then a Markov
kernel 7" (defined by (1.5)) on the output random variable is the same as applying
the measurement N on (€, B) with N(B) = [, p,(B)M(dw). So that working
on POVMs is equivalent to working on estimators.

Secondly, we cannot in general measure simultaneously M; and Ms on (94, .4;)
and (Q2, As2). In contrast to the classical case, where we could have simultane-
ously the results of applying 77 and T,. Indeed, measuring both M; and M,
means measuring N on (€ x Q2) with N(A4; X Q2) = M;1(A;) and N(23 x Ay) =
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Ms5(As). An easy counterexample illustrating the role of non-commautativity is
given by M; and M, both defined on {0, 1}, with

mo= |- mm= [,
wodf ] weni[ ]

All those matrices are rank-one. We would now need N(0,0)+ N(0,1) = M1(0).
Since all POVM elements are positive, we have M7(0) > N(0,0). Since moreover
M;(0) is rank-one, we have N(0,0) = ¢;M7(0) for some 0 < ¢; < 1. We also
know N(0,0) + N(1,0) = M2(0). So that N(0,0) = caM2(0). The only solution
is ¢4 = ¢a = 0 and N(0,0) = 0. The same holds for N(0,1), N(1,0) and N(1,1).
On the other hand we need N({0,1}?) = 1¢2. Contradiction.

Finally, all those measurements are believed to be physically feasible. However
they might be very hard to implement in practice. In particular, if the state is a
multipartite state, it can make sense to restrict our attention to smaller classes
of measurements. Notably, if different people hold different particles in different
places, they cannot implement a general measurement, even if they cooperate.
The best they can do is: one of them measures his particle (possibly with a
non-trivial output quantum state), tells the result to the other, who chooses a
measurement on his particle, keeps the output state and tells the result to the
first one, and they iterate on the output states. Such measurements, using only
local quantum operations and classical communication, are dubbed LOCC: Local
Operations, Classical Communication.

In quantum information when the (usually entangled) quantum state is divided
between several people, we naturally restrict to LOCC measurements. In quan-
tum estimation of a state with n copies of the initial state, we are at least in-
terested in what can be achieved through LOCC measurements, much easier to
implement than general (collective) measurements. We can in general really gain
precision with collective measurements. This might be surprising from the point
of view of physicists, since the n copies are totally independent. In some cases, no-
tably when we know that the unknown state is pure [Matsumoto, 2002], collective
measurements do not yield much improvement over LOCC measurements. This
might be surprising from the point of view of mathematicians, since the space of
collective measurements is much bigger than that of LOCC measurements.

Example: Spin 2

Consider the binary outcome measurement on qubits given by
10 1 0 0 1
e e A R A

5 1-o0,).
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146-5

This measurement applied to the state p = =55=% yields T with probability

(M) = 3 (TrAMD) + Y 0 TrloaM (1)) = 2(1+62).

a=w,y,z

In particular, if , = 1, then the outcome is always T. Conversely, if 6, = —1, the
outcome is always |. On the other hand, if 6, = 1, so that 6, = 0, the outcome
is either T or | with probability one half, even though the state p is pure.

This kind of measurements, where all the POVM elements are projectors, are
also called observables. They only yield information on the basis in which all the
POVM elements are diagonal. Notice that usual axioms of quantum mechanics
restrict measurements to observables. However, we get back all the POVMs by
applying an observable on a multipartite state of which our state is only a part
(Naimark theorem).

Heterodyne measurement

The heterodyne measurement gets its name from the technique used to implement
it in laboratory, with lasers that are off-phase. This POVM with outcome in C
has a mathematical expression given by:

M(A):%/A|z)(z|dz, (1.20)

where |z) is a coherent state (1.18).
The probability law of the outcome when measuring p has thus a density (z|p|z)

with respect to Lebesgue at point z. In particular, the law of the result when
measuring a coherent state is a Gaussian:

1 1
(d2) = ~(:10)(0]2) = = exp(~]0 — 2I?) (1.21)
If we consider all the complex 6, we recognize a classical Gaussian shift experiment
(1.4) in R2.

More generally, the probability density function of the outcome of the measure-
ment on a state p is called the Husimi function of the state:

H,(d2) = ~(slpl-). (1.22)

States whose Husimi function is a Gaussian are called Gaussian states.
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Channels

We now describe how to make a new quantum state out of the original state.
Notice that the first state is destroyed in the process.

A physical transformation of a quantum object takes a state and yield another
state, possibly on a different space. It is described by a channel, the equivalent
of a Markov kernel.

We recall that a positive superoperator £ is a map such that for any positive
operator A, the output £(A) is also positive.

Definition 1.1.3. A channel & is a map from the set T (H1) of trace-class op-
erators to T (Ha), with the following properties:

o Linearity: & is linear.

o Complete positiveness: for any auxiliary space Hs, the superoperator EQId :
T(H1®Hsz) — T (Ha®Hs) given by (E@1d)(pR0) = E(p) @0 is positive.

o Trace-preserving: Tr(E(A)) = Tr(A).

Notice that Markov kernels satisfy all these criteria, when replacing operators by
measures”.

The necessity of linearity can be proved from the axiom of unitary evolution!'?
and including the observer in the system.

We want the image of a state to be a state, so a positive operator must be sent
to a positive operator. To understand why we need complete positivity, we must
consider a possibly entangled state on H; ® Hs. If we transform states on Hj,
we also transform states on H; ® Hs, with £ ® Id as the channel. Therefore the
latter transformation must be positive. Hence we need complete positivity.

Finally, the output is a state if the input is a state, and both are trace-one, so
trace must be preserved.

We often consider the channels in the (pre)dual picture, that is as acting on the
elements of B(H). So that Tr(E(p)A) = Tr(p€.(A)) for all state p and all bounded
operator A. In this case &, is also a completely positive linear map, but we must

9In the more general setting of C*-algebras, the spaces of functions are commutative C*-
algebras and all positive superoperator on those spaces is completely positive.

10Quantum mechanics state that the evolution of a system is given by p(t) = U(t)p(0)U* (t),
where U(t) is a unitary operator that can be computed from the self-adjoint operator H called
the Hamiltonian. If the Hamiltonian does not depend on time, then U(t) = e**H.
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replace the trace-preserving condition by the identity-preserving condition, that
is £.(1) = 1.

Notations: We usually write £ or F for channels. Abusing notations, we usually
drop the star for the pre-dual and also write £ in that case. However, those
standard notations are also the standard notations for experiments. So that in
the chapters where we use that notion, we use for channels the same notations
as for Markov kernels, that is T, T}, S, Sy,.

Kraus representation, Stinespring theorem

The above definition does not make it obvious to deal with channels. Fortunately,
two representation theorems describe completely positive maps in a more usable
way. The book by Paulsen [1987] is a good reference on those matters.

Kraus [1983] representation is the main tool when the Hilbert spaces are finite-
dimensional.

Theorem 1.1.4. A completely positive map € from M(C™) to M(C%) can be
written as
£(A) = R.AR;, (1.23)

with « running from 1 to at most dids, and Ry, € My, 4, (C). Star is the adjoint.

Moreover, the channel is trace-preserving if and only if > R Ry = 1ca; .

The decomposition is not unique. The dual channel is given by A — >" R* AR,,.

In infinite dimension, we rather use the more powerful Stinespring [1955] dilation
theorem!?®.

Theorem 1.1.5. Let € : B(H1) — B(H2) be a completely positive map. Then
there is a Hilbert space K and a *-homomorphism (or representation) 7 : B(H1) —
B(Hz) such that

E(A) =Vr(A)V™, (1.24)

where V : K — H is a bounded operator.

Moreover, if £ is identity-preserving, then V is an isometry, that is VV* = 14.

If we further impose that K is the closed linear span of 7(A)V*H, then the
dilation is unique up to unitary transformations.

H1n fact, Stinespring theorem was proved for any unital C* algebra as initial space. It can be
shown to imply Kraus representation, but also the GNS representation, a staple of C*-algebras.
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Instruments

We give the representation of instruments for finite dimensions'?. To further
simplify notations, we restrict ourselves to the case when the measurement has
a finite number of outcomes.

Definition 1.1.6. An instrument is given by a set {N, .} of matrices from Hy

to Ho, such that
DD NS Nek = Tag,.
w k

The corresponding measurement is given by
M(w) = NS pNok,
k

and the output state when the result of the measurement is w is given by

> NN,
New) =6y

The output state lives on Hs.
We now have another way to understand why we cannot measure two POVMs
simultaneously: after measuring M, the quantum object, that is our data, has in

general been perturbed. In fact, if the measurement is rich enough, the output
state depends only on the outcome w, and not anymore on the input state.

We now have all the tools to copy the setup from classical statistics to quantum
statistics.

1.1.3 Quantum statistics

Usually, we work on quantum states; occasionally we may want to gain knowledge
on a channel. We treat the two cases separately.

States: What we have, what we can do, what we want to know

In analogy with the classical case, we are usually given a quantum state p, that
we know to be in a set
E={pp,0 € O}. (1.25)

121n infinite dimension, we have to use the C*-algebra setting and an instrument is merely a
channel between C*-algebras.
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We again call this set an experiment, or a model.

With the examples of the qubits, the usual models would be the 3D full mixed
model &, = {pp, ||0]| < 1} and the 2D pure state model &, = {py, 0] = 1},
where we have used our former parameterization for the state pp (1.17). When
having n copies of the state, we replace pg by pgz’".

Another typical experiment would be & = {pg,0 € {61,02}}, where the usual
question is to discriminate between the two possible . We study this kind of
problem in Section 1.2 and Chapter 2.

We can a priori use any sequence of instruments on the state. If we merely want
classical information on 6, we may restrict to measurements M, that is POVMs.
We then associate to M an estimator, say €, with law depending on the true
parameter 6 through

g0(B) = P, [é € B} = Tr(peM(B)).

Depending on the circumstances, we might allow any physical measurement, or
a smaller class, such as separate or LOCC measurement.

Finally, what we want to know is the same as in the classical case. We want
to know some function of the parameter 6. So that we want to estimate 6, and
we rate our estimator 6 through a cost function ¢(6,60). As before, the most
common cost functions are (1 — 59) 4), if the parameter set is finite, and quadratic

cost functions (§ —0) T G(A — 6) for a positive matrix G, if the parameter lives on
an open subset of R?. The weight matrix G might depend on 6.

We can again write the risk (1.6) of an estimator at point 6. Since we do not
know 60, we then either use the Bayesian risk (1.7) for an appropriate prior, or
the minimax risk (1.9), and optimize (1.8, 1.10) over the available estimators.
Notice that the last stage depend on the set of allowed estimators.

Quantum Fisher information and Cramér-Rao bounds

We can try to mimic the definition of classical Fisher information and get similar
bounds on variance of estimators. In fact, we can build such an equivalent for
any choice of a logarithmic derivative. We choose the right logarithmic derivative
(RLD), defined for each # and each coordinate 6, as a matrix A\, ¢ such that:

0
TZZ = poras (1.26)

on the support of pg.
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Then, scrutinizing definition (1.13) while keeping in mind that Born’s rule (1.19)
is an equivalent of classical expectation, we define the quantum Fisher informa-
tion matrix by:

Ja,5(0)=Tr(poAs 050 (1.27)

Helstrom [1976] proved that the covariance matrix of any locally unbiased esti-
mator 6 was bigger than the inverse of the quantum Fisher information matrix.
Hence, for any quadratic cost function (§ — 6)TG(0 — 0) we have the following
bound on the risk (1.6):

ro(6) > Tr (Re(Gl/QJ_l(G)Gl/Q) + }Im(Gl/Qj_l(G)Gl/Q)D. (1.28)

Notice that we do not simply write the right-hand-side as Tr(GJ ~1(0)) since our
Fisher information matrix is self-adjoint, but not real.

Holevo [1982] further improved!'® on this bound for a parameter of dimension p
and a system on a Hilbert space of dimension d:

ro(f) > inf Tr (Re(G1/2Z(X')G1/2) + }Im(G1/2Z(X)G1/2)|), (1.29)
X

where Z; ; = Tr(pg X;X;), and X = (X1, ..., X,) is a vector of d x d self-adjoint
matrices constrained by 0/00;(Tr(pX;)) = 0; ;. The bound applies for all locally
unbiased estimators. Hayashi and Matsumoto [2004] proved that this bound is
asymptotically sharp for all qubit models. Like in the classical case, the under-
lying reason is convergence to a quantum Gaussian shift experiment. Hayashi
and Matsumoto’s proved that the optimal risk ry(#) was converging to that of
the Gaussian shift experiment. In Part II, we build a theory showing that any
reasonable function of the qubit models converges to its value on a Gaussian shift

experiment.

The bound might look horrible, but it is often computable. For example, if the
parameter 0 is d(d — 1) dimensional, there is only one possible X. That is the
case when our experiment is the full mixed model. Moreover, it can be proved
to scale like n when we have n samples. We get back the square root speed of
convergence of regular classical models.

These bounds are valid for all physically allowed measurements. If we restrict
to smaller classes, we might get tighter bounds [Nagaoka, 1991, Hayashi, 2005a,
Gill and Massar, 2000].

13The Fisher information matrix (1.27) is an acceptable Z(X), implying both existence of
the right-hand-side of equation (1.29), and that it is better than Helstrom bound (1.28).
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Example: Coherent shift experiment

We consider the following quantum experiment on the Fock space:
Eqgs = {10)(0],0 € C}.

Then Yuen and Lax, M. [1973] and Holevo [1982]** have computed the Cramér-
Rao bound (1.28) and obtained Tr(G)/2 + /det(G). If G = 1, this is 2.

Using the heterodyne measurement (1.20), we transform our quantum experiment
into a classical Gaussian shift experiment £,s = {N(0,2-1),0 € C}. Hence, with
G =1, we read on our calculation for the classical case (1.12) that the risk at
point 6 is 2.

Hence the heterodyne measurement saturates the Cramér-Rao bound for the
identity weight matrix. Slight modifications of this measurement, using so-called
squeezed coherent states instead of the coherent states (1.18), achieve optimality
for any weight matrix. It should be noticed, however, that unlike in the classical
case, the optimal measurement depends on the weight matrix.

Example 2: Full mixed model for qubits

In the full mixed model for qubits &, the Cramér-Rao bound!® for the cost
function (8 — 0)T (6 — 0) is known to be 3 — 2|6]].

On the other hand, we also know that [Hayashi and Matsumoto, 2004, for this pre-
cise form|, when only local measurements are allowed, the bound is (2,/1 — [|0]])?.
We have here an example where using collective measurements improves the speed
of approximation, for all ||0]| < 1, that is for all mixed states.

Channels: What we have, what we can do

We have set up our framework when we are given quantum states. In other
applications, we want to learn about machines that transform quantum states.
In classical statistics, this problem corresponds to understanding what a black box
does. Mathematically, those machines are quantum channels. Ballester [2005a]
notably conducted his thesis on the estimation of unitary channels, corresponding
to natural evolution of a quantum system. Ji et al. [2006] provide another nice
recent, resource.

MFor arbitrary weight matrix G.
15 Hayashi and Matsumoto [2004] have computed it for a general weight matrix, and proved
its attainability in all cases.



1.1 Statistics 23

In that case, we are not given anymore a “quantum probability law” p, but rather
a channel T : B(H1) — B(H2) within a set

5={T9,9€9}.

To gain knowledge on T', we must send a state through it, and we get a more
usual quantum experiment. However, we might use several methods. The most
obvious would just be to send a well-chosen state p. We get T'(p) as an output,
and we remain with the model

£ = {Tu(p).0 € O}.

However, we may also use an ancilla: instead of learning about 7', we equivalently
learn about T'® Id : B(H; ® H3) — B(H2 ® Hz). We send in a multipartite,
entangled state p and get:

€2 = {(Ty © Id)(p),0 € O}

When allowed to probe several times the channel, a first reflex might be just to
send in n copies of the same state. We get:

gy ={(Ty(p))®",0 € ©}.

However it might be more efficient to send in a big entangled state p € B(H1)®".
We would then get the very general experiment:

&l = {(T9)*"(p).6 € O}

To top it all, we might want to add an ancilla to the latter setup:

g ={((Ty)*" ® 1d)(p),0 € ©} .

All these distinctions are not superfluous'®. The first strategy is easier than the
second, but Fujiwara [2001] proved that sending half of a maximally entangled
state through an unknown qubit channel and keeping the other half as ancilla
allows to estimate three times faster asymptotically than any strategy of the first,
or third types.

In a yet much more impressive way, the use of entanglement (fourth and fifth
strategy) allows estimations of unitary operations with quadratic square error
scaling as 1/n?. In contrast, any of the first strategies would yield n copies of a

16Even more complicated strategies involve feeding in again the output state...
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| Classical

| Simple classical example

Probability space
(€, A)

{0,1}

Probability measure

Po

(%(14—9),%(1—9))

with —1 <6 < 1.

Dirac measure

(1,0) or (0,1)
given by § = —1 or 1.

Estimator with value in measured
space (X, .A)

X: Q0 — X

where (22, B, q) is a probability space
with known gq.

X1
with _Xi:QQ

—  Xi(w2)
— X fori=0,1,

where (22, B, q) is a probability space
with known q.

Probability law of the estimator

Py [X € Al = (po ® q)(X 1 (A)).

Py [X € Al = (1 - 0)q(X5 ' (4))

ol e

+5(1+0)a(X7 ' (A)).

[\

Markov kernel (given by (1.5))

T

po — po(0)10 + po(1)71

with 79 and 71 probability laws on the
same space

Figure 1.1: Basic corresponding quantum and classical notions
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| Quantum | Simple quantum example

Hilbert space
(CQ
H

State (given by Definition 1.1.1) ;
1
Po 5 (1«:2 + Zl 9i0i>

with o; given by (1.16) and ||0|| = 1.
Pure state Rank-one pg, equivalent to [|0]| = 1 in
[1) (] the previous formula.

with (¥|y) = 1.
POVM (given by definition 1.1.2), | No simplification
with values in measured space (X, .A)

M ={M(A)}aeca

Probability law of the measurement | No simplification

Py [X € A] = Tr(ppM(A)).

Channel (given by Definition 1.1.3) If dim(K) = d < oo, then
ETMH)—T(K). 2d

Ep) = S RupoR,
a=1

with Ry € Mg2(C) and ), R: R, =
1c2.

Figure 1.2: Basic corresponding quantum and classical notions
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state, and the quantum Cramér-Rao bound (1.29) ensures that the rate cannot
be any better than 1/n.

In any case, choosing what we allow is only part of the problem. The most
challenging question remains to know what state to send in. The output quan-
tum experiment does depend a lot on that choice. When using only an ancilla,
maximally entangled states are the natural choice. When we deal with the huge
entangled input states of the fourth experiment, group theory provides guidelines.

We study discrimination between two Pauli channels in Chapter 2.

Chapter 3 deals with estimation of unitary channels on finite-dimensional spaces,
and the corresponding section 1.3 of the introduction dwells further on the history
and references.

1.2 Discrimination

1.2.1 DMotivation

Alice and Bob want to establish and share a secure cryptographic key. Alice then
sends a sequence of particles to Bob, where each particle is either in state |¢1)
or in state |1)2). These states are not orthogonal. Yet, Bob can measure each of
them and get one of three possible results: the state is [11), |¢2), or “I don’t know
the state”. When he gets a definite result, the state is always correctly identified.
When he gets the inconclusive result, Bob merely phones Alice to discard this
particular bit. For maximal efficiency, Bob wants a measurement that yields a
conclusive result as often as possible.

As it happens, Eve is eavesdropping. If she is to have any hope not to be noticed,
she must send a state to Bob, whatever the conclusion of her measurement. In
contrast to Bob, she is not allowed to say “I don’t know”. Hence, her best strategy
consists in using the measurement that is most often right, even if she does not
know for sure when it is right. As the states are not orthogonal, she will anyhow
make a mistake in the long run and she will be spotted.

This quantum-key-discrimination protocol was suggested by Bennett et al. [1992].
It features two basic examples of quantum discrimination problems. The general
framework is the following. We are given a quantum object, generally a state.
We know it belongs to a finite set. We must guess which one it is. To choose
an optimal strategy, we need a cost criterion. The most natural two are those
appearing in the above example. Bob’s criterion is called optimal unambiguous
discrimination, Eve’s is state discrimination with minimum error.
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Historically minimum error was studied first, already by Helstrom [1976]. In-
deed, it corresponds to hypothesis testing, a very important subject in classical
statistics. Ivanovic [1987] introduced unambiguous discrimination. In contrast
to minimum error discrimination, the corresponding classical problem is triv-
ial. However, there are more obvious connections to other quantum information
subjects, such as exact cloning [Chefles and Barnett, 1998b] or entanglement
concentration [Chefles and Barnett, 1997].

1.2.2 Former results

Chefles [2000] and Bergou et al. [2004] have written recently two reviews on the
subject. They are my main sources for this historical part.

As a first remark, all previous work made use of the Bayesian framework. We
may then state more precisely Eve’s minimum error discrimination problem as
trying to find a POVM P = (Py, P») that minimizes the average error probability,
or equivalently maximizes the average success probability:

ps = T Tr(plPl) + 7o TI‘(pQPQ), (130)
with 7 the a priori probability and p; = |¢;) (1]

Bob must maximize the same expression (1.30), but with a POVM P = (Py, P», P;),
and the additional constraint that Tr(p2P1) = Tr(p1 P2) = 0. Here P; corresponds
to the inconclusive result. With our definition of a practical statistical problem
as the three points (what we have, what we are allowed to, what we want), the
difference with minimum error discrimination lies in the second point: what we
are allowed to.

Let us first follow Helstrom [1976] on the minimum error discrimination. Since
Py =1— Py, writing p1 = |¢1) (1] and [¢h2) (o], we get

ps = m2 Tr(p2) + Tr(Pi(m1p1 — T2p2)).

Hence an optimal POVM is given by P; the projector on the support of the
positive part of m; p; —m2p2. Notably, the POVM is a Von Neumann measurement,.
This solves the minimum error discrimination for two possible states, even if they
are mixed. The same strategy would also work if we added weights for different
€rTors.

Difficulties arise for minimum error when we deal with more than two states, say
N. We can write the function to be maximized in a way similar to (1.30), that
is ZZ m; Tr(P;p;). However, the trick of replacing P; by 1 — P> cannot be used,
and there is no known general solution to this maximization problem. Let us
summarize what we do know, though.
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For one thing, Eldar [2003] has shown that one of the optimal POVMs is always
a Von Neumann measurement, as long as all the p; are linearly independent.
Through the use of Lagrange multipliers, Holevo [1973] and Yuen et al. [1975b]
have given an implicit solution: the following is a necessary and sufficient condi-
tion for the POVM to be optimal:

Pi(mip; — mjp;)Pj =0,
N

> (Tkpr)Pe — mipi > 0,
k=1

forall 1 <4,5 < N.

We have analytical solutions in a few special cases [Barnett, 2001, Yuen et al.,
1975b, Andersson et al., 2002]. The most interesting case is when we have covari-
ance. That is, when 7m; = 1/N for all 7, and there is a unitary operator V' such
that VY =T and p; = V*~!p;V1~% we can apply Holevo [1982] and look for a
solution of the form P; = V*EV ~?, where Z is called the seed of the POVM. This
starting point enabled first Ban et al. [1997] for pure states, then Eldar et al.
[2004] and Chou and Hsu [2003] for the general mixed case, to derive an analyt-
ical solution. They get the famous “square-root measurement”, which reads for
pure states |¢1):

P, = B2 |y;) (yy| B~V/?
with B =) "[ehi) (.

Though we have an explicit solution for testing two states, it is hard to know ex-
actly the rate at which our guesses get better if we have n copies of the same state,
so that we have to discriminate between p{" and o?". Recent work has focused
on knowing this rate, and what classes of measurements can attain it [Hayashi,
2002b, Nagaoka and Hayashi, 2007, Nussbaum and Szkola, 2006, Audenaert et al.,
2007, Kargin, 2005]. They essentially make use of quantum Chernoff bounds or
Sanov’s theorem, that is quantum large deviations theory. These results also
apply to the minimax setting.

Finally, since we try to maximize a linear functional under linear constraints
(that is P must be a POVM), semi-definite linear programming yields efficient
numerical treatment [Jezek et al., 2002].

Riis and Barnett [2001] have experimentally implemented Eve’s situation, that
is discriminating two qubits, whereas Clarke et al. [2001b] has realized the dis-
crimination of the trine and tetrad states, i.e. three and four pure states that
are the vertices of a regular triangle and a regular tetahedron.
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Let us go back to Bob’s problem, unambiguous discrimination of two pure states
[¢1) and |i2). For the equiprobable prior m3 = mo = 1/2, Ivanovic [1987], Dieks
[1988] and Peres [1988] have found the optimal measurement. The corresponding
probability of getting a conclusive result is then called the IDP limit:

ps =1 —[(¥1]¢a)]. (1.31)

How do we get there? For one thing, the only relevant part of the space is
that spanned by [¢1) and |¢2), so that it is two-dimensional. We may thus
consider the basis biorthogonal to (11, ¥2), that is a non-orthogonal basis (w1, ws)
characterized by (w;[¢;) = d;; for 1 < 4,j < 2. Moreover, the POVM element
Py must satisfy Tr(P1p2) = 0, or equivalently have its support orthogonal to
[th2). Hence Py = c¢1|wi){w1|. Similarly, P, = ca|ws)(wz|. We must now merely
find the best ¢; and ¢ to maximize (1.30) while keeping Py + P, < I. Then
P, =1— P, — P,. By a symmetry argument, for 7, = 79, we must have ¢; = ¢s.
So that we take the maximal ¢; such that Py + P, < I. Calculations yield (1.31).

Unambiguous discrimination, unlike minimum error discrimination, essentially
generalizes to several pure states. On the other hand, even discriminating con-
clusively between two mixed states is challenging.

Jaeger and Shimony [1995] have generalized to the case when m # m2. For more
than two pure states, we can start in the same way: we write P; = ¢;|w;){w;],
with {w; }1<i<n the bi-orthogonal basis of {#;}1<i;<n. We have then to deal with
N coefficients only. However there is no explicit general solution. Special solved
cases include the covariant one, when [|¢;) = Vi=1|yy), and VN = [ = VV*
[Chefles and Barnett, 1998a|. The main theoretical results for several pure states
are upper and lower bounds on the success probability. Zhang et al. [2001] have
proved that:

1
ps <1— N_1 Z VTGTE|(Wils) |-

1<j,k<N
Jj#k
We notice that the IDP limit saturates this bound. On the other side, Sun et al.
[2002] have shown that ps was bigger than the lowest eigenvalue of the N x N
matrix whose elements are the scalar products (¢;]1;). They have used former
work from Duan and Guo [1998], on cloning.

However, most of the literature revolves around discriminating two, or more,
mixed states. I shall be brief enough since I have not worked on that case.
Rudolph et al. [2003] have given lower and upper bounds on the success proba-
bility ps, and shown that they agree in many cases. As a by-product, they give
a solution when the rank of the density matrices is the dimension of the Hilbert
space minus one. Moreover Raynal et al. [2003] have shown we could reduce
the study of discrimination to that of two density matrices with same rank in
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a Hilbert space of dimension twice this rank. Moreover, Feng et al. [2005] has
given upper bounds for discriminating between N mixed states, and Qiu [2007] a
lower bound. Herzog and Bergou [2005], Raynal and Liitkenhaus [2005], Herzog
[2007] have given explicit solutions for a number of special cases.

Like for minimum error discrimination, Eldar [2003] has shown we can apply semi-
definite programming techniques. Furthermore, Huttner et al. [1996], Clarke et al.
[2001a] implemented experimentally Bob’s case, that is discriminating between
two pure states. Mohseni et al. [2004] also experimentally demonstrated the more
complicated situation where we distinguish between one pure and one mixed
state.

Up to this point, we have only studied discrimination between states. We can
also discriminate between other quantum objects, namely channels. We have a
channel £ and we know it belongs to the finite set {€; }1<i<x. We must then send
a known probe state p through our unknown black box £. The output state is
E(p) and we can now discriminate between the states £;(p). We are back to the
former situation, except that we must choose our input state to get the most
easily distinguishable output states. The choice of the input state may be the
most challenging part, and raises specific questions, notably whether using an
ancilla is useful.

Childs et al. [2000b] have first studied minimum error discrimination for uni-
tary channels, with an emphasis on quantum computation applications, such as
Grover’s [1996] algorithm for database searching. Sacchi [2005b] has considered
Pauli channels, as a basic example of non-unitary channel. More recently, un-
ambiguous discrimination has been applied, with Wang and Ying [2006] finding
under which conditions channels may be unambiguously distinguished, either
with one input, or several inputs. In the latter case, entangling the input state
usually improves results. Finally, Chefles et al. [2007] have gathered known re-
sults on unambiguous discrimination, and then some, in an article with quantum
computation motivations clearly stated. More work is required on the question.

Though they do not appear in this thesis, discrimination covers other aspects. A
first class of problems stems from using another optimality criterion [for example
Fiurasek and Jezek, 2003, Touzel et al., 2007, Sasaki et al., 2002]. Herzog and
Bergou [2002] have also investigated discrimination between classes of states, or
filtering. A very topical extension is the following: here, we have always assumed
we could use any physically feasible measurement. If we have a product state,
we might be unable to carry out the most general measurements and may have
to restrict to LOCC measurements. A possible application is secret sharing: find
a scheme where Alice and Bob can find what the state is if they cooperate, but
cannot, individually. Such a scheme should be symmetrical. A starting point
for bibliography is the review article of [Bergou et al., 2004], and the references
therein, or the more current work by [Owari and Hayashi, 2008].
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1.2.3 Contributions of the thesis

As T already mentionned, all previous work made use of the Bayesian paradigm,
requiring an a priori probability. My work, in collaboration with G.M. d’Ariano
and M.F. Sacchi, has been to study the minimax case, especially useful if there
is no “physical” reason to choose a prior.

Using the link between Bayesian and minimax risks, provided in Section 1.1.1,
we have given the solutions when the states are covariant. The solution is the
same as that for the uniform prior. Here comes an important difference with
the Bayesian scenario. Even for two states in minimum error discrimination, the
optimal measurement is not, in general, a Von Neumann measurement.

We have also proved that there was always a solution to the minimax minimum
error discrimination problem for any finite set of possibly mixed states p;, with
all states having the same probability of being successfully identified, that is
Tr(p; P;) does not depend on i.

Minimax unambiguous discrimination turns out to be easier than Bayesian dis-
crimination for multiple pure states: we have always an explicit solution. Sim-
ilarly to what we explain below equation (1.31), we can prove that the POVM
elements must be of the form P; = ¢;|w;) (w;|, with {w;} a basis biorthogonal'” to
{¥;}. Then the ¢; are all given by the minimum eigenvalue of a matrix depending
on w;. When there are several solutions, we can refine our minimax criterion to
choose a unique one.

We have also studied minimum error discrimination between two Pauli channels.
When we can make use of an ancilla, we have shown that maximal efficiency
could always be achieved by sending a maximally entangled state, just like in the
Bayesian case. We have also characterized the Pauli channels for which using
an ancilla improves the success probability. Interestingly, whereas a Bayesian
optimal input state can always be chosen as an eigenstate of one of the Pauli
matrices, such states might not be minimax optimal.

1.3 Fast Estimation of Unitary Operations

1.3.1 Motivation

Evolution of a quantum system without measurement is unitary. Therefore,
considering this evolution as a black box to be estimated means estimating a

T That is (¢;|w;) = ;.
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unitary operator. This may yield relevant information on the physics of the
system.

There are also many cases in quantum information where we have to estimate
a unitary operation, most often because it corresponds to an orientation of the
eigenvectors, that is the purely quantum part of a state.

With these two main categories in mind, we may give more details on the various
applications. Some of them require estimating only one parameter:

Quantum clocks Evolution of a system is given by U; = e*1. A quantum clock
consists in estimating the free parameter ¢, that is the time. Hence, we have
to discriminate between a one-parameter family of unitary operators [Buzek
et al., 1999].

Precision measurements More generally, small forces of known form and un-
known intensity show up as a phase in the evolution operator U = e'*H .
Finding ¢ is finding the force. We can notably use that for accelerometers
[Yurke, 1986].

Others ask for knowing the full operator:

Transmission of reference frames When Alice and Bob want to communi-
cate by exchanging qubits, or more generally d-dimensional states, they
must agree on what are the axes of measurement, that is the reference
frame [Holevo, 1982]. These will be rotated when sent from Alice to Bob.
Hence, Bob must estimate the rotation of these axes, that is the unitary
evolution of the qubits. Notice, however, that there are schemes for commu-
nicating without reference frames, through the use of group representations
[Bartlett et al., 2003].

Estimation of maximally entangled states Maximally entangled states are
a fundamental resource for quantum teleportation [Bennett et al., 1993]
and quantum cryptography [Ekert, 1991]. To achieve optimal efficiency,
however, Alice and Bob must know which maximally entangled state they
share, that is, what is the unitary U such that [¢)) = 2 3" |i) @ U [i).

1.3.2 Former results

To my knowledge, Yurke [1986] first noticed that a parameter in a quantum evolu-
tion could be estimated at speed 1/N? (for square errors), where N is the number
of states that have undergone the evolution. This is extremely remarkable, since
parameters can only be estimated at rate 1/N in usual classical settings.
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This kind of fast estimation, that makes use of entanglement between the input
states, saturates what the physicists call the Heisenberg limit, the fundamental
limitation on the precision of quantum measurements. Giovannetti et al. [2004]
have recently written a review paper about this kind of speed-up, mentioning
experiments. Most practical methods involve either photons obtained through
parametric down-conversion [e.g. Eisenberg et al., 2005], ion traps [e.g Dalvit
et al., 2006] or atoms in cavity QED [e.g. Vitali et al., 2006].

Acin et al. [2001] first gave the general form of an optimal input state, with non-
specified coefficients depending on the cost function, for any uniform Bayesian
optimization problem with a SU(d)-covariant cost function. When we are allowed
to send N particles through the unitary operator, it reads:

— > e v, (1.32)
Xiixj=n \/D(A) =1

where we use the notations of Chapter 3 on group representations. The coeffi-
cients c(X) depend on the optimization function, and the [1)}') are an orthonormal
basis of H*. Only the first N particles, corresponding to the right of the tensor
product, are sent through the unitary operator. Since we start from a problem
where everything is invariant under action of SU(d), it should come as no sur-
prise that the solution also is. Later on, Chiribella et al. [2005] generalized this
equation to other symmetries, and give the precise coefficients as coordinates of
an eigenvector of a matrix depending on Clebsch-Gordan coefficients.

Subsequent work has focused on SU(2). Peres and Scudo [2001] first gave a
strategy converging at rate 1/N? with fidelity as figure of merit, though the input
state and measurement were not covariant. Bagan et al. [2004a] then found the
right coefficients in equation (1.32) and achieved the same rate, with optimal
constant 72/N?. Then Bagan et al. [2004b| and Chiribella et al. [2004] both
noted that an ancilla was unnecessary. We then have to prepare half less particles.
They replace entanglement with external particles by “self-entanglement”; using
the fact that the multiplicity M(X) of most irreducible representations is high
enough in the N-tensor product representation.

Hayashi [2004] established similar results with minimax criteria. When it comes
to SU(d), Ballester [2005b| has given the only indication that the same speed
could be achieved. He has found an input state such that the Quantum Fisher
Information (1.27) scales like 1/N2. He could not find a complete estimation
procedure, though.

Notice that these high speeds cannot be generalized to estimation of arbitrary
channels. Indeed, many continuous families of channels can be programmed by a
continuous family of states py, that is we may choose a unitary operation acting
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on o ® py, and look only at the effect on . Then estimating 6 on the channels
also estimate it for pg. Because of the classical Cramér-Rao inequality (1.15), the
latter estimation is always slower than 1/N |Ji et al., 2006]. |Fujiwara and Imai,
2003] have given an explicit derivation of maximum 1/N rate for generalized
Pauli channels, and mentionned an equivalent remark by [Hayashi, 2006].

1.3.3 Contributions of the thesis

Acin et al. [2001] and Chiribella et al. [2005] have given the general form for
estimating optimally a unitary operation. However, the speed cannot be read
thereon. My work has consisted in finding coefficients c¢(X) in the state (1.32)
with which computations were possible, and proving that we again attain 1/N?
rate, in both the Bayesian and minimax frameworks. [Imai and Fujiwara, 2007]
have since independently given a differential geometric interpretation on this rate.

-

The idea was the following: computations show that ¢(\) must be almost equal
to ¢(A) for X and X differing by only one box. When \; = \; 41 for some i, we
should also take a small A. We then choose the coefficients proportional to

d

c(X) = H()\z‘ = Ait1),

and we check that we get the right rate.

1.4 Clean Positive Operator Valued Measures

1.4.1 DMotivation

We have a measurement apparatus P. We might want to re-use this costly
apparatus for different measurements. To achieve this, we may first transform
p, and then use our apparatus. The combination of the transformation and the
measurement corresponds to a new measurement apparatus Q.

This scenario, illustrated by Fig. 1.4.1, raises a few natural questions. Math-
ematically, we have a POVM P, and we obtain another POVM Q = £(P) by
applying beforehand a channel £ to the input state p. We then say that P is
cleaner than Q. This is a pre-order relation, denoted P > Q. We may wonder
whether, for given P and Q, there is a channel £ such that Q = £(P). For a
given P, what are the POVMs Q cleanness-equivalent to P, i.e. such that both
P = Q and Q > P? Yet, the first stage in understanding this relation would be
to find its maximal points: what are the clean POVMs, i.e. the POVMs P such
that Q > P implies P > Q7
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Q
p E(p) ;

Figure 1.3: We apply a channel € to p before feeding it into a POVM P. The
global operation, yielding classical data ¢ from the state p, can be seen as mea-
suring the state p with a POVM Q. We say that P is cleaner than Q.

1.4.2 Former results

The pre-order “cleaner than” was introduced by Buscemi et al. [2005], as a way to
formalize preprocessing of POVMs, as opposed to postprocessing, that is classical
processing of the classical output.

To give some perspective, let us mention some other classical orderings on POVMs
[Heinonen, 2005]:

e A POVM P gives more information than a POVM Q if it can distinguish
all the pairs of states that Q can distinguish. A POVM can distinguish
two states if the probability distributions of the output are different. Max-
imal POVMs for this order relation are called informationally complete, or
infocomplete [Prugorevcki, 1977].

e The weaker order relation “having greater state determination power than”
yields also infocomplete POVMs as maximal elements. A POVM deter-
mines a state if the probability distribution of the output can be obtained
only with this input state [Busch and Lahti, 1989, Davies, 1970].

e A POVM Q is a fuzzy version [Martens and de Muynck, 1990] of P if we
can obtain it by postprocessing the outcome of P. The maximal POVMs
are the rank-one POVMs [Buscemi et al., 2005].

Notice that if Q is a fuzzy version of P, then P gives more information than
Q. However, there is no relation between the maximal elements. We should
also notice that rank-one POVMs are the extremal points of the convex set of
POVMs, and since many optimization functions are convex, the corresponding
solutions to the optimization problem are rank-one [Helstrom, 1976].
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It turns out that the relation “cleaner than” has little to do with the former
relations. Characterization of their maximal points is also a difficult problem. We
already have some partial results, however. Namely, Buscemi et al. [2005] have
proved that rank-one POVMs are clean, as well as POVMs where the maximal
eigenvalue of each POVM element is one. The latter case assumes that P has
the same number of outcomes as Q. If we allow P to have more, then the latter
POVMs are not clean, unless they are observables. Indeed, no preprocessing can
increase the number of outcomes, whereas a preprocessed observable can yield
any POVM with no more than d outcomes: we merely measure Q and prepare
the eigenstate ¢ as input for the observable.

Buscemi et al. [2005] have also proved that if Q is infocomplete and P 3= Q, then
P is also infocomplete, and that a two-outcome POVM P = {P;,1—P; } is cleaner
than another two-outcome Q = {Q1,1 — Q1} if and only if [A\,,(P1), A (P1)] D
A (Q1), Aar(Q1)], where A, and Ajs are the smallest and biggest eigenvalues.

The remainder of their work makes use of related equivalence or order notions.

The most basic is unitary equivalence. The POVMs P and Q are unitarily
equivalent if we can obtain Q from P by using a unitary channel, that is U P,U* =
Q; for all POVM elements. We can then go back to P by using the inverse
channel. Thus, unitary equivalence entails cleanness-equivalence. The converse
is not true: take for example two effects in dimension three, with P; = |¢) (¢| =
1 — Q1. Then we do not have unitary equivalence, yet A\, (P1) = 0 = A\ (Q1)
and Ay (Pr) =1 = Ay (Q1), so that P and Q are cleanness-equivalent. However,
unitary and cleanness-equivalence are the same in a number of special cases: for
infocomplete POVMs, for qubits (that is, with a two-dimensional Hilbert space)
and for rank-one POVMs.

To give a taste of the methods, let us prove the latter assertion on rank-one
POVMs. Then we can write Q; = A(Qi)|9:)(¢;] with |¢;) normalized. We
can write A (Qi) = Tr(Qs |vs) (¥s]) = Tr(PE([vhi) (vil)). Since E(|ahi) (i) is
a state, the latter expression is less than Ay (P;) < Tr(F;). Since the POVMs
are normalized, we know that >, Ay (Q;) = d = Y, Tr(P;), where d is the
dimension of the Hilbert space. Hence Tr(FP;) = Ay (Qi) = Au(FP;), so that
P, = A (Qq) |¢i) (¢i] for some normalized |¢;). Hence E(|1;) (i) = |@:) (dil.
So that £(Id) = >, Am(Qi)E(|s) (i]) = >, Pi = Id, that is, £ is both trace-
preserving and unital. Hence so is its dual, that sends back |¢;) on |¢);). We finish
by recalling that there are two channels mapping a set of pure states on another,
and back, if and only if they are unitarily equivalent [Chefles et al., 2003].

The main other relation they use is “having a larger range”, denoted P D, Q,
where the range is the set of possible probability distribution of outcomes, i.e.
{(Tr(pP;))i : p state}. Since we may feed E(p) in P and get the same result as
if using p as input for Q, the relation “cleaner than” is stronger than “having
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a larger range”. The converse is not true. However, if there is an infocomplete
POVM M on the same Hilbert space, such that P@M D, Q® M, then P = Q.
The presence of M ensures that the map defined on the span of the POVM
elements {P;} by £(P;) = @; is completely positive, and hence can be extended
to the whole space, by Arveson’s [1969] extension theorem.

Finally, Buscemi et al. [2005] have also proved that the set Cp,q of channels
& such that £(P) = Q is a convex set. We have little more explicit general
information that would also hold for non necessarily clean POV Ms.

1.4.3 Contributions of the thesis

We have seen that we do not have, to this day, a characterization of clean POV Ms.
This thesis gives a sufficient condition, and proves that this condition is also
necessary for a category of POVMs, that includes all the POVMs for qubits. We
have thus characterized the clean POVMs for qubits.

We make use of two main ideas. Let us start with a POVM P. We want to prove
that it is clean. In other words, given Q such that Q > P, we want to prove
that the converse P = Q is also true. The easiest case is when P = £(Q) with
& unitary. We then try to find a condition on P under which £ is unitary for all

Q.

Now, using Kraus decomposition (1.23), we know that P, = ), R1Q;Ro. All
elements of the sum are non-negative, so that P, > R} Q;R, for all i and a.
Notably the support of R} (Q;R, must be included in that of P;, as an operator
on the Hilbert space H. This yields d — dim(Supp(F;)) homogeneous linear
equations on the matrix elements of R,, for each given vector in the support
of Q;. If we thus get d> — 1 independent equations, the matrices R, will be
determined up to a constant, and the constraint Y R* R, = Id will prove that
£ is unitary.

The difficulty in the above scenario is that the equations depend on Q. I thus
introduce the following definition: a set of subspaces of H totally determines H
if they yield enough independent equations when they are the support of P; for
any possible set of vectors |¢;) in the supports of any @;. It turns out that a set
of vectors {|¢;)} (i.e one-dimensional supports) totally determine H if and only
if, for any two proper supplementary subspaces V and W, there is an ¢ such that

[vi) ¢ V and [¢;) € W.

This yields a sufficient condition for POVMs to be clean, that can be readily
checked algorithmically. I have also proved that being a rank-one POVM, or
satisfying this condition, is necessary if all POVM elements are either rank-one,
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or full-rank. I have named such POVMs quasi-qubit POV Ms, since all POVMs
for qubits are quasi-qubit.

The necessity is proved by considering channels £ that are near the identity, and
taking their inverse as positive maps. We can then consider Q = £~1(P) and
we have to prove that Q is a POVM. By a careful choice of £, based on the
subspaces V and W given in the above paragraphs, we can ensure it.

For qubits, the clean POVMs are then the rank-one POVMs on the one hand,
and the POVMs with at least three non-colinear rank-one elements. The latter
condition is a more intuitive translation of “totally determines” in the case of
qubits.

1.5 Complementary subalgebras

1.5.1 Motivation

We are given two entangled qubits. We may let them evolve the way we want,
and then measure only one of them. How do we let them evolve, if we want to
reconstruct the state of these two qubits with as few different evolutions, and as
efficiently as possible?

Formally, this translates as having a state on C? @ C?. We have fifteen real pa-
rameters to estimate. We may measure the reduced state on a two-dimensional
subspace, that is on the two first coordinates of WC*, where W is unitary, cor-
responding to the evolution. Each W yields a reduced state, corresponding to
three parameters. We aim at using as few different transformations W as we can.

We obviously need at least five different W. We may first wonder if that is
sufficient. We may also ask for a set of optimal ones. Those two questions are
best answered by noticing that knowing a state is knowing its mean value on the
algebra of observables M>(C) ® M2(C). Knowing the reduced state on different
subspaces is knowing the original state on the subalgebra A; = W;(M3(C) ®
Id)W}, for different W;. Hence the reduced states generally determine the initial
state if and only if the subalgebras A; span, as a vector space, the initial algebra
Mz(C) ® Ma(C),

Intuitively, we get as much information as possible if the subalgebras A; differ
as much as possible one from the other. Mathematically, we translate that by
asking that the subalgebras are complementary, that is (A; — C1) is orthogonal
to (A; — C1) for i # j and the scalar product (A|B) = Tr(A*B) on M4(C).

As a summary, we seek five subalgebras of M4(C), each of them isomorphic to
M5(C), and pairwise complementary.
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1.5.2 Former results

Petz, Hangos, Szanto, and SzollGsi [2006] have introduced the former notions
and problem. They were also motivated by an analogy with complementary
observables, such as position and momentum. Schwinger [1960] might have first
provided a mathematically rigorous approach in finite-dimensional Hilbert spaces.
Two observables on a d-dimensional Hilbert space are complementary if their
eigenbases satisfy (¢[iy)) = 1/d for all ¢ in the first eigenbasis and ¢ in the other
one . Those bases are frequently used in quantum information, be it for state
discrimination [Ivanovic, 1981], for “the Mean King’s problem” [Kimura et al.,
2006] or quantum cryptography [Bruss, 1998]. Now, we can associate to an
observable the commutative algebra of elements diagonal in the same eigenbasis.
Two observables are complementary if and only if the corresponding commutative
algebras are complementary. The ubiquity of complementary observables gives
some hope of usefulness for complementary M,(C) subalgebras.

Back to our initial problem, Petz et al. [2006] have proved that five different
subalgebras were indeed sufficient to span Ms(C) ® M2(C). They have exhibited
four complementary subalgebras M>(C). However they could not find five. They
have also considered n qubits, with the corresponding algebra Ms(C)®™. We
then need at least (22" — 1)/3 subalgebras isomorphic to M3(C) to span the
original algebra. They have proved that, if we restrain to subalgebras generated
by elements of the form o1 ® 09 ® - - - ® 0., where each o is a Pauli matrix (1.16),
then this bound is not saturated, and we need at least one more subalgebra.

As choosing subalgebras with such generators is the easiest way to get comple-
mentary subalgebras, this might be interpreted as an indication that we cannot
span the whole algebra Ms(C)®" with complementary subalgebras isomorphic to
M5(C).

1.5.3 Contributions of the thesis

This is joint work with Dénes Petz. We have proved that the maximal number
of complementary subalgebras isomorphic to M>(C) in M3(C) ® M2(C) was four.

The idea is the following: we consider an orthonormal basis of a subalgebra A
isomorphic to M(C) of the form 1, A;, Ao, As. Since the basis is orthonormal,
the A; are traceless. Let us also take 1, Bi, Bs, B3 as an orthonormal basis of
1® M>(C). If A is complementary to M>(C) ® 1, then >, ; [Tr(A;B;)| > 1. On
the other hand, for {C;};<16 an orthonormal basis of M2(C) ® M2(C), we have
> [Tr(CyBj)| = 3. Hence, there are at most three complementary subalgebras
isomorphic to M (C), that are also complementary to M»2(C) ® 1.
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For the sake of completeness, I have to mention that since this work has been
published, Petz [2006] has proved that the space orthogonal to the four sub-
algebras, plus the identity, was always again a subalgebra, but a commutative
subalgebra.

1.6 Quantum local asymptotic normality

1.6.1 Classical local asymptotic normality

As background and motivation, we give a very brief survey of Le Cam’s [1986]
theory of distance and convergence of experiments, and especially local asymp-
totic normality.

Wald [1943] first had the idea of approximating a sequence of experiments by
Gaussian experiments. Le Cam [1960, 1964] then gave a precise set of conditions
under which these approximations could be made, defined a notion of distance
between experiments, and explored the consequences for approximation.

Let us start with two experiments £ = {pg : 0 € O} and F = {qp : 0 € O} with
the same parameters set ©. We can define Le Cam deficiency between £ and
F from decision theoretic ideas. We consider cost functions c(6,6") bounded
between 0 and 1. The deficiency is defined as the infimum of the € such that for
any such cost function, for any estimator f¢ in the second experiment F, there
is an estimator 6 in the second experiment satisfying:

ro(0s) < 19(0F) + € Vo € O,

where we have used the former notations (1.6) for the risk of an estimator at a
given point 6.

In other words, up to €, we can do as good in experiment £ as in experiment
F for any question we may ask, whatever the true value of the parameter. The
deficiency is denoted 6(&, F).

Consider now a Markov kernel T (given by equation (1.5)) such that
IT(ps) — qol|l; = 2€ for all @ € ©. This means approximating the probability
distributions of F by those of £. Then for any cost function ¢ as above and any
estimator 6z, we may consider the estimator f¢ defined as applying 6+ to the
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random variable with law T'(pg). We obtain

ro(fe) ~ ra(0x) = [ c(6.02)T(00) o) ~ [ c(0,6(0))an(do)

< (sup <(6,0")) / (T(po) — ao)*(da)
1 x [|[T(ps) — qell, /2

<
<e.
So that the deficiency is no more than e. In fact, the converse is true'®. We can

find a Markov kernel that transforms all py in gg, up to twice the deficiency. In
other words, we can write:

1.
(&, F) =3 HTlfStelp 1T (pe) — asll, -

When we symmetrize the deficiency, we get a distance, called Le Cam distance
A(E,F). We can then consider a sequence of experiments &, = {p,¢) that
converges to a limit experiment F for this distance. In other words, there are
two families 7}, and S,, of Markov kernels such that |75 (pn,0) — gsll; — 0 and
|Pn,0 — Sn(qoe)|l; — O uniformly on 6.

This convergence with kernels is called strong convergence. There is another type
of convergence, known as weak convergence, based on likelihood ratios.

Let us consider experiments £ = {py} with a finite parameter set ©. Then the

likelihood ratios are the stochastic process Ag (&) = {ZZ;GPS }0 o With infinite
€

parameter sets O, we say that &, converges weakly to F if the law of the processes
Az (&) converges weakly to the law of Az(F) for any finite subset Z of ©.

It turns out that weak convergence is the same as strong convergence for finite pa-
rameter sets. Hence for countable sets. Modest regularity conditions are needed
to extend that to uncountable parameter sets ©.

Why so many different definitions? The definition with risk functions gives the
real motivation: if &, converges to F, we can answer questions asymptotically
in the same way for &, and for F. Strong convergence, with Markov kernels,
gives a direct way of translating estimators from one experiment to the other: we
transform the first experiment, and apply the estimator of the second experiment.
It ensures that we get the same risks. On the other hand, exhibiting Markov
kernels in real experiments can be non-obvious. Convergence of likelihood ratios,

18Strictly speaking, without a domination hypothesis, we have to resort to objects slightly
more general than Markov kernels, called transitions. The ideas remain the same.
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on the other hands, is relatively easy to establish. They thus prove existence of
the kernels. Even if we do not know these kernels, and hence cannot translate
directly methods from one experiment to the other, we know that the optimal
risks are the same for all problems, whether in a Bayesian or a minimax setting.

The practical benefits of this theory are maximal if the limit experiment is easy
and well-understood. Independent identically distributed (i.i.d.) data is the
most usual situation in statistics, and can be viewed as random variables with
law p?”. Under some regularity conditions, we have convergence to Gaussian
shift experiments, which are indeed well-known.

Theorem 1.6.1. Local asymptotic normality[Le Cam, 1960]

Let © be an open subset of R*. Let

— ® . k
En={D5" 0 ym i h R ).
Then if the family {pe} is sufficiently reqular'® around 0, the sequence of exper-
iments &, converges weakly to a Gaussian shift experiment

F={N(hI,") : heR"},

where /\/'(h,Ie_Ol) is the normal law on R¥, with mean h and covariance matriz
I;Jl the inverse Fisher information (1.13) at point 0.

There are two differences with a central limit theorem. First, convergence to the
limit is uniform?® on sets not growing too fast. Second, the covariance matrix
is the same for all the Gaussians in the limit experiment. The name “shift ex-
periment” stems from that observation: the parameter is merely the mean of the
Gaussian.

Why is that nice? Because we know the answer to most usual statistical ques-
tions for Gaussian shift experiments. In particular, we know an optimal minimax
estimator for quadratic cost function, and we can translate that to i.i.d. experi-
ments. This observation is the way to prove asymptotic optimality of maximum
likelihood estimators in this setting, for example. This is the theorem that we
would like to imitate in the quantum world.

The astute reader has probably noticed that the quadratic cost function is not
bounded in general, and that we rescale the parameter i in our definition of &,.
The former theorem is essentially local in nature. This is sufficient to show that

9The right condition is called differentiability in quadratic mean. Twice differentiable in 6
is more than enough.
20For that, we must use a version with strong convergence.
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the Cramér-Rao bounds (1.15) bounds cannot be better than in the limit exper-
iment. However, we cannot directly translate the strategy used in the Gaussian
limit experiment to the initial experiment.

In practice, we overcome those difficulties by using a two-step strategy: we use a
vanishing part of our n-data set to make a first rough estimate, and then use the
optimal estimator yielded by local asymptotic normality. We must finally prove
that the non-boundedness of the cost function results in a vanishing error factor.

Le Cam later further developed to a much larger extent his theory of convergence
of experiments, for different regularity conditions, yielding different approxima-
tions, and in very general settings, based on Riesz lattices. The depth and breadth
of the theory are suggested by the sheer size of his 1986 book.

1.6.2 Motivation

In a physical experiment, we frequently have as output n copies of a state pre-
pared in the same way, and want to know something about that state, typically
what the state is.

A quantum local asymptotic normality would allow us to answer all the questions
about those repeated experiments by looking at only one experiment, that we
hope to be easier. By analogy with the classical case, we would expect to get a
quantum Gaussian shift experiment, which is indeed well-understood.

Like for strong convergence with Markov kernels, we would like to find channels
transforming approximately the states we are given in a Gaussian state, and back.

A drawback of this strategy is that the equivalence results hold when we are
allowed everything physically possible, that is collective measurements and pro-
cedures. Those can be hard to implement in practice. Moreover, we cannot study
separate or LOCC measurements directly through local asymptotic normality.

The corresponding benefit of exhibiting channels is that, provided the channel
can be implemented in laboratory, we can translate methods from the Gaussian
experiments to the initial experiment in practice.

1.6.3 Former and related results

The first step towards similar results in the quantum world dates back to Dyson
[1956], who observed that the fluctuations of the total spin components orthogo-
nal to the z axis of n pure “up” spins behaved like the ground state of a quantum
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oscillator, that is a quantum Gaussian state. Generally speaking, the physicists
treat coherent spin states [Holtz and Hanus, 1974| as Gaussians. Kitagawa and
Ueda [1993], Geremia et al. [2004] extend this situation for types of entanglement
that look like squeezed states.

This kind of results can be seen as quantum central limit theorems, the first
rigorous proof being that of Cushen and Hudson [1971]. Hayashi [2003], Hayashi
and Matsumoto [2004] have proved some local regularity of these limits and used
that to give the first optimal estimation method for a totally unknown qubit state
or for parametric submodels, when collective measurements are allowed.

Finding and explaining such optimal estimation procedures for various problems
is a big motivation of quantum local asymptotic normality. The problem of esti-
mating qubits from multiple copies has generated a huge bibliography, since it is
very basic. Studies range from separate measurements to adaptive and collective
measurements. Bayesian references for pure states include [Jones, 1994, Massar
and Popescu, 1995, Latorre et al., 1998, Fisher et al., 2000, Hannemann et al.,
2002b, Bagan et al., 2002, Embacher and Narnhofer, 2004, Bagan et al., 2005],
and for mixed states [Cirac et al., 1999, Vidal et al., 1999, Mack et al., 2000, Keyl
and Werner, 2001, Bagan et al., 2004c, Zyczkowski and Sommers, 2005, Bagan
et al., 2006]. Pointwise approach is featured in [Hayashi, 2002a, Gill and Massar,
2000, Barndorff-Nielsen and Gill, R., 2000, Matsumoto, 2002, Barndorff-Nielsen
et al., 2003, Hayashi and Matsumoto, 2004]. The main points to remember are the
following: for pure states, and not specifically qubits, the easily implementable
separate measurements are asymptotically just as efficient as collective measure-
ments [Matsumoto, 2002]; however, for general mixed states, we can expect a real
speed-up from using collective measurements [Gill and Massar, 2000]; Bayesian
methods usually use group theory, so are valid only for covariant priors; Bagan
et al. [2006] give an optimal measurement with fidelity as cost function, and prove
that it is also asymptotically minimax optimal.

However, the latter covariant measurement might not be easy to implement in
practice.

On a more fundamental level, Petz and Jencova [2006] have characterized quan-
tum sufficiency. Classically, an experiment £ is sufficient for another F if its
deficiency §(&, F) is zero. Petz and Jencova have given characterizations of suf-
ficiency notably through channels (equivalent to Markov kernels) and through
Connes cocycles, that may be seen as equivalents of likelihood ratios.

Building on this work, Gutd and Jencova [2007] have proved quantum local
asymptotic normality in the sense of convergence of Connes cocycles, correspond-
ing to weak classical local asymptotic normality. Namely, an experiment of states
over a finite-dimensional space, depending smoothly on a parameter 6 in an open
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subset © C C? converges to a d-dimensional quantum Gaussian shift experi-
ment?!. The latter experiment is an experiment where the state is a Gaussian
state?? over the Fock space F(C?%), whose Husimi function (1.22) has mean 6 and
fixed covariance matrix.

We have seen in section 1.1.3 that the heterodyne measurement was saturating
the Holevo bound (1.29) for quantum Gaussian shift experiments. However, there
is no established link yet between weak local asymptotic normality and decision
theory, so we cannot immediately use those bounds for the finite-dimensional
experiments.

1.6.4 Contributions of the thesis

Together with Madalin Guta, I have established strong quantum local asymptotic
normality for qubits [2006]. Namely, we have exhibited families of channels T,
and S,, from My(C)®" to 7 (F(C)) ® L*(R), and back, that send the i.i.d. den-
sity matrices p?ﬁ)’i hy i hear the product of a one-dimensional classical Gaussian,
corresponding to the eigenvalues, and a one-dimensional quantum Gaussian, cor-
responding to the eigenvectors. Derivation of these channels, obtained through
group theory, is heavily inspired from the work of Hayashi and Matsumoto [2004].

We have proved that the convergence in L! operator norm was uniform for ||h[| <
n'/4=¢_ This large domain of validity ensures that we can use two-step strategies
to translate procedures from the limit experiment to the initial experiment.

We have made this two-step strategy more explicit, together with Guta and
Bas Janssens [2008], by considering a continuous-time interaction of the qubits
with the electromagnetic field. Using quantum stochastic differential equations
[Hudson and Parthasarathy, 1984], we have proved that the state of the field,
or monochromatic light, was the quantum part of T}, (p®") for time longer than
Inn.

We can then use the heterodyne measurement on that light and get optimal
estimation of the quantum part. The classical part remain in the qubits, and can
be retrieved by a total spin measurement. This can be achieved in practice with
another coupling to the field and a homodyne measurement.

This estimation strategy is asymptotically globally optimal, both in minimax and
Bayesian sense for covariant priors, as long as we are away from the totally mixed
state. We believe it could be implemented in practice.

21To be perfectly exact, a part of the quantum experiment might degenerate to a classical
Gaussian shift experiment, corresponding to determining the eigenvalues with fixed eigenvec-
tors.

22Gaussian states can be viewed as Gaussian mixtures of coherent states (1.18).
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Finally, Madalin Guta and I have generalized the construction of the channels to
qudits, for any dimension [2008]. Here again, the local parameter h is allowed to
grow as a small power function, enabling translation of the results from the limit
experiment to the initial one.

1.6.5 Outlook

Further research on the subject can follow numerous paths:

Equivalence between weak and strong convergence of experiments
The limit experiments are the same for strong and weak convergence. The
main fragment of classical local asymptotic normality still missing a quan-
tum counterpart is the quasi equivalence of the two notions. Since weak
convergence is relatively easier to prove, we would get the same benefits as
in the classical case.

Remove singularities from strong quantum local asymptotic normality
Notably, our proofs of strong convergence involve using group representa-
tions. They introduce a singularity for equal eigenvalues, that is not im-
portant at the level of algebras, used for weak convergence. This is why
we ask for the eigenvalues to be pairwise different with strong convergence,
though it is most likely an artefact of the proof.

Trying to find a method for strong convergence using only C* algebras
seems hard. It would automatically yield an equivalent of the classical no-
tion “differentiable in quadratic mean”, though.

On the other hand, the singularity generated by equal eigenvalues has a
physical meaning in our “practical implementation” scheme. It corresponds
to equal energy levels for the qubits. Since the monochromatic light is given
by atomic transitions between the two levels, the coupling we use would get
degenerate.

Treat other cases Other research directions include making explicit conver-
gence of experiments for other, non i.i.d. cases, such as squeezed coherent
spin states, or quantum Markov chains.

Quantum convergence of experiments with local operations A more am-
bitious aim would be to define a LOCC distance between experiments, and
the corresponding convergence. In other words define equivalence between
models when we are allowed to use only LOCC methods, and not all collec-
tive operations. The ubiquity of scenarios using LOCC in quantum infor-
mation in particular, and the fact that these methods are practically easier
to implement, would make all the price of this theory.

Practical implementation To end on a more feasible idea, it should be fairly
easy to convert the “practical implementation” of quantum local asymptotic
normality for qubits to the qudits case.
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Chapter 2

Discrimination

This chapter is a merge of the articles [D’Ariano et al., 2005a] and [D’Ariano
et al., 2005b].

Abstract: We derive the optimal measurement for quantum state
discrimination, as well as for discrimination between Pauli channels,
in a minimax strategy. For states, we consider both minimal-error
and unambiguous discrimination problems, and provide the relation
between the optimal measurements according to the two schemes.
We show that there are instances in which the minimum risk cannot
be achieved by an orthogonal measurement, and this is a common
feature in the minimax estimation strategy.

For Pauli channels, we consider only the minimal-error problem, that
is we maximize the smallest of the probabilities of correct identifica-
tion of the channel. We find the optimal input state at the channel
and show the conditions under which using entanglement strictly en-
hances distinguishability. We finally compare the minimax strategy
with the Bayesian one.

2.1 Introduction

The concept of distinguishability applies to quantum states [Wootters, 1981,
Braunstein and Caves C. M., 1994] and quantum processes [Gilchrist et al., 2004,
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Belavkin et al., 2005], and is strictly related to quantum nonorthogonality, a
basic feature of quantum mechanics. The problem of discriminating nonorthog-
onal quantum states has been extensively addressed [Bergou et al., 2004, and
references therein], also with experimental demonstrations. Typically, two dis-
crimination schemes are considered: the minimal-error probability discrimination
[Helstrom, 1976], where each measurement outcome selects one of the possible
states and the error probability is minimized, and the optimal unambiguous dis-
crimination [Ivanovic, 1987], where unambiguity is paid by the possibility of
getting inconclusive results from the measurement. The problem has been ana-
lyzed also in the presence of multiple copies [Acin et al., 2005], and for bipartite
quantum states, and global joint measurements have been compared to LOCC
measurements, i.e. local measurements with classical communication [Walgate
et al., 2000, Virmani et al., 2001, Ji et al., 2005].

The problem of discrimination can be addressed also for quantum operations
[Sacchi, 2005a]. This may be of interest in quantum error correction [Knill et al.,
2002, and references therein|, since knowing which error model is the proper one
influences the choice of the coding strategy as well as the error estimation em-
ployed. Clearly, when a repeated use of the quantum operation is allowed, a full
tomography can identify it. On the other hand, a discrimination approach can
be useful when a restricted number of uses of the quantum operation is available.
Differently from the case of discrimination of unitary transformations [Childs
et al., 2000b], for quantum operations there is the possibility of improving the
discrimination by means of ancillary-assisted schemes such that quantum entan-
glement can be exploited [Sacchi, 2005a]. Notably, entanglement can enhance the
distinguishability even for entanglement-breaking channels [Sacchi, 2005c]. The
use of an arbitrary maximally entangled state turns out to be always an optimal
input when we are asked to discriminate two quantum operations that generalize
the Pauli channel in any dimension. Moreover, in the case of Pauli channels for
qubits, a simple condition reveals if entanglement is needed to achieve the ul-
timate minimal error probability [Sacchi, 2005a,b]. All the previous statements
refer to a Bayesian approach.

We address here the problem of optimal discrimination of quantum states, and of
two Pauli channels, in the minimax game-theoretical scenario. In this strategy no
prior probabilities are given. The relevance of this approach is both conceptual,
since for a frequentist statistician the a priori probabilities have no meaning, and
practical, because the prior probabilities may be actually unknown, as in a non
cooperative cryptographic scenario. We shall derive the optimal measurement
for minimax state discrimination both for minimal-error and unambiguous dis-
crimination problems. We shall also provide the relation between the optimal
measurements according to the minimax and the Bayesian strategies. We shall
show that, quite unexpectedly, there are instances in which the minimum risk can
be achieved only by non orthogonal POVM measurement, and this is a common
feature of the minimax estimation strategy. Similarly, for channels discrimina-
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tion, we shall give the optimal input states and measurements whether or not we
allow using an ancilla, and show that in the latter case, the optimal input state
might differ from the usual Bayesian ones.

In more detail, in Section 2.2, we pose the problem of discrimination of two
quantum states in the minimax scenario. Such an approach is equivalent to a
minimax problem, where one should maximise the smallest of the two probabil-
ities of correct detection over all measurement schemes. For simplicity we will
consider equal weights (i.e. equal prices of misidentifying the states), and we will
provide the optimal measurement for the minimax discrimination, along with the
connection with the optimal Bayesian solution. As mentioned, a striking result
of this section is the existence of couples of mixed states for which the optimal
minimax measurement is unique and non orthogonal.

In Section 2.3 we generalize the results for two-state discrimination to the case
of N > 2 states and arbitrary weights. First, we consider the simplest situation
of covariant state discrimination problem. Then, we address the problem in
generality, resorting to the related convex programming method.

In Section 2.4 we provide the solution of the minimax discrimination problem in
the scenario of unambiguous discrimination. We refine, if need be, the minimax
criterion, so that the solution becomes unique.

From Section 2.5, we turn our attention from states to Pauli channels. We first
briefly review the problem of discrimination of two Pauli channels in the Bayesian
framework, where the channels are supposed to be given with assigned a priori
probabilities. We report the result for the optimal discrimination, along with the
condition for which entanglement with an ancillary system at the input of the
channel strictly enhances the distinguishability.

In Section 2.6 we study the problem of discrimination of two Pauli channels in the
minimax approach. We show that when an entangled-input strategy is adopted,
the optimal discrimination can always be achieved by sending a maximally en-
tangled state into the channel, as it happens in the Bayesian approach. On the
contrary, the optimal input state for a strategy where no ancillary system is used
can be different in the minimax approach with respect to the Bayesian one. In
the latter the optimal input can always be chosen as an eigenstate of one of the
Pauli matrices, whereas in the former this may not be the case.
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2.2 Optimal minimax discrimination of two quan-
tum states

We are given two states p; and p3, generally mixed, and we want to find the
optimal measurement to discriminate between them in a minimax strategy. The
measurement is described by a positive operator-valued measurement (POVM)
with two outcomes, namely P= (Py, Py), where P; for i = 1,2 are non-negative
operators satisfying Py + P» = I.

In the usually considered Bayesian approach to the discrimination problem, the
states are given with a priori probability distribution 7 = (71, 7m2), respectively,
and one looks for the POVM that minimizes the average error probability

pr = mTr[p1 Ps] + maTr[pa P1]. (2.1)

The solution can then be achieved by taking the orthogonal POVM made by
the projectors on the support of the positive and negative part of the Hermitian
operator mp; — mep2, and hence one has [Helstrom, 1976]

(Bayes) __ 1
I =

5 (1= [[m1p1 — m2p2(l1) , (2.2)

where ||Al|; denotes the trace norm of A.

In the minimax problem, one does not have a priori probabilities. However,
one defines the error probability ;(P) = Tr[p;(I — P;)] of failing to identify p,.
The optimal minimax solution consists in finding the POVM that achieves the
minimax
¢ = min max &;(P), (2.3)
B i=1,2

or equivalently, that maximizes the worst probability of correct detection

1 — & = max min|[1 — ;(P)] = max min Tr[p; P}]. (2.4)
B i=12 B i=12

The minimax and Bayesian strategies of discrimination are connected by the
following theorem.

Theorem 2.2.1. If there is an a priori probability @ = (71, m2) for the states p1
and pa, and a measurement P that achieves the optimal Bayesian average error
for @, with equal probabilities of correct detection, i.e.

Tr[pr 1] = Tr[p2 P], (2.5)

then P is also the solution of the minimax discrimination problem.
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Proof. In fact, suppose on the contrary that there exists a POVM P such
that min;—; o Tr[p; P;] > min;—q 2 Tr[p; B;]. Due to assumption (2.5) one has
Tr[p; P;] > Tr[p;Bi] for both i = 1,2, whence

Z?Ti Tl“(pZH) > ZTFZ' TI’([)Z'Bi) (26)

which contradicts the fact that P is optimal for . O
The existence of an optimal P as in Theorem 2.2.1 will be shown in the following.
First, by labeling with P™ an optimal POVM for the Bayesian problem with

prior probability distribution @ = (7,1 — 7), and defining
x(m, P) = 7w Tr(py P1) + (1 — 7) Tr(p2 P2), (2.7)

we have the lemma:

Lemma 2.2.2. The function f(r) = Tr(plpl(ﬂ)) - Tr(pQPQ(W)) is monotonically
nondecreasing, with minimum value f(0) <0, and mazimum value f(1) > 0.

In fact, consider P™ and P™) for two values 7 and @ with 7 < @ and define

—

D = B®) — P(™ Then

—

x(m, ™)) = x(m, P™) + x(m, D)

_ . T (2.8)
X(wap(ﬂ')) = X(va(W)) - X(va)

Now, since x(, ﬁ(”)) is the optimal probability of correct detection for prior
and analogously x(c, P(®)) for prior w, then x (7, D) < 0 and x(w, D) > 0, and
hence

—

0 < x(@, D) — x(r, D) = (w — m)[Tr(p1D1) — Tr(p2D2)].
It follows that Tr(p1D1) > Tr(p2D2), namely
Tr(py Py™)) = Tr(pr P{™) > Te(pa ™)) — Tr(pa ™) (2.9)
or, equivalently
Tr(pr Py™)) = Tr(pa PY™)) > Ta(pr P{™) = Te(pa PA™). (2.10)

Equation (2.10) states that the function f(7) is monotonically nondecreasing.
Moreover, for 7 = 0 the POVM detects only the state p2, whence Tr(pQPQ(O)) =1,
and one has f(0) = —14Tr[p; Pl(o)] < 0. Similarly one can see that f(1) > 0. O

We can now prove the theorem:
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Theorem 2.2.3. An optimal P as in Theorem 2.2.1 always exists.

Proof. Consider the value 7y of m where f(m) changes its sign from negative to
positive, and there take the left and right limits

PH = lim P™. (2.11)

rord

For f(x}) = f(75) = 0 just define P = P(mo).
For f(7}) > f(r;) define the POVM P

= f(nd)PO) — f(ng )P
R o T e (2.12)

In fact, one has
— (2.13)

namely Eq. (2.5) holds. O

Notice that the value 7o is generally not unique, since the function f(7) can be
locally constant. However, on the Hilbert space Supp(p1)USupp(p2), the optimal
POVM for the minimax problem is unique, apart from the very degenerate case
in which D = myp1 — (1 — mp)p2 has at least two-dimensional kernel. In fact,
upon denoting by Il and K the projector on the strictly positive part and the
kernel of D, respectively, any Bayes optimal POVM writes (P =11 + K/, P, =
I—Py), with K’ < K. Since for the optimal minimax POVM we need Tr[p; P;] =
Tr[p2 P2], one obtains Tr[(p1 + p2)K'] = 1 — Tr[(p1 + p2)114], which has a unique
solution K/ = oK if K is a one-dimensional projector.

Corollary 2.2.4. There are couples of mized states for which the optimal mini-
max POVM is unique and non orthogonal.

For example, consider the following states in dimension two

1 0 L9

2

Then an optimal minimax POVM is given by

0
Pl: 0:|7 P2:|:

=N

1
: (1)] . (2.15)
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In fact, clearly there is an optimal POVM of the diagonal form. We need to
maximize min;—q o Tr[p;P;], whence, according to Theorem 2.2.3, we need to
maximize Tr[p; P;] with the constraints Tr[p; Pi] = Tr[paP] and P, = I — P.
Such an optimal POVM is unique, otherwise there would exists a convex combi-
nation mop1 — (1 — ) p2 with kernel at least two-dimensional, which is impossible
in the present example (see comments after the proof of Theorem 2.2.3). O

Notice that when the optimal POVM for the minimax strategy is unique and
non-orthogonal, then there is a prior probability distribution 7 for which the
optimal POVM for the Bayes problem is not unique, and the non-orthogonal
POVM which optimizes the minimax problem is also optimal for the Bayes’ one.
In the example of remark 2.2.4 the optimal POVM (2.15) is also optimal for
the Bayes problem with # = (%,2) as one can easily check. However, in the
Bayes case one can always choose an optimal orthogonal POVM, whereas in the
minimax case you may have to choose a non-orthogonal POVM.

Finally, notice that, unlike in the Bayesian case, the optimal POVM for the
minimax strategy may be also not extremal.

2.3 Optimal minimax discrimination
of N > 2 quantum states

We now consider the easiest case of discrimination with more than two states,
namely the discrimination among a covariant set. In a fully covariant state
discrimination, one has a set of states {p;} with p; = UipoUl-T Vi, for fixed po
and {U;} a (projective) unitary representation of a group. In the Bayesian case
full covariance requires that the prior probability distribution {m;} is uniform.
Then, one can easily prove (see, for example, Ref. [Holevo, 1982]) that also the
optimal POVM is covariant, namely it is of the form P; = UiKUJ, for suitable
fixed operator K > 0.

Theorem 2.3.1. For a fully covariant state discrimination problem, there is an
optimal measurement for the minimaz strategy that is covariant, and coincides
with an optimal Bayesian measurement.

Proof. A covariant POVM {P;} gives a probability p = Tr[p; ;] independent
of i. Moreover, there always exists an optimal Bayesian POVM that is covari-
ant and maximizes p, which then is also the maximum over all POVM’s of the
average probability of correct estimation Tr[p; P;] for uniform prior distribution
[Holevo, 1982]. Now, suppose by contradiction that there exists an optimal min-
imax POVM { P/} maximizing p’ = min; Tr[p;P/], for which p’ > p. Then, one
has p < p’ < Tr[p;P/], contradicting the assertion that an optimal Bayesian
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POVM maximizes Tr[p; P;] over all POVM’s. Therefore, p = p/, and the covari-
ant Bayesian POVM also solves the minimax problem. [INotice that
in the covariant case also for any optimal minimax POVM {P;} one has Tr[p; P;]
independent of 7, since the average probability of correct estimation is equal to
the minimum one.

As an immediate consequence of Theorem 2.3.1 we derive the case of optimal
discrimination of two pure states:

Corollary 2.3.2. For two pure states the optimal POVM for the minimax dis-
crimination is orthogonal and unique (up to trivial completion of Span{|i;)}i=1 2
to the full Hilbert space of the quantum system,).

Proof. Any set of two pure states {|i);)}i=1,2 is trivially covariant under the
group {I,U} with |¢p2) = Uly1). Then, there exists an optimal POVM for
the minimax discrimination which coincides with the optimal Bayesian POVM,
which is orthogonal. Uniqueness of the minimax optimal POVM follows from the
assertion after Theorem 2.2.3 when restricting to the subspace spanned by the
two states.

In the following we generalize Theorem 2.2.1 for two states to the case of N > 2
states and arbitrary weights. We have

Theorem 2.3.3. For any set of states {p;}o<i<n and any set of weights w;;
(price of misidentifying i with j) the solution of the minimazx problem

Ry = infsup Z w;j Trp; P;] (2.16)
i 5

is equivalent to the solution of the problem

RM = mmax RB(’]T), (217)
where Rp(7) is the Bayesian risk

Rp(7) = mgxz ™ Z wi; Tr[pi Pj). (2.18)

i

Proof. The minimax problem in Eq. (2.16) is equivalent to look for the minimum
of the real function § = f(P) over P, with the constraints

Zj W5 Tl”[plpj] S (5, Vi
P; >0, Vi
>, P =1 (2.19)
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Upon introducing the Lagrange multipliers:
Wi € R* , Vi
0< 7, € My(C), Vi (2.20)
YT =Y € My(C),

M4(C) denoting the d x d matrices on the complex field, the problem is equivalent
to

—

Ry = inf sup’ (P, 4, i, Z,Y),

Ptsﬁz‘y
(P, s, i ZY—(S—I—ZulZwU Pj] —6)]
—ZTrZP |+ e[y (I — ZP (2.21)

where sup’ denotes the supremum over the set defined in Eqs. (2.20). The
problem is convex (namely both the function ¢ and the constraints (2.19) are
convex) and meets Slater’s conditions [Boyd and Vandenberghe, 2004] (namely
one can find values of P and § such that the constraints are satisfied with strict
inequalities), and hence in Eq. (2.21) one has

inf sup I(P,6,ji, Z,Y) = max’ inf I(P,6,i, Z,Y). (2.22)
P 6“ ZY ;,L7ZY P5

It follows that
Ry = max'TrY (2.23)
i,ZY

under the additional constraints

Zui =1,
> wijpipi— Z; =Y =0, V. (2.24)
The constraints can be rewritten as
pi >0, Zﬂi =1,
Y < Zwij,u:pi ) vy (2.25)

Now, notice that for the Bayesian problem with prior 7, along the same reasoning,
one writes the equivalent problem

Rp(7) = m}z}xl TrY, (2.26)
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with the constraint

Zwijmpi — Zj —-Y =0 s V‘] (2.27)
m >0, Zm =1,
Y S Zwij’ﬂipi ) Vj, (228)

which is the same as the minimax problem, with the role of the Lagrange multi-
pliers {y;} now played by the prior probability distribution {m;}.  OClearly, a
POVM that attains Ry in the minimax problem (2.16) actually exists, being the
infimum over a (weakly) compact set—the POVMs’ convex set—of the (weakly)
continuous function sup; 3 ; w;; Tr[p; P;].

2.4 Optimal minimax unambiguous discrimination

In this section we consider the so-called unambiguous discrimination of states
[Ivanovic, 1987], namely with no error, but possibly with an inconclusive outcome
of the measurement. We focus attention on a set of N pure states {1;};cs. In
such a case, it is possible to have unambiguous discrimination only if the states
of the set S are linearly independent, whence there exists a biorthogonal set of
vectors {|w;) Fies, with (w;|1;) = &;5, Vi, j € S. We shall conveniently restrict our
attention to Span{|t;)}ics = H (otherwise one can trivially complete the optimal
POVM for the subspace to a POVM for the full Hilbert space of the quantum
system). While in the Bayes problem the probability of inconclusive outcome
is minimized, in the minimax unambiguous discrimination we need to maximize
min; (; | P;|;) over the set of POVM’s with (¢;|Pj|v;) = 0 for ¢ # j € S, and
the POVM element that pertains to the inconclusive outcome will be given by
Pyiy=1- Zies P;. We have the following theorem.

Theorem 2.4.1. The optimal minimax unambiguous discrimination of N pure
states {1; }ies is achieved by the POVM

Pi :/€|WZ><WZ|, ZGS,
Pyyr=I— sz', (2.29)
€S
where Kk is given by
#~! = max eigenvalue of Z lws) {wi - (2.30)

€S
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Proof. We need to maximize min;(t;|P;|1;) over the set of POVM’s with
(¥i|Pj|1s) = 0 for i # j € S, whence clearly P; = kj|w;)(w;|. Then the problem
is to maximize min;es x;. This can be obtained by taking x; = x independent
of 7 and then maximizing x. In fact, if there is a x; > x; for some 4,7, then
we can replace k; with ;, and iteratively we get x; = ~ independently of i.
Finally, the maximum & giving Py4+1 > 0 is the one given in the statement of
the theorem. O

As regards the uniqueness of the optimal POVM, we can show the following.

Theorem 2.4.2. The optimal POVM of Theorem 2.4.1 is non-unique if and
only if |wi) € Supp(Pn+1) for some i € S.

Proof. In fact, if there exists an i € S such that |w;) € Supp(Py+1), this means
that there exists € > 0 such that e|w;){w;| < Pyy1. Then the following is a
POVM

Qj = Pj, fOI‘j 75 )
Qi = Pi + €|wi><wi|, (231)

QN1 = Pni1 — elwi)(wil,

and is optimal as well. Conversely, if there exists another equivalently optimal
POVM {Q;}, then there exists an ¢ € S such that Q; > P; (since both are
proportional to |w;){w;|, and min;(y;|Q;|¥;) has to be maximized). Then |w;) €
Supp(Pn+1)- 0

When the optimal POVM according to Theorem 2.4.2 is not unique, one can
refine the optimality criterion in the following way. Define the set S; C S for
which one has |w;) € Supp(Py+1). Denote by B; the set of POVM’s which are
equivalently optimal to those of Theorem 2.4.1. Then define the set of POVM’s
Po C P1 which maximizes min,cs, (w;|Pi|w;). In this way one iteratively reach a
unique optimal POVM, which is just the one given in Eqgs. (2.29) and (2.30).

2.5 Bayesian discrimination of two Pauli channels

The problem of optimally discriminating two quantum operations £ and & can
be reformulated into the problem of finding the state p in the input Hilbert space
H, such that the error probability in the discrimination of the output states &1 (p)
and & (p) is minimal. The possibility of exploiting entanglement with an ancillary
system can increase the distinguishability of the output states [Sacchi, 2005a].
In this case the output states to be discriminated will be of the form (£; ® Zx)p
and (& ® Zx)p, where the input p is generally a bipartite state of H ® K, and
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the quantum operations act just on the first party whereas the identity map Zx
acts on the second.

We now make use of the expression for the Bayesian risk of discrimination between
states (2.2). Upon denoting with R';(7) the minimal error probability when a
strategy without ancilla is adopted, one has

1
Riy(m) = 3 (1= maxIméa(o) ~ mao)l ) (2.32)
pEH
On the other hand, by allowing the use an ancillary system, we have
1
Rp(r) = 3 (1 - ax |1 (&1 @ T)€ — ma(Es ®I)§||1) . (2.33)

The maximum of the trace norm in Eq. (2.33) with the supremum over the
dimension of K is equivalent to the norm of complete boundedness [Paulsen,
1987] of the map 7 & — m2&s, and in fact for finite-dimensional Hilbert space the
supremum is achieved for dim(K) = dim(H) |Paulsen, 1987|, and in the following
we shall drop the subindex K from the identity map. Moreover, due to linearity
of quantum operations and convexity of the trace norm, the maximum in both
Eqgs. (2.32) and (2.33) is achieved on pure states.

Clearly, Rp(m) < R’z(w). In the case of discrimination between two unitary
transformations U and V' [Childs et al., 2000b|, one has Rp(7) = R’z(7), namely
there is no need of entanglement with an ancillary system to achieve the ultimate
minimum error probability, which is given by

Ra) = min 1 (1= 1= ammlGUTVI0F )

lp)er 2
1
= 3 (1 —V1- 47717T2D2) , (2.34)

where D is the distance between 0 and the polygon in the complex plane whose
vertices are the eigenvalues of UtV

In the case of discrimination of two Pauli channels for qubits, namely
gl(p) = Z qa UapUa Z = 17 2 ) (235)

where Ea Oqa =1,00 =1, and {01,02,03} = {0,,0,,0,} denote the cus-
tomary spin Pauli matrices, the minimal error probability can be achieved by
using a maximally entangled input state, and one obtains [Sacchi, 2005a]

3
Rs(m) = 5 <1 = |7"a|> , (2.36)
a=0
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with
o = mq) — p2g? = 7w(qlV +¢@) — @, (2.37)

where we fixed the prior m = m and w9 = 1 —m. For a strategy with no ancillary
assistance one has [Sacchi, 2005a]

Rp(m)=501-0C), (2.38)

| —

where
C =max{|rg + r3| + |r1 + 72|, |ro + 1| + [r2 + 73], |ro + r2| + |11 + 73|} (2.39)

and the three cases inside the brackets corresponds to using an eigenstate of o,
0., and oy, respectively, as the input state of the channel. More generally, for
pure input state p = %(I—l—&'-ﬁ), with 77 = (sin 0 cos ¢, sin f sin @, cos ), the Bayes
risk for discriminating the outputs will be [Sacchi, 2005a,b]

Ry(m,d-71) =
1

3 <1 — max {|a + b, 1/cos2 O(a — b)2 4 sin? O(c2 + d2 + 2cdcos(2¢))}2)40)

with a =rg+r3, b=1r1 +1r9, c=19— 13, and d = r; — ro. Notice that the term
|a+b| = |2 —1] corresponds to the trivial guessing {&; if 1 =7 > 1/2, & if 7 <

1/2}.
We can also rewrite Eq. (2.38) as
R'g(m) = min Rlg(m, 0;) . (2.41)

i=1,2,3

From Eqgs. (2.36-2.39) one can see that entanglement is not needed to achieve
the minimal error probability as long as C' = Z?:o |r;|, which is equivalent to
the condition II?_yr; > 0. On the other hand, we can find instances where
the channels can be perfectly discriminated only by means of entanglement, for
example in the case of two channels of the form

Ei(p) = Z qa0aPOq Exp) = oBpPIs , (2.42)
a#p

with g, # 0, and arbitrary a priori probability.

2.6 Minimax discrimination of Pauli channels

As in the Bayesian approach, the minimax discrimination of two channels consists
in finding the optimal input state such that the two possible output states are
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discriminated with minimum risk. Again, we will consider the two cases with
and without ancilla, upon defining

Ry = min By (& ©1)(E), (£ ©T)(E))

Ry = min Ry (&1(p), £2(0) , (2.43)

where Rys(p1, p2) is given in Eq. (2.17). Since for all ]\7[, p, and 7, one has

max{Tr[(& ® I)(p)Ma], Tr[(E2 @ I)(p) M1]}
> 1 Tr[(€1 @ I)(p) Ma] + (1 — ) Tr[(E2 ® T)(p) Mi] , (2.44)

then Ry > Rp(m) for all 7. Analogously, R}, > Rz () for all .

Theorems 2.2.3 and 2.3.3 can be immediately applied to state that the minimax
discrimination of two unitaries is equivalent to the Bayesian one. In fact, the
optimal input state in the Bayesian problem which achieves the minimum error
probability of Eq. (2.34) does not depend on the a priori probabilities. Therefore
it is also optimal for the minimax problem and there is no need of entanglement
[and the minimax risk Ry will be equivalent to the Bayes risk Rp(1/2)].

Let us now consider the problem of discriminating the Pauli channels of Eq.
(2.35) in the minimax framework. In the following theorem, we show that an
(arbitrary) maximally entangled state always allows to achieve the optimal min-
imax discrimination as in the Bayesian problem.

Theorem 2.6.1. The minimazx risk Ry for the discrimination of two Pauli
channels can be achieved by using an arbitrary maximally entangled input state.
Moreover, the minimaz risk is then the Bayes risk for the worst a priori proba-
bility:

Ry = mgXRB(w) . (2.45)

Proof. Let us discriminate between the states p; = (£; ® Z)(£°), where £° is a
maximally entangled state. By Theorem 2.2.1 there are a prior: probabilities
(7,1 — 74) whose optimal Bayes measurement fulfills

Tr[pr 1] = Tr[p2 Po] - (2.46)

Since the input state £© is always optimal in the Bayes problem we infer R g (7.) =
Tr[p1 P2], and moreover Ry (p1, p2) = Rp (7). Now, one has also Ry = Ras(p1, p2),
since if it would not be true, then there would be an input state p and a mea-
surement M for which max{Tr[(£; ® T)(p)Ms), Tr[(E; ® T)(p)Mi]} < Rp(m.),
and hence 7, Tr[(&1 @ I)(p)Ma] + (1 — ) Tr[(E2 @ T)(p)M1] < Rp(ms), which is
a contradiction. Equation (2.45) simply comes from the relation Ry > Rp(7)
for all 7, along with Ry = Rp(ms). O
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Notice the nice correspondence between Eqs. (2.17) and (2.45). Theorem 2.6.1
holds true also in the case of generalized Pauli channels in higher dimension, since
entangled states again achieve the optimal Bayesian discrimination, whatever the
a priori probability [Sacchi, 2005a]. More generally, Eq. (2.45) will hold in the
discrimination of any couple of quantum operations for which the minimal Bayes
risk Rp(m) can be achieved by the same input state for any .

0.5

R(m)

0 0 Lol 2 T 1

Figure 2.1: The optimal Bayes risk Rp(7) in the discrimination of two Pauli
channels versus the a priori probability 7 will usually look like this. Notice that
the rightmost and leftmost segments have slope 1 and (—1), respectively. The
minimal risk for the minimax discrimination corresponds to Ry = max, Rp (),
and is achieved at one of the breakpoints 7(%).

Now we establish some visual images on which to read the minimax risks. We
must look at the function Rp(w) given in Eq. (2.36) drawn on [0,1]. By Eq.
(2.45), we know that its maximum is Ras. As the r, defined in (2.37) are increas-
ing affine functions of 7, their absolute value is a convex piecewise affine function,
and hence Rp(7) is a concave piecewise affine function (see Fig. 2.1). The four
breakpoints correspond to the four values of 7 for which each r, vanishes. We
define ¢, = q&l) + q((f) as the slopes of the functions r, and 7(®) = q((f)/ t, as the
value of 7 for which r, = 0. We denote by 7, the point at which Rz (7) reaches
its maximum (the maximum will be attained at one of the breakpoints 7(®)). We
also reorder the index a such that 7(9) < 7(1) < 7 < 7()_ In this way, Rp(7)
rewrites

3
Rp(r) = % <1 =) talr— 7r<a>|> : (2.47)
a=0

Let us now look at the discrimination strategy without any ancillary system. An-
other picture, that should be superimposed on Fig. 2.6, is the Bayes risk R’z ()
of Eq. (2.38) versus 7 for the strategy with no ancillary system. One can see
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that R’z(7) is the minimum of the three piecewise affine functions R'; (7, 0,),
Ry(m,04), Rig(7, 0,), corresponding to the Bayes risks when sending an eigen-
state of the Pauli matrices. Here again Rz () is the minimum of concave func-
tions, so it is concave as well, and the maximum will be attained at a breakpoint
m =, (see Fig. 2.6). To “read” more on these pictures, once again we prove that

R ()

Figure 2.2: An example for the Bayes risks R’;(r, 0;) with ¢ = z,y, 2 versus the a
priori probability 7, for discrimination without ancilla. Each of the three different
dotted lines correspond to the Bayes risk R'; (7, 0;) when sending an eigenstate of
the Pauli matrix o; through the channel. The solid line is the optimal Bayes risk
R’ (m) without ancillary assistance, and corresponds at any 7 to the minimum
of the three R’5(m, 0;). The minimal risk for the minimax discrimination with
no ancilla corresponds to R), = max, Rz(7), and is achieved at one of the
breakpoints of R’z ().

the optimal minimax risk R/, for discrimination without ancilla corresponds to
the optimal Bayes risk without ancilla for the worst a priori probability = :

Theorem 2.6.2. The optimal minimaz discrimination with no ancilla is equiv-
alent to the solution of the problem

Ry = mT?XRIB (m) = Rg(x)) . (2.48)

Proof. Notice again the similarity between equations (2.17), (2.45) and (2.48).
For any p one has

R (&1(p), &2(p)) = Riyy = max Rip () - (2.49)

If we find an input state pz = 3(I + & - i) such that

max Rz (7) = max Rz (7,7 - 77) (2.50)
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from Eq. (2.17) of Theorem 2.3.3 it follows that

Rr(&1(pa), Ea(p)) = max Rp(m, & - 71) , (2.51)

which, along with Eqs. (2.49) and (2.50), provides the proof. Moreover, pz will
be the optimal input state for the minimax discrimination without ancilla.

Now we have just to find a state such that condition (2.50) holds. We already
noticed that 7/ is a breaking point of R’z (7). Either this breakpoint is also a
breakpoint (and the maximum) of R’;(, ;) for some i € x,y, 2, or else at least
two of the R';(m, 0;) are crossing in 7, one increasing and the other decreasing
(Fig. 2.6). In the first case Eq. (2.50) is immediately satisfied, and an eigenstate
of o; will be the optimal input state. In the second case, we show that when two
R'5(m,0;) are crossing at «, we can find a state pz such that

Rip(r., - 7i) = Rip(%, 01) ,
BWRIB (7T7 G- ﬁ)'ﬂ':ﬂ'; =0, (252)

and therefore has the maximum at 7/, by concavity. In fact, the crossing, and
therefore non-equality of the R’; (7, 0;) in a neighborhood of 7., implies that for
each of the two R';(, 0;), the maximum in (2.40) for 7/, is attained by the square
root term (since the term |a + b| is just a function of 7). Let us assume that the
o; that give such a crossing are o, and o,. Then looking at (2.40), we have at
point, 7,

le+d| =l]c—d|,
Orlc+d|Or|lc —d| <0 (2.53)

(notice that all functions are linear, i.e. differentiable in 7). Indeed, the first
of Egs. (2.53) implies that any linear combination of eigenstate of ¢, and o,
satisfies the first of Eqs. (2.52). By taking an input state with § = 7/2 and ¢
such that

_ Orle+d|

tan® ¢ = — ———
e X P

: (2.54)

—a/
T=T,

the second equation in (2.52) is satisfied as well. Similarly, if the o; are o.,0,
one can take the input state with ¢ = 0 or 7 and 6 such that

Orla — b

tan®f = — ——— 2.55
an orlerd|._, (2.55)
Finally, for 0., 0, one has ¢ = £7/2 and
Ox|a — b
tanf = — ——— 2.56
on e (2.56)



66 Discrimination

As a remark, no eigenstate of o; for i = z,y,z can be an optimal input in
the minimax sense in this situation. This is a typical result of the minimax
discrimination. As in the case of discrimination of states, when the correspondent
Bayes problem presents a kind of degeneracy and have multiple solutions, in the
minimax problem the degeneracy is partially or totally removed. In the present
situation, if we have the maximum of R’;(7) at the crossing point of exactly
two R’z (7, 0;), one increasing and the other decreasing, we find just four optimal
input states: two non-orthogonal states and their respective orthogonal states.
We shall give an explicit example at the end of the section. O

If we want to find in which case entanglement is not necessary for optimal mini-
max discrimination, then we have just to characterize when R’z(7)) = Rp(m.).
We already noticed that we can choose 7, to be one of the 7(®). The correspond-
ing ro is zero, and hence C' = 3 |rq|, namely Rz (m.) = Rp(m.). Since one
has

Rp(m.) =Ry = Ry = Rp(m.) = Rip(m) , (2.57)

we only have to check that 7, is a maximum of R (7), recalling that the function
is concave (see Fig. 2.6).

Ry(M)
Ry(M)

Figure 2.3: Optimal Bayes risks versus the a priori probability 7 for the discrim-
ination of the Pauli channels with parameters given in Eq. (2.64). The solid line
gives Rp(7) for an entanglement-assisted strategy; the dotted lines gives R’z ()
for strategy without ancilla. The minimal risk in the optimal minimax discrimina-
tion corresponds in both strategies to R}, = max, Rz(7) = max, Rp(m) = R,
namely there is no need of an ancillary system.

Ultimately, we shall have to list down cases. Reading them might be clearer
with the quantities appearing in Eqs. (2.36-2.39) explicitly written as a function
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of . The most useful segmentation of [0,1] is based on the 7(®) that is the
points where the 7, vanish, and Rp(7) breaks. Recall that r, = to (7 — 7(¥),
and 74 > 0 for 7 > 7(®). As we have four a, we have five segments (they
may get degenerated). Remember that knowing C' in Eq. (2.39) and > |r.] is
tantamount to knowing R';(7) or Rp(m). Here is a list of the signs of the r,
and the value of C' on each open segment (so that all r, # 0):

o (0,7): 3 |ra] = =3, 7a = C. Notice that R'y(7) = Rp(m) and that
their common slope is 1.

(7@ 7). Yoalral =10 =11 — 12 —r3, so that C =rg—ry —rog — 13 —
2inf,—1,2,3|7|. On this segment, Rz (7) > Rp(m).

(T, 7@) o S Ira| =19 + 11 — 12 — 13 = C, s0 that Rig(7) = Rp(m).

(7T(2),7T(3))2 Za [ra| =10 4+ 71 + 19 — 73, S0 that C = rg+1ry + 19 — 13 —
Qinfa:())lg ro and R}g(’ﬂ) > RB(TF).

(73, 1): 3, [ral =3, 7a = C and R'z(7) = Rp (7). Their common slope
is (—1).

A close look at these expressions, as we shall show in the following, proves that
R/y () is derivable at 7(®) unless there is 3 # a such that 7(®) = 7(%), With this
in mind, we see that 7, cannot be a maximum of 7(®) unless several r, are null
at the same point (with supplementary conditions) or m, = 71 and the segment,
(71, 7(?)) is flat. Here is the full-fledged study, using repeatedly the list above.
It is complete as any other case can be handled by symmetry (switching channels,
that is mapping 7 to 1 — 7).

o, =70 < 7MW At 7(9 we have 79 = 0 and r, < 0 for a # 0. So
that inf, [ro| = |ro| on a neighborhood of 7(°). On that neighborhood,

we deduce C' = — 3" 74, and hence 0, R’z (7)|,—r = 1, so that 7(¥) is
not a maximum of Rz(w). Entanglement is then necessary for optimal
discrimination.

o 1, =710 =71 < 72; On (0, 7O)YU(FD, 7?)), equality Ry (7) = Rp(r)
holds. Thus, the two functions are equal on a neighborhood of 7., and since
7 is a (local) maximum of Rp(n), it is also a local maximum of R’ (7).
In this case an unentangled strategy is then as efficient as any entangled
one.

e =70 =71 = 72 < 70); The risk R’3(n) is nondecreasing on
the left of 7. (slope 1), we then want it to be non-increasing on a right
neighborhood of m,. Now this is part of the segment (7, 7(3)), where
C=ro+ri+re—rs—2inf,—g127q. Recall that ro = to(m— 7(®)). Since
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ro = 0 for a # 3 at m,, and they are all nondecreasing, inf,—g 1,2 7o is the
one with the smallest slope t,. It follows that the slope of R;(7) on the
right of . is t3 —to — t1 —t2 + 2inf,—0,1,2 Lo, and so entanglement is not
needed if and only if

ts +2 inf ta < > ta (2.58)
a=0,1,2

7 =70 = 7(1) = 7(2) = 7). This is the trivial case where both channels
are the same. Of course, entanglement is useless.

70 < 7, =7 < 73); In this case Ry(7) is derivable at 7.. Indeed,
on (7(M,7(?), we have C = rg 4+ r, — 5 — 3 whereas on (7(9 7)),
C =rog—mr —ry—rg—2infa—123|re|]. In a neighborhood of ., one
has inf,—1 93 |ra| = 71, as it is the only one which is 0 at m,; hence C' =
ro + 71 — ro — 3 also on a left neighborhood of 7. and the slope of R';(7)
at 7, is t3 + to — t1 — to. Since m* is a maximum if and only if this slope is
null, we get the condition

to+1t1 =ty + 3. (2.59)

70 < 7, = 70 = 7 < 76): On the left of ., we are on the segment
(7@ 7MY so that C = rg—r) —1r9 — 13— 2infy—1,2,3|ra|. On the right, we
are on the segment (7r(2), 7r(3)) and C =719+ r; + 1y —rg — 2info—0,1274-
In a neighborhood of 7, the r, with the smallest absolute value will be
either 7, or o (more precisely, the one with the smallest slope ¢,), so that
we can write in a neighborhood of 7, for both sides C' = rg —r3 + |ro — r1].
The slope of R’z () is then t3 —to+ |ta —t1] and t3 —to — |[t2 —t1] on the left
and on the right of 7., respectively. Entanglement is not necessary when
7 18 a maximum of R';(7), and hence we get the necessary and sufficient
condition

[to —ta| < [t1 —t2| . (2.60)

We can summarize the above discussion as follows

Theorem 2.6.3. The minimaz risk without using ancilla is strictly greater than
the minimaz risk using entanglement, except in the following cases:

e the trivial situation where both channels are the same, so that w, = 7(®) = 5

1

for all .

o ifm =7 < 1) < 7@

° zf Ty = 77(0) e 7'((1) = 7'((2) < 71-(3) and

. _ _
ts+2 inf to < > ta (2.61)

a=0,1,2
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o if 10 <7, =71 < 72 and
to+t1 =to+t3 (2.62)

o if 70 < T = 7D =72 « 703 gnd

[to — ta] < [t1 — taf (2.63)

o The symmetric cases (obtained by exchanging channels 1 and 2, i.e. ex-
changing indezes 0 and 1 with 3 and 2, respectively, both in ©7'® and t,.

Differently from the Bayesian result, we notice that when entanglement is not
necessary to achieve the optimal minimax discrimination, the optimal input state
may not be an eigenstate of the Pauli matrices. Consider, for example, the two
Pauli channels featured in Fig. 2.6 that correspond to the parameters

@) =03 ¢V =04 g = 0.2 ¢ =01
¢ =01 ¢? =03 ¢? =0.15 ¢¥ =0.45 (2.64)

We can compute 7(*) = ¢$7/(q{" + ¢&”) and get 7(*) = (1/4,3/7,3/7,9/11).
Here 7, = 3/7, and we are in the situation of Eq. (2.63), since t, = (q&l) +
q((f)) = (0.4,0.7,0.35,0.55). Hence, entanglement is not necessary to achieve the
optimal minimax risk, but the state to be used is not an eigenstate of the Pauli
matrices. In fact, we are in the case of the proof of Theorem 3, where R'; (7, o)
and R’z(m,0y) are crossing in m,. The optimal input state for the minimax
discrimination will be given by 8 = 7/2 and ¢ as in Eq. (2.54), which gives
tan® ¢ = 2/5. Then, we have four optimal input states that lie on the equator of
the Bloch sphere, with 77 = (+/5/7, £4/2/7,0).






Chapter 3

Fast estimation of unitary
operations

This chapter is derived from the article [Kahn, 2007b].

Abstract: We give an explicit procedure based on entangled input
states for estimating a SU(d) operation U with rate of convergence
1/N? when sending N particles through the device. We prove that
this rate is optimal. We also evaluate the constant C' such that the
asymptotic risk is C/N2. However other strategies might yield a
better constant C'.

3.1 Introduction

The question that we are investigating in this chapter is: “What is the best way
of estimating a unitary operation U?7”

By “unitary operation”, we mean a device (or a channel) that sends a density
operator pg on C? to another density operator p = UpoU*, where U € SU(d), a
special unitary matrix.

We immediately stress that the solution to this estimation problem can be divided
into two parts: what is the input state, and which measurement (POVM) to apply
on the output state? Indeed, in order to estimate the channel U, we have to let it
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act on a state (the input state). And once we have the output state, the problem
consists in discriminating states in the family of possible output states.

This estimation of unitary operation has been extensively studied over the last
few years.

The first invitation was [Childs et al., 2000a], featuring numerous special cases.
In most of those, the unitary U is known to belong to some subset of SU(2).

Then Acin et al. [2001] provided the form of an optimal state to be sent in with
non-specified coefficients depending on the cost function (we give the formula of
this state in equation (3.2)). In that paper the authors consider the situation
where the unitary operation is performed independently on NN systems. That
study applied to any SU(d), and any covariant loss function, in particular fidelity,
in a Bayesian framework. The proposed input state uses an ancilla, that is
an auxiliary system that is not sent through the unitary channel with Hilbert
space (C)®N . The state is prepared as a superposition of maximally entangled
states, one for each irreducible representation of SU(d) appearing in (C4)®". We
emphasize that the state is an entangled state of (C)®N @ (C%)®V: we do not
send N copies of an entangled state through the device, but all the N systems
that are sent through the channel together with the N particles of the ancilla
are part of the same entangled state, yielding the most general possible strategy.
There was no evaluation of the rate of convergence, though.

Subsequent works mainly focused on SU(2), as the case is simpler and yields
many applications, e.g. transmission of reference frames in quantum communi-
cation. Indeed, the latter is equivalent to the estimation of a SU(2) operation.
The first strategy to be proved to converge (in fidelity) at 1/N? rate was not
covariant [Peres, 1993]. It made no use of an ancilla. Later, Bagan et al. [2004a]
achieved the same rate for a covariant measurement with an ancilla through a
judicious choice of the coefficients left free in the state proposed by Acin et al.
[2001]. The optimal constant (72/N? for the fidelity) was also computed. It
was almost simultaneously noticed [Bagan et al., 2004b, Chiribella et al., 2004]
that asymptotically the ancilla is unnecessary. Indeed what we need is entan-
gling different copies of the same irreducible representation. Now each irreducible
representation appears with multiplicity in (C?)®", most of them with higher
multiplicity than dimension, which is the condition we need. This method was
dubbed “self-entanglement”. The advantage is that we need to prepare half the
number of particles, as we do not need an ancilla. In all these articles, the
Bayesian paradigm with uniform prior was used. The same 1/N? rate was shown
to hold true in a minimax sense, in pointwise estimation [Hayashi, 2004]. We
stress the importance of this 1/N? rate, proving how useful entanglement can
be. Indeed, in classical data analysis, we cannot expect a better rate than 1/N.
Similarly the 1/N bound holds for any strategy where the N particles we send
through the device are not entangled “among themselves” (that is, even if there
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is an ancilla for each of these N particles).

Another popular theme has been the determination of the phase ¢ for unitaries of
the form Uy = e'®!. This very special case already has many applications, espe-
cially in interferometry or measurement of small forces, as featured in the review
article by Giovannetti et al. [2004] and references therein. A common feature of
the most efficient techniques is the need for entangled states of many particles,
and much experimental work has aimed at generating such states. These methods
essentially involve either manipulation of photons obtained through parametric
down-conversion (for example [Eisenberg et al., 2005]), ions in ion traps (for ex-
ample [Dalvit et al., 2006]) or atoms in cavity QED (for example [Vitali et al.,
2006]).

In recent years, there has been renewed interest in the SU(d) case. Notably,
Chiribella et al. [2005] takes off from [Acin et al., 2001], allowing for more gen-
eral symmetries and making explicit for natural cost functions both the free
coefficients — as the coordinates of the eigenvector of a matrix — and the POVM
(see Theorem 3.2.1 below). With a completely different strategy, aiming rather
at pointwise estimation (and therefore minimax theorems), an input state for
U®" was found [Ballester, 2005b,a| such that the Quantum Fisher Information
matrix is scaling like 1/N?, yielding hopes of getting as fast an estimator for
SU(d). No associated measurement was found in that paper.

Given the state of the art, a natural question is whether we can obtain, as for
SU(2), this dramatic increase in performance when using entanglement for gen-
eral SU(d). That is, do we have an estimation procedure whose rate is 1/N2,
instead of 1/N? Neither Chiribella et al. [2005], who do not study the asymp-
totics for SU(d), nor Ballester [2005b], who does not give any measurement,
answer this question.

In this chapter, we first prove that we cannot expect a better rate than 1/N2.
This kind of bound based on the laws of quantum physics, without any a priori
on the experimental device, is traditionally called the Heisenberg limit of the
problem. Then we choose a completely explicit input state of the form (3.2) (as
in [Acin et al., 2001]), by specifying the coefficients. By using the associated
POVM, the estimator of a unitary quantum operation U € SU(d) converges at
rate 1/N2. The constant is not optimal, but is briefly studied at the end of
the chapter. We obtain these results with fidelity as a cost function, both in a
Bayesian setting, with a uniform prior, and in a minimax setting. Notice that we
shall not need an ancilla.

The next section consists in formulating the problem and restating Theorem 2
of [Chiribella et al., 2005] within our framework. Section 3.3 then shows that it
is impossible to converge at rate faster than O(N~2). In section 3.4, we write a
general formula for the risk of a strategy as described in Theorem 3.2.1, and in
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section 3.5 we specify our estimators by choosing our coefficients in (3.2). We
then prove that the risk of this estimator is O(N~2). The last section (3.6)
consists in finding the precise asymptotic speed of our procedure, that is the
constant C' in CN~2. We finish by stating in Theorem 3.6.1 the results of the
chapter.

3.2 Description of the problem

We are given an unknown unitary operation U € SU(d) and must estimate it “as
precisely as possible”. We are allowed to let it act on N particles, so that we are
discriminating between the possible U®Y. We shall work both with pointwise
estimation (as preferred by mathematicians) and with a Bayes uniform prior (a
favorite of physicists).

Any estimation procedure can be described as follows (see Figure 3.1): the unitary
channel U®V acts as

UN@1: (CH*N @Kk — (CH*NV oK,
on the space of the N systems together with a possible ancilla. The input state

pn € M((CH®™ © K,,) is mapped into an output state on which we perform a
measurement M whose result is the estimator U € SU(d).

S
IR

Measurement Apparatus

}

U

Figure 3.1: Most general estimation scheme of U when n copies are available at
the same time, and using entanglement.
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In order to evaluate the quality of an estimator U, we fix a cost function AU, V).
The global pointwise risk of the estimator is

Rp(U)= sup Ey[A(U,T)).
UeSU(d)

The probability distribution of U depends on U, and we take expectation with
respect to this probability distribution.

On the other hand, the Bayes risk with uniform prior is:
Re(0)= [ Eg[AU0)du(0)
SU(d)

where p is the Haar measure on SU(d).

As cost function, we choose the fidelity F' (or rather 1 — F'), which for an element
of SU(d) is defined as:

il T 1/ 11/\/ 2
A(U,U)——l—7| X 5 )
1 |XE‘(L 1LA)|2

- - - 5 l2

where yg is the character of the defining representation of SU(d), whose Young
tableau consists in only one box. In other words, xo(U) = Tr(U).

Before really addressing the problem, we make a few remarks on why this choice
of distance is suitable for mathematical analysis.

Firstly, this cost function is covariant, i.e. A(U,U) = A(1ga, U=LU).

Secondly, a useful feature within the Bayesian framework is that A is of the
form (3.1), as required in Theorem 3.2.1. Indeed we can rewrite A(U,U) as
1 — xo(U=0)x5(UU)/d?. Now the conjugate of a character is the character
of the adjoint representation, the product of two characters is again the character
of a possibly reducible representation w. This character is equal to the sum
of the characters of the irreducible representations appearing in the Clebsch-
Gordan development of 7, in which achoeﬂicients are non-negative. Therefore
A =1- (3 5azx;) where ag > 0 and A runs over all irreducible representations
of SU(d). That is the condition (3.1) that we shall need for applying Theorem
3.2.1, given at the end of the section.

On the other hand, the theory of pointwise estimation deals usually with the
variance of the estimated parameters when we use a smooth parameterization of
SU(d). As we want to use the Quantum Cramér-Rao Bound (3.9), we need A to
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be quadratic in the parameters to the first order, and positive lower bounded for
U outside a neighborhood of U. As A is covariant, it is sufficient to check this with
U = 1¢a. Now an example of a smooth parameterization in a neighborhood of the
identity is U(6) = exp(>_,, 0aTa) where 6 € R% -1 and the T, are generators of
the Lie algebra, so that Tr(T,) = 0. Now Trlexp(>_,, 0.Tw)] = d+)_,, 0o Tr(To)+
O(||6]]?), so that the trace minus d, and consequently A, is quadratic in @ to the
first order.

As stated at the beginning of this section, we are working with U®Y. The
Clebsch-Gordan decomposition of the n-th tensor product representation is

vV = P el
X:|X|=N

acting on @X:|X\:N HX @ (CM(X), where HX = CPO) ig the representation space
of \, M(X) is the multiplicity of X in the n-th tensor product representation, and
D(X) the dimension of X. We refer to CM®) as the multiplicity space of X. We
have indexed the irreducible representations of SU(d) by X = (A1, ..., \q), and
written |X| = Z‘ii:l Ai. Notice that this labelling of irreducible representations
is redundant, but that if [X!| = |X2|, then X! and X? are equivalent (denoted

-

X! = X2) if and only if X! = X2.

The starting point of our argument will be the following reformulation of the
results of [Chiribella et al., 2005], with less generality, and without the formula
for the risk whose form is not adapted to our subsequent analysis:

Theorem 3.2.1. [Chiribella et al., 2005] Let U € SU(d) be a unitary operation
to be estimated, through its action on N particles. We may use entanglement
and/or an ancilla.

Then, for a uniform prior and any cost function of the form

(U U) =ag— Y azxt(UD), (3.1)
X

we can find as optimal input state a pure state of the form

= @ 2T heh (3.2)
X1|X\:N 'D(/\) i=1

with ¢(X) > 0, and the normalization condition,

D (N =1. (3.3)

A
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Moreover |1/)5> is an orthonormal basis of H* and |¢)§> are orthonormal vectors
of the multiplicity space, which may be augmented by an ancilla if necessary (see
remark below on the dimensions).

(1]

The corresponding measurement is the covariant POVM with seed
given by:

= [n)(nl

DY) -
M= VD) 1) @le), (3.4)
Xle(X)%0 i=1

that is a POVM whose density with respect to the Haar measure is given by
m(U) = Uln){n|U* with

D(X)

vl = @ VoA X U e o).

Xle(X)£0

Remark: We use D(X) orthonormal vectors in the multiplicity space of X. This
requires M(A) > D(A). If this is not the case, we must increase the dimension of
the multiplicity space by using an ancilla in C°. Then the action of U is U®N ®1¢s
whose Clebsch-Gordan decomposition is @X| =N U’\®1C5M(;) . With big enough

§, we have SM(X) > D(X). Notice that an ancilla is not necessary if ¢(X) = 0 for
all A such that D(\) > M(N).

Another remark is that, as defined, our POVM is not properly normalized:
M(SU(d)) # 1, but is equal to the projection on the space spanned by the
U|W). As this is the only subspace of importance, we can complete the POVM
(through the seed, for example) ad libitum.

Our estimator U is the result of the measurement with POVM defined by (3.4)

-

and input state of the form (3.2), with specific ¢()). Such an estimator is co-
variant, that is py(U) = p1_, (U=1U), where py is the probability distribution
of U when we are estimating U. The cost function is also covariant, so that
Ey[A(U,U)] does not depend on U. This implies that the Bayesian risk and the
pointwise risk coincide. With the second equality true for all U € SU(d), we
have:

Rp(0) = Rp(0) = Eu[AU, D). (3.5)

Theorem 3.2.1 states that there exists an optimal (Bayes uniform) estimator U,

of this form (corresponding to the optimal choice of ¢(X)), so that it obeys (3.5).
From this we first prove that no estimator whatsoever can have a better rate
than 1/N2.
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3.3 Why we cannot expect better rate than 1/N?

For proving this result, we need the Bayesian risk for priors m other than the
uniform prior:

R(U) = E-[Eu[A(U, U)]].

As Bayesmn optimal for the uniform prior, we only have to prove that
Rp ( ) O(N~2). This is also sufficient for pointwise risk as, for any estimator
U, we have RB(U) < Rp(U). Moreover, as Ey[A(U, U,)] does not depend on U,
R+ (U,) = Rp(U,). It is then sufficient to prove, for a m of our choice, that:

R (U,) = O(N?). (3.6)

The idea is to find a Cramér-Rao bound that we can apply to some 7. We shall
combine the Braunstein and Caves information inequality (3.8) and the Van Trees
inequality (3.7) to obtain the desired Quantum Cramér-Rao Bound, much in the
spirit of Gill [2005b]. This bound will yield an explicit rate through a result of
Ballester [2005b].

Van Trees’ inequality states that given a classical statistical model smoothly
parameterized by § € © C R”, and a smooth prior with compact support ©¢ C O,
then for any estimator 6, we have:

2

5 P
BT (Vo) > grmz@n — (3.7)

where I(0) is the Fisher information matrix of the model at point 0, Z. is a
finite (for reasonable 7) constant depending on 7 (quantifying in some way the
prior information), and Vy(#) € M,(R) is the mean square error (MSE) of the
estimator 0 at point @ given by:

Vb(é)aﬁ = E[(ea - éa)(eﬁ - éﬁ)]

This form of Van Trees inequality is obtained by setting N =1, G = C' = Id and
1 =0 in (12) of [Gill, 2005b].

Now the Braunstein and Caves C. M. [1994] information inequality yields an
upper bound on the information matrix I)s(#) of any classical statistical model
obtained by applying the measurement M to a quantum statistical model. For
any family of quantum states parameterized by a p-dimensional parameter 6 €
O € RP, for any measurement M on these states, the following holds:

In(0) < H(0), (3.8)

where H(0) is the quantum Fisher information information matrix at point 6.
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Now it was proved by Ballester [2005b] that for a smooth parameterization of an
open set of SU(d), and for any input state, the quantum Fisher information of
the output states fulfils:

H(6) = O(N?).

Inserting in (3.7) together with (3.8) we get as quantum Cramér-Rao bound

E, [Tr(Vs(9))] = O (Ni) | (3.9)

We now want to apply this bound to obtain (3.6). There are a few small technical
difficulties. First of all, we cannot use the uniform prior for 7 as SU(d) is not
homeomorphic to an open set of RP. We then have to define two neighborhoods of
the identity ©¢ C ©, allowing to use the Van Trees inequality. Now our estimator
U, need not be in O, so that we shall in fact apply Van Trees inequality to a
modified estimator U. Finally, this bound is on the variance, and we must relate
it to A.

Our first task consists in restricting our attention to a neighborhood © of 1¢a. It
corresponds to a neighborhood © (we use the same notation) of 0 € R? through
U =exp(d_, 0aT,). This holds if the neighborhood is small enough, so we define
it by U € © if and only if A(1ce,U) < € for a fixed small enough ¢. We define
O¢ through U € 0 for A(1ce,U) < ¢/3, and take a smooth fixed prior = with
support in ©g, such that 7, < oc.

Now we modify our estimator U, into an estimator U given by U= UO for UO €0
and U = 1¢a for U, ¢ ©. Then, by the triangle inequality, for any U € ¢, we
have A(U,U,) > A(U,U).

The fundamental point of the reasoning (used at (3.10)) is that, as A is quadratic
at the first-order, there is a positive constant ¢ such that, for any U',U? € O,
corresponding to 61,62, we have A(Uy,Us) > ¢ (08 — 62)2.

Finally we get

Rﬂ(Uo) = E:[Ev[A(U,U,)]]
> E<[Ev[A(U, U)]]
> cE, (V3] (3.10)
=O0O(N7?)

We have thus proved (3.6), and hence our bound on the efficiency of any estima-
tor.

We now write formulas for the risk of any estimator of the form given in Theorem
3.2.1.
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3.4 Formulas for the risk

By (3.5), our risk RP(U) is equal to the pointwise risk at 1ca, with which we
shall work:

[ @ {1 - W} (0. (311)
SU(d)

Now we compute the probability distribution of U for a given |¥) of the form
(3.2), that is

p1,,(U) = (P[UE0|¥)

cX) 20) X X 2
_ Az_ D(X)Dm ;wi Ul7)
X|=N
2

where we have used that the character x5 of X is the trace of U in the represen-
tation.

Then, using (3.11), recalling that P1,, is a probability density for Haar measure
pon SU(d), and that x51X52 = X515 (for the second term), we get:

2

A 1 - N N
R0y =1-o [ Xﬁ;_NcmXx@D(U) (). (312)

In order to evaluate the second term, we use the following orthogonality relations
for characters:

[ dnys, 0, ) =85, 5, (3.13)
SU(d)

To do so we need the Clebsch-Gordan series of A @ O
X® 0 =@&p<icansrg A+ e, (3.14)

where conventionally A\g11 = 0. Here we see A as a d-dimensional vector and e;
as the i-th basis vector.
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We then reorganize the sum of characters as:

Z C(X)XX@:] (U) = Z Z /\ - ez X)\/(U)

X:|X|=N XN |=N+1ieS(N)

where S(X') is the set of i between 1 and d such that X —e; is still a representation,
that is Aj > X}, ;. We shall write #S (X) for its cardinality.

Inserting in (3.12) and remembering (3.13), we are left with

Ex’?\x’\:N+1 | EieS(X’) (N —e)]?
d? )

Rp(U)=1- (3.15)

To go any further, we must work with specific ¢(X).

3.5 Choice of the coefficients ¢(X) and proof of
their efficiency

We now have to choose the coefficients ¢(X) so that the right-hand side of (3.15)
is small.

It appears useful to introduce subsets of the set of all irreducible representations.
Let Py = {X| [N = N;A; > -+ > A\g > 0}. Obviously, if X' € Py,1, then
#S(X’) = d, and the converse is true. We can see them intuitively as points on a
(d — 1)-dimensional surface, and with this picture in mind, we shall speak of the
border of Py (when \; = \;y1 + 1 for some 4), or of being far from the border
(without precise mathematical meaning).

We are ready to give heuristic arguments on how good coefficients should behave.

We must try to get the fraction in (3.15) close to one. Now

y 2
ZX’1|X’|:N+1 | Zies(i/) c(N — &)l
2

d
S #S(V) Ciesin leV —en)l?
. d d
1R =N+1
Yiesan leN —e)f?
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The first inequality was obtained using Cauchy-Schwarz inequality for each inner
sum. There is equality if ¢(\ — e;) does not depend on 4. From this, we deduce
that for most X, the C(X/ — e;) must be approximately equal, especially if they
are large. The second inequality follows from #S(X') < d. From this we deduce
that for X & P41, the coefficients ¢(X — ¢;) must be small. Remark that about
1/N of the X' such that |X'| = N + 1 are not in Py1, so that if all ¢(X) were
equal, these border terms would cause our rate to be 1/N. The key of the third
inequality is to notice that each C(X) is appearing in the sum once for each term
in its Clebsch-Gordan series (3.14), and that there are at most d terms. Please
note that there are d terms if X € Py, and if X is in Py 1, far from the border,

then N — e; is in Py, far from the border.

The conclusion of these heuristics is that we must choose coefficients “locally”
approximately equal (at most 1/N variation in ratio), and that the coeflicients
must go to 0 when we are approaching the border of Py .

One weight satisfying these heuristics is the following.
d
cX) =NT]» (3.16)
i=1

where N is a normalization constant to ensure that (3.3) is satisfied and p; =
Ai — Air1. We shall use it below, and prove that it delivers the 1/N? rate.

A first remark about these weights is that C(X) =0if X ¢ Pn. Now, for any
X € Py, we have D(X) > M(X), so that we do not need an ancilla.

Indeed, using hook formulas (see [Schensted, 1976]), we get

Now for X € P, we know that A\; # 0. Under this constraint and Y \; = N, the
maximum is attained by Ay = N —d+ 1 and A\; = 1 for i # 1. We end up with
exactly 1.

We shall now use (3.16) and express the numerator of (3.15) with our choice of
pi. Notice first that if p; characterize X' then those which characterize X — e; are

given by pg»i) =pj +0dji-1— 04 So

d
NN =) = [T ps + 75 (),
j=1
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with
rs, i) =—[Ipi+ds1 | T[] i— [[ »
i j#i—1 A1
Introducing another notation will make this slightly more compact. For a vector
Z with d components and £ a subset of {1, ..., d}, define:

Tre = H $j. (317)
s
Then
r5,(8) = =pgay + 051 (Pi—1y — Prii-1y) -

Notice now that for X € Pn, there are exactly d irreducible representations
appearing in the Clebsch-Gordan decomposition of X ® O (3.14). So that ¢(X)2
appears exactly d times in 3 5, 5/ _y 41 2ies () ¢(X' —e¢;)2. We may then rewrite
the renormalization constant N as

d
ot > X I

N X |=N+1ieS(N) I=1

Therefore, rewriting the second term in (3.15) with our values of ¢(X), we aim at
proving:

2
d .
ZX’:\X’|:N+1 (ZieS(X’) Hj:l pj+T3% (l))

d .
A 53 = N41 2oies () (Hj:1 P+ (Z))

> =14+0(N7?). (3.18)

Let us expand the numerator:
2

d
> S IIpi+rs )] =C+t+t),

NN |=N+1 \ies(x) =1

with

d
Co=>_#sN)* ] v,

X/
255 Tiescn #SW)rs () 5=y by
tl = C )
t
2
S (S
2 p— .

Ci
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Similarly the denominator can be read as:

d
d Z Z Hpj—l—?"x/(i) ZOu(I‘FUl"‘UQ)a

X N|=N+1ies(X) \J=1

with

Cu = Z d#S(X H v,
2d EA' Zzes()\' T)\/( ) H?:1 Pj

uy = C s
2% dZies(X/) r5(i)?
Cy '

U9 =

With these notations, we aim at proving the set of estimates given in Lemma
3.5.1. Indeed they imply:

2
d .
ZX’:\X/I:NH (ZieS(X’) [limipi+r3 (Z))

d 2)? 3.19
A 5N =N41 2oies(R) (Hj:1 P+ (Z)) (3.19)
= 1+t2—U2+O(N_3)

with (ts —uz) of order N=2. By (3.18), the risk of the estimator is then us —to +
O(N~3). Thus proving Lemma 3.5.1 amounts at proving 1/N? rate.

We shall make use of the notation ©(f), meaning that there are universal positive
constants m and M such that:

mf<O(f) < Mf.
Lemma 3.5.1. With the above notations,

d
Co=Cr=d> Y 11>

X Xrj=N+1 \7=1

_ @(N?)d—l)
th =u; = O(N_l)
ty = O(N~?)
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Proof. We first prove the first line.

Indeed for N € Pna1, all i are in S(X’), and

2

S [In) —¢ % Hpj—d’znpj

ies(a)I=1 ies(x) =1

But if X & Pn+1, there is at least one p; equal to zero, so they do not contribute

2
to the sum. So that C, = C; = d? ZX':\X’|:N+1 (H;l:lpj) .

We have then equality of the denominators of t1 and w;. The same argument
gives equality of the numerators. On Py1, #S(N') = d so that

d d
Z #S(A /T,\/ H Z Tx/(i)Hpgw

ieS(\) ieS(\)
and outside P41, H;l:l p;j = 0o that the equality still holds. Therefore t; = u;.

< (N+1)?and |rg, (i)] < 2(N+1)?~1. Moreover,
as 1 < \; < N+ 1 and Ay is known if the other \; are known, the number of
elements X in Pn1 satisfies #Pyi1 < (N + 1)?7 L. Thus the numerator of t;
and u; is O(N3972) and that of t5 and usy is O(N34=3). To end the proof of the
lemma, it is then sufficient to show that C,, = ©(N34~1).

Now p; < N+1 so that H;l:lpj <

Let us write N +1 = a(1 +d(d+ 1))/2 4+ b with a and b natural integers and
b < (1+d(d+1)). We then select h; for i = 1 to d such that Y h; = a/2.

The number of ways of partitioning a/2 in d parts is (“/%2797"), and this is
O(a"1') = ©(N971). To each of these partitions, we associate a different X in
Pn41 through A\; = (d — i + 1)a 4+ d;=1b + h;. For each of these XN, we have
p; = Aj — A\j+1 > a/2, so that H?:1p§ = O(N?%). We may lower bound C,, by
the sum over these A’ of H?:l p3, so that we have proved C,, = O(N*1). [

3.6 Evaluation of the constant in the speed of con-
vergence and final result

The strategy we study is asymptotically optimal up to a constant, but a better
constant can probably be obtained. Anything like ¢(A ) (11 pj)o‘ with o >
1/2 should yield the same rate, though it would be more cumbersome to prove.
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Polynomials in the p; could also bring some improvement. All the same we give
in this section a quick evaluation of the constant, that may serve as a benchmark
for more precise strategies.

Write p; = (N + 1)z;. Then, recalling our notation 3.17,
d d
Hp? = (N+1)2de§
j=1 j=1
ry (i) = (N + 1t (—z(y + dis1@gim1) + O(N7Y).

Similarly, the set of allowed & = (z1,...,2,) may be described as

d
Sn+1 =1 Z|z;(N+1)€e Zd j+ Dz =1

We may then rewrite:

d 2
Uy = ZfesN+1 dy iy (x{i} - 5i>1x{i—1}) 4 O(N_B)

d
d? (N + 1)2 TESN 41 Hj:1 1’?

2
_ 2u@eSn g (x4 — is12gi-1y)
N d
PN+ 12 e, T, 22

+O(N™3).

Subtracting, we obtain (the first sums being on Sy 1)
uy —ta + O(N73) = (3.20)
220 (T @w)? - Tle v ) — @+ Diaw)?

(3.21)

Now Sy 41 is the intersection S of the lattice in [0, 1]¢ with mesh size 1/(N + 1)
with the hyperplane given by the equation Y (d — j + 1)xz; = 1. Therefore the
points of Sy11 are a regular paving of a flat (d — 1)-dimensional volume, with
more and more points (we know that #Syi1 = O(N?1)). Therefore both
denominator and numerator of (3.20) are Riemannian sums with respect to the
Lebesgue measure, with a multiplicative constant that is the same for both.
Therefore we have proved:

Theorem 3.6.1. The estimator U corresponding to (3.16) has the following risk:

Re(U) = Rp(U) = By, {A(Lcd, U)} — ON“24+O(N7?)
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where C' is the fraction
[52d (S (2 = Sy ey ) — (@ +D(eg)?de
< - .
d? [5I1j=, a3d7

Up to a multiplicative constant, this risk is asymptotically optimal, both for a
Bayes uniform prior and for global pointwise estimation.

Numerical estimation, up to two digits, for the low dimensions yields:

10 for d = 2
75 for d = 3
2.7 x 10? for d = 4.

3.7 Conclusion

We have given a strategy for estimating an unknown unitary channel U € SU(d),
and proved that the convergence rate of this strategy is 1/N2. We have further
proved that this rate is optimal, even if the constant may be improved.

The interest of this result lies in that such rates are much faster than the 1/N
achieved in classical estimation and, though they had already been obtained for
SU(2), they were never before shown to hold for general SU(d).






Chapter 4

Clean positive operator valued
measures

This chapter is derived from the article [Kahn, 2007a].

Abstract: In a recent paper Buscemi et al. [2005] have defined a
notion of clean positive operator valued measures (POVMs). We
here characterize which POVMs are clean in some class that we call
quasi-qubit POVMs, namely POVMs whose elements are all rank-one
or full-rank. We give an algorithm to check whether a given quasi-
qubit POVM satisfies to this condition. We describe explicitly all the
POVMs that are clean for the qubit. On the way we give a sufficient
condition for a general POVM to be clean.

4.1 Introduction

The laws of quantum mechanics impose restrictions on what measurements can
be carried out on a quantum system. All the possible measurements can be
described mathematically by “positive operator-valued measures”, POVMs for
short. Apart from measuring a state, we can also transform it via a quantum
channel. Now suppose we have at our disposal a POVM P and a channel £. We
may first send our state through £ and then feed the transformed state in our
measurement apparatus P. This procedure is a new measurement procedure, and
can therefore be encoded by a POVM Q. Now transforming the state with £ can
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be seen as a kind of noise on the POVM P. We may then view Q as a disturbed
version of P, and we say that P is cleaner than Q. Now, what are the maximal
elements for this order relation?

The order relation “cleaner than” has been introduced in a recent article of
Buscemi et al. [2005]. Herein they look at which POVMs can be obtained from
another, either by pre-processing (the situation we just described, where we first
send our state through a channel) or by classical post-processing of the data.
Especially, they try to find which POVMs are biggest for these order relations
(in the former case, the POVM is said to be clean; there is no “extrinsic” noise).
For pre-processing they get a number of partial answers. One of those is that a
POVM on a d-dimensional space with n outcomes, with n < d, is clean if and
only if it is an observable. They do not get a complete classification, though.

The object of the present chapter is to characterize which POVMs are clean in
a special class of measurements. Namely, we are interested in POVMs such that
all their elements (see definition below) are either full-rank or rank-one. We call
these POVMs quasi-qubit POV Ms. Notice that all the POVMs for qubits satisfy
to this condition.

On the way we prove a sufficient condition for a POVM to be clean, that is usable
also for POVMs that are not quasi-qubit.

It turns out that cleanness for quasi-qubit POVMs can be read on the span of
the rank-one elements. Moreover,if a (non necessarily quasi-qubit) POVM is
cleaner than a clean quasi-qubit POVM, the latter was in fact obtained by a
channel that is a unitary transform. In other words, for quasi-qubit POVMs,
cleanness-equivalence is unitary equivalence.

We give an algorithm to check whether a quasi-qubit POVM is clean or not.
This algorithm may be the main contribution of the chapter, as almost all the
following theorems can be summed up by saying the algorithm is valid.

In the end we apply these results to the qubit, for which all POVMs are quasi-
qubit. We are then left with a very explicit characterization of clean POVMs for
qubits.

Section 4.2 gives precise definitions of all the objects we cited in this introduction.

We define the algorithm, give heuristically the main ideas and define the impor-
tant notion “totally determined” (Definition 4.3.2) in Section 4.3.

Section 4.4 gives a sufficient condition for a POVM to be clean, namely that
the supports of the elements of the POVM “totally determine” the space (see
Definition 4.3.2). We use this condition to show that when the algorithm exits
with a positive result, the quasi-qubit POVM is really clean.



4.2 Definitions and notations 91

Section 4.5 proves that the above sufficient condition is in fact necessary for
quasi-qubit POVMs. It checks that when the algorithm exits with a negative
result, the POVM is truly not clean.

Section 4.6 gathers the results relative to quasi-qubit POVMs in Theorem 4.6.1
and deals with the qubit case in Corollary 4.6.2.

Ultimately section 4.7 gives a very rough idea for making explicit more explicit
the sufficient condition for a POVM to be clean we have given in section 4.4.

If one wishes to look for the results of this chapter without bothering with the
technical proofs, the best would be to read the algorithm of section 4.3 and then
to read Theorem 4.6.1 and Corollary 4.6.2. You would also need Lemma 4.5.3
that you could use as a definition of “totally determined” if you are only interested
in quasi-qubit POV Ms.

If you also want the supplementary results that apply to other POVMs, further
read Definitions 4.3.1 and 4.3.2, and Theorem 4.4.1.

4.2 Definitions and notations

We consider POVMs on a Hilbert space H of dimension d > 2. Dimension 2 is
the qubit case. The set {|e;) }1<i<q Will be an orthonormal basis of H. If V is
a subspace of H then V' is the subspace orthogonal to V in H. If we are given
vectors {v; }icr, we denote by Span(v;, i € I) the space they generate. The set of
operators on H is denoted by B(H).

A POVM P (with finite outcomes, case to which we restrict) is a set {P;}ies
of non-negative operators on H, with I finite, such that ) ,.; P, = 1. The P
are called POVM elements. We write Supp(P;) for the support of this element.
This support is defined by its orthogonal. The set of |¢) € Supp(P;)* is exactly
the set of |¢) such that (¢|P;|¢) = 0. The rank of a POVM element is its rank
as an operator. In particular, rank-one elements are of the form \;|v;)(w;| and
full-rank POVMs are invertible. Special cases of POVMs are rank-one POVMs,
that is POVMs whose elements are all rank-one, and full-rank POV Ms, that is
POVMs whose elements are all full-rank. We are especially interested in a class

of POVMs that includes both:
Definition 4.2.1. Quasi-qubits POVMs

A POVM P is a quasi-qubit POVM if all its elements P; are either full-rank or
rank-one.

Similarly, we shall speak of strict quasi-qubit POVMs for quasi-qubit POVMs
which are neither rank-one nor full-rank.
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A channel £ is a completely positive identity-preserving map on B(H) the set of
bounded operators on H (in this chapter, channels are always intended as going
from B(H) to the same B(H)). As a remark, this implies that the subspace of
self-adjoint operators B, (H) is stable by £. We know we can write it using Kraus
[1983] decomposition, that is we can find a finite number of operators R, € B(H)
such that

E(A)=> RyAR,, with Y RiR,=1. (4.1)
Here the star is the adjoint.

We shall write & = {Rq}o. This decomposition is not unique.

Using the channel £ before the measurement P is the same as using the POVM
Q = &(P) defined by its POVM elements Q; = E(P;).

Definition 4.2.2. A POVM P is cleaner than a POVM Q if and only if there
exists a channel £ such that E(P) = Q. We shall also write P > Q.

Definition 4.2.3. Clean POVM

A POVM P is clean if and only if, for any Q such that Q = P, then P = Q also
holds.

We shall further say that two POVMs are cleanness-equivalent if both Q > P
and P > Q hold. A special case of this (but not the general case, as proved in
[Buscemi et al., 2005]) is unitary equivalence, when there is a unitary operator U
such that for any i € I, we have UP,U* = Q;.

4.3 Algorithm and Ideas

4.3.1 Algorithm

We propose the following algorithm to check whether a quasi-qubit POVM P is
clean or not.

(i) We check whether P is rank-one. If it is, exit with result “P is clean”.
Otherwise:

(ii) Write the rank-one elements P; = \;|1;){(1;| for 1 <4 < n. Check whether
these |¢;) generate H. If not, exit with result “P is not clean”. Else:
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(iii) We can find a basis of H as a subset of those [¢);). We assume that this
basis consists of [¢;) for 1 < i < d. We define a variable C = {V;};e,
consisting in a collection of subspaces whose direct sum is the Hilbert space
H =P, V;. We initialize C with V; = Span(|+;)) for 1 <i < d.

For i from d + 1 to n, do:
Write [¢0;) = >, v; with v; € V. Call J(i) = {j|v; # 0}.
Update {V;}: Suppress all V; for j € J(i). Add V; = P

(iv

(v

(vi

(vii

(viii

(i

JjeJ z)

Check whether C' = {H}. If so, exit with result “P is clean”. Otherwise:
End of the “For” loop.

)
)
)
i)
)
x) Exit with result “P is not clean”.

Notice that the algorithm terminates: every stage is finite and we enter the loop
a finite number of times.

4.3.2 Heuristics: what the algorithm really tests

In the Kraus decomposition (4.1), each of the terms R} AR, is non-negative if
A is non-negative, so that £(A4) > R* AR, for any . Hence if £(Q) = P, then
R Q; R, must have support included in Supp(P;) for all & and e € E.

The central idea of the chapter is the following: the condition Supp(R:Q;R.) C
Supp(P;) yields d — dim(Supp(F;)) homogeneous linear equations on the matrix
entries of R,, where you should remember that d = dim(H). Now R,, is deter-
mined up to a constant by d? — 1 homogeneous independent linear equations. In
such a case, the additional condition ), R% R, = 1 yields all R, are proportional
to the same unitary U, so that the channel £ is unitary, and P > Q.

There is still one difficulty: the equations mentioned above depend not only on
P, but also on Q. We would then like conditions on the supports of P; such that
the system of equations mentioned above is at least of rank d? — 1 for all Q. We
formalize this requirement with the following definitions.

Definition 4.3.1. Corresponding

Let V be a Hilbert space and {F;}icr a collection of subspaces of V. Let {v;}ier
be a collection of vectors of V. This set of vectors corresponds to {F;}ics if for
any i € I, there is a linear transform R; such that R;(v;) # 0 and, for all j € I,
the transform is taking v; within F;, that is R;(v;) € F}.

In the text, we usually drop the reference to {F;}i,cr and write that the {v;}icr
are a corresponding collection of vectors.
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Definition 4.3.2. Totally determined
Let V be a Hilbert space and {F;};cr a collection of subspaces of V.

If for all corresponding collections of vectors {v;}ic; there is only one (up to
a complex multiplicative constant) linear transform R such that R(v;) € F; for
all i € I, we say that V is totally determined by {F;};cr, or alternatively that
{F;}icr totally determines V.

If F; is one-dimensional with support vector w;, this means there is only one R
such that R(v;) is colinear to w; for all i € I.

What the algorithm does is checking that a quasi-qubit POVM P is rank-one
(stage (i)), or that P totally determines H.

More precisely, Proposition 4.4.9 states that each of the V; belonging to C' (ap-
pearing at stage (iii) and updated at stage (vi)) is totally determined by the |1);)
such that [¢;) € V;. When the algorithm exits at stage (vii), then C' = {H},
so H is totally determined. If the algorithm does not exit at stage (vii), on the
other hand, then C has at least two elements at the last stage, and each [¢);)
is included in one of those two elements, which entails, from Lemma 4.5.3, that
{Supp(F;)} does not totally determine H.

The equivalence with cleanness for quasi-qubit POVMs is still needed to get
validity of the algorithm. This equivalence stems from Theorem 4.4.1 and Theo-
rem 4.5.1. The former is the sufficient condition, for any POVM, not necessarily
quasi-qubit. We have given the intuition for this theorem at the beginning of the
section. Complementarily, Theorem 4.5.1 states that a strict quasi-qubit POVM
is not clean if its supports do not totally determine H.

The proof of Theorem 4.5.1 features the last important idea of the chapter. A
channel £ which is near enough the identity may be inverted as a positive map
on B(H), even though £71 is not a channel. Now if we denote Q = £~1(P), we
have £(Q) = P. We are then left with two questions: is Q a POVM, and can we
find a channel F such that F(P) = Q?

The main possible obstacle to Q being a POVM is the need for each of the Q;
to be non-negative. Now, if £ is near enough the identity, if P; was full-rank,
then Q; is still full-rank non-negative. The remaining case is Q; = £71(P;) =
M€Y (|9i) (i]). Now, we shall see that we may use the set of subspaces C' = {V;}
given by the algorithm to build channels ensuring that these @Q); are still rank-one
non-negative matrices. Furthermore, these ; will have a bigger first eigenvalue
than P;, so that we are sure Q is strictly cleaner than P, as channels are spectrum-
width decreasing (see Lemma 4.5.2).

We now turn to the fully rigorous treatment.
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4.4 Sufficient condition

We start by proving the following theorem, announced in the previous section.

Theorem 4.4.1. If the supports {Supp(P;)}icr of the elements P; of a POVM
P totally determine H, then P is clean and any cleanness-equivalent POVM Q
is in fact unitarily equivalent to P.

Proof. 1t is enough to prove that if Q > P, then Q is unitarily equivalent to P.
Let Q be a POVM and £ = {R.}. a channel such that £(Q) = P.

For all i € I, we may write Q; = >_, pi,x|¢F)(¢F|. Then we have
Pi=3 " ninRalof) (0F|Ra.
a  k

Now j1; 1 R%|9¥) (¢F| R > 0 for all k and «, and consequently p; . R%|¢F) (¢F| Ro <
P;. Hence R} |¢k) € Supp(P;).

Moreover P; is nonzero. So that there is at least one k(i) and one a(i) for each
i such that Rz|¢f(i)> is nonzero. Thus {qﬁf(i)}ig corresponds to {Supp(P;)}icr-
As {Supp(P;)}ier totally determines H, there is only one R, up to a constant,
such that R|¢f(i)> € Supp(F;) for all i. So that R, = c(a)R for all «. Since
> o RiRo =1, there is a constant such that AR; is unitary, and £ = {AR:}. So
that P and Q are unitarily equivalent.

O

Before proving in Theorem 4.4.9 that “when the algorithm exits at stage (vii),
then the supports of the POVM P totally determine H”, we need a few more
tools.

We first need the notion of projective frame. Indeed, in the algorithm, we are deal-
ing with supports of rank-one POVMs, that is essentially projective lines. And
we want them to totally determine the space, that is essentially fix it. Projective
frames are the most basic mathematical object meeting these requirements. We
redefine them here, and reprove what basic properties we need; further informa-
tion on projective frames may be found in most geometry or algebra textbooks,
e.g. [Audin, 2002].

Definition 4.4.2. A projective frame {v; }1<i<q+1 of a vector space V is a set of
(dim(V) + 1) wvectors in general position, that is, such that any subset of dim(V)
vectors is a basis of V.
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Remark 4.4.3. Equivalently we may say that {v;}1<i<n is a basis of V and
n .
Vg1 = Y i g GV with all ¢; # 0.

Proposition 4.4.4. A projective frame ¥ = {e;}1<i<(nt1)0f V totally deter-
mines V.

Proof. First we prove that if ® = {v;}1<;<(n+1) is not a projective frame, the set
of vectors {v; }1<i<(n+1) does not correspond to ¥. Indeed, as ® is not a projective
frame, we may find n vectors, say the n first, such that Y., a;u; = 0 with at
least one a; non-zero, say a;. Then for any R such that R(v;) is colinear to e;
for all 4, we still have Y | a;R(v;) = 0. As {e; }1<i<n is a basis, a;R(v;) = 0 for
all 7, so that R(v1) = 0. Hence {v;}1<i<n+1 does not correspond to {e;}1<i<n+1.

Let now ® = {v;}1<i<(n+1) be corresponding to W. Notably, this implies that ®
is a projective frame. Furthermore, there is a nonzero linear transform R such
that R(v;) is colinear to e; for all i. We must show that R is unique up to a
constant.

We know that {e;}1<i<n and {v;}1<i<n are both bases of V. Hence there is a
unique transfer matrix X from the latter basis to the former. Since R(v;) = D;e;
for some D;, we know that R is of the form DX where D is a diagonal matrix
with diagonal values D;.

We still have not used our (n + 1)th condition. We are dealing with projective
frames, so that e,4+1 = > ., bie; and vp41 = >y ¢;v; with all b; and ¢; non-
zero. Now R(vn41) = Y i ¢iR(v;) = Y., ¢;Dse;, so that ¢;D;/b; must be
independent on 7 and D and hence R is fixed up to a complex multiplicative
constant.

O

We now turn to a few observations about totally determined spaces.

Remark 4.4.5. If {F,}icr totally determines H, and if {v;}icr corresponds to
{F;}, then the up to a constant unique nonzero R such that Rv; € F; for alli € I
1s invertible.

Proof. Let us define Iy, gy1 the projector on the orthogonal of the kernel of
R along its kernel, and Ily., g the projector on the kernel of R along (ker R)=.
We have R = RH(kch)L, so that RH(kch)LUi = R’Ui. Thus {H(kch)L’Ui}ieI
is corresponding to {Fi}icr. On the other hand, Ilxer RIl(ker gyt = 0, so that
(R + Hier R) (M (ker g+ vi) = R(Iker gy1vi) € Fi. As {Tkey gyt } is corresponding
to {F;}, the latter equality implies that R is proportional to (R + ke z). This
is only possible if Iy, g = 0. Hence R is invertible. O
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Remark 4.4.6. If {v;}icrug is corresponding to {F}icrug, then {v;}ticr (resp.
{v;}jer) is corresponding to {F;}icr (resp. {Fj}jer.

Proof. The set I is a subset of I U J, thus, for all i € I, there is an R; such that
Riv; # 0 and Ryv; € Fy for alll € TUJ. A fortiori Ryv, € F for all k € 1.
Hence {v;};er is corresponding to {F;}ier. The same proof yields the result for
J. O

Remark 4.4.7. If {v;}icr is corresponding to {F;}icr, then there exists R such
that Rv; € F; and Rv; # 0 for all i simultaneously.

Proof. By the definition of “corresponding to”, we have a set {R;};cs of trans-
forms such that R;v; # 0 and R;v; € Fj; for all j € I. Now, for any set of
coefficients {a;}ier the matrix R =), a; R; fulfils Rv; € F; for all i. If we choose
appropriately {a;} we also have Rv; # 0. For example, we may write all the
R;v; in the same basis, take note of all coordinates, and choose the a; as any real
numbers algebraically independent of those coordinates. O

Lemma 4.4.8. If V and VW are both totally determined by sets of subspaces
{Fitier and {F;};jcs and if V and W intersect (apart from the null vector), then
their sum U =V + W is totally determined by {F; }icrug-

Proof. Let {u;};crus vectors of U correspond to {Fi}ierus. In other words, there
is an R* such that R*u; € Fj for alll € T UJ. By Remark 4.4.7, we may assume
that R*u; # 0 for all [. We must show that R* is unique up to a constant. Notice
that the restriction R*u; # 0 does not play a role: if we find another R non
proportional to R*, such that Ru; € Fj for all [, then R* + aR for appropriate a
also fulfils 0 # (R* + aR)u; € F; for all [, and is not proportional to R*.

We need a few notations. First, we consider the space X = VN W. We also
define Y by V=Y @ X and Z by W = Zd X. We write Iy and Iy for the
natural inclusions of ¥V and W in Y. We also denote by 11y, for the projector on
V along Z, by Il)y the projector on W along ), and by IIy the projector on X’
along YV + Z.

Please be aware that we do not define II), and Iy as endomorphisms of U, but as
applications from U to V and W, respectively. The corresponding endomorphisms
are IVHV and Iwﬂw.

As a first step, we show that Iy,I1y, R* is unique up to a constant.

The rank of IyIIyR* is at most dim(V), so we can factorize it by V: there
exists two linear applications LY from U to V and L}, from V to U, such that
LIy R L)LY = T, R,
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Now for all i € I, we have R*u; € F; C V, so that R*u; = IyIIyR*u; =

IILy R* LY L¥u;, so that for all i € I we have the inclusion 0 # (I1y R* L)) (LYu;) €
F;, where we have used R*u; # 0.. Thus {L%u;};cs is corresponding to {F; }ier.

On the other hand, we know that {F;};c; totally determine V. Hence there

is a nonzero constant Ay, and a Ry depending only on {F;};cs, such that

HVR*LE = Ay Ry. Moreover, by Remark 4.4.5, Ry is invertible. So that fi-

nally IyIIy R* = Ay Iy Ry LY, with image im(A\y Iy Ry LY) = V. Replacing V with

W, we get similarly IyylIlyy R* = /\WIWRWLZ{/’V.

The last step consists in proving that the two constants Ay and Ay, are propor-
tional, independently of R*.

We notice that H)(IVHV = HX = H/ylwﬂw. Hence )\anvavL\bj{ =
MwHxIwRwIY,. As X C V and im(A\WIyRyLY) = V, we know that
)\anvavL\bj{ 75 0. The equality )\Vn)(IvaL\Z/;{ = )\WHXIWRWLZ{/{V then yields
the proportionality of A\, and Ay.

We conclude by recalling that V + W = U, so that knowing both I,IIy, R* and
Lyl R* is equivalent to knowing R*. As our only free parameter is the multi-
plicative constant Ay, we have proved uniqueness of R*, up to a constant.

O

Lemma 4.4.8 and Proposition 4.4.4 are the two ingredients for proving the fol-
lowing proposition, central for the validity of the algorithm.

Proposition 4.4.9. In the algorithm, the spaces in the set C = {V;};cs are
always totally determined by the supports K(j) = {Span(|e;)) : [¢:) € V;} of the
one-dimensional POVM elements they contain.

Proof. We prove the proposition by induction on the stronger property Prop =
“ all V; are totally determined by K (j), and they are spanned by vectors of the
initial basis, that is, they are of the form Span(|¢;) : i € I(j)), where I(j) is a
subset of {1,...,d}".

Initialization: We initialize C' at step (iii). At this stage V; is defined for j €
{1,...,d} by V; = Span(|¢);)). So that on the one hand V; is of the form
Span(|v;) : i € 1(j)), where I(j) is a subset of {1,...,d}, and on the other hand
Vj is totally determined by K(j), as it is one-dimensional and [t);) is nonzero.

Update: We update C at stage (vi). We must prove that V; = @, ;) V; still
fulfils Prop.

For one thing, the space V; is a sum of spaces of the form Span(|y);) : i € I(j)),
where I(j) is a subset of {1,...,d}, hence V; is also of this form with I(i) =

Ujesay L0)-
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Now let us consider the set Iy = {j : j € {1...d}, (¢i[e;) # 0}, and the space
Vine = Span(|1);) : j € Iin). Since the |¢;) for j € I;,; are part of the initial basis
{l¥j)}1<j<a}, they are independent. The definition of I;y; also ensures [¢);) =
> jer,, ¢il¥j) with j nonzero, hence, by Remark (4.4.3), the set {[yx) : k =k €
Line U{i}} is a projective frame of V;,;. So that, by Proposition 4.4.4, the space
Vint is totally determined by {|v;)}jer, . ufiy- We initialize K = Ling U {i}.

Finally, by definition of J(4), we know that V;,: NV} # 0 for all j € J(¢). Both are
totally determined, by K (j) and K;,;. Hence by Lemma 4.4.8, V;,,; UV} is totally
determined by K (j)U Kin:. We update Vi = Vi UV, and Ky = Kine UK (j).
We iterate the latter step for all j € J(i) and we end up with V;,; = V; totally
determined by ;¢ ;) K () U Line U {i} C 1(i).

O

Corollary 4.4.10. When the algorithm ends at stage (vii), the POVM P is
clean.

Proof. The algorithm ends at stage (vii) only if C' = {H}. By the above proposi-
tion, this condition implies that H is totally determined by {Span(|v;)) : [¢;) €
‘H}. This amounts at saying that H is totally determined by the supports of the
POVM elements P;, and we conclude by Theorem 4.4.1. O

This section aims at giving sufficient conditions for a POVM to be clean, and at
proving that one of these conditions is fulfilled if the algorithm exits with result
“P is clean”. We thus conclude the section with the case when the algorithm
exits at stage (i). In other words, we must show that a rank-one POVM is clean.
Now, this has already been proved as Theorem 11.2 of [Buscemi et al., 2005]:

Theorem 4.4.11. [Buscemi et al., 2005] If P is rank-one, then Q=P if and
only if P and Q are unitarily equivalent. Thus, rank-one POVMs are clean.

For a quasi-qubit POVM P, we prove in the following section that P is clean
only if it fulfils the conditions either of Theorem 4.4.11 or of Theorem 4.4.1.

4.5 Necessary condition for quasi-qubit POVMs

This section proves that a clean quasi-qubit POVM either is rank-one, or the
supports of its elements totally determine the space:

Theorem 4.5.1. A non-rank-one quasi-qubit POVM where {Supp(P;)icr} does
not determine H is not clean.
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We need a few more tools to prove the theorem.

To begin with, we need a way to prove in specific situations that a POVM is not
cleaner than another. Using the fact that channels are spectrum-width decreasing
is the easiest method. This is Lemma 3.1 of [Buscemi et al., 2005]:

Lemma 4.5.2. If the minimal (resp. mazimal) eigenvalue of X is denoted
Am(X) (resp. A (X)), then A (X) < Ap(E(X)) < A (E(X)) < Am(X) for
any channel &.

This lemma implies that existence of Q = P such that for some i € I, either
Am (Qi) < A (P;) or Apr(Q;) > A (P;) entails that Q is strictly cleaner than P,
so that P is not clean.

We now give a characterization of the fact that H is totally determined by {Fj } ;e
when all the F; are one-dimensional, that is of when the F; can be seen as vectors.
This characterization applies to {Supp(P;) }ier for quasi-qubit POVMs, and may
be more intuitive than Definition 4.3.2. Moreover it is more adapted to our
strategy of proof.

Lemma 4.5.3. A set of vectors {|y;)};cs totally determine the space H, if and
only if, for any two supplementary proper subspaces V and W, there is a j € J
such that |;) €V and |Y;) & W.

Moreover, when the algorithm ezits with result “P is not clean”, the supports of
P do not totally determine H.

Proof. The proof is made of four steps:

(a) For any finite set of vectors {|1;)};jes, there is a POVM whose supports of
the rank-one elements are these vectors.

(b) if we feed into the algorithm a non-rank-one quasi-qubit POVM whose
supports of rank-one elements are the |¢;) and if {|¢;)} does not totally
determine H, then the algorithm exits with result “P is not clean”.

(c) if the algorithm exits with result “P is not clean”, then we can find two
supplementary proper subspaces such that |¢;) € V or ;) € W for all
supports of rank-one elements.

(d) finding two supplementary proper subspaces such that |1;) € Vor [¢;) € W
for all j € J implies that {|¢;)};cs does not totally determine H.

The equivalence in the lemma is then proved by contraposition, and the last
statement by combining (c) and (d).
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Step (a): A valid example is given by P; = Q#LJWJ-)WH for j € J and Py =
1 -3, P;. Indeed the latter element is positive since 35, Pj < sz #J1 = 51

Step (b): Since the quasi-qubit POVM is assumed not to be rank-one, we do not
exit at stage (i). The only other possible exit with result “P is clean” is at stage
(vii). Now the proof of Corollary 4.4.10 states that the algorithm exits at stage
(vii) only if the supports of the rank-one elements totally determine H. Hence,
the algorithm exits with result “P is not clean”.

Step (c¢): Exiting at stage (i) means that the |¢;) do not generate H. Then,
if J = @, we may choose any two supplementary proper subspaces V and W.
Anyhow [¢;) € V for all j € J. If J # &, then V = Span(|¢;),i € I) is a proper
subspace of H. Since |1;) € V for all j € J, any supplementary subspace W of
V will turn the trick.

If the algorithm does not exit at stage (ii), then there is a basis included in
{%)}jes. We assume that it corresponds to 1 < j < d.

Since the algorithm exits with result, “P is not clean”, it exits at stage (ix). We
end the algorithm with a collection C' = {V}} of subspaces such that @, Vi = H.
Since we have not exited at stage (vii), we know that C' # {H}. Hence C counts
at least two non-trivial elements. We take V = V; and W = @k £1 Vie.

The Vj, are direct sums of the original V; = Span(|y);)) for 1 < j < d. Hence,
for 1 < j < d, either [¢;) € V or [1;) € W. On the other hand if |1);) is not
one of the original basis vectors, it was used in the “For” loop. At the end of this
loop, C' was then containing a space V = ®keJ(j) Vi. And [¢;) was included in
this space. This V' is then included in one of the final V; and a fortiori either in
V or in WW. We have thus proved that when the algorithm exits with a negative
value we may find two supplementary proper subspaces V and W such that for
all ¢ € I, either [¢;) € V or [¢);) € W.

Step (d): Since 1l¢;) = |¢;) for all j, by Definition 4.3.1 the set of vectors
{I%j) }jer is corresponding to the subspaces {|1;)};cs. On the other hand, de-
noting by Iy the projection on V parallel to W, we get that IIy|1;) is colinear
to |1p;) for all j € J. Moreover Iy is not proportional to 1, so that, by definition
4.3.2, the set of vectors {|¢;)} does not totally determine H.

O

Finally, as explained in Section 4.3, we want to build our cleaner POVMs as
E71(P) where the channel is inverted as a positive map. We need to know some
conditions under which a channel can be inverted. This is the purpose of Lemma
4.5.4, for which we need the following norms.
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The Hilbert-Schmidt norm on B(H) is defined as || M||?;¢ = Tr(MM*). Notably,
in any orthogonal basis,

IM|Gs= > M

1<i,j<d
Moreover | M| gs = ||M*|| us-
We also define a norm on B(B(H)), space to which the channels belong:

0]l = sup |O(M)]| s
{M|||M||gs=1}

Lemma 4.5.4. If in the Kraus representation of a channel € = {R,} one of the
R, fulfils
1 - Rallus <,

then

11— &1 <201+ Vd)e + 262 = f(e) — 0. (4.2)

As a consequence, if f(e) < 1, then & is invertible (as a map on B(H)) and
IE7Y — 1|1 < f(e)/(1 — f(€)). This inverse lets Bso(H) stable.

This in turn shows that for any X € Bgo(H) such that A\, (X) > 0, the spectrum
of the image by the inverse is bounded through

A (X) = M (X)F()V/(1 = f(€)) < Am(E7H(X)). (4.3)
So that for all X > 0, when ¢ small enough, E~1(X) > 0.

Remark: The bound 4.2 is probably far from sharp, but sufficient for our needs.

Proof. Without loss of generality, we assume that

[1— Rillus <e.

We write S = R — 1y and O =€ — 1B(H)-

Then
O: M S*MS+S*M+MS+> Ri,MR,.
a#l
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And

0], = sup S*MS+S*"M+MS+Y RyMR,

{M|||M]|zs=1} ol .
< sup LS MILS] -+ (1S [ M]]

{M|[|M]|s=1}
+IMIS]+ D IR M| Rall
a#l
15115 + 201Sll s + Y | Ralls-
a#l

Now, for one thing, by hypothesis, ||S||zs < €. Furthermore

> Rallizs = Y Tr(RiRa) = Tr(1 = R{Ry) = — Tr(5"S + 5+ 57).
a#l a#l

We finish our proof of 4.2 with the observation that — Tr(S+5*) < 2v/d||S| us =
2\/&6.

If |O]1 < 1, we know that £ = 1 + O is invertible and £~! = > nso(—O)". By
taking the norm, [|€74 — L[|y < 37, -, O]} = f(e)/(1 = f(e)).

Channels stabilize By, (H); as £ is furthermore invertible, equality of dimension

shows that €(Bsa(H)) = Bsa(H) and E71(Bso(H)) = Bsa(H).

Now, X is positive, so that | X | zs < vdApr(X). This implies ||(E~'=1)(X) | zs <
VdAar(X)F(e)/(1= £(e)), and in turn £1(X) > X —vdn (X)£()/ (1= f()1.
Taking the bottom of the spectrum ends the proof.

O
We are now ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. We aim at exhibiting a channel £ and a POVM Q
such that £(Q) = P and Q; has a wider spectrum than P; for some e € E. Then
Lemma 4.5.2 proves that Q is strictly cleaner than P, and in turn that P is not
clean.

The building blocks are the subspaces supplied by Lemma 4.5.3. Since H is not
determined by {Supp(P;)}icr, there are two supplementary proper subspaces V
and W such that each rank-one element has support included either in V or in
W.
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We shall write explicitly several matrices in the forthcoming proof. All of them
shall be written on an orthonormal basis {e;}i<j<q of H, chosen so that
{ej}lgjgdim(y) is a basis of V. We shall express the matrices as two-by-two
block matrices, the blocks corresponding to the subspaces V and V+.

We study separately the following cases:

(a) All POVM elements P; are proportional to the identity, that is P; = p;1.

(b) The POVM is not full-rank, each rank-one element has support either in V
or in V*, and all POVM elements are block-diagonal in V and V*.

(c) Each rank-one element has support either in V or V*, and at least one
POVM element is not block-diagonal.

(d) At least one rank-one element has support neither in V nor in V*.

As a sanity check, let us prove we did not forget any case. Either our POVM is
full-rank, or it is not. In the latter situation, either there is a rank-one element
whose support is not included in ¥ nor in V* - and we are in case (d) -, or
all rank-one elements are included in V or V*. Then either there is a POVM
element that is not block-diagonal — and we are in case (¢) — or all POVM
elements are block-diagonal — and we are in case (b). On the other hand, if P is
full-rank, we may choose the subspaces V and W any way we like. Notably, if one
POVM element P; is not proportional to the identity, so that it has non-trivial
eigenspaces, we may choose V such that P; is not block-diagonal in V and V+
— and we are in case (c). Finally, if on the contrary, all POVM elements are
proportional to the identity, we are in case (a).

Case (a): If all POVM elements are of the form P; = y;1, then, for any € = { R, },
we have £(P;) = > Ri(1il)Ra = pi y_, Ry R = pi1 = P;. No channel can
change the wholly uninformative measurement P.

On the other hand, many POVMs can be dsgraded to P. Consider for example
the POVM given by Q1 = paler)(er] + > 5, ej){e;] and Qi = piler){er| for
i > 1. Then Q # P, so that P % Q. Yet, with R, = |e1){eq| for 1 < a < d, we
have £(Q) = P, and Q > P. Hence P is not clean.

Case (b): Since all rank-one elements are included either in V or in V*, we take
W = V+. We further choose V to be the smaller of the two subspaces, that
is dim(V) < d/2 < dim(W). Then there is a matrix A : V — W such that
AA* = 1y. If all rank-one elements have support in W, we further impose that
at least one of these supports is not included in the kernel of A.
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We then define Rj, and Rj, as:
* o 1V €A
RV(E) - |: 0 0 :| )

Rint) = |1

Their images are respectively V and W.

From Ry (e) and Ryy(e), we define the channel & = {R1(¢), Ra(€), Rs(e)}:

[ 1 A
* 1+€2 v ‘ 1+62
Rl (6) = 1+52 RV( ) 1+52 RW( ) = )
|0 [V
. [0 0
R2(€) = 1+52 RW( ) = 0 %1“} )
-1 - A
* 1 62 V‘ 1+e2
R3(e) = 1+52 Rv( €) — 1+52 Ryy(e) = — —
R

Since AA* = 1y, we have ) R% R, = 1, hence these matrices {R,} define a
genuine channel. A few calculations show that the effect of this channel is:

c { B|C } _}[ = (B+€(AC* + CA*) + ADA*) | 0 }

c|D 0 D (4.4)

Now, for any w € W, we have

—eAw —cAw 1" _ 2 Aww* A* | —eAww*
- —eww*A* | * ’

w w ww

2 Awjwi A* | —eAw;wy
—ewjwi A | wjwy ]
is non-negative. As any non-negative endomorphism D of W can be written
> ik w;w;, for appropriate w;, we get that for any non-negative D, the matrix

e2ADA* | —eAD
[ —eDA* | D

S .1 0]0
that its image by & is [T’T] .

Similarly, if B € B(V) is non-negative, then

o . | B|O
and its image by & is {T’T]

so that for any sequence of w; € W, the matrix Zj,k [

] is non-negative. Moreover applying equation (4.4) yields

(1+€e)B |0

0 0 } 1S non-negative
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We use these observations to define a map (not a channel) F. on the block-
diagonal matrices:

—eDA* D (45)

7 . B0 _ (1+€*)B+ 2ADA* | —eAD
0]D |
We get that E.(F.(M)) = M for all block-diagonal M and that if furthermore
M > 0 then F.(M) > 0.

We now isolate one full-rank element of P, say P;. For all i # 1, we define
Qi(e) = F(P;). They are non-negative and fulfil £.(Q;(¢)) = P;. Define now
Qi(e) = 1 =37, Qi(e). The closure relation ensures that £(Q1(e)) = Pi.
What’s more, recalling that >, B; = 1y and ), D; = 1)y, we obtain:

() = 1V_(1+€2)Zi 1Bi_€2A(Zi 1 Di)A” | €AY i Di
n [ _GZigélDiA* | 1y - Zi;ﬁl D; }
- |: (1 + 62)31 + 62AD1A* — 2621V | EA(lw — Dl) :|
o e(lyy — Dp)A*) | Dy
. { Bi| 0 }
e—0 0 | Dy
= P.

Since P is positive, this convergence entails the non-negativity of Q1(e) for e
small enough. As @ (€) has been chosen so that ), Q;(¢) = 1, we have defined
a genuine POVM Q(¢) = {Q;(€)}ier such that £.(Q(e)) = P, hence Q > P.

We end the study of this case by considering a rank-one element P; = p;[1);) (1]
whose support is not in the kernel of A. Using formula (4.5), if |¢;) € V, we
get Tr(Q;(€)) = (1 + €2) Tr(P;) > Tr(P;), else |¢;) € W and we get Tr(Q;(e)) =
Tr(P;) + € Tr(Alw:) (¢;]A*) > Tr(P;). In both cases, bigger trace implies that
the spectrum of @Q;(¢) is wider than that of P; and Lemma 4.5.2 yields P * Q.
So that P is not clean.

Case (c): Since all rank-one elements are included either in V or in V*, we take
w =Vt

We now define the channel &, through:
Ri(e) = elly, Ro(e) =ellyy = ellyr, Rs(e) =1 — €21,
where II denotes here orthogonal projection.

For € small enough, by Lemma 4.2, the channel is invertible as a positive map.
We then define Q; = E71(P).
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Through the formula £.(Q;) = P;, we check:

| B|C _ B (1-e*)"tC
If P = [7’7} ,  then Q;(e) = e I 1) . (4.6)

The first remark is that the closure relation ensures > Q;(e) = 1.

We also notice that, since rank-one elements have support either in V or in
W = V1, the rank-one elements are block-diagonal and Q;(e) = P; .

We know that at least one POVM element is not block-diagonal. So that there
is an ¢ € I such that P; is full-rank and C' is non-zero (say [C];x # 0). Then,
writing n = dim(V), there is an ¢4 € (0,1) such that

[Qi(e)]),5(Qi(et)ntrntr = [Bl; i[D]k.k
< ﬁl[C]j,kF = [Qiles)]jn+x[Qi(er)]ntk.;

so that we cannot have positivity of Q;(e4).

We define the bottom of the spectrum of the images @Q; of the full-rank elements
of P:
Am(€) = inf Am (Qi(€)).

i|P; full—rank

Equation (4.6) implies that the matrix @Q;(¢) is a continuous function of ¢ for
e € [0,1). Hence its spectrum is also a continuous function of €. Accordingly, the
function A, (€) is the minimum of a finite number of continuous function of e,
therefore A\, (€) is continuous. Its value in 0 is the bottom of the spectrum of the
full-rank elements of P, that is A,,,(0) = inf;p, full—rank Am (Pi(€)) > 0. Moreover
we have just proved that \,,(e+) < 0. Thus, by the intermediate value Theorem,
there is an ey > € > 0 such that 0 < A, (€) < A (0).

As An(e) > 0, the Q;(e) = E.(F;) for P; full-rank are non-negative, and valid
POVM elements. Likewise, we already know that Q;(e) = P; is a valid POVM
element if P; is rank-one. Since we have also shown that > Q;(¢) = 1, we have
proved that Q(e) is a POVM. Furthermore &.(Q(e)) = P, thus Q(e) > P.

As A\ (€) < A (0), there is a full-rank element P; such that A, (Qi(€)) < A ().
Hence, using Lemma 4.5.2, we get P % Q(e) and P is not clean.

Hence A, (e4) < 0 < Ayp,. By the intermediate value Theorem, we can find an
€0 € (0,€4) such that A\, (eg) = 0. As 0 < \u(e9) < A we have proved that
Q(eo) = P and that P is not clean.
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Case (d): As V and W are supplementary we may choose a matrix
A € Mgim(v),d—dim(v)(C) such that the non-zero columns of the following block
matrix form an orthogonal (though not orthonormal) basis of W:

- 2]

We know that the image of a matrix is spanned by its columns, so the image of
Ry, is W.

We then define

B(e):\/1—<1i€2+(1_€62)2)AA*. (4.7)

This definition is valid if the matrix under the square root is positive. Now
4

(ﬁj + ﬁ) is going to 0 with ¢, so that

64 62

2

From this we conclude that 1 — (% + (1—€T)2) AA* is positive for e small

enough.

Accordingly, we can define
oy [ BEO| -1
Ry (e) = [ 0 0 .
Notice that the image of Rj, is included in V.

We may now define our channel & by

Ri(0) — Ry S (19)
R3(e) = cR}, | 8 Z‘ ] (4.9)

V1—¢e2B(e) ‘ —%A
5 | \/11_621 1 . (4.10)

Ri(e) =V1-e(Ry(e) + Ryy) =

Notice that Zi:l R} (e)R(€) =1 so that &(e) is indeed a channel.

Moreover lim._.g R3(e) = 17,. Hence, for € small enough, ||Rs — 1|/ is as small
as we want. So Lemma 4.5.4 allows us to invert the channel £ as a map on
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Bsa(H). We define Q(e) by its elements Q;(e) = E-1(P;). Let us check that for
e small enough, Q(e) is still a bona fide POVM.

First the closure relation still holds, as >-,c; Qi = > ;c; € H(P;) = £71(1). Now
E(1) =%, RiR, =1 and taking the inverse £71(1) =1

Remains then to be shown that all Q;(e) are non-negative.

If P; is full-rank, then its spectrum is included in [\, 1], with A, > 0. If R3 is
near enough of the identity, that is, if € is small enough, the inequality (4.3) then
ensures that Q;(e) is still positive.

If P, is rank-one P; = A;|¢;) (], then by hypothesis [1;) € V or [1;) € W. As
R is invertible for e small enough, we may consider |¢;) non-zero colinear to
(R%(€))™|2b;). Then R3(€)|¢;) is colinear to |+;), and non-zero. Notice that |¢;)
depends on ¢, even if we drop it in the notation. Now

R(e)"|p) = V1~ € (B3 (€)lp) + Ryyle))
with R (e)|¢) € V and Rjy|p) € W.

Since V and W are supplementary, the latter equality implies that R,(¢€)|¢) =0
when Rj(€)|¢) € W and Ry, (e)|p) = 0 when R3(€)|¢) € V. Definitions (4.8, 4.9,

4.10) then yield Ec(|¢i)(di]) = Riy(|6:)(@il) R if |1hi) € W and Ec(|¢s) (i) =
R, (€)(|pi) (@il )Ry (€) if 1) € V. In both cases, the output matrix is of the form

5e(|¢z><¢z|) = CZ|1/)1><1/)1| So that Ql(é) = ()\1/01)|¢1><¢1| and is non—negative.

Thus, for € small enough, all Q;(¢) are non-negative. We have proved that Q(e)
is a POVM. Furthermore, since £ (Q(¢)) = P, we know Q(e) >~ P.

We must still show that Q(e) is strictly cleaner P.

By hypothesis, there is a rank-one element P; = A;|¢;) (15| such that ;) € W
and |¢;) € V1. As above, we write |¢;) such that Q;(e) = (\i/C;)|¢i){pi]. We
start by proving that C; is less than one.

We write |¢;) = v; + vi- with v; € V and v;- € V1. Since |;) € W, we get:

E(163)(6:]) = Ry (10361 Ry = [AH [AH |

As the latter expression is also equal to C;|u;){;|, we obtain that C; is the

n
square of the norm of [%] Therefore C; = ||Avi- || + |lvi-||?. Notice that
i

the squared norm of |¢;) is 1 = ||v;||> + [[vi||?. On the other hand, the image of
|p;) by Ri(€) is 0, so that B(e)v; — 1/(1 — €)Av;- = 0. From this we get:

Av = (1 — €)B(e)v;.
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Since [1;) ¢ V*, this equality shows that v; # 0. Now, as AA* is non-negative
we see by (4.7) that B(e) < 1. A fortiori, for any € > 0, we have (1—¢?)B(e) < 1.
So that:

[ill > (1 = ) B(e)vil| = || Av;"]].

Thus, we finally obtain

€ €
Ci = | Avi | + Ilvi I” < loal® + [lvi||* = 1.

Hence the biggest eigenvalue of Q;(e) = (\;/C;)|di){(di|, that is \;/C;, is strictly
bigger than the biggest eigenvalue of P;, that is ;. Lemma 4.5.2 then gives
P # Q(e¢), and consequently P is not clean.

O

4.6 Summary for quasi-qubit POVMs and a spe-
cial case

We now gather all our results specific to quasi-qubit POV Ms.

Theorem 4.6.1. A quasi-qubit POVM P is clean if and only if it is rank-one
or the supports of its rank-one elements totally determine H. The algorithm of
section 4.8 figures out if this is the case. Moreover if Q is cleanness-equivalent
to P, the two POVMs are even unitarily equivalent.

Proof. Rank-one POVMs are known to be clean (Theorem 4.4.11). If the support
of the rank-one elements of P totally determine H, we also know that P is clean
by Theorem 4.4.1. In both cases the theorems state that for these clean POVMs,
cleanness-equivalence is the same as unitary equivalence.

Conversely, if P is neither rank-one nor have rank-one elements that totally
determine H, then Theorem 4.5.1 applies and P is not clean.

Stage (i) of the algorithm checks whether P is rank-one, in which case it does
say that P is clean. If P is not rank-one, the fact that it is clean or not depends
on the support of its rank-one elements. The only remaining positive exit of the
algorithm is at stage (vii) and Lemma 4.4.9 proves that in this case the rank-one
elements of P totally determine H.

Conversely, if the algorithm exits with a negative value, Lemma 4.5.3 ensures
that H is not totally determined.

O
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To get further feeling of these conditions we finish by making more explicit the
qubit case, where the nice thing is that all POVMs are quasi-qubit.

Corollary 4.6.2. A POVM P for a qubit is clean if and only if it is rank-one or if
one can find three rank-one elements whose supports are two-by-two non-colinear
(that is if they make a projective frame). For these POVMs cleanness-equivalence
is the same as unitary equivalence.

Proof. A POVM P for a qubit has non-zero elements which can be either of rank
one, or of rank two, as d = 2. In the latter case, they are full-rank, so we may
apply Theorem 4.6.1 to P.

The only question is when do the supports of the rank-one elements totally
determine H? They do by Proposition 4.4.4 if they include a projective frame,
that is a basis and a vector with all coefficients non-zero in this basis. As the
space is of dimension 2, this amounts to saying a basis and a vector non-colinear
to any basis vector, that is three vectors two-by-two non-colinear.

Conversely, if we cannot find a projective frame, then we can find two vectors v
and w such that the support of any rank-one element is v or w, and we can apply
Lemma 4.5.3 to obtain that H is not totally determined by the supports of the
rank-one elements of P. Thus P is not clean.

O

4.7 Outlook

We have solved the problem of cleanness for quasi-qubit POVMs. The obvious
continuation would be to solve it in the general case. However we do not think
that the condition of Theorem 4.4.1 is then necessary. Moreover it must be made
explicit.

The heuristics in Section 4.3.2 suggest that, if the support of P; are in “general
position” then it is sufficient for P to be clean that ), ; d — dim[Supp(F;)] >
d? —1. Yet, we still need to appropriately define the “general position” for general
subspaces.






Chapter 5

Complementary subalgebras

This chapter is derived from the article [Kahn and Petz, 2007].

Abstract: Reduction of a state of a quantum system to a subsys-
tem gives partial quantum information about the true state of the
total system. In connection with optimal state determination for two
qubits, the question was raised about the maximum number of pair-
wise complementary reductions. The main result of the paper tells
that the maximum number is 4, that is, if A, A%, ..., AF are pair-
wise complementary (or quasi-orthogonal) subalgebras of the algebra
My (C) of all 4 x 4 matrices and they are isomorphic to Ms(C), then
k < 4. The proof is based on a Cartan decomposition of SU(4). In the
way to the main result, contributions are made to the understanding
of the structure of complementary reductions.

5.1 Introduction

There is an obvious correspondence between bases of an m-dimensional Hilbert
space H and maximal Abelian subalgebras of the algebra A = B(H) ~ M,,(C).
Given a basis, the linear operators diagonal in this basis form a maximal Abelian
(or commutative) subalgebra. Conversely if |e;){e;| are minimal projections in
a maximal Abelian subalgebra, then (|e;)); is a basis. From the points of view
of quantum mechanics, a basis can be regarded as a measurement. Wootters
and Fields [1989] argued that two measurements corresponding to the bases
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&,8, ..., &n and n1,ma, ..., Ny yield the largest amount of information about
the true state of the system in the average if

1

Two bases satisfying this condition are called mutually unbiased. Mutually
unbiased bases are interesting from many point of view, for example in quantum
information theory, tomography and cryptography [Kraus, 1987, Bandyopadhyay
et al., 2002, Kimura et al., 2006]. The maximal number of such bases is not known
for arbitrary m. Nevertheless, (m?—1)/(m—1) = m+1 is a bound being checked
easily [Parthasarathy, 2004, Pittenger and Rubin, 2004].

The concept of mutually unbiased (or complementary) maximal Abelian sub-
algebras can be extended to more general subalgebras. In particular, a 4-level
quantum system can be regarded as the composite system of two qubits, My (C) ~
M5(C) ® M3(C). A density matrix p € M4(C) describes a state of the composite
system and p determines the “marginal” or reduced states on both tensor factors.
Since the decomposition M3(C) @ M3(C) is not unique, there are many reduc-
tions to different subalgebras, they provide partial quantum information about
the composite system. It seems that the reductions provide the largest amount
of information if the corresponding subalgebras are quasi-orthogonal or comple-
mentary in a different terminology. In [Petz et al., 2006] the state p was to be
determined by its reductions. 4 pairwise complementary subalgebras were given
explicitly, but the question remained open to know if 5 such subalgebras exist.
The main result of this paper is to prove that at most 4 pairwise complementary
subalgebras exist.

5.2 Preliminaries

In this paper an algebraic approach and language is used. A k-level quantum sys-
tem is described by operators of the algebra My (C) of k x k matrices. Although
the essential part of the paper focuses on a 4-level quantum system, certain con-
cepts can be presented slightly more generally. Let 4 be an algebra corresponding
to a quantum system. The normalized trace 7 gives the Hilbert-Schmidt inner
product (A, B) := 7(B*A) on A and we can speak about orthogonality with
respect to this inner product.

The projections in .4 may be defined by the algebraic properties P = P? = P*
and the partial ordering P < @ means PQ) = QP = P. We consider subalgebras
of A such that their minimal projections have the same trace. (A maximal
Abelian subalgebra and a subalgebra isomorphic to a full matrix algebra have
this property.) Let A and A? be two such subalgebras of A. Then the following
conditions are equivalent:
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(i) If P € A' and Q € A? are minimal projections, then Tr PQ = Tr P Tr Q.
(ii) The traceless subspaces of A' and A? are orthogonal with respect to the

Hilbert-Schmidt inner product on A.

The subalgebras A' and A? are called complementary (or quasi-orthogonal) if
these conditions hold. This terminology was used in the maximal Abelian case
[Accardi, 1984, Kraus, 1987, Ohya and Petz, D., 2004, Parthasarathy, 2004]| and
the case of noncommutative subalgebras appeared in [Petz et al., 2006]. More
details about complementarity are presented in [Petz, 2006].

Given a density matrix p € A, its reduction p; € A; to the subalgebra A; C A
is determined by the formula

TrpA=Trp A (A e A).

In most cases p; is given by the partial trace but an equivalent way is based on
the conditional expectation [P. Busch and Mittelstaedt, 1991]. The orthogonal
projection E : A — A; is called conditional expectation. p; = E(p) and

E(AB) = AE(B) (Ac A1,Be A)
is an important property.

The situation we are interested in is the algebra My(C). In the paper M4(C) is
regarded as a Hilbert space with respect to the inner product

1
(A,B) = ; TrA"B = 7(A"B). (5.1)
M4 (C) has a natural orthonormal basis:
0i ®0;j (0<4d,j<3),

where 01,09, 03 are the Pauli matrices and o is the identity I:

|10 101 10 =i |1 0
gg = 0 1 , 01 1= 1 0 , 02 = i 0 , 03 1= 0 -1 .

5.3 Complementary subalgebras

Any subalgebra A! of M,(C) isomorphic to M>(C) can be written CI ® Ms(C)
in some basis, hence there is a unitary operator W such that A = W(CI ®
My (C))Ww*.
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This section is organized as follows: we first give a characterization of the W
such that A! is complementary to A° = W(CI ® My(C))W* (Theorem 5.3.1
for a general form and Theorem 5.3.2 for a form specific to our problem). The
second stage consists in proving, using the form of W, that any such A' has
“a large component” along B = M3(C) ® CI. Theorem 5.3.4 gives the precise
formulation. It entails that no more than four complementary subalgebras con
be found (Theorem 5.3.5), which was our initial aim, and hence is our conclusion.

Although our main interest is M4(C), our first theorem is more general. E;;
stand for the matrix units.

Theorem 5.3.1. Let W = szzl E;; @ Wi; € M,(C) ® M,(C) be a unitary.
The subalgebra W (CI @ M,,(C))W™* is complementary to CI ® M, (C) if and only
if {(Wij 21 <i,j <n} is an orthonormal basis in M, (C) (with respect to the
inner product (A, B) = Tr A*B).

Proof. Assume that Tr B = 0. Then the condition
W@ AYW* 1L (I® B)

is equivalently written as

TWI @AW (I®B)=Y TrW;AW;B=0

i,j=1
This implies
> Te Wi AW B = (Tr A)(Tr B). (5.2)

i,j=1

We can transform this into another equivalent condition in terms of the left
multiplication and right multiplication operators. For A, B € M, (C), the op-
erator R4 is the right multiplication by A and Lp is the left multiplication
by B: Ra,Lp : M,(C) — M,(C), ReX = XB, LpX = AX. Equivalently,
Lale)(f| = |Ae){f| and Rgle){f| = |e)(B*f|. From the latter definition one can
deduce that Tr RaLp = Tr A Tr B. Let |e;) be a basis. Then |e;)(e;| form a
basis in M, (C) and

TrRaLp = ) (lei{ejl, Ralplei)(esl) =D (lea) (el | Bes)(A%es])

ij ij
= Z<€i,Bei><€j,A€j>.

j

The equivalent form of (5.2) is the equation

> (Wi, RaLpW;;) = Tr A Tt B =Tr RaLg

ij=1
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for every A, B € M,(C). Since the operators R4 Lp linearly span the space of
all linear operators on M,,(C), we can conclude that W;; form an orthonormal
basis. O

We shall call any unitary satisfying the condition in the previous theorem a useful
unitary and we shall denote the set of all n? x n? useful unitaries by i(n?).

We try to find a useful 4 x 4 unitary W, that is we require that the subalgebra

A0

W[ . A}W* (A € My(T))

is complementary to A° = CI @ M,(C). We shall use the Cartan decomposi-
tion of W given by
W= (L1® Lz)N(Lg} ® Ly),

where Ly, Lo, L and L4 are 2 X 2 unitaries and
N =exp(aio; ® 01) exp(fios @ 02) exp(yios ® o3) (5.3)

is a 4 x 4 unitary in a special form, see equation (11) in [Zhang et al., 2003] or
[D’Alessandro and Albertini, 2005]. The subalgebra

W(CI @ My(C))W* = (L1 ® L2)N(CI @ M3(C))N*(L] ® L3)
does not depend on L3 and L4, therefore we may assume that Ly = Ly = I.

The orthogonality of CI ® My(C) and W (CI @ M2 (C))W™* does not depend on
L, and Lo. Therefore, the equations

TI’N(I@O’l)N*(IQQO'j) =0

should be satisfied, 1 < 4,5 < 3. We know from Theorem 5.3.1 that these
conditions are equivalent to the property that the matrix elements of N form a
basis.

A simple computation gives that

3
NZZQ‘CH@U%

i=0

where
co = cosa cosfcosy+isina sing siny,
c1 = cosasinfsiny+isina cosf cosvy,
co = sina cosfsiny +icosa sinf cosy,

c3 = sinasinfFcosy+icosa cosf sin-y.
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Therefore, we have

[ co+c3 0 0 c1 — Co
N — 0 co—C3 C1+co 0
0 c1+cy cop—c3 0
| ¢1—cC2 0 0 co + c3
e cos(a — ) 0 0 ie! sin(a — B)
B 0 e cos(a+B) e sin(a+ B) 0
- 0 ie™sin(a + B) e cos(a + 3) 0
1617 sin(a — f3) 0 0 e cos(a — 3)

Since the 2 x 2 blocks form a basis (see Theorem 5.3.1), we have
(co + c3)(co — c3) + (co — c3)(co + ¢3) =0,
(c1 —c2)(e1 +¢a) + (e1+c2)(cr — ) =0,
lco+ es® + o —es? =1,
ler 4+ 2P +]e1 — e’ = 1.
These equations give
1

lcol® = |e1]? = Jea|® = |es]® = 1

and we arrive at the following solution. Two of the values of cos? a, cos? 3 and
cos?~y equal 1/2 and the third one may be arbitrary. Let A be the set of all

matrices such that the parameters o, and - satisfy the above condition, in
other words two of the three values are of the form 7/4 4 kn/2. (k is an integer.)

The conclusion of the above argument can be formulated as follows.

Theorem 5.3.2. W € M(4) if and only if W = (L1 ® L2)N(Ls ® Ly), where
L; are 2 x 2 unitaries (1 <i<4) and N € N.

We now turn to the “second stage”, that is proving that any such W(CI @ M,(C)
is far from being complementary to M>(C) ® CI. To get a quantitative result
(Theorem 5.3.4), recall that we consider M4(C) as a Hilbert space with Hilbert-
Schmidt inner product (see (5.1)). For the proof of Theorem 5.3.4, we shall need
the following obvious lemma:

Lemma 5.3.3. Let Iy and Ko be subspaces of a Hilbert space IKC and denote by
P, : K — K; the orthogonal projection onto K; (i = 1,2). If &1,&a,...,& is an
orthonormal basis in K1 and n1,m2,...,1s is such a basis in Ko, then

TrPiPy = [(&,n)

1,9
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O

Theorem 5.3.4. Let A’ = CI ® M3(C) and B = M2(C)® CI. Assume that the
subalgebra A' C M>(C) @ M2(C) is isomorphic to M2(C) and complementary to
A°. If P is the orthogonal projection onto the traceless subspace of A and Q is
the orthogonal projection onto the traceless subspace of B, then

TrPQ > 1.

Proof. There is a unitary W = (L1 ® L) N such that A = WA'W*, Ly, Ly are
2 x 2 unitaries and N € M(4). In the traceless subspace of 5,

form a basis, while
(L1 ® Lo)N(I ® 03 )N*(L] ® L3) (1<i<3)

is a basis in the traceless part of A'. Therefore, we have to show

2

‘2 = (T(N(I®Ui)N*(Uj®I))) > 1.

> [(eL)N 0o N (118 Ls), Lo L)
j
In the computation we can use the conditional expectation E : My(C) — B.

Recall that it is defined as the linear operator which sends o; ® 0; to 0; ® I, for
all 0 <id,5 < 3.

Two of its main properties are that it preserves 7, and that E(AB) = E(A)B
when B € B. Hence

T(N(I ®0))N*(0; @ 1)) =7 (E (N(I ® ai)N*) (0; ® 1)) .

Elementary computation in the basis 0; ® o; gives the following formulas:

E(NI®o1)N*) = sin28sin2y (o1 ®I),
E(N(I®o2)N*) = sin2asin2y (o2 ® I),
E(N(I®o3)N*) = sin2asin2f8 (o @ I),

where a, § and v are from (5.3) and (5.4). Therefore,
TrPQ = sin® 20 sin? 2v + sin® 2« sin® 27y + sin® 2« sin” 25.
Recall that two of the parameters «, 8 and v have rather concrete values, hence

one of the three terms equals 1, and the proof is complete. O

Our main results says that there are at most four pairwise complementary sub-
algebras of M4(C) if they are assumed to be isomorphic to M>(C). Given such a
family of subalgebras, we may assume that the above defined A° belongs to the
family.
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Theorem 5.3.5. Assume that A° = CI ® My(C), A', ..., A" are pairwise
complementary subalgebras of M4(C) and they are isomorphic to Ms(C). Then
r<3.

Proof. Let P; be the orthogonal projection onto the traceless subspace of A’ from
M4(C), 1 < i < r. Under these conditions ), P; < I. As in Theorem 5.3.4, let
Q the orthogonal projection on the traceless subspace of B = M>(C) ® CI. The
estimate

3=TrQ>Tr(P; +Py+ - +P,)Q=> TtP,Q>r
=1

yields the proof. O
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Chapter 6

Quantum local asymptotic
normality for qubits

This chapter is derived from the article [Gutd and Kahn, 2006].

Abstract: We consider n identically prepared qubits and study the
asymptotic properties of the joint state p®". We show that for all
individual states p situated in a local neighborhood of size 1//n of a
fixed state p°, the joint state converges to a displaced thermal equilib-
rium state of a quantum harmonic oscillator. The precise meaning of
the convergence is that there exist physical transformations 7,, (trace
preserving quantum channels) which map the qubits states asymp-
totically close to their corresponding oscillator state, uniformly over

all states in the local neighborhood.

A few consequences of the main result are derived. We show that
the optimal joint measurement in the Bayesian set-up is also op-
timal within the pointwise approach. Moreover, this measurement
converges to the heterodyne measurement which is the optimal joint
measurement of position and momentum for the quantum oscillator.
A problem of local state discrimination is solved using local asymp-

totic normality.
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6.1 Introduction

Quantum measurement theory brings together the quantum world of wave func-
tions and incompatible observables with the classical world of random phenomena
studied in probability and statistics. These fields have come ever closer due to
the technological advances making it possible to perform measurements on in-
dividual quantum systems. Indeed, the engineering of a novel quantum state is
typically accompanied by a verification procedure through which the state, or
some aspect of it, is reconstructed from measurement data [Schiller et al., 1996].

An important example of such a technique is that of quantum homodyne tomog-
raphy in quantum optics [Vogel and Risken, H., 1989]. This allows the estimation
with arbitrary precision of the whole density matrix [D’Ariano et al., 1995, Leon-
hardt et al., 1995, 1996, Artiles et al., 2005] of a monochromatic beam of light by
repeatedly measuring a sufficiently large number of identically prepared beams
[Smithey et al., 1993, Schiller et al., 1996, Zavatta et al., 2004].

In contrast to this “semi-classical” situation in which one fixed measurement is
performed repeatedly on independent systems, the state estimation problem be-
comes more “quantum” if one is allowed to consider joint measurements on n
identically prepared systems with joint state p®™. It is known [Gill and Massar,
2000] that in the case of unknown mized states p, joint measurements perform
strictly better than separate measurements in the sense that the asymptotic con-
vergence rate of the optimal estimator p, to p goes in both case as C'//n with
a strictly smaller constant C' in the case of joint measurements.

Let us look at this problem in more detail: we dispose of a number of n copies
of an unknown state p and the task is to estimate p as well as possible. The first
step is to specify a cost function d(p,,p) which quantifies the deviation of the
estimator p, from the true state. Then one tries to devise a measurement and
an estimator which minimizes the mean cost or risk in statistics jargon:

R(pa [)n) = <d([)n(X)7p)> )

with the average taken over the measurement results X. Since this quantity still
depends on the unknown state one may choose a Bayesian approach and try to
optimize the average risk with respect to some prior distribution 7 over the states

Row = [ Blp.pu)(do).

Results of this type have been obtained in both the pure state case [Jones, 1994,
Massar and Popescu, 1995, Latorre et al., 1998, Fisher et al., 2000, Hannemann
et al., 2002b, Bagan et al., 2002, Embacher and Narnhofer, 2004, Bagan et al.,
2005] and the mixed state case [Cirac et al., 1999, Vidal et al., 1999, Mack et al.,
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2000, Keyl and Werner, 2001, Bagan et al., 2004c, Zyczkowski and Sommers,
2005, Bagan et al., 2006]. However most of these papers use methods of group
theory that depend on the symmetry of the prior distribution and the form of
the cost function, and thus cannot be extended to arbitrary priors.

In the pointwise approach [Hayashi, 2002a, Gill and Massar, 2000, Barndorff-
Nielsen and Gill, R., 2000, Matsumoto, 2002, Barndorff-Nielsen et al., 2003,
Hayashi and Matsumoto, 2004] one tries to minimize R(p, p,) for each fixed
p. We can argue that even for a completely unknown state, as n becomes large
the problem ceases to be global and becomes a local one as the error in estimat-

ing the state parameters is of the order ﬁ For this reason it makes sense to

parametrize the state as p := p(#) with 6 belonging to some set in R¥ and to
replace the original cost with its quadratic approximation at 6:

d(0,0,) = (0 — 0,)TG(0)(0 — b,,),
where G is a k X k positive, real symmetric weight matrix.

Although seemingly different, the two approaches can be compared [Gill, 2005a],
and in fact for large n the prior distribution 7 of the Bayesian approach should be-
come increasingly irrelevant and the optimal Bayesian estimator should be close
to the maximum likelihood estimator. An instance of this asymptotic equivalence
is proven in Subsection 6.7.2.

In this chapter we change the perspective and instead of trying to devise optimal
measurements and estimators for a particular statistical problem, we concentrate
our attention on the family of joint states p(6)®™ which is the primary “carrier” of
statistical information about 6. As suggested by the locality argument sketched
above, we consider a neighborhood of size % around a fixed but arbitrary pa-

rameter 6y, whose points can be written as 6 = 0y +u/y/n with u € R* the “local
parameter” obtained by zooming into the smaller and smaller balls by a factor of
\/n. Very shortly, the principle of local asymptotic normality says that for large
n the local family

o= p (0 +u/ V)", <G,

converges to a family of displaced Gaussian states ¢" of a of a quantum system
consisting of a number of coupled quantum and classical harmonic oscillators.

The term local asymptotic normality comes from mathematical statistics [van der
Vaart, 1998] where the following result holds. We are given independent variables
X1,...,X, € X drawn from the same probability distribution P%T%/vV™ gver X
depending smoothly on the unknown parameter u € R*. Then the statistical in-
formation contained in our data is asymptotically identical with the information
contained in a single normally distributed Y € R* with mean u and variance
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I(0o)~!, the inverse Fisher information matrix. This means that for any statis-
tical problem we can replace the original data X,..., X, € X by the simpler
Gaussian one Y with the same asymptotic results!

For the sake of clarity let us consider the case of qubits with states parametrized
by their Bloch vectors p(7) = (1 + 7 7’) where & = (0,,0,0.) are the Pauli
matrices. Define now the two-dimensional family of identical spin states obtained
by rotating the Bloch vector 7o = (0,0,2u — 1) around an axis in the x-y plane

(@0 e o

with unitary U(v) := exp(i(vy0, + vy0y)) and 3 < p < 1.

Consider now a quantum harmonic oscillator with position and momentum op-
erators @ and P on L?(R) satisfying the commutation relations [@Q, P] = il. We
denote by {|n),n > 0} the eigenbasis of the number operator and define the
thermal equilibrium state

¢ = (1—p)>_pFk) (K,
k=0

where p = 2=, We translate the state ¢° by using the displacement operators

D(z) = exp(za* — za) with z € C which map the ground state |0) into the
coherent state |z):

¢ = D(\/2p1 — 1a)d° D (/21 — o)™, (6.2)

where oy 1= —uy + .

Theorem 6.1.1. Let p? be the family of states (6.1) on the Hilbert space (C2)®n
and ¢% the family (6.2) of displaced thermal equilibrium states of a quantum
oscillator. Then for each n there exist quantum channels (trace preserving CP

maps)

T, : M ((<C2)®") — T(LA(R)),

on (6.3)
Syt T(LA(R)) — M ((<c2) ) ,
with T(L?(R)) the trace-class operators, such that
Jimsup [[6% =T (o) [l = 0,
uel (64)

n—oo

lim sup ||ph — S, (6%) |1 = 0.
ucl?

for an arbitrary bounded interval I C R.
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Let us make a few comments on the significance of the above result.

i) The “convergence” (6.4) of the qubit states holds in a strong way (uniformly in
u) with direct statistical and physical interpretation. Indeed the channels T;, and
S, represent physical transformations which are analogues of randomizations of
classical data [van der Vaart, 1998]. The meaning of (6.4) is that the two quantum
models are asymptotically equivalent from a statistical point of view.

ii) Indeed for any measurement M on L?(R) we can construct the measurement
M oT, on the spin states by first mapping them to the oscillator space and then
performing M. Then the optimal solution of any statistical problem concerning
the states p) can be obtained by solving the same problem for ¢" and pulling
back the optimal measurement M as above. We illustrate this in Section 6.7 for
the estimation problem and for hypothesis testing.

iii) The proposed technique may be useful for applications in the domain of coher-
ent spin states [Holtz and Hanus, 1974] and squeezed spin states [Kitagawa and
Ueda, 1993]. Indeed, it has been known since Dyson [1956] that n spin—% particles
prepared in the spin up state | 1)®" behave asymptotically as the ground state
of a quantum oscillator when considering the fluctuations of properly normalized
total spin components in the directions orthogonal to z. Our Theorem extends
this to spin directions making an “angle” u/y/n with the z axis, as well as to
mixed states, and gives a quantitative expression to heuristic pictures common
in the physics literature (see Section 6.3). We believe that a similar approach can
be followed in the case of spin squeezed states and continuous time measurements
with feedback control [Geremia et al., 2004].

Next Section gives an introduction to the statistical ideas motivating our work.
In Section 6.3 we give a heuristic picture of our main result based on the total spin
vector representation of spin coherent states familiar in the physics literature.

The proof of Theorem 6.1.1 extends over the Sections 6.4,6.5,6.6 and uses methods
of group theory and some ideas from [Hayashi and Matsumoto, 2004, Ohya and
Petz, D., 2004, Accardi and Bach, A., 1987, 1985].

Section 6.7 describes a few applications of our main result. In Subsection 6.7.2 we
compute the local asymptotic minimax risk for the statistical problem of qubit
state estimation. An estimation scheme which achieves this risk asymptotically
is optimal in the pointwise approach. We show that this figure of merit coincides
with the risk of the heterodyne measurement and that it is achieved by the
optimal Bayesian measurement for the SU(2)-invariant prior [Bagan et al., 2006,
Hayashi and Matsumoto, 2004]. This proves the asymptotic equivalence of the
Bayesian and pointwise approaches.
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In Subsection 6.7.1 we continue the investigation of the optimal Bayesian mea-
surement and show that it converges locally to the heterodyne measurement on
the oscillator, which is an optimal joint measurement of position and momentum
[Holevo, 1982].

Another application is the problem discriminating between two states p- which
asymptotically converge to each other at rate 1//n. In this case the optimal
measurement for the parameter u is not optimal for the testing problem, showing
in particular that the quantum Fisher information in general does not encode all
statistical information.

6.2 Local asymptotic normality in statistics and
its extension to quantum mechanics

In this Section we introduce some statistical ideas which provide the motivation
for deriving the main result.

Quantum statistical problems can be seen as a game between a statistician or
physicist in our case, and Nature. The latter tries to codify some information
by preparing a quantum system in a state which depends on some parameter u
unknown to the former. The physicist tries to guess the value of the parame-
ter by devising measurements and estimators which work well for all choices of
parameters that Nature may make. In a Bayesian set-up Nature may build her
strategy by randomly choosing a state with some prior distribution. In order to
solve the problem the physicist is allowed to use the laws of quantum physics
as well as those of classical stochastics and statistical inference. In particular he
may transform the quantum state by applying an arbitrary quantum channel T
and obtain a new family T'(p"). In general such transformation goes with a loss
of information so one should have a good reason to do it but there are non trivial
situations when no such loss occurs [Petz and Jencova, 2006], that is when there
exists a channel S which reverses the effect of T" restricted to the states of interest
S(T(p")) = p“. If this is the case the we consider the two families of states p"
and T'(p") as statistically equivalent.

In statistics such transformations are called randomizations and a useful partic-
ular example is a statistic, which is just a function of the data which we want to
analyze. When this statistic contains all information about the unknown param-
eter we say that it is sufficient, because knowing the value of this statistic alone
suffices and given this information, the rest of the data is useless. For example if
Xi,...X, € {0,1} are results of independent coin tosses with a biased coin, then
X = 13 X; is sufficient statistic and may be used for any statistical decision

without loss of efficiency.
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Quantum randomizations through quantum channels allows us to compare seem-
ingly different families of states and thus opens the possibility of solving a par-
ticular problem by casting it in a more familiar setting. The example of this
chapter is that of state estimation for n identical copies of a state which can
be cast asymptotically into the problem of estimating the center of a quantum
Gaussian which has a rather simple solution [Holevo, 1982]. The term “asymptot-
ically” means that for large n we can find quantum channels T;,, S;, which almost
map the families of states into each other as in equation (6.4).

The second main idea that we want to introduce is that of local asymptotic
normality. Back in the coin toss example we have that X is a good estimator of
the probability p of obtaining a 1 and by the Central Limit Theorem the error
X — p has asymptotically a Gaussian distribution

V(X — p) ~ N(0,1/p(1 — p)),

in particular the mean error is (X — p)?) = 1/(nu(1 — p)). Now, if for each n
the unknown parameter p is restricted to a local neighborhood of a fixed pg of
size 1/4/n, one might expect an improvement in the error because we know more
about the parameter and we can use that information to built better estimators.
However this is not entirely true. Indeed if we write p = po + u/y/n then the
estimator of the local parameter u is

tin, = /(X — po) ~ N(u, 1/po(1 — po))

which says that the problem of estimating p in the local parameter model is as
difficult as the original problem, i.e. the variance of the estimator is the same.
The reason for this is that the additional information about the location of the
parameter is nothing new as we could guess that directly form the data with very
high probability. Thus without changing the difficulty of the original problem we
can look at it locally and then we see that it transforms into that of estimating the
center of a Gaussian with fixed variance N (u,1/po(1 — p0)), which is a classical
statistical problem.

In general we can formulate the following principle: given X;,...,X,, € & inde-
pendent with distribution P%*%/v" depending smoothly on the unknown param-
eter u € R¥, then asymptotically this model is statistically equivalent (there exist
explicit randomizations in both directions) with that of a single draw Y € R*
from the Gaussian distribution N(u,I(fy)~!) with fixed variance equal to the
inverse of the Fisher information matrix [van der Vaart, 1998].

In the quantum case we replace the randomizations by quantum channels and
the Gaussian limit model by its quantum equivalent which in the simplest case is
a family of displaced thermal states of a quantum oscillator (see Theorem 6.1.1),
but in general is a Gaussian state on a number of coupled quantum and classi-
cal oscillators, with canonical variables satisfying general commutation relations
[Petz, 1990].
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A simple extension of Theorem 6.1.1 is obtained by adding an additional local
parameter ¢t € R for the density matrix eigenvalues such that p = pg + t//n.
This leads to a Gaussian limit model in which we are given a quantum oscilla-
tor is in state ¢" and additionally, a classical Gaussian variable with distribu-
tion N(t,1/uo(1 — po)). The meaning of this quantum-classical coupling is the
following: asymptotically the problem of estimating the eigenvalues decouples
from that of estimating the direction of the Bloch vector and becomes a classi-
cal statistical problem (identical with the coin toss discussed above), while that
of estimating the direction remains quantum and converges to the estimation
of a Gaussian state of a quantum oscillator. Bagan et al. [2006], Hayashi and
Matsumoto [2004] have also observed this decoupling.

6.3 The big ball picture of coherent spin states

In this section we give a heuristic argument for why Theorem 6.1.1 holds which
will guide our intuition in later computations.

It is customary to represent the state of two dimensional quantum system by a
vector 7 in the Bloch sphere such that the corresponding density matrix is

p= %(1 +77) = %(1 + 1y0y + ryoy +1,04),

where o; represent the Pauli matrices and satisfy the commutation relations
[0i,0j] = 2ie€;jpor. In particular if 77 = (0,0,41) then the state is given by
the spin up | 1) and respectively spin down | |) basis vectors of C2, and the z-
component of the spin o, takes value +1. As for the z and y spin components,
each one may take the values +1 with equal probabilities such that on average
(02) = (o) = 0 but the variances are (¢2) = (o) = 1. Moreover o, and o, do
not commute and thus cannot be measured simultaneously.

What happens with the Bloch sphere picture when we have more spins? Consider
for the beginning n identical spins prepared in a coherent spin up state | 1)®",
then we can think of the whole as a single spin system and define the global
observables Lgn) =i ogk) for i € x,y, z, where Ufk) is the spin component
in the direction 7 of the k’s spin. Intuitively, we can represent the joint state
by a vector of length n pointing to the north pole of a large sphere as in Figure
6.1. However due to the quantum character of the spin observables, the z and y
components cannot be equal to zero and it is more instructive to think in terms
of a vector whose tip lies on a small blob of the size of the uncertainties in = and
y, sitting on the top of the sphere. Exactly how large is this blob? By using the
Central Limit Theorem we conclude that in the limit n — oo the distribution of
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3

Figure 6.1: (Color online) Quasiclassical representation of n spin up qubits

the “fluctuation operator”

converges to a N(0,1/2) Gaussian, that is (S,) = 0 and (S%) ~ 1/2, and similarly
for the component SZ(,”). The width of the blob is thus of the order \/n in both
z and y directions.

Now, the two fluctuations do not commute with each other
(S, S = ELg ) ~il, (6.5)

which is the well know commutation relation for canonical variables of the quan-
tum oscillator. In fact the quantum extension of the Central Limit Theorem
[Ohya and Petz, D., 2004] makes this more precise

P P
im ©( | TT S5 11 = @, ] X0, ), Vir € {2},
k=1 k=1

n—oo

where X, := @ and X, := P satisfy [Q, P] =41 and Q is the ground state of the
oscillator.

The above description is not new in physics and goes back to Dyson’s [1956] the-
ory of spin-wave interaction. More recently squeezed spin states [Kitagawa and
Ueda, 1993] for which the variances (S2) and (S;) of spin variables are different
have been found to have important applications various fields such as magnetom-
etry [Geremia et al., 2004], entanglement between many particles [Stockton et al.,
2003] The connection with such applications will be discussed in more detail in
Section 6.7.
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We now rotate all spins by the same small angle for each particle as in Figure
6.2. As we will see, it makes sense to scale the angle by the factor \/LTZ i.e. to

Figure 6.2: (Color online) Rotated coherent state of n qubits

consider
u i o 2

Yy = {exp (%(umam + uyay)) |T>] , u e R°.
Indeed for such angles the z component of the vector will change by a small
quantity of the order \/n < n so the commutation relations (6.5) remain the
same, while the uncertainty blob will just shift its center such that the new
averages of the renormalized spin components are <S’g(gn)> ~ —/2u, and (Sén)> ~
V2u,. All in all, the spins state converges to the coherent state |ay) of the
oscillator where o, = (—uy + iu,) € C and in general

0} = exp (~la2) Y % 7,

with |7) representing the j’s energy level.

We consider now the case of qubits in individual mixed state p| T)(T |+ (1— )| |
Y | with < 1/2u < 1. Then the “length” of L, is n(2u — 1) but the size of the
blob is the same (see Figure 6.3). However the commutation relations of S, and
Sy do not reproduce those of the harmonic oscillator and we need to renormalize
the spin as
1 1
S e [, 5’75") %

2(2u—1)n 2(2u— 1)n

The limit state will be a Gaussian state of the quantum oscillator with variance
(Q?) = (P?) = m < 1, that is a thermal equilibrium state

@©=1-p)S Pk, p=—t
k=0 H
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Figure 6.3: (Color online) Quasiclassical representation of n qubit mixed states

Finally the rotation by exp ﬁ(uwaw + uyoy)) produces a displacement of the

thermal state such that (Q) = —v/2(2u — 1)u, and (P) = v2(2u — 1)u,.

6.4 Local asymptotic normality for mixed qubit
states

We give now a rigorous formulation of the heuristics presented in the previous

Section. Let
o_( H 0

be a density matrix on C? with u > 1/2, representing a mixture of spin up
and spin down states, and for every u = (u,,u,) € R? consider the state p* =
U(u) p° U(u)*where

. P 1R
U(u):exp(i(umoﬁuyoy)):< cosful e 5”1'“'),

et sin |u cos |ul

with ¢ = Arg(—u, + iu,). We are interested in the asymptotic behavior as
n — oo of the family

Fp = {pg - (p“/ﬁ)®n,u € 12} , (6.7)

where I = [—a,a] is a fixed finite interval.

The main result is that F,, is asymptotically normal, meaning that it converges
as n — oo to a limit family G,, := {¢%,u € I?} of Gaussian states of a quantum
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oscillator with creation and annihilation operators satisfying [a,a*] = 1. Let
¢ = (1—p) Y pFlk) (K], (6.8)
k=0

be a thermal equilibrium state with |k) denoting the k’s energy level of the
oscillator and p = 1_7“ < 1. For every u € I? define

¢" == D(/2p — 1) [¢°]D(—/21 — 1ow), (6.9)

where D(z) := exp(za* —z*a) is the displacement operator, mapping the vacuum
vector |0) to the coherent vector |z) and au = (—uy + iuy) .

The exact formulation of the convergence is given in Theorem 6.1.1. Thus the
state pi of the n qubits which depends on the unknown parameter u can be
manipulated by applying a quantum channel 7, such that its image converges to
the Gaussian state ¢, uniformly in u € I2. Conversely by using the channel S,,,
the state ¢" can be mapped to a joint state of n qubits which is converges to p4
uniformly in u € I?. By Stinespring’s theorem we know that the channels are of
the form

T(p) = Trc (VoV™),
S(6) = Trx: (WoW™),

where the partial traces are taken over some ancillary Hilbert spaces K, K’ and
V()" S LPR) @k,
WL (R) — (C)*" o K,
are isometries (V*V =1 and W*W = 1).

Our task is now to identify the isometries V,, and W,, implementing the channels
T,, and respectively S,, satisfying (6.4). The first step towards identifying these
V., is to use group representations methods so as to partially (block) diagonalize
all the p simultaneously.

6.4.1 Block decomposition

In this Subsection we show that the states pi have a block-diagonal form given
by the decomposition of the space ((C2)®n into irreducible representations of the
relevant symmetry groups. The main point is that for large n the weights of
the different blocks concentrate around the representation with total spin j,, =

n(p—1/2) .
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The space ((CQ)®" carries a unitary representation m,, of the one spin symmetry
group SU(2) with 7, (u) = u®" for any u € SU(2), and a unitary representation
of the symmetric group S(n) given by the permutation of factors

(7)1 ® - Q@u, — Vr-1(1) @ - @ Vr=1(n), T € S(n).
As [ (u), m, (7)] = 0 for all w € SU(2), 7 € S(n) we have the decomposition

n/2
)" = P Mo, (6.10)

J=0,1/2

where the direct sum runs over all positive (half)-integers j up to n/2, and for each
fixed j, H; = C**! is a irreducible representation of SU(2) with total angular
momentum J? = j(j + 1), and HJ, = C" is the irreducible representation of the
symmetric group S(n) with n; = (,, /g_j) -, /2fj_1). In particular the density
matrix py is invariant under permutations and can be decomposed as a mixture
of “block” density matrices

n/2
u S\ u 1
7=0,1/2

with probability distribution p,(j) given by [Bagan et al., 2006]:
_
Cou—1

pa(j) : (1—p) 277 3t (1 - p¥H) | (6.12)

where p := 1_7“ A key observation is that for large n and in the relevant range
of j’s, pn(j) is essentially a binomial distribution
= (0w, k=

Indeed we can rewrite p,(j) as

Pn(f) = Bnu(n/2 4 j) x K(j,n, ) (6.13)
where the factor K(j,n,u) is given by
) + 20 —Jjn) +1)/2p—1)

n+(]_]n+1)/ﬂ

and j, = n(p —1/2). As B, , is the distribution of the sum of n independent
Bernoulli variables with individual distribution (1 — p, u) over {0,1}, we can use
the central limit Theorem to conclude that its mass concentrates around the
average pn with a width of order \/n, in other words of any 0 < € < 1/2 we have

K(j,n,p) = (1 —p¥*

nl/2+e

lim Y Bnu(un+p)=1. (6.14)

n—oo
p=—nl/2+e
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Let us denote by [,  the set of values j of the total angular momentum of n
qubits which lie in the interval [, — n'/?*¢ j, +n!/2*€]. Then for large n, the
factor K (j,n,p) is close to 1 uniformly over j € 7, and from formulas (6.13),
(6.14) we conclude that p,(j) concentrates asymptotically in an interval of order
n'/?t€ around j,:

lim p,(Tn.e) = 1. (6.15)

n—oo

This justifies the big ball picture used in the previous section.

6.4.2 Irreducible representations of SU(2)

Here we remind the reader some details about the representation 7; of SU(2) on
H;. Let 05,0y,0. be the Pauli matrices and denote mj(0;) = J;; for l = x,y,2
then there exists an orthonormal basis {|j,m), m = —j,...,j} of H; such that

Jj-,z|j7 m> = m|], m>

Moreover, with J; + := J;, £14.J;, we have

Jilim) = j—myj+m+1[j,m+1),
Ji_lgm) =\ —m+1/j+mlj,m—1).

With these notations and p = 1_7“ as before, the state p?_’n can be written as
[Hayashi and Matsumoto, 2004]

J
p?m :cj(p) Z PG, m) G, ml,

m=—j

where the normalizing factor is ¢;(p) = (1 — p)/(1 — p**1). The rotated block
states can be obtained by applying the unitary transformation

Pin = Us(u/Vn) p3, Us(u/Vn)",
with U;(u) = exp (i(ugJj,o + uyJjy)). Finally, we define the vectors
3, w) = Uj(w)]3,5) (6.16)

which will be used in later computations, and notice that their coordinates with
respect to the |j, m) basis are given by [Hayashi and Matsumoto, 2004]:

2j
j+m

it

)cﬂ‘-mu epyE (6.17)

Gliow) =

where ¢ = €' sin |w| with ¢, = Arg(—w, + iw,).
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6.5 Construction of the channels 7,

For each irreducible representation space ‘H; we define the isometry V; : H; —
L?(R) by
Vj:ljm) — [j —m) (6.18)

where {|n),n > 0} represents the energy eigenbasis of the quantum oscillator with
eigenfunctions ¢, (z) = Hy(z)e=*"/2/\/\/m2"nl € L*(R). Using the decomposi-
tion (6.10) we put together the different blocks we construct for each n € N the
“global” isometry

n/2 n/2
V, = @ Vi®l: @ Hj@@nf%LQ(R)Q@/Cn,
j=0,1/2 §=0,1/2

where K, := @?ﬁm/z C™. By tracing over K,, we obtain the channel T, (p) :=
Tric, (VnpV,¥) mapping a joint state of n spins into a state of the quantum os-
cillator. This channel satisfies the convergence condition (6.4) as shown by the

estimate

n/2
1Tl =%l = || D pal)Vioh Vi — "

§=0,1/2 1

n/2
< Z pn(j)HVjpz,jVj*_gbqu
j=0,1/2

<2 Y pa(j)+ sup max [[Vipl,V; — "1,
j¢.7n . ucil? JE€ETn e

where the first term on the right side converges to 0 by (6.15), and for the
second one we apply the following Proposition 6.5.1 which is the major technical
contribution of this chapter.

Proposition 6.5.1. The following uniform convergence holds

. ,u * _ 4u —
Jim Sup. max 1VipinVi" — ¢l = 0.

where T is the set defined above equation (6.15).
The proof of the Proposition requires a few ingredients which in our opinion are

important on their own for which reason we formulate them apart and refer to
relevant papers for the proofs.



138 Quantum local asymptotic normality for qubits

Theorem 6.5.2. [Ohya and Petz, D., 2004] Let a,b € M(C?), satisfying Tr(a) =
Tr(b) = 0 and define

1
L(a,b) = exp(ia) exp(ib) — exp(ia + ib) exp <§[a, b]) .
On ((C2)®n we define the fluctuation operator

F,.(a) = % Zai,

where a; =1®---®a®---®@1 with a acting on the i’s position of the tensor prod-
uct. Notice that exp(iFy,(a)) = exp(ia//n)®" and \/n[Fy(a), F,(b)] = Fn([a,b]).
Then

(| (Fy (@), Ea(0)) || = 0.

The convergence is uniform over |lal|,||b|| < C for some constant C.

This Theorem is a key ingredient of the quantum central limit Theorem [Ohya
and Petz, D., 2004] and it is not surprising that it plays an important role in our
quantum local asymptotic normality result which is an extension of the latter.
We apply the Theorem to two unitaries of the form U(u) = exp(i(ugo, +uyoy)).
We thus get information on the effect of the U;(u) on the highest weight vectors
|7,7) of an irreducible representation.

Corollary 6.5.3. For any unitary U and state 7 let Ad[U](7) := UrU* and
consider the rotated states

rtuvagon) = ad[o () oy ()] @i
rtusvaon) = ad o ()] (s,

Then the following uniform convergence holds

lim sup sup |7(u,v,j,n)—7(u+v,jn)| =0.
N7 uveEl? jETn e

Proof. First notice that

[UpOq + UyOy, VpOg + Vyoy] = 2(UgVy — UyVy )0 .

Applying Theorem 6.5.2 to U(u), we get

() ) () ()

— 0.
n—oo
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Now
O

The following Lemma is a slight strengthening of a theorem by Hayashi and
Matsumoto [2004].

Lemma 6.5.4. The uniform convergence holds
u ..
v (S5 ) i) -1vVEr Taw)

where |z) denotes a coherent state of the oscillator, and oy = (—uy + iug) .
Moreover for any sequence j, — oo we have

hm H ]npjn‘/;; B ¢0H1 = 0. (619)

lim sup sup
=0 uel? jeTn, .

)

The convergence holds uniformly over all sequences j, such that j,/n > c for
some fized constant c > 0, so in particular for j, € Tp.c.

Proof. We first prove the easier relation (6.19). As both density matrices are
diagonal we get

o 2]n+1 Jn
ijnpjn —¢ H 2jn+1 Zp
2Jn+1 S
Z p 23n+1 +pjn+ — 0,

k=2j,+1

as n — o0.

As for the first relation, let us denote |u,j,n) := V;U; (\/i—)|j J), then by (6.17)
and (6.18) we have

i dm) = (213) (sinful A/m)e™ ) (cos(ul A/m) 2.

Now, the following asymptotic relations hold uniformly over j € Jp, . :

sin (%)k - ('i\/ﬁ')k (1+0(ju)*n™Y),

2j—k _ u2
cos (1) —exn(- 2P (14 o)),

— D)n)k
() - S o,
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and thus the coefficients converge uniformly to those of the corresponding coher-
ent states as n — oo
k

(20 1>|u|2) (c*]u]y2—T)

<k|u7ja n> — €Xp <_ 2 \/H

O

Proof of Proposition 6.5.1. The main idea is to notice that ¢° is a thermal
equilibrium state of the oscillator and can be generated as a mixture of coherent
states with centered Gaussian distribution over the displacements:

¢° = \/;_Z/e—\zlz/%z |z)(z| d°z. (6.20)
s

The easiest way to see this is to think of the oscillator states in terms of their
Wigner functions. Indeed, the Wigner function of a coherent state is

Wa(q,p) = exp (—(q - \/§Rez)2 —(p— \/§Imz)2) ,

and thus the state given by (6.20) has Wigner function which is the convolution
of two centered Gaussians which is again a centered Gaussian with variance equal
to the sum of their variances 2s 4 1/2 which is equal to the variance of ¢° for
s2:=p/(2(1 — p)). Similarly,

1 —|z—/2p—Tay|?/2s2 2
=5 /e V210?25 (1) (1) @2, (6.21)
Let us first remark that
Vios Vi =, < oy, = Vi o Vi ||, +
||¢u - Pjn¢upln H]_ ?

where P;, = Vj V" is the projection onto the image of V;

and

n?

lim sup sup [[¢" — P;, ¢"P;, ||, =0,
=00 5, €Tn,e ucl?

because j, — oo uniformly and P;  converges to the identity in strong operator
topology (a tightness property). Thus it is enough to show that

A, 2 s ek = Vil =0

Now
u *
o () 082w
165, = Vi Vi, +

HAd [an (%)} (Vi 4OV;,) — V7 64T,

<

1

1
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The first term on the right side of the inequality converges to zero by Lemma
6.5.4, uniformly for any sequence (j,) such that j, € J,. and does not depend
on u. Using (6.20) and (6.21) we bound the second term by

1

sV 2w

/ 1257 | A(u, 2, ) |12

where the operator A(u,z,j,,) is given by

Awain) = Ad|U ()] (7l @) -

\%9 20 — lau> <Z + /20— lay

gn | %

Vi

We analyze the expression under the integral. Let z € R? be such that oz =

z/\/2p — 1, then

<

[ o <%)] Vi) = Vilz+ V20— Law) (2 + /20 — o]V, 1
o (V)

( )] (inin} i) ~ 4 [0, (“—j;)]<|jnjn><jnjn|>

—)} (dngn) indnl) V7. — l2 (el

+
1

_|_

Vi, Ad [
1

Z
V]nAd |: ( \/T_l >:| (|jn]n><]n]n ]n |Z TV 2p — 1O‘u Z+ 1au|

1

By Corollary 6.5.3, the first term on the right side converges to zero uniformly
n (u,j,) € I? X .. By Lemma 6.5.4 we have that the last two terms converge
to zero uniformly in (u, j,) € I? X J,, . Thus if we denote

Fy(z) == sup sup [|A(u,z, ),
Jn€JTn,c uel?

then 0 < F,(z) < 2, lim, o F,(z) = 0 for all z € R?, and by the Lebesgue
dominated convergence theorem we get

/e“z‘2/252Fn(z)d2z =0.

lim
n—oo 54/27

This implies the statement of the Proposition 6.5.1.
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6.6 Construction of the inverse channel 5,

To complete our proof of asymptotic equivalence as defined by (6.4), we must
now exhibit the inverse channel S,, which maps the displaced thermal states ¢
of the oscillator into approximations of the rotated spin states. As the latter are
block diagonal with weights p,,(j) as defined in equation (6.12) , it is natural to
look for S,, of the form

Su(@) = D p(i)Sh@) e —,

j=0,1/2 J

where S7 are channels with outputs in H;. Moreover because V; : H; — L?(R)
is an isometry we can choose S? such that

S, (VipVy') = p, (6.22)

for all density matrices p on ;. This property does not fix the channel completely
but it is sufficient for our purposes.

Theorem 6.6.1. The following holds

lim sup [|S,(¢") — ppllr = 0.

n—oo ’u.612

Proof. As both p& and ¢" are block-diagonal we may decompose their distance
as

n/2
1Sn(@™) = il = > pu(D)ISLE@™) = palls
Jj=0,1/2
< D 2aG)+ D pa)ISH@Y) = % (Viel Vi) I
JETn e JE€ETn e
+ > pa IS (Virka Vi) = p¥alh
JETn,e
<23 pal)+ D pali)le™ = Vipl Vi,
JETn,e JETn e

where we have used at the last line that SJ is a contraction and property (6.22)
of S7. Now the first sum is going to 0 by (6.15) and the second sum is also
uniformly going to 0 by use of Proposition 6.5.1.

O
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6.7 Applications

6.7.1 Local asymptotic equivalence of the optimal Bayesian
measurement and the heterodyne measurement

In this subsection we begin a comparison of the pointwise (local) point of view
with the global one used in the Bayesian approach. The result is that the optimal
SU(2) covariant measurement [Bagan et al., 2006, Hayashi and Matsumoto, 2004]
converges locally to the optimal measurement for the family of displaced Gaussian
states which is a heterodyne measurement [Holevo, 1982]. Together with the
results on the asymptotic local minimax optimality of this measurement, this
closes a circle of ideas relating the different optimality notions and the relations
between the optimal measurements.

Let us recall what are the ingredients of the state estimation problem in the
Bayesian framework [Bagan et al., 2006]. We choose as cost function the fidelity
squared F(p,0)* = Tr(\/\/po\/p)* and fix a prior prior distribution 7 over all
states in C? which is invariant under the SU(2) symmetry group. Given n iden-
tical systems p®” we would like to find a measurement M,, - whose outcome is
the estimator p,, - which maximizes

Ry, = / (F(pn. p))7(dp).

By the SU(2) invariance of m, the optimal measurement can be chosen to be
SU(2) covariant i.e.
M, (do)U* = M, (U*doU),

and can be described as follows. First we use the decomposition (6.10) to make

a “which block” measurement and obtain a result j and the conditional state p;
as in (6.11). This part will provide us the eigenvalues of the estimator. Next we

perform block-wise the covariant measurement M; ,,(ds") = m; (5 )ds with

mjn(S) == (25 + VU; () 5) (GIU; () @ 15

whose result is a unit vector s where U(7s) is a unitary rotating the vector state
$") to | 1). The complete estimator is then p, = 3(1 + 2257).

We pass now to the description of the heterodyne measurement for the quantum
harmonic oscillator. This measurement has outcomes u € R? and is covariant
with respect to the translations induced by the displacement operators D(z) such
that H(du) = h(u)du with

h(u) := (2u — 1)D(—+/2p — 1aw)[0) (0] D(1/2p — Lavy).
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Using Theorem 6.1.1 we can map H into a measurement on the n-spin system
as follows: first we perform the which block step as in the case of the SU(2)-
covariant measurements. Then we map p;, into an oscillator state using the
isometry V; (see (6.18)), and subsequently we perform H. The result u will
define our estimator for the local state, i.e.

O I AN CA B

We denote by H,, the resulting measurement with values in the states on C2.

The next Theorem shows that in a local neighborhood of a fixed state p°, the
SU(2)-covariant measurement M,, and the heterodyne type measurement H,, are
asymptotically equivalent in the sense that the probability distributions P(M,, p)
and P(H,, p) are close to each other uniformly over all local states p such that
llp— p°ll1 < % for a fixed but arbitrary constant C' < oco.

Theorem 6.7.1. Let p° be as in (6.6), and let
Bo(I) = {pv/ﬁ ve 12} L] < oo

be a local family of states around p®. Then

lim sup ||P(My,p)— P(H,,p)l1=0
n—)oopeBn(I)

Proof. Note first that both P(M,,p) and P(H,,p) are distributions over the
Bloch sphere and the marginals over the length of the Bloch vectors are identical
because by construction the first step of both measurements is the same. Then

| P(My, p) — P(Hy, p)||, =
2_m0) / T (pjin (M (§) = hyn ()N

According to (6.15) we can restrict the summation to the interval J,, . around
j = n(p—3). By Theorem 6.1.1 we can replace (whenever needed) the local

states p;'fl‘/ﬁ

vanishing error, uniformly over v € I2.

by their limits in the oscillator space ¢¥ with an asymptotically

We make now the change of variable 5 — u where u € R? belongs to the ball
|u| < 2y/n7, and is the smallest vector such that U (%) =U(%).

The density of the SU(2) estimator with respect to the measure du is

minw) = 00, () o, () (),
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where J is the determinant of a Jacobian related with the change of variables
such that J(0) = 1.

Similarly the density of the homodyne-type estimator becomes

hyjn(w) =Y Vi'h (u + 2’“\/5”1) Vil Tk (0],

e [ul

because displacements in the same direction which differ by multiples of 2\/nm
lead to the same unitary on the qubits. Here Jj ,(u) is again the determinant of
the Jacobian of the map from the k-th ring to the disk, in particular Jy ,(u) = 1.

The integral becomes then

/|u|szwﬁ

We bound this integral by the sum of two terms, the first one being

/uszwﬁ

where hj(u) is just the term with k = 0in h; ,,(u). By Lemma 6.5.4, for any fixed
u we have m; ,(u) — h(u) uniformly over j € 7, .. Using similar estimates as
in Lemma 6.5.4 it can be shown that the function under the integral is bounded
by a fixed integrable function g(u) uniformly over v € I?, and then we can use
dominated convergence to conclude that the integral converges to 0 uniformly
overveI?andj € Tne-

T (" (mjin (@) = (W) ) | .

T (32" (mjon () = (W) ) | du,

The second integral is

/uszwﬁ

which is smaller than
/|u|>27'r\/77,

which converges uniformly to 0. This can be seen by replacing the states with
¢¥ which are “confined” to a fixed region of the size I? in the phase space, while
the terms h(u) are Gaussians located at distance at least 27y/n from the origin.

T (030" () = hjn()) )| du,

Tr (p}i{l‘/ﬁh (u)) } du,

Putting these two estimates together we obtain the desired result.
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Remark. The result in the above theorem holds more generally for all states
in a local neighborhood of p° but for the proof we need a slightly more general
version of Theorem 6.1.1 where the eigenvalues of the density matrices are not
fixed but allowed to vary in a local neighborhood of (g, 1 — u). This result will be
presented in a future work concerning the general case of d-dimensional states.

6.7.2 The optimal Bayes measurement is also locally
asymptotic minimax

In this subsection we will introduce some ideas from the pointwise approach to
state estimation. We show that the measurement which is known to be optimal
for a uniform prior in the Bayesian set-up, is also asymptotically optimal in the
pointwise sense.

Using the jargon of mathematical statistics, we will call quantum statistical ex-
periment (model) [Petz and Jencové, 2006] a family {p® € M(C?) : § € ©} of
density matrices indexed by a parameter belonging to a set ©. The main exam-
ples of quantum statistical experiments considered so far are that of n identical
qubits

F={p®":pe M(C?},

the local model
Fo 1= {pﬁ = (p“/ﬁ)m,u € 12},
and its “limit” model
Gl = {¢",ucI?,

where I = [—a,a], and pY and ¢" are defined by (6.1) and (6.2). More generally
we can replace the square I2 by an arbitrary region K in the parameter space
and obtain:

GK .= {¢",ue K C R?}.

We shall also make use of
G :={¢",ucR?.
A natural choice of distance between density matrices is the fidelity square
2 1/2]2
F(p,0)* = |Tr (Vpoyp)'*]

which is locally quadratic in first order approximation, i.e.

1
F(p, py)? ~ ~fu— vl%.
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As we expect that reasonable estimators are in a local neighborhood of the true
state we will replace the fidelity square by the local distance

d(u,q) = [[a - ul/*.

and define the risk of a measurement-estimator pair as Ry (u, 1) = (d(u, 1)),
keeping in mind the factor 1/n relating the risks expressed in local and global
parameters.

Similarly to the Bayesian approach, we are interested in estimators which have
small risk everywhere in the parameter space and we define a worst case figure
of merit called minimax risk.

Definition 6.7.2. The minimaz risk of a quantum statistical experiment € over
the parameter space © is defined as

C(€) = inf sup Rys(u, 0). (6.24)

U ueo

where the infimum is taken over all measurements and estimators (M, Q).

The minimax risk tells us how difficult is the model and thus we expect that if two
models are “close” to each other then their minimax risks are almost equal. The
“statistical distance” between quantum experiments is defined in a natural way
with direct physical interpretation and such a problem has been already addressed
by Chefles et al. [2003] for the case of a quantum statistical experiment consisting
of a finite family of pure states.

Definition 6.7.3. Let £ = {p? € M(C?) : 0 € ©} and F = {77 ¢ M(CP) :
0 € O} be two quantum statistical experiments (models) with the same parameter
space ©. We define the discrepancies

0(€,F) = inf sup ||T(p9) — 79||17
T gco

0(F,&) = inf sup ||p9 — S’(TG)||1,
S geo

where the infimum is taken over all trace preserving channels T : M(C?) —
M(CP) and S : M(CP) — M(C?).

With this terminology, our main result states that for any bounded interval I:

lim max (§(F2,G"),8(G", FL)) = 0. (6.25)
n—oo
As suggested above, the discrepancy has a direct statistical interpretation: if we
want to estimate 6 in both statistical experiments £ and F and we choose a
bounded loss function d(d,6) < K then for any measurement and estimator @ for
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F with risk Ras(0,0) = (d(9,0)) we can find a measurement N on £ whose risk
is at most Ry (6,6) + K§(E, F). Indeed if we choose T such that the infimum in
the definition of §(&, F) is achieved, we can map the state p? through the channel
T and then perform M to obtain an estimator 6 for which

Ry (6.0) = (d(6,6)) = /@ (0, 0)Tr (T(") M (d0) ) <

[ 00,07 (+"21(a)) + o6 = 7] <
Ry(0,0) + K&(E, F).

This means that asymptotically the difficulty of estimating the parameter 6 in
the two models is the same. With the above definition of the minimax risk and
using the convergence (6.25) we obtain the following lemma.

Lemma 6.7.4. Let [ = [—a,a] with 0 < a < oo, then

lim C(F;) = C(G")

n—oo

The minimax risk for the local family ! is a figure of merit for the “local diffi-
culty” of the global model F,,. It asymptotically converges to the minimax risk
of a family of thermal states. However this quantity depends on the arbitrary
parameter I = [—a, a] which we would like to remove as our last step in defining
the local asymptotic minimax risk:
Cram.(Fn:ne€N):= lim lim C(F!) = lim C(G").
a—00 N—00 a—00

As one might expect, the minimax risks for the restricted families of thermal
states will converge to that of the experiment with no restrictions on the para-
maters. The proof of this fact is however non-trivial.

Lemma 6.7.5. Let [ = [—a,al, then we have
lim C(G") = C(G)

Moreover the heterodyne measurement saturates C(G), and thus C(G) is equal to
the Holevo bound.

Proof. The inequality in one direction is easy. For any estimator,
SUpuere Rar(u,0) < supyege Ra(u, ), so that C(G') < C(G) and the same
holds for the limit. By the same reasoning, for any K; C Ky C R? we have
C(gr) < C(g"=).

When calculating minimax bounds we are interested in the worst risk of estima-
tors within some parameter region K, and this worst risk is obviously higher than
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the Bayes risk with respect to the probability distribution with constant density
on K. We shall work on B(0, ¢+ b) the ball of center 0 and radius (¢ + b), with
b > ¢, and denote our measurement M with density m(t)da. In general M need
not have a density, but this will ease notations. Then

sup  Ry(u,0) >
ueB(0,c+b)

dudua o K
—— g llu—a|"Tr(¢%m(a)). (6.26
/B(o c+b) xR2 7T(c+b)2H I ( (). ( )

We fix the following notations

f(D) = /D dudvjx — y[2 Tr (6*m(v)).
9(D) = /Ddudv Tr (¢"m(v)),

and define the domains

= {(u,a)[u € B(0,c+b),a cR?*}
u+k,k)|lu € B(0,¢),k € B(0,b)}
u,u+h)lue B(0,b—c),h € B(0,c¢)}

u,u+h)juc B(0,b—c),h € R*\B(0,c)}.

{
={
{
{

—~ o~ o~

Notice the following relations:

Ds C Dy CDy, DyC Dl\Dg. (627)

Then (6.26) can be rewritten as

1
sup Ry(u,u) > J(Dr).
u€B(0,c+b) (u, ) m(b+c)? (D)

The following inequalities follow directly from the definitions:

< ?g(D2) f(Ds) < g(Ds)
f(Da) = (D) 9(D4) + g(Ds) = (b —¢)>.
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Using these and (6.27), we may write:

g (P 2 = (D) + (D)
e i gz ([(D2) +E(Da)
“er (ot ot s )
A T e )
_ b= f(D) oo

We analyze now the expression f(D3)/g(D2). By using the definition (6.2) of the
displaced thermal states ¢" we get that Tr [¢"T*m(1)] = Tr [¢*mu(1)], where

mu(l) := D(—+/21 — layw)m() D (/21 — 1ay,).

Then
g(D2) = / dudk Tr [(bu"'km(k)} =Tr |:§Z;c'fhb:| )
B(0,c)x B(0,b)

where we have written

e = / oidu, i = / mic(k)dk.
B(0,¢) B(0,b)

Upon writing v, := fB(O 0 [lu?¢du, we get similarly f(Ds) = Tr[v.1]. Note

that by rotational symmetry v, and b are diagonal in the number operator
eigenbasis, so without restricting the generality we may assume that m; is also
diagonal in that basis: my, =Y, pr|k)(k|. We have then

f(Ds) _ ZkeNpk<k|’lic|k> > inf <k|’ljc|k>
9(D2) S jenpr(kldelk) — ke (k|ge|k)

The infimum on the right side is achieved by the vacuum vector. By Lemma
6.7.6, this fact follows from the inequality

(klo™ k) _ (0]6*]0)
(klgw k) = (0l6%[0)°

which can be checked by explicit calculations.

s ]| > [Juz],

Letting now ¢ and b go to infinity with ¢ = o(b) and using (6.28), we obtain that

; fRz (0]¢™[0) [[u/[*du
1 C(G,) > 7
Jim C(Ga) > T 016T0)
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which is exactly the pointwise risk of the heterodyne measurement H(du) =
h(u)du whose density is

h(u) = (2u — 1)D(—+/2p — 1ay)[0) (0] D(—+/2p — low).

By symmetry this pointwise risk does not depend on the point, so that C(G) <
Ry (u,0). And we have our second inequality: lim,_.oc C'(G,) > C(G).

Moreover, the heterodyne measurement is known to saturate the Holevo bound
for G = Id and the Cramér-Rao bound for locally unbiased estimators [Holevo,
1982, Hayashi and Matsumoto, 2004]. We conclude that the local minimax risk
for qubits is equal to the minimax risk for the limit Gaussian quantum experiment,
which is achieved by the heterodyne measurement.

O
Lemma 6.7.6. Let p and q be two probability densities on [0,1] and assume that

~—
~—

p(z1) _ q(x

; T, > T
Then [ 2*p(z)dx > [ 2?q(x)dz.

Proof. It is enough to show that there exists a point g € [0, 1] such that p(z) <
q(z) for x < xg and p(z) > ¢(x) for > xy. Now, if p(x) < g(z) then by using
the assumption we get that p(y) < ¢(y) for all y < x. Similarly, if p(z) > ¢(x)
then p(y) < q(y) for all y > x. This implies the existence of the crossing point
Zo-

O

We end this section with the conclusion that the optimal measurement from the
Bayesian point of view is also asymptotically optimal from the pointwise point
of view. Let us denote by (M, 1) the measurement-estimator pair from [Bagan
et al., 2006, Hayashi and Matsumoto, 2004].

Proposition 6.7.7. The optimal measurement-estimator pair (M,,0) is a local
asymptotic minimax estimation scheme. That is

lim Ry, (u,0) = Clam(Fn :n €N).

n—oo

cov

Proof. The pointwise risk of M, is known to converge to that of the heterodyne
measurement [Bagan et al., 2006]. The rest follows from Lemma 6.7.4 and Lemma,
6.7.5.

O



152 Quantum local asymptotic normality for qubits

6.7.3 Discrimination of states

Another illustration of the local asymptotic normality Theorem is the problem
of discriminating between two states p* and p~. When the two states are fixed,
this problem has been solved by Helstrom [1976], and if we are given n systems
in state p¥" then the probability of error converge to 0 exponentially. Here we
consider the problem of distinguishing between two states p which approach
each other as n — oo with rate ||p} — p |1 =~ ﬁ In this case the probability
of error does not go to 0 because the problem becomes more difficult as we have
more systems, and converges to the limit problem of distinguishing between two

fixed Gaussian states of a quantum oscillator.

This problem is interesting for several reasons. Firstly it shows that the conver-
gence in Theorem 6.1.1 can be used for finding asymptotically optimal procedures
for various statistical problems such as that of parameter estimation and hypoth-
esis testing. Secondly, for any fixed n the optimal discrimination is performed
by a rather complicated joint measurement and the hope is that the asymptotic
problem of discriminating between two Gaussian states may provide a more re-
alistic measurement which can be implemented in the lab. Thirdly, this example
shows that a non-commuting one-parameter families of states is not “classical” as
it is sometimes argued, but should be considered as a quantum “resource” which
cannot be transformed into a classical one without loss of information. More
explicitly, the optimal measurement for estimating the parameter is not optimal
for other statistical problems such as the one considered here, and thus different
statistical decision problems are accompanied by mutually incompatible optimal
measurements.

Let is recall the framework of quantum hypothesis testing for two states p:
we consider two-outcomes POVM’s M = (M_,My) with 0 < My < 1 and
M_ =1 — M, such that the probability of error when the state is p~ is given
by Tr(M,p~),and similarly for p*. As we do not know the state, we want to
minimize our worst-case probability error. Our figure of merit (the lower, the
better) is therefore:

R(p™,p7) = inf max{Tr(py M-), Tr(py M- )}

Now we are interested in the case when p* = p" as defined in (6.1), and in the
limit pp = ¢*% (recall that both p and ¢* depend on y). We then have:

Theorem 6.7.8. The following limit holds
Jim R(pp, p,") = R(¢%,¢7%).

Moreover for pure states this limit is equal to (1 —(1- 6_4M2)1/2> /2 which is
strictly smaller than 1/2 — er f(jd]) which is the limit if we do not use collective
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measurements on the qubzts Here we have used this convention for the error

function: erf(z) = [ e et /T dt.

Proof. Let M be the optimal discrimination procedure ¢*". Then we use the
channel T}, to send p;-" to states of the oscillator and then perform the measure-
ment M. By Theorem 6.1.1, ||¢T% — T),(pr*)|l1 — 0 so that Tr (T,,(p %) M=) —
Tr (¢*"M<=). Thus M o T, is asymptotically optimal for pu.

Now for pure states ;) and fp_) the optimal measurement is well-known [Guti
and Kahn, 2008, Chefles, 2000]. It is unique on the span of these pure states and
arbitrary on the orthogonal. If we choose the phase such that (¢_|¢4) > 0, then
M is the projector on the vector

Wo+) + ko-) n Wo+) — ko-)
L+ (YY) 2¢/1 = (¥-|Yy)

and the associated risk is
1 2
5= VI= T —)P)

Now in our case, in the limit experiment, ¢" is the coherent state |¢y) =

e~l/2 5 Ju|/v/nl [n). So that

<¢u|w _ —|u| Z |u| —2|u|2’

and R(¢%,¢~%) = 1 (1 - m) :

We would like to insist here that the best measurement for discrimination is not
measuring the positive part of the position observable Q (we assume by symmetry
that +u is on the first coordinate), as one might expect from the analogy with
the classical problem. Indeed if we measure () then we obtain a classical Gaussian
variable with density p(z) = e~@~M)*/\ /7 and the best guess at the sign + has
in this case the risk 1/2 — erf(jd).

This may be a bit surprising considering that measuring () preserves the quantum
Fisher information. The conclusion is simply that the quantum Fisher informa-
tion is not an exhaustive indicator of the statistical information in a family of
states, as it may remain unchanged even when there is a clear degradation in the
inference power. This example fits in a more general framework of a theory of
quantum statistical experiments and quantum decisions [Gutd].

O
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6.7.4 Spin squeezed states and continuous time measure-
ments

In an emblematic experiment for the field of quantum filtering and control,
Geremia et al. [2004] have shown how spin squeezed states can be prepared de-
terministically by using continuous time measurements performed in the environ-
ment and real time feedback on the spins. Without going in the details, the basic
idea is to describe the evolution of identically prepared spins by passing first to
the coherent state picture. There one can easily solve the stochastic Schrodinger
equation describing the evolution (quantum trajectory) of the quantum oscillator
conditioned on the continuous signal of the measurement device. The solution is
a Gaussian state whose center evolves stochastically while one of the quadratures
gets more and more squeezed as one obtains more information through the mea-
surement. Using feedback one can then stabilize the center of the state around a
fixed point.

This description is of course approximative and holds as long as the errors in
identifying the spins with Gaussian states are not significant. The framework
developed in the proof of Theorem 6.1.1 can then be used to make more precise
statements about the validity of the results, including the squeezing process.

Perhaps more interesting for quantum estimation, such measurements may be
used to perform optimal estimation of spin states. The idea would be to first
localize the state in a small region by performing a weak measurement and then
in a second stage one performs a heterodyne type measurement after rotating the
spins so that they point approximately in the z direction. We believe that this
type of procedure has better chances of being implemented in practice compared
with the abstract covariant measurement of Bagan et al. [2006], Hayashi and
Matsumoto [2004].



Chapter 7

Optimal estimation of qubit
states with continuous time
measurements

This chapter is derived from [Guta et al., 2008].

Abstract: We propose an adaptive, two steps strategy, for the esti-
mation of mixed qubit states. We show that the strategy is optimal
in a local minimax sense for the trace norm distance as well as other
locally quadratic figures of merit. Local minimax optimality means
that given n identical qubits, there exists no estimator which can
perform better than the proposed estimator on a neighborhood of
size n= /2 of an arbitrary state. In particular, it is asymptotically
Bayesian optimal for a large class of prior distributions.

We present a physical implementation of the optimal estimation strat-
egy based on continuous time measurements in a field that couples
with the qubits.

The crucial ingredient of the result is the concept of local asymptotic
normality (or LAN) for qubits. This means that, for large n, the
statistical model described by n identically prepared qubits is locally
equivalent to a model with only a classical Gaussian distribution and
a Gaussian state of a quantum harmonic oscillator.

The term ‘local’” refers to a shrinking neighborhood around a fixed
state pg. An essential result is that the neighborhood radius can be
chosen arbitrarily close to n='/%. This allows us to use a two steps
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procedure by which we first localize the state within a smaller neigh-
borhood of radius n=/2*¢, and then use LAN to perform optimal
estimation.

7.1 Introduction

State estimation is a central topic in quantum statistical inference [Holevo, 1982,
Helstrom, 1976, Barndorff-Nielsen et al., 2003, Hayashi, 2005b]. In broad terms
the problem can be formulated as follows: given a quantum system prepared in
an unknown state p, one would like to reconstruct the state by performing a
measurement M whose random result X will be used to build an estimator p(X)
of p. The quality of the measurement-estimator pair is given by the risk

Ry(M, p) = E (d(p(X), p)*) , (7.1)

where d is a distance on the space of states, for instance the fidelity distance
or the trace norm, and the expectation is taken with respect to the probability
distribution Pf)w of X, when the measured system is in state p. Since the risk
depends on the unknown state p, one considers a global figure of merit by either
averaging with respect to a prior distribution 7 (Bayesian setup)

Re(M.) = [ nldp)Ry(M. ). (7.2)
or by considering a maximum risk (pointwise or minimax setup)

Rmax(M, p) = sup Ry (M, p). (7.3)
P

An optimal procedure in either setup is one which achieves the minimum risk.

Typically, one measurement result does not provide enough information in order
to significantly narrow down on the true state p. Moreover, if the measurement
is “informative” then the state of the system after the measurement will contain
little or no information about the initial state [Janssens, 2006] and one needs to
repeat the preparation and measurement procedure in order to estimate the state
with the desired accuracy.

It is then natural to consider a framework in which we are given a number n
of identically prepared systems and look for estimators p,, which are optimal, or
become optimal in the limit of large n. This problem is the quantum analogue of
the classical statistical problem [van der Vaart, 1998] of estimating a parameter
0 from independent identically distributed random variables X;,..., X, with
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distribution Py, and some of the methods developed in this chapter are inspired
by the classical theory.

Various state estimation problems have been investigated in the literature and
the techniques may be quite different depending on a number of factors: the
dimension of the density matrix, the number of unknown parameters, the purity
of the states, and the complexity of measurements over which one optimizes. A
short discussion on these issues can be found in section 7.2.

In this chapter we give an asymptotically optimal measurement strategy for qubit
states that is based on the technique of local asymptotic normality introduced by
Gutad and Kahn [2006], Guta and Jencova [2007]. The technique is a quantum
generalisation of Le Cam’s [1986] classical statistical result, and builds on pre-
vious work of Hayashi and Matsumoto [2004]. We use an adaptive two stage
procedure involving continuous time measurements, which could in principle be
implemented in practice. The idea of adaptive estimation methods, which has
a long history in classical statistics, was introduced in the quantum set-up by
Barndorff-Nielsen and Gill, R. [2000], and was subsequently used by Gill and
Massar [2000], Hayashi [2002a], Hayashi and Matsumoto [2005]. The aim there
is similar: one wants to first localize the state and then to perform a suitably
tailored measurement which performs optimally around a given state. A different
adaptive technique was proposed independently by Nagaoka [2005] and further
developed by Fujiwara [2006].

Figure 7.1: After the first measurement stage the state p lies in a small ball
centered at py,.

In the first stage, the spin components o, o, and o, are measured separately on
a small portion n < n of the systems, and a rough estimator p,, is constructed.
By standard statistical arguments (see Lemma 7.2.1) we deduce that with high
probability, the true state p lies within a ball of radius slightly larger than n—1/2,
say n~1/2T¢ with € > 0, centered at p,. The purpose of the first stage is thus to
localize the state within a small neighborhood as illustrated in Figure 7.1 (up to
a unitary rotation) using the Bloch sphere representation of qubit states.
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This information is then used in the second stage, which is a joint measurement
on the remaining n — n systems. This second measurement is implemented phys-
ically by two consecutive couplings, each to a bosonic field. The qubits are first
coupled to the field via a spontaneous emission interaction and a continuous time
heterodyne detection measurement is performed in the field. This yields informa-
tion on the eigenvectors of p. Then the interaction is changed, and a continuous
time homodyne detection is performed in the field. This yields information on
the eigenvalues of p.

We prove that the second stage of the measurement is asymptotically optimal for
all states in a ball of radius n~ /2" around j,. Here 5 can be chosen to be bigger
that ¢ > 0 implying that the two stage procedure as a whole is asymptotically
optimal for any state as depicted in Figure 7.2.

Figure 7.2: The smaller domain is the localization region of the first step. The
second stage estimator is optimal for all states in the bigger domain.

The optimality of the second stage relies heavily on the principle of local asymp-
totic normality or LAN, see [van der Vaart, 1998], which we will briefly explain
below, and in particular on the fact that it holds in a ball of radius n—'/217
around p, rather than just n~'/2 as it was the case in Guta and Kahn’s 2006
article.

Let po be a fixed state. We parametrize the neighboring states as p,,/, 7, where
u = (ugz,uy,u,) € R? is a certain set of local parameters around pg. Then LAN
entails that the joint state p := pf;l R of n identical qubits converges for n — oo
to a Gaussian state of the form N" ® ¢, in a sense explained in Theorem 7.3.1.
By N" we denote a classical one-dimensional normal distribution centered at w..
The second term ¢" is a Gaussian state of a harmonic oscillator, i.e. a displaced
thermal equilibrium state with displacement proportional to (us,u,). We thus
have the convergence
pn > N% @ 0%,

to a much simpler family of classical — quantum states for which we know how
to optimally estimate the parameter u [Holevo, 1982, Yuen and Lax, M., 1973].
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The idea of approximating a sequence of statistical experiments by a Gaussian one
goes back to Wald [1943], and was subsequently developed by Le Cam [1986] who
coined the term local asymptotic normality. In quantum statistics the first ideas
in the direction of local asymptotic normality for d-dimensional states appeared
in a Japanese paper [Hayashi, 2003], as well as in Hayashi’s conferences and were
subsequently developed by Hayashi and Matsumoto [2004]. In Theorem 7.3.1 we
strengthen these results for the case of qubits, by proving a strong version of
LAN in the spirit of Le Cam’s pioneering work. We then exploit this result to
prove optimality of the second stage. A different approach to local asymptotic
normality has been developed by Gutd and Jencova [2007] to which we refer for
a more general exposition on the theory of quantum statistical models. A short
discussion on the relation between the two approaches is given in the remark
following Theorem 7.3.1.

From the physics perspective, our results put on a more rigorous basis the treat-
ment of collective states of many identical spins, the keyword here being coherent
spin states [Holtz and Hanus, 1974]. Indeed, it has been known since Dyson [1956]
that n spin—% particles prepared in the spin up state | T)®™ behave asymptotically
as the ground state of a quantum oscillator, when considering the fluctuations of
properly normalized total spin components in the directions orthogonal to z. We
extend this to spin directions making an “angle” of order n~1/2+7 with the z axis,
as illustrated in Figure 7.3, as well as to mixed states. We believe that a similar
approach can be followed in the case of spin squeezed states and continuous time
measurements with feedback control [Geremia et al., 2004].

Figure 7.3: Total spin representation of the state of n > 1 spins: the quantum
fluctuations of the x and y spin directions coincide with those of a coherent state
of a harmonic oscillator.

In Theorem 7.4.1 we prove a dynamical version of LAN. The trajectory in time
of the joint state of the qubits together with the field converges for large n to the
corresponding trajectory of the joint state of the oscillator and field. In other
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words, time evolution preserves local asymptotic normality. This insures that for
large n the state of the qubits “leaks” into a Gaussian state of the field, providing
a concrete implementation of the convergence to the limit Gaussian experiment.

The punch line of the chapter is Theorem 7.6.1 which says that the estimator p,
is optimal in local minimax sense, which is the modern statistical formulation of
optimality in the frequentist setup [van der Vaart, 1998]. Also, its asymptotic
risk is calculated explicitly.

The chapter is structured as follows: in section 7.2, we show that the first stage
of the measurement sufficiently localizes the state. In section 7.3, we prove that
LAN holds with radius of validity n~'/2%", and we bound its rate of conver-
gence. sections 7.4 and 7.5 are concerned with the second stage of the mea-
surement, i.e. with the coupling to the bosonic field and the continuous time
field-measurements. Finally, in section 7.6, asymptotic optimality of the estima-
tion scheme is proven.

The technical details of the proofs are relegated to the appendices in order to
give the reader a more direct access to the ideas and results.

7.2 State estimation

In this section we introduce the reader to a few general aspects of quantum state
estimation after which we concentrate on the qubit case.

State estimation is a generic name for a variety of results which may be classified
according to the dimension of the parameter space, the kind or family of states
to be estimated and the preferred estimation method. For an introduction to
quantum statistical inference we refer to the books by Helstrom [1976] and Holevo
[1982] and the more recent review paper by Barndorff-Nielsen et al. [2003]. The
collection [Hayashi, 2005b] is a good reference on quantum statistical problems,
with many important contributions by the Japanese school.

For the purpose of this chapter, any quantum state representing a particular
preparation of a quantum system, is described by a density matrix (positive
selfadjoint operator of trace one) on the Hilbert space H associated to the system.
The algebra of observables is B(H), and the expectation of an observable a €
B(H) with respect to the state p is Tr(pa). A measurement M with outcomes
in a measure space (X,Y) is completely determined by a o-additive collection
of positive selfadjoint operators M(A) on H, where A is an event in 3. This
collection is called a positive operator valued measure. The distribution of the
results X when the system is in state p is given by P,(A) = Tr(pM (A)).
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We are given n systems identically prepared in state p and we are allowed to
perform a measurement M, whose outcome is the estimator p, as discussed in
the Introduction.

The dimension of the density matrix may be finite, such as in the case of qubits or
d-levels atoms, or infinite as in the case of the state of a monochromatic beam of
light. In the finite or parametric case one expects that the risk converges to zero
as n~! and the optimal measurement-estimator sequence (M, p,) achieves the
best constant in front of the n~! factor. In the non-parametric case the rates of
convergence are in general slower that n~! because one has to simultaneously es-
timate an infinite number of matrix elements, each with rate n=!'. An important
example of such an estimation technique is that of quantum homodyne tomogra-
phy in quantum optics [Vogel and Risken, H., 1989]. This allows the estimation
with arbitrary precision [D’Ariano et al., 1995, Leonhardt et al., 1995, 1996] of
the whole density matrix of a monochromatic beam of light by repeatedly mea-
suring a sufficiently large number of identically prepared beams [Smithey et al.,
1993, Schiller et al., 1996, Zavatta et al., 2004]. Artiles et al. [2005], Butucea
et al. [2007] have shown how to formulate the problem of estimating infinite di-
mensional states without the need for choosing a cut-off in the dimension of the
density matrix, and how to construct optimal minimax estimators of the Wigner
function for a class of “smooth” states.

If we have some prior knowledge about the preparation procedure, we may encode
this by parametrizing the possible states as p = pg with § € © some unknown
parameter. The problem is then to estimate 6 optimally with respect to a distance
function on O.

Indeed, one of the main problems in the finite dimensional case is to find optimal
estimation procedures for a given family of states. It is known that if the state p
is pure or belongs to a one parameter family, then separate measurements achieve
the optimal rate of the class of joint measurements [Matsumoto, 2002]. However
for multi-dimensional families of mixed states this is no longer the case and joint
measurements perform strictly better than separate ones [Gill and Massar, 2000].

In the Bayesian setup, one optimizes R, (M,, p,) for some prior distribution
m. We refer to [Jones, 1994, Massar and Popescu, 1995, Latorre et al., 1998,
Fisher et al., 2000, Hannemann et al., 2002b, Bagan et al., 2002, Embacher and
Narnhofer, 2004, Bagan et al., 2005] for the pure state case, and to [Cirac et al.,
1999, Vidal et al., 1999, Mack et al., 2000, Keyl and Werner, 2001, Bagan et al.,
2004c, Zyczkowski and Sommers, 2005, Bagan et al., 2006] for the mixed state
case. The methods used here are based on group theory and can be applied only
to invariant prior distributions and certain distance functions. In particular, the
optimal covariant measurement in the case of completely unknown qubit states
was found by Bagan et al. [2006] and Hayashi and Matsumoto [2004], but it has
the drawback that it does not give any clue as to how it can be implemented in
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a real experiment.

In the pointwise approach [Hayashi, 2002a, Hayashi and Matsumoto, 2005, Gill
and Massar, 2000, Barndorff-Nielsen and Gill, R., 2000, Fujiwara and Nagaoka,
H., 1995, Matsumoto, 2002, Barndorff-Nielsen et al., 2003, Hayashi and Mat-
sumoto, 2004| one tries to minimize the risk for each unknown state p. As the
optimal measurement-estimator pair cannot depend on the state itself, one op-
timizes the maximum risk Ruyax(My, pn), (see (7.3)), or a local version of this
which will be defined shortly. The advantage of the pointwise approach is that
it can be applied to arbitrary families of states and a large class of loss functions
provided that they are locally quadratic in the chosen parameters. The underly-
ing philosophy is that as the number n of states is sufficiently large, the problem
ceases to be global and becomes a local one as the error in estimating the state
parameters is of the order n=1/2.

The Bayesian and pointwise approaches can be compared [Gill, 2005a], and in fact
for large n the prior distribution m of the Bayesian approach becomes increasingly
irrelevant and the optimal Bayesian estimator becomes asymptotically optimal
in the minimax sense and vice versa.

7.2.1 Qubit state estimation: the localization principle

Let us now pass to the quantum statistical model which will be the object of
our investigations. Let p € Ma(C) be an arbitrary density matrix describing the
state of a qubit. Given n identically prepared qubits with joint state p®", we
would like to optimally estimate p based on the result of a properly chosen joint
measurement M,,. For simplicity of the exposition we assume that the outcome of
the measurement is an estimator p,, € M2(C). In practice however, the result X
may belong to a complicated measure space (in our case the space of continuous
time paths) and the estimator is a function of the “raw” data p,, := p,(X). The
quality of the estimator at the state p is quantified by the risk

Rp(Mna ﬁn) = Ep(d(p7 ﬁn)2)a

where d is a distance between states. The above expectation is taken with re-
spect to the distribution P,(dz) := Tr(pM(dz)) of the measurement results,
where M (dx) represents the associated positive operator valued measure of the
measurement M. In our exposition d will be the trace norm

o1 = p2ll1 == Tr(|p1 — p2l),
but similar results can be obtained using the fidelity distance. The aim is to find
a sequence of measurements and estimators (M, p,) which is asymptotically
optimal in the local minimaz sense: for any given pg
lim sup sup nR, (M, prn) < limsup sup nR,(Np, pn),

n=o0 |lp—po|l1<n=t/2te n—00 ||p—pols <n—1/2+¢
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for any other sequence of measurement-estimator pairs (N, p,,). The factor n is
inserted because typically R,(M,, pr) is of the order 1/n and the optimization is
about obtaining the smallest constant factor possible. The inequality says that
one cannot find an estimator which performs better that p,, over a ball of size
n~1/2%¢ centered at po, even if one has the knowledge that the state p belongs
to that ball!

Here, and elsewhere in the chapter ¢ will appear in different contexts, as a generic
strictly positive number and will be chosen to be sufficiently small for each specific
use. At places where such notation may be confusing we will use additional
symbols to denote small constants.

As set forth in the Introduction, our measurement procedure consists of two steps.
The first one is to perform separate measurements of o, o, and o, on a fraction
n = n(n) of the systems. In this way we obtain a rough estimate p, of the
true state p which lies in a local neighborhood around p with high probability.
The second step uses the information obtained in the first step to perform a
measurement, which is optimal precisely for the states in this local neighborhood.
The second step ensures optimality and requires more sophisticated techniques
inspired by the theory of local asymptotic normality for qubit states [Guta and
Kahn, 2006]. We begin by showing that the first step amounts to the fact that,
without loss of generality, we may assume that the unknown state is in a local
neighborhood of a known state. This may serve also as an a posteriori justification
of the definition of local minimax optimality.

Lemma 7.2.1. Let M; denote the measurement of the o; spin component of a
qubit with i = xz,y,z. We perform each of the measurements M; separately on
n/3 identically prepared qubits and define

pn==(1+F0), if |F| <1,

N | =

where T = (T4, Ty, ) is the vector average of the measured components. If |F| > 1
then we define p, as the state which has the smallest trace distance to the right
hand side expression. Then for all € € 0,2], we have

P (||ﬁn - P||§ > 3n25‘1) < GQXP(_%fmkq), V.

Furthermore, for any 0 < k < €/2, if i = n'=", the contribution to the risk

E(||pn — plI3) brought by the event E = [|pn — plli > V3n~1/2¢] satisfies

E (|Ipn = pllf x5) < 24exp(—5n*") = o(1).

Proof. For each spin component o; we obtain i.i.d coin tosses X; with distribution
P(X; = +£1) = (1 £7;)/2 and average 7;.
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Hoeffding’s inequality [van der Vaart and Wellner, J.A., 1996] then states that
for all ¢ > 0, we have P(|X; — X|* > ¢) < 2exp(—37c). By using this inequality
three times with ¢ = n2¢~!, once for each component, we get

3
P (Z |7 — ri]? > 3n25_1> < 6exp(—3nn*") Vp,
1

which implies the statement for the norm distance since ||p, — p[|3 = >, |7 —74]?.
The bound on conditional risk follows from the previous bound and the fact that
o= pnllf < 4.

O

In the second step of the measurement procedure we rotate the remaining n —n
qubits such that after rotation the vector 7 is parallel to the z-axis. Afterwards,
we couple the systems to the field and perform certain measurements in the field
which will determine the final estimator p,. The details of this second step are
given in sections 7.4 and 7.5, but at this moment we can already prove that
the effect of errors in the the first stage of the measurement is asymptotically
negligible compared to the risk of the second estimator. Indeed by Lemma 7.2.1
we get that if 7 = n'~", then the probability that the first stage gives a “wrong”
estimator (one which lies outside the local neighborhood of the true state) is of
the order exp(—4n?~%) and so is the risk contribution. As the typical risk of
estimation is of the order 1/n, we see that the first step is practically “always”
placing the estimator in a neighborhood of order n~1/2%¢ of the true state p, as
shown in Figure 7.2. In the next section we will show that for such neighborhoods,
the state of the remaining n — n systems behaves asymptotically as a Gaussian
state. This will allow us to devise an optimal measurement scheme for qubits
based on the optimal measurement for Gaussian states.

7.3 Local asymptotic normality

The optimality of the second stage of the measurement relies on the concept of
local asymptotic normality [van der Vaart, 1998, Gutd and Kahn, 2006]. After a
short introduction, we will prove that LAN holds for the qubit case, with radius of
validity n=1/2%7 for all € [0,1/4). We will also show that its rate of convergence
is O(n~1/4+1%¢) for arbitrarily small e.
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7.3.1 Introduction to LAN and some definitions

Let pg be a fixed state, which by rotational symmetry can be chosen of the form

m=(412,) (7.4

for a given % < p < 1. We parametrize the neighboring states as p,, s, where
u = (ug,uy,u,) € R such that the first two components account for unitary
rotations around pg, while the third one describes the change in eigenvalues

v (P o (7.5)

with unitary U(v) = exp(i(vyo, + vyoy)). The “local parameter” u should
be thought of, as having a bounded range in R® or may even “grow slowly” as
[[ul| < n".

Then, for large n, the joint state p& := pff/” N of n identical qubits approaches
a Gaussian state of the form N" ® ¢" with the parameter u appearing solely in
the average of the two Gaussians. By N" we denote a classical one-dimensional
normal distribution centered at u, which relays information about the eigenvalues
of py/m- The second term ¢" is a Gaussian state of a harmonic oscillator
which is a displaced thermal equilibrium state with displacement proportional to
(g, uy). It contains information on the eigenvectors of py /5. We thus have the
convergence
pn ~ N" @ ¢",

to a much simpler family of classical - quantum states for which we know how
to optimally estimate the parameter u. The asymptotic splitting into a classical
estimation problem for eigenvalues and a quantum one for the eigenbasis has
been also noticed by Bagan et al. [2006] and by Hayashi and Matsumoto [2004],
the latter coming pretty close to our formulation of local asymptotic normality.

The precise meaning of the convergence is given in Theorem 7.3.1 below. In short,
there exist quantum channels T,, which map the states p?;}I o into N" ® ¢" with
vanishing error in trace norm distance, and uniformly over the local parameters
u. From the statistical point of view the convergence implies that a statistical
decision problem concerning the model p¥ can be mapped into a similar problem
for the model N" ® ¢" such that the optimal solution for the latter can be
translated into an asymptotically optimal solution for the former. In our case
the problem of estimating the state p turns into that of estimating the local
parameter u around the first stage estimator g, playing the role of pg. For the
family of displaced Gaussian states it is well known that the optimal estimation
of the displacement is achieved by the heterodyne detection [Holevo, 1982, Yuen
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and Lax, M., 1973], while for the classical part it sufficient to take the observation
as best estimator. Hence the second step will give an optimal estimator @ of u
and an optimal estimator of the initial state p,, :== pg, 7. The precise result is
formulated in Theorem 7.6.1

7.3.2 Convergence to the Gaussian model

We describe the state N"®¢" in more detail. N" is simply the classical Gaussian
distribution
NY = N(uza ,U“(l - :u))a (76)

with mean u, and variance p(1 — p).

The state ¢" is a density matrix on H = F(C), the representation space of the
harmonic oscillator. In general, for any Hilbert space b, the Fock space over b is
defined as

oo

F(h) =EPbhe. @b, (7.7)

n=0
with ®; denoting the symmetric tensor product. Thus F(C) is the simplest
example of a Fock space. Let

¢:=(1—p)>_ pFk) (K, (7.8)
k=0

be a thermal equilibrium state with |k) denoting the k-th energy level of the
oscillator and p = 1_7“ < 1. For every o € C define the displaced thermal state

¢(a) := D(a) ¢ D(-a),

where D(«) := exp(aa™ —aa) is the displacement operator, mapping the vacuum
vector |0) to the coherent vector

o) = exp(—a?/2) kZ:O Tk

Here a* and a are the creation and annihilation operators on F(C), satisfying
[a,a*] = 1. The family ¢" of states in which we are interested is given by

" = o(\/ 21 — la,), ucR3, (7.9)
with ay = —uy + iu,. Note that ¢" does not depend on u..

We claim that the “statistical information” contained in the joint state of n qubits
P = P (7.10)

is asymptotically identical to that contained in the couple (N“, ¢"). More pre-
cisely:
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Theorem 7.3.1. Let p2 be the family of states (7.5) on the Hilbert space ((C2)®n,
let N be the family (7.6) of Gaussian distributions, and let % be the family (7.9)
of displaced thermal equilibrium states of a quantum oscillator. Then for each n
there ezist quantum channels (trace preserving CP maps)

T, T((C*)®") — L'(R) @ T (F(C)),
Sn: L'(R) @ T(F(C)) — T((C*)®")

with T (H) the trace-class operators on H, such that, for any 0 < n < 1/4 and
any € > 0,

sup [N" @ ¢% =Ty, (py) |1 = O(n~/47+), (7.11)
Jlall<n7

sup [lph — Sy (NU ® ¢%) |1 = O(n=V/4F7+), (7.12)
lall<n7

Moreover, for each e > O there exists a function f(n) of order O(n='/4tnte)
such that the above convergence rates are bounded by f(n), with [ independent
of p° as long as |5 — p| > €.

Remark. Note that the equations (7.11) and (7.12) imply that the expressions
on the left side converge to zero as n — oo. Following the classical terminology
of Le Cam [1986], we will call this type of result strong convergence of quantum
statistical models (experiments). Another local asymptotic normality result has
been derived by Guta and Jencova [2007] based on a different concept of conver-
gence, which is an extension of the weak convergence of classical (commutative)
statistical experiments. In the classical set-up it is known that strong conver-
gence implies weak convergence for arbitrary statistical models, and the two are
equivalent for statistical models consisting of a finite number of distributions.

These two approaches to local asymptotic normality in quantum statistics are
based on completely different methods and the results are complementary in
the sense that the weak convergence of Gutd and Jencova [2007] holds for the
larger class of finite dimensional states while the strong convergence has more
direct consequences as it is shown in this chapter for the case of qubits. Both
results are part of a larger effort to develop a general theory of local asymptotic
normality in quantum statistics. Several extensions are in order: from qubits to
arbitrary finite dimensional systems (strong convergence), from finite dimensional
to continuous variables systems, from identical system to correlated ones, and
asymptotic normality in continuous time dynamical set-up.

Finally, let us note that the development of a general theory of convergence of
quantum statistical models will set a framework for dealing with other important
statistical decision problems such as quantum cloning [Werner, 1998] and quan-
tum amplification [Caves, 1982], which do not necessarily involve measurements.
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Remark. The construction of the channels T,,, .5, in the case of fixed eigenval-
ues (u, = 0) is given in Theorem 1.1 of Guta and Kahn [2006]. It is also shown
that a similar result holds uniformly over ||u]| < C for any fixed finite constant
C'. Guta and Jencova [2007] have shown that weak convergence also holds in the
general case, with unknown eigenvalues. A classical component then appears in
the limit statistical experiment. In the above result we extend the domain of
validity of these Theorems from “local” parameters ||u|| < C to “slowly growing”
local neighborhoods ||u|| < n” with n < 1/4. Although this may be seen as
merely a technical improvement, it is in fact essential in order to insure that the
result of the first step of the estimation will, with high probability, fall inside
a neighborhood |lul] < n" for which local asymptotic normality still holds (see
Figure 7.2).

Proof. Following [Guta and Kahn, 2006] we will first indicate how the channels
T,, are constructed. The technical details of the proof can be found in Appendix
7.A.

The space (C2)®n carries two unitary representations. The representation 7, of
SU(2) is given by m,(u) = u®™ for any u € SU(2), and the representation 7,, of
the symmetric group S(n) is given by the permutation of factors

Tn(T) 101 @ -+ @ VUp = Vrm1(1) @ - @ Vr—1(p), T € S(n).
As [m,(w), 7, (7)] = 0 for all uw € SU(2), 7 € S(n), we have the decomposition

n/2
)" = P Hon. (7.13)

§=0,1/2

The direct sum runs over all positive (half)-integers j up to n/2. For each fixed
j, Hj = C¥*1 is an irreducible representation U; of SU(2) with total angular
momentum J? = j(j + 1), and HJ, = C" is the irreducible representation of the
symmetric group S(n) with n; = (n/;—j) - (n/2fj_1). The density matrix p2
is invariant under permutations and can be decomposed as a mixture of “block”
density matrices
n/2 1
= P puuli)rf,® W (7.14)
j=0,1/2

The probability distribution p, u(j) is given by [Bagan et al., 2006]:

. n; n_g 4441 ;
i) =5 (=) pd T (=0T, (7.15)

with iy = g+ u,//n, pu = % We can rewrite p,, u(j) as

pn,u(j) = Bﬂ,#u(n/2 +j) X K(j,n,u,u), (716)
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where
n

B, (k) = <k>uk (l—y)n_k, k=0,....,n
is a binomial distribution, and the factor K (j,n, u, u) is given by

)7’L+( (j_]n \/—uz)+1)/(2uu_1)

K(j = (1—pit!
(j,m, pou) := (1 — pZ Y a—— TR Y7 :

for j, :=n(p—1/2).

Now K (j,n, p,u) = 1+0(n=/2%¢) on the relevant values of j, i.e. the ones in an
interval of order n!/2*¢ around j,, as long as iy is bounded away from 1/2, which
is automatically so for big n. As B, , (k) is the distribution of a sum of i.i.d.
Bernoulli random variables, we can now use standard local asymptotic normality
results [van der Vaart, 1998] to conclude that if j is distributed according to py u,
then the centered and rescaled variable

J
=== —/n(p—1/2),
= S V= 172)
converges in distribution to a normal N, after an additional randomization
has been performed. The latter is necessary in order to “smooth” the discrete
distribution into a distribution which is continuous with respect to the Lebesgue
measure, and will convergence to the Gaussian distribution in total variation
norm.

The measurement “which block”, corresponding to the decomposition (7.14), pro-
vides us with a result j and a posterior state p},,. The function g, = gn(J) (with
an additional randomization) is the classical part of the channel T;,. The ran-
domization consists of "smoothening” with a Gaussian kernel of mean g, (j) and

variance 1/(2y/n), i.e. with 7, ; := (n'/4/\/7) exp (—v/n(z — gn(j))?)-

Note that this measurement is not disturbing the state p, in the sense that the
average state after the measurement is the same as before.

The quantum part of T;, is the same as in [Guta and Kahn, 2006] and consists of
embedding each block state p7,, into the state space of the oscillator by means
of an isometry V; : H; — F(C),

Viiljsm) = j —my,

Where {17, > :m = —j,...,j} is the eigenbasis of the total spin component

=> oV , cf. equation (5.1) of [Gutd and Kahn, 2006]. Then the action of
the channel T, is

Ty @pnu Pjn®—'—>2pnu Tnj(g)%pjnv*
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The inverse channel S,, performs the inverse operation with respect to T),. First
the oscillator state is “cut-off” to the dimension of an irreducible representation
and then a block obtained in this way is placed into the decomposition (7.13)
(with an additional normalization from the remaining infinite dimensional block
which is negligible for the states in which we are interested).

The rest of the proof is given in Appendix 7.A.

7.4 Time evolution of the interacting system

In the previous section, we have investigated the asymptotic equivalence between
the states pjr and N"®¢" by means of the channel T,,. We now seek to implement
this in a physical situation. The N"-part will follow in section 7.5.2, the ¢"-part
will be treated in this section.

We couple the n qubits to a Bosonic field; this is the physical implementation of
LAN. Subsequently, we perform a measurement in the field which will provide
the information about the state of the qubits; this is the utilization of LAN in
order to solve the asymptotic state estimation problem.

In this section we will limit ourselves to analyzing the joint evolution of the qubits
and field. The measurement on the field is described in section 7.5.

7.4.1 Quantum stochastic differential equations

In the weak coupling limit [Gardiner and Zoller, 2004] the joint evolution of the
qubits and field can be described mathematically by quantum stochastic differ-
ential equations (QSDE) [Hudson and Parthasarathy, 1984]. The basic notions
here are the Fock space, the creation and annihilation operators and the quan-
tum stochastic differential equation of the unitary evolution. The Hilbert space
of the field is the Fock space F(L*(R)) as defined in (7.7). An important linearly
complete set in F(L?(R)) is that of the exponential vectors

@ A @%mn, f e IX(R), (7.17)
n—0 n:

with inner product (e(f),e(g)) = exp({f,g)). The normalized exponential states
|f) := e~ :)/2¢(f) are called coherent states. The vacuum vector is |Q) := e(0)
and we w1ll denote the corresponding density matrix |2)(Q2| by ®. The quantum
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noises are described by the creation and annihilation martingale operators A} :=
a*(X[0,q) and A; := a(x[o,q) respectively, where X[ is the indicator function
for [0,¢] and
a(f) : e(g) = (f,9)e(g)-

The increments dA; := a(x[o,++as) — a(Xx[0,g) and dA; play the role of non-
commuting integrators in quantum stochastic differential equations, in the same
way as the one can integrate against the Brownian motion in classical stochastic
calculus.

We now consider the joint unitary evolution for qubits and field defined by
the quantum stochastic differential equation [Hudson and Parthasarathy, 1984,
Bouten et al., 2004]:

dU,(t) = (an,dA; —a),dA; — %aiandt)Un(t),

where U, (t) is a unitary operator on (C?)®" @ F(L?(R)), and

1 n
ap = NoT Zcrsrk), crik) =1®- - -®(0g+i0y) /20 --®1, j, = (p—1/2)n.
" k=1

As we will see later, the “coupling factor” 1/1/7, of the order n='/2, is necessary
in order to obtain convergence to the unitary evolution of the quantum harmonic
oscillator and the field.

We remind the reader that the n-qubit space can be decomposed into irreducible
representations as in (7.13), and the interaction between the qubits and field
respects this decomposition

n/2

Un(t)= @ Uin(t) @1,
j=0,1/2
where 1 is the identity operator on the multiplicity space HJ , and
Ujn(t) : H; @ F(LX(R)) — H; ® F(L*(R)),
is the restricted cocycle

1
AU (t) = (;dA] — a}dA; = 5a5a;dt)Uin (), (7.18)

with a; acting on the basis |7, m) of H; as

ajlj,m) =i —m\/ (G +m+1)/24, |j,m+1),
ailj,m) = \j—m+1/j+m/2,|j,m—1).
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Remark. We point out that the lowering operator for L, acts as creator for our
cut-off oscillator since the highest vector |7, j) corresponds by V; to the vacuum
of the oscillator. This choice does not have any physical meaning but is only
related with our convention p > 1/2. Had we chosen p < 1/2, then the raising
operator on the qubits would correspond to creation operator on the oscillator.

By (7.14) the initial state p®™ decomposes in the same way as the unitary cocycle,
and thus the whole evolution decouples into separate “blocks” for each value
of j. We do not have explicit solutions to these equations but based on the
conclusions drawn from LAN we expect that as n — oo, the solutions will be
well approximated by similar ones for a coupling between an oscillator and the
field, at least for the states in which we are interested. As a warm up exercise we
will start with this simpler limit case where the states can be calculated explicitly.

7.4.2 Solving the QSDE for the oscillator

Let a* and a be the creation and annihilation operators of a quantum oscillator
acting on F(C). We couple the oscillator with the Bosonic field and the joint
unitary evolution is described by the family of unitary operators U(t) satisfying
the quantum stochastic differential equation

dU(t) = (adA} — a*dA; — %a*adt)U(t).

We choose the initial (un-normalized) state 1(0) := e(z) ® |€2), where z is any
complex number, and we shall find the explicit form of the vector state of the
system and field at time ¢: 1(t) := U(¢)(0).

We make the following ansatz: () = e(a:) ® e(ft), where fi(s) := f(s)x[0,4(5)
for some f € L*(R). For each 8 € C, g € L*(R), define I(t) := (e(8)®e(g), ¥ (1))-
We then have I(t) = exp(Ba(t) + (g, fi)), so that it satisfies

dI(t) = (BLa(t) +g(t)f(t) I(t)dt. (7.19)

We now calculate -4 I(t) with the help of the QSDE. Since Ace(f) = (x[0.4. f)e(f),
we have, for continuous g, dAe(g) = g(t)e(g)dt. However, since Age(fi) is con-
stant for s > t, we have dA.e(f;) = 0. Thus

dI(t) = (e(B) @ e(g), (adA} — a*dA; — ja*adt)y(t)) = (g(t)a(t) — 56a(t))I(t)dt .

(7.20)
Equating (7 19) with (7.20) for all ¢, ﬁ and continuous g, we find f(s) = a(s),
La(t) = —4a(t). Thus a(t) = a(0)e™2", fi(s) = a(0)x(o.q(s)e™=* with a(0) =
Z.

In conclusion $(t) = e(ze 2') ® e(ze_%SX[o)t](s)). For later use we denote the
normalized solution by 1, (t) 1= U(t)|z) ® |Q) = e~ 12" /2U (t)e(2) ® |Q2).
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7.4.3 QSDE for large spin

We consider now the unitary evolution for qubits and field:
1
dU,(t) = (andA; —a),dA; — §a7*1andt)Un(t).

It is no longer possible to obtain an explicit expression for the joint vector state
¥, (t) at time t. However we will show that for the states in which we are
interested, a satisfactory explicit approzimate solution exists.

The trick works for an arbitrary family of unitary solutions of a quantum stochas-
tic differential equation dU (t) = G4 U(t), and the general idea is the following: if
(1) is the true state ¥ (t) = U(t)y and £(t) is a vector describing an approximate
evolution (1(0) = £(0)) then with Uf, ;, :=U(t + dt)U(t)~" we get

Pt +dt) —E(t+dt) = Pt +dt) — Uy 4&(t) + Ufy 4£(1)
—=&(t) +&(t) — &t +at)
= Ufyar [(t) = €O+ [U(t+dt) = UB]U ()~ 'E(t)
+[§(t) — &(t + dt)]
= Ut+dt[ (t) f(t)]"’Gdtf() df(t)-

By taking norms we get

dll(t) = @ < [[Gar (1) — d&(@)]]- (7.21)

The idea is now to devise a family £(¢) such that the right side is as small as
possible.

We apply this technique block-wise, that is to each unitary Uj;,(t) acting on
H; ® F(L*(R)) (see equation (7.18)) for a “typical” j € J,, (see equation (7.39)).
By means of the isometry V; we can embed the space H; into the first 25 + 1
levels of the oscillator and for simplicity we will keep the same notions as before
for the operators acting on F(C). As initial states for the qubits we choose the
block states p7',,.

Theorem 7.4.1. Let p}, (t) = Ujn(t) [p ® O U7, (t) be the j-th block of the
state of qubits and field at time t. Let ¢U(t ) =U(t ) [p" @ @] U(t)* be the joint
state of the oscillator and field at time t. For any n < 1/6, for any € > 0,

sup  sup - sup[|pj, (1) — 6% (1)l = O(n=V/hme = 1/2H8ute) - (7.22)
JETs [l <nn

Proof. From the proof of the local asymptotic normality Theorem 7.3.1 we know
that the initial states of the two unitary evolutions are asymptotically close to
each other

sup sup ||pY, — ¢%|1 = O(n~ /4T, (7.23)
JE€In |[ul|<nn
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The proof consists of two estimation steps. In the first one, we will devise another
initial state p}, which is an approximation of ¢" and thus also of P

sup sup |, — 9%l = O(e™™). (7.24)
JETs [l <ny

In the second estimate we show that the evolved states pf, (t) and ¢"(t) are
asymptotically close to each other

sup sup sup |3, (8) — V(1)1 = O(n /e pm/EEIG  (7.25)
JET, ull<nn ¢

This estimate is important because, the two trajectories are driven by different
Hamiltonians, and in principle there is no reason why they should stay close to
each other.

From (7.23), (7.24) and (7.25), and using triangle inequality we get

sup sup sup||pl,, (t) — ¢ (¢)|[1 = O(n =1/ HH7Fe 7 /2H0Ee),
JETs ull<nn ¢

The following diagram illustrates the above estimates. The upper line concerns
the time evolution of the block state p}',, and the field. The lower line describes
the time evolution of the oscillator and the field. The estimates show that the
diagram is “asymptotically commutative” for large n.

SH;) 2% S @ F) S(H,; @ F)

| l l

S(F(C)) 222, sF)or) LY S(F(C) o F)

Uj,n(t)
—

For the rest of the proof, we refer to Appendix 7.B.
O

We have shown how the mathematical statement of LAN (the joint state of qubits
converges to a Gaussian state of a quantum oscillator plus a classical Gaussian
random variable) can in fact be physically implemented by coupling the spins to
the environment and letting them “leak” into the field. In the next section, we will
use this for the specific purpose of estimating u by performing a measurement in
the field.
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7.5 The second stage measurement

We now describe the second stage of our measurement procedure. Recall that
in the first stage a relatively small part 7 = n'=%,1 > x > 0, of the qubits is
measured and a rough estimator p,, is obtained. The purpose of this estimator
is to localize the state within a small neighborhood such that the machinery of
local asymptotic normality of Theorem 7.3.1 can be applied.

In Theorem 7.4.1 the local asymptotic normality was extended to the level of
time evolution of the qubits interacting with a bosonic field. We have proven
that at time ¢ the joint state of the qubits and field is

u . 1 g T |2 /252
PO = D panliigg [ dee I ()

le(ze™"/2);)(e(ze™"?);| @ le(ze ™"/ x(0, () {e(ze ™ *x (0,4 (w))]
+O(nn—l/4+e’ n3n—1/2—§—e)7

for ||ul| < n". The index j serves to remind the reader that the first exponential
states live in different copies F(C); of the oscillator space, corresponding to H,;
via the isometry V;. We will continue to identify H; with its image in F(C);.

We can now approximate the above state by its limit for large ¢, since
exp(—|z[*)(e(ze™"?);] 4, j) (e(ze ™ *x 0.4 (w)) | e(ze™/?)) = exp(—|z|*e™").

(7.26)

As we are always working with |Jul| < n”, the only relevant z are bounded by
n*9 for small 6. (The remainder of the Gaussian integral has an exponentially
decreasing norm, as discussed before). Thus, for large enough time (i.e. for
t > 1In(n)), we can write p(t) = p(c0) + O(n1=1/4+e p3n=1/2+€) with

n/2

pa(0) = B Pauli)li i), il®

§=0,1/2
1 g /T T 12 /252 —u Y
{27T82[Cdze oo vaR ol /2 le(ze /2)><€(Z6’ /2)|eXp(—|Z|2)],
(7.27)

Thus, the field is approximately in the state ¢" depending on (uy,u,), which
is carried by the mode (u — e~"/2x(g o) (u)) € L*(R) denoted for simplicity by
e~"/2. The atoms end up in a mixture of |7, ) states with coefficients p, u(j),
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which depend only on u,, and are well approximated by the Gaussian random
variable N*" as shown in Theorem 7.3.1. Moreover since there is no correlation
between atoms and field, the statistical problem decouples into one concerning
the estimation of the displacement in a family of Gaussian states ¢, and one for
estimating the center of N".

For the former problem, the optimal estimation procedure is known to be the
heterodyne measurement [Holevo, 1982, Yuen and Lax, M., 1973]; for the latter,
we perform a “which block” measurement. These measurements are described in
the next two subsections.

7.5.1 The heterodyne measurement

A heterodyne measurement is a “joint measurement” of the quadratures Q :=
(a+a*)/v/2 and P := —i(a — a*)/+/2 of a quantum harmonic oscillator which in
our case represents a mode of light. Since the two operators do not commute, the
price to pay is the addition of some “noise” which will allow for an approximate
measurement of both operators. The light beam passes through a beamsplitter
having a vacuum mode as the second input, and then one performs a homodyne
(quadrature) measurement on each of the two emerging beams. If Q, and P,
are the vacuum quadratures then we measure the following output quadratures
Q: = (Q+Q,)/v2 and P, := (P — P,)/V?2, with [Q;,P3] = 0. Since the
two input beams are independent, the distribution of v/2Q; is the convolution
between the distribution of Q and the distribution of Q,,, and similarly for v/2P5.

In our case we are interested in the mode e~"/2 which is in the state ¢", up
to a factor of order O(n"~1/4*¢ p31=1/2+€) " From (7.9) we obtain that the

distribution of Q is N(y/2(2u — 1)us, 1/(2(20 — 1))), that of P is
N(v/2(2p — 1)uy,1/(2(21—1))), and the joint distribution of the rescaled output

((Q+Qu)/v2eu—1), (P-P,)/V2Cu—1)),
is

N (ug, o/ (2(21 = 1)%)) x N(uy, 1/ (2(2p = 1)?)). (7.28)
We will denote by (i, 4,) the result of the heterodyne measurement rescaled by

the factor /2 — 1 such that with good approximation (i, a,) has the above
distribution and is an unbiased estimators of the parameters (g, uy).

Since we know in advance that the parameters (u,,u,) must be within the ra-
dius of validity of LAN we modify the estimators (@, a,) to account for this
information and obtain the final estimator (ug, Gy ):

7 if 1] < 3n7
_ { Us if |@;] < 3n (7.29)

YT 00 if | > 3nn
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Notice that if the true state p is in the radius of validity of LAN around p, then
[lul] <n, so that |4; —u;| < |@; —u;|. We shall use this when proving optimality
of the estimator.

7.5.2 Energy measurement

Having seen the ¢"-part, we now move to the N"-part of the equivalence between
puand N" @ ¢". This too is a coupling to a bosonic field, albeit a different
coupling. We also describe the measurement in the field which will provide the
information on the qubit states.

The final state of the previous measurement, restricted to the atoms alone (with-
out the field), is obtained by a partial trace of equation (7.27) (for large time)
over the field

n/2

0= 3" paal)li A g+ O Ak 128y
j=0,1/2

We will take this as the initial state of the second measurement, which will
determine j.

A direct coupling to the J? does not appear to be physically available, but a
coupling to the energy.J, is realizable. This suffices, because the above state
satisfies j = m (up to order O(n~1/4+¢ p31=1/24+¢))  We couple the atoms to a
new field (in the vacuum state |[2)) by means of the interaction

dUy = {J.(dA} — dA,) — L J2dt}U,

with J, = ﬁ > p_; 0= Since this QSDE is ‘essentially commutative’, i.e. driven
by a single classical noise By = (47 — A;)/4, the solution is easily seen to be

Uy = exp(- ® (Af — Ay).

Indeed, we have df (B;) = f'(B;)dB;+ % " (B¢)dt by the classical It6 rule, so that
dexp(iJ. ® By) = {iJ.dB, — 2 J2dt} exp(iJ. @ By) .

For an initial state |j,m) ® |Q), this evolution gives rise to the final state

Uilj,m)@Q = |j,m) @ exp((m/v/n)(Af — Ar))Q
l7,m) @ [(m/v/n)X[0,4)
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where |f) € F(L?(R)) denotes the normalized vector exp(—{f, f)/2)e(f). Ap-
plying this to the states |7, 7)(j, j| in 7% yields
n/2
Ui @ @US = D pauli)li )31 © 5/Vxwn) G/ vVaxo,al
j=0,1/2
+ O(nn_l/4+6, n377—1/2+e) )

The final state of the field results from a partial trace over the atoms; it is given
by
n/2

D a6/ VX000 G/ V) xp0,.] + O~ VA P17 1/20e) - (7.30)

§=0,1/2

We now perform a homodyne measurement on the field, which amounts to a
direct measurement of (A; 4+ Af)/2t. In the state [(j/\/nx[o,s), this yields the
value of j with certainty for large time (i.e. ¢ > y/n). Indeed, for this state,
E((A: + A})/2t) = j/«/n, whereas Var(A; + A})/2t) = 1/(4t). Thus the proba-
bility distribution p,, , is reproduced up to order O(n"~1/4+¢ p31=1/2+€) in L1
distance.

The following is a reminder from the proof of Theorem 7.3.1. If we start with j
distributed according to p,(j) and we smoothen ﬁ —v/n(p—1/2) with a Gaussian
kernel, then we obtain a random variable g,, which is continuously distributed on
R and converges in distribution to N (u., (1 — p)), the error term being of order
O(n"='/2) 4+ O(n=1/?). For j distributed according to the actual distribution,
as measured by the homodyne detection experiment, we can therefore state that
gn is distributed according to

N(uz, (1 — p)) + O(n1=1A4%e p3n=1/24e)y L O(n1=1/2) - O(n"1/2).  (7.31)

As in the case of (i, U, ), we take into account the range of validity of LAN by
defining the final estimator

PO if |gn| < 3n"
U = { 0 if [gn| > 3n7. (7.32)

Similarly, we note that if the true state p is in the radius of validity of LAN
around p, then ||ul| < n", so that |G, — u,| < |a, — u.|-

7.6 Asymptotic optimality of the estimator

In order to estimate the qubit state, we have proposed a strategy consisting of
the following steps. First, we use 7 := n' =" copies of the state p to get a rough
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estimate p,. Then we couple the remaining qubits with a field, and perform
a heterodyne measurement. Finally, we couple to a different field, followed by
homodyne measurement. From the measurement outcomes, we construct an

estimator p, 1= pg NS

This strategy is asymptotically optimal in a global sense: for any true state p
even if we knew beforehand that the true state p is in a small ball around a
known state pg, it would be impossible to devise an estimator that could do
better asymptotically, than our estimator p,, on a small ball around p. More
precisely:

Theorem 7.6.1. Let p, be the estimator defined above. For any qubit state
po different from the totally mized state, for any sequence of estimators o,, the
following local asymptotic minimaz result holds for any 0 < e < 1/12:

lim sup sup nR(p, pn) < limsup sup nR(p, on). (7.33)

=00 [lp—polli <n-1/2+e =00 [lp—polli<n-1/2+e

Let (1o, 1 — po) be the eigenvalues of po with po > 1/2. Then the local asymptotic
minimaz risk is

lim sup sSup nR(pu ﬁn) = Rminimax(MO) = 8/140 - 4/14% (734)

n—=o0 |lp—poll1 <n=t/2Fe

Proof. We write the risk as the sum of two terms corresponding to the events F
and E° that p, is inside or outside the ball of radius n='/?*¢ around p. Recall
that LAN is valid inside the ball. Thus

R(p, pn) = E(llp = pull? x5e) + E(llp — pull xE),

where the expectation comes from p,, being random. The distribution of the
result rho, of our measurement procedure applied to the true unknown state p
depends on p. We bound the first part by R; and the second part by Rs as shown
below.

Ry equals P(E°) times the maximum error, which is 4 since for any pair of density
matrices p and o, we have ||p — o? < 4. Thus

Ry = 4P(|lp = pnlh = 0~ 1/2%).

According to Lemma 7.2.1 this probability goes to zero exponentially fast, there-
fore the contribution brought by this term can be neglected.

We can now assume that p, is in the range of validity of local asymptotic nor-
mality and we can write p®" = p with u the local parameter around p,. We
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get the following inequalities for the second term in the risk.

E(llo — pnll x) < E [In = ol | 17 — ol < n=2/2% |

< sw E[lpn—pl | 50 =po]
llp—poll<n=1/2+e
< sup ]Ep‘rj(oo) {Hﬁn - pH% ‘ Pn = p0:|
llp—poll<n=t/2+e
+ sup o5 (t) = pr(00)|l sup ||pn — pllF
llp=poll<n=1/2+e un
< s B [0l | fn= o]

llo=poll<n=1/2+e

+en” T sup - lpn(t) — phi(oo)lh = Ra. (7.35)
llo=poll<n=1/2+e

The first two inequalities are trivial. In the third inequality we change the ex-
pectation from the one with respect to the probability distribution of our data
P u(s) to the probability distribution Pju(s). In doing so, an additional term
Pou(ty — Pou(ocy|l1 @appears which is bounded from above by ||p};(t) — p(00)]|1.
In the last inequality we can bound ||, — p||3 by en™ 1727 for some constant c.
Indeed from definitions (7.29) and (7.32) we know that ||p, — pol1 < ¢/n=1/2+n
and additionally we are under the assumption ||p — po|1 < n~Y/?*¢ with € < .

For the following, recall that all our LAN estimates are valid uniformly around
any state p® = p as long as u—1/2 > €3 > 0. As we are working with p different
from the totally mixed state and ||p— p|| < n~'/?*¢, we know that for big enough
n, fi —1/2 > €5 for any possible p. We can then apply the uniform results of the
previous sections.

The second term in Ry is O(n=5/4%31+9 =3/245149) where § > 0 can be chosen
arbitrarily small. Indeed in the end of section 7.4 we have proven that after time
t > Inn, the following holds: |p2(t) — p2(00)||1 = O(n~1/4Fn+d p=1/2+3n+d),
The contribution to nR(p, p,) brought by this term will not count in the limit,
as long as 7 and € are chose such that 1/12 > n > e.

We now deal with the first term in Ro. We write p in local parametrization
around po = p as py, /5. We have

16 = plIT = llPu) v = Panyvalll
(uy — az)2 + (24 — 1)2((u1 - aw)2 + (uy — ay)2)
n
+O([u — 0, *n=%2). (7.36)

=4

The remainder term O(|lu — 1,||?n=3/2) is negligible. It is O(n*"~3/2) which
does not contribute to nR(p, p,) for n < 1/6. This is because on the one hand
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we have asked for ||, — p|| < n~'/2%¢, and on the other hand, we have bounded
our estimator , by using (7.29) and (7.32).

We now evaluate Eju () [d(u, 0,)?] with the notation
d(u,v)? =4 [(uz — v2)% + (20 — 1)%((uz — v2) + (uy — vy)?)] - (7.37)

Note that the risk of @, is smaller than that of @, (see discussion below (7.29)
and (7.32)). Under the law P u(o) the estimator @1, has a Gaussian distribution
as shown in (7.28) and (7.31) with fixed and known variance and unknown expec-
tation. In statistics this type of model is known as a Gaussian shift experiment
[van der Vaart, 1998]. Using (7.28) and (7.31), we get Eju (o) [(uz — @i2)?] <
p(1 — p) and Eju ooy [(us — 64)?] < p/(2(2p — 1)2) for @ = ,y. Substituting
these bounds in (7.36), we obtain (7.34).

We will now show that the sequence p,, is optimal in the local minimax sense:
for any pg and any other sequence of estimators g,, we have

Rg = limsup sup nR(p, on) > Spo — 4pd.

n=00 |lp—poll1<n—1/2te

We will first prove that the right hand side is the minimax risk Rpminimax(ft0) for
the family of states N" @ ¢" which is the limit of the local families p} of qubit
states centered around py. We then extend the result to our sequence of quantum
statistical models p}.

The minimax optimality for N" ® ¢" can be checked separately for the classical
and the quantum part of the experiment. For the quantum part ¢, the optimal
measurement is known to be the heterodyne measurement. A proof of this fact
can be found in Lemma 7.4 of [Gutd and Kahn, 2006]. For the classical part,
which corresponds to the measurement of L., the optimal estimator is simply the
random variable X ~ N itself [van der Vaart, 1998].

We now end the proof by using the other direction of LAN. Suppose that there
exists a better sequence of estimators g,, such that

RO < Rminimax(,u()) = 8#0 — 4ILL(2J

We will show that this leads to an estimator @ of u for the family N" @ ¢
whose maximum risk is smaller than the minimax risk Rpinimax(f0), which is
impossible.

By means of a beamsplitter one can divide the state ¢" into two independent
Gaussian modes, using a thermal state ¢ := ¢° as the second input. If » and ¢ are
the reflectivity and respective transmitivity of the beamsplitter (r2+t2 = 1), then
the transmitted beam has state ¢}t = ¢™ and the reflected one ¢, ;= o™. By



182 Optimal estimation of qubit states with continuous time measurements

performing a heterodyne measurement on the latter, and observing the classical
part N", we can localize u within a big ball around the result u with high
probability, in the spirit of Lemma 7.2.1. More precisely, for any small € > 0 we
can find @ > 0 big enough such that the risk contribution from unlikely @’s is
small

E(|u—al*Xjju-g|>a) <&

Summarizing the localization step, we may assume that the parameter u satisfies
|[ul]| < @ with an € loss of risk, where a = a(r, ).

Now let n be large enough such that n® > a, then the parameter u falls within
the domain of convergence of the inverse map S, of Theorem 7.3.1 and by (7.12)
(with € replacing 1 and 0 replacing €) we have

”pflu _ S(Ntu ® (btu)”l < Cn_l/4+6+6,
for some constant C'.

Next we perform the measurement leading to the estimator g,, and equivalently
to an estimator w, of u. Without loss of risk we can implement the condition
|[ul]| < a into the estimator @, in a similar fashion as in (7.29) and (7.32). The
risk of this estimation procedure for ¢" is then bounded from above by the sum
of three terms: the risk nR,(4,)/t* coming from the qubit estimation, the error
contribution from the map S, which is a?n=1/4+<*+% and the localization risk
contribution €. This risk bound uses the same technique as the third inequality
of (7.35). The second contribution can be made arbitrarily small by choosing n
large enough, for ¢ < 1/4. From our assumption we have Ry < Riinimaz(140)
and we can choose t close to one such that Ro/t? < Ruyinimaz(it0) and further
choose € such that Ro/t? + € < Ruinimaz(10)-

In conclusion, we get that the risk for estimating u is asymptotically smaller that
the risk of the heterodyne measurement combined with observing the classical
part which is known to be minimax [Gutd and Kahn, 2006]. Hence no such
sequence g,, exists, and p,, is optimal.

O

Remark. In Theorem 7.33, we have used the risk function R(p, p) = E(d?(p, p)),
with d the Lq-distance d(p, p) = ||p—pl||1. However, the obtained results can easily
be adapted to any distance measure d?(pg, pu) which is locally quadratic in i—u,
ie.

Plpapa) = S Yapltta — a)(ug — ig) + Oflu — ).

a,f=z,y,z

For instance, one may choose d?(p, p) = 1 — F%(p, p) with the fidelity F(p, p) :=
Tr(+/v/ppv/p). For non-pure states, this is easily seen to be locally quadratic
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with
(2[&0 - 1)2 0 0
y= 0 (2p0 — 1)2 0
1
0 0 T—(2po—1)2

For the corresponding risk function Rr(p, pn) := E(1 — F?(p, pn)), this yields

limsup  sup  nRlp,pn) = o+ 1/4, (7.38)
n—=00 |lp—poll1<n—1/2+e
with the same asymptotically optimal p. The asymptotic rate Rp ~ % was

found earlier by Bagan et al. [2006], using different methods.

7.7 Conclusions

In this chapter, we have shown two properties of quantum local asymptotic nor-
mality (LAN) for qubits. First of all, we have seen that its radius of validity is
arbitrarily close to n~/4 rather than n='/2. And secondly, we have seen how
LAN can be implemented physically, in a quantum optical setup.

We use these properties to construct an asymptotically optimal estimator p,
of the qubit state p, provided that we are given n identical copies of p. Com-
pared with other optimal estimation methods [Bagan et al., 2006, Hayashi and
Matsumoto, 2004], our measurement technique makes a significant step in the
direction of an experimental implementation.

The construction and optimality of p,, are shown in three steps.

I In the preliminary stage, we perform measurements of o,, o, and o, on a
fraction 7 = n'~" of the n atoms. As shown in section 7.2, this yields a
rough estimate p,, which lies within a distance n~1/2+€ of the true state p
with high probability.

IT In section 7.3, it is shown that local asymptotic normality holds within a ball
of radius n~'/2*" around p (n > €). This means that locally, for n — oo,
all statistical problems concerning the n identically prepared qubits are
equivalent to statistical problems concerning a Gaussian distribution N
and its quantum analogue, a displaced thermal state ¢" of the harmonic
oscillator.

Together, I and IT imply that the principle of LAN has been extended to a global
setting. It can now be used for a wide range of asymptotic statistical problems,
including the global problem of state estimation. Note that this hinges on the
rather subtle extension of the range of validity of LAN to neighborhoods of radius
larger than n=1/2.
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III LAN provides an abstract equivalence between the n-qubit states p§7 A
on the one hand, and on the other hand the Gaussian states N" ® ¢". In
sections 7.4 and 7.5 it is shown that this abstract equivalence can be im-
plemented physically by two consecutive couplings to the electromagnetic
field. For the particular problem of state estimation, homodyne and hetero-
dyne detection on the electromagnetic field then yield the data from which
the optimal estimator p,, is computed.

Finally, in section 7.6, it is shown that the estimator p,,, constructed above, is
optimal in a local minimax sense. Local here means that optimality holds in a
ball of radius slightly bigger than n~'/? around any state py except the tracial
state. That is, even if we had known beforehand that the true state lies within
this ball around pg, we would not have been able to construct a better estimator
than p,,, which is of course independent of pg.

For this asymptotically optimal estimator, we have shown that the risk R con-

2
verges to zero at rate R(p, pn) ~ w, with o > 1/2 an eigenvalue of p.
More precisely, we have
lim sup sup nR(p, pn) = 80 — 4ug-

n—=0o0 |lp—poll1 <n=—1/2+e

The risk is defined as R(p,p) = E(d?(p, p)), where we have chosen d(p, p) to be
the Li-distance ||p— p||1 := Tr(|p — p|). This seems to be a rather natural choice
because of its direct physical significance as the worst case difference between the
probabilities induced by p and p on a single event.

Even still, we emphasize that the same procedure can be applied to a wide range
of other risk functions. Due to the local nature of the estimator p, for large n,
its rate of convergence in a risk R is only sensitive to the lowest order Taylor
expansion of R in local parameters 1 — u. The procedure can therefore easily be
adapted to other risk functions, provided that the distance measure d?(pg, pu) is
locally quadratic in & — u.

Remark. The totally mixed state (u = 1/2) is a singular point in the param-
eter space, and Theorem 7.3.1 does not apply in this case. The effect of the
singularity is that the family of states (7.9) collapses to a single degenerate state
of infinite temperature. However this phenomenon is only due to our particu-
lar parametrisation, which was chosen for its convenience in describing the local
neighborhoods around arbitrary states, with the exception of the totally mixed
state. Had we chosen a different parametrisation, e.g. in terms of the Bloch vec-
tor, we would have found that local asymptotic normality holds for the totally
mixed state as well, but the limit experiment is different: it consists of a three
dimensional classical Gaussian shift, each independent component correspond-
ing to the local change in the Bloch vector along the three possible directions.
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Mathematically, the optimal measurement strategy in this case is just to observe
the classical variables. However this strategy cannot be implemented by coupling
with the field since this coupling becomes singular (see equation (7.18)).

These issues become more important for higher dimensional systems where the

eigenvalues may exhibit more complicated multiplicities, and will be dealt with
in that context.

7.A Appendix: Proof of Theorem 7.3.1

Here we give the technical details of the proof of local asymptotic normality with
“slowly growing” local neighborhoods ||u|| < n", with n < 1/4. We start with the
map 1,.

7.A.1 Proof of Theorem 7.3.1; the map T,

Let us define, for 0 < ¢ < (1/4 —n) the interval
To={j+ (w=1/2n—nl2 <j<(u-1/2m+nt/2}. (739)
Notice that j € J, satisfies 25 > ean for all u — 1/2 > €2 and n big enough,
independently of pu.
Then J,, contains the relevant values of j, uniformly for u —1/2 > e5:
lim pou(Jn) =1 O(n=1/2+9), (7.40)

This is a consequence of Hoeffding’s inequality applied to the binomial distribu-
tion, and recalling that p, w(j) = B(n/2 + j)(1 + O(n=1/2%9)) for j € J,.

We upper-bound ||T5,(pk) — N* @ ¢ by the sum

3 Ph [N = D pauli)ng|| + sup [Vipl, V; — ¢ [1.(741)
2T €T L e

The first two terms are “classical” and converge to zero uniformly over |jul| < n":
for the first term, this is (7.40), while the second term converges uniformly on
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pw—1/2 > ey at rate n""'/2 [Gutd and Kahn, 2008]. The third term can be
analyzed as in Proposition 5.1 of [Gutd and Kahn, 2006]:

[Vieh Vi =6, < llony = Vie Vil + 19" — B¢"Pill,. (742

where P; := V;V;" is the projection onto the image of V;. We will show that
both terms on the right side go to zero uniformly at rate n~%/4+"+¢ over j € 7,
and ||u/| < n". The trick is to note that displaced thermal equilibrium states are
Gaussian mixtures of coherent states

1 2 2
o= [ I (1) o) (7.43)

where s% := (1 — p)/(4p — 2).

The second term on the left side of (7.42) is bounded from above by

1 lz— T |2 /252
271'32/6 2= VE=Taul*/25% |53 (2] — P;|2) (2| Py ||, %2,

which after some simple computations can be reduced (up to a constant) to

/ eI P + /20— Tow) | (7.44)

We now split the integral. The first part is integrating over |z| > n"*% with
0 <0 < 1/4 —n/2. The integral is dominated by the Gaussian and its value

is O(e‘"2(n+6)/(252)). The other part is bounded by the supremum over |z| <
20"t (as |[uf| < n”) of [|P;|z)]|. Now [|[P}-|z)|| < |7 /7T = O(e (/271729
uniformly on j € 7, for any u — 1/2 > €5 since then 25 > ean.

The same type of estimates apply to the first term

<
1

u
lon; = Vie Vil|, = HAd [Uj <ﬁ)} (P9;) = Vi eV,

19,5 = Vi Vi, + HAd |:Uj (%ﬂ (VFgoV;) = Ve Vy|| . (7.45)

1

The first term on the right side does not depend on u. From the proof of Lemma
5.4 of [Gutd and Kahn, 2006], we know that

O _ vVl < ﬂ 2j+1
||Pn,j j¢ J||1f 1— p2itl +p

with p = (1 — pu)/pu. Now the left side is of the order p**! which converges
exponentially fast to zero uniformly on p— 1/2 > €3 and j € 7.
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The second term of (7.45) can be bounded again by a Gaussian integral

1

V2ms?

/ e A, 2, )| d 2 (7.46)
where the operator A(u,z,j) is given by

A(u,z,j) = Ad [U; (u/v/n)] (V}'|2)(2|V;) =V} [24/20 — lau) (z+/20 — 1au| V.

Again, we split the integral along ||z| > n"*°. The outer part converges to zero
faster than any power of n, as we have already seen. The inner integral, on the
other hand, can be bounded uniformly over ||u|]| < n", u—1/2 > ¢y and j € J,
by the supremum of ||A(u,z,7)||1 over |z| < 2n"0, u—1/2 > €, j € J, and
[ul| < n".

Let z € R? be such that oz = z/,/2p — 1, and denote 1 (n, j, v) = V;U;(v/v/n)|j, 3)-
Then, up to a /2 factor, ||A(u,z,5)|: is bounded from above by the

Hw(najvi) - |Z>H +

|0 ju+2) — |2+ V20— Taw)

u Z .. u+z
o (7)o (v -o (7wl
This is obtained by adding and subtracting |1 (n, j,2)){(¢(n, j,2)| and | (n, j,u+

2))(¢(n, j,u + 2)| and using the fact that ||[¥)(¥| — [6)(¢lllh = V2| — ¢| for

normalized vectors 1, ¢.

The two first terms are similar, we want to dominate them uniformly: we replace
u+ z by z with |z| < 2n"*%. We then write:

[4(n, j, 2 ZI k[¢(n, j,2)) — (k|z)|?

—

r—

< D k(.. 2)) — (k|2 + 22 (I(Ele(n, 4, 2))|* + [(k|z)|*) (7.48)

=0 k=r

=

If z = |z|e? then we have [Hayashi and Matsumoto, 2004]

(kl(n,j,2)) = \/@(sin(ﬂvﬁ)eie)k(Cos(|Z|\/5))2j_k,

~Dlzl2\ (eff|z ——\k
(klz) = exp (_(Zu 21)| | )( | |¢\/%—1) |
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In (7.48) we choose r = n?"*¢ with €3 satisfying the conditions 25 + 29 + € <
2n+e3+e€<1/2 and n+ ez < 1/4. Then the tail sums are of the order

[e'e) 2n+e3
2 |Z|2T (Qn(n+§))2n _ 2n+e:
,;, |(k|z)|* < i < e o (exp(—n?1tes)) |

oo

J 2\ * ] Z2r
S g an < 3 () g <l = o (eplontt).

For the finite sums we use the following estimates which are uniform over all
lz| <200 k<71, jE Tn:

<2].€]) _ ((2,“ ?/;_)!n)k/2 (1 + O(n—l/Q—Q—e+2n+Eg))7

(sin(|z|/vn))¥ = (jz|/v/n)*(1 + O(nrtest20-1y),

fostal N+ = exp (B LY (14 onvaesan),

where we have used on the last line that (1+2/n)" = exp(z)(1 4+ O(n~'/2x)) for
x <n'/?7¢ (cf. [Gutd and Kahn, 2008]). This is enough to show that the finite
sum converges uniformly to zero at rate O(n?7~1/2+<tes) (the worst if €3 is small

enough) and thus the first second terms in (7.47) as the square root of this, that
is O(nn—l/4+e/2+63/2)_

Notice that the errors terms depend on p only through j, and that 25 > en for
1 —1/2 > ey. Hence they are uniform in p.

We pass now to the third term of (7.47). By direct computation it can be shown
that if we consider two general elements exp(iX1) and exp(iXs3) of SU(2) with
X; selfadjoint elements of M (C?) then

exp(—i(X1 + XQ)) exp(in) exp(iXQ) exp([Xl, XQ]/2) =1+ O(X“XQXM),
(7.49)
where the O(-) contains only third order terms in X7, Xo. If X;, X, are in
the linear span of o, and o, then all third order monomials are such linear
combinations as well.

In particular we get that for z, u < ntes;

U <—i\/ﬁv) U <%) U (%) exp(i(uavy — uyvs)os /n)

1+ O(n—2+4n+463) O(n—3/2+3n+353)
[ O(n=3/2H3nt3esy 1 4 O(n—2+4ntdes )} : (7.50)

up) :
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Finally,using the fact that |4, j) is an eigenvector of L, the third term in (7.47)
can be written as

117,506, 31 = U; (B3, 5) (G, 31U; (B)7]|
and both states are pure, so it suffices to show that the scalar product converges

to to one uniformly. Using (7.50) and the expression of (j|U;(5)|j) |[Hayashi and
Matsumoto, 2004] we get, as j < n,

(G, 31U;(B)l7,5) = [U(B)11) =1+ O(n~1H4nties),

which implies that the third term in (7.47) is of order O(n~1T47+4¢) By choosing
e3 and e small enough, we obtain that all terms used in bounding (7.46) are
uniformly O(n=1/4+71%€) for any € > 0.

This ends the proof of convergence (7.11) from the n qubit state to the oscillator.

7.A.2 Proof of Theorem 7.3.1; the map 5,

The opposite direction (7.12) does not require much additional estimation, so
will only give an outline of the argument.

Given the state N" ® ¢", we would like to map it into p& or close to this state,
by means of a completely positive map S,.

Let X be the classical random variable with probability distribution N". With
X we generate a random j € Z as follows

J(X) = [VnX +n(u—1/2)].

This choice is evident from the scaling properties of the probability distribution
p which we want to reconstruct. Let g be the probability distribution of j(X).
By classical local asymptotic normality results we have the convergence

sup g —pils = O(n"~'/?). (7.51)

llull<nn

Now, if the integer j is in the interval 7, then we prepare the n qubits in block
diagonal state with the only non-zero block corresponding to the j’th irreducible
representation of SU(2):

1
= (Vi eUV; + Tr(Pio™)1) ® —
J

The transformation ¢* — 7' is trace preserving and completely positive [Guta
and Kahn, 2006].
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If j ¢ J, then we may prepare the qubits in an arbitrary state which we also
denote by 7! ,. The total channel S,, then acts as follows

n/2
Sp i N ® % = 1t = @ Do i Th i
j=0,1/2

We estimate the error ||p2 — 7|1 as

o =l < llgn = pulls + 2P (G ¢ Tn) + sup 1705 = P gl
JI€In

The first term on the r.h.s. is O(n"~1/2) (see (7.51)), the second term is O(nc~1/2)
(see (7.40)). As for the third term, we use the triangle inequality to write, for
j e Jn?

I = Pnjlle < N7y = Vi Vil + [V Vi — o -

The first term is O(e~"(1/2=1=20)) "according to the discussion following equation
(7.44). The second term on the right is O(n~1/4t7%¢) according to equations
(7.45) through (7.50).

Summarizing, we have ||S,(N" ® ¢%) — p2||; = O(n~1/4+7+¢) which establishes
the proof in the inverse direction.

O

7.B Appendix: Proof of Theorem 7.4.1

First estimate. We build up the state p}', by taking linear combinations of
number states |m) to obtain an approximate coherent state |z), and finally mixing
such states with a Gaussian distribution to get an approximate displaced thermal
state. Consider the approximate coherent vector Py,|z), for some fixed z € C and
m =n", with v to be fixed later. Define the normalized vector

S SR
e = Tl 2, v ™ (752

We mix the above states to obtain

. 1
Pin = Jors2

—|z— —Tay|?/2s? n n
/ e lem VIR 257 (un g (g ) P,
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Recall that s* = (1 — p)(4p — 2), and

1 Lz T, [2/252
0" = == [ BT () )

From the definition of |¢} ;) we have
|m

oyl < v
15~ Il < V2 n2

(7.53)

which implies

|22 /25 Z + /2 la _p20nto)
|\pjn—¢“||1<—/ [ 2s (' == ul™ /\\/_) Pz = O(e—"""),

for any € > 0, for any v > 2(n+e¢). Indeed we can split the integral into two parts.
The integral over the domain |z| > n"*¢ is dominated by the Gaussian factor and

is O(e_"2(n+é>). The integral over the disk |z| < n"7¢ is bounded by supremum
of (7.53) since the Gaussian integrates to one, and is O(e~(7/2=7=€)"") In the

last step we use Stirling’s formula to obtain log (n"*‘ﬁ)"w/\/rﬂ!} ~(n+e—

~v/2)nY logn. Note that the estimate is uniform with respect to u — 1/2 > e for
any fixed e; > 0.

Second estimate. We now compare the evolved qubits state p}, (¢ ) and the
evolved oscillator state ¢*(t). Let [¢, ;(t)) = Ujn(t) |m) ®|Q) be the joint state
at time ¢ when the initial state of the system is |m> corresponding to [j,j —m)
in the L, basis notation. We choose the following approximation of |7, .(t))

[ (D) =D ealm,i)ai(t)lm — i) @ e /> X0, (w))i, (7.54)

i=0
where a;(t) = exp((—m +1)t/2), cp(m, i) := cp(m,i—1)4/ %1 /=L ith
¢n(m,0) := 1, and |f), := f®" as defined in (7.17). In particular for u—1/2 > €,
and j € J, we have ¢, (m,i) < \/(T)(l + Zn1/2e)i,

We apply now the estimate (7.21). By direct computations we get

m

A ;1) = —5 D enlm, Das(t)m — ilm — i) © e xjo 0t

=0

+ D ealmyi)aia(B)m — i) @ e X0, ())i1 ®s |X(1,14H155)

i=1

where
. i+1
[ 9= fofo 090 @ f

k=1
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From the quantum stochastic differential equation we get
Gar &5, (1) =
1 & _ L2 —m+i+1
~5 Z en(m, )y (t)(m — z)j—
i=0

2 Im — i) ® e ™2y 0 4 (w))idt

+ 3" ealm, i)ozi(t)\/(m - 1)2(]25(2_:11;’ i+1) Im—i—1)®

|€_1/2u><[o,t] (u))i @s X[t,4ar))- (7.56)
(m—1)(2j—m+i+1)
29n (i+1)

by ¢n(m,i+ 1) and thus we obtain the same sum as in the second term of the
left side of (7.55). Thus

Gdt|§gm,j(t)> - d|€2¢,j(t)> =

m—1 . . .
1 204, — —
— cn(m, )y (t)(m — 1) U 7) + m-
2 i=0 2jn

In the second term of the right side of (7.56) we can replace ¢, (m, )

1 _ ow
Im — i) ® e 2"y (g,(u)); dt.

Then using ¢, (m,i) < \/(T)(l—i— (2/ea)n=1/2+€)t we get that ||Gail)), ;(t) —
d&p, ;(t)|| is bounded from above by

1 ri (m) (1 +n"% 91— e ) ((2(jn — ) +m—i—1(m - i>ﬂ - dt.

2 i e(m=it 2

i=0
We have

(20n —g) +m —i—1)(m — i)

2 = O(m(n™ ">+ £ n"'m))

Inside the sum we recognize the binomial terms with the m’th term missing.
Thus the sum is

(1 + /e e_tn_1/2+€)m - ((1 —e N1+ n_1/2+6))m
< (1 + n—1/2+e)m(1 _ (1 _ e—t)m) < (1 + n—1/2+e)m me—t.

Then there exists a constant C' (independent of p if 4 — 1/2 > €3) such that
C 9 m/2
IGur€hy0) = s (O] < G221/ o) (14 Zm1/2+)
, : €

By integrating over ¢ we finally obtain

m/2
o _ 2 e
(1) — €8S ()] < OmP(n 2% - n) (1+gn 1/’”) . (157)
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Note that under the assumption v < 1/3 — 2¢/3, the right side converges to zero
at rate n37/2=1/2%¢ for all m < m = n?. Summarizing, the assumptions which
we have made so far over ~ are

2n+2e <y <1/3—2¢/3.

NOW consider the vector [ty ;) as defined in (7.52) and let us denote [y ;(t)) =
5n()dy ;) ® Q). Then based on (7.54) we choose the approximate solutlon

) =2 3 IS astlm — ) © e @

|
mOsz

Note that the vectors [¢7 ;(¢)) and [} ;(¢)) live in the “k-particle” subspace of
H; ® F(L*(R)) and thus are orthogonal to all vectors [¢;! ;(t)) and |&" ;(t)) with
p # k. By (7.57), the error is

vz () = &; @)l
| | 9 m 1/2
<C —|z[?/2 Z n1/2+e 12 (L 2, 1/24e
e Z +mn™ ) +62n
|z|2m
T
m:
D) /2 |Z|2ﬁz
<Cm3/2(n_1/2+6+ﬁ1n_1)<1+—n_1/2+6) + = (7.58)
€9 m:

We now compare the approximate solution &; ; (t) with the “limit” solution y(t)
for the oscillator coupled with the field as described in section 7.4.2. We can
write

Py(t) = e—|z\2/2 Z |Z| Z ( > —(m—i)t/2|m i) ® |e_1/2uX[0,t] (u));.
Then
1€25(t) = ¥a(®)]* =
o2l Z |Z| Ze—(m it |

2

(1—et —i—e_lz‘2 Z |z| .

o=y (7)
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Now

IN

s (2)
QIS (aE )

< Oy (m> mn /2t

IN

7

where C5 does not depend on p as long as p—1/2 > €5 (recall that the dependence
in g is hidden in j, = (2u — 1)n). Thus

IZI2’" |2 | "

m 2m
_ e —|zl? mi|z
€2 () —a(0)2 < Com /el 3 2l

m! < Con™ Ve

m=0

(7.59)

From (7.58) and (7.59) we get

2
I (8) — )] < 2 A | O (0= Y24 1 i) (1 w2

€2

2m 2m 7 1/2
| Il +{0271_1/2+5|Z|2+|z| ] ]

/2
—1/2+6)

m! m!
= E(m,n,z)
We now integrate the coherent states over the displacements z as we did in the

case of local asymptotic normality in order to obtain the thermal states in which
we are interested

. z—+\/2 —1au2 252 n n 2
P =y [ €Y (0 ) P

We define the evolved states

Pin(t) :=Ujn()p],Uin(t)",  and  ¢"(t) := U@)¢"U(t)",

Then

1
sup sup |72, (H—g (Ol < sup —— [ eI VETI 2 Bin g 2.
JETn ||ul|<nn ul|<nn Vs

Here again we cut the integral in two parts. On |z| > n/7¢ the Gaussian domi-

nTI+

nates, and this outer part is less than e="" . Now the inner part is dominated
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by Sup, <pn+e E(m,n,2). Now we want m to be not too big for (7.58) to be

small, on the other hand, we want z>™ /7! to go to zero. A choice which satisfies
the condition is v = 21 + 3e. By renaming € we then get

E(m,n,z) = O(n1~Y/4Fe p3n=1/2+¢)

for any small enough € > 0. Hence we obtain (7.22).






Chapter 8

Quantum local asymptotic
normality for d-dimensional
states

This chapter is derived from [Gutd and Kahn, 2008|.

Abstract: We extend strong quantum local asymptotic normality
to all finite-dimensional systems. Like in Chapter 6, we consider
states of the form pgb/" NG and require that pg has pairwise different
eigenvalues. We then build channels to and from a limit family. This
limit family is a product of a classical Gaussian shift experiment and
a quantum Gaussian shift experiment, and more precisely a product
of displaced thermal states where the temperature does not depend
on the parameter . Moreover, we allow the parameter space to grow,
and get polynomial rates of convergence.

The proof involves much technical work with Young tableaux, and
makes use of an intermediate result that is of interest per se: the
basis on a representation of SU(d) yielded by semistandard Young
tableaux is “almost” orthogonal.

8.1 Introduction

Quantum statistics is a young interdisciplinary field dealing with problems of
statistical inference arising in quantum mechanics. The first significant results
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in this area appeared in the seventies [Helstrom, 1969, Yuen and Lax, M., 1973,
Yuen et al., 1975a, Belavkin, 1976, Holevo, 1982] and tackled issues such as quan-
tum Cramér-Rao bounds for unbiased estimators, optimal estimation for families
of states possessing a group symmetry, estimation of Gaussian states, optimal
discrimination between non-commuting states. The more recent theoretical ad-
vances [Hayashi, 2005b, 2006, Paris and Rehagek, 2004, Barndorff-Nielsen et al.,
2003] are closely related to the rapid development of quantum information and
quantum engineering, and are often accompanied by practical implementations
[Armen et al., 2002, Hannemann et al., 2002a, Smith et al., 2006]. In quantum
optics a measurement method called quantum homodyne tomography [Vogel and
Risken, H., 1989, D’Ariano et al., 1995, Leonhardt et al., 1996] allows the estima-
tion with arbitrary precision [Artiles, L et al., 2005, Butucea et al., 2007] of the
state of a monochromatic beam of light, by repeatedly measuring a sufficiently
large number of identically prepared beams [Smithey et al., 1993, Schiller et al.,
1996, Zavatta et al., 2004].

An important topic in quantum statistics is that of optimal estimation of an
unknown state using the results of measurements performed on n identically pre-
pared quantum systems [Massar and Popescu, 1995, Cirac et al., 1999, Vidal
et al., 1999, Gill and Massar, 2000, Keyl and Werner, 2001, Bagan et al., 2002,
Hayashi and Matsumoto, 2004, 2005, Bagan et al., 2006, Gill, 2005a]. In the case
of two dimensional systems, or qubits, the problem has been solved explicitly
in the Bayesian set-up in the particular case of an invariant prior and figure of
merit (risk) based on the fidelity distance between states [Bagan et al., 2006].
However the method used there does not work for more general priors, loss func-
tions or higher dimensions. In the pointwise approach, Hayashi and Matsumoto
[2004] showed that the Holevo [1982] bound for the variance of locally unbiased
estimators can be achieved asymptotically, and provided a sequence of measure-
ments with this property. Their results, building on earlier work [Hayashi, 2003,
Hayashi|, indicate for the first time the emergence of a Gaussian limit in the
problem of optimal state estimation for qubits.

In [Gutd and Kahn, 2006, Guta et al., 2008] we performed a detailed analysis of
this phenomenon and showed that we deal with the quantum generalization of an
important concept in mathematical statistics called local asymptotic normality.
Wald [1950] introduced the idea of approximating a sequence of statistical models
by a family of Gaussian distributions, and Le Cam [1986] developed it fully. He
coined the term “local asymptotic normality”. Among the many applications we
mention its role in asymptotic optimality theory and in proving the asymptotic
normality of certain estimators such as the maximum likelihood estimator.

For qubits, local asymptotic normality means roughly the following [Gutd and
Kahn, 2006, Guta et al., 2008]: for large n the model described by n qubits,
identically prepared in an unknown state, is asymptotically equivalent to a model
consisting of pairs of classical Gaussian random variables and Gaussian states of a
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quantum harmonic oscillator, both having known variances but unknown means.
As in the classical case, this provides an asymptotically optimal measurement
strategy for qubit states which consists in mapping them into states of a harmonic
oscillator, followed by a heterodyne measurement of the displacement. A more
precise formulation can be found in section 8.2.

Section 8.3 gives the set-up in which we work. We formalize the notion of statis-
tical model, and recall what transformations are possible on those models. We
then explain what Le Cam distance is, and its relevance to statistics.

In Section 8.4, we describe briefly classical local asymptotic normality, both as
a reference point, and because quantum limits of experiments contain a classical
part, detailed in Example 8.4.1.

We speak about quantum Gaussian states and Fock spaces in Section 8.5. These
states appear in the limit experiment, that we describe at the end of the section.
We state there Theorem 8.5.1, the main result of the chapter, asserting that quan-
tum statistical experiments on n identically prepared states can be polynomially
approximated by experiments on quantum Gaussian states.

Since we need to parametrise states using action of SU(d), we recall basics of
group theory in Section 8.6. The notions are mainly used in the proof of the
main theorem. We also prove a possibly independently interesting result in
Lemma 8.6.9, establishing quasi-orthogonality of the basis given by semistan-
dard tableaux.

Sections 8.7 and 8.8 might be the heart of the chapter. In the former, we give the
precise form of the channels (transformations of statistical experiments) that we
use to prove Theorem 8.5.1. In the latter, we give the main ideas of the proof, and
split the main theorem in a series of technical lemmas. Proofs of those lemmas
are supplied in Section 8.9.

Notation: Throughout the chapter, we shall denote C constants that may
change even within the same line.

8.2 Local asymptotic normality for qubits

For a more precise formulation let us parametrise the qubit states by their Bloch
vectors p(7') = 2(1+ 7 0') where 0 = (0,,0,,0.) are the Pauli matrices. The
neighbourhood of the state py with 75 = (0,0,2x — 1) and 1/2 < p < 1, is a
three-dimensional ball parametrised by the deviation u € R of diagonal elements
and ¢ € C of the off-diagonal ones

pez(’uz—u 1_%:_”)7 HZ(U,C) (8.1)
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Consider now n identically prepared qubits whose individual states are in a neigh-
bourhood of py of size 1/v/n, so that their joint state is pj := [pg, /7] “ . We
would like to understand the structure of the family (statistical experiment)

Qn = {py : 16| < C}, (8.2)
as a whole, more precisely what is its asymptotic behaviour as n — oco?

For this we consider a quantum harmonic oscillator with position and momentum
operators Q and P acting on L?(R) and satisfying the commutation relations
[Q,P] =i1. We denote by {|n),n > 0} the eigenbasis of the number operator
and define the thermal equilibrium state at inverse temperature

GO =1 e ], = 1TE
k=0 H

which has centred Gaussian distributions for both Q and P with variance 1/(4p—
2) > 1/2. We define a family of displaced thermal equilibrium states

G(C,P) == D(¢/v2p = 1) G(B) D(¢/v/ 21— 1)7, (8.3)

where D(¢) := exp({a* — Ca) is the unitary displacement operator with ¢ € C.
Additionally we consider a classical Gaussian shift model consisting of the family
of normal distributions N (u, (1 — p)) with unknown mean w and fixed variance.
The classical-quantum statistical experiment to which we alluded above is

R:={¢o := N(u,u(l — p)) @ G(C,B) : [|0] < C} (8.4)

where the unknown parameters § = (u, () are the same as those of Q,,.

Theorem 8.2.1. Let Q,, be the quantum statistical experiment (8.2) and let R
be the classical-quantum experiment (8.4). Then for each n there exist quantum
channels (normalized completely positive maps)

T, : M(C") - L'R) & T(L(R)),
S+ LNR)@T(LA(R) — M (C*'),
with T(L?(R)) the trace-class operators, such that
lim  sup |[|g — Tn (pg) [l1 =0,

e lel<e

lim sup |pg — Sn(®e)]|[1 =0,
e e|<o

for an arbitrary constant C > 0.
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The local asymptotic normality theorem show that from a statistical point of
view the joint qubits states are asymptotically indistinguishable from the limit
Gaussian system. A consequence of this insight is that one can design optimal
state estimators, and even propose a realistic measurement set-up for this purpose
[Gutd et al., 2008]. The local nature of the result is not a limitation but rather
the correct normalization of the parameters with n — oco. Indeed as n grows
we have more information about the state and we can easily pin it down to a
region of size slightly larger that 1/4/n by performing rough measurements on a
small proportion of the systems. In a second stage we can use more sophisticated
techniques to estimate the state within the local neighbourhood of the first level
estimator, and it is here where we use results on local asymptotic normality.

8.3 Classical and quantum statistical experiments

Let X be a random variable with values in the measure space (X, ¥y ), and let us
assume that its probability distribution P belongs to some family {Fy : § € ©}
where the parameter 6 is unknown. Statistical inference deals with the question
of how to use the available data X in order to draw conclusions about some
properties of 6. We shall call the family

E:=(Py:0€0), (8.5)

a statistical experiment or model over (X,Xx) |Le Cam, 1986].

In quantum statistics the data is replaced by a quantum system prepared in a
state ¢ which belongs to a family {¢g : 6 € ©} of states over an algebra of
observables. In order to make a statistical inference about 6 one first has to
measure the system, and then apply statistical techniques to draw conclusions
from the data consisting of the measurement outcomes. An important difference
with the classical case is that the experimenter has the possibility to choose the
measurement set-up M, and each set-up will lead to a different classical model
{PG(M) : 0 € O}, where PQ(M) is the distribution of outcomes when performing
the measurement M on the system prepared in state ¢g.

The guiding idea of this chapter is to investigate the structure of the family of
quantum states
Q:=(¢o:0€0),

which will be called a quantum statistical experiment. We shall show that in
an important asymptotic set-up, namely that of a large number of identically
prepared systems, the joint state can be approximated by a multidimensional
quantum Gaussian state, for all possible preparations of the individual systems.
This will bring a drastic simplification in the problem of optimal estimation for
d-dimensional quantum systems, which can then be solved in the asymptotic
framework.
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8.3.1 Classical and quantum randomizations

Any statistical decision can be seen as data processing using a Markov kernel.
Suppose we are given a random variable X taking values in (X,Xy) and we
want to produce a “decision” y € ) based on the data X. The space ) may
be for example the parameter space © in the case of estimation, or just the set
{0,1} in the case of testing between two hypotheses. For every value z € X we
choose y randomly with probability distribution given by K, (dy). Assuming that
K : X x 3y — [0,1] is measurable with respect to « for all fixed A € ¥y, we can
regard K as a map from probability distributions over (X,Xx) to probability
distributions over (Y, 3y) with

K(P)(A) = / K. (A)P(dz), Ac Xy (8.6)

A statistic S : X — ) is a particular example of such a procedure, where K, is
simply the delta measure at S(x).

Besides statistical decisions, there is another important reason why one would
like to apply such treatment to the data, namely to summarize it in a more
convenient and informative way for future purposes as illustrated in the following
simple example. Consider n independent identically distributed random variables
Xi,..., X, with values in {0,1} and distribution Py := (1 —6,0) with 6 € © :=
(0,1). The associated statistical experiment is

E,=(Py :60€0).

It is easy to see that X, = % Z?:l X, is an unbiased estimator of 6 and moreover
it is a sufficient statistic for &,, i.e. the conditional distribution P}(:|X,, = %)
does not depend on 6! In other words the dependence on 6 of the total sample
(X1, Xo,...,X,) is completely captured by the statistic X,, which can be used
as such for any statistical decision problem concerning &,. If we denote by P}
the distribution of X,, then the experiment

En=(Pp:0€0),

is statistically equivalent to &,. To convince ourselves that X,, does contain the
same statistical information as (X1,...,X,), we show that we can obtain the
latter from the former by means of a randomized statistic. Indeed for every fixed
value T of X,, there exists a measurable function

fi : [07 1] - {07 1}n7
such that the distribution of fz(U) is PJ'(:|X,, = Z). In other words

A(f’_l(ajla'"7x’n«)) = Pgl(x177xn|X" :j)7

x
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where A is the Lebesgue measure on [0,1]. Then F(X,,U) = fx, (U), has
distribution Pg'. To summarize, statistics, randomized statistics and Markov
kernels, are ways to transform the available data for a specific purpose. The
Markov kernel K defined in (8.6) maps the experiment € of equation (8.5) into
the experiment

F:={Qp:0c 0},

over (V,Xy) with Qp = K(Fy). For mathematical convenience it is useful to
represent such transformations in terms of linear maps between linear spaces. A
positive linear map

T.:LYX,%x, P) — L' (Y, 2y,Q)

is called a stochastic operator or transition if ||T.(g)|l1 = l|lg|]x for every g €
LY (X). A positive linear map

T:L*°(),%y,Q) — L>®(X,Xx, P)

is called a Markov operator if T1 = 1, and if for any f, | 0 in L>()) we have
Tf, 0. A pair (T, T) as above is called a dual pair if

[ 1@ir = [ 1.(5gae.

forall f € L'(X) and g € L>(Y). It is a theorem that for any stochastic operator
T there exists a unique dual Markov operator T and vice versa.

What is the relation between Markov operators and Markov kernels? Roughly
speaking, any Markov kernel defines a Markov operator when we restrict to
families of dominated probability measures. Let us assume that all distribu-
tions Py of the experiment £ defined in (8.5) are absolutely continuous with
respect to a fixed probability distribution P, such that there exist densities
pg = dPy/dP : X — Ry. Such an experiment is called dominated and in
concrete situations this condition is usually satisfied. Let K,(dy) be a Markov
kernel (8.6) such that Qg = K(Py), then we define associated Markov operator

(T(f)(x) == [ f(y)ks(dy) and have
Qo =DPyoT, V6. (8.7)

When the probability distributions of two experiments are related to each other
as in (8.7), we say that F is a randomization of £. From the duality between
T and T, we obtain an equivalent characterization in terms of the stochastic
operator T, : LY(X, Yy, P) — LY(YV, 2y, Q) such that

T.(dPy/dP) = dQy/dQ, V0.

The concept of randomization is weaker than that of Markov kernel transforma-
tion, but under the additional condition that (), Xy) is locally compact space



204 Quantum local asymptotic normality for d-dimensional states

with countable base and Borel o-field, it can be shown that any randomization
can be implemented by a Markov kernel [Strasser, 1985].

What is the analogue of randomizations in the quantum case? In the language
of operator algebras L (X, Xy, P) is a commutative von Neumann algebra and
L'(X,Xx, P) is the space of (densities of) normal linear functionals on it. The
stochastic operator T} is the classical version of quantum channel, i.e. a com-
pletely positive normalized (trace-preserving) map

T, : A, — B,

where A, B, are the spaces of normal states on the von Neumann algebra A
and respectively B. Completely positive means that for any algebra C, the map
T, ®Ide, : Ay @ Cyx — By ®C, is positive. We give a list of classical examples in
Section 8.9.2. Any normal state ¢ on A has a density p with respect to the trace
such that ¢(A) = Tr(pA) for all A € A. The dual of T, is

T:8B— A,

which is a unital completely positive map and has the property that T'(¢)(b) =
o(T(D)) for allb € Band ¢ € A.. We interpret such quantum channels as possible
physical transformations from input to output states.

A particular class of channels is that of measurements. In this case the input is
the state of a quantum system described by an algebra A, and the output is a
probability distribution over the space of outcomes (X, Xx). Any measurement
is described by a positive linear map

M :L*(X, Xy, P) — A,

which is completely specified by the image of characteristic functions of mea-
surable sets, also called positive operator valued measure (POVM). This map
M : ¥x — A has following properties

1. Positive: M(A) > 0, VAeXy;

2. Countably additive: Y .o M(A4;) = M(U;A;), A;NA;j=0,i+#j;

3. Normalized: M (X) = 1.
The corresponding channel acting on states is a positive map M, : A, —
L'(X,X~, P) given by

M(9)(A) = ¢(M(A)) = Tr(pM(A)),
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where p is the density matrix of ¢. By applying the channel M to the quantum
statistical experiment consisting of the family of states Q = (¢g : § € ©) on A
we obtain a classical statistical experiment

Qur = {M(dy) : 0 € O},
over the outcomes space (X, X y).

As in the classical case, quantum channels can be seen as ways to compare quan-
tum experiments. The first steps in this direction were made by Petz [1986],
Petz and Jencova [2006] who developed the theory of quantum sufficiency deal-
ing with the problem of characterizing when a sub-algebra of observables contains
the same statistical information about a family of states, as the original algebra.
More generally, two experiments Q := (A, ¢p : 0 € ©) and R := (B,1y : 0 € O)
are called statistically equivalent if there exist channels T: A — Band S: 5 — A
such that

ool = ¢g and P9 oS =1y.

As consequence, for any measurement M : L>®(X, Xy, P) — A there exists
a measurement 7o M : L>®(X,Xy, P) — A such that the resulting classical
experiments coincide Qp; = Rroar. Thus for any statistical problem, and any
procedure concerning the experiment Q there exists a procedure for R with the
same risk (average cost), and vice versa.

8.3.2 The Le Cam distance and its statistical meaning

We have seen that two experiments are statistically equivalent when they can be
transformed into each other be means of quantum channels. When this cannot be
done exactly, we would like to have a measure of how close the two experiments
are when we allow any channel transformation. We define the deficiency of R
with respect to Q as

O(R, Q) =infsup gy — vy o T| (88)

where the infimum is taken over all channels 7' : A — B. The norm-one distance
between two states on A is defined as

[f1 = @2l := sup{|¢1(a) — ¢2(a)] : a € A, [|af| <1},

and for A = B(H) it is equal to Tr(|p1 — p2|), where p; is the density matrix
of the state ¢;. When §(R, Q) = 0 we say that R is more informative than Q.
Note that (R, Q) is not symmetric but satisfies a triangle inequality of the form
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d(R,Q)+06(Q,7) > §(R,T). By symmetrizing we obtain a proper distance over
the space of equivalence classes of experiments, called Le Cam’s [1986] distance

A(Q,R) :=max (§(Q,R), §(R, Q)).

What is the statistical meaning of the Le Cam distance? We shall show that if
d(R, Q) < e then for any statistical decision problem with loss function between
0 and 1, any measurement procedure for Q can be matched by a measurement
procedure for R whose risk will be at most € larger than the previous one.

A decision problem is specified by a decision space (X,Xx) and a loss function
Wy : X — [0,1] for each § € ©. We are given a quantum system prepared in
the state ¢y € A, with unknown parameter # € © and would like to perform
a measurement with outcomes in X such that the expected value of the loss
function is small. Let

M L=(X, Xy, P)— A,

be such a measurement, and PG(M) = ¢p o M, then the risk at 6 is

R(M,0) := /X W (z) P (da).

Since the point € is unknown one would like to obtain a small risk over all possible
realizations

Ripaz(M) = sup R(M, 0).
fee

The minimaz risk is then Ryinmaz := Infar Rpar(M). In the Bayesian frame-
work one considers a prior distribution 7 over © and then averages the risk with
respect to

Ro(M) = / R(M, 0)r(df).
o
The optimal risk in this case is R, := infy; R, (M).

Coming back to the experiments Q and R we shall compare their achievable
risks for a given decision problem as above. Consider the measurement N :
L>(X,Xx,P) — B given by N =T oM where T : A — B is the channel which
achieves the infimum in (8.8). Then

R(N,0) = / W (0, 2) P\ (dx) = 1o (T o M(Wp))
X
< [bg o T — ¢gl| + ¢ (M (W) < (R, Q) + R(M, ),
where we have used the fact that 0 < Wy < 1.

Lemma 8.3.1. For every achievable risk R(M,0) for Q there exists a measure-
ment N : L(X, Xy, P) — B for R such that

R(N,0) < R(M,0) + (R, Q).
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8.4 Local asymptotic normality in statistics

In this section we describe the notion of local asymptotic normality and its signif-
icance in statistics [Le Cam, 1986, Torgersen, 1991, Strasser, 1985, van der Vaart,
1998]. Suppose that we observe X1, ..., X,, with X; taking values in a measurable
space (X, X y) and assume that X; are independent, identically distributed with
distribution Py indexed by a parameter 6 belonging to an open subset © C R™.
The full sample is a single observation from the product Pj' of n copies of Py on
the sample space (Q",X™). Local asymptotic normality means that for large n
such statistical experiments can be approximated by Gaussian experiments after
a suitable reparametrisation. Let 0y be a fixed point and define a local parameter
u = /n(0 —6p) characterizing points in a small neighbourhood of 6y, and rewrite
Py as Pg; 4uyym SCEN A a distribution depending on the parameter u. Local
asymptotic normality means that for large n the experiments

(Pagtu/ym i u €R™) and (N(u, I, ") :u e R™),

have the same statistical properties when the models 0 — Py are sufficiently
‘smooth’. The point of this result is that while the original experiment may
be difficult to analyse, the limit one is a tractable Gaussian shift experiment in
which we observe a single sample from the normal distribution with unknown
mean u and fixed variance matrix Iy, . Here

[Lo,];; = Eo, [éeg,iéeg,]} )

is the Fisher information matrix at 6y, with é@)i := Jlog pg/00; the score function
and py is the density of Py with respect to some measure P.

There exist two formulations of the result depending on the notion of convergence
which one uses. In this chapter we only discuss the strong version based on
convergence with respect to the Le Cam distance, and we refer to van der Vaart
[1998] for another formulation using the so called weak convergence (convergence
in distribution of finite dimensional marginals of the likelihood ratio process),
and to Guta and Jencova [2007] for its generalization to quantum statistical
experiments.

Before formulating the theorem, we explain what sufficiently smooth means. The
least restrictive condition is that py is differentiable in quadratic mean, i.e. there
exists a measurable function ¢y : X — R such that as © — 0

. 2
[ et i

Note that ¢y must still be interpreted as score function since under some regularity
conditions we have 8p(19/2/80i = %(alogpg/aﬂi)pém.
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Theorem 8.4.1. Let & := (Py : 0 € ©) be a statistical experiment with © C RY
and Py < P such that the map 0 — py is differentiable in quadratic mean. Define
En =Py Wl SC), F=(N(u,Io) : |lul] <C),
with Iy the Fisher information matriz of £ at point Oy, and C a positive constant.

Then A(E,,F) — 0. In other words, there are sequences of randomizations T,
and S,, such that:

Tn(P‘;;-i-u/\/ﬁ

lim  sup ‘ )—N(u,IO)H ~0

0 lull<C

lim  sup HPGT(L)JFU/\/E - Sn(N(u,IO))H = 0.

0 ulj<C

Remark. Note that the statement of the Theorem is much more powerful than
the Central Limit Theorem which shows convergence to a Gaussian distribution at
a single point 6. Indeed local asymptotic normality states that the convergence
is wniform around the point 6y, and moreover the variance of the limit Gaussian is
fixed whereas the variance obtained from the Central Limit Theorem depends on
the point #. Additionally, the randomization transforming the data (X1,...,X,,)
into the Gaussian variable is the same for all § = 6y + u/y/n and thus does not
require a priori the knowledge of 6.

Remark. Local asymptotic normality is the basis of many important results
in asymptotic optimality theory and explains the asymptotic normality of cer-
tain estimators such as the maximum likelihood estimator. The quantum version
introduced in the next section plays a similar role for the case of quantum statis-
tical model. Guta et al. [2008] have derived an asymptotically optimal estimation
strategy from the qubit version of local asymptotic normality as presented below.

Example 8.4.1. Let P, = (11, . ., ta) be a probability distribution with unknown
parameters (g1, ..., [Hd—1) € Ri_l satisfying p; > 0 and >, ., i < 1. The
Fisher information at a point u is -

d—1 d—1 d—1
I(w)ig =Y e Gawpts - e )+ (1= )™ =i+ (1= )™
k=1 =1 =1

and its inverse is
V(w)ig == ()~ i = Gijpsa — pripsy. (8.9)
Thus the limit experiment in this case is F = (N(u,V(u)) : u € R |Jul| < C).

This experiment will appear again in Theorem 8.5.1, as the classical part of the
limit Gaussian shift experiment. Let us consider as loss function the square of
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the ¢2 distance ||p — v||3 = Y ,.4(1;i — vi)?, then in the limit experiment this
corresponds to -

d—1 d—1
W(u, 1}) = Z(ul — Ui)2 + (Z(’Uq — Ui))2.
i=1 i=1
The optimal estimator of w for this loss function is the data itself 4 := X ~

N(u,V(u)) and the risk is independent of u

d—1 d—1 d
R=>"mi(l—p)+ > pll—pm)— Y pipy =Y pm(l—p), (8.10)
i=1 i=1 1<iztj<d—1 i=1

where the last sum contains d terms and we used the fact that uqg = 1_Zi<d—l i«

8.5 Local asymptotic normality in quantum statis-
tics

In this section we shall present the main result of the chapter, that of local
asymptotic normality for d-dimensional quantum systems, which means roughly
the following: the sequence Q,, of experiments consisting of joint states p®™ of n
identical quantum systems prepared independently in the same state p, converges
to a limit experiment R which is described by a family of Gaussian states on an
algebra of canonical commutation relations. The latter can be decomposed into
a quantum part, on a Fock space, and a classical part, on a space of bounded
functions.

Consider a d-dimensional quantum system whose state is described by its density
matrix p € M(C?). The joint state of n identically prepared systems is given
by p®* € M(C%"). As our theory will be local in nature, we first parametrise
around one particular faithful state

00 = O H2 .. : with pig > pg > -+ > pg > 0, (8.11)
0o ... 0 jpq

which for technical reasons is chosen to have different eigenvalues. We write
0 = infi<ij<q phi — pit1, with pg41 = 0, for the separation between the eigenvalues.

The states in a neighbourhood of py are parametrised by 6 = (C, @). We shall use
a parametrisation that separates clearly the quantum and classical parts of the
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limit, and that we give in equation (8.39). Up to the second order in 0, it is of
the form:

pAu G - ¢
1,2 2 + U2 :
pp=| G2 MRt LO(I01). Gy € Caug € R
: - ’ Ci-1 2
Cld Cd—1,d Md — D p_q Uk

(8.12)

We shall investigate the properties of experiments
Q= (pg’/"w_Z :0€0,), (8.13)

consisting of n systems, each one prepared in a state py,, 5 situated in a local
neighbourhood of pg, as it was done in the classical case. The local parameter
6 = (C, @) belongs to a neighbourhood ©,, of the origin of C4=1/2x RI=1 which
is allowed to grow slowly with n in a way that will be made precise later. Before
stating the main result, we study the quantum Gaussian shift experiment that
will be the limit of the sequence Q,,.

8.5.1 Quantum Gaussian shift experiment

In this section we describe the limit experiment appearing in the local asymptotic
normality Theorem 8.5.1. It contains a classical part described by a (d — 1)-
dimensional Gaussian shift experiment similar to the one appearing in Theorem
8.4.1, and a quantum part described by a d(d —1)/2-dimensional quantum Gaus-
sian shift experiment which will be analysed in more detail below. The classical
part corresponds to changes in the diagonal parameters @ = (ug,...,uq_1) of
po. The quantum part is a product of Gaussian states of d(d — 1)/2 quantum
harmonic oscillators, the displacement of each state being related to one of the
off-diagonal elements (;; of pg. For more background material on Fock spaces,
Gaussian states and more generally the algebra of canonical commutation relation
(CCR), we refer to Petz [1990].

8.5.2 Symmetric Fock spaces

We turn back to our special orthonormal basis ,,. It turns L?*(R) into the
Hilbert space ¢?(N), or equivalently the Fock space F(C). We shall denote the
Um by |m), as is usual for the number basis of the Fock space.

We now consider the symmetric tensor product of two spaces H ®¢ H, defined as
the tensor product H ® H with the relations h; ® ho — ho ® h; = 0 for all vectors
hl and h2.
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Symmetric Fock spaces on C¢, denoted by F(C?), are the tensor product of d
Fock spaces on C, that is:
F(C) = F(C)¥.

We get naturally the product basis on F(C?) of the form |m) = |my, ma, ..., mg) =
|m1) ® |ma) ® -+ - ® |mg). Notice that {|m1,...mg) : > m; = n} is a basis of the
symmetric space (C%)®". So that F(C?) can be seen as the bounded operators
on @,,cn(C)®", hence the name “symmetric Fock space”.

We also get creation and annihilation operators a*(v) and a(v) associated to each
vector in |v) € CZ. Creation operators act on states through

a*(j0) o) = [v) @ |¢), |v) €T, |g) € F(CY),
and annihilation operators are the adjoint operators of creation operators.

We notice that creation annihilators take (C4)®+" to (C?)®<"*! and hence anni-
hilation operators to (C%)®:"~1. Notably, the vector |0) is an eigenvector with
eigenvalue 0 for all annihilation operators. This special vector is called the vac-
uum.

8.5.3 Fock spaces

A pure state of a quantum system is described by a (norm-one) vector on a
Hilbert space H. Suppose now we have n particles. The state of the compound
system is a vector in H®". However, bosons are undistinguishable. Hence f1 ® fo
is the same state as fo ® f1. We must symmetrise the space to get the right
description of the system.

So that we define the symmetric tensor product H @5 H as the quotient of H®?
by the relations f; ® fo — fo ® f1 for all fi and f2 in H. We define similarly the
n-symmetric space H®:". States of n undistinguishable particles are described
by vectors of H®:",

Let us now consider a system with a non-fixed number of undistinguishable par-
ticles. Then the corresponding Hilbert space is called the (symmetric) Fock space

defined as
F(H) = EPHen,
neN
where H®:® = C. Fock spaces naturally inherit their scalar product from .

Notice that the n-symmetric spaces are orthogonal.

The simplest Fock space is F(C), corresponding to the quantum harmonic os-
cillator. Then the number of “particles” is the excitation number, or number of
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photons for a state of laser light. Notice that Z(C?) can be seen as a collection
of d harmonic oscillators F(C)®4.

We shall usually denote states on Fock spaces by ¢, keeping the same notation
for the density operator and the corresponding linear form.

There are collections of operators that create or annihilate particles in state
f € H, taking n-symmetric spaces respectively to (n+ 1)- and (n — 1)-symmetric
spaces. Creation operators are the adjoint of the corresponding annihilation
operator. These creation operators a*(f) and annihilation operators a(f) act
through:

a* ()1 s Qs gn) =Vn—+1[fRs91 Qs+ Qs s

1 o _
a(f)(gl ®S®Sgn) = %Z<f|gZ>H 91 Qs Qs Gi Qs =+ s Gn,y
1=1

where n € N, g; € H for 1 <14 < n, and §; means that the term does not appear
in the product.

Since annihilation operators decrease the number of particles, a vector from
H®0 = C is an eigenvector with eigenvalue 0 for all annihilation operators.
Up to a multiplicative constant, this vector is unique, and is called the vacuum
0).

The other eigenvectors of the annihilation operator a(f) are of the form

> (CH®mvnl (8.14)

neN

for C € C. They have eigenvalue C || f ||§{ Once normalised, they are called
coherent states.

For convenience we now restrict to H = C?. For our future purposes, we shall
need a basis of the Fock space F(C?) known as the Fock basis. We build it
from a basis {f;}%_, of the underlying Hilbert space C?. Then our basis is given
by {®, f2™ : m; € N} where the symmetric product runs over all i. Since
this vector depends only on the set of m;, we shall denote it by |m), where
m = (mq,...,mg), and where we have used the ket notation of physicists. The
subset of |m)’s such that > m,; = n is a basis of the n-symmetric space.

8.5.4 Gaussian states

Through equation (8.14), we realize that coherent states are in one-to-one corre-
spondence with vectors of H. We shall denote them as “kets with parentheses on
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the right”, most often as |z) as they will appear as an integration variable. Their
formula in the Fock basis is:

|z) = exp(— |1z]* /2)

(8.15)

meNd i= 1

where z = > z;f; € H. Note that the vacuum can be viewed as both a Fock
state |0) and a coherent state |0).

We write (z| for the linear form associated to vector |z). So that the density
operator of a coherent state is |z)(z|. We can compute the value of this state on

an other coherent state |()((] seen as an observable, that is a bounded operator
on F(C%). We get
2)

This formula explains why coherent states are a special kind of Gaussian states.
In fact, we can take as a definition of Gaussian states all states ¢@¢ such that

-

m{uxﬂmwa}=<amwmﬁzem(— -2

69(2)al) = Coxp | 52— Q-0 (8.10)

where C' is a constant depending on 5 and Q). Here @ is a positive quadratic
form that can be thought of as the covariance matrix of the Gaussian state, and
the vector ¢ € C? may be viewed as the mean of the Gaussian state.

Heisenberg uncertainty relations impose that

(F1QLf) = 11 (alQlg) — llgll®) = o(f.9)%  f.g €T,

where o is the symplectic form coming from the scalar product on_)(Cd, that is
o(f,g9) = Im((f,g)). There exists a Gaussian state for all @ and ¢ under this
constraint.

We shall be especially interested in Gaussian states that are products of sym-
metric Gaussian mixtures of coherent states, that is displaced thermal states.
A thermal equilibrium state at inverse temperature [ is defined on F(C) using
Gibbs weights and an energy proportional to the number of particles, yielding;:

dp=(1—e")Y e |m)(m]. (8.17)

meN

Using the definition of coherent states (8.15) for the Fock space F(C), we get:
el —1

b5 = /Cexp (—(” — 1)[22) |2)(=]d-. (8.18)

™
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We now consider a collection of operators called Weyl operators, or displacement,
operators. We associate to ¢ € H the operator D({) with the properties:

D({)|0) = [C) (8.19)
D(G)D(&) = D(G + &) explio (G, G2)/2),

where o is the symplectic form coming from the scalar product on C?, that is

o(¢1,¢2) = Im({¢1,¢2)). Given that coherent states are a complete set of vectors,
this definition determines completely the D(C) We do not prove existence here.
Note that D*(C) = D(—().

We may let displacement operators act by intertwining on states, denoting this
superoperator by D¢, that is D¢(¢)(A) = ¢(D*({)AD(C)). From the definition of
displacement operators and definition (8.16), we compute the action on Gaussian

states: - . .o
DO (p@2) = e, (8.20)

We now understand why these operators are named displacement operators.
They shift the mean of the Gaussian states by (;.

We have now all the tools to give a nice description of the quantum part of the
states that appear in our limit experiment. We define them on .7-'((Cd d_l)/2)
F(C)2dd=1)/2 We use (i,5) for 1 <14 < j < d as labels for the different Fock
spaces. We have said we would use products of displaced thermal states. We use
inverse temperature linked to the eigenvalues u; of pg, the state around which
we parametrise, specifically 3; ; = In(p;/p;). Then our states are defined for
56 CHd=1)/2 g:

¢C = DC ® (bﬁqi,j = ® DCM ((bﬁi,j)ﬂ
1<i<j<d 1<i<j<d
where we have used notation (8.17) for thermal states.
Using the integral form (8.18), we get the following working formula:

& = Pi — uj/ exp | ST T H L 2
H T Cd(d—1)/2 P Z i |W|

i<j 1<j 7

z—l—g) (z—|—5‘dz

(8.21)

== . Mj / exp (_ - ;-uj |Zi,j|2> (i + Gig) (zig + Gyl d2ie
J

i<j

From this formula, we see that the covariance matrix @ as in equation (8.16) of
those states depends only the eigenvalues p; for 1 <1 < d.
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Our limit quantum experiment shall consist on those states on JF(Cd=1)/2)
together with the classical Gaussian family on L°°(R?~!) given in Example 8.4.1.
We then have states on F(C%4=1/2 @ [,°(R?~1) that we denote by

o? = %7 = ¢C @ N(i1, V), (8.22)

where the covariance matrix V), is given in equation (8.9). The limit experiment
is then
R={o?:0= (@) ectV2gRrI1}.

This limit experiment should come as no surprise, both because we can see it
as the natural generalisation of the qubit case given in section 8.2, and because
the equivalent of classical weak convergence to this experiment has already been
proved by Guta and Jencova [2007].

For background, weak convergence means convergence of the Connes cocycle
derivatives. Gutd and Jencova [2007] stay at the level of CCR algebras, that is
algebras generated by displacement operators (8.19) associated to any symplectic
space. Gaussian states can be defined directly on those algebras, by the fact that
¢(D(h)) as a function of h € H is the Fourier transform of a Gaussian.

These CCR algebras encompass both B(F(H)) and L>(R9), and they get con-
vergence even if some eigenvalues of py are equal, in which case a Fock space
F(C) is replaced by a classical space L°(R?). Our methods based on group
representations do not give us this freedom.

8.5.5 Main theorem

We now state the theorem of strong quantum local asymptotic normality.

We allow growing domains, as they are required for some applications. Hence we
define the parameter sets

Onpr = {(CT) : Il <07l <07}

Recall that § is the separation between the eigenvalues of py given by equation
(8.11). Though we use parametrisation (8.39) for density matrices py, recall also
that its first orders are given in equation (8.12). In fact, with yet a little more
work, we could prove the same theorem for the latter parametrisation.

Theorem 8.5.1. Let 6 > 0, let § < 1/9 and v < 1/4. Let the quantum experi-
ments
Qn = {peﬁn S ®n,5>’y} J
R = {(I)e 10 e @n,g,fy} ,
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where p" = p?/’i/ﬁ is the state on M (C?)®" given by equation (8.39), where ®Y

is the product of a quantum Qaussian state ¢¢ and a classical Gaussian probability
measure N(ii,V,). Here ¢°, that is given by equation (8.21), has mean 5 and
fized covariance ) depending only on the eigenvalues {;}%_, of po. On the other
hand N (4,V,) has mean @ and fized covariance matriz V,, depending only on the
eigenvalues of po, with formula given in equation (8.9).

Then, if n > no /8%, with ng and k depending only on 3 and v, there are channels
T, : M(C) and S,, such that

sup [|@7 — T (p"")[], < Cn=¢/5, (8.23)
96(9"’[3,7

sup || S (®7) — p""||, < Cn7/5, (8.24)
0€®nﬁﬁ

where C' and € > 0 depend only on 0, 5 and ~.

In other words, we get polynomial speed of convergence of the approximation,
which is enough to build two-step evaluation strategies in the finite experiments
globally asymptotically equivalent to strategies in the limit experiment. We give
explicit constants in Theorem 8.8.7, but they are probably fairly pessimistic.

We now construct the parametrisation of p?™ we use for the theorem. This

parametrisation separates clearly the quantum part, that is the eigenvectors,
and the classical part, that is the eigenvalue. We shall need some Lie group
theory.

8.6 Group theory primer

We review some basics of group theory, and more specifically representations.
Young tableaux are intensively used in the proofs in Section 8.9. Our refer-
ences for the section have been [Schensted, 1976, Fulton and Harris, 1991], two
textbooks among many others.

8.6.1 Irreducible unitary representations

In this section we present some basic results from group theory which will be
useful in understanding the structure of the irreducible representations of the
special unitary group SU(d).

Let G be a group with elements denoted g, h and product gh. A unitary repre-
sentation of G over a Hilbert space H is a group homomorphism 7 from G to
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U(H), the group of unitary operators on H. This means that =(g)n(h) = w(gh)
for all g,h € G and w(e) = 1 where e € G is the group unit.

Representations can be combined to construct new ones by means of direct sums
and tensor products. If 7, is a representation on H, and 7, a representation on
Hp, we define their direct sum m, ® 7, acting on H, @ Hp by

(M0 @ 6] (9) : [a) @ [¥6) = Ta(9)[Pa) © 7 (9)[101)-

The tensor product representation 7, ® m, acting on H, ® Hy is defined through

[Ma @ ] (9) : [a) @ |¢0) = Ta(9)[Pa) ® 75 (9)|h0)-

The representations m, and 7, are wunitarily equivalent if there is an linear iso-
metric isomorphism V' : H, — H, such that Vr,(g) = m(g)V for all g € G. We
shall write 7, = m.

A representation on H is irreducible if there is no non-trivial subspace of H which
is left invariant by all 7(g) for g € G, that is if the 7(g) cannot be simultaneously
block-trigonalized. The following simple result is the well known Schur Lemma
adapted to unitary representations.

Lemma 8.6.1. Let my and wo be two unitary irreducible representations of G over
H1 and respectively Hsz, and let L : Hy — Ho be a linear map which commutes
with the group action, i.e. Lmwi(g) = ma(g)L for all g € G. Then either L =0 or
the two representations are unitarily equivalent.

For finite groups such as S(n) or compact Lie groups such as SU(d), any repre-
sentation can be decomposed into finite dimensional irreducible representations,
that is all m(g) can be simultaneously block-diagonalized with invariant sub-
spaces H;, such that the restriction m; : g — Py, 7 (g)|Hi is irreducible, where
Py, denotes the projection onto H;. If the equivalence classes of irreducible rep-
resentations are denoted by 7, the multiplicity M) of m) in the representation
7 is the number of ¢ such that m; = 7. Grouping together unitarily equivalent
representations we find that there exists an isomorphism

U:H— GB(CUZk ® CMx, (8.25)
A
under which
™= @ T @ Lemony, (8.26)
A

where the direct sum runs over all irreducible representations. Schur’s lemma
implies that the above decomposition into irreducible representations is unique



218 Quantum local asymptotic normality for d-dimensional states

up to unitary isomorphism and the classification of unitary representations of G
is reduced to the classification of unitary irreducible representations.

The group algebra is a very useful tool in representation theory. For finite groups
G, the group algebra A(G) is defined as the complex linear space spanned by
the group elements endowed with the group product. For two elements a =

>gecalg)g and b= 73" b(g)g the product is

ab=">a(g)b(h)(gh) = _ (Za(kl_l)b(l)> k.

g.h k I

Alternatively one can see A(G) as the space of functions a : G — C with
the convolution product ab : k — >, a(kl=')b(l). The adjoint of a given by
a* =3, a(g~")g makes A(G) into a *-algebra. It is easy to see that unitary rep-
resentations 7 of G give rise to *-representations of A(G) by 7(a) := > a(g)w(g),
i.e. satisfying m(a)w(b) = w(ab), w(a*) = 7(a)*, and conversely any unital repre-
sentation of A(G) arises in this way.

Definition 8.6.2. A projection p is an element of A(G) satisfying p = p* and
p? = p. A projection is minimal if it cannot be decomposed as p = q + r with
q # 0 and r # 0 projections. A projection p is called central if it commutes with
all group algebra elements, that is ap = pa for all a € A(G). Two projections

p,q are equivalent if there exists v € A(G) such that p = vv* and g = v*v.

The following theorem establishes the relation between group representations and
projections in the group algebra.

Theorem 8.6.3. Let G be a finite group. Then the group algebra A(G) is iso-
morphic to the direct sum of matriz algebras

A(G) = EB M(CH), (8.27)
A

where the direct sum runs over all irreducible representations of G and dy is the
dimension of the representation wx. There is a one to one correspondence between
equivalence classes of minimal projections and irreducible representations. Fur-
thermore there is one-to one correspondence between minimal central projections
and irreducible representations.

Thus the group algebra encodes information about the dimensions of irreducible
representations through (8.27) and it is easy to see that minimal projections
correspond to one dimensional projections in one of the summands M (C%) while
minimal central projections correspond to the identity operator 15 € M (C%) and
zero for the other components.
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The above isomorphism is given by a — @, ma(a). Using this identification,
and the general form (8.26) of unitary representations we conclude that any
representation of A(G) over a space H is of the form

T @7‘1’)\(@) — @7‘1’)\(@) ® 1oy,
A A

with H decomposed as in (8.25).

The following theorem which uses Schur’s lemma, shows that the operators which
commute with the representation 7 are precisely those which have the same block
diagonal form as 7(g) but act as identity on the representation space C% and
arbitrarily on the multiplicity space CM*. The commutant of a set of operators
ACB(H) is

A" :={be B(H) : ba = ab,Va € A}.

Theorem 8.6.4. Let w be the representation of the finite group G given by (8.25),
(8.26). Let A; be the algebra w(A(G)) and A its commutant. Then

Al = @ 1ca, ® M((CM’\)
A

To conclude this brief introduction to group representation theory, we mention
that the notion of group algebra can also be defined for compact Lie groups such
as SU(d) with most of the above results remaining valid.

8.6.2 Irreducible representations of SU(d)

Let M(C?) be the algebra of d-dimensional complex valued matrices, and SU (d)
be the group of unitary matrices U € M(CY) with determinant Det(U) = 1.
Recall that a unitary matrix is defined by the property UU* = U*U = 1 where
U* is the adjoint of U, i.e. transpose and complex conjugate.

SU(d) is a Lie group, i.e. it is also a C*°-manifold, of dimension d? — 1 with
the property that the group product and inverse are compatible with the smooth
structure. Since SU(d) is a compact group, the representation theory bears
some similarities with that of finite groups. For instance, any unitary represen-
tation can be decomposed into a direct sum involving a countable number of
non-equivalent irreducible representations, each of them of finite dimension.

The Lie algebra su(d) is the tangent space of SU(d) at the origin, and can be
identified with the real linear subspace of M(C?) consisting of skew-selfadjoint
matrices A* = —A with Tr(A) = 0. The identification relies on the fact that the
differentiable curve in SU(d) given by ¢t — U(t) = exp(tA), has tangent vector
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A at the origin (¢ = 0). The Lie product of su(d) is given by the commutator
[A, B] = AB — BA and satisfies

UVU@)~tve)~t -1
12 '

[A, B] = lim
t—0
where U(t) = exp(tA) and V (t) = exp(tB).

In this chapter we mostly use the physics convention and write U = exp(iH)
instead of U = exp(A4) where H = —iA is a self-adjoint operator. The group
elements in a sufficiently small neighbourhood of the identity can be parametrised
as

U=exp |i E a;H; + E ai,ij
i=1,....d—1 1<i#j<d

where a; and a;; are unique real coefficients in a neighbourhood of 0, and H;
and Tj; ; are self-adjoint generators forming a basis of the linear space of complex
matrices with trace equal to zero. The explicit form of the generators is given by

Hj =Ej;— Ej1,5+1 for j <d-—1;
Tj_’k = Z'Ej_’k — Z'Ek,j for 1 <i< k <d; (828)
Tij = Ejr + Er; forl <j<k<d.

where E; ; the matrix with entry (¢,j) equal to 1, and all others equal to 0. The
relevant commutators are

Bk, Eij] = (0i — 056)Ei js [Eij, Er) = 0k jFig — 61, Ek ;. (8.29)

Before studying the general case, we shall briefly describe the irreducible represen-
tations of SU(2). For simplicity we denote Hy, E1 2, F2 1 by H, E, F respectively.

Theorem 8.6.5. Let (m,H) be a irreducible unitary representation of SU(2),
and hence of the Lie algebra su(2). Then if the dimension of H is n + 1, with
n > 0, there exists 0 # g € H such that

m(H)po = ntpo, 7w(E)o = 0.

Define 1y, := (1/k)7(F)*pg. Then 1y, .. .1, form an orthogonal basis for H
and

m(H)y, = (n—2k)y
T(F)r = (k + 1), T(E)r = (n—k+ 1)r_1.

Before proving the theorem let us note that 7(F) acts as a ladder operator on the
basis vectors by decreasing their index by 1, and annihilating ¢y. The adjoint
m(F) = 7(E)* acts as a increasing operator and annihilates v,.
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Proof. Let ¢ be an eigenvector of w(H) with Hvy = hiy. By using the commuta-
tion relations [H, E] = 2E we get that

m(H)(n(E)y) = (h+2)7(E)Y,

hence h+2 is also an eigenvalue, or 7(E)Y = 0. By successively applying 7(F) we
get a sequence of eigenvectors with eigenvalues h, . .., h+2m, and since H is finite
dimensional, there exists a minimal finite m such that 7(E)™ "1y = 0. We denote
by 1 the vector m(E)™ # 0 and let Hyg = hotg. Define vy := (1/kD)m(F)* g
as above. The following commutation relations can be proved by induction

[H, F*] = —2kF*, [E,F*] = kF*Y(H — k +1).
By applying them to the vector i, we get

klr(H), = w(F)*Hio + [n(H), 7(F¥)bo = (ho — 2k)F¥4pq
Bin(Byp, = m(F)*Byo + [r(B), m(F)* ]t = k(ho — k + 1) F*~ .

This implies that all ¢y, are linearly independent since they are eigenvectors of H
with different eigenvalues. Moreover, since H is finite dimensional there exists a
minimal finite p such that 7(F)" "¢y = 0. The span of the vectors 1y, ..., is
invariant under 7(su(2)), and since 7 is irreducible, we conclude that p = n and
1, form an orthogonal basis in H.

Finally,

0 = w(E)r(F), =n7(F)x(E)Y, +7(H)Y, =n(ho —n+ 1), + (ho — 2n),
(n + 1)(h0 - n)wnu

hence hg = n.
O

We would like to the extend the ideas used in the proof to representations of
SU(d). What are the ladder operators in this case and how do they act on the
basis vectors? The generators Hy,..., Hj—1 form a maximal set of commuting
generators of su(d). This implies that for any (finite dimensional) irreducible
unitary representation (H,7) of SU(d), and hence of its Lie algebra, we can
choose an orthonormal basis in which all Hj are diagonal:

7(Hp)tbg = ha(k)tba, a=1,...,dim(H), k=1,...,d— 1.

The vector hg = (ha(1),...he(d — 1)) is called a weight vector, and as we shall
see shortly, the set of weight vectors for the various basis vectors 1, completely
characterise the representation .
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Using the commutation relations (8.29) we obtain

(Hi, Ei j| = 1i5(k)Eij, i # j,
m(Hy)(m(Eij)a) = (13,5 (k) + ha(k))(7(Ei 5 )¥a),

where r; ; = (r;;(1),...,7:,;(d—1)) are d(d—1) root vectors and the explicit form
of their coefficients is 7; ;(k) = 0; ) — 0i k+1 — 05,6 + Ojkt1. Thus, if 7(E; ;)1
is non-vanishing, then h, + r; ; is a weight vector as well, and W(Ei)j) acts as a
‘translation’ or ‘ladder’ operator on the set of weights. Since the dimension of
an irreducible representation is finite, and the successive application of 7(E; ;)
leads to a new weight vector, we conclude that there exists a finite integer p such
that 7(E; ;)P = 0. Moreover, m being irreducible implies that for any given v,
one can find a path in the weight space connecting h, with any other weight, the
latter being reached by applying a product of translation operators to the vector
1,. Thus, the difference between any pair of weights is of the form

hg — hy = E i 75,55 nij € N,
4,J

and the set of weights is characterised by its boundary and a reference point in
a (d — 1)-dimensional lattice defined by the root vectors r;;.

What is the weight space of the defining representation of SU(d) on C?? The
basis vectors fi,..., fq are eigenvectors of Hy with weight vectors h; given by

hl(k) :5i,k _6i,k+la 1= 17"'7d_ 17 (830)

such that the root vectors r;; can be written as r;; = h; — h;j. The action of E;;
on the basis function is simply E;;f; = f; and Ej; fi, = 0 for k& # j, which is
consistent with the general notion of translation on the weight space.

Let us define the set of simple roots
o =:Tiit1 =hi —hig1,i=1,...d—-1
and note that any root r; ; with ¢ > j can be expressed in terms of simple roots
ri;=hi —hj=o;+--+aj_q,
which we call positive root, and similarly r;; will be called negative root.

This notion of positivity defines a partial ordering on the weights: we say that
hqe > hy if hy — hp is a sum of positive roots with natural coefficients. In par-
ticular the weights (8.30) of the defining representation are ordered as follows
wp < wg--+ < wg. We notice that fy is the unique vector corresponding to the
‘highest weight’ wg and satisfies E;jfq = 0 for all ¢ > j. The generalisation
of this observation to arbitrary irreducible representations is the key to their
characterisation by means of highest weight.
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Theorem 8.6.6. Let (w,H) be an irreducible representation of SU(d). Then
there is a unique highest weight h\™ such that h\™ > h for all other weights
h, and the corresponding eigenspace is one dimensional. If (7', H') is another
irreducible representation with the same highest weight then © = 7.

Proof. Let us denote by H(h) the joint eigenspace of H; for the weight h. Then
we have the decomposition
H=EH(H)
h

Let p be a maximal weight with respect to the partial ordering and let vy €
H(h™). By using the commutation relations as before we get that 7(E; ;+1)H(u) C
H(u + a4). Since p is maximal we conclude that 7(E;;)¢o = 0 for all ¢ > j.

Let us consider one of the su(2) subalgebras of su(d) with generators E; =
E;it1,Fy = Eip1,,H = H;. Note that E; is different form the diagonal elements
E;;. Since v is annihilated by m(E), we can apply Theorem 8.6.5 to obtain
m(H;)o = nih, with n; non-negative integer, and thus h(w) = (n1,...,Nd—1)-

In order to show that H(h(r)) is one dimensional we construct a subspace of H
which is invariant under 7(su(d)) but contains only one vector with weight h(r),
namely 1. Since the representation is irreducible, the subspace will be the whole
H. Let

K :=Span{n(F;,)...n(F;, )tbo : 1<i1,...,i, <d—1,p=0,1...} CH.

To show that K is invariant under w(su(d)) it suffices to show its invariance
under the action of F;, F; which generate su(d) as a Lie algebra. By definition
K is invariant under m(F;), and from the commutation relations [E;, F;] = 6; ; H;
we get

T(E)m(Fy) . ..m(F)ve = w(F,) ... m(F;, )7 (E)do

+ Y b m(Fy) . om(H) - w(F o,
j=1

The first term on the right side is zero since 1)y is maximal and each term in the
sum is in K since the vector on the right side of H; is an eigenvector

T(H)T(F ) om(Fy o = (0™ — iy, — o)) (§) 1(Fiyyy ) - - m(E) o

In particular, the last equation shows that the weight of the vectors spanning C
are of the form
h(’lT) — Qg — .. .Oéip,

which are smaller than h{r) with the only exception of the vector 1. Thus,
h{7) = (n1,...,nq_1) is the highest weight and H(h{r)) = Ct).
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Let (7/,H’) be another representation with highest weight h{r). It can be easily
checked that the map

U:n(F;,)...n(F))to — n'(Fy,) ...« (Fi, )
extends to a unitary intertwining = and «’. Thus = = 7'.
O

Remarks. We have seen that an irreducible representation (m, H) of SU(d) can
be described by means of a highest weight vector 1oH(h(™), and the action of
ladder operators 7(E; ;) which map the weight subspace H(h) into H(h + ;).
This structure is very similar with that of irreducible representations of SU(2)
described in Theorem 8.6.5, but there are some important differences: unlike in
the SU(2) case the subspaces H(h) need not be one dimensional, and moreover
the set of vectors 7(F;,) ... m(F;,)vo need not be orthogonal to each other! This
issue will play an important role later on.

We now make the connection between the notion of highest weight and that of
Young diagram which will be central to the next section.

A Young diagram is defined by an ordered tuple of integers A = (A1, ..., \g) with
A1 > - > Ag >0, and can be represented graphically as a diagram of d lines,
the i-th line having X\; boxes. If we consider the differences between successive
rows we obtain a possible highest weight h = (ny,...,n4—1) with ny = A\; — X\iy1.
Thus, to each Young diagram we can associate an irreducible representation of
SU(d). For example, both A = (2, 1), representation of SU(2), and A = (2,1,0),

representation of SU(3), would be represented as H. Similarly (5,3,3) corre-

sponds to the Young diagram @jﬂ Conventionally, we set Agy1 = 0. Clearly,
there is some redundancy in this parametrisation of irreducible representations.
Two Young diagrams A\® and A’ correspond to equivalent irreducible representa-
tions if and only if A¢ — A? is independent on i. In other words, if we suppress or
add full columns, we do not change the representation. For instance, irreducible
representations of SU(2) are parametrised by only one parameter which is the
difference between the number of boxes in the first and second line.

In the next section we shall see that this association is very fruitful in under-
standing the structure of SU(d) representations.

8.6.3 Tensor product representation

After studying the general properties of the irreducible representations of SU(d),
we shall analyse a particular representation associated to n identical d-dimensional
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quantum systems. Our main results describe certain asymptotic properties of
‘typical’ irreducible representations appearing in the decomposition of the n-th
tensor product representation of SU(d) acting on (C?)®N | when n tends to in-
finity.

The n-th tensor product representation of SU(d) is given by
m(U) 1 (CHIN — (CHEN, m(U) 2 [1) @@ [¢n) = Ulp1) ® - - @ Ulihn).

By permuting the vectors in the tensor product we obtain a unitary representation
7q of the permutation group S(n) over {1,2...,n}

Ta(7T) : [Y1) @ -+ @ [Pn) = [Pr-1(1)) @ -+ @ [¢hr-1(m)), T € S(n).

It is easy to see that the two group representations commute, i.e. m,(U)7q(7) =
7a(T)mn (U) for all U € SU(d) and 7 € S(n) which means that they can block-
diagonalised simultaneously. In fact a stronger result holds which is called the
Schur-Weyl duality and shows that m,(SU(d)) and 74(S(n)) are each other’s
commutant as characterised in Theorem 8.6.4.

Theorem 8.6.7. Let m, and 7tq be the representations of SU(d) and respectively
S(n) on (CH®". Then the representation space decomposes into a direct sum
of tensor products of irreducible representations of SU(d) and S(n) indexed by
Young diagrams with d lines and n boxes:

cher = PHre K,
A

Tn = @ﬂ')\@]-IC)\a
A

Tqg = @17@\@7?).
A

In particular, let us consider a matrix in M ((C%)®" of the form p®". Then p®"
and piy(7) commute for all 7. Hence, we may write:

p¥" =P @1k, (8.31)
A

for some matrices py.

The fact that the irreducible representations which appear in the sum are pre-
cisely those given by Young diagrams with n boxes will become clear in a moment.
The explicit expression of the dimension M, (\) of Ky is

M(X) =
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where g;.., is the “hook length” of the box (I,m), defined as one plus the number

of boxes under plus the number of boxes to the right. For example the dia-
7]6[5]2]1]

4[3]2 N
gram (5,3, 3) has the hook lengths : [3]2]1 . By noticing that [['_; g1.m =
N+d=0)
T1e o M= Ak +k—10

to our needs:

we rewrite M(X) in the following form which is more adapted

M(X)=< " ) I1 MMtk ol (8.32)

Ay Aa) S R
k=l+1...d
The dimension D(\) of H, is:
- 4+ d—
D) = Jrd-t (8.33)
i=1...d 9i.i
J=1l...x;

At this point we would like to gain more insight into the structure of the irre-
ducible representations 7). Theorem 8.6.3 shows that minimal projections in the
group algebra A(S(n)) are in one to one correspondence with irreducible repre-
sentations, such that for any such p € A(S(n)) we have 74(p) = 1, ® py for a
given A and with p) one-dimensional projection. In particular, 74(p) projects
onto a subspace which carries an irreducible representation of SU(d). We shall
now identify one such projection for each index A and then give a basis of vectors
in this subspace.

Young tableaux are Young diagrams filled with integers. Two types of Young
tableaux will play a role in our discussion.

e ¢ standard Young tableau T is a Young diagram whose boxes are filled with
numbers from 1 to n such that the numbers are increasing from left to right
and top to bottom.

o a semistandard Young tableau T is a Young diagram whose boxes are filled
with numbers from 1 to d such that the numbers weakly increase from left
to right and increase from top to bottom.

To each standard Young tableau T we associate two elements in the S(n) group

algebra
PT = Z a, QT = Z SgD(T)T

cERT T€CT

where Ry is set of permutations in S(n) which leave the rows of T" invariant, and
Cr is the set of permutations which leave the columns of 7" invariant.
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Figure 8.1: Young tableaux for the (3,2) Young diagram with d = 2,n = 5.
top row: standard Young tableaux; bottom row: semistandard Young tableaux

Note that
d

P}\P)\ = |R)\|P>\ = (H Az')P)\a Q)\Q)\ — |C |Q)\ Hz)\ )\L+1
i=1
(8.34)
and Py and @) are self-adjoint elements of the S(n) group algebra.

The Young symmetriser is defined as
YT = QTPT'

The following theorem is the basis of Weyl’s construction of irreducible represen-
tations.

Theorem 8.6.8. The Young symmetriser Y is a rank one operator, i.e. up
to normalisation factors YrY  and Y'Y7 are equivalent minimal projections and
their associated irreducible representation is A = XN(T'). In particular Y2 = NrYr
for some normalising factor N7 € R.

Let us denote yr = 74(Yr) and similarly for g7, pr. Theorems 8.6.7 and 8.6.8
imply that the range of yr in (C%)®" is the multiplicity subspace

Hr Z={¢®¢T21/JEH)\}CH)\®IC)\

which carries the irreducible representation A(T") of SU(d). Based on the identifi-
cation between the group algebra .A(S(n)) and the matrix direct sum of Theorem
8.6.3, we can see that the vector ¢ € K belongs to the one dimensional subspace
defined by the minimal projection Y7Y/.

We shall now give a (non-orthonormal) basis of Hp when T' = T is the stan-
dard Young tableau with the numbers {1,...,n} filling in increasing order the

lll
rows from left to right and top to bottom. An example of such tableau is .
The construction can be extended to all (unitary equivalent) SU(d) irreducible
representation spaces Hrp for the other standard tableaux T'.
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By a slight abuse of notation we shall replace the subscript Ty by A in all the
following arguments, so that the copy Hx ® ¢, is identified with Hy.

Now, if {f1,..., f4} is an orthonormal basis of C? then the vectors f, := fa) ®
-+~ ® fa(n) form an orthonormal basis of (C*)®" with a(k) € {1,...,d} an arbi-
trary choice of indices. We can represent each basis vector f, as a Young tableau
filled with indices in {1,...,d} obtained by replacing the integer k in Ty by the
index i(k) of the k’element of the tensor product. We denote this Young tableau

by ta. For example if fa = fo @ fo @ fi © fo ® fi then ta = BA". Note that
this differs from a semistandard Young tableau by the fact that indices are not
necessarily increasing along rows and columns.

Since H) = Range(y,), the vectors {yrfa : @ € {1,...,d}"} form a spanning
set for Hy, but in general they are not linearly independent and in fact some of

them may be equal to zero. Indeed by using the Young tableau notation from
. .
the previous example we can see that y = Yx since Yy = gapx and py

is the sum of all permutations leaving the rows of 7 invariant. Thus we may
restrict to basis vectors fa whose corresponding Young tableaux t, are weakly
increasing to the right. On the other hand, let us consider a vector f, which has
the property that any row permutation o € R of its associated Young tableau ¢,
gives rise to a tableau containing at least one column with two identical indices.
Then since gy works as anti-symmetriser for the column vectors, we obtain that

Yafa = @prfa=0.

More generally, it can be proved (see for example [Fulton and Harris, 1991]) that
the vectors y) fa for which ¢, is a semistandard Young tableaux are a basis of the
irreducible representation (my,Hy). The proof is somewhat involved, and we do
not give it here. However, it can be seen that the dimension is right by comparing
with (8.32).

For the following results it will be convenient to use another notation for the
basis vectors y, fa indexed by semistandard Young tableaux. Since the values in
the rows are nondecreasing, there is a one-to-one correspondence between Young
tableaux with a given Young diagram A, and vectors m = (mi)j)lgiqu where
m; ; is the number of j’s appearing in line ¢ of the Young tableau. Note that
we need only m; ; for j > 4, as there is no j in line 7 if j < ¢ (the columns are
increasing), and the number of ¢ in line 7 is A; — Z;‘l:i—i-l m; ;. By a slight abuse of
notation we shall denote the corresponding vectors by y» fm and the normalised
vectors

jmy) := N (my)ys fm

where N (my) = 1/[|yrfml|| - This constant is in general not easy to compute.
We shall describe its asymptotic properties in section 8.9.4.
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The basis {|m,)} is not orthogonal. However, the following lemma states that
it is not very far from an orthogonal basis, at least for vectors that are not ‘too
far’ from the highest weight vector m = 0.

Lemma 8.6.9. Let (m,\) and (1, \) be Young tableaux with diagram X\ and let

lm| =3, mi; and [l —m|:= 3", [l;; —m].

If
DLLEEDBLEED BUFED BUS
J>i i<i j>i j<i

for some 1 < i <d, then
(m, A|LL A) = 0.

Otherwise, let us suppose that A\ be such that \; — X\j11 > én for all 1 <i <d—1,
and \g > dn, with 6 > 0. Let n < 1/3 such that n®~* > C/§ for a constant C
depending only on d. If |1| < |m| < n", then:

|(m, A|L, \)| < (Cn) ((977—2)|m—1\—3(|m|—|1\))/125|m|—|1\—\m—1|/3(1 + O(n=1+31/5))

where C' and the constant in the remainder term depends only on the dimension d.
Notably, the result is of order less than n(91=2Im=U/12 4nd the bound converges
to zero for n < 2/9 when n — oo.

The proof of the lemma is given in section 8.9.3.

Using (8.34)

d
(Urfalyrfo) = (@apafalarpafo) = afalidpafo) = ([T i) (o falyr fo)-
i=1
(8.35)

In order to get further simplifications, we examine some special vector states,
that we shall call by analogy with the Fock spaces finite-dimensional coherent
states.

The first is the special vector |0, \), the highest weight vector of the representation
(mx, Ha), which later on will play the role of the finite-dimensional vacuum. This
vector, as we have seen, corresponds to the semistandard Young tableau where
all the entries in row 4 are 7. An immediate consequence is that

d
palfo) = (JTAiDIfo). (8.36)
=1
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Moreover (fo|gxfo) = 1 since any column permutation produces a vector orthog-
onal to fo. Thus the normalised vector is:

1
d S
[Licy AstVirimdim

05) = Yl fo)-

The finite-dimensional coherent states are defined as 7 (U)|0y) for U € SU(d).
From [px, 7x(U)] = 0 and (8.36), we get pxmx(U)|05) = (Hd ANDU|0y), thus

d

[[4 oafmlrm@)fo)  (837)

i=1

<y)\fm|7r>\(U)|07 /\> =

The latter expression holds for any linear combination of fy, on the left-hand side,
that is for any vector in C?, in particular 7y (V) fo for another unitary operator
V. In Lemma 8.9.1, we shall examine asymptotics of (8.37) for specific sequences
of unitaries U when n is going to infinity. One of the main tools will be formula
(8.60).

8.7 Parametrisation of the density matrices and
construction of the channels 7T,

8.7.1 The finite-dimensional experiment

Recall we work with the quantum experiments Q,, given in equation (8.13).

To express the exact form of our pp, we use the following notations, for Q €
(Cdd 1)/2 and 5 c R4-1.

.. Re(Cju)Tjn 4 Im(Cp) Tk,
U(¢,¢) = §illi +
Z 1<§€<d i — [k (8.38)

U()=U(0), UG En) =UC/Vné/vn), Uln) =UC/vn),
where the T}, and H; are the generators (8.28) of the Lie algebra of SU(d).

We now parametrise our density matrices py as:

,LL1+U1 0 0
. 0 : .
w=v@| | U@, weRGreC.
: . . 0
0 0 g — Z‘ii:_ll w;

(8.39)
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We shall write p?" = pf'ﬁ’" for pf?/"ﬁ. We may use the decomposition (8.31)
over the representations A to obtain:
pe’nl My ()
O.n 0,n A CMn
= ’ S S e 8.40

where we have used that Ky had dimension M, ()\) given by (8.32). As p”" is
non-negative, so are all the pi’". We then choose pi’" such that pi’" has trace
one, .e. is a density operator.

Notice that if we take {f;} to be the eigenvectors of the PG,/ then p'j@’"
is diagonal in the tensor product basis, with eigenvalues depending only on the
number of times each f; comes in. This number does not change under the action
of mx(7), whatever the permutation 7, hence the vectors |m,) are eigenvectors

of p0@n for all A, with eigenvalues:

d d dn N\ Mg
0,i,n u,my N, Hj
(mu[p® " my) = [ [ (™™ ] ( Zz,n> : (8.41)

i=1 j=i+1 i

where " = 1 +ui//n for 1 <i < (d—1) and g™ = pg — (3, ui)/ /7.

Let us define the finite-dimensional displacement operator as

ASTN(A) = U(C, @, n) AU*(C, @, n). (8.42)
We define similarly AS™, Then we see that paﬁ’" = Aa"(pq’m”).

When acting on representations A of SU(d), we naturally define UA(f, i,n) and

consequently Ag’ﬁ’", and so on. Using the decomposition (8.40) of p®", we obtain:

pg\;ﬁ,n _ Ag\m(pg,ﬁm). (843)

Notice the similarity with equation (8.20). The finite-dimensional displacement
operators on A will be the analogue of the displacement operators on the Fock
space.

With these notations, we can set about building the channels 7,.

8.7.2 Description of T,

We look for T,, of the form:

T, p"m = > Vaph Vi @ pi . (8.44)
A
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Here, V) is an isometry from M (Hy) to F(CU?=1/2) that is ViVy = 14,. On
the classical side 73" is a probability law on R?~!. We may view 7" as a Markov
kernel (8.6) from the set of A to R?~1.

Intuitively, this corresponds to first measuring the representation \ we are in.
Then, on the one hand, we use a classical randomization on the result A\, and
on the other hand we use a channel depending on our result A on the remaining
state. It can be proved from the axioms of quantum mechanics that this state is
PR @ Leammo /(Ma(N)).

N

The underlying idea is the following: the probability distribution pi is essen-
tially a multinomial depending on « only, as can be deduced from (8.41) and
(8.32). As we have seen in Example 8.4.1, this converges to a classical Gaussian
shift experiment. For the quantum part, we send the finite-dimensional vacuum
|05) to the vacuum |0), and send the |my) near the [m). We then want to prove
that the ﬁnite—dimegsional displacement operators act almost like the Fock space
ones, and that T’ (pg’ﬁ’") is almost ¢6. Formula 8.43 would end the proof. Finite-
dimensional coherent states and formula 8.21 will be the stepping stone to those
results.

We give in Section 8.9.2 a proof that T, of the form (8.44) is indeed a trace-
preserving completely positive map.

Lemma 8.7.1. Applications of the form (8.44) are bona-fide channels.

After this sanity check, we can be more specific about 7),, and give our V) and

7",

Let us begin with the Markov kernel 7. To obtain L' convergence instead of
only convergence in distribution in Le Cam theory, the components 7§ must not
be Dirac peaks. A slight smoothing is needed. The probability distribution 77
on R~ is defined for all A such that 3 \; = n by:

dT;\L(I') = T;\L(J:)dfli = d$5v1§i§d—l, Y/ 2@ 4np—X; | <1/2¢ (845)

For building an isometry V) meeting our requirements, we concentrate on the
relevant representations. Specifically, define

Apo = {AIVi € [1,d], [Ni — npi| <n®}.

We can then prove:

Lemma 8.7.2. Let n < 2/9. Suppose that \; — X\ir1 > on for all 1 < i < d, with
the convention Agy1 = 0. Then there is an isometry Vy such that, if jm| < n",

1

Vi =
(m| V VIt (Cn)@n-2/12 /5173

(m,|
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with the constant C' depending only on n and the dimension d.

We delay the proof to section 8.9.3. The main tool is Lemma 8.6.9.

We just take the V) given by the lemma as our V), for all A € A,, . For those
representations and n not too small, we have \; — A\;11 > dn/2 and we merely
absorb the 2 in the constant C'. For the other representations A, any V will do:
those components do not matter asymptotically.

We shorthand a few notations: first we write T’ for the channel pi’" — WV pi’"V; ,

so that
T p"" = Y Ta(py") @ pY 13-
A
We shall write for the dual T3 : ¢ — V" ¢V). Notice that T\T) is the identity on
the operators on the operators on the vector space H .

We shall write ¢3" = Th(p%") and b3" = p" 7. The latter is merely a non-

normalized measure. Recall that pf)\’", and hence b/\’", depends only on %, and

not on E

8.8 Main steps of the proof

8.8.1 Why 7, does the work

We shall break (8.23) in small manageable pieces (much longer to write, of
course). The result and brief explanatory remarks, repeating those in the deriva-
tion, are given from (8.47) on.

We first expand (8.44) as

("M)=" "
A
— O N(@ V) - @ ( CAARS S ) S (65— ) e e
A A
Proving (8.23) then amounts to proving

o - T) (- ot
A A

sup
0€0, 5,

— 0.
n—00
1
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We now upper bound this norm by other norms, until we reach “elementary”
terms, each of which we shall bound in a lemma, whose (technical) proof can be
found in the last section.
First

(SRR AR

= ¢5® (J\/(ﬁ, V#) — Z bi’" 4 Z ((bf_ ¢§n) ® bi,n
A A

1

#® (N(a, AR b?\”‘)
A

s S [CEFORTE]
1 A
< o, | (v -t )|+ -)], Je,
A 1 A

First remark that |6, = [N (@, Vol = 165" = 1, so that H (¢5— ¢§\7n)

2 also holds. Similarly 3, [[b9"[1 = 1 (indeed [[b7"[ = p3™). Our next stage
shall then consist in replacing some of these norms by one or two. Notably, we
split the sum over A in two parts, depending on whether or not it belongs to

Apo. If it does, we expect that H (¢Z - qﬁi’")
65|11 for the other A is small. Then

| <
1

‘1 is very small, and the sum of all

|7t = 6 @ M@ V)|

(N(ﬂ', Vu) - Z b§\7n>

A

o (-t

eAp

O,n
| +2 20 I

1 AZAn o

(8.46)

Let us pause a few seconds and explain each term. The first term corresponds to
the convergence of the classical probabilities, as in the usual Le Cam picture. If
the second term is small, then on A, o, the (purely quantum) family pi’" is near
the family ¢¢. The last term corresponds to the other representations. If it is
small, it says that there is concentration of pi’n around the representations with
shape \; = nu;. In other words, the only representations that matter are those
in Ay, o, there is almost no mass on the other representations.

The hardest term to dominate (notice that the two others are classical) is the
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second. We transform it until we reach tractable fragments.
= 0
H¢C - 1
- 0.
= ¢C - TA(F’)\") L

= | p%6" - mas T ()|

1

= | D9e%) = DUTAR ™) + DUTAART™) = AT T ™) |

DE(6°) = DT (™) | + (1D = TS TRIT R — o)

IN

1
+[|ip€ = magr e

<3| melm - ||+ |0 - masr e |
where we have used on the last line that the displacement operators are isometries.

Let us pause again. Through this last expression, we are trying to prove that our
quantum parts ¢5 and qﬁiﬂ’" with the following strategy: prove that when the
parameter f is 0, they are near. Recall that the parameter 5 is obtained by letting
a displacement operator act on 5 = 6, and prove that the “finite-dimensional”
displacement operator, after being taken to the Fock space, is acting on (;56 like
the infinite-dimensional operator do.

We shall still go one step further in the decomposition for proving this last as-
sertion, on the second term.

Using the formula for qS'j, we bound the second term by

it -magrme)| < [ s@

D€ = AL T3 () (2]

lldz

with f(z) = [[,.; " exp (— “'i;j“j |zi)j|2). Recall that |z)(z| = D?%(]0)(0]), so

Th

that [D¢ — T\AL" T3] (|2)(2]) = [DSD* — ThAS" T3 D#)(0)(0)) -

Now, f is a probability density, and the norm in the integrand is dominated by
two. So that another bound on the second term of the formula for ¢° is given by

| - mafrze®), < [ sadar suw
Izl >n?

! l|zl|<n?

(D€ = LA T3](12) 2],
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We now intercalate two terms in the operator:

DED? — Ty AT D* =D+ — 1y Al T
+ AT T — TVAS" AT
+ THNASTARTY — TNAS™ TS D2,

From this we deduce that

|0 = A T || < || - masrTigo o))
+[|iagren — agrazrioaoan]|

+[[AX"TX = TXD*](l0) (0D,

where we have recalled that we were dealing with isometries to suppress some T’

and Ai’". Notice that the first and third norms are essentially the same.

Saying that the first norm is small corresponds to saying that the
“finite-dimensional” displacement operator acts on the vacuum like the infinite-
dimensional displacement operator. Saying that the second norm is small amounts
to asserting that the “finite-dimensional” displacement operators multiply like
the infinite-dimensional operators, at least when seen through their action on
the vacuum. These two points together yield that the action on coherent states
of “finite-dimensional” and infinite-dimensional displacement operators are the
same: a coherent state is obtained through the action of a displacement oper-
ator on the vacuum, and the composition of two displacement operators is the
displacement operator with parameter the sum of the two parameters.
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Putting all this together, our “expanded” form for (8.23) is

sup HTn(p“)—qﬁf @N(ﬁ,vﬂ)H (8.47)
0€0, 5,

< sup N (@, V) =y 6" (8.48)
Been,gﬁ A 1
+2 sup > 0" (8.49)

0€O, 5, AA . o

o~ T (™), (8.50)

+3 sup sup ‘
0€0,, 5.4 AEAR o

+ sup  sup  sup H (D% — T,\A§+z’”T;](|O)(O|)H (8.51)
llz]|1 <nf 0€O, 5.4 AEAR o 1

+ sup sup sup [[D* — ThAT"TY](]0)(0])
||z]|1<nP €O, 5.~ AEAR o

+oswpsup o sup [[[AST - AL A" (104)(0A])| (8.53)
HZ”lSTLB 06@",[3,7 >\€An,o¢ 1

z)dz. 8.54
4 /| T (8.54)

Il (8.52)

Since we integrate a Gaussian outside the ball where the exponent is less than
6n?8 /d, the last term is less than Cexp(—dén?%/d)/d where C' depends only on
the dimension d. Under the hypothesis n?? > 2d/§, this can be bounded again
by O(n=2%%).

We briefly lie again on the significance of each term.

e The classical part of the channel corresponds to a Markov kernel making
(quasi)-equivalent the outcome of the measurement “Which irreducible rep-
resentation are we in?” and a Gaussian shift experiment (8.48). Recall that
bi’" depends only on @ and not on 5 , so that we have the same parameter
set for the two classical experiments.

e We must prove concentration around precise values of A (8.49), those for
which the quantum channel T’ yields the right limit quantum experiment.
We restrict for the further points to these representations around which we
concentrate.

e For point 0, the image of p?\’ﬂ’" by T) is (almost) the expected image 0
(8.50). We shall then generalize the result to all ¢ by recalling that we ob-
tain ¢¢ and pf\’ﬂ’" from ¢° and pf\’ﬂ’" by actions of displacement operators,
and that we can decompose them in coherent states. See following points.
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e The action on the vacuum of “finite-dimensional” and “infinite-dimensional”
displacement operators are almost the same on not too “large” coherent
states. Notably, “finite-dimensional” coherent states are brought by T\
near the corresponding coherent states (8.51,8.52).

e “Finite-dimensional” displacement operators multiply as the corresponding
displacement operators when acting on the vacuum. By the latter point,
they thus act alike on any coherent state (8.53).

e The “large” displacement operators have little influence on the images of
the p? for separated eigenvalues (8.54).

The last section deals with the proof of the lemmas corresponding to each of
these points.

Lemma 8.8.1. With the above definitions, for any e, for n > (C/(S)ﬁ +
(C/é)ﬁ, for a constant C depending only on the dimension and €, we have

N(ﬁ, Vu) - Zbi)n

A

sup
0€O, 3,

<C —1/2+e€ —1/4+y S.
1 < (n +n ) /

Lemma 8.8.2. With the above definitions, for n > (4/5)ﬁ, we have

sp S B07 I < Crexp(—Con® 1) —— 0,

0€O, 3, AA . o n—oo

where Cy and Cy depend only on the dimension.

Lemma 8.8.3. With the above definitions, for n” > Cln(n)/4,

0 G,Q,n _ _
¢’ — Ta(py™") ‘1 = O(n~ 124740 )5 nOn=2)/24)

sup  sup ’
eeen,g,w )\GAnya
Lemma 8.8.4. With the above definitions, for any €, under the supplementary
conditions that 23 + ¢ < n < 2/9, that en®te > 3, that ||€]|; < n=Y?+28/§ and
that n~=1/2+30+2¢ > C§=3/2 where C' depends only on the dimension d,

swp s swp [0 = TATE T (0) 0]
|lz||1 <nB 0€O, 5. AEAL o

R(n)

1 =
with
R(n) =0 (n(Qn—Q)/245—1/6’ pV/2HBN/251/2 ) =1/44B/25-1/4
n‘1/2+°‘/2+ﬁ/25_1/2,n_1/2+°‘/2+n/25_1/2,71_1/2+3n/25_1/2a”_5/2) . (8.55)

For estimating the terms (8.51, 8.52), the case when 5: 0 is sufficient. This
more general form is useful for the proof of Lemma 8.8.5.



8.8 Main steps of the proof 239

Lemma 8.8.5. With the above definitions, under the same hypotheses as in
Lemma 8.8.4,

sup supsup [[[AST = AS"AL(10,)(0])| | = R(n)

Izl 1 <nP 0€O, 5.4 NEAn o 1

with R(n) given by equation (8.55).
As implied by the discussion in the bulk of this subsection, the role of the three

latter lemmas, together with the bound on the remainder integral (8.54), consists
in proving the following lemma, which we can plug into bound (8.46):

Lemma 8.8.6. With the above notations and with the above conditions and
n?’ > 2d/,

sup  sup 65 — 65" = R(n) + O(n™ /3747 /5 4 n(O1-2)/21 /51/5)
0€0,, 5.4 AEA o

with R(n) given by equation (8.55).

Gathering all these results yield the following theorem

Theorem 8.8.7. For any 6 > 0,1 >a >1/2,1<2/9,¢>0,08< (n—2¢€)/2,
v < 1/4, and n such that en®te > 3, n'=* > C/5, n"/In(n) > C/6, n'/>=7 >
C/4, the sequence of channels T,, ensures

sup || Tu(p”™) — 9|, < C(n=V/2+6+0/25=1/2 | p=1/4+6/25-1/4
€0, .8,

p-L/2+e/24n/25-1/2 exp(—Cn2o‘_1) 4 1/2430/25-1/2
nB2 p VTRV 5 g p(n=2)/24/51/6) (8 56)

where the constants C' depends only on the dimension d.

With any explicit o, 3,7,6, we get an explicit polynomial rate.

8.8.2 Definition of S, and proof of its efficiency

We use here the result on 7;, to get quickly a correct S, and (8.24) from (8.23).

We need also the Markov kernel that is completing the equivalence between the
family p\"" and N (4, V},). This is 6™ defined by

o" iz e R 5y, (8.57)



240 Quantum local asymptotic normality for d-dimensional states

where ), is such that Z‘li \; = nand for 2 < i < d, then [n'/2z;4+np; — | < 1/2,
if it exists, else any admissible value, for example (n,0,...,0). Notice that with
(8.45), 0" 7"c™ = ¢™. Moreover any probability on the A such that E‘f Ai =nis
in the image of 0", so that o"7"(p?") = pn.

Lemma 8.8.8. With the above definitions, for any ¢, for n > (C’/é)ﬁ +
(C/é)ﬁ, for a constant C' depending only on the dimension and €, we have

sup [|o" N (@, V,,) —p™"|, < C(n_l/2+é+n_1/4+7) /5.

UEEn e

We delay the proof of this lemma to the last section.

Now the channel S,, is given by the following sequence of operations. We are
starting from a product in 7,7 (F(CH?=1/2))@ L' (R?~1). We can then act on the
two parts independently. Specifically, we shall sample the probability A (@, V},)

to decide which channel we are applying to gbg. That is we are using o on the
Gaussian and the sampling yield an irreducible representation .

To A, we associate the channel S\ whose action is

s § Temn o
S)\.¢ SA(¢)®7Mn(A)
with B
Sx:1p—=Ti¢+ (1= Tr(T5(9)))[02)(04]

Of course the second term is only a remainder and we could have used any state
instead of [05)(0x|. What is important is that for any density operator px on the
vector space A, the operator Sy is a pseudo-inverse of T:

SxTx(pa) = TxTa(pa) + (1 = Tr(T5Ta(p2)))|0x) (04
= px+ (1 = Tr(px))[01)(0,]
= Px-

From this we prove (8.24). Indeed

= - N ~ 1 My, (X
Su(6° @ N(@,V,)) = PIoN (@ V)N () © o=
A n
So as to be more compact, let us write oNF = [oN (@, V,))](\) and ¢¥" =

min(e ¥, pi™). Then:

Sn(¢¢ @ N (@, 1)) — pPm

= P {a" a6 = ™ + N = a8 — " — i @
A




8.9 (Even more) technical proofs 241

Taking Ll~ norms, and recalling that all ¢ and p have trace 1 and that channels
(such as Sy) have operator norm 1, we get the bound:

Snwf ®N(ﬁ,v ) — W

"(Sy ¢C

1
oNY —py"

<2 Z ¢v" + sup HSX ¢°) pi’" oN (i@, V,) —p™"||,

)\gAn,a AEA n,o
_ g 0 N
<2 ) "+ sup Haﬁg—TA(px") ) — ™", -
el A€o

Now the first term is smaller than the remainder term of the Gaussian outside
a ball whose radius is n®. Hence this term is going to zero faster than any
polynomial, independently on ¢ and # for @ € Z,, 4. The second term is Lemma

8.8.6 (recalling that ¢5™ = T5(p%™)). And the third term is Lemma 8.8.8.

This ends the proof of (8.24).

8.9 (Even more) technical proofs

8.9.1 A few more tools

We shall need for the proofs or Lemmas 8.6.9 and 8.8.4 good evaluations of
various (my | mA(U) | 1n). The following section gives the tools to obtain those
evaluations.

We shall usually drop the explicit reference to the representation and write U
instead of m)(U). Apart from the identity, we shall be especially interested in
the unitaries U of the form U((,€) or U((), as defined just below (8.38).

We first introduce some new notations. We write I(c) for the length of the
column ¢ in the Young diagram associated to the representation. There are
then A; — Aj+1 columns such that I(¢) = 4. An alternative definition would be
l(c) = inf{i|\; > c}.

Recall that we called f, basis functions of the form f,, ® --- ® f,,, and that
we had associated to it a Young tableau to. We denote by ¢S the function from
the integers [1,1(c)] to [1, d] that associates to the row number r the value of the
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. . [2[2]
entry of that Young tableau in column ¢, row r. For example, with ¢, = as
in section 8.6, we get the values:

ti(1) =2, tL(2) = 2, t2(1) =2, t2(2) =1, t3(1) =1.

We shall often be interested in the image sets t5([1,1(c)]), or compare t$ to Id.
the identity on the integers [1,1(c)].

Now we decompose py fm = ZUGRX 0 fm. The set Ry is a subgroup of S,,, that
we let act on fy,. Therefore pyfm = Zfaeok(m) #ﬁfﬂ(;n)fa where Oy (m) is the
orbit in (C4)®" of fp, under Ry.

In order to compute the scalar products, we use the decomposition pyfm =
ZUER; 0 fm- The set Ry is the subgroup of S, letting invariant the rows of the

Young tableau, that we let act on fy,. Therefore py fm = Zfae(’)k(m) #%R(*m)fa
where Oy (m) is the orbit in (C?)®™ of f, under Ry.

Notice that Oy consists in the set of fa with such that there are exactly m; ;
boxes with 7 in row ¢, and the remainder of the row is .

Since we antisymmetrize with ¢y, we are only interested in the f, in whose every
column all the entries are two by two different. We call such f, admissible.

We now define I'(fa) = |m| — #{t$ # Id.,1 < c < A\;}. We shall denote V' =
{admissible fa|T'(fa) =T}, for any I' € N. Notice the dependence on m, that we
do not make explicit in the notation.

Notice first that I' > 0. Moreover, if I'(fa) = 0, then all the ¢S are either Id. or
of the form t(r) = joy—; + 70,2 for some i < (c) < j. A tg of this form will be
dubbed an (i, j)-substitution.

With these definitions, we prove in Lemma 8.9.1 many formulas that we shall use
for proving Lemmas 8.8.4 and 8.6.9.

A main tool for the proof of these formulas will be the following “algorithm” to
build all the possible f, for a fixed I'. It enables us to estimate the cardinals of
the sets VI

Algorithm

Our first observation is that what we are doing when designing f, is choosing
which cells in row 7 we fill with a j. We can see that as having m; ; bricks (i, j).
The question is where we put them, under the constraint that in the end, no
two numbers in a column are the same (admissible f,). The value I'(fa) is the
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number of those bricks we put in a column where there was already (at least)
one brick before, if we set them sequentially.

We can have a slightly different view of the process. Consider the notion of
column-modifier r, that is something we apply on a column to change it. An
(4,7) brick is an elementary column-modifier that changes the ¢ of row i in j.
We shall denote it (7, 7). But we can consider composite column-modifiers with
two or more bricks, changing for example simultaneously 4 in j and k in [. In
the end there are less than d! different possible column-modifiers (we cannot
change twice the cell in row 7). An important remark is that a column-modifier
always increases the value in the cells of the column. So that, for any “modified”
column, the sets of entries in the cells is different from the initial set, that is

ta([L 1)) # [LU(0)].

Then f, is obtained by applying all our |m| bricks clustered in |m| — T" column-
modifiers (there are m,; times the column-modifier ), and each column-modifier
being applied to a different column.

We then give the following “algorithm”.

1. Choose I bricks among our |m|. As we have d(d — 1)/2 different types of
brick (recall that i > j), we have at most [d(d — 1)/2]'" possibilities. For
I' =0, we have only one.

2. Consider the remaining bricks as a set of column-modifiers. We change this
set by adding sequentially each of the I' bricks selected in stage 1 to one of
these column-modifiers. At each stage, there are at most d! different types of
column-modifiers, so that we have overall at most (d!)' possibilities. Only
one if I' = 0. Notice that anyhow, at least [m|— 2T of the column-modifiers
are elementary (one brick), and that m, ;) < m; ;.

3. Apply the column-modifiers to the columns of fy, so that no two modifiers
are applied to the same column, and the resulting f, is admissible.

Enumeration of the number of possibilities for the third stage would have been
somewhat too long for the item, so here it is.

It is easier to apply the column-modifiers sequentially. We shall then need to
divide by the combinatorial factor coming from identical column-modifiers, that

is ], mu!.

When inserting the column-modifier s, we have less than n possibilities. Let us
be more precise for elementary column-modifiers (i,7). We must have at least
7 rows so that we can change our cell i. We must have an admissible f, in the
end, so no second j in the column, so less than j rows. There are then \; — \;
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possible columns. Among those, we must suppress the columns already modified,
which are less than |m| —I'. We have then between \; — \; — |m| and \; — ),
possibilities when inserting each (i, j) elementary column modifier.

Hence the number of possibilities at stage three of the algorithm is upper bounded
by

nz“#vﬂ,j M H w’

M, ;!

(8.58)

1<J

and in the case when I" = 0, it admits the following lower bound:

m; ;!
i<j 7

Notice that the upper bound (8.58) depends on the set {m,}, which is not com-
pletely fixed by I'. For further reference, we shall denote E,, = {m,,} and EY, the
set where my, , = m; ; for all i < j and the other m, = 0. This E?n corresponds
to ' = 0. To any E,,, we can associate I'(E,,). Moreover, to each f,, we may
associate Fo, (fa)-

In a similar way, we shall associate with each x the set S(k) of suppressed and
added values in the column. If a value is both added and suppressed, it does
not appear in the set. For example S(x(i,7)) = ((i,—), (j,+)) and if k is made
of the two bricks (ij) and (jk) then S(k) = ((¢,—),(k,+)). We shall write

ms = Z/ﬂS(n):S M-
We now state our estimates.

Lemma 8.9.1. The first remark is an exact formula, that is the main tool to
prove some of the bounds below.

1. For any unitary operator U, for any basis vectors fs and fyp, we have

(faloxUfo) = [ det(U'fats), (8.60)

1<e<N

where U tats s the I(c) x I(c) submatriz of U given by [U')tats], . =
Utg (i) g (9)-

We now get bounds useful for estimating (my|U|l\) on the interesting range of
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parameters. Suppose that
[m| < n" (8.61)
AEN, o
inf |u; = priga] > 0
fq >0
Il < Cn?
€]l < n=Y2+26 /5

(2 1/(1-a)
5 :

Then, with the remainder terms all uniform in the eigenvalues po, the following
estimates hold:

2. The number of admissible fa with T'(fa) =0 is

pvo = TTA=2™ (4 oo 5)). (8.62)

j>i M-

3. The number VE of admissible fo with En,(fa) = By and T(E,,) =T is

bounded by:
#VEm S n_F_Ei<j(m’i,j_m"i,j) H 7(Al _ /\j)' o . (863)
j i et
4. The number of admissible fo with T'(fa) =T is bounded by:
r I _Ts—ar; 20 TT (A = A5)™9

Jj>i
for a constant C' depending only on the dimension d.

5. Let fa € Ox(1), with T'y(fa) = T'®. Let us fit I'* and consider Ve Ox(m).
Then:

e

with C depending only on the dimension d.

0 ifTb#|m|—[1+T°
< .
° Z fb> { (C|m|)T’ otherwise » (869)

beVFb
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6. If fa € Ox(m) and I'(fa) =0, then
<fa a Z fb> =1 (8.66)
7. If I'(fa) = 0, then
def

€O (m)
Z(ES) = (falexU(C, €. m) fo)

::m®@¢ﬁmp<—”2H>II<V%V%;:ﬁé>ijﬂn) (8.67)

with the phase and error factor

d—1
¢ = \/EZ(M = pit1)&i,
i=1
r(n)=14+0 (n_1+25+"5_1,n_1/2+65_1/2, n_l'“”ﬁ&_l) .

8. If fa € VY, and its set of column-modifiers is given by E,, = {m,}, then

1Z(En)|  [(falarsU (€ € m) fo)|
N N Sicimi j—my,  —T
OIS EAWAIE S ( G )Ww
Sep( 2 )(m) 11 Vv =) "

(8.68)

with error factor

r(n)=1+0 (n—1+25+n5—17n—1/2+65—1/2’n—1+o¢+ﬁ§—1) '

9. Under the further hypotheses that |z| < n®, m;; < 2|Q—7j|nﬁ+E for some
€ >0, and n~1 /23042 > §-3/2C/2 where C is a constant depending only
on the dimension d, we have:

< > fa

fa€Ox(Im])

- z||? g Z2)i i (VT i — [ g
= exp(i¢) exp (—L—; ”2>H((<+ )iy (Vn 7 i) r(n)

mi, ;-

mU@+aémn>

i<j
(8.69)
with
r(n) =1+ O(n_1+26+"(5—1, pTltetfs—l poit2ng—t

n—l+a+n6—1’ 5—3/2n—1/2+36+25) .
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10. Under the further hypotheses that |I| < |m| and n'=2" > 2C/§, where C
depends only on the dimension d,

< Y. falar

> fb>

Fa€OA([1]) fo€OA(|m])
CJ12[m] \ "=
\m\ M
< (C|m)) ]1 ( 3 (8.70)

with

(I1—m|+3[1] - 3[m])

: (8.71)

Ihin (1, m) >

11. With n'=3" > 2C/§, where C' depends only on the dimension d,

< > fao

fa€Ox(|m])

> fb> STTA2 1k 00 )
fo€Ox(Im]) 7
(8.72)

Proof.
Proof of (8.60):

We first express (fa|U fb) as a product of matrix entries of U:

(falU fo) = H H (fre@) U fee ()

1<e<A 1 1<r<i(c)

I II Yeomsge

1<c<A1 1<r<i(c)

Then we notice that the set Cy of permutations in S, letting invariant the columns
of the Young tableau X is exactly the product of the S, for 1 < ¢ < Ay, where S,
is the set of permutations of the cells of the column ¢, that is the set of 0 =[], o,
with s, € S.. Finally, let us mention that if s, € S,, then its action on the basis
vectors fy is given by (scfv)(c,7) = (fb)e,s.(r). In other words it transforms
te () into t (sc(r)).
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Finally, we get:

(falUarfo) = ) (o) Utg ()5 (s(r)

o€Cy 1<e<A1 1<<ri(c)

= doesd) TT Usgimnsgtsorn
1<c<)\1 5:.€S, 1§§rl(c)

= Y. else) JI WM
1<c<)A1 scE€S. 1<<rl(c)

= det(U1()tati),
1<e<A

Remembering that U commutes With g and that Ut is the I(c) x I(c)
submatrix of U given by [Ul¢)tats], . = Ute iy ¢ (j)» We have proved formula
(8.60).

Proof of (8.62):

The number of admissible f, such that I'(fa) = 0 is given by the products of
the possibilities at each stage of the algorithm. For the first two stages, there is
exactly one possibility when I' = 0. Hence #)° is the number of possibilities at
the third stage.

Here the upper bound (8.58) reads as || — X)) fmy

J>z(

On the other hand, we may use (8.59) as a lower bound, recalling that A\; — A\; >
dn/2 with the conditions (8.61). This yields the result (8.62).

Proof of (8.63):

The number of fa in VE= is given by the third stage of the algorithm (the two
first stages yield E,,).

We then obtain (8.63) by applying (8.58) while noticing that > _m, = [m|—

Proof of (8.64):

The set V! is a union of VE» with I'(E,,) = I'. Now the first two stages of the
algorithm imply that there are at most CT different E,, with the latter property,
with C' depending only on the dimension d.

: . —or
Since > my, ; > [m| — 2, we may write [[, m,! > [[,_;mi lsup,.;m; .

Recalling also (8.63) and that \; — \; > dn/2, we obtain that the largest #V"m
is smaller than

—re—ory,jer TT (A =A™
n~t6 % m| Him‘ -

J>i h*
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Multiplying by the number of possible E,, yields the result.

Proof of (8.65):

Applying (8.60) with U = Id, since the cells of both f, and fp are in the same
basis, we see that the scalar product (fa | ¢xfb) is equal to —1 or 1if t5([1,1(c)]) =
t£ ([1,1(c)]) for all columns, and 0 otherwise.

Now, since a modified column cannot satisfy ¢S ([1,1(c)]) = [1,1(c)] (or the same
with b), the vectors fa and fi, are orthogonal unless they have the same number
of modified columns. Finally, that number is |1 — I'* for f, and |m| —I'® for fy.
This yields the first line of (8.65).

We now concentrate on the case when I'> = |m|— [I|4+T'*. Since each |(fa | ¢rfb)]
is bounded by one, we get a bound on the sum of scalar products if we get a bound
on the number of these products which is non-zero.

For building the relevant fy,, we can imitate the algorithm with the further con-
dition that, at stage three, all the colummn-modifiers are applied on the columns
that were already modified for f,.

The first two stages of the algorithm are the same so they yield a O™ factor. At
the following stage of the algorithm, we must ensure t5([1,1(c)]) = ¢ ([1,1(c)]),
that is S(kS) = S(k{), where we denote by K{a,py the column-modifier applied

on column c of f,, resp. fr,. We have therefore s

S, where S(k;) = S for each 1 <i < k.

) choices for each

fy - Mgy,

Moreover, for each elementary column-modifier &; ;, the set S(k; ;) is different,
and there are at most I'® non-elementary column-modifiers. Hence
> g Ms — Max,.s(n=s Mk < I, s0 that

H( s )<|m|”-
Mgy - - My,

S

Multiplying by the CT of the first stage, we get (8.65).

Proof of (8.66):

We may use the same strategy as above, noticing first that (fa | gxfb) = 0 if
fo # 0, second that we must have the same modified columns. In that case,
since I'® = 0, the constant from the two first stages of the algorithm is 1, mg =
m;j = My, for all S corresponding to an elementary column-modifier, and 0
otherwise. So the combinatorial factor is again one: we do not have any choice
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in our placement of column-modifiers. In other words, the only fp such that

(fa | I fo) #01is fa.

Finally (fa | ¢xfa) = 1.

Proof of (8.67):
We plan to use (8.60). We first need a Taylor expansion of the unitary.

Entry-wise, for all 1 < ¢ < d on the first line, and all 1 < i < j < d on the second
and third lines:

jadiug fz i#d T 61 151;£1 |<z ]|
Uii(¢,€n) =1+ -
(e:6m) i Z e
+0(||C|\3n_3/25 3/27HCHH§||”_15_1/2)
- o 1 *

Uni(G €)= == 4 O(ICIPn ™57 Gl =67

} Viwuc"n?n-ls-ua|5||n-16-1/2>.

For { € ©, 3 and €]l < n=1/2+28 /5 with 8 < 1/6, the remainder term are in
fact O(n=3/2+38573/2) and O(n='1=285~1) respectively.

Uji(C.€n) =

Therefore, when our parameters are in this range, we can give precise enough
evaluations of the determinants. The idea is to find the dominating terms in the
expansion of the determinant det A =3 []e(0)A; (-

If t = Id., the summands with more than two non-diagonal terms are of order
the remainder term, so that only the identity and the transpositions count in

Zo’ H Ai70'(i) . Then,

> = iy 1 |Ci 412 8938 e
det(Ul(c)’Idc’Idc(C,f,n)) =141 = Z 773_’_0(” 3/2-38 3/2)'
VR S MR
l(e)+1<j<d

For concise further reference, we shall denote this v(l). Notice that for I(c) = d,
the determinant must be 1.

Similarly, if t& # Id., as t5(r) > r for all r, then there is a whole column of

Ul©stade that s filled with entries smaller in modulus than O(||C]|/vnd) =
O(n~'/?*8§=1), The same bound holds for the determinant.

More specifically, if t< is an (i, j)-substitution, that is if there is ¢ < I(c) < j such
that t5(r) = jér=; + 70,2, then the only summand that is of this order comes
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from the identity. So that

det(U ) talde(C € n)) = ﬁ\fﬁ +O(n~ 12051, (8.73)
i J

For further reference, we denote this v(i, j). Notice that this approximation does
not depend on I(c), but only on ¢ and j.

Now, if fa € V°, then all t$ are either Id,, or an (i, j)-substitution. They are
my;,; of them for each i < j. The Id. such that I(c) =1 are \; — N1 — R; with
0 < R; < |m|. The reason of these assertions is that there are m; ; boxes with a
j in row 4, and if a column has no such substitution, then its entry in row 1 is ¢,
and t¢ = Id.. Hence:

v(l)) B (8.74)

==
—~
—~

(faloxU( 55 )fo) :H =41 H (U(i,j))mi’j

=1 1<i<j<d =1

Now v(l) = 1+ O(n='*265=1) and R; < m < n', so the last product is (1 +
O(n=1*204n5=1)). Similarly, for A € A, 4, by definition N\, — N1 = n(u —
Hi+1) + O(n®), so that the first product is, using lemma 8.9.2 (given at the end
of this section),

[Tt =] exp um—— S G PR ()

<1 Mq — g
1+41Zj<d

= exp <i¢ - %) r(n)

with r(n) = (1 + O(n—1+a+55—1’ n—1/2+56—1/2))
b1 = Sizav/n( — 1)

d-1
¢ => (m— )
=1

We turn our attention to v(i,j)™"s. This is

mi CiJ 1 9] —1+26+7]6—1

where we have recalled that |m| < n'.

Replacing the factors of (8.74) yields (8.67).
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Proof of (8.68):

We may write, much like in (8.74),

d d
(falxU(C = [T c@n™ = IT ()™ [T (om) "

=1 K =1

where 0 < R; < |m| —TI" and v(k) is the determinant of the partial matrix of U
corresponding to having applied the column-modifier x. Anyhow, if the entries
in the column have been modified in an admissible way, then t (i) = j > I(c) for
some i, so that v(k) = O(||¢||/Vnd) for any k. Moreover, if x = k(i,j), we can
use formula (8.73) for v(x). Furthermore, notice that Enon—elementary o M =

ZK]‘ mij — My ) — L. Then:

|<i, | M (i,5) — M5
(%)

1<jJ
(8.75)

- Ei<j mqyyj—m,i(iyj)—f‘
vné

< (1 +O(n—l+25+n5—l)) ( ” ”

Multiplying by Z(EY,) as given by (8.67) yields (8.68).

Proof of (8.69):

We merely combine some of the previous entries of the lemma, after noticing
that (C + z) plays the same role as C with the new constant C' + 1, that is
IC + z|| < (C + 1)n”. So that all the former bounds in the lemma remain valid
with §+ z instead of C

Using (8.62) and (8.67) and remembering that A € A,, o, we get:

<Zfa

fa€VO

@U@+A€mm>

r(n)

= expl(ig) exp (_HHZ”%) 11 (““)w(\fm» v

2 m; j
i<j 'LJ

with error factor:

r(n) = 140 (n_1+26+"5_1,n_1/2+55_1/2,n_1+0‘+55_1,n_1+2”5—1,n_1+°‘+"5_1) .
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Combining (8.68) and (8.63), on the other hand, we get:

<zh@mJ;mU@+m5mn>

<zgﬁvmgqﬂmﬁ+thnb>

Moo - —Mi = T
< P (AAe) T et (et
< 11 n My, ! Von
1< .
Von|¢ + i My j M
{7z r(n)
<5 \ M+ 2llVny =y
M, =My s
< O(n T2 T2 T (tézlyiéfiﬁz>

mj||I¢ + z||

i<j
< O((5—3/2n—1/2+3[3+25)F) :

where we have used that ||C + z|| = O(n®) (we use the upper bound since it
appears a non-negative number of times in the expression), that ZKJ- M, ;

Zi<j mgj; — 21" and that m; j < 2|<¢7j|nﬁ+€.

Furthermore, for a given I, there are at most C different F,, such that I'(E,,) =
T', corresponding to the possible choices in the two first stages of the algorithm,

where C' depends on the dimension d only. Hence, under the hypothesis that
n~1/2430+2¢ > §-3/2C/2 we have:

< > fa

fa€Ox(m)

wU@+a5m&>

= Z< Z fa|xU(C + z,g,n)fo>
r fa€VT
:(1+(X&4mn_uw3&uﬂ)@m@¢%mp<_|C;Z@>><
_H_ ((C+2)s a(\/nz\/jl!ti — ;)" r(n)
= exp(i¢) exp (— e _;Z||2> H ((C+ Z)Lj(\/jjﬁi — )" ra(n)
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with, on the last line:

ro(n) =1+ O(n_1+25+’7(5—1, pTitatBs—l poi+2ns—1
pltatng—1 5—3/2n—1/2+36+2e)'

This is exactly (8.69).

Proof of (8.70):

By multiplying (8.64) and (8.65), we see that:

b S WY 2 A
< Yo falo D fb><(0|m|)rH(AzlA|j) (?;L) (8.76)

fa€Vvr (1)) fo€O0x(Im]) i<j 0,

X\ Qm r*
:(0|m|)\m\—u|H(Az Aj) (0|1|| |>

l; ;! no?
i<j 7

Hence, if n'=3"7 > 2(C/d, the dominating term in the sum of bounds is that
corresponding to the smallest possible I'?, or equivalently I'*. What lower bound
can we give to ['*?

A necessary condition for f, not to be orthogonal to fy is that m% = lg for all set
S of suppressed and added values in the column. On the one hand, we know that
I'* —T'* = |m| —|I|. On the other hand, we can bound from below I'(fa) 4+ I'(fp).
Indeed, this quantity increases by one if and only if we put another (ij) brick in a
column that was already modified (say with S7). Now such an operation has the
following effect on the mg (or ls) : the m(; _y ; +) and ms, both decrease by one,
and mg, 4 ((5,—),(j,+)) increases by one. Hence the distance )¢ [ls — mg| decrease
by at most three. We thus need at least >, [l;; — m;;|/3 such operations
before getting the equalities mg = 1g. That is, I'(fa) + I'(fb) > |l — m|/3.

Together with the other inequality I'> — T'® = |m/| — |I|, this result yields I'* >
(1 — m| + 3|1 — 3|m])/6. Moreover I'* is non-negative.

Replacing in the above equation yields (8.70).

Proof of (8.72):

Since 1 = m, equations (8.62) and (8.66) prove that the bound (8.76) is saturated
when I'® = 0, up to the error factor (1+ O(n~'*27/5)). Hence the remainder

3
term due to the other I' consist in a geometric series with reason (Cl‘;ﬁ ) =

O(nt=31/5).
|
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The only part of the proof we have still postponed is the following technical
lemma:

Lemma 8.9.2. If x = O(n'/?7¢), then

(14 2)" = exp(a)(1 +O(n ™))

Proof. For any y such that |y| < 1, for any n € N (in fact even for any complex
number), we have the Taylor expansion (converging):

n - n
I+y"=> (k)yk-
k=1
Now (n —k)k/k! < (V) < nF/kl for n > k. If k < n/27¢/2, then (n — k)* =
n*(1+O0(n=°)). If k > n'/2=</2 then n*/k! = O(n(1/2t</2¥)  So that if y =
z/n=0(n 1?7,

nl/2—c/2

(I+a/n)"=(1+0n") Y %T + > oD (g )k
k=0 ’ k>nl/2—€/2
=(1+0n ) exp(x)+ Y. (O 1/ (@/n)k
k>nl/2—¢/2
=(14+0(n"°¢))exp(z) + O(e_"l/%e/z)
= (1+0(n%)) exp(z)
as exp(x) > exp(—O(n1/2_E)). O

8.9.2 Proof of Lemma 8.7.1

We want to prove that
T p"" = Y Vapk VX @ py "7
A

is a trace-preserving completely positive map.

The following are completely positive maps:

1. Composition of two completely positive maps is completely positive.

2. Ifall T; : A; — B; are completely positive, then Te, = PT; : P A, — P B;
is completely positive. Similarly Ty = @ T; : Q@ A; — Q) B; is completely
positive. If all the T; preserve the trace and/or the identity, then Ty and
Ty preserve the trace and/or the identity.
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3. Any positive map to a commutative algebra, notably Markov kernels.

4. Representations of algebras, sending A to m(A) where 7 is a morphism of
C*-algebras with value in B(H), preserving the identity.

5. Interlacing with a V' : H — I, that is sending A to VAV, If V*V = 14,
then it preserves identity. If VV* = 14, then it preserves the trace.

In fact, Stinespring [1955] theorem states that all completely positive maps from
a C*-algebra A to an algebra of bounded operators B(H) can be written as
A V*r(A)V. If V*V = 14, then the map preserves the identity.

Let us give a few special cases. We let the reader find the corresponding 7 and/or
V.

6. Keeping only diagonal blocks: that is sending [Zl’l 21’2] € M(H1 @ Ha)
21 P2,2

to p11 @ p22 € M(H1) ® M(H2) by using projections on both diagonal
blocks. This map is clearly both trace- and identity-preserving.

7. Summing the images of the same algebra: that is sending €, p; to Y p;
where all p;, € A. If the trace is defined, this transformation is trace-
preserving.

We can obtain 7T}, by first tracing out the non-diagonal blocks of p?™, since we
know the decomposition (8.40). In other words, the right-hand-side of (8.40) is
obtained through a trace-preserving completely positive map, by example 6 of
the list. The 1ca, ) must be understood as an element of the one-dimensional
algebra generated by the identity. Then sending this identity to any positive
function M, ()7} on a commutative space is a completely positive transfor-
mation by example 3. If 7{ has integral one, it is trace-preserving. On the
other hand, by example 5, we know that pf\’" — fo\’"V* is completely positive
and trace-preserving if V' is an isometry. Using example 2, we have obtained
D, VApi’"V/\* ®p§’n7}}. We reach the final form (8.23) by applying example 7.

8.9.3 Proof of Lemmas 8.6.9 and 8.7.2 and workarounds
for non-orthogonality issues

We know that m, is a sum of n-tensor product vectors, in whose elements the
basis vector f; appears exactly \; — Zj>i mg j + ZKZ— m;,; times. As two tensor
basis vectors are orthogonal if they do not have the same number of f; in the
decomposition, we get that (my[lx) = 0if 3", m,; + > ;myi # >0 lig +
ZKZ- lj; forany 1 <i<d.
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In the general case,

(@pr fmlaxpr fr) .
VA@xpa falaxpa fm) (Opa filaapa fr)

<m>\|l,\> = (8.77)

We use (8.35) to erase gy at the left of each scalar product, and we decompose
the p)f on orbits under the group R). We notice that the multiplicity of the
elements in the orbits are the same in numerator and denominator, so that we
end up with:

<E.fa€(9x(m) fa|CI)\ E.fbeo)\(l) fb>

<Zfae(’)>\(m) falan ZfazeOA(m) fa'><2fbe(9>\(1) folax Zfb,e(’)k(l) for)
(8.78)

(my[Ly) =

The value of the denominator is obtained through (8.72), for A € A,, o, with [1]
and |m| < n"” and n'=37 > 2C/§ with C depending only on the dimension d:

< Y faar Z( )fa/>< o el DD fb/>

fa€Ox(m) far €Ox(m fe€0OA(1) Jor€0A(1)
H (N — Aj) (M Fii)/2

1<i<j<d

(1 4+ 0n*1/5))).

mi,jlli ;!

The numerator is given by (8.70).

So that, remembering |m| > [1]:

[(mu[Ly)] < JT = ay)tteamea)/ 3 T (C|m|)Iml M

i<j it

m|3 min
(C('%' ) (1+ (O(*1/8))).
where T'pin = (1 = m| + 31| — 3|m])/6) A O

We finish the estimate with the followmg considerations: the factorials can be

bounded by H'L<] ’m:‘]” < |m|2(mu L]) < |m| (lm—=1]+[m|- ‘”)/27 and we have

assumed |1] < |m| < n” with n < 1/3. Notably, we may forget that Ty, is
non-negative, since we take an upper bound and C|m|/(§%n) < 1. So that:

|<mA|1A>| < 5_2Fmi" (Cn)(“|—|m|)/2—rmmx
(Cl) (=145 (m1 =) /4+30min) (1 | 01437 /5))

< glml=l=Im=U/3(Op)=t=ml/6 (O ynB=ml=(1I=ImD)/4(] 4 O(n=1+31/§)),
(8.79)



258 Quantum local asymptotic normality for d-dimensional states

where C' depends only on d and 7.

This is Lemma 8.6.9.

A consequence of these relations is the following lemma:

Lemma 8.9.3. Let n < 2/9.

Let my such that |m| < n". Then

Z (my[1y)| < (Cn)On=2/125=1/3,
[j<n”
1#m

Proof. Using (8.79), and the sum of geometric series, we only have to show that
there are less than C*(97=2)/12 different 1y such that |1 — m| < & for all k. Now,
there are d(d — 1)/2 pairs 1 < i < j < d, so that the different values |l; ; — m; ;|
satisfying Y |l; j —mi ;| = k are at most (d(d—1)/2—1)*. As our only remaining
choices are the signs, with 24(4=1/2 possibilities, we have ended the proof. [

a

We use this quasi-orthogonality to prove that we may build V) almost sending
the relevant finite-dimensional vectors to their Fock counterparts.

Lemma 8.9.4. Let A be a matriz from a finite space H to an infinite space IC,
such that A*A < 1. Then there is an R such that (A + R) is an isometry and
Im(A) L Im(R).

As a consequence, for any unit vector ¢, we have |[Rp|> =1 — || Ag|>.

Proof. As K is infinite-dimensional, we may consider a subspace H’ of K, orthog-
onal to Im(A), and the same dimension as H, so that we can find an isomorphism
I from H to H'. We then take R = [\/1 — A*A.

O
We can now prove Lemma 8.7.2.

Proof. Let

1
4= V14 (Cn)On=2)/12 /§1/3 Z 1) (Lnl-

[1]<nn
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Then, using Lemma 8.9.3:

* 1
ATd =1 ¥ (Cn) =712 /5173 > L)W

| <n

< 1y,

Thus, we may apply Lemma 8.9.4, and find an R such that A+ R is an isometry,
and Im(R) L Im(A). So that (m|R = 0. We set V), = A+ R. Then

(m|Vy = (m|(A+R)
= (m|A
1
N \/1 + (On)(9n—2)/12/51/3 (m| 1|§Znn 1) (1x|
1

- V14 (Cn)On=2)/12 /5173 (mal.

8.9.4 Proof of Lemma 8.8.4

First we know that D6+z(|0)(0|) is the density matrix of a (coherent) pure state
|¢ + z) whose decomposition on the Fock basis is given by (8.15).

On the other hand T\A§™*7"T5(|0)(0]) is the image by T of the finite-dimensional
coherent state U(C + z,v,n)|0,). This is a pure state VaU(C + 2,7, 1) fo (recall
that fo is the semistandard Young tableau with only 4 in row 4). Its coordinates
in the Fock basis are given by:

Oif m¢ A\,
something not important if |m| > n",

m|V\U(C + 2,€,n)|0,) = 1 N
BT+ 24 m)i0n) \/1+(Cn)(9n72)/12/61/3<m>\|U(<+Z?€7n)|OA>

if jm| <n7,
(8.80)

where we have used Lemma 8.7.2. It should ne noticed that we may recast
(1+ (Cn)(9’7—2)/12/51/3)—1/2 as 1+ O(n(gn—Q)/125—1/3)‘

Now the L' distance between two pure states |¢)) and |¢) can be rewritten
24/1 — [{¢]1)|?. Hence, the lemma is equivalent to

sup sup sup 1— (z+f|V,\U(§'+ 2757n)|0>\> =R(n)? (8.81)
CeOn 5 €]l <n—1/2+28/5 AE€An a
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under the same conditions and with the same remainder R(n) as in the lemma.

We shall prove formula (8.81) by decomposing these vectors in the Fock basis,
that is

(z + (AU + 2,€,n)[0,) = Z(E—F Zm)(m|VAU (C + 2,£,n)[0,).  (8.82)

m

As a remark, we are in the situation where we have two sets a,, and b,, such
that > |am|? = Y |by|? = 1. Then for any subset M of the possible m, we have
the following upper bound on the sum on the complementary subset:

(8.83)

Z Ambm| <1 —

mgM

Z Ambm

meM

We consider separately the m on which there is weight, that is those satisfying
for all (,7):

mi g < (¢ 2)igPne < 20+ 2)igln . (8.84)

We shall use the second form, the condition for applying formula (8.69). We
denote this set by M. Notice that

>+ 2m)? < d*n P (8.85)
mgM

as long as en” > 3. Indeed, we end up with exp(—z) >, .. 2" /k! < n—’ if

z=|(C+ 2)i;] > 1 and, if I(C + 2)i,;| < 1, the remainder series is directly less
than n=".

First, recalling that n > 25 + ¢, we may use third line of (8.80):

(YrSmlyaU (C + 2,€,1)[05)
vV Wxfolyafo)/ (Y fealys fm)
(prfel 2 U ( + 2,€ 1) fo) (14 O(n(o-2/125-1/3)

<pAfm|qu)\fm>

(m|VAU(C+ 2,6 n)[0,) = (1+O0(n®n=2/12571/%)

where we have used (8.35) and (8.37).

We write pafm = 21 co, (m) #(#,)f%fa where Oy (m) is the orbit in (C%)®" of
fm under R.

The multiplicative constant is the same on the numerator and denominator, so
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that we can write, with Id. denoting the identity of [1,1(c)],

<m|V>\U(C_)+ 2, g” n)|0)\> _ ZfanA <,fa|q)\U(< + Z, 5) n)f0> (1 + O(n(gn_g)/125_1/3)

\/Efa;fbeox<fa|q>\fb>
(8.86)
C+Z mq,j n(u _,u) mg,j/2
_ ip—|IC+z]3/2 i j
¢ H _| ( Az )\ ) T(Tl)
i<y Mg J

We made use of formulas (8.69) and (8.72). The corresponding remainder term
is

r(n) =1+ O(n<977_2)/125_1/3,n_1+25+’75_1, n—1/2+g5—1/27

—14a+B5-1  —l+atng—1  —1+3ns—1
n Bs—1.n 5~ n ) )

and the phase is:

¢ = \/_ Z — pit1)€

o my,;/2
The last piece to the puzzle lies in that (n(x\%/\ij)) S O(no=1+1/5)
since A € A, o and the eigenvalues are separated by . This loss can be absorbed
in r(n).

Finally, for m satisfying (8.84), we have:

(VAU (¢ + 2,€,1)|05) = r(n) exp(i) (m + 2).

Putting back this result in (8.82), and using (8.83) and (8.85), we get

(Z+5|VAU(5+Z,5H)|OA> = exp(i¢)+0 1_71(”)’ Z |<m|5+z)|2
mgM

exp(igp) + Ra(n)

RQ(TL) _ O(n($)r]—2)/125—1/37 n—1+26+776—1’ n_l/2+[35—1/27
n—l+a+ﬁ§—1’ n—1+0‘+775—17 n—1+3n5—1’ n—ﬂ) .

Through expression (8.81), noticing that Ra(n) = R(n)?, we see that we have
proved the lemma.
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8.9.5 Proof of Lemma 8.8.2

Multiplying the sum of eigenvalues (8.41) in the representation by the number of
times it appears (8.32) yields the value of p/\’ﬁ’"

Moer ST () e

m <j

with

d d
CA=< n >H/\I!Hk_l+1/\l—)\k+k—l
"\ Az A N +d=1)

Now, for n > (4/5)ﬁ, the uf’n are non-increasing for all ||@]| < n?, recalling
v < .. Moreover m; ; < n for all (¢, ), so that

SH (%) <o

m <j

On the other hand m = 0 is always in the set of possible m, so that

sS4 e

m <j
Similarly,
. LHDYIY ) TR VI VAREY L1
- AN +d—=1)! ~ (n+d)*

=1

The remaining factors are a multinomial law. We now show that this is the
dominating part. Let us write (Y7,...,Yy) for the multinomial random variable.

Indeed recall Hoeffding’s inequality: for a sum of n independent variables X;
with values bounded by 0 and 1, the following inequality on the deviations hold:

|ZX — E[X;]| > 7] <2exp(—2—x2).
n

We apply this to the Bernoulli random variable that yields 1 with probability
wi™, and else 0, and we get an deviation inequality on the possible results of the

multinomial law: )

B{JY; —np"| > 2] < 2exp(——). (8.87)
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Now, for n > (4/5)ﬁ, for all |||l <n7, and all X\ & A, o, there is a 7 such that
I\ —nui™ > (1/2d)n?/3, so that

PN An] < (n(n+d) S P[|Y; — nu"| > (1/2d)n°]

d
=2

< 2d(n(n+ d))* exp(—n>*~1/(2d%))

8.9.6 Proof of Lemma 8.8.1 and Lemma 8.8.8

We shall use multinomials as an intermediate step. Recalling that b?\’n = pi’"Tj{,

we can write:

HN (@, V) = D 05"
A

<o - M
Ky ey

1

. (8.88)
1

HN(ﬁ, Vi)=Y M,

A

where M"., = is the d-multinomial with coefficients p:"".
1
Ky s’

For background, what we really prove in this lemma is the equivalence of the
following classical experiments, together with an explicit rate:

P = {p™", [l <n”}
Mn = {Mnﬂ‘,n a,m y ||ﬁ|| S n')’}
Ky sy
Gn = AN (@, V,,), [lall <n7} -

Remember that p?” = p®". We shall usually shorthand M™% = M;?M e
1 kg

We first bound the first term in (8.88), planning to obtain:

n—1/2+'y 4 na—l

pﬁ7n — Mnﬁ',n a,n <
1 1)

Ky ety

sup (8.89)

@l <n>
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To show this, we rewrite:

n p—
R R el
< M
< > s Ml an()]
AEAn.a
’J,’ﬂ n
+ Z Py +MM711’" 7777 #g,n()\).
>‘€An,o¢

Lemma 8.8.2 and (8.87) imply that for all ||| < n?, and n > (4/6)7",

Py + M;Lfm #(A) < Crexp(—(Can** 1),

AEAn o

s
s g

with Cy and Cs depending only on the dimension. We end the proof of (8.89) by
recalling that

d d Mi,j
@n A Tomggr M — Mk +F — “J n
= H (AN + d - Z H Muf RN ().

=1 mei<j

Now, for all ||@|| < n” and all A € A,, o, the right hand side without the multi-
nomial is

< ¢ —np +O I
I 1™ S vow)
1=1 k=1l

mei<j

On Ay.q, for n > (4/6)T=, the cube [0,n1/2)4(4=1/2 ¢ X, so that
1— (&4 O(n—1/2+v))n”2

H 1—#12—1 O Z H <MJ +0( —1/2+7)>

1<j meNi<j

mi,j

_H MJ +O _1/2""')’).

i<j

Putting together yields

d d un mi,j
M T M — A+ & — n~Y/2 4 po-t
-1 <—.
57 SNIE <C—

=1 meXi<j z

We have thus proved (8.89).

We now turn our attention to the second term of (8.88). Our main tool hereon
will be KMT Theorem:
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Theorem 8.9.5. [Komlds et al., 1975, Bretagnolle and Massart, 1989] Let X;
for i € N be independent uniform random variables on [0,1]. Let F be the repar-
tition function of this law (that is, the function x — x on [0,1]), let F,, be the
n-th empirical repartition function F,(t) = Yo 0x,<t and let oy, be the cor-

T n

responding empirical process oy, (t) = /n (F,(t) — F(t)).

Let B be a brownian bridge, that is a Gaussian stochastic process such that for
0<t<wu<l, wehave E[B(t)] =0 and E[B(t)B(u)] = t(1 — u).

Then we may construct these processes on the same probability space such that:

P | sup vnla,(t) — B(t)] >z +clnn| < K exp(—Az) (8.90)
te[0,1]

for all n and x, where ¢, K and X\ are absolute positive constants.

We shall take x = cInn below.

Now notice that the distribution of the vector B
n[Fn(py"), Fnps™ + p30") = Fu(py™"), - o, Fa(1) — Fp(1 — pg™)] is that of the
multinomial with parameters n and p*". Now if we substract to this the vector

np and divide by n='/2, as we do in our transforms 7" and o™, we obtain
- am(pr™) ) uy
an(ps™ +py") — an(py™") :
? " R - . (8.91)
: Ud—1
a,n d
an(1) —an(l = pg™) — 25 Ui

The last part of the effect of 7, is keeping all the components of this vector but
the first, and smear out with a (—n'/2/2,n'/2/2)4=! box so that instead of a
collection of peaks we have a histogram without holes between the bars.

Let us also define the Gaussian vector

BRE[B(py™), Bluy ™ + py™) = Bui™), .. B = ug™) = B(Y_ ui™)]
+ [ul, e 7ud_1].
Its law is (@, V2. ), as can be easily shown with the formulas E[B(t)] = 0 and

E[B(t)B(u)] = t(1 — u). Recall that V.. is given by formula (8.9), with "
instead of p.
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To make use of Theorem 8.9.5, we must still smear out our functions. We are

d—1
writing U" for the uniform probability on [L\/%), %} and shall convolve. We

choose later the precise f(n).

Then let us write an expression where all the terms of the proof of Lemma 8.8.1
appear:

H./\/’(ﬁ, V) — T”M;ﬁ;,n

1 0

jin | S V(@ V) = BT, (8.92)

+||BE" = BE U,
+ HBQW * U™ — T”M:g,n an x U™

Ty

1
+|

nayrn n nayrn
T"M"; an*x U —=T7"M"; an
Ky ey Ky ey

1

Let us study the first term. We have already seen that HJ\/(ﬁ, Vi) — Bﬁ’"H1 =
||N(a‘, Vi) = N (@@, V,an )HlHence we must bound the distance between two Gaus-

sians with the same mean and different variances. Since ;" = y; +u;n~/? and
ld]ly < n7, we have

Vi = Vi ]2 < Z ‘[Vu]m - [V,ﬁvn]k,l‘
ol

< Z lujuin~™t +2 % Z w2 Zﬂj‘ + Z ui|n=1/?
: 7 :

1<i,j<d—-1
< 4n~Y/? Z |
i

< 4pr—1/2,

On the other hand we can bound from above the smallest eigenvalue of V,,.
Indeed, for all 1 <k < (d—1), we have [V, ]k, — > [Vilka = s (1 —E?ZQ ) =
prpr > 6/d. Hence V), > (6/d)1.

So that (1 — Cn='/2t7/8) V), < Ve < (14 Cn=Y/2t7/5) V,,, where C depends
only on the dimension d. We end the computation of the bound for the first term
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of (8.92) with:

e 21 6_%17(‘/}“},71)71%
IN(@,V,) — N(@, Via)lls = / _ dz
27‘( d—1 det(V ) \/(27‘()d_1 det(V#ﬁ,n)

zT\/lflz
XD\ ~3aren-17717/5)
/ V@r(1 = Cn=Y25 [5))a-Ldet(V,,)
wTVljlw
EXP | —3a=cn-177775)
/(1 + Cn17217/5))dL det (V)
_l4CnTPs 1 -CnTVPS
T1-Cn Y25 1+ Cn 25
S 02n_1/2+v/57

where Cj still depends only on the dimension, as long as Cn~/27 < §/2.

The second term of (8.92) corresponds to convolving Gaussians with sharper and
sharper functions. Now, we may upper bound ||f * g||1 by Rsup, ||V f(z)| for g
a probability density supported on the ball of radius R. So that

a,n w,n n Cf(n)
|B*™ — BE % U], < N

where C depends only on the dimension, and where we have used n7=1/2 < 0/2.
The third term is the one where we use KMT theorem. Indeed, for all 4, for

any positive z that, for all z, for all @ € 5,, g, using as an intermediate step the
probability space (€2, .4, ¢) on which «,, and B are built, we may write

|B e M w U

Py ey’

1

< / |\Bﬁ7"(w) * U™ — TnM:ﬂ,n Lon (W) *xU™|1 dg(w)
Q 1 oMy

T +clnn
<P | sup |an(t)— B(t)] > ———
Lem” (0 - B > 2 ]

sup / U™ (2) = U™(z +y)|dz
lylloe s et SRt
f(n)—=z— clnn)d_1

< Kexp(—Az) + (1 - )
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We now tackle the last term of (8.92). We break it in two parts, the first being
the large deviations, and the second coming explicitly from the convolution. For
any e,

n n n n n
T M o kU =T M
1 ’

ceeshby TR 1
T"M™; . (x)
n Ky seenly
<2 Z M,uf’" ..... pim (A) + sup . M ( ) —1
AEAL 1724 € ’ d [lz]|[<n LT Y
’ le—ylloc <f(n)/vn ! d

Now, the second term can be upper bounded by

d M:ﬂ‘,n Nﬁyn()\l,..w)\j,...?)\d)
(1+ f(n)) sup — -1
j; AEAp 1 2te Mu'lll,n).”7“g,7l(A1 +1,..0—1,..., )
¢ AlM;)

<7 swp

j=2 AEAL 1/24€
< (1+ f(n))Cn~ 2%/,

where we have recalled the assumption n”~'/2 < §/2, and where C is a constant
depending only on the dimension d.

Putting the four losses together and specifying f(n) = n'/* and z = n°,
up Wltl n
5(Mn,gn) < C(Tl 1/4+e +7’L_1/2+7)/6

for n=1/2*7 > (C§/2 and C depending only on the dimension d and the universal
constants ¢, K, A from Theorem 8.9.5.

Adding the part (8.89), and noticing that « — 1 > ¢ — 1/2 for small enough e,
ends the proof of Lemma 8.8.1.

From here, proving Lemma 8.8.8 (that is the inverse direction) is easy enough.

Indeed, remembering that o™7"p%"™ = p?™ and that ¢” is a contraction, we get

1

So that we have the same speed and conditions as those of Lemma 8.8.1.



8.9 (Even more) technical proofs 269

8.9.7 Proof of Lemma 8.8.3

First we compute ¢6 in the Fock basis.

Notice that ¢6 “factorizes” in m; j, meaning that the number m; ; is indepen-
dent of the other components of m. Indeed, remember that F(CHI—1D/2) =

F(C)®4(d=1/2 anq the second expression for ¢¢ in (8.21).

It is now easy to check that ¢0 is diagonal in the |m) basis. Indeed:

—
”|/exp( 22,51 ) |21, Xzi,51dzi.5mi )

27
/ rexp <— —T > ’I”ml 5T, Jdr/ ei(m?,j_mi,j)wddj
'm 0 lmz 1 0

=0 if mm» #+ mm.

Now, if m; ; = m{ ; + 1 for one precise (4, j) and the other coordinates are equal,
then

- 1L -
(m'|¢’|m") = j(molﬂﬁolmO)-
1
Indeed, we may re-use the former formula, and then integrate by parts:

— i
(ml| / exp< Jm?) 24Xz g1z lmd )

_ °n /J‘ 2 oml .
= 1' dd) rexp r"iddr
m; /J‘J
3

1 Hj Hi 2 2m} —1
= — |27T/0 o exp( " (2m; )r dr

0,J

) 277/ r exp <— &73) P25 dr
Hi z) ! 0 /J‘J

145 [ — i
== (m},| / exp (- — |Zm‘|2) 26,5 + GigNzig + Gigldzigm? ;)
Mo C Hj

= 2 (m[¢m").

3

LIS H%ﬁj(ﬁ)mi’jlmﬂml- (8.93)

meNda-1)/2 i<j Hi Hi

We now approximate precisely enough T (py 0, ™). Using (8.41), we can write

nef - ST (%

mei<j

) T (jmy) (my|) (8.94)
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with Cﬁ a normalization constant. Notice that we have absorbed into it the
i
factor Hl 1 ( & ")

Since n®~! < §/2 and a > 1/2 > 7, we know that all m such that |m| < n” is in
A. We can then compute Cj\f, on the one hand, and divide the left hand side of

equation (8.94) in two parts. Furthermore, since uf’n = p; + O(n~Y2%7), when

m| <, )
(“{ ) :(ﬂ> (14 O(nYFH§)),

;" i

We can also write:

ey (s

|m|<nm i<j

mij ﬁ n\ "MiJ
ti” me:|m|>nn i<j M

The second part is less than on? (1 —8)"" for n” > CIn(n) /8, where C depends
only on the dimension. In that case, this term is negligible before O(n='/2+7+1/§).
Hence:

e

S I (“3> o + O(n~ Y2+ /5)

mekE, i<j
> () oo
meNd(d—1)/2 i<j

_ H Hi — [y + O(n—1/2+v+7l/5)
ey M

We then recall that for unit vectors, we have |||¥) (| —|6) (@]]|1 = 24/1 — |(¥]|@)|2.
So that, using Lemma 8.7.2, we obtain

IVAIm) (ma [V — [m) {ml ]|, = O(n("772)/24/51/6)

when |m| < n".

Putting that back in formula (8.94), we obtain T (pg’ﬁ’n), so that

B = Y I ()

meNd(d—1)/2 ’L<j

+ O(n= V2N )5 n(On=/24 151/6) (g 95)

Comparing with (8.93), we get the lemma.
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8.9.8 Proof of Lemma 8.8.5

The key is to notice that, as we are dealing with a group, there is a r such
that U~1( + 2,0,n)U(C,0,n)U(z,0,n) = U(—C + 2,0,n)U((,0,n)U(z,0,n) =
U(r,s,n), or the same formula with A instead of U. Now we shall prove below
that, under the condition that both ¢ and z are smaller than n®, then ||r|| + ||s|| =
O(n=1/?+28/5). Let us call this the domination hypothesis for further reference.

Now, as the actions are unitary, we may rewrite the norm in Lemma 8.8.5:

A= [lagrm — agmazmios) |

= [axCrmager - agrazmigo @),

= [[[7d = AX>"1([0x)(0A Dl

As T is an isometry, we may also let it act the left and 7 on the right and get:

A = [lo)(0] = TXAY>" T3 (|0)(0])]],
= [10)(0] = Ir) (x[lly + [[[r) (x| = THAY*"TX(|0) (O],

By the domination hypothesis, the norm of r is dominated by n_1/2+25/(5, hence
(r|0) = 1—-0O(n=*%4/§), so that the first term is O(n~'/2+28§=1/2)_ Notice that
this is dominated by R(n) given in equation (8.55) since n > 20.

For the second term, we apply Lemma 8.8.4, with z = 0. By the domination
hypothesis, ||s|| < n~'/272%/§, so we may apply Lemma 8.8.4, and the remainder
is given by R(n) in equation (8.55).

We finish the proof of the lemma, and simultaneously that of Theorem 8.5.1, by
proving the domination hypothesis.

By continuity of the product, if x and y are small enough, then U(—z—y)U (2)U (y)
belongs to C, the domain on which the logarithm is defined, introduced at the
beginning of section 8.6. Hence, since ||C||+||z||/v/n < nP~1/2/6, for n'/2=# > C§
for a constant C' depending only on the dimension, we know that

U(~(C+2)/VmU(C/ VU (2/ i) € C, and
v/vin=log [U(~(C+2)/VmU (VU (2/ V)|



272 Quantum local asymptotic normality for d-dimensional states

For practicality, we write

fy)=log |exp | =i Y (x+y)iTij|exp|i >, xi,T;

1<i£j<d 1<i#j<d

exp | ¢ Z Yiili;

1<i£j<d
and, for i # j, with x a complex vector,

(x)is = Re(x; )/l — oy if i < j
I m(x; ;) /1 — g if i < j

With these notations r = /i f(9(C/v/n), g(z/v/n)).

We have C*° functions, so we develop to the second order around (x,y) = (0, 0):

0,0) 9 9(z)i; Of EO "7 2)
S §d v ax”+ Ty 5 Ols@s@l?)

Noticing that f(0,0) = 0 and remembering that we suppose both f and z with
norms smaller than n® we will have proved that ||r|| = O(n~1/2%28/§) when we
have proved that the first-order derivatives of f are null in (0, 0).

Now for any i # j, for all x; ;, if we define x*J = (0,...,0,%;,0,...,0), then

f(x"7,0) = log [exp (—ix; ;T; ) exp (ix; ;T; ;) exp (0)] .
= log [exp (i(x;,; — %4,;)T5,5)]
=0.

We are allowed to write the second line as T; ; of course commutes with itself.

The same holds true for any y; j, so that all first derivatives are zero.
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Samenvatting

Statistiek is de wetenschap van het verkrijgen van informatie uit data. Hoewel
statistische problemen veel verschillende verschijningsvormen hebben, kunnen ze
worden opgesplitst in drie componenten: de studie van het object, de studie van
de gebruikte operaties, en de studie van het precieze wiskundige vraagstuk. In
andere woorden, wat we hebben, wat we kunnen doen en wat we willen weten.

Kwantum statistiek verschilt van de klassieke statistiek op het eerste punt, wat
we hebben. Daarom verschilt zij ook op wat is toegestaan, omdat deze twee
verbonden zijn.

In de klassieke statistiek beginnen we vaak met meetresultaten, welke gemodel-
leerd worden door stochasten met kanswetten. Namelijk, als we grootheid A
of grootheid B kunnen meten, dan kunnen we theoretisch beide ook gezamelijk
meten. Experimenten meten vaak elke bruikbare en toegankelijke grootheid. In
theorie, “wat we kunnen doen” is elke wiskundige methode toepassen om de data
te transformeren. Wiskundig betekent dit het toepassen van elke functie op de
data, zo mogelijk met een random uitkomst. In de praktijk is computerkracht
hiervoor beperkend.

In sommige gevallen, echter, moeten we reeds het studieobject beschouwen en
kiezen welke metingen we uitvoeren. Een kenmerkend voorbeeld is het proberen
te begrijpen wat een zwarte doos doet. We moeten het infilteren met invoer
en elke keer moeten we de invoer kiezen. Deze thematiek heet ontwerp van
het experiment. ‘Wat we kunnen doen” kan sterk afhangen van het specifieke
probleem. De wiskundige beschrijving van deze keuze kan niettemin van zwarte
doos tot zwarte doos verschillen. Maar toch, zodra de meting is uitgevoerd, zijn
er wederom kanswetten en zijn we weer terug in het geval van de vorige alinea.

In kwantum statistiek kan het ontwerp van het experiment niet buiten beschou-
wing gelaten worden. Wanneer wij namelijk A of B kunnen meten, dan verbieden
de wetten van de natuurkunde in het algemeen het meten van A én B. We moeten
dan die meting kiezen die de informatie oplevert die we het hardst nodig hebben.
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Niettemin geeft kwantum statistiek een raamwerk parallel aan dat van de klassie-
ke kansrekening, welke ons precies vertelt “wat we kunnen doen”. Aanvankelijk,
“wat ons gegeven wordt” is een kwantum object, welke gemodelleerd wordt door
een kwantumtoestand. “Wat we kunnen doen” is het meten van de toestand,
resulterend in een stochast als resultaat, of meer algemeen het vervormen van de
kwantum toestand.

“Wat we willen weten” verschilt in de kwantum statistiek zelden van de klassieke
statistiek. Meestal willen we ofwel de informatie in de data samenvatten (sta-
tistische inferentie), ofwel een hypothese weerleggen, ofwel zien welke hypothese
het beste de data beschrijft (toetsen), ofwel precies schatten welke onderliggende
verschijnselen de data genereren (schatten). Gewoonlijk kunnen deze allemaal
beschreven worden door een klassieke parameter. Een uitzondering doet zich
voor wanneer onze benchmark intrinsiek kwantum is, bijvoorbeeld wanneer we
een kwantum toestand proberen na te bootsen.

We beschrijven nu kort de wiskundige formulering van de kwantum statistiek,
omdat het verschilt van de klassieke statistiek.

Een kwantum object wordt beschreven door een toestand, dat wil zeggen een
niet-negatieve operator p met spoor één op een Hilbert ruimte H.

Metingen worden beschreven door Positieve Operator-Waardige Maten (POVM,
“Positive Operator-Valued Measure” in het engels), dat wil zeggen een verzame-
ling {M(A)}4c4 van operatoren, met (X, A) een kansruimte. Deze operatoren
hebben de volgende eigenschappen: ze zijn niet-negatief, M(X) = 1y en voor
elke disjuncte aftelbare collectie (4;);en geldt > M(A;) = M (| 4).

Het resultaat van een meting M op de toestand p is een klassieke stochast X in
(X, A), met kansverdeling P[X € A] = Tr(pA).

Ten slotte worden kwantum transformaties beschreven door kanalen, dat wil zeg-
gen spoor-behoudende volledig positieve afbeeldingen tussen matrix of operator
algebra’s.

Dit proefschrift bestaat uit twee delen. In het eerste deel behandelen verschillende
problemen uit de kwantum statiestiek. In het tweede deel concentreren we op
het thema kwantum lokale asymptotische normaliteit,.

In hoofdstuk 2 bestuderen we discriminatie problemen in de minimax setting.
Namelijk, gegeven een toestand, of een Pauli kanaal, moeten we de waarden be-
palen in een eindige verzameling. Dit is reeds bestudeerd in het Bayesiaanse
raamwerk. In het eerste scenario willen we de fout van de voorspelling minima-
lizeren. Nu correspondeert de minimax oplossing met de Baysiaanse oplossing
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met een zo ongunstig mogelijke a priori verdeling. Nochthans, terwijl we met het
Beysiaanse criterium altijd de eenvoudigste meting — een observabele — kunnen
gebruiken, moeten we mogelijk onze toevlucht zoeken tot algemene metingen in
de minimax setting. Wanneer we toestanden beschouwen kunnen we ook pro-
beren nooit een fout antwoord te geven, terwijl het ons we wel is toegestaan te
bekennen “dat we het niet weten”. We moeten dan zo vaak mogelijk antwoorden.
Als de toestand zuiver is, verkrijgen we altijd een expliciete optimale meting in
de minimax setting, in tegenstelling tot in het Beysiaanse geval. Dit werk is in
samenwerking met d’Ariano and Sacchi.

In hoofdstuk 3 behandelen we de schatting van een geheel onbekend kanaal in
SU(d). We vinden schattingssnelheden in 1/n2. We hebben geen ancilla nodig,
maar moeten gebruik maken van verstrengeling. Representaties van groepen
vormen het belangrijkste wiskundige gereedschap.

Hoofdstuk 4 behandelt een orde relatie op POVM’s, geintroduceerd door Buscemi
et al. (2006). Een POVM P is zuiverder dan een andere POVM Q als we een
kanaal £ kunnen vinden zodat het invoeren van een toestand in p and het meten
van de uitvoer met P equivalent is met het uitvoeren van de meting Q. We
geven een voldoende voorwaarde waaronder een POVM extreem, of zuiver, is.
We bewijzen dat deze voorwaarde noodzakelijk is als alle POVM elementen rang
één of volledige rang hebben. In het bijzonder voldoen alle POVM’s op qubits
aan deze voorwaarde.

Gemotiveerd door de situatie dat we slechts één deeltje van een verstrengeld
systeem kunnen meten, hebben Petz et al. (2006) het begrip van gecomplemen-
teerde subalgebra’s geintroduceerd: A en B zijn gecomplementeerd als A4 © 1
orthogonaal is aan B. We bewijzen in hoofdstuk 5 dat het onmogelijk is vijf
gecomplementeerde subalgebra’s van M (C*) te vinden, die allemaal isomorf zijn
aan M (C?). Dit is gezamenlijk werk met Petz.

Deel II gaat over kwantum lokale asymptotische normaliteit. Lokale asymptoti-
sche normality is het simpelste voorbeeld van de convergentie van experimenten
theorie van Le Cam. Het stelt ons bijvoorbeeld al in staat optimaliteit te bewij-
zen van de meest aannemelijke schatter voor geschikte onderling onathankelijke
en identiek verdeelde experimenten. We hebben de theorie gegeneraliseerd naar
het kwantum geval.

Een experiment is een collectie £ = {pg,0 € ©} van kwantum toestanden. We
weten dat de onbekende toestand p tot £ behoort.

Samen met Guta hebben we de sterke convergentie van onderling onafhankelijke
en identiek verdeelde experimenten &, = {p?/” ﬁ,ﬁ € @} bewezen, met p een

toestand op een eindig dimensionale Hilbert ruimte, die op een gladde manier
afhangt van @, met © een begrensde open deelverzameling van R%. De limiet
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is F = {¢p,0 € O}, waar de ¢’ Gaussische toestanden zijn op een algebra van
kanonieke commutatie relaties, en 6 een displacement parameter is.

Met sterke convergentie bedoelen we dat er kanalen 7, en S, zijn, zodat

Supgy ‘
impliceert dat alle besliskundige problemen (bijna) dezelfde antwoorden hebben
in&, enin F.

Tn(pzb/’i/ﬁ) - (beHl en supy pr?/"\/ﬁ - Sn(¢9H1 naar nul convergeren. Dit

In feite krijgen we iets meer dan dat. We kunnen namelijk © laten groeien met
N, polynomiaal maar niet te snel, en we hebben ook polynomiale convergentie-
snelheden van bovenstaande normen. Dit staat toe dat we procedures globaal
kunnen aanpassen, in plaats van rond een specifieke pg. De kanalen T, en S,
hangen namelijk van pg af en niet van p. Dus gebruiken we eerst een verdwijnend
deel van de n kopieén van p om een schatting p te krijgen, en gebruiken dan het
kanaal T;, geassocieerd met p. We gebruiken dan dezelfde procedure die we bij
een gegeven ¢ € F zouden gebruiken.

Het kwantum Gaussische experiment F is erg bekend. We weten bijvoorbeeld de
optimale strategie om 6 te schatten met kwadratische verlies functies. We kunnen
dan asymptotisch optimale procedures verkrijgen voor hetzelfde probleem voor
ieder eindig dimensionaal experiment.

Hoofdstuk 6 maakt dit expliciet voor qubits, namelijk als p gedefinieerd is op C2.
Dit is gezamenlijk werk met Guta.

Hoofdstuk 7 suggereert een methode voor het implementeren van de kanalen 75,
voor qubits in een labotarium, door het koppelen van de spins met het electro-
magnetisch veld. We laten zien dat de lange termijn oplossing van de kwantum
stochastische differentiaalvergelijking correspondeert met de toestand van spins
die het veld in lekken. Dit is gezamenlijk werk met Guta en Janssens.

Ten slotte geeft hoofdstuk 8 de bewijzen voor alle eindig dimensionale systemen,
waarbij po verschillende eigenwaarden heeft. Het bewijs is erg technisch en maakt
gebruik van representaties van groepen. Een opvallend lemma is dat de basis van
een semi-standaard Young tableaux “bijna” orthogonaal is. Dit is gezamenlijk
werk met Guta.



Résumé

Les statistiques, étymologiquement sciences de I’Etat, peuvent étre vues comme
I’art de tirer des informations de données. Quoiqu’ils puissent prendre des formes
trés variées, tout probléme de statistiques peut se décomposer en trois morceaux :
I'objet étudié, les opérations que nous pouvons effectuer, et la question mathé-
matique précise. En d’autres termes, ce que nous avons, ce que nous pouvons
faire, et ce que nous voulons savoir.

Les statistiques quantiques différent des statistiques classiques sur le premier
point, ce aue nous avons. Par ricochet, elles en différent aussi sur le second, ce
que nous pouvons faire.

En statistiques classiques, nous partons en général du résultat des mesures
physiques, qui sont modélisées par des variables aléatoires et leurs lois de pro-
babilité correspondantes. En effet, si nous pouvons mesurer les quantités A et
B, nous pouvons en théorie mesurer les deux simultanément. Les expériences
mesurent souvent toutes les quantités utiles et accessibles. En théorie, «ce que
nous pouvons faire» est appliquer n’importe quelle transformation mathématique
aux données, éventuellement avec une composante aléatoire supplémentaire. En
pratique, la puissance de calcul peut étre un facteur limitant.

Dans certains cas, cependant, nous devons considérer d’ors-et-déja 'objet étudié,
et choisir quelle mesure effectuer. Par exemple, si nous voulons comprendre le
fonctionnement d’une boite noire, nous devons la sonder avec différentes entrées,
une nouvelle entrée a chaque fois. Cette thématique reléve des «plans d’expé-
riencey. «Ce que nous pouvons faire» dépend largement du probléme spécifique.
Dans le cas de la boite noire, nous pouvons choisir notre entrée. La description
mathématique de ce choix peut varier d’une boite noire & une autre, cependant.
Toutefois, une fois la mesure effectuée, nous avons de nouveau des probabilités,

et sommes de retour au paragraphe précédent.

En statistiques quantiques, le plan d’expérience est inévitable. En effet, si nous
pouvons mesurer A ou B, les lois méme de la physique nous interdisent de me-
surer simultanément A et B, en général. Nous devons donc choisir quelle mesure
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nous apporte les informations les plus utiles. Néanmoins, la macanique quantique
fournit un cadre paralléle & celui des statistiques classiques, qui nous dit exacte-
ment «ce que nous pouvons fairey. Initialement, «ce que noua avonsy est un objet
quantique, modélisé par un état quantique. «Ce que nous pouvons faire» est me-
surer l’état, et obtenir une variable aléatoire classique, ou bien plus généralement
transformer ’état quantique.

«Ce que nous voulons savoiry» ne différe guére en statistiques quantiques et clas-
siques. Le plus souvent, nous souhaitons soit résumer les informations contenues
dans les données (inférence statistique), soit infirmer une hypothése ou choisir la
meilleure hypothése dans un ensemble fini (test), soit deviner avec précision le
phénomeéne qui a généré les données (estimation). Les réponses a ces questions
sont toutes décrites par un parameétre classique. L’exception est quand nous cher-
chons & obtenir un objet intrinséquement, quantique, comme par exemple quand
nous essayons de cloner le plus précisément possible un état.

Il est temps de décrire le formalisme mathématique des statistiques quantiques.

Un objet quantique est décrit par un état, c’est-a-dire un opérateur positif p, de
trace un, sur un espace de Hilbert 7.

Les mesures sont décrites par des mesures a valeur dans les opérateurs positifs
(POVM), c’est-a-dire un ensemble {M(A)} aca d’opérateurs, ou (X,.A) est un
espace de probabilité. Ces opérateurs sont positifs, M(X) = 1y, et M est o-
additive, i.e. M(|JA;) = Y. M(A;) pour toute collection dénombrable de A;
disjoints.

Le résultat de la mesure M effectuée sur I’état p est une variable aléatoire clas-
sique X & valeurs dans (X, A), de loi P[X € A] = Tr(pA).

Enfin, les transformations quantiques sont décrites par des canaux, c’est-a-dire
des applications complétement positives qui préservent la trace, entre algébres de
matrices ou d’opérateurs.

Cette thése comprend deux parties. La premiére traite de divers problémes de
statistiques quantiques, la seconde est consacrée a la normalité asymptotique
locale quantique.

Au Chapitre 2, nous appliquons le critére minimax a des problémes de discrimi-
nation qui n’avaient jusqu’ici été traités que du point de vue bayésien. On nous
donne un état ou un canal et il s’agit de savoir duquel il s’agit parmi un ensemble
fini connu & 'avance. Si on essaie de minimiser les erreurs, dans les deux cas, la
solution minimax correspond au pire cas de Bayes. Toutefois, la mesure & effec-
tuer pour deux états est toujours simple (une observable) dans le cas bayésien, et
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peut étre plus compliquée en minimax. Pour les états, on peut aussi imposer de
ne répondre qu’a coup sur, en permettant de dire «je ne sais pasy». Pour les états
purs (de rang un), on a toujours une solution explicite en minimax, ce qui n’est
pas le cas dans une approche bayésienne. Ceci est un travail en collaboration avec
d’Ariano et Sacchi.

Au Chapitre 3, nous nous intéressons a I'estimation d’un canal unitaire totale-
ment inconnu, paramétré par SU(d). Nous prouvons des vitesses de convergence
quadratique en 1/n?, comme c’était connu pour SU (2). Il n’est pas besoin d™utili-
ser un systéme auxiliaire. L’outil physique est 'intrication, ’outil mathématique
les représentations de groupe.

Le chapitre 4 a trait & une relation d’ordre sur les POV Ms, introduite par Buscemi
et al. [2005]. Une POVM P est plus propre qu'une autre Q si on peut obtenir
Q en faisant passer I’état & mesurer dans un canal, puis en le mesurant avec P.
Nous établissons une condition suffisante pour que P soit propre (extrémale), et
montrons qu’elle est nécessaire si tous ses éléments sont de rang un ou plein, ce
qui est notamment le cas sur les qubits.

Motivé par le cas ol on ne peut mesurer qu'une seule particule d’un systéme
intriqué, Petz et al. [2006] a introduit la notion de sous-algébres complémentaires :
A et B sont complémentaires si A © 1 est orthogonale & 5. Nous prouvons au
Chapitre 5 qu’il est impossible de trouver cinq sous-algebres isomorphes & Ms(C)
deux & deux complémentaires dans M4(C) (cas de deux qubits intriqués). Ceci
est un travail en collaboration avec Petz.

La partie II est consacrée a la normalité asymptotique locale quantique. La nor-
malité asymptotique locale. est le cas le plus simple de la théorie de la convergence
d’expériences de Le Cam. Elle est déja assez puissante pour montrer I'optimalité
asymptotique de I’estimateur du maximum de vraisemblance pour les expériences
i.1.d., par exemple. Nous avons généralisé cette théorie au cas quantique.

Une expérience est la donnée d’un ensemble & = {py,0 € O} d’états quantiques.
Ce que nous savons est que 1’état inconnu p qui nous est donné est dans €.

Nous avons prouvé avec Madalin Guta la convergence forte des expériences .i.d.
définies par &,, = {p?/” N 6 € O} pour p de dimension finie dépendant de maniére

lisse de A, un paramétre 3 valeurs dans un ouvert borné de R?, vers une expérience

F ={¢?,0 c ©}, ot les ¢’ sont des états gaussiens sur I’algébre des relations de
commutation canoniques, et 6 est un paramétre de déplacement.

Convergence forte signifie qu’il existe des canaux 7, et S, tels que
supy ||Tn(p§/”ﬁ) —¢?||1 et sup, ||p(;®/"\/ﬁ —Sn(¢?)|1 tendent vers 0. La conséquence
est que tous les problémes de théorie de la décision ont (presque) les mémes so-
lutions dans &, et F.
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En fait, nous obtenons un peu mieux. Nous pouvons laisser © grandir avec n,
polynomialement quoique pas trop vite, et nous avons aussi des vitesses de conver-
gence polynomiales pour les normes ci-dessus. Cela permet de transposer globale-
ment des procédures d’'une expérience vers l'autre, au lieu de le faire uniquement
autour d’'un py particulier. En effet les canaux T, et S,, dépendent de pg, bien
qu’ils ne dépendent pas de p. De ce fait, nous pouvons tout d’abord utiliser une
proportion négligeable de nos n copies de p pour en obtenir une estimation gros-
siére p, et nous utilisons ensuite le canal T}, correspondant & p. Nous appliquons
alors la méme procédure que si on nous avait donné ¢ € F.

Or Dexpérience gaussienne quantique F est trés bien connue. Par exemple, nous
connaissons la stratégie optimale pour estimer 6 avec une perte quadratique.
Nous obtenons donc une procédure asymptotiquement optimale pour le méme
probléme dans ’expérience de dimension finie.

Le Chapitre 6 explicite ceci pour les qubits, c’est-a-dire si p est défini sur C2.
Ceci est un travail en collaboration avec Guta.

Le Chapitre 7 suggére une méthode pour implanter les canaux T}, pour les qubits
en laboratoire, via un couplage des spins avec le champ électromagnétique. Nous
prouvons que la solution & long terme de ’équation différentielle stochastique
quantique correspond au passage de l’état des spins dans le champ. Ceci est un
travail en collaboration avec Guta et Janssens.

Enfin, nous donnons les preuves pour tous les systémes de dimension finie au
Chapitre 8, quand py a des valeurs propres distinctes deux a deux. La preuve
repose sur un usage trés technique des représentations de groupe. Un lemme
intéressant per se reléve que la base des tableaux de Young semi-standards est
“presque” orthogonale. Ceci est un travail en collaboration avec Guta.
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