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In a nutshell (I)

Everyday statistics: The role of a statistician in research and consultation ...   Two way 
interaction, adapting models to findings, adapting questions to findings.   Two popular 
paradigms: frequentist, Bayesian.   Pros and cons; modern pragmatic synthesis (not a 
dichotomy but a spectrum).   Different applications require a different place in the spectrum 
(or even a move in another dimension).

Statistics in the court room is however not everyday statistics. Present consensus in forensic 
statistics: the statistician should merely report the likelihood ratio (LR). This because 
combining information and drawing conclusions is the job of the jury/the judges.  The 
statististician must just report what her expertise tells her about the question put her by the 
judge (statistics:  modelling/interpreting/learning from chance).  NB difference between 
statistics in police criminal investigation and in the court room.

Problems with LR: 
• who determines the hypotheses?
• which data?
• must the defense specify/accept a hypothesis?
• importance of how the data was obtained: evidence = message + messenger
• composite hypotheses
• posthoc hypotheses
• interpretation, dangers [ignorance=uniform probability?  3 doors problem.  Lucia]



 In a nutshell (II)

Examples:  
1.)  DNA matching. Database-search controversy
2.)  Forensic glass; modelling of between and within source variatie (Aitken et al.)         

We need to develop (empirically calibrated) likelihood ratio                                        
(solve curse of dimension: empirical Bayes?, statistical learning? targeted likelihood)

 3.)  Lucia de B. shift-roster data
 4.) Tamara Wolvers case: combination of various (poor) DNA traces

In each of the examples, even the simplest, I’ll show that there are a lot of problems with 
the LR approach. Big challenges (both from legal and statistical point of view). Two-
way interaction is necessary, preferably before we meet in the court-room!

References: 
Robertson and Vignaux: don’t teach statistics to lawyers!
Seeking truth with statistics:
      http://plus.maths.org/latestnews/may-aug04/statslaw/index.html
Meester & Sjerps: Database search controversy and two-stain problem
Sjerps: Statistiek in de rechtszaal.    Stator. http://www.kennislink.nl/web/show?id=111865

http://plus.maths.org/latestnews/may-aug04/statslaw/index.html
http://plus.maths.org/latestnews/may-aug04/statslaw/index.html


Everyday statistics

• Intensive two-way interaction between 
statistician and subject-matter expert (client)

 Cyclic process of re-evaluation of data/
models/questions

 or

• Use of standard methodology in standard 
situation where the user knows what 
“standard” means (2 ×)

cf. 3 door problem;
Probiotica research;
Prosecutors and defence-attorney’s fallacy



Not in the court-room
• Classical (frequentistic) statistics: 

 significance tests

 confidence intervals

 p-values   ... 

 are neither appropriate nor understood

• Bayesiaanse (subjective) statistics is too complex, 
not appropriate (illegal)

• No place for discussion with subject-matter expert



What are we left with?
• Likelihood ratio  (LR):  numerical expression of  “weight of 

evidence”

• LR = Prob ( evidence | prosecution )

       ÷    Prob ( evidence | defense )

• Bayes theorem: 

 posterior odds

   =   prior odds             

     ×    LR



Bayes, sequential

• posterior odds (given A, B, C) =

 prior odds  ×  LR for A, B, C

• LR for A, B, C

 = LR for A

    × LR for B given A

    × LR for C given A, B

extend to tree and then to marginalisation and conditioning in arbitrary trees – Bayes nets



Example 1: DNA match
• Chance of profile “A” is 1 in  5,000

• DNA perpetrator (“crime stain”) has profile “A”

• DNA suspect has profile “A”

• Prob( match | perpetrator profile, prosecution )  = 1

• Prob( match | perpetrator profile, defence)  =    

           1 / 5,000

• LR= P( data | HP) / P( data | HD )=5,000



DNA match after
“database search”

• Suspect found in data-base of  5,000  people, in 
which he is the only match

• Prob. of a unique match is approx. e–1,   
“weight of evidence” is about 2.7

• LR of 5,000 was for a “post-hoc” hypothesis



Alternative LR for DNA match
• Compute simultaneous probability of  all  

profiles in database  and  “crime-stain” under 
two hypotheses (perpetrator in / not in 
database)

• LR = quotient of these two probs

 (in our case: a unique match, profile “A”)

 LR = 

 1 / size database × frequency profile “A”

 = 1    

 [but if database = whole population?!]



DNA match:
1 or 2.7 or 5,000 !?

• What is “the evidence” ?

• What are the hypotheses?

• Meester and Sjerps: the “a priori” chance that 
the suspect is the source of the DNA in the 
crime-stain is very different when he was 
found from the database, than when he was 
already a suspect! It’s not the statistician’s job 
to specify these prior probabilities!

(posthoc problem)



• The LR for a post-hoc hypothesis is only meaningful in 
a total Bayesian approach                                                            
[cf. lottery winner]

• The “evidence” is not just the DNA match but also the 
reason why the match was found –  the message + 
messenger!           [Indeed: missing evidence is also evidence!]

• The LR should be determined on the basis of a priori 
specified hypotheses and for carefully described 
“evidence”; only then is it interpretable                          
[a LR of 5,000 occurs less than once in 5,000 times, if HD is true]



Example 2:
Forensic glass

• Database: measurements of elemental composition 
of glass fragments (% Si, Na, Al, ...)

 within source  and  between source  variation

• Case:  2  samples:  fragment(s) broken window 
pane at scene of crime,  fragment(s) in the 
suspect’s clothing

• Combine similarity of the 2 samples with their 
rarity in the light of other samples (cf. database) 

cf:  LCN and incomplete DNA-profile;  signatures and 
handwriting; fingerprints; texts; extasy pills; ...



Forensic glass

• prosecution: 2 fragments same pane

• defence: 2 fragments different panes

• Aitken et al.: estimate LR = p(x,y)/p(x)p(y)      
with advanced applied statistical methodology ... 
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cf. master-thesis Sonja Scheers

Forensic glass



Forensic glass
• Challenging statistics (high dimensional 

compositional data, many zero’s; parametric? 
non-parametric?)

• At their best, the models are a rough approx.

• The data-base is not really a random sample...

• In the situation when the evidence counts, we are 
making a gross extrapolation

• Need: validation, calibration.                           
Sufficiency: the likelihood ratio of the likelihood ratio is 
itself. So the empirical likelihood ratio of the likelihood 
ratio should be itself!



Forensic glass

• Sufficiency: the likelihood ratio of the likelihood ratio is 
itself!

• Proposal: “estimate” the likelihood ratio anyway you like

• It’s a function of the 2 samples (crime scene, suspect)

• Use the data-base to sample LR’s under both hypotheses 
(prosecution, defense:  HP , HD  )

• Estimate the ratio of the densities of the two sampled LR’s 
(which should be monotone)

• Test the hypothesis of monotony



Forensic glass
• Estimation, testing is based on greatest convex minorant of 

the QQ plot of sample under HP against the combined 
sample HP + HD

• Proposal: “estimate” the likelihood ratio anyway you like

• It’s a function of the 2 samples (crime scene, suspect)

• Use the data-base to sample LR’s under both hypotheses

• Estimate the ratio of the densities of the two sampled LR’s 
(which should be monotone)

• Test the hypothesis of monotony using non-parametric 
generalised likelihood ratio test



Example 3: Lucia
 Original data 

• Fisher exact test

 p = 15 per billion

• Binomial test (days w. incident & L.) 

 p = 50 per million

Shifts Incident No  inc. Total

Lucia 9 133 142
No L. 0 887 887
Total 9 1020 1029

Shifts Incident No  inc. Total
Lucia 7 135 142
No L. 4 883 887
Total 11 1018 1029

 Corrected data

• Fisher exact test

 p = 0.2 pro mille

• Binomial test (days w. incident & L.) 

 p = 4 % • Heterogeneity model, JKZ+RKZ, p = 5%



Lucia: problems
• The data:  “selection bias”,                            

definition “shift w. incident” – blinding?

• [Bayes vs. frequentistic]

• LR: specification hypotheses prosecution, 
defence?  Post-hoc!

• The notion of “chance” is not unequivocal; 
“ignorance” does not guarantee  “pure 
chance”

• Information from other periods in same ward?



Lucia: epidemiological,
causal thinking

• Clusters of incidents between long incident-less 
periods seems to be the norm

• Shifts follow a regular pattern

 so if one incident “hits” your shifts it is likely 
there’ll be more

• Serious empirical research into the “normal 
situation” has never, ever, been done!

• World-wide epidemic of collapsed cases

(In Lucia case, 7=2+2+3 incidents belonged to 3 children)



Example 4

• Tamara Wolvers: three separate kinds of DNA 
evidence

• Three separate forensic reports, in each case “the 
DNA profile does not exclude the suspect”

• Neither prosecution nor judge could combine the 
three match chances (can it be done??  ...)

• The suspect went free

• No “control” measurements (what is normal?)



Conclusion

• Statistics in court is still far from everyday 
statistics; it is challenging and important for 
lawyers and statisticians

• For the time being: use in detection rather 
than proof?



Appendix:
Bayes nets, the solution of everything ?

• Bulldozer-ram-robbery

• Sweeney case

Bayes net/graphical model:  quantitative combination of 
(sometimes contradictory) evidence of varying character

Compute likelihood ratio for complex composite evidence, 
taking account of dependence and independences
(Taroni,  Aitken, Dawid, ...)



Bulldozer-ram-robbery 

Hierarchy of propositions:
source (the stain is from the defendant)
activity (contact, transfer)
crime (guilt, innocence)

The forensic statistician restricts herself 
to source and activity

Conclusion:  ... taught us much, but unsatisfactory



The probability that Kevin Sweeney murdered his wife ... 

is very small indeed

Richard Gill, Aart de Vos

University Leiden, Free University Amsterdam

Draft discussion paper

March 25, 2008

It was a warm summer night in 1995. Kevin Sweeney left his wife Suzanne Davies at 

their new home in Steensel (near Eindhoven) at 02:00 a.m. Between 02:47 and 03:00, 

two policemen and the housekeeper walked all around the house not  noticing 

anything, in response to a burglar alarm at the alarm centre.  At about 03:45 a fire was 

reported – clients still on sitting on the terrace of the café across the road saw flames 

in the upstairs bedroom window. Firemen arrived at 03:55. Suzanne Davies was 

pronounced dead at 04:37 by carbon monoxide poisoning. Many facts were unclear, 

but the main riddle is the time span if Kevin set the fire alight before 2.00. House 

room fires start rapidly. In 6 attempts by TNO (using petrol and a naked flame) the 

fire spread within 5 minutes. But also fires started by a discarded cigarette start very 

rapidly.

At the lower court Kevin was not convicted, because of lack of proof. In the appeal 

case (initiated by the public prosecutor), that lasted 3.5 years, he was convicted. In 

2001 he was given 13 years for murder.

The basis for law case calculations is Bayes’ rule for two alternatives: 

posterior odds is prior odds times likelihood ratio: 

    P(Guilty|Facts)      =       P(Guilty)         !        P(Facts|Guilty)   

P(Not Guilty|Facts)       P(Not Guilty)          P(|Facts|Not Guilty) 

The puzzle we will address here is the computation of P(Facts|Guilty) as far as it 

concerns the aspects of the time span between Kevin leaving home (2:00) and the 

conflagration (3:45). The trick is to use indirect reasoning through T: the time the fire 

was causing the CO poisoning. 

First we derive P(T|I), where I stands for information, the facts:

 C: conflagration at 3:45. 

 No: Nothing noticed at 3:00

 O: the state of CO poisoning at 4:00 (i.e., still just alive)

Kevin Sweeney case

See also  A. Derksen (2008), Het OM in de Fout

The first  part is true by definition,  and P(G|T,I )= P(G|T) as the information I is no 

longer relevant once T is known.

We can say  something about P(T|G). That is the distribution of the time it takes from 

the time it is started till it  gets serious. Mostly short (in the case of arson) as the TNO 

experiments showed (the analysis can even be extended such that use these data are 

used!).

The link with P(G|T) is given by the odds formula:

P(G|T) / P(¬ G|T) = P(G) / P(¬ G)  !  P(T|G) / P(T|¬ G)

for each value of T.

If the fire is not the result of arson (the most plausible alternative is a burning 

cigarette), any moment that the fire starts is, without further information, equally 

likely. So P(T|¬ G)=1/6. We get the following spreadsheet:

   likelihood If prior   

   ratio Odds P(G|T)!

T P(T|I) P(T|G) P(T|G)/ 10 P(G|T) P(T|I)

2:00  P(T|¬ G) Post odds  

2:15 3.0E-09 0.9 5.4 54 0.982 2.9E-09

2:30 5.9E-08 0.09 0.54 5.4 0.844 5.0E-08

2:45 1.2E-05 0.009 0.054 0.54 0.351 4.2E-06

3:00 4.8E-04 0.0009 0.0054 0.054 0.051 2.4E-05

3:15 4.8E-02 0.00009 0.00054 0.0054 0.005 2.6E-04

3:30 9.5E-01 0.000009 0.000054 0.00054 0.001 5.1E-04

P(G|I) 0.080%

The likelihood ratio is simply P(T|G)/(1/6). The prior odds P(G)/P(¬ G) are here 

chosen 10 (a prior probability  of guilt of 10/11). The posterior odds P(G|T)/P(¬ G|T) 

are transformed to P(G|T)=1/(1+P(G|T)/P(¬ G|T)). Multiplication with P(T|I) and 

summation gives the required result: the probability that Sweeney is guilty given our 

assumptions is 0.08%. In other words: he is almost surely innocent.

This is our probability statement. And we are not the judge. We filled in numbers 

according to our knowledge. And we gave the grammar to decompose this problem 

into bits one can argue about, using advice from experts in the spread of fire, CO 

poisoning etc. And the prior odds that we put at 10 stand for a lot of information: 

everything else which we know about the case, aside from the evidence which we 

treated explicitly.

One aspect can be dealt with some statistics: fires are in 1.5% deliberately lit, in 0.4% 

caused by smoking and in 2.5% the cause is unclear. But there are also very many 

rather specific circumstances. Sweeney’s behaviour might seem unexpected in certain 

respects. These are all things the judge has to put into her “prior odds”. And she might 

have prior odds a 100 to 1. However, look at the following table:



 

 

 

 

 

 

 

 

 

Het ‘vergeten’ tijdspad. 
 

De anatomische ontleding van een bewijscorpus voor moord door 

brandstichting; met het ‘scheermes’ van Ockham. 

 

 

Een presentatie van kardinale onderzoeksblunders, gevolgd door een 

chronologische reconstructie en vaststelling van de oorzaak en toedracht van de 

brand op 17 juli 1995 te Steensel, met daarbinnen een kritische beschouwing van 

de bewijsmiddelen bij het arrest van het  

Hof te Den Bosch van 20 februari 2001 

Parketnummer 20.0001 93.97,  

 

ten behoeve van een aanvraag tot herziening en de afwikkeling daarvan.  

 

  

 

 

Opgesteld door: 

 Drs. F.W.J. Vos 

F.I. Fire E. 

 

 

 

 

Schottheide,  17 mei 2008. 

 

F.W.J. Vos, 17 mei 2008 

Distinguish between definite primary observation and secondary interpretations thereof;
also the observations which ought to have been there ... 
showed that our Bayes net was based on completely wrong ideas (forensic fire-expert F.  Vos).

F.  Vos:  all observation compatible with a completely “normal” accident

Needed: expert combination of fire-forensic, chemical, pathological, toxicological evidence

Kevin Sweeney case

Conclusion:  ... if you need statistics... ?


