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Plan of first lecture

Historical remarks and motivation

The basic notions: states, measurements, channels

Current topics in Quantum Statistics

State estimation; Quantum Cramér-Rao



Plan of second lecture

Local asymptotic normality for i.i.d. states

Quantum Cramér-Rao revisited

[Local asymptotic normality for quantum Markov chains]



Plan of third lecture

Quantum learning, sparsity

Bell inequalities, quantum non-locality

The measurement problem: the new eventum mechanics

Don’t worry...

There will be no third lecture!
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Quantum mechanics up to the 60’s

Q.M. predicts probability distributions of measurement outcomes

Perform measurements on huge ensembles

Observed frequencies = probabilities

Old Paradigm

It makes no sense to talk about individual quantum systems

E. Schrödinger
[“Are there quantum jumps ?”, British J.Phil. Science 1952]

“We are not experimenting with single particles, any
more than we can raise Ichtyosauria in the zoo.

We are scrutinizing records of events long after they
have happened.”



Are there quantum jumps ?

Paul ion trap

This article reviews the various quantum-jump ap-
proaches developed over the past few years. We focus
on the theoretical description of basic dynamics and on
simple instructive examples rather than the application
to numerical simulation methods.

Some of the topics covered here can also be found in
earlier summaries (Erber et al., 1989; Cook, 1990;
Mo” lmer and Castin, 1996; Srinivas, 1996) and more re-
cent summer school lectures (Mo” lmer, 1994; Zoller and
Gardiner, 1995; Knight and Garraway, 1996).

II. INTERMITTENT FLUORESCENCE

Quantum mechanics is a statistical theory that makes
probabilistic predictions of the behavior of ensembles
(ideally an infinite number of identically prepared quan-
tum systems) using density operators. This description
was completely sufficient for the first 60 years of the
existence of quantum mechanics because it was gener-
ally regarded as completely impossible to observe and
manipulate single-quantum systems. For example,
Schrödinger (1952) wrote
. . . we never experiment with just one electron or atom or
(small) molecule. In thought experiments we sometimes
assume that we do; this invariably entails ridiculous con-
sequences. . . . . In the first place it is fair to state that we
are not experimenting with single particles, any more than
we can raise Ichthyosauria in the zoo.

This (rather extreme) opinion was challenged by a re-
markable idea of Dehmelt, which he first made public in
1975 (Dehmelt, 1975, 1982). He considered the problem
of high-precision spectroscopy, where one wants to mea-
sure the transition frequency of an optical transition as
accurately as possible, e.g., by observing the resonance
fluorescence from that transition as part (say) of an
optical-frequency standard. However, the accuracy of
such a measurement is fundamentally limited by the
spectral width of the observed transition. The spectral
width is due to spontaneous emission from the upper
level of the transition, which leads to a finite lifetime t of
the upper level. Basic Fourier considerations then imply
a spectral width of the scattered photons of the order of
t21. To obtain a precise value of the transition fre-
quency, it would therefore be advantageous to excite a
metastable transition that scatters only a few photons
within the measurement time. On the other hand, one
then has the problem of detecting these few photons,
and this turns out to be practically impossible by direct
observation. Dehmelt’s proposal, however, suggests a
solution to these problems, provided one would be able
to observe and manipulate single ions or atoms, which
became possible with the invention of single-ion traps
(Paul et al., 1958; Paul, 1990) (for a review, see Horvath
et al., 1997). We illustrate Dehmelt’s idea in its original
simplified rate-equation picture. It runs as follows.

Instead of observing the photons emitted on the meta-
stable two-level system directly, he proposed using an
optical double-resonance scheme as depicted in Fig. 1.
One laser drives the metastable 0↔2 transition while a
second strong laser saturates the strong 0↔1; the life-

time of the upper level 1 is, for example, 1028 s, while
that of level 2 is of the order of 1 s. If the initial state of
the system is the lower state 0, then the strong laser will
start to excite the system to the rapidly decaying level 1,
which will then lead to the emission of a photon after a
time that is usually very short (of the order of the life-
time of level 1). This emission restores the system to the
lower level 0; the strong laser can start to excite the
system again to level 1, which will emit a photon on the
strong transition again. This procedure repeats until at
some random time the laser on the weak transition man-
ages to excite the system into its metastable state 2,
where it remains shelved for a long time, until it jumps
back to the ground state, either by spontaneous emission
or by stimulated emission due to the laser on the 0↔2
transition. During the time the electron rests in the
metastable state 2, no photons will be scattered on the
strong transition, and only when the electron jumps back
to state 0 can the fluorescence on the strong transition
start again. Therefore, from the switching on and off of
the resonance fluorescence on the strong transition
(which is easily observable), we can infer the extremely
rare transitions on the 0↔2 transition. Therefore we
have a method to monitor rare quantum jumps (transi-
tions) on the metastable 0↔2 transition by observation
of the fluorescence from the strong 0↔1 transition.

A typical experimental fluorescence signal is depicted
in Fig. 2 (Thompson, 1996), where the fluorescence in-
tensity I(t) is plotted. However, this scheme only works
if we observe a single quantum system, because if we
observe a large number of systems simultaneously, the
random nature of the transitions between levels 0 and 2
implies that some systems will be able to scatter photons
on the strong transition, while others will not because
they are in their metastable state at that moment. From
a large collection of ions observed simultaneously, one
would then obtain a more or less constant intensity of
photons emitted on the strong transition.

The calculation of this mean intensity is a straightfor-
ward task using standard Bloch equations. The calcula-

FIG. 1. The V system. Two upper levels 1 and 2 couple to a
common ground state 0. The transition frequencies are as-
sumed to be largely different so that each of the two lasers
driving the system couples to only one of the transitions. The
1↔0 transition is assumed to be strong while the 2↔0 transi-
tion is weak.

102 M. B. Plenio and P. L. Knight: Quantum-jump approach to dissipative dynamics . . .

Rev. Mod. Phys., Vol. 70, No. 1, January 1998

3 level atom driven by 2 lasers

tion of single-system properties, such as the distribution
of the lengths of the periods of strong fluorescence, re-
quired some effort, which eventually led to the develop-
ment of the quantum-jump approach. Apart from the
interesting theoretical implications for the study of indi-
vidual quantum systems, Dehmelt’s proposal obviously
has important practical applications. An often-cited ex-
ample is the realization of a new time standard using a
single atom in a trap. The key idea here is to use either
the instantaneous intensity or the photon statistics of the
emitted radiation on the strong transition (the statistics
of the bright and dark periods) to stabilize the frequency
of the laser on the weak transition. This is possible be-
cause the photon statistics of the strong radiation de-
pends on the detuning of the laser on the weak transi-
tion (Kim, 1987; Kim and Knight, 1987; Kim et al., 1987;
Ligare, 1988; Wilser, 1991). Therefore a change in the
statistics of bright and dark periods indicates that the
frequency of the weak laser has shifted and has to be
adjusted. However, for continuously radiating lasers this
frequency shift will also depend on the intensity of the
laser on the strong transition. Therefore, in practice,
pulsed schemes are preferable for frequency standards
(Arecchi et al., 1986; Bergquist et al., 1994).

Due to the inability of experimentalists to store, ma-
nipulate, and observe single-quantum systems (ions) at
the time of Dehmelt’s proposal, both the practical and
the theoretical implications of his proposal were not im-
mediately investigated. It was about ten years later that
this situation changed. At that time Cook and Kimble
(1985) made the first attempt to analyze the situation
described above theoretically. Their advance was stimu-
lated by the fact that by that time it had become possible
to actually store single ions in an ion trap (Paul trap;
Paul et al., 1958; Neuhauser et al., 1980; Paul, 1990).

In their simplified rate-equation approach Cook and
Kimble started with the rate equations for an incoher-
ently driven three-level system as shown in Fig. 1 and

assumed that the strong 0↔1 transition is driven to
saturation. They consequently simplify their rate equa-
tions, introducing the probabilities P1 of being in the
metastable state and P2 of being in the strongly fluo-
rescing 0↔1 transition. This simplification now allows
the description of the resonance fluorescence to be re-
duced to that of a two-state random telegraph process.
Either the atomic population is in the levels 0 and 1, and
therefore the ion is strongly radiating (on), or the popu-
lation rests in the metastable level 2, and no fluores-
cence is observed (off). They then proceed to calculate
the distributions for the lengths of bright and dark peri-
ods and find that their distribution is Poissonian. Their
analysis, which we have outlined very briefly here, is of
course very much simplified in many respects. The most
important point is certainly the fact that Cook and
Kimble assume incoherent driving and therefore adopt a
rate-equation model. In a real experiment coherent ra-
diation from lasers is used. The complications arising in
coherent excitation finally led to the development of the
quantum-jump approach. Despite these problems, the
analysis of Cook and Kimble showed the possibility of
direct observation of quantum jumps in the fluorescence
of single ions, a prediction that was confirmed shortly
afterwards in a number of experiments (Bergquist et al.,
1986; Nagourney et al., 1986a, 1986b; Sauter et al., 1986a,
1986b; Dehmelt, 1987) and triggered a large number of
more detailed investigations, starting with early works
by Javanainen (1986a, 1986b, 1986c). The subsequent ef-
fort of a great number of physicists eventually culmi-
nated in the development of the quantum-jump ap-
proach. Before we present this development in greater
detail, we should like to study in slightly more detail
how the dynamics of the system determines the statistics
of bright and dark periods. Again assume a three-level
system as shown in Fig. 1. Provided the 0↔1 and 0↔2
Rabi frequencies are small compared with the decay
rates, one finds for the population in the strongly fluo-
rescing level 1 as a function of time something like the
behavior shown in Fig. 3 (we derive this in detail in a
later section). We choose for this figure the values
g1@g2 for the Einstein coefficients of levels 1 and 2,
which reflects the metastability of level 2. For times
short compared with the metastable lifetime g2

21 , the
atomic dynamics can hardly be aware of level 2 and
evolve as a 0–1 two-level system with the ‘‘steady-state’’
population r̄ 11 of the upper level. After a time g2

21 , the
metastable state has an effect, and the (ensemble-
averaged) population in level 1 reduces to the appropri-
ate three-level equilibrium values. The ‘‘hump’’ Dr11
shown in Fig. 3 is actually a signature of the telegraphic
fluorescence discussed above. To show this, consider a
few sequences of bright and dark periods in the tele-
graph signal as shown in Fig. 4. The total rate of emis-
sion R is proportional to the rate in a bright period
times the fraction of the evolution made up of bright
periods. This gives

R5g1 r̄ 11S TL

TL1TD
D , (1)

FIG. 2. Recorded resonance fluorescence signal exhibiting
quantum jumps from a laser-excited 24Mg+ ion (Thompson,
1996). Periods of high photon count rate are interrupted by
periods with negligible count rate (except for an unavoidable
dark-count rate).
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Recorded fluorescence signal from 1 ion

First experiments with individual quantum systems

Measurements with stochastic outcomes

Stochastic Schrödinger equations



Influx of mathematical ideas in the 70’s

E. B. Davies V. P. Belavkin A. S. Holevo C. W. Helstrom

Probability

what is the nature of quantum noise ?

Filtering Theory

what happens to the quantum system during measurement ?

Information Theory

how to encode, transmit and decode quantum information ?

Statistics

what do we learn from measurement outcomes ?



Quantum Information and Technology

New Paradigm

Individual quantum systems are carriers of a new type of information

Emerging fields:

Quantum Information Processing

Quantum Computation and Cryptography

Quantum Probability and Statistics

Quantum Filtering and Control

Quantum Engineering and Metrology P. Shor



State estimation in quantum engineering

Multiparticle entanglement of trapped ions

[Häfner et al, Nature 2005]

Experiment validation: statistical ‘reconstruction’ of the quantum state

48 − 1 = 65 535 parameters to estimate (8 ions)

10 hours measurement time

weeks of computer time (‘maximum likelihood’)



System identification for complex dynamics

Photosynthesis: energy from light is transferred to a reaction center

Complex system in noisy environment

Theoretical modelling in parallel with statistical ‘system
identification’

Find appropriate preparation and measurement designs



Quantum Filtering and Control
Suppression of spin-projection noise – closed loop

JM Geremia, John Stockton and HM, quant-ph/0401107v4

real-time feedback
enables robust 

spin-noise suppression

[Quantum Magnetometer, Mabuchi Lab]

Observe and control quantum systems in real time

Dynamics governed by Quantum Stochastic Differential equations

Need for effective low dimensional dynamical models (e.g. ‘Gaussian
approx.’)



Quantum mechanics as a probability theory

States

Observables



Quantum mechanics as a probabilistic theory

States

Observables

Measurements

Channels

Instruments



Quantum states

Complex Hilbert space of ‘wave functions’ H = Cd , L2(R)...

State = preparation: ‘density matrix’ ρ on H

I ρ = ρ∗ (selfadjoint)
I ρ ≥ 0 (positive)
I Tr(ρ) = 1 (normalised)

Pure state: one dimensional projection Πψ = |ψ〉〈ψ| with ‖ψ‖ = 1

Mixed state: convex combination of pure states ρ =
∑
i qiΠψi

Natural distances: τ := ρ1 − ρ2

‖τ‖1 := Tr(|τ |) ‖τ‖2
2 := Tr(τ 2), h(ρ1, ρ2) := 1−Tr

(√
ρ

1/2
1 ρ2ρ

1/2
1

)



Example: spin (qubit) states

Any density matrix ρ on C2 is of the form

ρ(~r) :=
1

2

(
1 + rz rx − iry
rx + iry 1− rz

)
=

1

2
(1+ rxσx + ryσy + rzσz) , ‖~r‖ ≤ 1

ρ(~r) is pure if and only if ‖~r‖ = 1

Bloch sphere representation

z

y

x

!r



Quantum observables
Observable: selfadjoint operator A on H

Spectral Theorem (diagonalisation):

A =

∫

σ(A)⊂R
aΠ(da) (A =

∑

j

ajΠj)

Probabilistic interpretation: measuring A gives random outcome
A ∈ {aj}

Pρ[A = aj ] = pj = Tr(ρΠj)

Quantum and classical expectations

Tr(ρf (A)) =
∑

j

f (aj)Tr(ρΠj) =
∑

j

f (aj)pj = Eρ(f (A))



Example: spin components

Components of spin in x , y , z directions are given by the Pauli
matrices

σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)

Let ρ = 1
2 (1+~r~σ) then

Pρ[σi = ±1] = (1± ri )/2

Different spin components are incompatible: σxσy − σyσx = 2iσz



Indirect measurements

Most real measurements are

I indirect
I extended in time

tion of single-system properties, such as the distribution
of the lengths of the periods of strong fluorescence, re-
quired some effort, which eventually led to the develop-
ment of the quantum-jump approach. Apart from the
interesting theoretical implications for the study of indi-
vidual quantum systems, Dehmelt’s proposal obviously
has important practical applications. An often-cited ex-
ample is the realization of a new time standard using a
single atom in a trap. The key idea here is to use either
the instantaneous intensity or the photon statistics of the
emitted radiation on the strong transition (the statistics
of the bright and dark periods) to stabilize the frequency
of the laser on the weak transition. This is possible be-
cause the photon statistics of the strong radiation de-
pends on the detuning of the laser on the weak transi-
tion (Kim, 1987; Kim and Knight, 1987; Kim et al., 1987;
Ligare, 1988; Wilser, 1991). Therefore a change in the
statistics of bright and dark periods indicates that the
frequency of the weak laser has shifted and has to be
adjusted. However, for continuously radiating lasers this
frequency shift will also depend on the intensity of the
laser on the strong transition. Therefore, in practice,
pulsed schemes are preferable for frequency standards
(Arecchi et al., 1986; Bergquist et al., 1994).
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the theoretical implications of his proposal were not im-
mediately investigated. It was about ten years later that
this situation changed. At that time Cook and Kimble
(1985) made the first attempt to analyze the situation
described above theoretically. Their advance was stimu-
lated by the fact that by that time it had become possible
to actually store single ions in an ion trap (Paul trap;
Paul et al., 1958; Neuhauser et al., 1980; Paul, 1990).

In their simplified rate-equation approach Cook and
Kimble started with the rate equations for an incoher-
ently driven three-level system as shown in Fig. 1 and

assumed that the strong 0↔1 transition is driven to
saturation. They consequently simplify their rate equa-
tions, introducing the probabilities P1 of being in the
metastable state and P2 of being in the strongly fluo-
rescing 0↔1 transition. This simplification now allows
the description of the resonance fluorescence to be re-
duced to that of a two-state random telegraph process.
Either the atomic population is in the levels 0 and 1, and
therefore the ion is strongly radiating (on), or the popu-
lation rests in the metastable level 2, and no fluores-
cence is observed (off). They then proceed to calculate
the distributions for the lengths of bright and dark peri-
ods and find that their distribution is Poissonian. Their
analysis, which we have outlined very briefly here, is of
course very much simplified in many respects. The most
important point is certainly the fact that Cook and
Kimble assume incoherent driving and therefore adopt a
rate-equation model. In a real experiment coherent ra-
diation from lasers is used. The complications arising in
coherent excitation finally led to the development of the
quantum-jump approach. Despite these problems, the
analysis of Cook and Kimble showed the possibility of
direct observation of quantum jumps in the fluorescence
of single ions, a prediction that was confirmed shortly
afterwards in a number of experiments (Bergquist et al.,
1986; Nagourney et al., 1986a, 1986b; Sauter et al., 1986a,
1986b; Dehmelt, 1987) and triggered a large number of
more detailed investigations, starting with early works
by Javanainen (1986a, 1986b, 1986c). The subsequent ef-
fort of a great number of physicists eventually culmi-
nated in the development of the quantum-jump ap-
proach. Before we present this development in greater
detail, we should like to study in slightly more detail
how the dynamics of the system determines the statistics
of bright and dark periods. Again assume a three-level
system as shown in Fig. 1. Provided the 0↔1 and 0↔2
Rabi frequencies are small compared with the decay
rates, one finds for the population in the strongly fluo-
rescing level 1 as a function of time something like the
behavior shown in Fig. 3 (we derive this in detail in a
later section). We choose for this figure the values
g1@g2 for the Einstein coefficients of levels 1 and 2,
which reflects the metastability of level 2. For times
short compared with the metastable lifetime g2

21 , the
atomic dynamics can hardly be aware of level 2 and
evolve as a 0–1 two-level system with the ‘‘steady-state’’
population r̄ 11 of the upper level. After a time g2

21 , the
metastable state has an effect, and the (ensemble-
averaged) population in level 1 reduces to the appropri-
ate three-level equilibrium values. The ‘‘hump’’ Dr11
shown in Fig. 3 is actually a signature of the telegraphic
fluorescence discussed above. To show this, consider a
few sequences of bright and dark periods in the tele-
graph signal as shown in Fig. 4. The total rate of emis-
sion R is proportional to the rate in a bright period
times the fraction of the evolution made up of bright
periods. This gives

R5g1 r̄ 11S TL

TL1TD
D , (1)

FIG. 2. Recorded resonance fluorescence signal exhibiting
quantum jumps from a laser-excited 24Mg+ ion (Thompson,
1996). Periods of high photon count rate are interrupted by
periods with negligible count rate (except for an unavoidable
dark-count rate).
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Recorded fluorescence signal from 1 ion

3 steps

I couple state ρ with ‘environment’ in state σ: ρ =⇒ ρ⊗ σ

I interaction entangles systems 1 & 2: ρ⊗ σ =⇒ U(ρ⊗ σ)U∗

I measure environment observable A =
P
i aiΠi

Pρ[A = ai ] = Tr1&2(U(ρ⊗ σ)U∗ 1⊗ Πi )

= Tr1&2(ρ⊗ σU∗(1⊗ Πi )U) = Tr(ρMi )

Positive, normalised linear map: ρ 7→ {pi = Tr(ρMi )}



General measurements

Definition

A measurement on H with outcomes in (Ω,Σ) is a linear map

M : T1(H)→ L1(Ω,Σ, µ)

such that pρ := M(ρ) is a probability density w.r.t. µ for each state ρ.

Any M is of the form

Pρ(E ) =

∫

E

pρdµ = Tr(ρm(E ))

for some Positive Operator valued Measure (POVM) {m(E ) : E ∈ Σ}.

Naimark’s Theorem
Any measurement can be realised indirectly by ‘usual’

projection measurement on the environment



Quantum Instrument

ρ ∼∼∼∼∼∼∼∼∼∼∼∼∼∼

σ ∼∼∼∼∼∼∼∼∼∼∼∼∼∼

∼∼∼∼∼∼∼∼∼∼∼∼∼∼ ρi

J
!

A = ai

Measure B =
∑
j bjQj and A =

∑
i aiPj

P[B = bj &A = ai ] = Tr(U(ρ⊗ σ)U∗ Qj ⊗ Pi )

= Tr(U(ρ⊗ |ψ〉〈ψ|)U∗ Qj ⊗ |ei 〉〈ei |)

= Tr(ViρV
∗
i Qj ) = piTr(ρiQj )

where Vi := 〈ei ,Uψ〉 are the Kraus operators with
∑
i V
∗
i Vi = 1

Conditional state ρi = ViρV
∗
i /pi



Quantum Channels

ρ ∼∼∼∼∼∼∼∼∼∼∼∼∼∼

σ ∼∼∼∼∼∼∼∼∼∼∼∼∼∼

∼∼∼∼∼∼∼∼∼∼∼∼∼∼ C(ρ)
J

!

Definition
A quantum channel is a completely positive, normalised linear map

C : T1(H)→ T1(H)

Stinespring-Kraus Theorem

Any channel C is of the form

C (ρ) =
∑

i

ViρV
∗
i ,

for some operators Vi satisfying
∑
i V
∗
i Vi = 1.

Any channel can be realised indirectly by ‘usual’ product construction with some

environment



Summary of quantum probability

States are the analogue of probability distributions

Observables are the analogue of random variables

Dualities: B(H) = T1(H)∗ and L∞(Ω,Σ, µ) = L1(Ω,Σ, µ)∗

Measurements are quantum-to-classical randomisations ρ 7→ Pρ

Channels are quantum-to-quantum randomisations ρ 7→ C (ρ)

Instruments are quantum-to-mixed (classical and quantum)
randomisations



Quantum Statistics

The 70’s

Some current topics

State estimation



Quantum Statistics in the 70’s

Helstrom, Holevo, Belavkin, Yuen, Kennedy...

Formulated and solved first quantum statistical decision problems

I quantum statistical model Q = {ρθ : θ ∈ Θ}

I decision problem (estimation, testing)

I find optimal measurement (and estimator)

Quantum Gaussian states, covariant families, state discrimination...

Elements of a (purely) quantum statistical theory
I Quantum Fisher Information

I Quantum Cramér-Rao bound(s)

I Holevo bound (now known to be the asymptotic quantum
Cramér-Rao bound)

I ...



Asymptotics in state estimation

ρθ ∼∼∼∼∼∼∼∼∼∼

ρθ ∼∼∼∼∼∼∼∼∼∼

ρθ ∼∼∼∼∼∼∼∼∼∼

M(n) ! X(n) ! θ̂n

(Asymptotically) optimal measurements and rates for d = 2

[Gill and Massar, P.R.A. 2002] [Bagan et al. (incl. Gill), P.R.A. 2006]

[Hayashi and Matsumoto 2004] [Gill, 2005]

Local asymptotic normality for d <∞
[Guta and Kahn, C.M.P. 2009]



Quantum Homodyne Tomography

I.I.D. samples from Radon transform of the Wigner function
[Vogel and H. Risken., P.R.A. 1989]

[Breitenbach et al, Nature 1997]

Estimation of infinite dimensional states (non-parametric)
[Artiles Guta and Gill, J.R.S.S. B, 2005] [Butucea, Guta and Artiles, Ann.Stat. 2007]



State estimation and compressed sensing

{A0 := 1, A1, . . . ,Ad2−1} basis in M(Cd)

State ρ is characterised by Fourier coefficients ai := Tr(ρAi )

Often ρ is known to be ‘sparse’ (Rank(ρ) = r � d)

How many (and which) observables are sufficient to estimate ρ ?

Similar to the matrix completion problem (Netflix)

[Candes and Recht, Found. Comp. Math. 2008]



State estimation and compressed sensing

Theorem [Gross 2009]

{A0 = 1,A1, . . . ,Ad2−1} ‘incoherent basis’

Choose i1, . . . , im ∈ {1, . . . , d2 − 1} randomly with m = cdr(log d)2

Measure Aik and obtain the averages ak = Tr(ρAik )

Then with high probability ρ is the unique solution of the s.d.o. problem

L1-minimisation: minimise ‖τ‖1 with constraints

Tr(τ) = 1 and Tr(τAik ) = ak

The proof uses a Bernstein inequality for matrix valued r.v.

[Ahlswede and Winter, IEEE Trans.Inf.Th. 2002]

P

[

‖
m∑

i=1

Xi‖ > t

]

≤ 2de−t
2/4mσ2

, σ2 = ‖E(X 2)‖



Asymptotics in state discrimination

Two hypotheses ρ⊗n and σ⊗n

Test Mn = {A1,n, A2,n = 1− A1,n}

Error probabilities

α(Mn) = Tr(ρ⊗n(1− A1,n)), β(Mn) = Tr(σ⊗nA1,n)



Asymptotics in state discrimination

Two hypotheses ρ⊗n and σ⊗n

Test Mn = {A1,n, A2,n = 1− A1,n}

Error probabilities

α(Mn) = Tr(ρ⊗n(1− A1,n)), β(Mn) = Tr(σ⊗nA1,n)

Quantum Stein Lemma

Let βn(ε) = inf{β(Mn) : α(Mn) ≤ ε}. Then

lim
n→∞

1

n
log βn(ε) = −S(ρ|σ) := −Tr(ρ(log ρ− log σ))

[Hiai and Petz, C.M.P. 1991] [Ogawa and Nagaoka IEEE Trans. Inform. 2000]



Asymptotics in state discrimination

Two hypotheses ρ⊗n and σ⊗n

Test Mn = {A1,n, A2,n = 1− A1,n}

Error probabilities

α(Mn) = Tr(ρ⊗n(1− A1,n)), β(Mn) = Tr(σ⊗nA1,n)

Quantum Chernoff bound

Let pn = inf{π1α(Mn) + π2β(Mn) : Mn} for prior (π1, π2). Then

lim
n→∞

1

n
log pn = − log

(
inf
s∈[0,1]

Tr(ρsσ1−s)

)

[Nussbaum and Szkola, Ann. Stat. 2009] [Audenaert et al C.M.P. 2008]



Estimation of Quantum Channels

ρn

∼∼∼∼∼

∼∼∼∼∼

∼∼∼∼∼

C
θ

C
θ

C
θ

∼∼∼∼∼

∼∼∼∼∼

∼∼∼∼∼

Mn

- X ∼ P
θ
M,n

- θ̂n

Fast(er) estimation rates (n−2) for entangled input states

[Kahn, P.R.A. 2007]

Applications in Quantum Metrology
[Giovanetti et al, Science 2004]



Quantum Cloning and Quantum Benchmarks

Quantum no-cloning Theorem
[381 papers on arXiv.org]

Canal quantique

ρθ
∼∼∼∼∼∼∼∼∼∼∼∼∼∼ C

∼∼∼∼∼∼∼∼∼∼∼∼∼∼ ρθ

∼∼∼∼∼∼∼∼∼∼∼∼∼∼ ρθ

• “Randomisation quantique”

• Transmission par un canal avec du bruit

• Perte de cohérence provoquée par l’interaction avec

l’environnement

Measure and prepare scheme vs teleportation
[Hammerer et al P.R.L. 2005] [Owari et al N.J.P. 2008]

ρθ ∼∼∼∼∼∼∼∼∼∼ M ! X ∼ P(M)
θ ! P ∼∼∼∼∼∼∼∼∼∼ ρX



Quantum state estimation

Set-up

Example: spin rotation model

Quantum Cramér-Rao bound

Quantum Gaussian states



Set-up of quantum estimation problems

Quantum statistical model over Θ:

Q = {ρθ : θ ∈ Θ}

Estimation procedure: measure state ρθ and devise estimator
θ̂ = θ̂(R)

ρθ ∼∼∼∼∼∼∼∼∼∼∼∼∼∼
!M R ∼ P(M)

θ ! θ̂

Measurement design:

I which classical model P(M) = {P(M)
θ : θ ∈ Θ} is ‘best’ ?

I trade-off between incompatible observables

I optimal measurement depends on statistical problem



Example: estimating the direction of the spin vector

One-dim. model: (small) rotation of | ↑ 〉

z

y

x

|ψu〉

|ψu〉 := exp (iuσx) | ↑ 〉 = cos(u)| ↑〉+ sin(u)| ↓ 〉

‘Most informative’ spin observable is σy

E(σy ) = sin(2u) ≈ 2u

Two parameter model |ψux ,uy 〉 = exp(i(uyσx − uxσy ))| ↑ 〉

Optimal measurements for ux and uy are incompatible: [σx , σy ] 6= 0



Quantum Cramér-Rao bound(s)*

Theorem [Helstrom, Holevo, Belavkin]

Let Q = {ρθ : θ ∈ Rk} be a ‘smooth’ quantum model.

For any unbiased measurement M with outcome θ̂ ∈ Rk

Var(θ̂) ≥ I (M)(θ)−1 ≥ H(θ)−1

Helstrom’s Quantum Fisher information matrix

H(θ)i,j := Tr(ρθLθ,i ◦ Lθ,j)

Symmetric logarithmic derivatives: ∂ρθ
∂θj

= ρθ ◦ Lθ,j

*= several inequivalent C.R. bounds exist depending on symmetrisation



Proof (projection valued measurements)
Measure observable X and get result X ≡ θ̂ ∼ Pθ

Hilbert spaces L2(ρθ) and L2(R,Pθ)

〈A,B〉θ := Tr(ρθA ◦ B) 〈f (X), g(X)〉θ = Eθ(f (X)g(X))

Fisher informations

H(θ) := Tr(ρθL
2
θ) = ‖Lθ‖

2
θ

I (M)(θ) := Eθ(`2
θ(X)) = ‖`θ(X)‖2

θ

Isometry

I : L2(R,Pθ) → L2(ρθ)

f (X) 7→ f (X )

Eθ(f (X)g(X)) = Tr(ρθf (X ) ◦ g(X )) = 〈f (X ), g(X )〉θ



Proof for projection valued measurements

The projection of Lθ onto L2(R,Pθ) is `θ(X )

Indeed for every f ∈ L2(pθ)

〈f (X), `θ(X)〉θ =
dEθ(f )

dθ
= Tr

(
dρθ
dθ
f (X )

)
= 〈f (X ),Lθ〉θ

=⇒ ‖`θ‖2
θ ≤ ‖Lθ‖

2
θ

Bound achieved (locally) at θ0 by

X = θ01+
Lθ0

H(θ0)



Trade-off between parameters

One-dimensional model: C.R. bound can be achieved asymptotically

1. measure fraction ñ� n of systems to obtain rough estimator θ0

2. measure L(n)
θ0

:= Lθ0 ⊗ 1⊗ · · · ⊗ 1+ · · ·+ 1⊗ 1⊗ · · · ⊗ Lθ0

3. set θ̂n := θ0 + L(n)
θ0
/H(θ0)

Multi-dimensional model: H(θ) is achievable iff

Tr(ρθ[Lθ,j , Lθ,i ]) = 0, ∀1 ≤ i , j ≤ k

Trade-off between estimation of different coordinates

Optimal measurement depends on loss function (Holevo bound) and
asymptotic risk is not simply expressible in terms of some quantum
information matrix



Optimal estimation using local asymptotic normality

Φθ ∼∼∼∼∼∼∼∼∼∼ H ! Y ∼ P(H,Φθ) ! θ̂

ρθ ∼∼∼∼∼∼∼∼∼∼

ρθ ∼∼∼∼∼∼∼∼∼∼

ρθ ∼∼∼∼∼∼∼∼∼∼

Mn ! Xn ∼ P(Mn, ρθ) ! θ̂n

n → ∞

Sequence of I.I.D. quantum statistical models Qn = {ρ⊗nθ : θ ∈ Θ}

Qn converges (locally) to simpler Gaussian shift model Q

Optimal measurement for limit Q can be pulled back to Qn



Quantum Gaussian states

Quantum ‘particle’ with canonical observables Q,P on H = L2(R)

QP − PQ = i1 (Heisenberg’s commutation relations)

Centred Gaussian state Φ

Tr (Φ exp(−ivQ − iuP)) = exp

(
−

1

2

(
u v

)
V

(
u
v

))

with ‘covariance matrix’ V satisfying the uncertainty principle

Det(V ) =

∣∣∣∣∣∣

Tr(ΦQ2) Tr(ΦQ ◦ P)

Tr(ΦQ ◦ P) Tr(ΦP2)

∣∣∣∣∣∣
≥

1

4



Examples

Vaccum state |0〉

V = Diag( 1
2 ,

1
2 )

P

Q

|0〉

Thermal equilibrium state Φ(s)

V = Diag( s2 ,
s
2 )

P

Q

Φ(s)

Squeezed state |0, ξ〉

V = Diag( e
−ξ

2 , e
ξ

2 )

P

Q

|0, ξ〉



Quantum Gaussian shift model(s)

Displacement operator D(u, v) := exp(ivQ − iuP)

Coherent (laser) state

|u, v〉 := D(u, v)|0〉

P

Q

v

u

|u, v〉

Displaced thermal state
Φ(u, v ; s) = D(u, v)Φ(s)D(u, v)∗

P

Q

v

u

Φ(u, v ; s)



Optimal measurement for Gaussian shift

Oscillator (Q,P) in state |u, v〉

Oscillator (Q ′,P ′) in vacuum state |0〉

Noisy coordinates commute: [Q+,P−] = 0

Q± := Q ± Q ′

P± := P ± P ′

(Q,P )

(Q′, P ′)

(Q+, P+)

(Q−, P−)

Heterodyne measurement (Q+,P−) gives estimator
(û, v̂) ∼ N((u, v), 1)

Theorem
The heterodyne measurement is optimal among covariant measurements
and

achieves the minimax risk for the loss function |u − û|2 + |v − v̂ |2.



Outlook

Statistics is more and more employed in quantum experiments

Remarkable coherence between quantum and classical statistics

Trade-off between estimation of different parameters

Optimal measurement depends on decision problem

More information:

Madalin Guta’s Quantum Statistics course

http://maths.dept.shef.ac.uk/magic/course.php?id=64

Madalin Guta’s Lunteren lectures

http://www.maths.nottingham.ac.uk/personal/pmzmig/Lunteren.pdf
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