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Intersection axiom. 
Well known to be neither  
true nor even an axiom.

X is independent of Y given Z 
and X is independent of Z given Y,  
implies X is independent of Y and Z



Comfort zones 
All variables have:

• Finite outcome space            [Nice for algebraic geometry]


• Countable outcome space


• Continuous joint density with respect to sigma-finite 
product measures                  [Usually not used rigorously]


• Outcome spaces are Polish    ❤

Other “convenience” assumptions: Strictly positive joint density 
Multivariate normal also allows algebraic geometry approach
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The (semi-)graphoid axioms 
of (conditional) independence

1. Symmetry


2. Decomposition


3. Weak union


4. Contraction


5. Intersection (  X ⊥⊥ Y ∣ Z  &  X ⊥⊥ Z ∣ Y  ) ⟹ X ⊥⊥ (Y, Z)

X ⊥⊥ Y ⟹ Y ⊥⊥ X

X ⊥⊥ (Y, Z) ⟹ X ⊥⊥ Y

X ⊥⊥ (Y, Z) ⟹ X ⊥⊥ Y ∣ Z

(  X ⊥⊥ Z ∣ Y  &  X ⊥⊥ Y  ) ⟹ X ⊥⊥ (Y, Z)

1–5: (with further global conditioning): the graphoid axioms. Phil Dawid (1980). 
1–4: ( … ): the semi-graphoid axioms 
So called because of similarity to *graph separation* for subgraphs                                               
of a simple undirected graph: A is separated from B by C 



• The intersection axiom (nr 5):


• “New” result:


where W:= f(Y) = g(Z) for some f, g


• In particular, we can take W = Law((Y, Z) | X)


• If f and g are trivial (constant) we obtain “axiom 5”


• Also “new”: Nontrivial f, g exist such that f(Y) = g(Z) a.e. iff A, B exist 
with probabilities strictly between 0 and 1 s.t.


Call such a joint law decomposable

(X ⊥⊥ Y ∣ Z) & (X ⊥⊥ Z ∣ Y ) ⟺ X ⊥⊥ (Y, Z) ∣ W

Pr(Y ∈ A & Z ∈ Bc) = 0 = Pr(Y ∈ Ac & Z ∈ B)

(X ⊥⊥ Y ∣ Z) & (X ⊥⊥ Z ∣ Y ) ⟹ X ⊥⊥ (Y, Z)
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Construction of counter example



More elaborate counter example 
Leading to the general theorem



Proof of new rule 
Discrete case



Comfort zones
• All variables have finite support (Algebraic Geometry)


• All variables have countable support


• All variables have continuous joint probability densities 
(many applied statisticians)


• All densities are strictly positive


• All distributions are non-degenerate Gaussian


• All variables take values in Polish spaces (My favourite)
Polish space:  
a topological space which can be given a metric making it complete and separable



Please recall
• The joint probability distribution of X and Y can be disintegrated into                      

the marginal distribution of X and                                                                               
a family of conditional distributions of Y given X = x


• The disintegration is unique up to almost everywhere equivalence


• Conditional independence of X and Y given Z is just ordinary independence 
within each of the joint laws of X and Y conditional on Z = z


• For me, 0/0 = “undefined” and 0 x “undefined” = 0  (probability times number)


• So: conditional distributions do exist if we condition on zero probability 
events; they’re just not uniquely defined. 


• The non-uniqueness is harmless



Some new notation
• I’ll denote by “law(X)” the probability distribution (law) of X, where X is a random variable                        

which takes values in a space 𝒳. So law(X) is a probability distribution on 𝒳


• In the finite, discrete case, a “law” is just a vector of real numbers, non-negative, adding 
to one.


• In the Polish case, the set of probability laws on a given Polish space is itself a Polish 
space under, e.g., the Wasserstein metric. Disintegrations exist, Everything is nice.


• The family of conditional distributions of X given Y, (law(X | Y = y))y ∈ 𝒴 can be thought of 
as a function of y ∈ 𝒴. In the Polish case, the function is Borel measurable. 


• As a function of the random variable Y, we can consider it as a random variable, or as a 
random vector talking values in an affine space.


• By Law(X | Y) I’ll denote that random variable, taking values in the space of probability 
laws on 𝒳.

Note distinction: Law vs. law



Crucial lemma

X ⫫ Y  |   Law(X | Y)



Proof of lemma, discrete case 

Recall, X ⫫ Y | Z   ⟺   p(x, y, z) = g(x, z) h(y, z)


Thus X ⫫ Y | L   ⟺  we can factor p(x, y, l) this way


Given function p(x, y), pick any

Lemma: X ⫫ Y  |  Law(X | Y)

x ∈ 𝒳, y ∈ 𝒴, ℓ ∈ Δ|𝒳|−1

p(x, y, ℓ) = p(x, y) ⋅ 1{ℓ = p( ⋅ , y)/p(y)}

= ℓ(x)p(y)1{ℓ = p( ⋅ , y)/p(y)}

= Eval(ℓ, x) . p(y)1{ℓ = p( ⋅ , y)/p(y)}
Proof of lemma, Polish case
Similar, but a tiny bit different – we don’t assume existence of joint densities!

𝝙d = probability simplex, dimension d 
capital L = Law(X | Y), a random probability measure 

Small 𝓁 (“ell”) is a possible realisation



• X ⫫ Y | Z  ⟹  Law(X | Y, Z) = Law(X | Z)


• X ⫫ Z | Y  ⟹  Law(X | Y, Z) = Law(X | Y)


• So we have w(Y, Z) = g(Z) = f(Y) =: W for some functions      
w, g, f


• By our lemma, X ⫫ (Y, Z)  |  Law(X | (Y, Z))


• We found functions g, f such that g(Z) = f(Y) and, with W:= 
w(Y, Z) = g(Z) = f(Y), X ⫫ (Y, Z)  |  W

Proof of forwards implication



• Suppose X ⫫ (Y, Z)  |  W where W = g(Z) = f(Y) for some 
functions g, f


• By axiom 3, X  ⫫ Y  |  (W, Z)


• So X ⫫ Y  |  (g(Z), Z)


• So X ⫫ Y  |  Z


• Similarly,  X ⫫ Z  |  Y

Proof of reverse implication



Sullivant
• Uses primary decomposition of toric ideals to come up with a nice 

parametrisation of the model “Axiom 5”


• Given: finite sets 𝒳, 𝒴, 𝒵, what is the set of all probability measures on their 
product satisfying Axiom 5, and with p(y) > 0, p(z) > 0, for all y, z ?


• Answer: pick partitions of 𝒴, 𝒵 which are in 1-1 correspondence with one 
another. Call one of them “𝒲”. Pick a positive probability distribution on 𝒲. 
Pick indecomposable probability distributions on the products of 
corresponding partition elements of 𝒴 and 𝒵. Pick probability distributions on 
𝒳, also corresponding to the preceding, not necessarily all different


• Now put them together: in simulation terms: generate r.v. W = w∊𝒲. Generate 
(Y,Z) given W =w and independently thereof generate X given W = w.



Polish spaces

• Exactly same construction … just replace “partition” by a 
Borel measurable map onto another Polish space


• “Corresponding partitions” … Borel measurable maps 
onto same Polish space



Questions

• Does algebraic geometry provide any further “statistical” 
insights?


• Can some of you join me to turn all these ideas into a nice 
joint paper?


• Could there be a category theoretical meta-theorem?



Sullivant, book, ch. 4, esp. section 4.3.1
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