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Preface

In this preface we shall give a mathematical introduction to the various topics in the
thesis. The thesis consists of three parts. The first part is devoted to exponential
Diophantine equations in positive characteristic, while the second part revolves around
class number statistics. These two parts form the main body of the thesis, whence the
title of this thesis. The final and third part is a paper that solves the ternary Goldbach
problem for Artin primes.

An exponential Diophantine equation is an equation where some of the variables occur
as exponents. Famous examples of such equations are the Fermat equation

xN + yN = zN in integers N > 2, xyz 6= 0,

where N occurs as an exponent, and the Catalan equation

xm − yn = 1 in integers x, y,m, n > 1,

where m and n occur as exponents. There is a well-known analogy between number
fields and global function fields. Therefore, it is natural to solve these equations over
global (or even more general) function fields instead of number fields. The advantage of
global function fields is that one can use derivations, and this allows us to use elementary
methods to establish our results.

Let K be a finitely generated field over Fp and fix a, b ∈ K∗. In the first chapter we
shall study the generalized Catalan equation

axm + byn = 1 in x, y ∈ K and integers m,n coprime with p.

This equation was already studied by Silverman [67], but his main theorem is false as we
shall demonstrate in the first chapter. We will prove that there are only finitely many
solutions up to a natural equivalence relation provided that the pair (m,n) does not
belong to an explicit finite list.

In the next chapter we shall study the so-called unit equation. Let K be a field of
characteristic 0 and let G be a multiplicative subgroup of K∗ ×K∗. Then the equation

x+ y = 1 in (x, y) ∈ G

v



vi Chapter 0. Preface

is an exponential Diophantine equation. Siegel and Mahler showed finiteness of the
solution set in important special cases, while Lang proved finiteness in general. Mahler
and later Evertse [17] gave upper bounds for the solution sets in important special cases,
while Beukers and Schlickewei [3] gave an upper bound in full generality. Namely, they
showed that there are at most 28r+8 solutions, where r is the rank of G. In characteristic
p > 0 the situation turns out to be rather different. Indeed, if we have

x+ y = 1 for some (x, y) ∈ G,

we can apply Frobenius to find another solution

xp + yp = 1.

Voloch [79] gave an upper bound for the number of solutions up to a natural equivalence
relation. His upper bound depends on both r and p, and he asked if the dependence
on p could be removed. Together with Pagano I gave the upper bound 31 · 19r, which
answers Voloch’s question. To do so, we adapt the method of Beukers and Schlickewei
to positive characteristic.

The final chapter of the first part studies the Fermat surface

xN + yN + zN = 1, (1)

where x, y, z ∈ Fp(t) and N is a positive integer. The main result is that there are in-
finitely many primes N for which equation (1) has no solutions satisfying x, y, z 6∈ Fp(tp)
and x/y, x/z, y/z 6∈ Fp(tp). We also show that the conditions on x, y and z can not be
removed. This chapter is also joint work with Pagano.

The second part of the thesis revolves around the 2-part of the class groups of imaginary
quadratic number fields. Cohen and Lenstra [10] put forward conjectures about the
average behavior of such class groups. Let p be an odd prime. Their conjecture predicts
that for all finite abelian p-groups A

lim
X→∞

|{K imaginary quadratic : |DK | < X and Cl(K)[p∞] ∼= A}|
|{K imaginary quadratic : |DK | < X}|

=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|

,

where DK and Cl(K) are respectively the discriminant and narrow class group of K.
Although Cohen and Lenstra stated their conjecture already in 1984, there are very few
proven instances despite significant effort. Davenport and Heilbronn [14] obtained partial
results in the case p = 3, and the case p > 3 is still wide open. Although the conjecture
was originally stated only for odd p, Gerth proposed the following modification; instead
of Cl(K)[2∞], it is (2Cl(K))[2∞] that behaves randomly. This was recently proven by
Smith [70] and can be considered a major breakthrough in the area.

One way to study Cl(K)[2∞] is by the use of governing fields. Let k ≥ 1 and d 6≡ 2 mod 4
be integers. Then Cohn and Lagarias [11] conjectured that there exists a finite normal
field extension Md,k over Q such that

dimF2

2k−1Cl(Q(
√
dp))

2kCl(Q(
√
dp))
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is determined by the splitting of p in Md,k. Such a hypothetical field Md,k is called
a governing field. Stevenhagen [71] showed in his thesis that governing field exists for
k ≤ 3 and all values of d. If one is able to give an explicit description of Md,3, then one
can get density results for Cl(Q(

√
dp))[8] using the Chebotarev density theorem, where

p varies over the primes.

It is a natural question to ask what happens for Cl(Q(
√
dp))[16], and we analyze this

problem for d = −4 and d = −8. This leads to the following density theorems, and we
devote a chapter to each theorem.

Theorem (joint work with Milovic). Let h(−2p) be the class number of Q(
√
−2p).

Then we have

lim
X→∞

|{p ≤ X : p prime, p ≡ 1 mod 4 and 16 | h(−2p)}|
|{p ≤ X : p prime}|

=
1

16
.

Theorem. Let h(−p) be the class number of Q(
√
−p). Then we have

lim
X→∞

|{p ≤ X : p prime and 16 | h(−p)}|
|{p ≤ X : p prime}|

=
1

16
.

The proof of both theorems do not make any appeal to the theory of L-functions. Instead
they rely on a method due to Vinogradov. This suggests that there is no governing field.
The following theorem, which is proven in the final chapter of the second part, provides
even more evidence towards the non-existence of governing fields.

Theorem (joint work with Milovic). Assume a short character sum conjecture. Then
the field M−4,4 does not exist.

In the final part of this thesis we combine two classical problems in analytic number
theory. The first problem is the well-known ternary Goldbach conjecture which states
that every odd integer n > 5 can be written as the sum of three primes, i.e.

n = p1 + p2 + p3

for primes p1, p2 and p3. Vinogradov [75] showed that every sufficiently large odd
integer admits such a representation, and Helfgott [35] settled the full ternary Goldbach
conjecture. Another famous problem in analytic number theory is Artin’s conjecture
on primitive roots. Let g be an integer that is neither a square nor −1. Then Artin’s
conjecture states that there are infinitely many primes p such that g is a primitive root
modulo p, or in other words g generates the group (Z/pZ)∗. Hooley [36] showed the
veracity of Artin’s conjecture conditional on GRH.

We are interested in writing n as a sum of three primes, all of which have g as primitive
root. The following is a simple corollary of our work that is particularly pleasing to
state.

Corollary (joint with Frei and Sofos). Assume GRH. Then there is a constant C > 0
such that for all odd integers n > C we have the following equivalence: there are odd
primes p1, p2, p3 with 27 as primitive root and n = p1+p2+p3 if and only if n ≡ 3 mod 12.



Chapter 1

The generalized Catalan
equation in positive
characteristic

Abstract

Let K = Fp(z1, . . . , zr) be a finitely generated field over Fp and fix a, b ∈ K∗. We study
the solutions of the generalized Catalan equation axm+byn = 1 to be solved in x, y ∈ K
and integers m,n > 1 coprime with p.

1.1 Introduction

In this article we will bound m and n for the generalized Catalan equation in character-
istic p > 0. Our main result is as follows.

Theorem 1.1.1. Let a, b ∈ K∗ be given. Consider the equation

axm + byn = 1 (1.1)

in x, y ∈ K and integers m,n > 1 coprime with p satisfying

(m,n) 6∈ {(2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (3, 3)}. (1.2)

Then there is a finite set T ⊆ K2 such that for any solution (x, y,m, n) of (1.1), there
is a (γ, δ) ∈ T and t ∈ Z≥0 such that

axm = γp
t

, byn = δp
t

. (1.3)

1
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In the case a = b = 1, a stronger and effective result was proven in [43] based on the
work of [6].

Let us now show that the conditions on m and n are necessary. If (1.2) fails, then (1.1)
defines a curve of genus 0 or 1 over K. It is clear that (1.3) can fail in this case. It is
also essential that m and n are coprime with p. Take for example a = b = 1. Then any
solution of

x+ y = 1

with x, y ∈ K and x, y 6∈ Fp gives infinitely many solutions of the form (1.3) after
applying Frobenius.

The generalized Catalan equation over function fields was already analyzed in [67], where
the main theorem claims that the generalized Catalan equation has no solutions for m
and n sufficiently large. Unfortunately, it is not hard to produce counterexamples to the
main theorem given there. Following the notation in [67], we choose k = Fp, K = k(u),
a = x = u, b = y = 1− u and m = n = pt − 1 for t ∈ Z≥0. Then we have

axm + byn = u · up
t−1 + (1− u) · (1− u)p

t−1 = 1

due to Frobenius, illustrating the need of (1.3).

1.2 Heights

Let K be a finitely generated extension of Fp. The algebraic closure of Fp in K is a
finite extension of Fp, say Fq with q = pn for some n ∈ Z>0. There exists a projective
variety V non-singular in codimension one defined over Fq with function field K.

Our goal will be to introduce a height function on K by using our variety V . For later
purposes it will be useful to do this in a slightly more general setting. So let X be a
projective variety, non-singular in codimension one, defined over a perfect field k. We
write L for the function field of X and we assume that k is algebraically closed in L.

Fix a projective embedding of X such that X ⊆ PMk for some positive integer M . Then
a prime divisor p of X over k is by definition an irreducible subvariety of codimension
one. Recall that for a prime divisor p the local ring Op is a discrete valuation ring, since
X is non-singular in codimension one. Following [48] we will define heights on X. To
do this, we start by defining a set of normalized discrete valuations

ML := {ordp : p prime divisor of X},

where ordp is the normalized discrete valuation of L corresponding to Op. If v = ordp is
in ML, we define for convenience deg v := deg p with deg p being the projective degree
in PMk . Then the set ML satisfies the sum formula for all x ∈ L∗∑

v

v(x) deg v = 0.
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If P is a point in Pr(L) with coordinates (y0 : . . . : yr) in L, then its (logarithmic) height
is

hL(P ) = −
∑
v

min
i
{v(yi)} deg v.

Furthermore we define for an element x ∈ L

hL(x) = hL(1 : x). (1.4)

We will need the following properties of the height.

Lemma 1.2.1. Let x, y ∈ L and n ∈ Z. The height defined by (1.4) has the following
properties:

(a) hL(x) = 0⇔ x ∈ k;

(b) hL(x+ y) ≤ hL(x) + hL(y);

(c) hL(xy) ≤ hL(x) + hL(y);

(d) hL(xn) = nhL(x);

(e) Suppose that k is a finite field and let C > 0 be given. Then there are only finitely
many x ∈ L∗ satisfying hL(x) ≤ C;

(f) hL(x) = hk·L(x).

Proof. Property (a) is Proposition 4 of [47] (p. 157), while properties (b), (c) and (d)
are easily verified. Property (e) is proven in [56]. Finally, property (f) can be found
after Proposition 3.2 in [48] (p. 63).

1.3 A generalization of Mason’s ABC-theorem

For our proof we will need a generalization of Mason’s ABC-theorem for function fields
in one variable to an arbitrary number of variables. Such a result is given in [37]. For
completeness we repeat it here.

Theorem 1.3.1. Let X be a projective variety over an algebraically closed field k of
characteristic p > 0, which is non-singular in codimension one. Let L = k(X) be its
function field and let ML be as above. Let L1, . . . , Lq, q ≥ n+1, be linear forms in n+1
variables over k which are in general position. Let X = (x0 : . . . : xn) ∈ Pn(L) be such
that x0, . . . , xn are linearly independent over Kpm for some m ∈ N. Then, for any fixed
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finite subset S of ML, the following inequality holds:

(q − n− 1)h(x0 : . . . : xn)

≤
q∑
i=1

∑
v 6∈S

deg vmin{npm−1, v(Li(X))− min
0≤j≤n

{v(xj)}}

+
n(n+ 1)

2
pm−1

(
CX +

∑
v∈S

deg v

)
,

where CX is a constant depending only on X.

Proof. This is the main theorem in [37].

1.4 Proof of Theorem 1.1.1

In this section we proof our main theorem.

Proof of Theorem 1.1.1. Let (x, y,m, n) be an arbitrary solution. Let us first dispose
with the case axm ∈ Fq. Then

2hK(x) ≤ mhK(x) = hK(xm) ≤ hK(axm) + hK(a−1) = hK(a−1),

hence there are only finitely many possibilities for x. Now observe that axm ∈ Fq implies
byn ∈ Fq. By the same argument we get finitely many possibilities for y, so we are done
in this case.

From now on we will assume axm 6∈ Fq and hence byn 6∈ Fq. Then it follows that

hK(axm), hK(byn) 6= 0.

Write

axm = γp
t

, byn = δp
s

for some t, s ∈ Z≥0 and γ, δ 6∈ Kp. After substitution we get

γp
t

+ δp
s

= 1.

Extracting p-th roots gives t = s and hence

γ + δ = 1. (1.5)

Our goal will be to apply the main theorem of [37] to (1.5). Note that Theorem 1.3.1
requires that the ground field k is algebraically closed. But a constant field extension
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does not change the height by Lemma 1.2.1(f). Hence we can keep working with our
field K instead of Fp ·K. Define the following three linear forms in two variables X,Y

L1 = X

L2 = Y

L3 = X + Y.

We apply Theorem 1.3.1 with our V , the above L1, L2, L3 and X = (γ : δ) ∈ P1(K). We
claim that γ and δ are linearly independent over Kp. Suppose that there are e, f ∈ Kp

such that
eγ + fδ = 0.

Together with γ + δ = 1 we find that

0 = eγ + fδ = e(1− δ) + fδ = e+ (f − e)δ.

If e 6= f , then this would imply that δ ∈ Kp, contrary to our assumptions. Hence e = f ,
but then we find

0 = eγ + fδ = e

and we conclude that e = f = 0 as desired.

We still have to choose the subset S of MK to which we apply Theorem 1.3.1. First we
need to make some preparations. From now on v will be used to denote an element of
MK . Define

N0 := {v : v(a) 6= 0 ∨ v(b) 6= 0}
N1 := {v : v(a) = 0, v(b) = 0, v(γ) > 0}
N2 := {v : v(a) = 0, v(b) = 0, v(δ) > 0}
N3 := {v : v(a) = v(b) = 0, v(γ) = v(δ) < 0}.

It is clear that N0, N1, N2 and N3 are finite disjoint sets. Before we proceed, we make
a simple but important observation in the form of a lemma.

Lemma 1.4.1. Let (γ, δ) be a solution of (1.5). If v(γ) < 0 or v(δ) < 0, then

v(γ) = v(δ) < 0.

Proof. Obvious.

Recall that

hK(γ) =
∑
v

max(0, v(γ)) deg v =
∑
v

−min(0, v(γ)) deg v

and
hK(δ) =

∑
v

max(0, v(δ)) deg v =
∑
v

−min(0, v(δ)) deg v.
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Lemma 1.4.1 tells us that∑
v

−min(0, v(γ)) deg v =
∑
v

−min(0, v(δ)) deg v,

hence

hK(γ) = hK(δ) =
∑
v

max(0, v(γ)) deg v =
∑
v

−min(0, v(γ)) deg v (1.6)

=
∑
v

max(0, v(δ)) deg v =
∑
v

−min(0, v(δ)) deg v. (1.7)

We will use these different expressions for the height throughout. Let us now derive
elegant upper bounds for N1, N2 and N3. Again we will phrase it as a lemma.

Lemma 1.4.2. Let (γ, δ) be a solution of (1.5). Then

hK(γ) = hK(δ) ≥ m
∑
v∈N1

deg v,

hK(γ) = hK(δ) ≥ n
∑
v∈N2

deg v,

hK(γ) = hK(δ) ≥ lcm(m,n)
∑
v∈N3

deg v.

Proof. We know that

hK(γ) = hK(δ) =
∑
v

max(0, v(γ)) deg v ≥
∑
v∈N1

max(0, v(γ)) deg v.

Now let v ∈ N1. This means that v(a) = v(b) = 0 and v(γ) > 0. Then axm = γp
t

implies

v(a) +mv(x) = ptv(γ)

and hence mv(x) = ptv(γ). But m and p are coprime by assumption, so we obtain
m | v(γ). Because v(γ) > 0, this gives v(γ) ≥ m and we conclude that

hK(γ) = hK(δ) ≥ m
∑
v∈N1

deg v.

Using

hK(γ) = hK(δ) =
∑
v

max(0, v(δ)) deg v ≥
∑
v∈N2

max(0, v(δ)) deg v,

we find in a similar way that

hK(γ) = hK(δ) ≥ n
∑
v∈N2

deg v.
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It remains to be proven that

hK(γ) = hK(δ) ≥ lcm(m,n)
∑
v∈N3

deg v.

Now we use

hK(γ) = hK(δ) =
∑
v

−min(0, v(γ)) deg v =
∑
v

−min(0, v(δ)) deg v

≥
∑
v∈N3

−min(0, v(γ)) deg v =
∑
v∈N3

−min(0, v(δ)) deg v.

Now take v ∈ N3. Then v(γ) = v(δ) < 0. In the same way as before, we can show that
m | v(γ) and n | v(δ). But v(γ) = v(δ) < 0 by Lemma 1.4.1, so we find that

hK(γ) = hK(δ) ≥ lcm(m,n)
∑
v∈N3

deg v

as desired.

Define
S := N0 ∪N1 ∪N2 ∪N3.

Suppose that v 6∈ S. We claim that

v(γ) = v(δ) = 0.

But v 6∈ S implies v 6∈ N0, so certainly v(a) = v(b) = 0. Furthermore, we have that
v 6∈ N1 and v 6∈ N2, which means that v(γ) ≤ 0 and v(δ) ≤ 0. If v(γ) < 0 or
v(δ) < 0, then Lemma 1.4.1 gives v ∈ N3, contradicting our assumption v 6∈ S. Hence
v(γ) = v(δ) = 0 as desired.

From our claim it follows that we have for v 6∈ S and i = 1, 2, 3

v(Li(γ, δ)) = min(v(γ), v(δ)).

Theorem 1.3.1 tells us that

hK(γ : δ) ≤ CW +
∑
v∈S

deg v,

where CW is a constant depending on W only. By Lemma 1.4.2 we find that∑
v∈S

deg v =
∑
v∈N0

deg v +
∑
v∈N1

deg v +
∑
v∈N2

deg v +
∑
v∈N3

deg v

≤ Ca,b +

(
1

m
+

1

n
+

1

lcm(m,n)

)
hK(γ),

where Ca,b is a constant depending on a and b only. Now (1.2) implies

1

m
+

1

n
+

1

lcm(m,n)
< 0.9,
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hence
hK(γ : δ) ≤ 10(CW + Ca,b).

But γ + δ = 1 gives
hK(γ) = hK(δ) = hK(γ : δ).

The theorem now follows from Lemma 1.2.1(e).

1.5 Discussion of Theorem 1.1.1

The conclusion of Theorem 1 tells us that there is a finite set T ⊆ K2 such that for any
solution (x, y,m, n) of (1.1), there is a (γ, δ) ∈ T and t ∈ Z≥0 such that

axm = γp
t

, byn = δp
t

.

Since T is finite, we may assume that γ and δ are fixed in the above two equations. It
would be interesting to further study this equation.



Chapter 2

On the equation x1 + x2 = 1 in
finitely generated
multiplicative groups in
positive characteristic1

Joint work with Carlo Pagano

Abstract

Let K be a field of characteristic p > 0 and let G be a subgroup of K∗ × K∗ with
dimQ(G⊗ZQ) = r finite. Then Voloch proved that the equation ax+by = 1 in (x, y) ∈ G
for given a, b ∈ K∗ has at most pr(pr + p − 2)/(p − 1) solutions (x, y) ∈ G, unless
(a, b)n ∈ G for some n ≥ 1. Voloch also conjectured that this upper bound can be
replaced by one depending only on r. Our main theorem answers this conjecture pos-
itively. We prove that there are at most 31 · 19r+1 solutions (x, y) unless (a, b)n ∈ G
for some n ≥ 1 with (n, p) = 1. During the proof of our main theorem we generalize
the work of Beukers and Schlickewei to positive characteristic, which heavily relies on
diophantine approximation methods. This is a surprising feat on its own, since usually
these methods can not be transferred to positive characteristic.

2.1 Introduction

Let G be a subgroup of C∗ × C∗ with coordinatewise multiplication. Assume that the
rank dimQ G⊗Z Q = r is finite. Beukers and Schlickewei [3] proved that the equation

x1 + x2 = 1

1A slightly modified version of this chapter appeared in the Quarterly Journal of Mathematics,
volume 68, issue 3, pages 923-934.

9



10 Chapter 2. Unit equations in positive characteristic

in (x1, x2) ∈ G has at most 28r+8 solutions. A key feature of their upper bound is that
it depends only on r.

In this paper we will analyze the characteristic p case. To be more precise, let p > 0 be a
prime number and let K be a field of characteristic p. Let G be a subgroup of K∗×K∗
with dimQ G⊗Z Q = r finite. Then Voloch proved in [79] that an equation

ax1 + bx2 = 1 in (x1, x2) ∈ G

for given a, b ∈ K∗ has at most pr(pr + p − 2)/(p − 1) solutions (x1, x2) ∈ G, unless
(a, b)n ∈ G for some n ≥ 1.

Voloch also conjectured that this upper bound can be replaced by one depending only
on r. Our main theorem answers this conjecture positively.

Theorem 2.1.1. Let K, G, r, a and b be as above. Suppose that there is no positive
integer n with gcd(n, p) = 1 such that (a, b)n ∈ G. Then the equation

ax1 + bx2 = 1 in (x1, x2) ∈ G (2.1)

has at most 31 · 19r+1 solutions.

Our main theorem will be a consequence of the following theorem.

Theorem 2.1.2. Let K be a field of characteristic p > 0 and let G be a finitely generated
subgroup of K∗ ×K∗ of rank r. Then the equation

x1 + x2 = 1 in (x1, x2) ∈ G (2.2)

has at most 31 · 19r solutions (x1, x2) satisfying (x1, x2) 6∈ Gp.

Clearly, the last condition is necessary to guarantee finiteness. Indeed if we have any

solution to x1 + x2 = 1, then we get infinitely many solutions xp
k

1 + xp
k

2 = 1 for k ∈ Z≥0

due to the Frobenius operator.

The set-up of the paper is as follows. We start by introducing the basic theory about
valuations that is needed for our proofs. Then we derive Theorem 2.1.2 by generalizing
the proof of Beukers and Schlickewei [3] to positive characteristic. We remark that their
proof heavily relies on techniques from diophantine approximation. Most of the methods
from diophantine approximation can not be transferred to positive characteristic, so that
this is possible with the method of Beukers and Schlickewei is a surprising feat on its
own. It was more convenient for us to follow [19], which is directly based on the proof
of Beukers and Schlickewei. In the final section we shall prove that Theorem 2.1.1 is a
simple consequence of Theorem 2.1.2.

2.2 Valuations and heights

Our goal in this section is to recall the basic theory about valuations and heights with-
out proofs. To prove Theorem 2.1.2 we may assume without loss of generality that
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K = Fp(G). Thus, K is finitely generated over Fp. Note that Theorem 2.1.2 is trivial if
K is algebraic over Fp, so from now on we further assume that K has positive transcen-
dence degree over Fp. The algebraic closure of Fp in K is a finite field, which we denote
by Fq. Then there is an absolutely irreducible, normal projective variety V defined over
Fq such that its function field Fq(V ) is isomorphic to K.

Fix a projective embedding of V such that V ⊆ PMFq for some positive integer M . A
prime divisor p of V over Fq is by definition an irreducible subvariety of V of codimension
one. Recall that for a prime divisor p the local ring Op is a discrete valuation ring, since
V is non-singular in codimension one. Following [48] we will define heights on V . To do
this, we start by defining a set of normalized discrete valuations

MK := {ordp : p prime divisor of V },

where ordp is the normalized discrete valuation of K corresponding to Op. If v = ordp

is in MK , we set deg v := deg p with deg p being the projective degree in PMFq . Then the
set MK satisfies the sum formula ∑

v∈MK

v(x) deg v = 0

for x ∈ K∗. This is indeed a well-defined sum, since for x ∈ K∗ there are only finitely
many valuations v satisfying v(x) 6= 0. Furthermore, we have v(x) = 0 for all v ∈ MK

if and only if x ∈ F∗q . If P is a point in An+1(K) \ {0} with coordinates (y0, . . . , yn) in
K, then its homogeneous height is

Hhom
K (P ) = −

∑
v∈MK

min
i
{v(yi)} deg v

and its height

HK(P ) = Hhom
K (1, y0, . . . , yn).

We will need the following properties of the height.

Lemma 2.2.1. Let P ∈ An+1(K) \ {0}. The height defined above has the following
properties:
1) Hhom

K (λP ) = Hhom
K (P ) for λ ∈ K∗.

2) Hhom
K (P ) ≥ 0 with equality if and only if P ∈ Pn(Fq).

2.3 Proof of Theorem 2.1.2

This section is devoted to the proof of Theorem 2.1.2. We will follow the proof in
[19], see Section 6.4, with some crucial modifications to take care of the presence of the
Frobenius map. The general strategy of the proof in characteristic 0, and how we adapt
it to characteristic p, will be explained after Lemma 2.3.9. Let us start with a simple
lemma.
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Lemma 2.3.1. The equation

x1 + x2 = 1 in (x1, x2) ∈ G (2.3)

has at most pr solutions (x1, x2) satisfying x1 6∈ Kp and x2 6∈ Kp.

Proof. Let x = (x1, x2) and y = (y1, y2) be two solutions of (2.3). We claim that x ≡ y
mod Gp implies x = y. Indeed, if x ≡ y mod Gp, we can write y1 = x1γ

p and y2 = x2δ
p

with (γ, δ) ∈ G. In matrix form this means that(
1 1
γp δp

)(
x1

x2

)
=

(
1
1

)
.

For convenience we define

A :=

(
1 1
γp δp

)
.

If A is invertible, we find that x1, x2 ∈ Kp contrary to our assumptions. So A is not
invertible, which implies that γ = δ = 1. This proves the claim.

The claim implies that the number of solutions is at most |G/Gp|. Let Fq be the algebraic
closure of Fp in K. It is a finite extension of Fp, since K is finitely generated over Fp.
It follows that Gtors ⊆ F∗q × F∗q . Hence |Gtors| | (q − 1)2, which is co-prime to p. We
conclude that |G/Gp| = pr as desired.

Lemma 2.3.1 gives the following corollary.

Corollary 2.3.2. The equation

x1 + x2 = 1 in (x1, x2) ∈ G (2.4)

has at most pr solutions (x1, x2) satisfying (x1, x2) 6∈ Gp.

Proof. Define

G′ := {(x1, x2) ∈ K ×K : (xN1 , x
N
2 ) ∈ G for some N ∈ Z>0}.

It is a well known fact that G′ is finitely generated if G and K are. It follows that G′

is a finitely generated group of rank r. Our goal is to give an injective map from the
solutions (x1, x2) ∈ G of (2.4) satisfying (x1, x2) 6∈ Gp to the solutions (x′1, x

′
2) ∈ G′ of

(2.3) satisfying (x′1, x
′
2) 6∈ Kp and then apply Lemma 2.3.1.

So let (x1, x2) ∈ G be a solution of (2.4) satisfying (x1, x2) 6∈ Gp. We start by remarking
that x1, x2 6∈ Fq. Hence we can repeatedly take p-th roots until we get x′1, x

′
2 6∈ Kp.

Using heights one can prove that this indeed stops after finitely many steps. Then it is
easily verified that (x′1, x

′
2) ∈ G′ is a solution of (2.3) and that the map thus defined is

injective. Now apply Lemma 2.3.1.
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By Corollary 2.3.2 we may assume that p is sufficiently large throughout, say p > 7.
Both the proof in [19] and our proof rely on very special properties of the family of
binary forms {WN (X,Y )}N∈Z>0

defined by the formula

WN (X,Y ) =

N∑
m=0

(
2N −m
N −m

)(
N +m

m

)
XN−m(−Y )m.

We have for all positive integers N that WN (X,Y ) ∈ Z[X,Y ]. Furthermore, setting
Z = −X − Y , the following statements hold in Z[X,Y ].

Lemma 2.3.3. 1) WN (Y,X) = (−1)NWN (X,Y ).
2) X2N+1WN (Y,Z) + Y 2N+1WN (Z,X) + Z2N+1WN (X,Y ) = 0.
3) There exist a non-zero integer cN such that

det

(
Z2N+1WN (X,Y ) Y 2N+1WN (Z,X)
Z2N+3WN+1(X,Y ) Y 2N+3WN+1(Z,X)

)
= cN (XY Z)2N+1(X2 +XY + Y 2).

Proof. This is Lemma 6.4.2 in [19], which is a variant of Lemma 2.3 in [3].

Since the formulas in the previous lemma hold in Z[X,Y ] they hold in every field K.
But if char(K) = p > 0 and p | cN , then part 3) of Lemma 2.3.3 tells us that

det

(
Z2N+1WN (X,Y ) Y 2N+1WN (Z,X)
Z2N+3WN+1(X,Y ) Y 2N+3WN+1(Z,X)

)
= 0

in K[X,Y ]. The following remarkable identity will be handy later on, when we need
that cN does not vanish modulo p.

Lemma 2.3.4. For every positive integer N , one has WN (2,−1) = 4N
( 3

2N
N

)
.

Proof. It is enough to evaluate
∑N
i=0

(
2N−i
N

)(
N+i
N

)
2−i. We have

N∑
i=0

(
2N − i
N

)(
N + i

N

)
2−i =

(
2N

N

)
F

(
−N,N + 1,−2N,

1

2

)
,

where F (a, b, c, z) is the hypergeometric function defined by the power series

F (a, b, c, z) :=

∞∑
i=0

(a)i(b)i
i!(c)i

zn.

Here we define for a real t and a non-negative integer i (t)i = 1 if i = 0 and for i positive
(t)i = t(t + 1) · . . . · (t + i − 1). Now the desired result follows from Bailey’s formulas
where special values of the function F are expressed in terms of values of the Γ-function,
see [49] page 297.

We obtain the following corollary.
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Corollary 2.3.5. Let p be an odd prime number and let N be a positive integer with
N < p

3 − 2. Then cN 6≡ 0 mod p.

Proof. Indeed one has that

det

(
Z2N+1WN (X,Y ) Y 2N+1WN (Z,X)
Z2N+3WN+1(X,Y ) Y 2N+3WN+1(Z,X)

)
evaluated at (X,Y, Z) = (2,−1,−1) gives up to sign 2WN (2,−1)WN+1(2,−1). By the
previous proposition, this is a power of 2 times the product of two binomial coefficients
whose top terms are less than p, hence it can not be divisible by p.

We now state and prove the analogues of Lemmata 6.4.3-6.4.5 from [19] for function
fields of positive characteristic. These are variants of respectively Lemma 2.1, Corollary
2.2 and Lemma 2.3 from [3].

Lemma 2.3.6. Let a, b, c be non-zero elements of K, and let (αi, βi, γi) for i = 1, 2 be
two K-linearly independent vectors from K3 such that aαi + bβi + cγi = 0 for i = 1, 2.
Then

Hhom
K (a, b, c) ≤ Hhom

K (α1, β1, γ1) +Hhom
K (α2, β2, γ2).

Proof. The vector (a, b, c) is K-proportional to the vector with coordinates given by
(β1γ2 − γ1β2, γ1α2 − α1γ2, α1β2 − β1α2). So we have

Hhom
K (a, b, c) = Hhom

K (β1γ2 − γ1β2, γ1α2 − α1γ2, α1β2 − β1α2)

=
∑
v∈MK

−min(v(β1γ2 − γ1β2), v(γ1α2 − α1γ2), v(α1β2 − β1α2)) deg v

≤
∑
v∈MK

(−min(v(β1), v(γ1), v(α1))−min(v(γ2), v(α2), v(β2))) deg v

= Hhom
K (α1, β1, γ1) +Hhom

K (α2, β2, γ2),

which was the claimed inequality.

We apply Lemma 2.3.6 to the equation x1 + x2 = 1.

Lemma 2.3.7. Suppose x = (x1, x2) ∈ G and y = (y1, y2) ∈ G satisfy x1 + x2 = 1 and
y1 + y2 = 1. Then we have HK(x) ≤ HK(yx−1).

Proof. Apply Lemma 2.3.6 with (a, b, c) = (x1, x2,−1), (α1, β1, γ1) = (1, 1, 1) and
(α2, β2, γ2) = (y1x

−1
1 , y2x

−1
2 , 1). Finally use the fact that Hhom

K (1, 1, 1) = 0.

The next Lemma takes advantage of the properties of WN (X,Y ) listed in Lemma 2.3.3
and the non-vanishing of cN modulo p obtained in Corollary 2.3.5.

Lemma 2.3.8. Let x, y be as in Lemma 2.3.7. Let N < p
3 − 2. Then there exists

M ∈ {N,N + 1} such that HK(x) ≤ 1
M+1HK(yx−2M−1).
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Proof. The proof is almost the same as in Lemma 6.4.5 in [19], with only few necessary
modifications. For completeness we give the full proof.

If x1, and thus both x1 and x2 are roots of unity, we have that HK(x) = 0 so the lemma
is trivially true. By Lemma 2.3.3 part 2) we get that

x2M+1
1 WM (x2,−1) + x2M+1

2 WM (−1, x1)−WM (x1, x2) = 0

for M ∈ {N,N + 1} as well as

x2M+1
1 (y1x

−2M−1
1 ) + x2M+1

2 (y2x
−2M−1
2 )− 1 = 0.

Now we claim that there is M ∈ {N,N + 1} such that the vectors

(y1, y2,−1) and (x1
2M+1WM (x2,−1), x2

2M+1WM (−1, x1),−WM (x1, x2)) (2.5)

are linearly independent. Clearly, to prove the claim it is enough to prove that the two
vectors

(x2M+1
1 WM (x2,−1), x2M+1

2 WM (−1, x1),−WM (x1, x2)) (M ∈ {N,N + 1}) (2.6)

are linearly independent. But we know that for M ∈ {N,N + 1} we have cM 6≡ 0 mod p
by Corollary 2.3.5 and the assumption that N < p

3 − 2. Furthermore, x1 and x2 are not
algebraic over Fp. Thus the identity Lemma 2.3.3 part 3) gives us the non-vanishing of
the first 2×2 minor of the vectors in 2.6, which proves the claimed independence. So by
applying to (2.5) the diagonal transformation that divides the first coordinate by x2M+1

1

and the second by x2M+1
2 , we deduce that the two vectors

(y1x
−2M−1
1 , y2x

−2M−1
2 ,−1)

and
(WM (x2,−1),WM (−1, x1),−WM (x1, x2)) =: (w1, w2, w3)

are linearly independent. So by Lemma 2.3.6 we get that

(2M + 1)HK(x) ≤ HK(yx−2M−1) +Hhom
K (w1, w2, w3)

But now the inequality
Hhom
K (w1, w2, w3) ≤M ·HK(x)

follows immediately from the non-archimedean triangle inequality. So we indeed get

(M + 1)HK(x) ≤ HK(yx−2M−1),

completing the proof.

Define
Sol(G) := {(x1, x2) ∈ G \Gtors : x1 + x2 = 1}

and
Prim-Sol(G) := {(x1, x2) ∈ G \Gp : x1 + x2 = 1}.
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It is easily seen that Prim-Sol(G) ⊆ Sol(G). Finally define

S := {v ∈MK : there is (x1, x2) ∈ G with v(x1) 6= 0 or v(x2) 6= 0}.

The set S is clearly finite. Write s := |S|, S = {v1, . . . , vs}. Then we have a homomor-
phism ϕ : G→ Zs × Zs ⊆ Rs × Rs defined by sending (g1, g2) ∈ G to

(v1(g1) deg v1, . . . , vs(g1) deg vs, v1(g2) deg v1, . . . , vs(g2) deg vs).

Note that ϕ(G) is a subgroup of Zs × Zs of rank r.

Let u, v ∈ Sol(G) be such that ϕ(u) = ϕ(v). Suppose that u 6= v. Then Lemma
2.3.7 implies that HK(u) ≤ 0. Hence by Lemma 2.2.1 part 2) it follows that u and
thus v are in Gtors. This implies that the restriction of ϕ to Sol(G) is injective. In
particular the restriction of ϕ to Prim-Sol(G) is injective. We now call S := ϕ(Sol(G))
and PS := ϕ(Prim-Sol(G)). To prove Theorem 2.1.2 it suffices to bound the cardinality
of PS.

Let || · || be the norm on Rs × Rs that is the average of the || · ||1 norms on Rs. More
precisely, we define for u = (u1, u2) ∈ Rs × Rs

||u|| = 1

2
(||u1||+ ||u2||).

We now state the most important properties of S.

Lemma 2.3.9. The set S ⊆ Zs × Zs has the following properties:
1) For any two distinct u, v ∈ S, we have that ||u|| ≤ 2||v − u||.
2) For any two distinct u, v ∈ S and any positive integer N such that N < p

3 − 2, there
is M ∈ {N,N + 1} such that ||u|| ≤ 2

M+1 ||v − (2M + 1)u||.
3) pS ⊆ S.

Proof. Let x = (x1, x2) ∈ G. By construction we have

||ϕ(x)|| = Hhom
K (1, x1) +Hhom

K (1, x2).

Note the basic inequalities

Hhom
K (x1, x2) ≤ Hhom

K (1, x1) +Hhom
K (1, x2) ≤ 2Hhom

K (x1, x2).

It is now clear that Lemma 2.3.7 implies part 1) and Lemma 2.3.8 implies part 2).
Finally, part 3) is due to the action of the Frobenius operator.

Denote by V the real span of ϕ(G). Then V is an r-dimensional vector space over R.
We will keep writing || · || for the restriction of || · || to V .

Recall that our goal is to bound |PS|. We sketch the ideas behind our strategy here. Let
us first describe the strategy in characteristic 0 as used in [3] and [19]. In their work the
set S satisfies part 1) of Lemma 2.3.9 and part 2) of Lemma 2.3.9 without the condition
N < p

3 − 2.
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To finish the proof, they subdivide the vector space V in Br cones for some absolute
constant B. In each cone one can use part 1) of Lemma 2.3.9 to show that two distinct
points u, v ∈ S are not too close. But part 2) of Lemma 2.3.9 shows that inside the
same cone two points u, v ∈ S can not be too far apart. Together with a lower bound
for the height of u, v ∈ S, this proves that there are at most finitely many points u ∈ S,
say A, in each cone. Hence we get an upper bound of the shape A ·Br.

Now we describe how to modify this to characteristic p. Again we subdivide V in Br

cones for some absolute constant B. From now on we only consider points u ∈ PS inside
a fixed cone C. Our goal is to show that there are at most A points u ∈ PS ∩C, where
A is an absolute constant. It follows that then all points v ∈ S ∩ C are of the shape
v = pku for u ∈ PS and k ∈ Z≥0.

Part 1) of Lemma 2.3.9 tells us that two distinct points u, v ∈ PS are not too close.
Using part 3) of Lemma 2.3.9 we can multiply two points u, v ∈ PS with a power of p

in such a way that the then obtained u′, v′ ∈ S satisfy 1 ≤ ||u
′||

||v′|| ≤
√
p. Then we are in

the position to apply part 2) of Lemma 2.3.9, which shows that ||u′|| and ||v′|| are not
too far apart. This allows us to deduce that PS ∩ C contains at most A points.

The following lemma subdivides the vector space V in Br cones for some absolute
constant B.

Lemma 2.3.10. Given a real number θ > 0, one can find a set E ⊆ {u ∈ V : ||u|| = 1}
satisfying
1) |E| ≤ (1 + 2

θ )r,
2) for all 0 6= u ∈ V there exists e ∈ E satisfying || u||u|| − e|| ≤ θ.

Proof. See Lemma 6.3.4 in [19], which is an improvement of Corollary 3.8 in [3].

Let θ ∈ (0, 1
9 ) be a parameter and fix a corresponding choice of a set E satisfying the

above properties. Given e ∈ E , we define the cone

Se :=

{
u ∈ S :

∣∣∣∣∣∣∣∣ u||u|| − e
∣∣∣∣∣∣∣∣ ≤ θ} , PSe := Se ∩ PS.

Fix e ∈ E . We proceed to bound |PSe|. We start by deducing a so-called gap principle
from part 1) of Lemma 2.3.9.

Lemma 2.3.11. Let u1, u2 be distinct elements of Se, with ||u2|| ≥ ||u1||. Then
||u2|| ≥ 3−θ

2+θ ||u1||.

Proof. Write λi := ||ui|| for i = 1, 2. Then we have ui = λie+ u′i where ||u′i|| ≤ θλi, by
definition of Se. Part 1) of Lemma 2.3.9 gives

λ1 ≤ 2||(λ2 − λ1)e+ (u′2 − u′1)|| ≤ 2(λ2 − λ1) + θ(λ2 + λ1),

and after dividing by λ1 we get that

1 ≤ 2

(
λ2

λ1
− 1

)
+ θ

(
λ2

λ1
+ 1

)
.
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This can be rewritten as 3−θ
2+θ ≤

λ2

λ1
.

From part 2) of Lemma 2.3.9 we can deduce the following crucial Lemma.

Lemma 2.3.12. Let u1, u2 be distinct elements of Se. Suppose that ||u2||
||u1|| <

2
3p − 3.

Then ||u2||
||u1|| ≤

10
θ .

Proof. We follow the proof of Lemma 6.4.9 of [19] part (ii) with a few modifications.
For completeness we write out the full proof.

Again define λi = ||ui|| and u′i = ui − λie, for i = 1, 2. Assume that λ2 ≥ 10
θ λ1. Let N

be the positive integer with 2N + 1 ≤ λ2

λ1
< 2N + 3. Then 2N + 1 < 2

3p− 3 and hence
N < p

3 −2. Applying part 2) of Lemma 2.3.9 gives an integer M ∈ {N,N +1} satisfying

λ1 ≤
2

M + 1
||(λ2 − (2M + 1)λ1)e+ u′2 − (2M + 1)u′1||.

Furthermore, we have that

|λ2 − (2M + 1)λ1| ≤ 2λ1

and M > 4
θ from the assumption λ2 ≥ 10

θ λ1. Hence

λ1 ≤
2

M + 1
||(λ2 − (2M + 1)λ1)e+ u′2 − (2M + 1)u′1||

≤ 2

M + 1
(2λ1 + λ2θ + (2M + 1)λ1θ)

≤ 2

M + 1
(2 + (4M + 4)θ)λ1 =

(
4

M + 1
+ 8θ

)
λ1 < 9θλ1.

It follows that λ1 < 1
1−9θ . Now observe that for any non-negative integer h the el-

ements phu1, p
hu2 of Se satisfy all the assumptions made so far. We conclude that

also phλ1 <
1

1−9θ for every non-negative integer h, which implies that ||u1|| = 0. This
contradicts the fact that u1 ∈ Se, completing the proof.

Remark 2.3.13. In characteristic 0, the analogue of Lemma 2.3.12 holds only when
both u1, u2 have norms at least 1

1−9θ . Then one deals with the remaining points in Se
by using the analogue of part 1) of Lemma 2.3.9, together with a separate argument to
deal with the “very small” solutions. In characteristic p, it is because of the additional
tool given by the action of Frobenius that the condition that u1, u2 have norm at least

1
1−9θ has disappeared.

Assume without loss of generality that PSe is not empty, and fix a choice of u0 ∈ PSe
with ||u0|| minimal. For any u ∈ PSe, denote by k(u) the smallest non-negative integer

such that ||u||
pk(u)||u0||

< p and denote λ(u) := ||u||
pk(u)||u0||

.

We define PSe(1) := {u ∈ PSe : λ(u) ≤ √p} and PSe(2) := {u ∈ PSe : λ(u) >
√
p}.

Since we may assume p > 7 by Corollary 2.3.2, we have 2p
3 − 3 >

√
p.
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Lemma 2.3.14. 1) Let i ∈ {1, 2} and let u1, u2 be distinct elements of PSe(i) with
λ(u2) ≥ λ(u1). Then λ(u2) ≥ 3−θ

2+θλ(u1) and λ(u2) ≤ 10
θ λ(u1).

2) λ(PSe(2)) ⊆ [ θp10 , p).
3) λ is an injective map on PSe.

Proof. 1) If k(u2) ≥ k(u1), we put u′1 := pk(u2)−k(u1)u1, u′2 := u2, and if instead
k(u2) < k(u1), we put u′1 := u1, u′2 := pk(u1)−k(u2)u2. Now apply Lemma 14 and
Lemma 15 to u′1, u

′
2. We stress that u′1, u

′
2 are distinct elements of Se, since u1, u2 are

distinct elements of PSe(i).
2) This follows from Lemma 2.3.12 applied to the pair (u1, p

k(u1)+1u0) for each u1 in
PSe(2).
3) Use part 1) and the fact that 3−θ

2+θ > 1 for θ ∈ (0, 1
9 ).

Proof of Theorem 2.1.2. By part 3) of Lemma 2.3.14 it suffices to bound |λ(PSe)|. By
part 1) and 2) of Lemma 2.3.14 it will follow that we can bound |λ(PSe)| purely in terms
of θ: thus collecting all the bounds for e varying in E we obtain a bound depending only
on r. We now give all the details.

For any θ ∈ (0, 1
9 ) we have

3− θ
2 + θ

>
26

19
.

Then we find that |λ(PSe(1))| is at most the biggest n such that(
26

19

)n−1

≤ 10

θ

and similarly for |λ(PSe(2))|. We conclude that

|PSe| ≤ 2 + 2
log( 10

θ )

log( 26
19 )

.

Multiplying by |E| gives that for every θ ∈ (0, 1
9 )

|PS| ≤ 2

(
1 +

log( 10
θ )

log( 26
19 )

)(
1 +

2

θ

)r
.

So letting θ increase to 1
9 we obtain

|PS| ≤ 2

(
1 +

log(90)

log( 26
19 )

)
19r < 31 · 19r.

This completes the proof of Theorem 2.1.2.
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2.4 Proof of Theorem 2.1.1

First suppose that G and K are finitely generated. Before we can start with the proof of
Theorem 2.1.1, we will rephrase Theorem 2.1.2. Recall that we write Fq for the algebraic
closure of Fp in K.

Then Theorem 2.1.2 implies that there is a finite subset T of G with |T | ≤ 31 · 19r such
that any solution of

x1 + x2 = 1, (x1, x2) ∈ G

with x1 6∈ Fq and x2 6∈ Fq satisfies (x1, x2) = (γ, δ)p
t

for some t ∈ Z≥0 and (γ, δ) ∈ T .

Now let (x1, x2) ∈ G be a solution to

ax1 + bx2 = 1.

If ax1 ∈ Fq or bx2 ∈ Fq, it follows that both ax1 ∈ Fq and bx2 ∈ Fq, which implies that
(a, b)q−1 ∈ G. This contradicts the condition on (a, b) in Theorem 2.1.1.

Hence ax1 6∈ Fq and bx2 6∈ Fq. Define G′ to be the group generated by G and the tuple
(a, b). Then the rank of G′ is at most r+ 1. Let T ⊆ G′ be as above, so |T | ≤ 31 · 19r+1.
We can write

(ax1, bx2) = (γ, δ)p
t

with t ∈ Z≥0 and (γ, δ) ∈ T . Since T ⊆ G′, we can write

(γ, δ) = (aky1, b
ky2)

with k ∈ Z and (y1, y2) ∈ G. This means that

(ax1, bx2) = (aky1, b
ky2)p

t

,

which implies (a, b)kp
t−1 ∈ G. If kpt − 1 is co-prime to p, we have a contradiction with

the condition on (a, b) in Theorem 2.1.1. But p can only divide kpt − 1 if t = 0. Then
we find immediately that there are at most |T | ≤ 31 · 19r+1 solutions as desired.

We still need to deal with the case that K is an arbitrary field of characteristic p and
G is a subgroup of K∗ ×K∗ with dimQ G⊗Z Q = r finite. Suppose that ax1 + bx2 = 1
has more than 31 · 19r+1 solutions (x1, x2) ∈ G. Then we can replace G by a finitely
generated subgroup of G with the same property. We can also replace K by a subfield,
finitely generated over its prime field, containing the coordinates of the new G and a, b.
This gives the desired contradiction.
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Addendum
Joint work with Carlo Pagano

On the 22nd October of 2018 Professor Felipe Voloch brought to our attention the
unpublished master thesis of Yi-Chih Chiu, written under the supervision of Professor
Ki-Seng Tan. In this work, Chiu establishes a special case of our main theorems [45,
Theorem 1.1, Theorem 1.2]. We shall begin by explaining his result, and we will next
compare it to our result.

Let p be a prime number. For a field extension K of Fp with transcendence degree equal
to 1, we let k be the algebraic closure of Fp in K. Denote by ΩK the set of valuations of
K. Let S be a finite subset of ΩK and fix α, β ∈ K∗. The following theorem is proven
in Chiu’s master thesis.

Theorem 2.5.1. The S-unit equation to be solved in x, y ∈ O∗S

αx+ βy = 1,

has at most 3 ·72|S|−2 pairwise inequivalent non-trivial solutions if α, β ∈ O∗S. If instead
α, β are not both in O∗S, then it has at most 39 · 72|S|−2 non-trivial solutions.

Here a solution (x, y) is called trivial if αx
βy ∈ k. Two solutions (x1, y1), (x2, y2) are said

to be equivalent if there exists n ∈ Z≥0 with

(αx1)p
n

= αx2, (βy1)p
n

= βy2 or (αx2)p
n

= αx1, (βy2)p
n

= βy1.

This result is a special case with slightly better constants of our theorems that we state
now for the reader’s convenience, see [45, Theorem 1.1, Theorem 1.2].

Theorem 2.5.2. Let K be a field of characteristic p > 0. Take α, β ∈ K∗ and let G be
a finitely generated subgroup of K∗ ×K∗ of rank r := dimQG⊗Q. Then the equation

αx+ βy = 1,

to be solved in (x, y) ∈ G, has at most 31 ·19r pairwise inequivalent non-trivial solutions
if (α, β)n ∈ G for some n > 0. If instead (α, β)n 6∈ G for all n > 0, then it has at most
31 · 19r+1 non-trivial solutions.

Note that Theorem 2.5.2 applies to any finitely generated subgroup in any field of
characteristic p. In contrast, Chiu’s theorem applies only to the case of S-units of fields
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of transcendence degree 1 (with some care Chiu’s theorem can be extended to S-units
of function fields of projective varieties).

The reason for this difference in generality comes from the fact that Chiu’s work is an
adaptation of Evertse’s work [17] to characteristic p. Our work is instead an adaptation
of the work of Beukers and Schlickewei [3] to characteristic p. In both works [3, 17],
there is a key use of a certain set of identities coming from hypergeometric functions,
see [45, Lemma 3.3, Lemma 3.4]. In characteristic p these identities can be used only in
a limited range, see [9, Proposition 2] and [45, Corollary 3.5] respectively.

Correspondingly, the solutions to the unit equations need to be counted only up to
equivalence. One of the most important steps is to use this equivalence relation in such
a way that one is inside this limited range. It is this step that allows one to obtain an
upper bound that is independent of p. The reader can find this step in the two papers
respectively at [9, Lemma 4] and at [45, Lemma 3.9].



Chapter 3

Unit equations and Fermat
surfaces in positive
characteristic

Joint work with Carlo Pagano

Abstract

In this article we study the three-variable unit equation x + y + z = 1 to be solved in
x, y, z ∈ O∗S , where O∗S is the S-unit group of some global function field. We give upper
bounds for the height of solutions and the number of solutions. We also apply these
techniques to study the Fermat surface xN + yN + zN = 1.

3.1 Introduction

Let K be a finitely generated field over Fp of transcendence degree 1. Denote by Fq the
algebraic closure of Fp inside K, which is a finite extension of Fp. Let MK be the set
of places of K and let S ⊆ MK be a finite subset. To avoid degenerate cases, we will
assume that |S| ≥ 2 throughout the paper. We define ω(S) =

∑
v∈S deg(v) and we let

HK be the usual height. For a precise definition of deg(v) and HK we refer the reader
to Section 3.2. Mason [55] and Silverman [68] independently considered the equation

x+ y = 1 in x, y ∈ O∗S . (3.1)

If x, y 6∈ Kp is a solution to (3.1), they showed that

HK(x) = HK(y) ≤ ω(S) + 2g − 2, (3.2)

where g is the genus of K. Previously, Stothers [73] proved (3.2) for polynomials
x, y ∈ C[t].

23



24 Chapter 3. Unit equations and Fermat surfaces in positive characteristic

It is important to note that the condition x, y 6∈ Kp can not be removed. Indeed if we
have a solution to (3.1), then we find that

xp
k

+ yp
k

= 1

is also a solution to (3.1) for all integers k ≥ 0 due to Frobenius, but the heights HK(xp
k

)

and HK(yp
k

) become arbitrarily large. This new phenomenon is the main difficulty in
dealing with two variable unit equations in positive characteristic.

The work of Mason and Silverman has been extended in various directions. Hsia and
Wang [37] looked at the equation

x1 + · · ·+ xn = 1 in x1, . . . , xn ∈ O∗S . (3.3)

They were able to deduce a height bound similar to (3.2) under the condition that
x1, . . . , xn are linearly independent over Kp. In particular it follows that under the
same condition there are only finitely many solutions x1, . . . , xn. Derksen and Masser
[16] considered (3.3) without the restriction that x1, . . . , xn are linearly independent over
Kp. In this case it is not a priori clear what the structure of the solution set should be,
but Derksen and Masser give a completely explicit description that we repeat here in
the special case that n = 3.

They define so-called one dimensional Frobenius families to be

F(u) := {(u1, u2, u3)p
e

: e ≥ 0}

for u = (u1, u2, u3) ∈ (K∗)3 and two dimensional Frobenius families

Fa(u,v) :=

{(
(u1, u2, u3)(v1, v2, v3)p

af
)pe

: e, f ≥ 0

}
for a ∈ Z≥1, u = (u1, u2, u3) ∈ (K∗)3, v = (v1, v2, v3) ∈ (K∗)3, where all multiplications
of tuples are taken coordinate-wise. Then Derksen and Masser prove that the solution
set of

x+ y + z = 1 in x, y, z ∈ O∗S (3.4)

is equal to a finite union of one dimensional and two dimensional Frobenius families. On
top of that Derksen and Masser give effective height bounds for u and v, which can be
seen as another direct generalization of (3.2). In principle this also gives an upper bound
on the total number of Frobenius families that one may need to describe the solution
set of (3.4), but the resulting bounds are far from optimal. Leitner [50] computed the
full solution set of (3.4) in the special case S = {0, 1,∞} and K = Fp(t).

In this paper we give explicit upper bounds for the height of u and v in the case n = 3.
Together with a “gap principle” we will use this to give an upper bound on the number
of Frobenius families. For the two variable unit equation x+ y = 1 such upper bounds
have already been established by Voloch [79] and by Koymans and Pagano [45] using
different methods than in this paper. The upper bound in the latter paper has the
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particularly pleasant feature that it does not depend on p. This paper is based on the
paper of Beukers and Schlickewei [3], who had previously established a finiteness result
for the two variable unit equation in characteristic 0.

Let g and γ be respectively the genus and the gonality of K. Put

cK,S := 2ω(S) + 4g − 4 + 4γ, c′K,S := 2cK,S · (ω(S) + 4cK,S + 2g − 2) + 3cK,S .

Define the following three sets

A := {x = (x, y, z) ∈ (O∗S)3 : x+ y+z = 1, x, y, z 6∈ F∗q , HK(x), HK(y), HK(z) ≤ c′K,S},
B1 := {(u,v) ∈ (O∗S)3 × (O∗S)3 :u,v 6∈ (F∗q)3, ui 6∈ F∗q or vi 6∈ F∗q for i = 1, 2, 3,

HK(ui) ≤ cK,S for i = 1, 2, 3,

HK(vi) ≤ ω(S) + 2g − 2 for i = 1, 2, 3,

u1v
pf

1 + u2v
pf

2 + u3v
pf

3 = 1 for all f ∈ Z≥0},
Bq := {(u,v) ∈ (O∗S)3 × (O∗S)3 :u,v 6∈ (F∗q)3, ui 6∈ F∗q or vi 6∈ F∗q for i = 1, 2, 3,

HK(ui) ≤ cK,S , for i = 1, 2, 3,

HK(vi) ≤
q

p
(ω(S) + 2g − 2), for i = 1, 2, 3,

u1v
qf

1 + u2v
qf

2 + u3v
qf

3 = 1 for all f ∈ Z≥0}.

Theorem 3.1.1. For all x, y, z 6∈ Fq we have the following equivalence: x, y, z is a
solution to (3.4) if and only if (x, y, z) is an element of one of the following three sets⋃

x∈A
F(x),

⋃
(u,v)∈B1

F1(u,v),
⋃

(u,v)∈Bq

Flogp(q)(u). (3.5)

The novel feature of Theorem 3.1.1 is the excellent quality of the height bounds appearing
in the definition of A, B1 and Bq. Because we are only dealing with the three variable
unit equation, the descent step of Derksen and Masser becomes completely explicit. We
make full use of this to improve on the height bounds obtained by Derksen and Masser.

Theorem 3.1.2. There are a subset C1 of (K∗)3 and subsets C2 and C3 of (K∗)3×(K∗)3

with the following properties

• |C1| ≤ 93q2 · (log 5
4
(3c′K,S) + 1)2 · (15 · 106)|S|;

• |C2| ≤ 961 · p5 · 194|S|;

• |C3| ≤ 961 · logp(q) · q5 · 194|S|;

• for all x, y, z 6∈ Fq we have the following equivalence: x, y, z is a solution to (3.4)
if and only if (x, y, z) is an element of one of the following three sets⋃

x∈C1

F(x),
⋃

(u,v)∈C2

F1(u,v),
⋃

(u,v)∈C3

Flogp(q)(u,v).
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The work of Derksen and Masser quickly implies that there are finite subsets C1, C2 and
C3 satisfying the fourth condition in Theorem 3.1.2; indeed, Derksen and Masser show
that C1, C2 and C3 can be taken to be sets of bounded height. This gives effective upper
bounds for |C1|, |C2| and |C3|, but the resulting bounds are rather poor. Our improve-
ment comes from Theorem 3.1.1, the aforementioned “gap principle” and a reduction
step to the two variable unit equation, which brings the results of [45] in play.

Let N > 0 be an integer. As is well known there is a strong relation between unit
equations and the Fermat equation

xN1 + . . .+ xNm = 1

to be solved in x1, . . . , xm ∈ k(t) for some field k. This relation has been used in
characteristic 0 by for example Voloch [78] and Bombieri and Mueller [5]. However, it is
not clear how these methods can be made to work in characteristic p > 0. For example it
would be natural to try and use a height bound for (3.3), but this is only possible when
xN1 , . . . , x

N
m are linearly independent over Kp. In the special case m = 2 this problem

has been considered by Silverman [67], but unfortunately his main theorem is false. A
correct statement with proof can be found in [41]. Here we will analyze the case m = 3.

Definition 3.1.3. We say that an integer N > 0 is (x, p)-good if the congruence

aps + b ≡ 0 mod N

has no solutions in integers s ≥ 0, 0 < a, b ≤ x.

We remark that for a given tuple (x, p) a positive density of the primes is (x, p)-good.
Indeed, if N > 2 is a prime satisfying(

−1

N

)
= −1,

( p
N

)
= 1,

( a
N

)
= 1 for 0 < a ≤ x,

then N is (x, p)-good.

Theorem 3.1.4. Let p > 480 be a prime number and suppose that N is a (480, p)-good
integer. If we further suppose that gcd(N, p) = 1, then the Fermat surface

xN + yN + zN = 1 (3.6)

has no solutions x, y, z ∈ Fp(t) satisfying x, y, z 6∈ Fp(tp) and x/y, x/z, y/z 6∈ Fp(tp).

Note that Theorem 3.1.4 is in stark contrast with the behavior of the Fermat surface
in characteristic 0 [78]. Remarkably enough it turns out that Theorem 3.1.4 becomes
false if we drop any of the last two conditions, see Section 3.6. We will also explain
there why we need the condition that N is (480, p)-good. The rough reason is that if N
is not (1, p)-good, then the Fermat surface is known to be unirational [64]. Our work
shows that the unirationality of these surfaces is strongly related to the two-dimensional
Frobenius families appearing in Theorem 3.1.1. For precise details, we refer the reader
to Section 3.6.
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3.2 Preliminaries

In this section we start by defining heights, which will play a key role throughout the
paper. Furthermore, we give two important lemmata about heights.

3.2.1 Definition of height

Recall that K is a finitely generated field over Fp of transcendence degree 1 and that Fq
is the algebraic closure of Fp inside K. We further recall that MK is the set of places of
K. The valuation ring of a place v ∈MK is given by

Ov := {x ∈ K : v(x) ≥ 0}.

This is a discrete valuation ring with maximal ideal mv := {x ∈ K : v(x) > 0}. The
residue class field Ov/mv naturally becomes a finite field extension of Fq. Hence

deg(v) := [Ov/mv : Fq]

is a well-defined integer. With these definitions it turns out that the sum formula holds
for all x ∈ K∗, i.e. ∑

v

v(x) deg(v) = 0,

where here and below
∑
v denotes a summation over v ∈MK . This allows us to define

the height for x 6∈ Fq as follows

HK(x) := [K : Fq(x)] =
∑
v∈MK

max(v(x), 0) deg(v) =
∑
v∈MK

−min(v(x), 0) deg(v).

For x ∈ Fq we set HK(x) := 0. More generally, we define the projective height to be

HK(x0 : . . . : xn) := −
∑
v∈MK

min(v(x0), . . . , v(xn)) deg(v)

for (x0 : . . . : xn) ∈ Pn(K), which is well-defined due to the sum formula. One can
recover the usual height by the identity HK(x) = HK(1 : x).

3.2.2 Height lemmata

Pick t ∈ K∗ such that K/Fq(t) is of the minimal possible degree γ, the gonality of K.
Then it follows that K/Fq(t) is a separable extension. Let D be the extension to K
of the derivation d

dt on Fq(t). We will fix such a derivation D for the remainder of the
paper. The following lemma will be important throughout.

Lemma 3.2.1. The map f : K∗ → K given by

f(x) =
Dx

x

is a homomorphism with kernel Kp.
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Proof. The Leibniz rule implies that f is a homomorphism. Furthermore, the following
is a standard fact regarding derivations

Dx = 0⇐⇒ x ∈ Kp,

which immediately implies that the kernel of f is Kp.

For every place v ∈ MK , we choose an element zv of K satisfying v(zv) = 1. Since
K/Fq(zv) is a separable extension, we can uniquely extend the derivation d

dzv
to K. For

x ∈ K∗ we write ω(x) =
∑
v:v(x)6=0 deg(v).

Lemma 3.2.2. Let f ∈ K∗. Then for f 6∈ Kp

HK

(
Df

f

)
≤ ω(f) + 2g − 2 + 2γ,

where g is the genus of K.

Proof. We have

HK

(
Df

f

)
=

1

2

∑
v

∣∣∣∣v(Dff
)∣∣∣∣deg(v).

We may write

v

(
Df

f

)
=

(
v

(
df

dzv

)
− v(f)

)
− v

(
dt

dzv

)
.

Therefore we get that

HK

(
Df

f

)
=

1

2

∑
v

∣∣∣∣v(Dff
)∣∣∣∣deg(v) ≤

1

2
·

(∑
v

∣∣∣∣v( df

dzv

)
− v(f)

∣∣∣∣deg(v) +
∑
v

∣∣∣∣v( dt

dzv

)∣∣∣∣deg(v)

)
.

We call the two inner sums respectively T1 and T2.

Bound for T1

By the Riemann-Roch Theorem, see e.g. equation (5) of page 96, chapter 6 in [55], we
have for f 6∈ Kp that ∑

v

v

(
df

dzv

)
deg(v) = 2g − 2 (3.7)

and hence by the sum formula∑
v

(
v

(
df

dzv

)
− v(f)

)
deg(v) = 2g − 2.
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Furthermore v
(
df
dzv

)
− v(f) < 0 implies v

(
df
dzv

)
− v(f) = −1. Therefore

∑
v:v( df

dzv
)<v(f)

∣∣∣∣v( df

dzv

)
− v(f)

∣∣∣∣deg(v) ≤ ω(f)

and thus ∑
v:v( df

dzv
)≥v(f)

(
v

(
df

dzv

)
− v(f)

)
deg(v) ≤ 2g − 2 + ω(f).

In total we get that

T1 ≤ 2ω(f) + 2g − 2.

Bound for T2

We use equation (3.7) with f = t to obtain

∑
v

v

(
dt

dzv

)
deg(v) = 2g − 2. (3.8)

If v(t) ≥ 0, then we clearly have v
(
dt
dzv

)
≥ 0. On the other hand if v(t) < 0, we have

v

(
dt

dzv

)
= v(t)− 1.

Hence∑
v:v( dt

dzv
)<0

∣∣∣∣v( dt

dzv

)∣∣∣∣ deg(v) =
∑

v:v(t)<0

(1− v(t)) deg(v) ≤ −2
∑

v:v(t)<0

v(t) deg(v) = 2γ,

(3.9)

which we can combine with equation (3.8) to deduce

∑
v:v( dt

dzv
)≥0

v

(
dt

dzv

)
deg(v) ≤ 2g − 2 + 2γ (3.10)

After adding equation (3.9) and equation (3.10), we conclude that

T2 ≤ 2g − 2 + 4γ.

Conclusion of proof
In total we get

HK

(
Df

f

)
≤ 1

2
(T1 + T2) ≤ ω(f) + 2g − 2 + 2γ,

which is the desired inequality.
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We will repeatedly use the following two theorems.

Theorem 3.2.3. Let x, y ∈ O∗S. If x, y 6∈ Kp and

x+ y = 1,

then we have
HK(x) = HK(y) ≤ ω(S) + 2g − 2.

Proof. See [55] and [68].

Theorem 3.2.4. Let K be a field of characteristic p > 0 and let G be a finitely generated
subgroup of K∗ ×K∗ of rank r. Then the equation

x+ y = 1 in (x, y) ∈ G

has at most 31 · 19r solutions (x, y) satisfying (x, y) 6∈ Gp.

Proof. This is Theorem 2 of [45].

3.3 Proof of Theorem 3.1.1

Proof. By construction F(x) is a solution to (3.4) for x ∈ A and likewise all elements
of Fa(u,v) are solutions to (3.4). Hence it suffices to prove the only if part of Theorem
3.1.1. Let x, y, z be a solution of (3.4) with x, y, z 6∈ Fq. Note that the sets as given in
equation (3.5) are all invariant under taking p-th roots. Since x, y, z 6∈ Fq, we can keep
taking p-th roots of the tuple (x, y, z) until x, y or z is not in Kp. For ease of notation
we will keep using the same letters for the new x, y and z. By symmetry we may assume
that z 6∈ Kp. Then also x 6∈ Kp or y 6∈ Kp. Again we may assume by symmetry that
y 6∈ Kp. Now we distinguish two cases.

Case I: First suppose that x ∈ Kp. Then using

x+ y + z = 1

we find after differentiating with respect to D

Dy

y
y +

Dz

z
z = 0.

We can rewrite this as follows

x+ y

(
1− z

Dz

Dy

y

)
= 1

x+ z

(
1− y

Dy

Dz

z

)
= 1.
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Define a2 := 1− z
Dz

Dy
y and b3 := 1− y

Dy
Dz
z . Note that a2 = 0 implies x = 1, contrary

to our assumption x 6∈ Fq. Similarly b3 6= 0. The above system of equations implies that
either b3, a2 6∈ O∗S or b3, a2 ∈ O∗S . Consider first the case b3, a2 6∈ O∗S . By Lemma 3.2.2
we have

HK(b3) ≤ cK,S .

Hence b3z 6∈ Kpl , where l := blogp cK,Sc+1. Write x = δp
s

and b3z = εp
s

, with δ, ε 6∈ Kp.
Note that δ + ε = 1, so an application of Theorem 3.2.3 gives

HK(δ) = HK(ε) ≤ ω(S) + 2cK,S + 2g − 2,

where we used that ω(b3) ≤ 2HK(b3) ≤ 2cK,S . We conclude that

HK(x) = HK(b3z) = psHK(δ) = psHK(ε) ≤ cK,S · (ω(S) + 2cK,S + 2g − 2),

since ps ≤ pl−1 ≤ cK,S .
We now consider the case that a2, b3 ∈ O∗S . Since x 6∈ Fq there is x′ 6∈ Kp such that
x = x′p

s

for some s > 0. There are also y′, z′ ∈ O∗S such that

x′ + a2y
′ = 1

x′ + b3z
′ = 1.

Applying Theorem 3.2.3 again yields

HK(x′) = HK(a2y
′) ≤ ω(S) + 2g − 2.

We conclude that
(x, y, z) ∈ F1((1, a−1

2 , b−1
3 ), (x′, a2y

′, b3z
′)),

with a2, b3 6∈ Fq, since otherwise y, z ∈ Kp, which would be a contradiction.

Case II: Now suppose x 6∈ Kp. We start by dealing with the case x
Dx 6=

y
Dy , x

Dx 6=
z
Dz ,

y
Dy 6=

z
Dz . Then we find that

x+ y + z = 1

and after differentiating with respect to D

Dx

x
x+

Dy

y
y +

Dz

z
z = 0.

This is equivalent to

x

(
1− z

Dz

Dx

x

)
+ y

(
1− z

Dz

Dy

y

)
= 1

x

(
1− y

Dy

Dx

x

)
+ z

(
1− y

Dy

Dz

z

)
= 1.

For convenience we define

a1 := 1− z

Dz

Dx

x
, a2 := 1− z

Dz

Dy

y
, b1 := 1− y

Dy

Dx

x
, b3 := 1− y

Dy

Dz

z
.



32 Chapter 3. Unit equations and Fermat surfaces in positive characteristic

By our assumption we know that the coefficients a1, a2, b1 and b3 are not zero. If one of
the coefficients, say a1, does not lie in O∗S , we can proceed exactly as before obtaining
the bound

HK(a1x) = HK(a2y) ≤ cK,S · (ω(S) + 4cK,S + 2g − 2).

So now suppose that a1, a2, b1, b3 ∈ O∗S , but also suppose that d := a1

b1
6∈ F∗q . In this case

we have
HK(d) ≤ 2cK,S

and therefore a1x 6∈ Kpl or b1x 6∈ Kpl with l := blogp 2cK,Sc + 1. Suppose that

a1x 6∈ Kpl . Then Theorem 3.2.3 gives

HK(a1x) = HK(a2y) ≤ 2cK,S · (ω(S) + 4cK,S + 2g − 2)

and the other case can be dealt with in exactly the same way.

Finally suppose that a1, a2, b1, b3 ∈ O∗S and d ∈ F∗q . If we additionally suppose that one
of the coefficients is in F∗q , another application of Theorem 3.2.3 yields

HK(a1x) = HK(a2y) = HK(b1x) = HK(b3z) ≤ ω(S) + 2g − 2.

Hence we will assume that a1, a2, b1, b3 6∈ F∗q from now on. If a1x ∈ F∗q , we immediately
get a height bound for x. So we may further assume that a1x 6∈ F∗q . Then let l ≥ 0 be

the largest integer such that a1x ∈ Kql . Define x′ ∈ O∗S as

(a1x
′)q

l

= a1x

and then define y′, z′ ∈ O∗S such that

a1x
′ + a2y

′ = 1

b1x
′ + b3z

′ = 1.

Furthermore,

HK(a1x
′) = HK(a2y

′) ≤ q

p
(ω(S) + 2g − 2)

and
(x, y, z) ∈ Flogp(q)((a

−1
1 , a−1

2 , b−1
3 ), (a1x

′, a2y
′, b3z

′)).

This deals with the case x 6∈ Kp and x
Dx 6=

y
Dy , x

Dx 6=
z
Dz , y

Dy 6=
z
Dz .

We still have to deal with the case x 6∈ Kp and x
Dx = y

Dy or x
Dx = z

Dz or y
Dy = z

Dz .
Recall that y, z 6∈ Kp as well, hence the three cases are symmetrical. So we will only
deal with the case y

Dy = z
Dz . Then we get the equations

x

(
1− y

Dy

Dx

x

)
= x

(
1− z

Dz

Dx

x

)
= 1

and hence
HK(x) ≤ cK,S .
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Our equation implies that a1 := b1 := 1 − y
Dy

Dx
x ∈ O

∗
S . Substitution in the original

equation yields
1

a1
+ y + z = 1

or equivalently

y + z = 1− 1

a1
=
a1 − 1

a1
.

After putting α := a1

a1−1 we get
αy + αz = 1.

Note that
HK(α) = HK(a1) = HK(x) ≤ cK,S .

Suppose that α 6∈ O∗S . Just as before we find that αy 6∈ Kpl , where l := blogp cK,Sc+ 1.
Then Theorem 3.2.3 gives

HK(αy) = HK(αz) ≤ cK,S · (ω(S) + cK,S + 2g − 2).

The last case is α ∈ O∗S . Suppose that α ∈ F∗q . From Theorem 3.2.3 we deduce that

HK(αy) = HK(αz) ≤ ω(S) + 2g − 2.

So from now on we further assume that α 6∈ F∗q . If αy ∈ F∗q or αz ∈ F∗q , we immediately
get a height bound for respectively y or z. So suppose that αy 6∈ F∗q and αz 6∈ Fq. Then

there are y′, z′ 6∈ Kp and s ∈ Z≥0 such that y′p
s

= αy and z′p
s

= αz and we get an
equation

y′ + z′ = 1.

Applying Theorem 3.2.3 once more

HK(y′) = HK(z′) ≤ ω(S) + 2g − 2.

We conclude that
(x, y, z) ∈ F1((x, α−1, α−1), (1, y′, z′)).

This completes the proof.

3.4 Proof of Theorem 3.1.2

Define the set B′1 by

B′1 := {(u,v) ∈ (O∗S)3 × (O∗S)3 : u,v 6∈ (Kp)3, ui 6∈ F∗q or vi 6∈ F∗q , HK(ui) ≤ cK,S ,

HK(vi) ≤ ω(S) + 2g − 2, u1v
pf

1 + u2v
pf

2 + u3v
pf

3 = 1 for all f ∈ Z≥0}.

For the reader’s convenience we recall that in the definition of B1 we only required that
u,v 6∈ (F∗q)3 instead of the stronger condition u,v 6∈ (Kp)3. Nevertheless we have the
equality ⋃

(u,v)∈B1

F1(u,v) =
⋃

(u,v)∈B′1

F1(u,v),
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so our goal will be to give an upper bound for the cardinality of B′1. So suppose that
(u,v) ∈ B′1. Then we know that

u1v
pf

1 + u2v
pf

2 + u3v
pf

3 = 1

for all f ∈ Z≥0. In fact, we will only use this equality for f = 0, . . . , 3. Define

A :=

 v1 v2 v3

vp1 vp2 vp3
vp

2

1 vp
2

2 vp
2

3

 .

Our first goal is to show that v1, v2, v3 are linearly dependent over Fp. If not, then it
would follow that A is invertible. But we know that

A

u1

u2

u3

 =

1
1
1

 , A

up1up2
up3

 =

1
1
1

 .

This would imply that u ∈ (F∗p)3, contrary to our assumption (u,v) ∈ B′1.

We conclude that v1, v2, v3 are indeed linearly dependent over Fp. Suppose that

α1v1 + α2v2 + α3v3 = 0

with αi ∈ Fp not all zero. By symmetry we may suppose that α3 6= 0. This yields(
u1 −

α1

α3
u3

)
vp

f

1 +

(
u2 −

α2

α3
u3

)
vp

f

2 = 1, (3.11)

again for all f ∈ Z≥0. We will now suppose that v1, v2 are linearly dependent over Fp
and derive a contradiction. If β1v1 = v2 for some β1 ∈ F∗p, we find that(

u1 −
α1

α3
u3

)
vp

f

1 + β

(
u2 −

α2

α3
u3

)
vp

f

1 = 1

for all f ∈ Z≥0. Using this for f = 0 and f = 1 we conclude that v1 = vp1 , i.e. v1 ∈ F∗p.
This implies that also v2, v3 ∈ F∗p, contrary to our assumption (u,v) ∈ B′1.

Hence we may assume that v1 and v2 are linearly independent over Fp. From (3.11) we
deduce that

λ1 := u1 −
α1

α3
u3 ∈ Fp, λ2 := u2 −

α2

α3
u3 ∈ Fp

and therefore λ1v1 + λ2v2 = 1. We claim that at most one of α1, α2, λ1, λ2 is equal to
zero.

It is clear that α1 and α2 can not be simultaneously equal to zero, and the same holds
for λ1 and λ2. If α1 = λ1 = 0, we find that u1 = 0, which contradicts u1 ∈ O∗S . Now
suppose that α1 = λ2 = 0. In this case we deduce that u1, v1 ∈ F∗p, again contrary to
our assumption (u,v) ∈ B′1. The remaining two cases can be dealt with symmetrically,
establishing our claim.
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Let us first suppose that α1, α2, α3, λ1, λ2 are all fixed and non-zero. Then we view the
equations

λ1 = u1 −
α1

α3
u3, λ2 = u2 −

α2

α3
u3, λ1v1 + λ2v2 = 1

as unit equations to be solved in u1, u2, u3, v1, v2. If one of the ui is in Kp, then it turns
out that all the ui are in Kp, contradicting our assumption u 6∈ (Kp)3. Henceforth we
may assume that u1, u2, u3 6∈ Kp and similarly v1, v2 6∈ Kp. Theorem 3.2.4 implies that
there are at most 31 · 192|S| solutions (u1, u3) to λ1 = u1 − α1

α3
u3 and at most 31 · 192|S|

solutions (v1, v2) to λ1v1 + λ2v2 = 1. Note that u1 and u3 determine u2 and similarly
v1 and v2 determine v3. Hence there are at most 961 · 194|S| possibilities for (u,v).

We will now treat the case λ2 = 0 and α1, α2, α3, λ1 fixed and non-zero. In this case we
can treat the unit equation

λ1 = u1 −
α1

α3
u3

exactly as before; it has at most 31 · 192|S| solutions (u1, u3). Using that

0 = λ2 = u2 −
α2

α3
u3,

we see that u2 is determined by u1 and u3. Note that λ2 = 0 implies λ1v1 = 1, i.e.
v1 = 1

λ1
. We recall that

α1v1 + α2v2 + α3v3 = 0

and therefore

α2v2 + α3v3 = −α1

λ1
.

If v2 ∈ Kp, then also v3 ∈ Kp and we conclude that (v1, v2, v3) ∈ (Kp)3. This is again
a contradiction, so suppose that v2, v3 6∈ Kp. We are now in the position to apply
Theorem 3.2.4, which shows that there are at most 31 · 192|S| solutions (v2, v3). Hence
there are at most 961 · 194|S| possibilities for (u,v).

Finally we will treat the case α2 = 0 and α1, α3, λ1, λ2 still fixed and non-zero. We
remark that the remaining two cases λ1 = 0 and α1 = 0 can be dealt with using the
same argument as the case λ2 = 0 and α2 = 0 respectively. Note that u2 = λ2 ∈ F∗p.
Using λ1 = u1 − α1

α3
u3 and u 6∈ (Kp)3, we deduce that u1, u3 6∈ Kp. Hence the unit

equation

λ1 = u1 −
α1

α3
u3

has at most 31 · 192|S| solutions (u1, u3). Similarly, the unit equation

λ1v1 + λ2v2 = 1

has at most 31 · 192|S| solutions (v1, v2). Since v1 determines v3, we have proven that
there are also at most 961 · 194|S| possibilities for (u,v) in this case.

So far we have treated α1, α2, α3, λ1, λ2 as fixed. To every element of B′1 we can attach
a tuple t = (α1, α2, α3, λ1, λ2). Clearly there are at most p5 such tuples. Furthermore,
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we have shown that for each fixed tuple t there are at most 961 · 194|S| (u,v) ∈ B′1 that
correspond to t. Altogether we have proven that |B′1| ≤ 961 · p5 · 194|S|.

To deal with Bq one can use a very similar approach, so we will only sketch the proof.
In this case we define

B′q := {(u,v) ∈ (O∗S)3 × (O∗S)3 : u,v 6∈ (Kq)3, ui 6∈ F∗q or vi 6∈ F∗q , HK(ui) ≤ cK,S ,

HK(vi) ≤
q

p
(ω(S) + 2g − 2) , u1v

qf

1 + u2v
qf

2 + u3v
qf

3 = 1 for all f ∈ Z≥0}.

Note that we now only require that u,v 6∈ (Kq)3 instead of u,v 6∈ (Kp)3. In our new
setting we find that α1, α2, α3, λ1, λ2 ∈ Fq instead of α1, α2, α3, λ1, λ2 ∈ Fp. This means
that we have q5 tuples (α1, α2, α3, λ1, λ2). For each fixed tuple t there are at most
logp(q) · 961 · 194|S| (u,v) ∈ B′q that can map to t. The extra factor logp(q) comes from
the fact that we merely know that u,v 6∈ (Kq)3 when we apply Theorem 3.2.4. We
conclude that |B′q| ≤ 961 · logp(q) · q5 · 194|S|.

Our only remaining task is to bound |A|. We start by recalling a “gap principle”. Define

S := {(x0 : x1 : x2 : x3) ∈ P3(K) \ P3(Fq) : x0 + x1 + x2 = x3,

v(x0) = v(x1) = v(x2) = v(x3) for every v ∈MK \ S}.

Then we have the following lemma.

Lemma 3.4.1 (Gap principle). Let B be a real number with 3
4 < B < 1, and let P > 0.

Then the set of projective points (x0 : x1 : x2 : x3) of S with

P ≤ HK(x0 : x1 : x2 : x3) <

(
1 +

4B − 3

2

)
P

is contained in the union of at most 4|S|(e/(1−B))3|S|−1 1-dimensional projective sub-
spaces of x0 + x1 + x2 = x3.

Proof. This was proved in [18] for function fields in characteristic 0, but the proof works
ad verbatim in characteristic p.

Take any P > 0 and suppose that (x, y, z) ∈ A is a solution to

x+ y + z = 1

with P ≤ HK(x : y : z : 1) <
(
1 + 4B−3

2

)
P . Then we can apply Lemma 3.4.1 to deduce

that (x : y : z : 1) is contained in some 1-dimensional projective subspace. This means
that x, y, z satisfy an additional equation

ax+ by + cz = d

for some a, b, c, d ∈ K such that the equation is independent from our original equation
x+ y + z = 1. We may assume without loss of generality that a 6= 0. This implies

(a− b)y + (a− c)z = a− d. (3.12)
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If a−b, a−c and a−d are zero, we conclude that a = b = c = d. This is a contradiction,
since we assumed that the equation ax+ by+ cz = d was linearly independent from the
equation x + y + z = 1. If only one of a − b, a − c and a − d is not zero, we find that
y = 0, z = 0 and 0 = a− d 6= 0 respectively, so we obtain a contradiction in every case.
From now on we will assume that a− b 6= 0 and distinguish three cases.

Case I: a − c 6= 0, a − d 6= 0. In this case we view (3.12) as a unit equation. Since
(x, y, z) ∈ A, it follows that HK(x), HK(y), HK(z) ≤ c′K,S . We conclude that

HK((a− b)y) ∈ [HK(a− b)− c′K,S , HK(a− b) + c′K,S ].

Theorem 3.2.4 implies that there are at most q2 + (logp(2c
′
K,S) + 1) · 31 · 192|S| solutions

(y, z) to (3.12). From x+ y + z = 1 we see that y and z determine x.

We will now count the total contribution to the number of solutions from case I. Choose
B := 7

8 . Note that

HK(x : y : z : 1) ≤ HK(x) +HK(y) +HK(z) ≤ 3c′K,S .

Now define l := log 5
4
(3c′K,S) + 1. Then for every solution (x, y, z) ∈ A there is i with

0 ≤ i < l such that (
5

4

)i
≤ HK(x : y : z : 1) <

(
5

4

)i+1

.

For fixed i every solution (x : y : z : 1) is contained in the union of at most (2048e3)|S| 1-
dimensional projective subspaces. Furthermore, we have just shown that each subspace
contains at most q2 + (logp(2c

′
K,S) + 1) · 31 · 192|S| solutions. This gives as total bound

for A in case I

|A| ≤ (log 5
4
(3c′K,S) + 1) · (2048e3)|S| · q2 · (logp(2c

′
K,S) + 1) · 31 · 192|S|

≤ 31q2 · (log 5
4
(3c′K,S) + 1)2 · (15 · 106)|S|. (3.13)

Case II: a− c 6= 0, a− d = 0. In this case (3.12) gives

z = −a− b
a− c

y.

Substitution in x+ y + z = 1 yields

x+

(
1− a− b

a− c

)
y = 1. (3.14)

If a − b = a − c, we see that x = 1, contrary to our assumption x 6∈ Fq. So we will
assume that a− b 6= a− c and treat (3.14) as a unit equation. Then, following the proof
of case I, we get the bound (3.13) for A in case II.

Case III: a− c = 0, a− d 6= 0. From (3.12) we deduce that

y =
a− d
a− b

.
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If a− b = a− d, we conclude that y = 1, which is again a contradiction. Substitution in
x+ y + z = 1 gives

x+ z = 1− a− d
a− b

. (3.15)

Note that (3.15) is another unit equation and, just as before, we obtain the bound (3.13)
for A in case III.

3.5 Application to Fermat surfaces

The goal of this section is to prove Theorem 3.1.4. We start off with a definition.

Definition 3.5.1. We say that a valuation v of K is D-generic if the following two
conditions are satisfied

• first of all

v

(
Dx

x

)
= −1

for all x ∈ K∗ satisfying p - v(x);

• and secondly

v

(
Dx

x

)
≥ 0

for all x ∈ K∗ with p | v(x).

In Fp(t) and D differentiation with respect to t, every valuation is D-generic except for
the infinite valuation. In general only finitely many valuations are not generic.

In this section K and D will always be equal to respectively Fp(t) and differentiation with
respect to t. Whenever we say that v is generic, we will mean generic with respect to this
D. Let N be a (480, p)-good integer coprime to p. In particular we have that N > 480,
which we shall use at several points during the proof. Suppose that x, y, z ∈ Fp(t) is a
solution to

xN + yN + zN = 1 (3.16)

satisfying the conditions of Theorem 3.1.4, i.e. x, y, z, x/y, x/z, y/z 6∈ Fp(tp). By Lemma

3.2.1 this is equivalent to Dx
x 6= 0, Dy

y 6= 0, Dz
z 6= 0, Dx

x 6=
Dy
y , Dx

x 6=
Dz
z and Dy

y 6=
Dz
z .

Then differentiation with respect to D yields

xN · NDx
x

+ yN · NDy
y

+ zN · NDz
z

= 0,

and using that (N, p) = 1

xN · Dx
x

+ yN · Dy
y

+ zN · Dz
z

= 0. (3.17)
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We multiply equation (3.17) with z
Dz and subtract it from equation (3.16) to obtain

xN
(

1− z

Dz

Dx

x

)
+ yN

(
1− z

Dz

Dy

y

)
= 1 (3.18)

and similarly

xN
(

1− y

Dy

Dx

x

)
+ zN

(
1− y

Dy

Dz

z

)
= 1. (3.19)

Define
S := {v ∈MK : v(x) 6= 0 or v(y) 6= 0 or v(z) 6= 0}.

We may assume that x is such that

ω(x) ≥ ω(S)

3
. (3.20)

If N > 12, thanks to Lemma 3.2.2 applied with K = Fp(t), we have

HK(xN ) = NHK(x) > 6ω(x) ≥ 2ω(S) ≥ HK

(
1− z

Dz

Dx

x

)
and similarly

HK(xN ) > HK

(
1− y

Dy

Dx

x

)
.

Hence xN
(
1− z

Dz
Dx
x

)
, xN

(
1− y

Dy
Dx
x

)
6∈ Fp and therefore we can write

xN
(

1− z

Dz

Dx

x

)
= δp

s

(3.21)

xN
(

1− y

Dy

Dx

x

)
= εp

r

(3.22)

with δ, ε 6∈ Fp(tp). Now we claim that for N > 48

ω(δ) ≥ ω(S)

4
. (3.23)

Indeed suppose for the sake of contradiction that ω(δ) < ω(S)
4 . Using equation (3.20) we

find that there is a finite subset T of MK with ω(T ) ≥ ω(S)
12 such that for all v ∈ T we

have v(x) 6= 0 and v(δ) = 0. For such a valuation v ∈ T we have due to equation (3.21)

v

(
1− z

Dz

Dx

x

)
= −Nv(x) 6= 0.

This implies that

4ω(S) ≥ 2HK

(
1− z

Dz

Dx

x

)
≥
∑
v∈T

∣∣∣∣v(1− z

Dz

Dx

x

)∣∣∣∣deg(v) ≥ N ω(S)

12
.
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This is impossible for N > 48, so we have established (3.23). For convenience we define
for a valuation v and a, b 6∈ Fp(tp)

fv(a, b) :=

∣∣∣∣v(1− a

Da

Db

b

)∣∣∣∣ ,
hv(x, y, z) := fv(x, y) + fv(y, x) + fv(x, z) + fv(z, x) + fv(y, z) + fv(z, y)

gv(x, y, z) :=|v(δ)|+ |v(ε)|+ hv(x, y, z).

Our next claim is that there is a generic place v ∈MK such that v(δ) 6= 0 and

gv(x, y, z) ≤ 480. (3.24)

Lemma 3.2.2 with K = Fp(t) shows that∑
v∈MK

fv(x, y) deg v = 2HK

(
1− x

Dx

Dy

y

)
≤ 2

(
HK

(
Dx

x

)
+HK

(
Dy

y

))
≤ 4ω(S)

(3.25)

and similarly for the other fv. Equation (3.18) and equation (3.21) combined with
equation (3.25) show that ∑

v∈MK

v(δ) 6=0 or v(1−δ)6=0

deg v ≤ 9ω(S),

while equation (3.19) and equation (3.22) yield∑
v∈MK

v(ε) 6=0 or v(1−ε) 6=0

deg v ≤ 9ω(S),

Then Theorem 3.2.3 gives∑
v∈MK

|v(δ)|deg v = 2HK(δ) ≤ 18ω(S) (3.26)

and the same for |v(ε)|. Hence we have∑
v∈MK

v(δ)6=0

gv(x, y, z) deg(v) ≤
∑
v∈MK

gv(x, y, z) deg(v) ≤ 60ω(S)

by equation (3.25) and equation (3.26). Note that there are at least two places such that
v(δ) 6= 0, so there is at least one generic place v such that v(δ) 6= 0. Hence if ω(S) ≤ 8,
(3.24) follows immediately. So suppose that ω(S) > 8. Using (3.23) we conclude that

ω(S)

8
min
v∈MK

v(δ)6=0
v generic

gv(x, y, z) ≤
(
ω(S)

4
− 1

)
min
v∈MK

v(δ)6=0
v generic

gv(x, y, z)

≤ (ω(δ)− 1) min
v∈MK

v(δ)6=0
v generic

gv(x, y, z)

≤ 60ω(S),
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thus proving our claim, i.e. equation (3.24). From now on fix a generic v ∈MK satisfying
v(δ) 6= 0 and equation (3.24). Note that equation (3.21) yields the following equality

v

(
1− z

Dz

Dx

x

)
+Nv(x) = psv(δ). (3.27)

We will next show that s > 0 and r > 0. Suppose not. Then we may assume that s = 0
by symmetry considerations. Equation (3.20) and (3.21) give

Nω(S)

6
≤ NHK(x) ≤ HK(δ) +HK

(
1− z

Dz

Dx

x

)
≤ 11ω(S),

where the last inequality follows from equation (3.25) and equation (3.26). If N > 480,
this gives us the desired contradiction, so henceforth we may assume that s, r > 0.

If p > 480, we find that v(x) 6= 0 due to equation (3.27) and s > 0. We claim that

v

(
1− z

Dz

Dx

x

)
6= 0. (3.28)

Assume the contrary. Then equation (3.27) implies that N divides v(δ) 6= 0, but this
is impossible by construction of v and the fact that N > 480 thus establishing equation
(3.28). Finally observe that

N | psv(δ)− v
(

1− z

Dz

Dx

x

)
.

We now distinguish two cases. First suppose that v(δ) > 0. Then clearly also v(x) > 0.
If furthermore v

(
1− z

Dz
Dx
x

)
< 0, we get that N divides aps + b with 0 < a, b ≤ 480

contrary to our assumptions. Due to equation (3.28) we are left with the case

v

(
1− z

Dz

Dx

x

)
> 0. (3.29)

Now comes the crucial observation that p - v(x). Indeed, otherwise we find by equation
(3.27)

p | v
(

1− z

Dz

Dx

x

)
,

which is not possible due to p > 480, equation (3.24) and equation (3.29). Hence we
deduce for a generic valuation v that v

(
Dx
x

)
= −1. Combining this with equation (3.29)

again we get that v(z) 6= 0. Equation (3.22) gives the equality

v

(
1− y

Dy

Dx

x

)
+Nv(x) = prv(ε).

Recall that v(x) > 0, hence v(ε) > 0. Using equation (3.19) and equation (3.22), we get

zN
(

1− y

Dy

Dz

z

)
= (1− ε)p

r

.
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Since v(1− ε) = 0, this shows

v

(
1− y

Dy

Dz

z

)
+Nv(z) = 0,

which is a contradiction for N > 480.

We still need to treat the case v(δ) < 0. In that case we find that v(x) < 0 and
v
(
1− z

Dz
Dx
x

)
< 0. Similarly as before we can show that this implies p | v(z) for a

generic valuation v. We will use equation (3.19) and equation (3.22) once more to
deduce that

zN
(

1− y

Dy

Dz

z

)
= (1− ε)p

r

.

Since v(x) < 0 implies that v(ε) < 0, we find that

v

(
1− y

Dy

Dz

z

)
+Nv(z) = prv(1− ε) = prv(ε). (3.30)

Combining (3.30) with p | v(z) we get that

p | v
(

1− y

Dy

Dz

z

)
.

If p > 480, then (3.24) implies that v
(

1− y
Dy

Dz
z

)
= 0. Hence (3.30) gives N | v(ε).

Using (3.24) and N > 480 once more we conclude that v(ε) = 0, which is the desired
contradiction.

3.6 Curves inside Fermat surfaces

The goal of this section is to show that Theorem 3.1.4 becomes false if we allow x, y, z,
x/y, x/z or y/z to be in Fp(tp). By symmetry it suffices to do this in the case x or y/z
in Fp(tp). We will do this by exhibiting explicit curves inside the Fermat surface.

Let us start by allowing y/z ∈ Fp(tp). We can rewrite

xN + yN + zN = 1

as
1

1− xN
yN +

1

1− xN
zN = 1.

Then if N is odd, we have

1

1− xN
yN +

−xN

1− xN
(−z)N

xN
= 1.

The key point is that we can now put α := 1
1−xN , z̃ = −z

x , after which the last equation
can be rewritten as

αyN + (1− α)z̃N = 1. (3.31)
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But it is rather straightforward to find solutions to this last equation. Indeed, we know
that N | pk − 1 for some k > 0. For such a k we put

y := α
pk−1
N , z̃ := (1− α)

pk−1
N ,

and one easily verifies that y and z̃ satisfy (3.31). Going back to our original variables
x, y and z we get that

y :=

(
1

1− xN

) pk−1
N

, z := −x
(
−xN

1− xN

) pk−1
N

.

There are two important remarks to make about the above construction. First of all,
it is easily verified that y/z ∈ Fp(tp) as we claimed. Secondly, we used that N is odd
during our construction. However, we only need that −1 is an N -th power in F∗p.

Now suppose that x ∈ Fp(tp). For simplicity we will again assume that N is odd. Then
from the equation

xN + yN + zN = 1

we find that (
1

z

)N
+

(
−x
z

)N
+

(
−y
z

)N
= 1.

After putting x̃ = −y
z , ỹ = −x

z and z̃ = 1
z we get that

x̃N + ỹN + z̃N = 1

with ỹ
z̃ = −x ∈ Fp(tp). Hence we can apply the previous construction.

Finally we will explain why we need the condition that N is (480, p)-good. If N = pr+1
for some r ≥ 0, it is possible to write down non-trivial lines on the Fermat surface, see
Section 5.1-5.4 of [64]. It turns out that our method is unable to distinguish between
the case N = pr + 1 and N = apr + b with 0 < a, b small. This may seem strange at
first, but it is in fact quite natural.

Indeed, let us compare this with the situation in characteristic 0. In this case it follows
from the work of Voloch [78] that for N sufficiently large the equation

xN + yN + zN = 1

has no non-constant solutions x, y, z ∈ C(t). In fact, this is a rather easy consequence
from his abc Theorem. However, it is a more difficult task to find the smallest N using
abc Theorems, see for example [13]. Our Theorem 3.1.4 is also based on abc type
arguments and for this reason it should not be surprising that we can not distinguish
between the case N = pr + 1, giving unirational surfaces [64], and N = apr + b with
0 < a, b small.

Thus, morally, the notion of N being (480, p)-good in Theorem 3.6 can be interpreted
as saying that N is “far enough” from an exponent that gives a unirational surface. In
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the proof we use this condition when we analyze the 2-Frobenius families. It is therefore
instructive to notice here that there is a partial converse. Namely, we can use the
description given at the beginning of Section 3.4 to produce non-trivial rational curves
on Fermat surfaces. We will assume p ≡ 1 mod 4 for simplicity: a similar computation
can be carried out for the case p ≡ 3 mod 4.

We will use the notation of Section 3.4. Rename α̃1 = α1

α3
and α̃2 = α2

α3
. Choose

α̃1, α̃2 6= 0 such that
α̃1

2 + α̃2
2 = −1

and put λ1 = iα̃2 and λ2 = iα̃1, where i is an element of Fp such that i2 = −1. We
further impose the conditions

u1 = v1, u2 = v2, u3 = v3.

With these choices, one can check that all the relevant equations in Section 3.4 are
satisfied for (v1, v2, v3) = (α̃1t + iα̃2, α̃2t + iα̃1, t). Thus, since all the implications at
the beginning of 3.4 are reversible, one deduces that the line (α̃1t + iα̃2, α̃2t + iα̃1, t)
is contained in all Fermat surfaces xp

s+1 + yp
s+1 + zp

s+1 = 1. Alternatively, one may
directly verify that this yields lines on Fermat surfaces.

We conclude by remarking that the height bound in Theorem 3.2 can not be improved
to a linear height bound in ω(S). Indeed, this follows easily by using the curves we
constructed at the beginning of this section. A natural question is whether the quadratic
dependency on ω(S) is sharp.
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Chapter 4

On the 16-rank of class groups
of Q(

√
−2p) for primes

p ≡ 1 mod 41

Joint work with Djordjo Milovic

Abstract

We use Vinogradov’s method to prove equidistribution of a spin symbol governing the
16-rank of class groups of quadratic number fields Q(

√
−2p), where p ≡ 1 mod 4 is a

prime.

4.1 Introduction

Recently, the authors have used Vinogradov’s method to prove density results about el-
ements of order 16 in class groups in certain thin families of quadratic number fields
parametrized by a single prime number, namely the families {Q(

√
−2p)}p≡−1 mod 4

and {Q(
√
−p)}p [59, 42]. In this paper, we establish a density result for the fam-

ily {Q(
√
−2p)}p≡1 mod 4, thereby completing the picture for the 16-rank in families of

imaginary quadratic fields with cyclic 2-class groups and even discriminant. Although
our overarching methods are similar to those originally developed in the work of Fried-
lander et al. [25], the technical difficulties in the present case are different and require a
more careful study of the spin symbols governing the 16-rank. The main distinguishing
feature of the present work is that this careful study allows us to avoid relying on a
conjecture about short character sums appearing in [25, 42], thus making our results
unconditional.

1A slightly modified version of this chapter will appear in International Mathematics Research No-
tices.
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√
−2p) for primes p ≡ 1 mod 4

More generally, given a sequence of complex numbers {an}n indexed by natural numbers,
a problem of interest in analytic number theory is to prove an asymptotic formula for
the sum over primes

S(X) :=
∑

p prime
p≤X

ap

as X → ∞. Many sequences {an}n admit asymptotic formulas for S(X) via various
generalizations of the Prime Number Theorem, with essentially the best known error
terms coming from ideas of de la Valée Poussin already in 1899 [15]. In 1947, Vinogradov
[76, 77] invented another method to treat certain sequences which could not be handled
with a variant of the Prime Number Theorem. His method has since been clarified and
made easier to apply, most notably by Vaughan [74] and, for applications relating to
more general number fields, by Friedlander et al. [25]. Nonetheless, there is a relative
paucity of interesting sequences {an}n that admit an asymptotic formula for S(X) via
Vinogradov’s method. The purpose of this paper is to present yet another such sequence,
of a similar nature as those appearing in [25, 42]; similarly as in [42], the asymptotics
we obtain have implications in the arithmetic statistics of class groups of number fields.

Let p ≡ 1 mod 4 be a prime number, and let Cl(−8p) denote the class group of the
quadratic number field Q(

√
−2p) of discriminant −8p. The finite abelian group Cl(−8p)

measures the failure of unique factorization in the ring Z[
√
−2p]. By Gauss’s genus

theory [27], the 2-part of Cl(−8p) is cyclic and non-trivial, and hence determined by the
largest power of 2 dividing the order of Cl(−8p). For each integer k ≥ 1, we define a
density δ(2k), if it exists, as

δ(2k) := lim
X→∞

#{p ≤ X : p ≡ 1 mod 4, 2k|#Cl(−8p)}
#{p ≤ X : p ≡ 1 mod 4}

.

As stated above, the 2-part of Cl(−8p) is cyclic and non-trivial, so δ(2) = 1. It follows
from the Chebotarev Density Theorem (a generalization of the Prime Number Theorem)
that δ(4) = 1

2 and δ(8) = 1
4 ; indeed, Rédei [63] proved that 4|#Cl(−8p) if and only if

p splits completely in Q(ζ8), and Stevenhagen [72] proved that 8|#Cl(−8p) if and only
if p splits completely in Q(ζ8,

4
√

2), where ζ8 denotes a primitive 8th root of unity. The
qualitative behavior of divisibility by 16 departs from that of divisibility by lower 2-
powers in that it can no longer be proved by a simple application of the Chebotarev
Density Theorem. We instead use Vinogradov’s method to prove

Theorem 4.1.1. For a prime number p ≡ 1 mod 4, let ep = 0 if Cl(−8p) does not have
an element of order 8, let ep = 1 if Cl(−8p) has an element of order 16, and let ep = −1
otherwise. Then for all X > 0, we have∑

p≤X
p≡1 mod 4

ep � X1− 1
3200 ,

where the implied constant is absolute. In particular, δ(16) = 1
8 .

In combination with [59], we get



4.2. Encoding the 16-rank of Cl(−8p) 47

Corollary 4.1.2. For a prime number p, let h2(−2p) denote the cardinality of the 2-
part of the class group Cl(−8p). For an integer k ≥ 0, let δ′(2k) denote the natural
density (in the set of all primes) of primes p such that h2(−2p) = 2k, if it exists. Then
δ′(1) = 0, δ′(2) = 1

2 , δ′(4) = 1
4 , and δ′(8) = 1

8 .

The power-saving bound in Theorem 4.1.1, similarly to the main results in [59] and [42],
is another piece of evidence that governing fields for the 16-rank do not exist. For a
sampling on previous work about governing fields, see [11], [12], [62], and [71].

The strategy to prove Theorem 4.1.1 is to construct a sequence {an}n which simultane-
ously carries arithmetic information about divisibility by 16 when n is a prime number
congruent to 1 modulo 4 and is conducive to Vinogradov’s method. On one hand, the
criterion for divisibility by 16 cannot be stated naturally over the rational numbers Q.
For instance, even the criterion for divisibility by 8 is most naturally stated over a field
of degree 8 over Q. On the other hand, proving analytic estimates in a number field gen-
erally becomes more difficult as the degree of the number field increases, as exemplified
by the reliance on a conjecture on short character sums in [25]. We manage to work over
Q(ζ8), a field of degree 4. Although the methods of Friedlander et al. [25] narrowly miss
the mark of being unconditional for number fields of degree 4, we manage to exploit the
arithmetic structure of our sequence to ensure that Theorem 4.1.1 is unconditional.

Lastly, for work concerning the average behavior of the 2-parts of class groups of
quadratic number fields in families that are not thin, i.e., for which the average number
of primes dividing the discriminant grows as the discriminant grows, we point the reader
to the extensive work of Fouvry and Klüners [20, 21, 22, 23] on the 4-rank and certain
cases of the 8-rank and more recently to the work of Smith on the 8- and higher 2-power-
ranks [69, 70]. While Smith’s methods in [70] appear to be very powerful, the authors
believe that they are unlikely to be applicable to thin families of the type appearing in
this paper.
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4.2 Encoding the 16-rank of Cl(−8p)

Given an integer k ≥ 1, the 2k-rank of a finite abelian group G, denoted by rk2kG, is
defined as the dimension of the F2-vector space 2k−1G/2kG. If the 2-part of G is cyclic,
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then rk2kG ∈ {0, 1}, and rk2kG = 1 if and only if 2k|#G. The order of a class group is
called the class number, and we denote the class number of Cl(−8p) by h(−8p).

The criterion for divisibility of h(−8p) by 16 that we will use is due to Leonard and
Williams [54, Theorem 2, p. 204]. Given a prime number p ≡ 1 mod 8 (so that 4|h(−8p)),
there exist integers u and v such that

p = u2 − 2v2, u > 0. (4.1)

The integers u and v are not uniquely determined by p; nevertheless, if (u0, v0) is one
such pair, then, every such pair (u, v) is of the form u+ v

√
2 = ε2m(u0± v0

√
2) for some

m ∈ Z, where ε = 1 +
√

2. The criterion for divisibility by 8 can be restated in terms of
a quadratic residue symbol; one has

8|h(−8p)⇐⇒
(
u

p

)
2

= 1.

Note that 1 = (u/p)2 = (p/u)2 = (−2/u)2, so that 8|h(−8p) if and only if u ≡ 1, 3 mod 8.
As ε2(u+ v

√
2) = (3u+ 4v) + (2u+ 3v)

√
2 and v is even, we can always choose u and v

in (4.1) so that u ≡ 1 mod 8. The criterion for divisibility of h(−8p) by 16 states that if
u and v are integers satisfying (4.1) and u ≡ 1 mod 8, then

16|h(−8p)⇐⇒
(
u

p

)
4

= 1,

where (u/p)4 is equal to 1 or −1 depending on whether or not u is a fourth power
modulo p. To take advantage of the multiplicative properties of the fourth-power residue
symbol, one has to work over a field containing i =

√
−1, a primitive fourth root of unity.

Since u appears naturally via the splitting of p in Q(
√

2), we see that the natural setting
for the criterion above is the number field

M := Q(
√

2, i) = Q(ζ8),

of degree 4 over Q. It is straightforward to check that the class number of M and each
of its subfields is 1, that 2 is totally ramified in M , and that the unit group of its ring
of integers OM = Z[ζ8] is generated by ζ8 and ε = 1 +

√
2. Note that M/Q is a normal

extension with Galois group isomorphic to the Klein four group, say {1, σ, τ, στ}, where
σ fixes Q(i) and τ fixes Q(

√
2).

Q

Q(i
√

2)Q(i) Q(
√

2)

Q(ζ8)

〈τ〉
〈στ〉

〈σ〉
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Let p ≡ 1 mod 8 be a prime, so that p splits completely in M . Then there exists w ∈ OM
such that N(w) = p, i.e., such that p = wσ(w)τ(w)στ(w). Note that the inclusion
Z ↪→ OM induces an isomorphism Z/(p) ∼= OM/(w), so that an integer n is a fourth
power modulo p exactly when it is a fourth power modulo w. As wτ(w) ∈ Z[

√
2], there

exist integers u and v such that wτ(w) = u+ v
√

2. Then u = (wτ(w) + σ(w)στ(w))/2.
With this in mind, we define, for any α ∈ Z[

√
2],

r(α) =
1

2
(α+ σ(α))

and, for any odd (i.e., coprime to 2) w ∈ OM , not necessarily prime,

[w] :=

(
r(wτ(w))

w

)
4

,

where (·/·)4 is the quartic residue symbol in M ; we recall the definition of (·/·)4 in
the next section. A simple computation shows that r(wτ(w)) > 0 for any non-zero
w ∈ OM . Hence 16|h(−8p) if and only if [w] = 1, where w is any element of OM such
that N(w) = p and r(w) ≡ 1 mod 8.

Given a Dirichlet character χ modulo 8, we define, for any odd w ∈ OM ,

[w]χ := [w] · χ(r(wτ(w))).

Then
1

4

∑
χ mod 8

[w]χ =

{
[w] if r(wτ(w)) ≡ 1 mod 8,

0 otherwise,

where the sum is over all Dirichlet characters modulo 8. Another simple computation
shows that, for all odd w ∈ OM , we have [ζ8w] = [w]. We note that r(ε2α) ≡ 3·r(α) mod
8 for any α ∈ Z[

√
2], so that χ(r(ε2wτ(ε2w))) = χ(r(wτ(w))) for every Dirichlet charac-

ter χ modulo 8. Finally, we note that

[w] =

(
16r(wτ(w))

w

)
4

=

(
8σ(w)στ(w)

w

)
4

, (4.2)

so that

[εw] =

(
σ(ε)

w

)
2

[w],

and hence [ε2w] = [w]. Having determined the action of the units O×M on [·]χ, we can
define, for each Dirichlet character χ modulo 8, a sequence {a(χ)n}n indexed by ideals
of OM by setting a(χ)n = 0 if n is even, and otherwise

a(χ)n := [w]χ + [εw]χ, (4.3)

where w is any generator of the odd ideal n. Again because r(ε2α) ≡ 3 · r(α) mod 8 for
any α ∈ Z[

√
2], we see that if 8|h(−8p), then exactly one of r(wτ(w)) and r(εwτ(εw)) is

1 mod 8, and if 8 - h(−8p), then neither is 1 mod 8. We have proved
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Proposition 4.2.1. Let p ≡ 1 mod 8 be a prime, and let p be a prime ideal of OM lying
above p. Then

1

4

∑
χ mod 8

a(χ)p =


1 if 16|h(−8p),

−1 if 8|h(−8p) but 16 - h(−8p),

0 otherwise,

where the sum is over Dirichlet characters modulo 8.

4.3 Prerequisites

We now collect some definitions and facts that we will use in our proof of Theorem 4.1.1.

4.3.1 Quartic residue symbols and quartic reciprocity

Let L be a number field with ring of integers OL. Let p be an odd prime ideal of OL
and let α ∈ OL. One defines the quadratic residue symbol (α/p)L,2 by setting

(
α

p

)
L,2

:=


0 if α ∈ p

1 if α /∈ p and α ≡ β2 mod p for some β ∈ OL
−1 otherwise.

Then we have (α/p)L,2 ≡ α
NL/Q(p)−1

2 mod p. The quadratic residue symbol is then
extended multiplicatively to all odd ideals n, and then also to all odd elements β in OL
by setting (α/β)L,2 = (α/βOL)L,2. To define the quartic residue symbol, we assume
that L contains Q(i). Then one can define the quartic residue symbol (α/p)L,4 as the
element of {±1,±i, 0} such that(

α

p

)
L,4

≡ α
NL/Q(p)−1

4 mod p,

and extend this to all odd ideals n and odd elements β in the same way as the quadratic
residue symbol. A key property of the quartic residue symbol that we will use extensively
is the following weak version of quartic reciprocity in M := Q(ζ8).

Lemma 4.3.1. Let α, β ∈ OM with β odd. Then (α/β)M,4 depends only on the con-
gruence class of β modulo 16αOM . Moreover, if α is also odd, then(

α

β

)
M,4

= µ ·
(
β

α

)
M,4

,

where µ ∈ {±1,±i} depends only on the congruence classes of α and β modulo 16OM .

Proof. This follows from [51, Proposition 6.11, p. 199].
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4.3.2 Field lowering

A key feature of our proof is the reduction of quartic residue symbols in a quartic number
field to quadratic residue symbols in a quadratic field. We do this by using the following
three lemmas.

Lemma 4.3.2. Let K be a number field and let p be an odd prime ideal of K. Suppose
that L is a quadratic extension of K such that L contains Q(i) and p splits in L. Denote
by ψ the non-trivial element in Gal(L/K). Then if ψ fixes Q(i) we have for all α ∈ OK(

α

pOL

)
L,4

=

(
α

pOK

)
K,2

and if ψ does not fix Q(i) we have for all α ∈ OK with p - α(
α

pOL

)
L,4

= 1

Proof. Since p splits in L, we can write p = qψ(q) for some prime ideal q of L. Hence
we have (

α

pOL

)
L,4

=

(
α

q

)
L,4

(
α

ψ(q)

)
L,4

.

If ψ fixes i we find that(
α

q

)
L,4

= ψ

((
α

q

)
L,4

)
=

(
ψ(α)

ψ(q)

)
L,4

=

(
α

ψ(q)

)
L,4

.

Combining this with the previous identity gives(
α

pOL

)
L,4

=

(
α

q

)2

L,4

=

(
α

q

)
L,2

=

(
α

pOK

)
K,2

,

establishing the first part of the lemma. If ψ does not fix i we find that(
α

pOL

)
L,4

=

(
α

q

)
L,4

(
α

ψ(q)

)
L,4

=

(
α

q

)
L,4

ψ

((
α

q

)
L,4

)
= 1

by checking this for all values of (α/q)L,4 ∈ {±1,±i}. This completes the proof.

Lemma 4.3.3. Let K be a number field and let p be an odd prime ideal of K of degree
1 lying above p. Suppose that L is a quadratic extension of K such that L contains Q(i)
and p stays inert in L. Then we have for all α ∈ OK(

α

pOL

)
L,4

=

(
α

pOK

) p+1
2

K,2

.
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Proof. We have(
α

pOL

)
L,4

≡ α
NL(p)−1

4 ≡ α
p2−1

4 ≡
(
α
p−1

2

) p+1
2 ≡

(
α

NK (p)−1

2

) p+1
2

≡
(

α

pOK

) p+1
2

K,2

mod p,

which immediately implies the lemma.

Note that the previous lemmas only work if α ∈ OK . Our last lemma gives a way to
ensure that α ∈ OK .

Lemma 4.3.4. Let K be a number field and let L be a quadratic extension of K. Denote
by ψ the non-trivial element in Gal(L/K). Suppose that p is a prime ideal of K that
does not ramify in L and further suppose that β ∈ OL satisfies β ≡ ψ(β) mod pOL.
Then there is β′ ∈ OK such that β′ ≡ β mod pOL.

Proof. Since by assumption p does not ramify in L, we may assume that p splits or
stays inert in L. Let us first do the case that p stays inert, which means precisely that
ψ(p) = p. We conclude that ψ is in the decomposition group of p. Furthermore, the
inertia group of p is trivial by the assumption that p does not ramify. Since ψ is not the
identity, it follows that ψ must become the Frobenius map of the finite field extension
OK/p ↪−→ OL/p. Then β ≡ ψ(β) mod pOL means that β is fixed by the Frobenius map.
We conclude that β comes from OK/p, which we had to prove.

We still have to prove the lemma if p splits. In this case we can write p = qψ(q) for
some prime ideal q of L. Note that

OK/p ↪−→ OL/pOL ∼= OL/q×OL/ψ(q). (4.4)

One checks that ψ is the automorphism of OL/q × OL/ψ(q) that maps the pair (x, y)
to (ψ(y), ψ(x)). Hence β ≡ ψ(β) mod pOL implies that there is some x ∈ OL/q such
that β = (x, ψ(x)) as an element of OL/q×OL/ψ(q). Since OK/p ∼= OL/q, we can pick
β′ ∈ OK such that β′ maps to x under the natural inclusion OK/p ↪−→ OL/q. Then it
follows that β maps to (β′, ψ(β′)) under the maps given as in (4.4). This implies that
β′ ≡ β mod pOL as desired.

4.3.3 A fundamental domain for the action of O×
M

In defining a(χ)n for odd ideals n of OM , we had to choose a generator w for the ideal
n. There are many such choices, since the group of units of OM is quite large, i.e.,

O×M = 〈ζ8〉 × 〈ε〉 ,

where ε = 1 +
√

2 as before. It will be important to us that we can choose generators
that are in some sense as small as possible. We will do so by constructing a fundamental
domain for the action (by multiplication) of O×M on OM . The lemma that follows is
usually implicitly proved in most number theory textbooks, but we have not been able
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to find a reference stating exactly the somewhat peculiar version that we will need.
Below we deduce this version from [46, Lemma 1, p. 131].

More generally, let F be a number field of degree n over Q with ring of integers OF .
Let σ1, . . . , σr : F ↪→ R be the real embeddings of F and let τ1, τ̄1, . . . , τs, τ̄s : F ↪→ C be
the pairs of non-real complex conjugate embeddings of F (so that r + 2s = n). Let T
be the subgroup of the unit group O×F consisting of units of finite order. By Dirichet’s
Unit Theorem, there exists a free abelian subgroup V ⊂ O×F of rank r+ s− 1 such that
O×F = T × V ; fix one such V .

Let η = {η1, . . . , ηn} be an integral basis for OF ; it defines an isomorphism iη : Qn → F
via the map (a1, . . . , an) 7→ a1η1 + · · · anηn. For a subset S ⊂ Rn and an element
α = a1η1 + · · · + anηn ∈ F , we will say that α is in S (or α ∈ S) to mean that
(a1, . . . , an) ∈ S. Let fη ∈ Z[x1, . . . , xn] be the homogeneous polynomial of degree n in
n variables defined by fη(x1, . . . , xn) = N(x1η1 + · · · + xnηn). For a subset S ⊂ Rn
and a real number X > 0, let S(X) be the set of all (s1, . . . , sn) ∈ S such that
|fη(s1, . . . , sn)| ≤ X.

Lemma 4.3.5. There exists a subset D ⊂ Rn such that:

(1) for all α ∈ OF \ {0}, there exists a unique v ∈ V such that vα ∈ D; moreover, the
complete set of u ∈ O×F such that uα ∈ D is {µv : µ ∈ T};

(2) D(1) has an (n− 1)-Lipschitz parametrizable boundary; and

(3) there exists a constant Cη > 0 such that for all α = a1η1 + · · · + anηn ∈ D (with

ai ∈ Z), we have |ai| ≤ Cη ·N(α)
1
n .

Proof. Let J = Rr × Cs. Then j = (σ1, . . . , σr, τ1, . . . , τs) defines an embedding
j : F ↪→ J . Moreover, j ◦ iη : Qn → J is a linear map of Q-vector spaces. By
extension of scalars, we extend this to a linear map

j̄ : Rn → J.

It follows from [46, Lemma 1, p. 131] and its proof that there is a subset D ⊂ J× such
that:

(1’) for all α ∈ J×, there exists a unique v ∈ V such that vα ∈ D; moreover, the
complete set of u ∈ O×F such that uα ∈ D is {µv : µ ∈ T}; and

(2’) D(1) = {(α1, . . . , αr, β1, . . . , βs) ∈ D :
∏r
i=1 |αi|

∏s
j=1 |βj |2 ≤ 1} has an (n − 1)-

Lipschitz parametrizable boundary.

(3’) for all non-zero t ∈ R, we have tD = D.

Let D = j̄−1(D). Then (1) follows immediately from (1’). Since j̄ is linear and hence
Lipschitz continuous, (2’) immediately implies (2) (after also taking into account the
definitions of D(1), fη, and D(1)). By (2), the set D(1) ⊂ Rn is bounded, so we can set

Cη = sup{|ai| : (a1, . . . , an) ∈ D(1)}.

Finally, again because j̄ is linear, (3’) implies that tD = D for all non-zero t ∈ R, so
that D(t) = t1/nD(1). This proves (3).
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4.3.4 General bilinear sum estimates

Let F , n, η, and V be as in Section 4.3.3. Fix a fundamental domain D for the action of
V on OF as in Lemma 4.3.5. Let D1 and D2 be a pair of translates of D, i.e., Di = viD
for some vi ∈ V . Let f be a non-zero ideal in OF , and let Sf be the set of elements in
OF coprime to f. Suppose γ is a map

γ : Sf ×OF → {−1, 0, 1}

satisfying the following properties:

(P1) for every pair of invertible congruence classes ω and ζ modulo f, there exists
µ(ω, ζ) ∈ {±1} such that γ(w, z) = µ(ω, ζ)γ(z, w) whenever w ≡ ω mod f and
z ≡ ζ mod f;

(P2) for all z1, z2 ∈ OF and all w ∈ Sf, we have γ(w, z1z2) = γ(w, z1)γ(w, z2); similarly,
for all w1, w2 ∈ Sf and all z ∈ OF , we have γ(w1w2, z) = γ(w1, z)γ(w2, z); and

(P3) for all non-zero w ∈ Sf, we have γ(w, z1) = γ(w, z2) for all z1, z2 ∈ OF with
z1 ≡ z2 mod Nw; moreover, we have∑

ξ mod w

γ(w, ξ) = 0

unless Nw is squarefull.

We will consider bilinear sums of the type

B(M,N ;ω, ζ) :=
∑

w∈D1(M)
w≡ω mod f

∑
z∈D2(N)
z≡ζ mod f

αwβzγ(w, z), (4.5)

where {αw}w and {βz}z are bounded sequences of complex numbers, ω and ζ are invert-
ible congruence classes modulo f, and M and N are positive real numbers. Recall that
w ∈ D1(M) if and only if w ∈ D1 and N(w) ≤ M , and similarly for D2(N). Also recall
that n is the degree of F/Q. The following proposition is analogous to the bilinear sum
estimates in [24, 25].

Proposition 4.3.6. We have

B(M,N ;ω, ζ)�ε

(
M−

1
6n +N−

1
6n

)
(MN)1+ε,

where the implied constant depends on ε, on the units v1 and v2, on the supremum norms
of {αw}w and {βz}z, and the congruence classes ω and ζ modulo f.

Proof. We will prove that

B(M,N ;ω, ζ)�ε M
− 1

6n (MN)1+ε (4.6)
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whenever N ≥ M ; the proposition then immediately follows from the symmetry of the
sum B(M,N ;ω, ζ) coming from property (P1). So suppose that N ≥ M . We fix an
integer k ≥ 2n, and we apply Hölder’s inequality (with 1 = k−1

k + 1
k ) to the w variable

to get

|B(M,N ;ω, ζ)|k ≤

(∑
w

|αw|
k
k−1

)k−1∑
w

∣∣∣∣∣∑
z

βzγ(w, z)

∣∣∣∣∣
k

,

where the summations over w and z are as above in (4.5). The first factor above is
bounded trivially by � Mk−1, where the implied constant depends on the supremum
norm of the sequence {αw}w, on the fixed unit v1, and on the constant Cη from part
(3) of Lemma 4.3.5. We use property (P2), as well as the identity |α|k = αk · (|α|/α)k,
to expand the inner sum in the second factor above, getting

|B(M,N ;ω, ζ)|k �Mk−1
∑
w

ε(w)
∑
z

β′zγ(w, z),

where
β′z =

∑
z=z1···zk

z1,...,zk∈D2(N)
z1≡···≡zk≡ζ mod f

βz1 · · ·βzk ,

where ε(w) = (|
∑
z βzγ(w, z)|/

∑
z βzγ(w, z))k, and where once again the summation

conditions for w are as in (4.5). Since an ideal n in OF can be written as a product
of k ideals in at most �ε N(n)ε ways, and since D2 contains at most one generator of
any principal ideal, we see that β′z �ε N

ε. Moreover, the coordinates of each zi ∈ D2

(1 ≤ i ≤ k) of norm at most N in the basis η are bounded by N
1
n times a constant

depending on the unit v2 and on Cη from Lemma 4.3.5. Hence we may assume that the

sum
∑
z β
′
zγ(w, z) above is over z = a1η1 + · · ·+ anηn in a box B defined by |aj | � N

k
n

(1 ≤ j ≤ n), with the implied constant depending on v2 and on the integral basis η.
Next, we apply the Cauchy-Schwarz inequality to the z variable above and use property
(P2) to get∣∣∣∣∣∑

w

ε(w)
∑
z

β′zγ(w, z)

∣∣∣∣∣
2

�ε N
k+ε

∑
w1

∑
w2

ε(w1)ε(w2)
∑
z

γ(w1w2, z),

where the summation conditions for w1 and w2 are as those for w in (4.5), while the
inner sum is over z ∈ B. We break up the sum over z into congruence classes ξ modulo
N(w1w2) and note that, by property (P3),∑

ξ mod w1w2

γ(w1w2, ξ) = 0

unless N(w1w2) is squarefull. By counting points z in the box B and noting that
N(w1w2) ≤M2, this gives

∑
z

γ(w1w2, z)�

{
Nk if N(w1w2) is squarefull∑n
i=1M

2iNk(1− i
n ) otherwise.
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Since we took k ≥ 2n and since N ≥ M , we have N
k
n ≥ M2, so the last bound can be

simplified to M2Nk(1− 1
n ). Hence, putting together all of the bounds above, we get

|B(M,N ;ω, ζ)|2k �ε M2k−2Nk
(
M ·Nk +M2 ·M2Nk(1− 1

n )
)

(MN)ε

�ε

(
M2k−1N2k +M2k+2N2k(1− 1

2n )
)

(MN)ε.

Since N ≥M , if we take k = 3n, we get that N2k 1
2n ≥M3, so that the first term above

dominates the second term. With this choice of k, we get

|B(M,N ;ω, ζ)| �ε M
− 1

6n (MN)1+ε,

and this finishes the proof of (4.6).

4.3.5 The sieve

We will prove Theorem 4.1.1 by a sieve of Friedlander et al. [25] that generalizes the
ideas of Vinogradov [76, 77] to the setting of number fields. Let χ be a Dirichlet char-
acter modulo 8, and let a(χ)n be defined as in (4.3). We will prove the following two
propositions.

Proposition 4.3.7. For every ε > 0, we have∑
N(n)≤X, m|n

a(χ)n �ε X
1− 1

64 +ε

uniformly for all non-zero ideals m of OM and all X ≥ 2.

Proposition 4.3.8. For every ε > 0, we have∑
N(m)≤M

∑
N(n)≤N

αmβna(χ)mn �ε (M +N)
1
24 (MN)1− 1

24 +ε

uniformly for all M,N ≥ 2 and sequences of complex numbers {αm} and {βn} satisfying
|αm|, |βn| ≤ 1.

From these two propositions we can apply [25, Proposition 5.2, p. 722] with θ1 = 1
64 and

θ2 = 1
24 to prove ∑

N(n)≤X

a(χ)nΛ(n)�θ X
1−θ

for all θ < 1/(49 · 64) = 1/3136. By partial summation, it follows that, say,∑
N(p)≤X

a(χ)p � X1− 1
3200 . (4.7)

As ∑
N(p)≤X

p lies over p 6≡1 mod 8

1� X
1
2 ,

Theorem 4.1.1 follows from (4.7) and Proposition 4.2.1. It now remains to prove Propo-
sitions 4.3.7 and 4.3.8.
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4.4 Proof of Proposition 4.3.7

Let χ be a Dirichlet character modulo 8. Let m be an odd ideal of OM . In view of
Proposition 4.2.1 we must bound the following sum

A(x) = A(x;χ,m) :=
∑

N(a)≤x
(a,2)=1, m|a

([α]χ + [εα]χ) ,

where α is chosen to be any generator of a. Our proof is based on the argument in [42,
Section 3, p. 12-19], which is in turn based on [25, Section 6, p. 722-733]. Let D be a
fundamental domain for the action of O×M on OM \ {0} as in Lemma 4.3.5, with respect
to the integral basis η = {1, ζ8, ζ2

8 , ζ
3
8}. Each non-zero ideal a has exactly 8 generators

α ∈ D. Set u1 = 1 and u2 = ε. Set F = 16. Note that χ(r(ατ(α))) depends only on the
congruence class of α modulo 8. After splitting the above sum into congruence classes
modulo F , and using (4.2) and Lemma 4.3.1, we find that

A(x) =
1

8

2∑
i=1

∑
ρ mod F
(ρ,F )=1

µ(ρ, ui)A(x; ρ, ui),

where µ(ρ, ui) ∈ {±1,±i} depends only on ρ and ui and where

A(x; ρ, ui) :=
∑

α∈uiD, N(α)≤x
α≡ρ mod F
α≡0 mod m

(
σ(α)

α

)
M,4

(
στ(α)

α

)
M,4

.

Our goal is to estimate A(x; ρ, ui) separately for each congruence class ρ mod F such
that (ρ, F ) = 1 and each unit ui. We view OM as a Z-module of rank 4 and decompose
it as OM = Z ⊕M, where M = Zζ8 ⊕ Zζ2

8 ⊕ Zζ3
8 is a free Z-module of rank 3. We can

write α uniquely as
α = a+ β, with a ∈ Z, β ∈M,

so that the summation conditions above are equivalent to

a+ β ∈ uiD, N(a+ β) ≤ x, a+ β ≡ ρ mod F, a+ β ≡ 0 mod m. (∗)

We may assume that σ(β) 6= β and στ(β) 6= β. Indeed, if σ(β) = β or στ(β) = β,
the residue symbol in A(x; ρ, ui) is zero. We are now going to rewrite (σ(α)/α)M,4 and
(στ(α)/α)M,4 by using the same trick as in [25, p. 725]. Put

σ(β)− β = η2c0c and στ(β)− β = η′2c′0c
′

with c0, c
′
0, c, c

′, η, η′ ∈ OM , c0, c
′
0 | F squarefree, η, η′ | F∞ and (c, F ) = (c′, F ) = 1. By

multiplying with an appropriate unit we can even ensure that c ∈ Z[i] and c′ ∈ Z[
√
−2].

Indeed, observe that

α′ :=
σ(α)− α

ζ8
=
σ(β)− β

ζ8
∈ Z[i], (4.8)
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and we have a similar identity for στ(β)− β. Then we obtain, just as in [42, p. 14], by
Lemma 4.3.1,(

σ(α)

α

)
M,4

= µ1 ·
(
a+ β

cOM

)
M,4

and

(
στ(α)

α

)
M,4

= µ2 ·
(
a+ β

c′OM

)
M,4

,

where µ1, µ2 ∈ {±1,±i} depend only on ρ and β. Hence

A(x; ρ, ui) ≤
∑
β∈M
|T (x;β, ρ, ui)|,

where

T (x;β, ρ, ui) :=
∑
a∈Z

a+β sat. (∗)

(
a+ β

cOM

)
M,4

(
a+ β

c′OM

)
M,4

.

From now on we treat β as fixed and estimate T (x;β, ρ, ui). It is here that we deviate
from [25] and [42]. Since we chose c′ ∈ Z[

√
−2], we can factor the principal ideal

(c′) ⊂ Z[
√
−2] into prime ideals in Z[

√
−2] that do not ramify in M , say, (c′) =

∏k
i=1 p

ei
i ,

so that (
a+ β

c′OM

)
M,4

=

k∏
i=1

(
a+ β

piOM

)ei
M,4

.

We claim that ((a + β)/pOM )M,4 = 1 if p - a + β. As a first step we can replace β by
some β′ ∈ Z[

√
−2] due to Lemma 4.3.4. Then Lemma 4.3.2 proves the claim if p splits

in M . Finally suppose that p stays inert in M . If we define p := p ∩ Z, we find that
p ≡ 3 mod 8. Hence Lemma 4.3.3 finishes the proof of the claim.

The factor ((a + β)/cOM )M,4 is handled more similarly to [25, (6.21), p. 727]. Since
we chose c ∈ Z[i], we factor (c) ⊂ Z[i] in Z[i] as (c) = gq in the unique way so that
q := NQ(i)/Q(q) is a squarefree odd integer and g := NQ(i)/Q(g) is an odd squarefull
integer coprime with q.

Lemma 4.3.4 and the Chinese remainder theorem imply that there exists β′ ∈ Z[i] such
that β ≡ β′ mod qOM . Next, Lemma 4.3.2 and Lemma 4.3.3 imply that

((a+ β′)/qOM )M,4 = ((a+ β′)/q)Q(i),2.

Finally, as q is squarefree, the Chinese remainder theorem guarantees the existence of a
rational integer b such that β′ ≡ b mod q. Combining all of this gives(

a+ β

cOM

)
M,4

=

(
a+ β

gOM

)
M,4

(
a+ b

q

)
Q(i),2

.

Since c depends on β and not on a, we find that b depends on β and not on a. Now
define g0 as the radical of g, i.e., g0 :=

∏
p|g p. We observe that the quartic residue

symbol (α/gOM )M,4 is periodic in α modulo g∗ :=
∏

p|g p. But clearly g∗ divides g0,
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and hence we conclude that ((a+ β)/gOM )M,4 is periodic of period g0 when viewed as
a function of a ∈ Z. So we split T (x;β, ρ, ui) into congruence classes modulo g0, giving

|T (x;β, ρ, ui)| ≤
∑

a0 mod g0

|T (x;β, ρ, ui, a0)|,

where

T (x;β, ρ, ui, a0) =
∑
a∈Z

a+β sat. (∗)
a≡a0 mod g0

(
a+ b

q

)
Q(i),2

(
a+ β

c′OM

)
M,4

.

We have already proven that ((a+ β)/c′OM )M,4 = 1 unless gcd(a+ β, c′) 6= (1) and in
this case we have ((a+ β)/c′OM )M,4 = 0. An application of inclusion-exclusion gives

|T (x;β, ρ, ui, a0)| ≤
∑

d|c′OM
d squarefree

|T (x;β, ρ, ui, a0, d)| ,

where

T (x;β, ρ, ui, a0, d) :=
∑
a∈Z

a+β sat. (∗)
a≡a0 mod g0
a+β≡0 mod d

(
a+ b

q

)
Q(i),2

. (4.9)

We unwrap the summation conditions above similarly as in [25, p. 728]. Certainly

a+ β ∈ uiD implies that |a| ≤ Cx 1
4 , where C > 0 depends only on one of the two fixed

units ui. The condition NM/Q(a + β) ≤ x is for fixed β and x a polynomial inequality
of degree 4 in a. Hence the summation variable a ∈ Z runs over at most 4 intervals of
length ≤ Cx1/4 with endpoints depending on β and x.

Next, the congruence conditions a + β ≡ ρ mod F , a + β ≡ 0 mod m, a ≡ a0 mod g0

and a + β ≡ 0 mod d imply that a runs over some arithmetic progression of modulus
k dividing g0mdF , where we define m := NM/Q(m) and d := NM/Q(d). Moreover, as
q = NQ(i)/Q(q) is squarefree, (·/q)Q(i),2 : Z → {±1, 0} is the real primitive Dirichlet
character of modulus q.

All in all, the sum in (4.9) can be rewritten as at most 4 incomplete real character sums

of length� x
1
4 and modulus q � x

1
2 , each of which runs over an arithmetic progression

of modulus k. When the modulus q of the Dirichlet character divides the modulus k
of the arithmetic progression, one does not get the desired cancellation. So for now we
assume that q - k, and we will handle the case q | k later. As has been explained in
[26, 7., p. 924-925], Burgess’s bound for short character sums [8] implies that for each
integer r ≥ 2, we have

T (x;β, ρ, ui, a0, d)�ε,r x
1
4 (1− 1

r ) · x
1
2 ( r+1

4r2
+ε),

so that on taking r = 2, we obtain

T (x;β, ρ, ui)�ε g0x
1
4−

1
32 +ε. (4.10)
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It remains to do the case q | k. Certainly, this implies q | md. So (4.10) holds if q - md.
Recall that (c) = gq, hence we have (4.10) unless

p | NQ(i)/Q(α′) =⇒ p2 | mdFNQ(i)/Q(α′) (4.11)

for all primes p, where α′ is defined as in (4.8). Define A�(x; ρ, ui) as the contribution
to A(x; ρ, ui) from β satisfying (4.11). Then we get

A�(x; ρ, ui) ≤ |{α ∈ uiD : NM/Q(α) ≤ x, p | NQ(i)/Q(α′) =⇒ p2 | mdFNQ(i)/Q(α′)}|.

We decompose OM as OM = Z[i] ⊕M′, where M′ = Zζ8 ⊕ Zζ3
8 = Z[i] · ζ8 is a free Z-

module of rank 2. The linear map M′ → Z[i] given by α 7→ α′ is injective. Now suppose
α ∈ uiD and NM/Q(α) ≤ x. Then by Lemma 4.3.5, if we write α = a1+a2i+(a3+a4i)ζ8,

we have aj � x
1
4 for 1 ≤ j ≤ 4. Hence the norm NQ(i)/Q(·) of α′ = −2(a3 + a4i) is

� x
1
2 , and so

A�(x; ρ, ui)� x
1
2 |{α′ ∈ Z[i] : NQ(i)/Q(α′)� x

1
2 ,

p | NQ(i)/Q(α′) =⇒ p2 | mdFNQ(i)/Q(α′)}|. (4.12)

Note that there are at most �ε b
ε elements α′ ∈ Z[i] such that NQ(i)/Q(α′) = b. This

gives

A�(x; ρ, ui)�ε x
1
2 +ε

∑
b�x

1
2 ;

p|b =⇒ p2|mdFb

1,

where b runs over the positive rational integers. We assume that m ≤ x because other-
wise A(x) is the empty sum. This shows that md� x2 and we conclude that

A�(x; ρ, ui)�ε x
3
4 +ε.

Let A0(x; ρ, ui) be the contribution to A(x; ρ, ui) of the terms α = a+ β not satisfying
(4.11). Then we can split A(x; ρ, ui) as

A(x; ρ, ui) = A�(x; ρ, ui) +A0(x; ρ, ui).

To estimate A0(x; ρ, ui) we can try to use our bound (4.10) for every relevant β, but for
this we need g0 to be small. Hence we make the further partition

A0(x; ρ, ui) = A1(x; ρ, ui) +A2(x; ρ, ui),

where β satisfies the additional constraint

g0 ≤ Z in the sum A1(x; ρ, ui),

g0 > Z in the sum A2(x; ρ, ui).

Here Z is at our disposal, and we choose it later. We estimate A1(x; ρ, ui) as in [25]

by using (4.10) and summing over β = b1ζ8 + b2ζ
2
8 + b3ζ

3
8 ∈ M satisfying bi � x

1
4 for

1 ≤ i ≤ 3 to obtain
A1(x; ρ, ui)�ε Zx

1− 1
32 +ε.
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To finish the proof of Proposition 4.3.7 it remains to estimate A2(x; ρ, ui). Note that

g0 ≤
√
g and g ≤ NQ(i)/Q(c) ≤ NQ(i)/Q(α′) � x

1
2 . Hence, similarly as for A�(x; ρ, ui),

with b = NQ(i)/Q(α′), we have

A2(x; ρ, ui)�ε x
1
2 +ε

∑
Z<g0�x

1
4

∑
b�x

1
2

g2
0 |b

1�ε Z
−1x1+ε.

Picking Z = x
1
64 finishes the proof of Proposition 4.3.7.

4.5 Proof of Proposition 4.3.8

Let w and z be odd elements in OM . All quadratic and quartic residue symbols that
follow are over M . By (4.2), we have

[wz] =

(
8σ(wz)στ(wz)

wz

)
4

= [w][z]

(
σ(w)

z

)
4

(
στ(w)

z

)
4

(
σ(z)

w

)
4

(
στ(z)

w

)
4

.

By Lemma 4.3.1, we have, for some µ1 ∈ {±1,±i} that depends only on the congruence
classes of w and z modulo 16,(

σ(w)

z

)
4

(
σ(z)

w

)
4

= µ1

(
z

σ(w)

)
4

(
σ(z)

w

)
4

= µ1

(
z

σ(w)

)
4

σ

(
z

σ(w)

)
4

= µ1

(
z

σ(w)

)
2

,

because σ(i) = i. Similarly, for some µ2 ∈ {±1,±i} that depends only on the congruence
classes of w and z modulo 16,(

στ(w)

z

)
4

(
στ(z)

w

)
4

= µ2

(
z

στ(w)

)
4

στ

(
z

στ(w)

)
4

= µ21gcd(στ(w),z)=1,

because στ(i) = −i. Hence we get, for µ3 = µ1µ2,

[wz] = µ3[w][z]

(
z

σ(w)

)
2

1gcd(στ(w),z)=1. (4.13)

This twisted multiplicativity formula for the symbol [·] is what makes the estimate in
Proposition 4.3.8 possible; it is analogous to [24, Lemma 20.1, p. 1021], [25, (3.8), p.
708], [59, Proposition 8, p. 1010], and [42, (4.1), p. 19].

Let χ be a Dirichlet character modulo 8, and let {a(χ)n}n be the sequence defined in
(4.3). Let {αm}m and {βn}n be any two bounded sequences of complex numbers. Since
each ideal of OM has 8 different generators in D, we have∑

N(m)≤M

∑
N(n)≤N

αmβna(χ)mn =
1

82

∑
w∈D(M)

∑
z∈D(N)

αwβz([wz]χ + [εwz]χ).
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Here ε = 1+
√

2, αw := α(w) and βz := β(z). Note that for any odd element α ∈ OM , we
have [α]χ = µ4 · [α] for some µ4 ∈ {±1,±i} that depends only on the congruence class of
α modulo 8 (and so also modulo 16). Also note that (4.13) implies that [εwz] = µ5[wz]
for some µ5 ∈ {±1,±i} that depends only on the congruence class of wz modulo 16.
Hence, by restricting w and z to congruence classes modulo 16, we may break up the
sum above into 2 · 162 sums of the shape

µ6

∑
w∈D(M)

w≡ω mod 16

∑
z∈D(N)

z≡ζ mod 16

αwβz[wz],

where µ6 ∈ {±1,±i} depends only on the congruence classes ω and ζ modulo 16. Again
by (4.13), we can replace αw and βz by αw[w] and βz[z] to arrive at the sum

µ7

∑
w∈D(M)

w≡ω mod 16

∑
z∈D(N)

z≡ζ mod 16

αwβz

(
z

σ(w)

)
2

1gcd(στ(w),z)=1,

where µ7 ∈ {±1,±i} depends only on ω and ζ. One can now apply Proposition 4.3.6

with γ(w, z) =
(

z
σ(w)

)
2
1gcd(στ(w),z)=1 (and F = Q(ζ8), n = 4, f = (16)). Indeed,

property (P1) follows from Lemma 4.3.1, while properties (P2) and (P3) follow from
basic properties of the quadratic residue symbol in Q(ζ8). This finishes the proof of
Proposition 4.3.8.



Chapter 5

The 16-rank of Q(
√
−p)

Abstract

Recently, a density result for the 16-rank of Cl(Q(
√
−p)) was established when p varies

among the prime numbers, assuming a short character sum conjecture. In this paper we
prove the same density result unconditionally.

5.1 Introduction

If K is a quadratic number field with narrow class group Cl(K), there is an explicit
description of Cl(K)[2] due to Gauss. Since then the class group of quadratic number
fields has been extensively studied. If one is interested in the 2-part of the class group,
i.e. Cl(K)[2∞], the explicit description of Cl(K)[2] is often very useful. It is for this
reason that our current understanding of the 2-part of the class group is much better
than the p-part for odd p.

In 1984, Cohen and Lenstra put forward conjectures regarding the average behavior
of the class group Cl(K) of imaginary and real quadratic fields K. Despite significant
effort, there has been relatively little progress in proving these conjectures. Almost all
major results are about the 2-part with the most notable exception being the classical
result of Davenport and Heilbronn [14] regarding the distribution of Cl(K)[3]. Very
little is known about Cl(K)[p] for p > 3. The non-abelian version of Cohen-Lenstra has
recently also attracted great interest, see [1], [2], [40] and [81].

Gerth [28] studied the distribution of 2Cl(K)[4], when the number of prime factors of
the discriminant of K is fixed. Fouvry and Klüners [21] computed all the moments of
2Cl(K)[4], when K varies among imaginary or real quadratic fields. In the paper [20],
they deduced the probability that the 4-rank of a quadratic field has a given value. Their
work was based on earlier ideas of Heath-Brown [34].

63
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The study of Cl(K)[2∞] has often been conducted through the lens of governing fields.
Let k ≥ 1 be an integer and let d be an integer with d 6≡ 2 mod 4. For a finite abelian
group A we define the 2k-rank of A to be rk2k A := dimF2

2k−1A/2kA. Then a governing
field Md,k is a normal field extension of Q such that

rk2kCl
(
Q
(√

dp
))

is determined by the splitting of p in Md,k. Cohn and Lagarias [11] were the first to
define the concept of a governing field, and conjectured that they always exist.

If k ≤ 3, then governing fields are known to exist for all values of d. In case k = 2
this follows from work of Rédei [63] and Stevenhagen dealt with the case k = 3 [71].
The topic was recently revisited by Smith [69], who found a very explicit description
for Md,3 for most values of d. He then used this description to prove density results
for 4Cl(K)[8] assuming GRH. Not much later Smith [70] introduced relative governing
fields, which allowed him to prove the most impressive result that 2Cl(K)[2∞] has the
expected distribution when K varies among all imaginary quadratic fields.

If we let P (d, k) be the statement that a governing field Md,k exists, then there is
currently not a single value of d for which the truth or falsehood of P (d, 4) is known.
This has been the most significant obstruction in proving density results for the 16-rank
in thin families of the shape

{
Q
(√
dp
)}
p prime

.

This barrier was first broken by Milovic [59], who dealt with the 16-rank in the family{
Q
(√
−2p

)}
p≡−1 mod 4

. Milovic proves his density result with Vinogradov’s method,

and does not rely on the existence of a governing field. His use of Vinogradov’s method
was inspired by work of Friedlander et al. [25], which is based on earlier work of Fried-
lander and Iwaniec [24].

Milovic and the author established density results for the families
{
Q
(√
−2p

)}
p≡1 mod 4

and {Q (
√
−p)}p, see respectively [44] and [42] with the latter work being conditional

on a short character sum conjecture. Both [44] and [42] follow the ideas of [25] closely
in their treatment of the sums of type I, see Section 5.3 for a definition. However, if
one applies the method of [25] to a number field of degree n, one is naturally lead to

consider character sums of modulus q and length q
1
n .

In [44] we apply the method from [25] to a number field of degree 4. This leads to
character sums just outside the range of Burgess’ bound. Fortunately, the lemmas in
Section 3.2 of [44] allow us to reduce the size of the modulus from q to q

1
2 , and this

enables us to deal with the sums of type I unconditionally. In [42] we use a criterion
for the 16-rank of Q(

√
−p) due to Bruin and Hemenway [7], and this criterion is stated

most naturally over Q
(
ζ8,
√

1 + i
)
, which has degree 8. The resulting character sums

are far outside the reach of Burgess’ bound and we resort to assuming a short character
sum conjecture, see [42, p. 8].

In this paper we manage to deal with the 16-rank of Q(
√
−p) unconditionally by using

a criterion of Leonard and Williams [54], which one can naturally state over Q(ζ8).
However, the Leonard and Williams criterion has the significant downside that it is



5.2. Preliminaries 65

the product of two residue symbols instead of one residue symbol, namely a quadratic
and a quartic residue symbol. The resulting sums of type I can still not be treated
unconditionally with the method from [25]. Instead, we use a rather ad hoc argument
to deal with the resulting character sum.

Theorem 5.1.1. Let h(−p) be the class number of Q(
√
−p). Then

lim
X→∞

|{p prime : p ≤ X and 16 | h(−p)}|
|{p prime : p ≤ X}|

=
1

16
.

Milovic [58] has previously shown that there are infinitely many primes p with 16 dividing
h(−p). Theorem 5.1.1 gives an affirmative answer to conjectures in both [12] and [72].
For p a prime number, we define ep by

ep :=

 1 if 16 | h(−p)
−1 if 8 | h(−p), 16 - h(−p)
0 otherwise.

(5.1)

Theorem 5.1.1 is an immediate consequence of the following theorem.

Theorem 5.1.2. We have ∑
p≤X

ep � X
24999
25000 .

It is natural to wonder if the other conditional results in [42] can be proven uncondition-
ally using the methods from this paper. This is likely to be the case, but it would require
some effort to obtain suitable algebraic results similar to the Leonard and Williams [54]
criterion used in this paper.

Theorem 5.1.2 can be seen as compelling evidence against the existence of a governing
field for the 16-rank of Q(

√
−p). This is explained in Corollary 6 and its preceding text

in [42] and also in Section 7 of [59].
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5.2 Preliminaries

5.2.1 Quadratic and quartic reciprocity

Let K be a number field with ring of integers OK . We say that an ideal n of OK is odd
if (n, 2) = (1). Similarly, we say that an element w of OK is odd if the ideal generated
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by w is odd. If p is an odd prime ideal of OK and α ∈ OK , we define the quadratic
residue symbol

(
α

p

)
2,K

:=

 1 if α 6∈ p and α ≡ β2 mod p for some β ∈ OK
−1 if α 6∈ p and α 6≡ β2 mod p for all β ∈ OK
0 if α ∈ p.

Then Euler’s criterion states (
α

p

)
2,K

≡ α
N(p)−1

2 mod p.

For a general odd ideal n of OK , we define

(α
n

)
2,K

:=
∏
pe‖n

((
α

p

)
2,K

)e
.

Furthermore, for odd β ∈ OK we set(
α

β

)
2,K

:=

(
α

(β)

)
2,K

.

We say that an element α ∈ K is totally positive if for all embeddings σ of K into R we
have σ(α) > 0. In particular, all elements of a totally complex number field are totally
positive. We will make extensive use of the law of quadratic reciprocity.

Theorem 5.2.1. Let α, β ∈ OK be odd. If α or β is totally positive, we have(
α

β

)
2,K

= µ(α, β)

(
β

α

)
2,K

,

where µ(α, β) ∈ {±1} depends only on the congruence classes of α and β modulo 8.

Proof. This follows from Lemma 2.1 of [25].

If K = Q, we shall drop the subscript. In this case the symbol
( ·
·
)

is to be interpreted
as the Kronecker symbol. We presume that the reader is familiar with the quadratic
reciprocity law for the Kronecker symbol. Now let K be a number field containing Q(i)
still with ring of integers OK . For α ∈ OK and p an odd prime ideal of OK , we define
the quartic residue symbol (α/p)4,K to be the unique element in {±1,±i, 0} such that(

α

p

)
4,K

≡ α
N(p)−1

4 mod p.

We extend the quartic residue symbol to all odd ideals n and then to all odd elements β
in the same way as the quadratic residue symbol. Then we have the following theorem.
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Theorem 5.2.2. Let α, β ∈ Z[ζ8] with β odd. Then for fixed α, the symbol (α/β)4,Q(ζ8)

depends only on β modulo 16αZ[ζ8]. Furthermore, if α is also odd, we have(
α

β

)
4,Q(ζ8)

= µ(α, β)

(
β

α

)
4,Q(ζ8)

,

where µ(α, β) ∈ {±1,±i} depends only on the congruence classes of α and β modulo 16.

Proof. Use Proposition 6.11 of Lemmermeyer [51, p. 199].

5.2.2 A fundamental domain

Let F be a number field of degree n over Q and let OF be its ring of integers. Suppose
that F has r real embeddings and s pairs of conjugate complex embeddings so that
r + 2s = n. Define T to be the torsion subgroup of O∗F . Then, by Dirichlet’s Unit
Theorem, there exists a free abelian group V ⊆ O∗F of rank r+ s− 1 with O∗F = T × V .
Fix one choice of such a V .

There is a natural action of V on OF . The goal of this subsection is to construct
a fundamental domain D for this action. Such a fundamental domain allows us to
transform a sum over ideals into a sum over elements. It will be important that the
resulting fundamental domain has nice geometrical properties, so that we have good
control over the elements we are summing.

Fix an integral basis ω = {ω1, . . . , ωn} for OF . Then we get an isomorphism of Q-vector
spaces iω : Qn → F , where iω is given by (a1, . . . , an) 7→ a1ω1 + . . .+anωn. For a subset
S ⊆ Rn and an element α ∈ F , we will say that α ∈ S if i−1

ω (α) ∈ S. Define for our
integral basis ω and a real number X > 0

B(X,ω) :=

{
(x1, . . . , xn) ∈ Rn :

∣∣∣∣∣
n∏
i=1

(x1σi(ω1) + . . .+ xnσi(ωn))

∣∣∣∣∣ ≤ X
}
,

where σ1, . . . , σn are the embeddings of F into C.

Lemma 5.2.3. Let F be a number field with ring of integers OF and integral basis
ω = {ω1, . . . , ωn}. Choose a splitting O∗F = T × V , where T is the torsion subgroup of
O∗F . There exists a subset D ⊆ Rn such that

(i) for all α ∈ OF \ {0}, there exists a unique v ∈ V such that vα ∈ D. Furthermore,
we have the equality

{u ∈ O∗F : uα ∈ D} = {tv : t ∈ T};

(ii) D ∩B(1, ω) has an (n− 1)-Lipschitz parametrizable boundary;

(iii) there is a constant C(ω) depending only on ω such that for all α ∈ D we have

|ai| ≤ C(ω) · |N(α)| 1n , where ai ∈ Z are such that α = a1ω1 + . . .+ anωn.
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Proof. This is Lemma 3.5 of [44].

We will use Lemma 5.2.3 for F := Q(ζ8); in order to do so we must make some choices.
We choose V := 〈1 +

√
2〉 and integral basis ω := {1, ζ8, ζ2

8 , ζ
3
8}. The resulting funda-

mental domain will be called D, and we define D(X) := D ∩B(X,ω).

5.3 The sieve

Let {ap} be a sequence of complex numbers indexed by the primes and define

S(X) :=
∑
p≤X

ap.

To prove our main theorem, we must prove oscillation of S(X) for the specific sequence
{ep} defined in equation (5.1). There are relatively few methods that can deal with
such sums. The most common approach is to attach an L-function and then use the
zero-free region. This approach requires that our sequence {ep} has good multiplicative
properties. It turns out that {ep} is instead twisted multiplicative (see Lemma 5.6.1 and
Lemma 5.6.3), and this suggests we use Vinogradov’s method instead.

Recall that h(−p) denotes the class number of Cl(Q(
√
−p)). By definition of ep we have

ep = 0 if and only if 8 - h(−p). It is well-known that Q(ζ8,
√

1 + i) is a governing field
for the 8-rank of Cl(Q(

√
−p)), in fact a prime p splits completely in Q(ζ8,

√
1 + i) if

and only if 8 | h(−p). This is extremely convenient. Indeed, if we apply Vinogradov’s
method to our governing field, primes of degree 1 will give the dominant contribution
and these primes automatically have ep 6= 0.

Unfortunately, Q(ζ8,
√

1 + i) is a field of degree 8, which is simply too large to make
our analytic methods work unconditionally. Indeed, using the same approach for the
sums of type I as [25], one ends up with short character sums of modulus q and length

roughly q
1
8 , which is far outside the reach of Burgess’ famous bound. However, assuming

a short character sum conjecture, one still obtains the desired oscillation and this is the
approach taken in [42]. Instead we work over Q(ζ8); fortunately, Q(ζ8,

√
1 + i) is an

abelian extension of Q(ζ8), which implies that the splitting of a prime p of Q(ζ8) in
the extension Q(ζ8,

√
1 + i)/Q(ζ8) is determined by a congruence condition. Such a

congruence condition can easily be incorporated in Vinogradov’s method.

We will follow Section 5 of Friedlander et al. [25], who adapted Vinogradov’s method
to number fields. Define

Λ(n) :=

{
log Np if n = pl

0 otherwise

and suppose that we want to prove oscillation of

S(X) :=
∑

Nn≤X

anΛ(n),
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where an is of absolute value at most 1. The power of Vinogradov’s method lies in
the fact that one does not have to deal with S(X) directly. Instead one has to prove
cancellation of

A(X, d) :=
∑

Nn≤X
d|n

an,

which are traditionally called sums of type I or linear sums, and

B(M,N) :=
∑

Nm≤M

∑
Nn≤N

αmβnamn,

which are traditionally called sums of type II or bilinear sums. It is important to remark
that S(X) depends only on an with n a prime power, while A(X, d) and B(M,N)
certainly do not. This gives a substantial amount of flexibility, since we may define
an on composite ideals n in any way we like provided that we can prove oscillation of
A(X, d) and B(M,N). Constructing a suitable sequence an will be the goal of Section
5.4. We are now ready to state the precise version of Vinogradov’s method we are going
to use.

Proposition 5.3.1. Let F be a number field and let an be a sequence of complex num-
bers, indexed by the ideals of OF , with |an| ≤ 1. Suppose that there exist real numbers
0 < θ1, θ2 < 1 such that

• we have for all ideals d of OF and all ε > 0

A(X, d)�ε,F X
1−θ1+ε; (5.2)

• we have for all sequences of complex numbers {αm} and {βn} of absolute value at
most 1 and all ε > 0

B(M,N)�ε,F (M +N)θ2(MN)1−θ2+ε. (5.3)

Then

S(X)�ε,F X
1− θ1θ2

2+θ2
+ε.

Proof. See Proposition 5.2 of [25].

The remainder of this paper is devoted to the three major tasks that are left. We start
by constructing a suitable sequence an in Section 5.4 to which we will apply Proposition
5.3.1 with F = Q(ζ8). The main result of Section 5.5 is Proposition 5.5.1, which proves
equation (5.2) for θ1 = 1

2000 . Finally, we prove in Section 5.6 that (5.3) holds with
θ2 = 1

24 ; this is the content of Proposition 5.6.6. Once we have proven Proposition 5.5.1
and Proposition 5.6.6, the proof of Theorem 5.1.2 is complete.
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5.4 Definition of the sequence

By Gauss genus theory we know that the 2-part of Cl(Q(
√
−p)) is cyclic, and the 2-

part of Cl(Q(
√
−p)) is trivial if and only if p ≡ 3 mod 4. Let us recall a criterion for

16 | h(−p) due to Leonard and Williams [54]. We have

4 | h(−p)⇐⇒ p ≡ 1 mod 8.

Now suppose that 4 | h(−p). There exist positive integers g and h satisfying

p = 2g2 − h2.

Then a classical result of Hasse [32] is

8 | h(−p)⇐⇒
(
g

p

)
= 1 and p ≡ 1 mod 8

or equivalently

8 | h(−p)⇐⇒
(
−1

g

)
= 1 and p ≡ 1 mod 8.

We are now ready to state the result of Leonard and Williams [54]. If p is a prime
number with 8 | h(−p), we have

16 | h(−p)⇐⇒
(
g

p

)
4

(
2h

g

)
= 1.

With this in mind, we are going to define a sequence {an}, indexed by the integral ideals
of Z[ζ8], such that for all unramified prime ideals p in Z[ζ8] of norm p

ap =

 1 if 16 | h(−p)
−1 if 8 | h(−p), 16 - h(−p)
0 otherwise.

(5.4)

The sequence {an} will be constructed in such a way that we can prove the two estimates
in Proposition 5.5.1 and Proposition 5.6.6. Before we move on, it will be useful to recall
some standard facts about Z[ζ8]. The ring Z[ζ8] is a PID with unit group generated by
ζ8 and ε := 1 +

√
2. Odd primes are unramified in Z[ζ8], while 2 is totally ramified.

Furthermore, an odd prime p splits completely in Z[ζ8] if and only if p ≡ 1 mod 8 if and
only if 4 | h(−p). We will make extensive use of the following field diagram.

Q

Q(i
√

2)Q(i) Q(
√

2)

M := Q(ζ8)

〈τ〉
〈στ〉

〈σ〉
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If n is not odd, we set an := 0. From now on n is an odd integral ideal of Z[ζ8] and w is
a generator of n. We can write w as

w = a+ bζ8 + cζ2
8 + dζ3

8

for certain a, b, c, d ∈ Z. Define u, v ∈ Z by

wτ(w) = u+ v
√

2.

We can explicitly compute u and v using the following formulas

u =
wτ(w) + σ(w)στ(w)

2
= a2 + b2 + c2 + d2 (5.5)

and

v =
wτ(w)− σ(w)στ(w)

2
√

2
= ab− ad+ bc+ cd. (5.6)

Since w is odd, it follows that u is an odd positive integer and v is an even integer. Set

g := u+ v, h := u+ 2v,

so that g is an odd positive integer and h is an odd integer, not necessarily positive. By
construction g and h satisfy

Nw = 2g2 − h2.

We start by showing that the value of (
−1

g

)
(5.7)

does not depend on the choice of generator w of our ideal n.

Lemma 5.4.1. Let n be an odd, integral ideal of Z[ζ8]. Then the value of equation (5.7)
is the same for all generators w of n.

Proof. Suppose that we replace w by ζ8w. Because ζ8τ(ζ8) = 1, it follows that u and v,
hence also g, do not change. Suppose instead that we replace w by εw. In this case u
becomes 3u+ 4v and v becomes 2u+ 3v, so g becomes 5u+ 7v. Hence our lemma boils
down to (

−1

u+ v

)
=

(
−1

5u+ 7v

)
,

which holds if and only if

u+ v ≡ 5u+ 7v mod 4.

But recall that v is even by our assumption that w is odd.
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We define for odd w ∈ Z[ζ8] the following symbol

[w] :=
( g
w

)
4,M

(
2h

g

)
,

where we remind the reader that M is defined to be Q(ζ8). We express this as

[w] = [w]1[w]2, [w]1 :=
( g
w

)
4,M

, [w]2 :=

(
2h

g

)
.

It is easily checked that [ζ8w] = [w]. Unfortunately, it is not always true that [εw] = [w].
To get around this, we need the following lemma.

Lemma 5.4.2. We have for all odd w

[ε4w] = [w].

Proof. We have for any odd w

[w]1 =
( g
w

)
4,M

=

(
u+ v

w

)
4,M

=


(

1
2 −

1
2
√

2

)
σ(w)στ(w)

w


4,M

, (5.8)

where we use the explicit formulas for u and v, see equation (5.5) and equation (5.6), in
terms of w. From this expression it quickly follows that [ε2w]1 = [w]1. We also have

[w]2 =

(
2h

g

)
=

(
2u+ 4v

u+ v

)
=

(
2

u+ v

)(
v

u+ v

)
=

(
2

u+ v

)(
−u
u+ v

)
=

(
−2

u+ v

)( v
u

)
(−1)

u−1
2 ·

u+v−1
2 . (5.9)

A straightforward computation shows that the u and v associated to ε4w are respectively
u1 := 577u+ 816v and v1 := 408u+ 577v. Then we have( v

u

)
=

(
408u+ 577v

577u+ 816v

)
=

(
v1

u1

)
(5.10)

due to Proposition 2 in Milovic [59]. It will be useful to observe that the following
congruences hold true

u ≡ u1 mod 8, v ≡ v1 mod 8.

This immediately implies (
−2

u+ v

)
=

(
−2

u1 + v1

)
, (5.11)

and therefore the lemma.
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With this out of the way, we have all the tools necessary to define an. Suppose that n
is an odd, integral ideal of Z[ζ8] with generator w. Then we define

an :=

{
1
4

(
[w] + [εw] + [ε2w] + [ε3w]

)
if w satisfies (5.7)

0 otherwise.
(5.12)

for any generator w of n. Then an application of Lemma 5.4.1 and Lemma 5.4.2 shows
that (5.12) is indeed well-defined.

Lemma 5.4.3. The sequence an satisfies equation (5.4) for all unramified prime ideals
p of degree 1 in Z[ζ8].

Proof. Let p be an unramified prime ideal of degree 1 in Z[ζ8] and let w be a generator
of p. Put p := Nw. Lemma 5.4.1 and the aforementioned result of Hasse imply

w does not satisfy (5.7)⇐⇒ 8 - h(−p),

and ap is indeed 0 in this case. Now suppose that w does satisfy (5.7). Recall that

[w] =
( g
w

)
4,M

(
2h

g

)
,

where g and h are explicit functions of w. We stress that these g and h are not necessarily
the same g and h from Leonard and Williams. Indeed, Leonard and Williams require g
and h to be positive, while our h is not necessarily positive. However, since w satisfies
(5.7), their criterion remains valid irrespective of the sign of h. Then, the criterion
implies

[w] = [εw] = [ε2w] = [ε3w].

Furthermore, the criterion also shows that

[w] = 1⇐⇒ 16 | h(−p).

This completes the proof of our lemma.

5.5 Sums of type I

The goal of this section is to bound the following sum

A(X, d) =
∑

Nn≤X
d|n

an =
∑

Nn≤X
d|n,n odd

an.

By picking a generator for n we obtain

A(X, d) =
1

8

∑
w∈D(X)
w≡0 mod d
w odd

a(w) =
1

32

∑
w∈D(X)
w≡0 mod d
w odd

1w sat. (5.7)

(
[w] + [εw] + [ε2w] + [ε3w]

)
.
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We define for i = 0, . . . , 3 and ρ an invertible congruence class modulo 210

A(X, d, ui, ρ) :=
∑

w∈uiD(X)
w≡0 mod d
w≡ρ mod 210

[w] =
∑

w∈uiD(X)
w≡0 mod d
w≡ρ mod 210

( g
w

)
4,M

(
2h

g

)
,

where ui := εi. With this definition in place, we may split A(X, d) as follows

A(X, d) =
1

32

3∑
i=0

∑
ρ∈(OM/210OM )∗

1ρ sat. (5.7)A(X, d, ui, ρ),

since the truth of equation (5.7) depends only on w modulo 4. Then it is enough to
bound each individual sum A(X, d, ui, ρ). In order to bound this sum, our first step is
to carefully rewrite the symbol [w] in a more tractable form. While doing so, we will
find some hidden cancellation between [w]1 and [w]2 that is vital for making our results
unconditional.

Throughout this section we use the convention that µ(·) ∈ {±1,±i} is a function de-
pending only on the variables between the parentheses; at each occurence µ(·) may be a
different function. Since our cancellation will come from fixing b, c and d while varying
a, factors of the shape µ(ρ, b, c, d) will present no issues for us. Let us start by rewriting
[w]2. It follows from equation (5.9) that(

2h

g

)
=
( v
u

)
µ(ρ). (5.13)

Using the formulas for u and v we get( v
u

)
=

(
ab− ad+ bc+ cd

a2 + b2 + c2 + d2

)
. (5.14)

If v is not zero, we can uniquely factor v as

v := v1v2t,

where v1 is an odd, positive integer satisfying gcd(v1, b − d) = 1, v2 is an odd integer
consisting only of primes dividing b− d and t is positive and only divisible by powers of
2. Then we have(

ab− ad+ bc+ cd

a2 + b2 + c2 + d2

)
=

(
v1

a2 + b2 + c2 + d2

)(
tv2

a2 + b2 + c2 + d2

)
. (5.15)

Let ρ′ be the congruence class of v1 modulo 8. Using the following identity modulo v

a2(b− d)2 ≡ c2(b+ d)2 mod v
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and the fact that this identity continues to hold for any divisor of v, so in particular for
v1, we rewrite the first factor of equation (5.15) as follows(

v1

a2 + b2 + c2 + d2

)
= µ(ρ, ρ′)

(
a2 + b2 + c2 + d2

v1

)
= µ(ρ, ρ′)

(
(a2 + b2 + c2 + d2)(b− d)2

v1

)
= µ(ρ, ρ′)

(
a2(b− d)2 + (b2 + c2 + d2)(b− d)2

v1

)
= µ(ρ, ρ′)

(
c2(b+ d)2 + (b2 + c2 + d2)(b− d)2

v1

)
= µ(ρ, ρ′)

(
(b2 + d2)(2c2 + (b− d)2)

v1

)
. (5.16)

Stringing together (5.13), (5.14), (5.15) and (5.16), we conclude that(
2h

g

)
= µ(ρ, ρ′)

(
(b2 + d2)(2c2 + (b− d)2)

v1

)(
tv2

a2 + b2 + c2 + d2

)
. (5.17)

Our next goal is to simplify [w]1. We have by equation (5.8) and Theorem 5.2.2

( g
w

)
4,M

=


(

1
2 −

1
2
√

2

)
σ(w)στ(w)

w


4,M

= µ(ρ)

(
σ(w)στ(w)

w

)
4,M

. (5.18)

The quartic residue symbol in equation (5.18) is the product of two quartic residue
symbols. One of them is equal to(

στ(w)

w

)
4,M

=

(
a+ dζ8 − cζ2

8 + bζ3
8

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

=

(
−2cζ2

8 + (d− b)(ζ8 − ζ3
8 )

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

=

(
ζ2
8

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

(
−2c+ (b− d)(ζ8 + ζ3

8 )

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

= µ(ρ)

(
−2c+ (b− d)(ζ8 + ζ3

8 )

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

, (5.19)

where the last equality is due to Theorem 5.2.2. For the remainder of this section we
assume that b− d is not zero. We factor −2c+ (b− d)(ζ8 + ζ3

8 ) in the ring Z[
√
−2] as

−2c+ (b− d)(ζ8 + ζ3
8 ) = η2e0e

with η and e0 consisting only of even prime factors, e0 squarefree and e odd. This
factorization is unique up to multiplication by units. Then we have by Theorem 5.2.2(

−2c+ (b− d)(ζ8 + ζ3
8 )

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

= µ(ρ, b, c, d)

(
a+ bζ8 + cζ2

8 + dζ3
8

e

)
4,M

. (5.20)
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But a simple computation shows

a+ bζ8 + cζ2
8 + dζ3

8 ≡ στ(a+ bζ8 + cζ2
8 + dζ3

8 ) mod e.

An application of Lemma 3.4, Lemma 3.2 and Lemma 3.3 of [44] yields(
a+ bζ8 + cζ2

8 + dζ3
8

e

)
4,M

= 1gcd(w,στ(w))=(1). (5.21)

We deduce from equation (5.19), (5.20) and (5.21) that(
στ(w)

w

)
4,M

= µ(ρ, b, c, d)1gcd(w,στ(w))=(1). (5.22)

We will now study the other quartic residue symbol in equation (5.18) using very similar
methods. We start with the identity(

σ(w)

w

)
4,M

=

(
a− bζ8 + cζ2

8 − dζ3
8

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

=

(
−2ζ8(b+ dζ2

8 )

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

=

(
−2ζ8

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

(
b+ dζ2

8

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

= µ(ρ)

(
b+ dζ2

8

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

, (5.23)

where we use Theorem 5.2.2 once more. We choose i := ζ2
8 and factor b+ di in the ring

Z[i] as
b+ di = η′2e′0e

′

with η′ and e′0 consisting only of even prime factors, e′0 squarefree and e′ odd. Such a
factorization is unique up to multiplication by units. With this factorization we have
due to Theorem 5.2.2(

b+ di

a+ bζ8 + cζ2
8 + dζ3

8

)
4,M

= µ(ρ, b, c, d)

(
a+ bζ8 + cζ2

8 + dζ3
8

e′

)
4,M

. (5.24)

An application of Lemma 3.2 and Lemma 3.3 of [44] proves the following identity(
a+ bζ8 + cζ2

8 + dζ3
8

e′

)
4,M

=

(
a+ cζ2

8

e′

)
4,M

=

(
a+ ci

e′

)
2,Q(i)

. (5.25)

Combining (5.23), (5.24) and (5.25) acquires the validity of(
σ(w)

w

)
4,M

= µ(ρ, b, c, d)

(
a+ ci

e′

)
2,Q(i)

. (5.26)

Put

f(w, ρ) := µ(ρ, ρ′, b, c, d)1gcd(w,στ(w))=(1)

(
tv2

a2 + b2 + c2 + d2

)
.
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Using (5.17), (5.22) and (5.26), we conclude that( g
w

)
4,M

(
2h

g

)
= f(w, ρ)

(
(b2 + d2)(2c2 + (b− d)2)

v1

)(
a+ ci

e′

)
2,Q(i)

. (5.27)

Our hidden cancellation will come from comparing the Jacobi symbols(
b2 + d2

v1

)
and

(
a+ ci

e′

)
2,Q(i)

.

Our goal is to show that these two Jacobi symbols are equal up to some easily controlled
factors. We can uniquely factor

b2 + d2 = z1z2,

where z1 and z2 are positive integers satisfying

• (z1, z2) = 1;

• z1 odd and squarefree;

• if p is odd and divides z2, then also p2 divides z2.

With this factorization we have(
b2 + d2

v1

)
=

(
z1

v1

)(
z2

v1

)
= µ(ρ′, b, c, d)

(
v1

z1

)(
z2

v1

)
.

In a similar vein we uniquely factor, up to multiplication by units, e′ in Z[i] as

e′ = γ1γ2

with (Nγ1,Nγ2) = (1), Nγ1 squarefree and Nγ2 squarefull. The point of this factorization
is that Nγ1 = z1. This gives (

v1

z1

)
=

(
v1

γ1

)
2,Q(i)

.

Observe that v2 does not depend on a, since v2 is equal to the odd part of

gcd(v, b− d) = gcd(ab− ad+ bc+ cd, b− d) = gcd(bc+ cd, b− d).

A computation using (tv2, γ1) = (d, γ1) = (1) and our previous observation shows(
v1

z1

)
=

(
v1

γ1

)
2,Q(i)

= µ(b, c, d, t)

(
v

γ1

)
2,Q(i)

= µ(b, c, d, t)

(
a+ ci

γ1

)
2,Q(i)

(
−d(1 + i)

γ1

)
2,Q(i)

= µ(b, c, d, t)

(
a+ ci

γ1

)
2,Q(i)

,
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where we use the identity

v = ab− ad+ bc+ cd ≡ −ad(1 + i) + cd(1− i) = −d(1 + i)(a+ ci) mod γ1.

We conclude that(
b2 + d2

v1

)(
a+ ci

e′

)
2,Q(i)

= µ(ρ, ρ′, b, c, d, t)

(
z2

v1

)(
a+ ci

γ2

)
2,Q(i)

1gcd(a+ci,γ1)=(1).

(5.28)

Put

g(w, ρ) := µ(ρ, ρ′, b, c, d, t)

(
tv2

a2 + b2 + c2 + d2

)
(
z2

v1

)(
a+ ci

γ2

)
2,Q(i)

1gcd(a+ci,γ1)=gcd(w,στ(w))=(1).

After combining equations (5.27) and (5.28), we get( g
w

)
4,M

(
2h

g

)
= g(w, ρ)

(
2c2 + (b− d)2

v1

)
= µ(ρ, ρ′, b, c, d, t)g(w, ρ)

(
v1

2c2 + (b− d)2

)
.

With this formula we have finally rewritten our symbol in a satisfactory manner; we now
return to estimating the sum A(X, d, ui, ρ). Let ν be a small parameter to be chosen
later and let 2α be the closest integer power of 2 to X2ν . We fix a modulo 2α and we
assume that b− d has 2-adic valuation at most α

2 . Then we know vodd modulo 8, where
vodd is the odd part of

v = a(b− d) + c(b+ d), (5.29)

with the exception of � Xν congruence classes for a modulo 2α. Indeed, if α ≥ 3, v
modulo 2α determines vodd modulo 8 unless v is divisible by 2α−3. There are only 8
such congruence classes modulo 2α, and solving for a in equation (5.29) for each such
congruence class gives � Xν solutions by our assumption that the 2-adic valuation of
b− d is at most α

2 .

Similarly, we know the value of t with the exception of � Xν congruence classes for a
modulo 2α. We remove all such congruence classes from the sum, which gives an error
of size at most X1−ν . From now on we assume that a does not lie in such a congruence
class. For the remaining congruence classes modulo 2α, we observe that ρ′ is determined
by vodd modulo 8 together with b, c and d. Hence both ρ′ and t are determined by a
modulo 2α. Set

m := lcm
(
v2, z2,Nγ2, 2

α, 210
)
.

Then (
tv2

a2 + b2 + c2 + d2

)(
z2

v1

)(
a+ ci

γ2

)
2,Q(i)
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depends only on a modulo m, b, c and d. If we write β := bζ8 + cζ2
8 + dζ3

8 , we have the
following estimate

A(X, d, ui, ρ)�
∑
β

∑
f∈Z/mZ

∣∣∣∣∣∣∣∣
∑
a∈Z

a sat. (∗)

(
v1

2c2 + (b− d)2

)
1gcd(a+ci,γ1)=gcd(a+β,στ(a+β))=(1)

∣∣∣∣∣∣∣∣ ,
where (∗) are the simultaneous conditions

a+ β ∈ uiD(X), a+ β ≡ 0 mod d, a+ β ≡ ρ mod 210, a ≡ f mod m.

Note that
1gcd(a+β,στ(a+β))=(1) = 1gcd(a+β,στ(β)−β)=(1).

We use the Möbius function to detect the coprimality conditions, which yields the fol-
lowing upper bound

A(X, d, ui, ρ)�
∑
β

∑
f∈Z/mZ

∑
d1|γ1

∑
d2|στ(β)−β

∣∣∣∣∣∣∣∣
∑
a∈Z

a sat. (∗∗)

(
v1

2c2 + (b− d)2

)∣∣∣∣∣∣∣∣ ,
where (∗∗) are the simultaneous conditions

a+ β ∈ uiD(X), a+ β ≡ 0 mod d, a+ β ≡ ρ mod 210, a ≡ f mod m

a+ ci ≡ 0 mod d1, a+ β ≡ 0 mod d2.

Define m′ to be the smallest positive integer that is divisible by lcm(d, d1, d2). Put

M := lcm (m,m′) .

The congruence conditions for a in (∗∗) are equivalent to at most one congruence con-
dition modulo M . We assume that it is equivalent to exactly one congruence condition
modulo M , say F , otherwise the inner sum is empty. Then we have

A(X, d, ui, ρ)�
∑
β

∑
f∈Z/mZ

∑
d1|γ1

∑
d2|στ(β)−β

∣∣∣∣∣∣∣∣∣∣
∑
a∈Z

a+β∈uiD(X)
a≡F mod M

(
v1

2c2 + (b− d)2

)∣∣∣∣∣∣∣∣∣∣
. (5.30)

Recall that the condition a+ β ∈ uiD(X) implies a, b, c, d� X
1
4 , see Lemma 5.2.3. We

will only consider β satisfying the following three properties

• v2, z2,Nγ2 ≤ Xν ;

• the 2-adic valuation of b− d is at most α
2 ;
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• the odd, squarefree part of 2c2 + (b− d)2 is at least X
1
2−ν .

There are � X
3
4−

1
5ν elements β that do not satisfy these conditions. For those β,

we bound the inner sum trivially by � X
1
4 /m inducing an error of size �ε X

1+ε− 1
5ν .

For the remaining β, we have m � X5ν . Furthermore, for fixed β, the condition
a + β ∈ uiD(X) means that a runs over � 1 intervals with endpoints depending on β

and ui. Since a � X
1
4 , we know that each interval has length � X

1
4 . We have the

factorization
2c2 + (b− d)2 = q1q2,

where q1 is the biggest odd, squarefree integer satisfying (q1, q2) = 1. We know that
q2 � Xν , and we split the sum over a in congruence classes modulo q2. For fixed b, c, d
and t, v1 is a linear function of a with linear term not divisible by q1 by our assumption
q1 ≥ X

1
2−ν . Hence we may employ Burgess’ bound [8] to equation (5.30) with r = 2

and q = q1 � X
1
2 to prove

A(X, d, ui, ρ)�ε X
31
32 +6ν+ε.

We choose ν := 1
250 , which shows that the following estimate is valid

A(X, d, ui, ρ)� X
1999
2000 .

This establishes the following proposition.

Proposition 5.5.1. We have for all ideals d of Z[ζ8]

A(X, d)� X
1999
2000 .

5.6 Sums of type II

During the proof of Lemma 5.4.2 we defined [w]1 and [w]2. We have the useful decom-
position

[w] = [w]1[w]2.

In this section we need to carefully study the multiplicative properties of [w], and we
do so by studying the multiplicative properties of [w]1 and [w]2. These properties will
then be used to prove cancellation in sums of type II. We start by studying [w]1; our
treatment is almost identical to [44]. If w is an odd element of Z[ζ8], we have

[w]1 =


(

1
2 −

1
2
√

2

)
σ(w)στ(w)

w


4,M

=

((
2−
√

2
)
σ(w)στ(w)

w

)
4,M

.

Define

γ1(w, z) :=

(
σ(z)

w

)
2,M

. (5.31)



5.6. Sums of type II 81

For the remainder of this section, we use the convention that δ(w, z) is a function
depending only on the congruence classes of w and z modulo 210; at each occurence
δ(w, z) may be a different function.

Lemma 5.6.1. We have for all odd w, z ∈ Z[ζ8]

[wz]1 = δ(w, z)[w]1[z]1γ1(w, z)1gcd(w,στ(z))=(1).

Proof. By definition of [w]1 we have

[wz]1 =

((
2−
√

2
)
σ(wz)στ(wz)

wz

)
4,M

= [w]1[z]1

(
σ(z)

w

)
4,M

(
στ(z)

w

)
4,M

(
σ(w)

z

)
4,M

(
στ(w)

z

)
4,M

.

Since σ fixes i and therefore any quartic residue symbol, Theorem 5.2.2 yields(
σ(z)

w

)
4,M

(
σ(w)

z

)
4,M

= δ(w, z)

(
σ(z)

w

)
4,M

(
z

σ(w)

)
4,M

= δ(w, z)

(
σ(z)

w

)
4,M

σ

((
σ(z)

w

)
4,M

)

= δ(w, z)

(
σ(z)

w

)
2,M

.

If we do the same computation for στ , we obtain(
στ(z)

w

)
4,M

(
στ(w)

z

)
4,M

= δ(w, z)1gcd(w,στ(z))=(1),

since στ does not fix i. This proves the lemma.

In the next lemma we collect the most important properties of γ1(w, z).

Lemma 5.6.2. Let w, z ∈ Z[ζ8] be odd and define γ1(w, z) as in equation (5.31).

(i) γ1(w, z) is essentially symmetric

γ1(w, z) = δ(w, z)γ1(z, w).

(ii) γ1(w, z) is multiplicative in both arguments

γ1(w, z1z2) = γ1(w, z1)γ1(w, z2), γ1(w1w2, z) = γ1(w1, z)γ1(w2, z).

Proof. This is straightforward.



82 Chapter 5. The 16-rank of Q(
√
−p)

With this lemma we have completed our study of [w]1 and γ1(w, z). We will now focus
on [w]2. Recall that

[w]2 =

(
2h

g

)
= δ(w)

( v
u

)
.

The second representation of [w]2 is very convenient, since it allows us to use earlier
work of Milovic [59]. Define

γ2(w, z) :=

(
σ(wz)στ(wz)

wτ(w)

)
2,K

, (5.32)

where K := Q(
√

2).

Lemma 5.6.3. The following formula is valid for all odd w, z ∈ Z[ζ8]

[wz]2 = δ(w, z)[w]2[z]2γ2(w, z).

Proof. Milovic [59, p. 1009] defines the following symbol

[u+ v
√

2]3 :=
( v
u

)
.

Then it is easily seen that [w]2 = δ(w)[wτ(w)]3 and that wτ(w) is totally positive. Now
apply Proposition 8 of Milovic [59].

To further our study of γ2(w, z), it will be convenient to define a second function m(w)
by the following formula

m(w) := γ2(w, 1) =

(
σ(w)στ(w)

wτ(w)

)
2,K

.

It turns out that γ2(w, z) is neither symmetric nor multiplicative. Instead, it is sym-
metric and multiplicative twisted by the factor m.

Lemma 5.6.4. Let w, z ∈ Z[ζ8] be odd and define γ2(w, z) as in equation (5.32).

(i) γ2(w, z) is twisted symmetric

γ2(w, z)γ2(z, w) = m(wz).

(ii) γ2(w, z) is twisted multiplicative in z

γ2(w, z1z2) = m(w)γ2(w, z1)γ2(w, z2).

Proof. Left to the reader.



5.6. Sums of type II 83

With this out of the way we are ready to tackle the sums of type II. Let {αw} and
{βz} be sequences of complex numbers of absolute value at most 1 and let ρ and µ be
invertible congruence classes modulo 210. We define

B1(M,N, ρ, µ) :=
∑

w∈D(M)

w≡ρ mod 210

∑
z∈D(N)

z≡µ mod 210

αwβz[wz],

where we suppress the dependence on {αw} and {βz}. Then we have the following
proposition.

Proposition 5.6.5. We have for all sequences of complex numbers {αw} and {βz} of
absolute value at most 1, all invertible congruence classes ρ and µ modulo 210 and all
ε > 0

B1(M,N, ρ, µ)�ε

(
M−

1
24 +N−

1
24

)
(MN)1+ε.

Proof. We start by expanding [wz] using Lemma 5.6.1 and Lemma 5.6.3. We may absorb
[w]1, [w]2, [z]1 and [z]2 in the coefficients αw and βz. Then it suffices to prove for all
sequences of complex numbers {αw} and {βz} of absolute value at most 1, all invertible
congruence classes ρ and µ modulo 210 and all ε > 0 the following estimate

B2(M,N, ρ, µ) :=
∑

w∈D(M)

w≡ρ mod 210

∑
z∈D(N)

z≡µ mod 210

αwβzγ1(w, z)γ2(w, z)1gcd(w,στ(z))=(1)

�ε

(
M−

1
24 +N−

1
24

)
(MN)1+ε.

Define

γ3(w, z) :=

(
σ(z)στ(z)

wτ(w)

)
2,K

,

so that we have the factorization γ2(w, z) = m(w)γ3(w, z). Absorbing m(w) in αw and
using the identity

γ3(w, z)1gcd(w,στ(z))=(1) = γ3(w, z),

we see that it is enough to establish

B3(M,N, ρ, µ) :=
∑

w∈D(M)

w≡ρ mod 210

∑
z∈D(N)

z≡µ mod 210

αwβzγ1(w, z)γ3(w, z)

�ε

(
M−

1
24 +N−

1
24

)
(MN)1+ε.

Theorem 5.2.1 shows that γ3(w, z) is also essentially symmetric, i.e.

γ3(w, z) = δ(w, z)γ3(z, w).

Due to the symmetry of γ1(w, z), see Lemma 5.6.2(i), and the symmetry of γ3(w, z), we
may further reduce to the case N ≥M . We take k := 12 and apply Hölder’s inequality
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with 1 = k−1
k + 1

k to the w variable to obtain

|B3(M,N, ρ, µ)|k ≤ ∑
w∈D(M)

w≡ρ mod 210

|αw|
k
k−1


k−1 ∑

w∈D(M)

w≡ρ mod 210

∣∣∣∣∣∣∣∣
∑

z∈D(N)

z≡µ mod 210

βzγ1(w, z)γ3(w, z)

∣∣∣∣∣∣∣∣
k

.

The first factor is trivially bounded by�Mk−1 with absolute implied constant. Lemma
5.6.2(ii) implies that γ1(w, z) is multiplicative in z and Lemma 5.6.4(ii) implies that
γ3(w, z) is multiplicative in z. Hence γ1(w, z)γ3(w, z) is multiplicative in z. We conclude
that

|B3(M,N, ρ, µ)|k �Mk−1
∑

w∈D(M)

w≡ρ mod 210

ε(w)
∑
z

β′zγ1(w, z)γ3(w, z), (5.33)

where

ε(w) :=


∣∣∣∣∣∑ z∈D(N)

z≡µ mod 210

βzγ1(w, z)γ3(w, z)

∣∣∣∣∣∑
z∈D(N)

z≡µ mod 210

βzγ1(w, z)γ3(w, z)


k

and

β′z :=
∑

z=z1·...·zk
z1,...,zk∈D(N)

z1≡...≡zk≡µ mod 210

βz1 · . . . · βzk .

We will now study the summation condition for z in the inner sum of equation (5.33)
more carefully. By construction, D(N) contains exactly eight generators of any principal
ideal, and hence we obtain the bound

β′z �ε N
ε,

since k is fixed. Furthermore, there are � Nk values of z for which β′z 6= 0. An
application of the Cauchy-Schwarz inequality over the z variable yields

 ∑
w∈D(M)

w≡ρ mod 210

ε(w)
∑
z

β′zγ1(w, z)γ3(w, z)


2

=

∑
z

β′z
∑

w∈D(M)

w≡ρ mod 210

ε(w)γ1(w, z)γ3(w, z)


2

�ε N
k+ε

∑
w1∈D(M)

w1≡ρ mod 210

∑
w2∈D(M)

w2≡ρ mod 210

ε(w1)ε(w2)
∑
z

γ1(w1w2, z)γ3(w1w2, z), (5.34)
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because γ1(w, z) and γ3(w, z) are multiplicative in w. Conveniently, inequality (5.34)
remains valid if we extend the sum over z to a larger domain. Let z1, . . . , zk ∈ D(N)
and write

zi =

4∑
j=1

aijζ
j
8 .

Then we have |aij | � N
1
4 . Now define

B(C) :=


4∑
j=1

ajζ
j
8 : aj ∈ Z, |aj | ≤ CN

k
4

 .

Then, if C is sufficiently large, β′z 6= 0 implies z ∈ B(C). For this choice of C, we extend
the range of summation over z in equation (5.34) to the set B(C). We split the sum
over z in congruence classes ζ modulo N(w1w2); we claim that for all odd w∑

ζ mod N(w)

γ1(w, ζ)γ3(w, ζ) = 0

provided that N(w) is not squarefull. Substituting the definition of γ1(w, ζ) and γ3(w, ζ)
gives

f(w) :=
∑

ζ mod N(w)

γ1(w, ζ)γ3(w, ζ) =
∑

ζ mod N(w)

(
σ(ζ)στ(ζ)

wτ(w)

)
2,K

(
σ(ζ)

w

)
2,M

.

Then a calculation shows that for all odd w and w′ satisfying (N(w),N(w′)) = 1

f(ww′) = f(w)f(w′).

Hence, to establish the claim, it is enough to prove that f(w) = 0 if w is an odd prime
of degree 1. To do so, we start with the identity(

σ(ζ)στ(ζ)

wτ(w)

)
2,K

=

(
σ(ζ)στ(ζ)

w

)
2,M

.

Here we rely in an essential way that w is an odd prime of degree 1, so we have an
isomorphism of finite fields OM/w ∼= OK/wτ(w). We use this to give a simple expression
for f(w)

f(w) =
∑

ζ mod N(w)

(
στ(ζ)

w

)
2,M

1(σ(ζ),w)=(1),

which apart from a non-zero factor is

∑
ζ mod σ(w)στ(w)

(
στ(ζ)

w

)
2,M

1(σ(ζ),w)=(1) =

∑
ζ mod στ(w)

(
στ(ζ)

w

)
2,M

∑
ζ mod σ(w)

1(σ(ζ),w)=(1) = 0.
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Note that σ(w) and στ(w) are coprime, so that we are allowed to expand the sum
over σ(w)στ(w) as the product of the two sums over σ(w) and στ(w). With the claim
established, we can give an upper bound for the sum over z ∈ B(C)∑

z∈B(C)

γ1(w1w2, z)γ3(w1w2, z)�

{
Nk if N(w1w2) is squarefull∑4
i=1M

2iNk(1− i
4 ) otherwise,

where the second bound uses the claim and N(w1w2) ≤M2. Because of our choice of k

and N ≥ M , we can simplify the second bound to M2N
3
4k. Equation (5.33), equation

(5.34) and the above bound acquire the validity of

|B3(M,N, ρ, µ)|2k �ε M
2k−2Nk

(
M ·Nk +M2 ·M2N

3
4k
)

(MN)ε

�ε

(
M2k−1 ·Nk +M2k+2 ·N 7

4k
)

(MN)ε.

Since the first term above dominates the second term due to our choice of k and N ≥M ,
the proof of the proposition is complete.

Having dealt with sums of type II for the symbol [wz], we now turn to sums of type II
with amn. For sequences of complex numbers {αm} and {βn} of absolute value at most
1 we defined in Section 5.3 the following sum

B(M,N) =
∑

Nm≤M

∑
Nn≤N

αmβnamn.

Proposition 5.6.6. We have for all sequences of complex numbers {αm} and {βn} of
absolute value at most 1 and all ε > 0

B(M,N)�ε

(
M−

1
24 +N−

1
24

)
(MN)1+ε.

Proof. By picking generators for m and n we obtain the following identity

B(M,N) =
∑

Nm≤M

∑
Nn≤N

αmβnamn =
1

64

∑
w∈D(M)

∑
z∈D(N)

αwβza(wz).

We split the sum B(M,N) in congruence classes modulo 210. We need only consider
invertible congruence classes, since otherwise awz = 0 by definition. Furthermore, con-
dition (5.7) depends only on g modulo 4, which is in turn determined by w modulo 4.
Therefore, it suffices to bound the following sum∑

w∈D(M)

w≡ρ mod 210

∑
z∈D(N)

z≡µ mod 210

αwβz
(
[wz] + [εwz] + [ε2wz] + [ε3wz]

)
,

where ρ and µ are invertible congruence classes modulo 210 such that g ≡ 1 mod 4.
From Lemma 5.6.1 and Lemma 5.6.3 we deduce that

[εwz] = δ(w, z)[ε][wz].

Now apply Proposition 5.6.5.



Chapter 6

Joint distribution of spins

Joint work with Djordjo Milovic

Abstract

We answer a question of Iwaniec, Friedlander, Mazur and Rubin [25] on the joint distri-
bution of spin symbols. As an application we give a negative answer to a conjecture of
Cohn and Lagarias on the existence of governing fields for the 16-rank of class groups
under the assumption of a short character sum conjecture.

6.1 Introduction

One of the most fundamental and most prevalent objects in number theory are extensions
of number fields; they arise naturally as fields of definitions of solutions to polynomial
equations. Many interesting phenomena are encoded in the splitting of prime ideals in
extensions. For instance, if p and q are distinct prime numbers congruent to 1 modulo
4, the statement that p splits in Q(

√
q)/Q if and only if q splits in Q(

√
p)/Q is nothing

other than the law of quadratic reciprocity, a common ancestor to much of modern
number theory.

Let K be a number field, p a prime ideal in its ring of integers OK , and α an element
of the algebraic closure K. Suppose we were to ask, as we vary p, how often p splits
completely in the extension K(α)/K. If α is fixed as p varies over all prime ideals
in OK , a satisfactory answer is provided by the Chebotarev Density Theorem, which
is grounded in the theory of L-functions and their zero-free regions. The Chebotarev
Density Theorem, however, often cannot provide an answer if α varies along with p in
some prescribed manner. The purpose of this paper is to fill this gap for quadratic
extensions in a natural setting that arises in many applications. This setting, which we
now describe, is inspired by the work of Friedlander, Iwaniec, Mazur, and Rubin [25]
and is amenable to sieve theory involving sums of type I and type II, as opposed to the
theory of L-functions.
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Let K/Q be a Galois extension of degree n. Unlike in [25], we do not impose the very
restrictive condition that Gal(K/Q) is cyclic. For the moment, let us restrict to the
setting where K is totally real and where every totally positive unit in OK is a square,
as in [25]. To each non-trivial automorphism σ ∈ Gal(K/Q) and each odd principal
prime ideal p ⊂ OK , we attach the quantity spin(σ, p) ∈ {−1, 0, 1}, defined as

spin(σ, p) =

(
π

σ(π)

)
K,2

, (6.1)

where π is any totally positive generator of p and
( ·
·
)
K,2

denotes the quadratic residue

symbol in K. If we let α2 = σ−1(π), then spin(σ, p) governs the splitting of p in K(α),
i.e., spin(σ, p) = 1 (resp., −1, 0) if p is split (resp., inert, ramified) in K(α)/K. In [25],
under the assumptions that σ generates Gal(K/Q), that n ≥ 3, and that the technical
Conjecture Cn (see Section 6.2.5) holds true, Friedlander et al. prove that the natural
density of p that are split (resp., inert) in K(

√
α)/K is 1

2 (resp., 1
2 ), just as would be

the case were α not to vary with p.

More generally, suppose S is a subset of Gal(K/Q) and consider the joint spin

sp =
∏
σ∈S

spin(σ, p),

defined for principal prime ideals p = πOK . If we let α2 =
∏
σ∈S σ

−1(π), then sp is
equal to 1 (resp., −1, 0) if p is split (resp., inert, ramified) in K(α)/K. If σ−1 ∈ S
for some σ ∈ S, then the factor spin(σ, p)spin(σ−1, p) falls under the purview of the
usual Chebotarev Density Theorem as suggested in [25, p. 744] and studied precisely
by McMeekin [57]. We therefore focus on the case that σ 6∈ S whenever σ−1 ∈ S and
prove the following equidistribution theorem concerning the joint spin sp, defined in full
generality, also for totally complex fields, in Section 6.2.3.

Theorem 6.1.1. Let K/Q be a Galois extension of degree n. If K is totally real, we
further assume that every totally positive unit in OK is a square. Suppose that S is a
non-empty subset of Gal(K/Q) such that σ ∈ S implies σ−1 6∈ S. Foe each non-zero ideal
a in OK , define sa as in (6.6). Assume Conjecture C|S|n holds true with δ = δ(|S|n) > 0
(see Section 6.2.5). Let ε > 0 be a real number. Then for all X ≥ 2, we have∑

N(p)≤X
p prime

sp � X
1− δ

54|S|2n(12n+1)
+ε
,

where the implied constant depends only on ε and K.

It may be possible to weaken our condition on S and instead require only that there
exists σ ∈ S with σ−1 6∈ S.

The main theorem in [25] is the special case of Theorem 6.1.1 where Gal(K/Q) = 〈σ〉,
n ≥ 3, and S = {σ}. After establishing their equidistribution result, Friedlander et al.
[25, p. 744] raise the question of the joint distribution of spins, and in particular the case
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of spin(σ, p) and spin(σ2, p) where again Gal(K/Q) = 〈σ〉, but S = {σ, σ2} and n ≥ 5.
The following corollary of Theorem 6.1.1 applied to the set S = {σ, σ2} answers their
question.

Theorem 6.1.2. Let K/Q be a totally real Galois extension of degree n such that every
totally positive unit in OK is a square. Suppose that S = {σ1, . . . , σt} is a non-empty
subset of Gal(K/Q) such that σ ∈ S implies σ−1 6∈ S. Assume Conjecture Ctn holds
true (see Section 6.2.5). Let = (e1, . . . , et) ∈ Ft2. Then, as X →∞, we have

|{p principal prime ideal in OK : N(p) ≤ X, spin(σi, p) = (−1)ei for 1 ≤ i ≤ t}|
|{p principal prime ideal in OK : N(p) ≤ X}|

∼ 1

2t
.

We expect that Theorem 6.1.1 has several algebraic applications; see for example the
original work of Friedlander et al. [25], but also [42], [44], and [59]. Here we give one
such application by giving a negative answer to a conjecture of Cohn and Lagarias [11].
Given an integer k ≥ 1 and a finite abelian group A, we define the 2k-rank of A as

rk2kA = dimF2 2k−1A/2kA.

Cohn and Lagarias [11] considered the one-prime-parameter families of quadratic number
fields {Q(

√
dp)}p, where d is a fixed integer 6≡ 2 mod 4 and p varies over primes such

that dp is a fundamental discriminant. Bolstered by ample numerical evidence as well
as theoretical examples [11], they conjectured that for every k ≥ 1 and d 6≡ 2 mod 4,
there exists a governing field Md,k for the 2k-rank of the narrow class group C`(Q(

√
dp))

of Q(
√
dp), i.e., there exists a finite normal extension Md,k/Q and a class function

φd,k : Gal(Md,k/Q)→ Z≥0

such that

φd,k(ArtMd,k/Q(p)) = rk2kC`(Q(
√
dp)), (6.2)

where ArtMd,k/Q(p) is the Artin conjugacy class of p in Gal(Md,k/Q). This conjecture
was proven for all k ≤ 3 by Stevenhagen [71], but no governing field has been found
for any value of d if k ≥ 4. Interestingly enough, Smith [70] recently introduced the
notion of relative governing fields and used them to deal with distributional questions
for C`(K)[2∞] for imaginary quadratic fields K. Our next theorem, which we will prove
in Section 6.5, is a relatively straightforward consequence of Theorem 6.1.1.

Theorem 6.1.3. Assume conjecture Cn for all n. Then there is no governing field for
the 16-rank of Q(

√
−4p); in other words, there does not exist a field M−4,4 and class

function φ−4,4 satisfying (6.2).
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6.2 Prerequisites

Here we collect certain facts about quadratic residue symbols and unit groups in number
fields that are necessary to give a rigorous definition of spins of ideals and that are useful
in our subsequent arguments.

Throughout this section, let K be a number field which is Galois of degree n over Q.
Then either K is totally real, as in [25], or K is totally complex, in which case n is
even. An element α ∈ K is called totally positive if ι(α) > 0 for all real embeddings
ι : K ↪→ R; if this is the case, we will write α � 0. If K is totally complex, there are no
real embeddings of K into R, and so α � 0 for every α ∈ K vacuously. Let OK denote
the ring of integers of K. If K is totally real, we assume that

(O×K)2 =
{
u2 : u ∈ O×K

}
=
{
u ∈ O×K : u � 0

}
= (O×K)+, (6.3)

where the first and last equalities are definitions and the middle equality is the assump-
tion. This assumption, present in [25], implies that the narrow and the ordinary class
groups of K coincide, and hence that every non-zero principal ideal a in OK can be
written as a = αOK for some α � 0. If K is totally complex, then the narrow and the
ordinary class groups of K coincide vacuously. In either case, we will let C` = C`(K)
and h = h(K) denote the (narrow) class group and the (narrow) class number of K.

6.2.1 Quadratic residue symbols and quadratic reciprocity

We define the quadratic residue symbol in K in the standard way. That is, given an
odd prime ideal p of OK (i.e., a prime ideal having odd absolute norm), and an element

α ∈ OK , define
(
α
p

)
K,2

as the unique element in {−1, 0, 1} such that

(
α

p

)
K,2

≡ α
NK/Q(p)−1

2 mod p.

Given an odd ideal b of OK with prime ideal factorization b =
∏

p p
ep , define

(α
b

)
K,2

=
∏
p

(
α

p

)ep
K,2

.

Finally, given an element β ∈ OK , let (β) denote the principal ideal in OK generated
by β. We say that β is odd if (β) is odd and we define(

α

β

)
K,2

=

(
α

(β)

)
K,2

.

We will suppress the subscripts K, 2 when there is no risk of ambiguity. Although [25]
focuses on a special type of totally real Galois number fields, the version of quadratic
reciprocity stated in [25, Section 3] holds and was proved for a general number field. We
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recall it here. For a place v of K, finite or infinite, let Kv denote the completion of K
with respect to v. Let (·, ·)v denote the Hilbert symbol at v, i.e., given α, β ∈ K, we let
(α, β)v ∈ {−1, 1} with (α, β)v = 1 if and only if there exists (x, y, z) ∈ K3

v \ {(0, 0, 0)}
such that x2 − αy2 − βz2 = 0. As in [25, Section 3], define

µ2(α, β) =
∏
v|2

(α, β)v and µ∞(α, β) =
∏
v|∞

(α, β)v.

The following lemma is a consequence of the Hilbert reciprocity law and local consider-
ations at places above 2; see [25, Lemma 2.1, Proposition 2.2, and Lemma 2.3].

Lemma 6.2.1. Let α, β ∈ OK with β odd. Then µ∞(α, β)
(
α
β

)
depends only on the

congruence class of β modulo 8α. Moreover, if α is also odd, then(
α

β

)
= µ2(α, β)µ∞(α, β)

(
β

α

)
.

The factor µ2(α, β) depends only on the congruence classes of α and β modulo 8.

We remark that if K is totally complex, then (α, β)∞ = 1 for all α, β ∈ K. Also, if K is
a totally real Galois number field and β ∈ K is totally positive, then again (α, β)∞ = 1
for all α ∈ K.

6.2.2 Class group representatives

As in [25, p. 707], we define a set of ideals C` and an ideal f of OK as follows. Let Ci,
1 ≤ i ≤ h, denote the h ideal classes. For each i ∈ {1, . . . , h}, we choose two distinct
odd ideals belonging to Ci, say Ai and Bi, so as to ensure that, upon setting

C`a = {A1, . . . ,Ah}, C`b = {B1, . . . ,Bh}, C` = C`a ∪ C`b,

and

f =
∏
c∈C`

c =

h∏
i=1

AiBi,

the norm
f = N(f)

is squarefree. We define
F := 22h+3fDK , (6.4)

where DK is the discriminant of K.

6.2.3 Definition of joint spin

We define a sequence {sa}a of complex numbers indexed by non-zero ideals a ⊂ OK as
follows. Let S be a non-empty subset of Gal(K/Q) such that σ 6∈ S whenever σ−1 ∈ S.
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We define r(a) to be the indicator function of an ideal a of OK to be odd and principal,
i.e.,

r(a) =

{
1 if there exists an odd α ∈ OK such that a = αOK
0 otherwise.

Define r+(α) to be the indicator function of an element α ∈ K to be totally positive,
i.e.,

r+(α) =

{
1 if α � 0

0 otherwise.

Note that if K is a totally complex number field, then vacuously r+(α) = 1 for all α in
K. If α ∈ K is odd and r+(α) = 1, then we define

spin(σ, α) =

(
α

σ(α)

)
.

Fix a decomposition O×K = TK × VK , where TK ⊂ O×K is the group of units of OK of
finite order and VK ⊂ O×K is a free abelian group of rank rK (i.e., rK = n − 1 if K is
totally real and rK = n

2 − 1 if K is totally complex). With F as in (6.4), suppose that

ψ : (OK/FOK)× → C (6.5)

is a map such that ψ(α mod F ) = ψ(αu2 mod F ) for all α ∈ OK coprime to F and all
u ∈ O×K . We define

sa = r(a)
∑
t∈TK

∑
v∈VK/V 2

K

r+(tvα)ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα), (6.6)

where α is any generator of the ideal a satisfying r(a) = 1. The averaging over VK/V
2
K

makes the spin sa a well-defined function of a since, for any unit u ∈ O×K , any totally
positive α ∈ OK of odd absolute norm, and any σ ∈ S, we have

spin(σ, u2α) =

(
u2α

σ(u2α)

)
=

(
u2α

σ(α)

)
=

(
α

σ(α)

)
= spin(σ, α).

If K is a totally real (in which case we assume that K satisfies (6.3)), then, for an
ideal a = αOK , there is one and only one choice of t ∈ TK and v ∈ VK/V 2

K such that
r+(tvα) = 1. Hence in this case

sa = r(a)ψ(α mod F )
∏
σ∈S

spin(σ, α),

where α is any totally positive generator of a. If in addition n ≥ 3, Gal(K/Q) = 〈σ〉,
and S = {σ}, then sa coincides with spin(σ, a) in [25, (3.4), p. 706]. If we take instead
S = {σ, σ2} and assume n ≥ 5, then the distribution of sa has implications for [25,
Problem, p. 744].

If K is totally complex, then vacuously r+(tvα) = 1 for all t ∈ TK and v ∈ VK/V 2
K , so

the definition of sa specializes to

sa = r(a)
∑
t∈TK

∑
v∈VK/V 2

K

ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα).
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6.2.4 Fundamental domains

We will need a suitable fundamental domain D for the action of the units on elements
in OK .

In case that K is totally real and satisfies (6.3), we take D ⊂ Rn+ to be the same as in
[25, (4.2), p. 713]. We fix a numbering of the n real embeddings ι1, . . . , ιn : K ↪→ R, and
we say that α ∈ D if and only if (ι1(α), . . . , ιn(α)) ∈ D. Hence every non-zero α ∈ D is
totally positive. Because of the assumption (6.3), every non-zero principal ideal in OK
has a totally positive generator, and D is a fundamental domain for the action of (OK)×+
on the totally positive elements in OK , in the sense of [25, Lemma 4.3, p. 715].

In case that K is totally complex, we take D ⊂ Rn to be the same as in [42, Lemma
3.5, p. 10]. In this case, we fix an integral basis {η1, . . . , ηn} for OK . For an element
α = a1η1 + · · · + anηn ∈ K with a1, . . . , an ∈ Q we say that α ∈ D if and only if
(a1, . . . , an) ∈ D. Every non-zero principal ideal a in OK has exactly |TK | generators in
D; moreover, if one of the generators of a in D is α, say, then the set of generators of a
in D is {tα : t ∈ TK}.

The main properties of D are listed in [25, Lemma 4.3, Lemma 4.4, Corollary 4.5] and
[44, Lemma 3.5]. We will often use the property that if an element α ∈ D∩OK of norm
N(α) ≤ X is written in an integral basis η = {η1, . . . , ηn} as α = a1η1 + · · ·+anηn ∈ OK ,
a1, . . . , an ∈ Z, then

|ai| � X
1
n

for 1 ≤ i ≤ n where the implied constant depends only on η.

6.2.5 Short character sums

The following is a conjecture on short character sums appearing in [25]. It is essential
for the estimates for sums of type I.

Conjecture 6.2.2. For all integers n ≥ 3 there exists δ(n) > 0 such that for all ε > 0
there exists a constant C(n, ε) > 0 with the property that for all integers M , all integers

Q ≥ 3, all integers N ≤ Q
1
n and all real non-principal characters χ of modulus q ≤ Q

we have ∣∣∣∣∣∣
∑

M<m≤M+N

χ(m)

∣∣∣∣∣∣ ≤ C(n, ε)Q
1−δ(n)
n +ε.

Instead of working directly with Conjecture Cn, we need a version of it for arithmetic

progressions. If q is odd and squarefree, we let χq be the real Dirichlet character
(
·
q

)
.

Corollary 6.2.3. Assume Conjecture Cn. Then for all integers n ≥ 3 there exists
δ(n) > 0 such that for all ε > 0 there exists a constant C(n, ε) > 0 with the property

that for all odd squarefree integers q > 1, all integers N ≤ q
1
n , all integers M , l and k
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with q - k, we have ∣∣∣∣∣∣∣
∑

M<m≤M+N
n≡l mod k

χq(m)

∣∣∣∣∣∣∣ ≤ C(n, ε)q
1−δ(n)
n .

Proof. This is an easy generalization of Corollary 7 in [42].

6.2.6 The sieve

We will prove the following oscillation results for the sequence {sa}a. First, for any
non-zero ideal m ⊂ OK and any ε > 0, we have∑

N(a)≤X
a≡0 mod m

sa �ε X
1− δ

54n|S|2
+ε
, (6.7)

where δ is as in Conjecture Cn. Second, for any ε > 0, we have∑
N(a)≤x

∑
N(b)≤y

vawbsab �ε

(
x−

1
6n + y−

1
6n

)
(xy)

1+ε
, (6.8)

for any pair of bounded sequences of complex numbers {vm} and {wn} indexed by non-
zero ideals in OK . Then [25, Proposition 5.2, p. 722] implies that for any ε > 0, we
have ∑

N(p)≤X
p prime ideal

sp �ε X
1−θ+ε,

where

θ :=
δ(|S|n)

54|S|2n(12n+ 1)
.

Hence, in order to prove Theorem 6.1.1, it suffices to prove the estimates (6.7) and (6.8).
We will deal with (6.7) in Section 6.3 and with (6.8) in Section 6.4.

6.3 Linear sums

We first treat the case that K is totally real. Let m be an ideal coprime with F and
σ(m) for all σ ∈ S. Following [25] we will bound

A(x) =
∑

Na≤x
(a,F )=1,m|a

r(a)ψ(α mod F )
∏
σ∈S

spin(σ, α), (6.9)
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where α is any totally positive generator of a. We pick for each ideal a with r(a) = 1 its
unique generator α satisfying a = (α) and α ∈ D∗, where D∗ is the fundamental domain
from Friedlander et al. [25]. After splitting (6.9) in residue classes modulo F we obtain

A(x) =
∑

ρ mod F
(ρ,F )=1

ψ(ρ)A(x; ρ) + ∂A(x),

where by definition

A(x; ρ) :=
∑

α∈D,Nα≤x
α≡ρ mod F
α≡0 mod m

∏
σ∈S

spin(σ, α). (6.10)

The boundary term ∂A(x) can be dealt with using the argument in [25, p. 724], which

gives ∂A(x) � x1− 1
n . Here and in the rest of our arguments the implied constant

depends only on K unless otherwise indicated. We will now estimate A(x; ρ) for each
ρ mod F , (ρ, F ) = 1. Let 1, ω2, . . . , ωn be an integral basis for OK and define

M := ω2Z + · · ·+ ωnZ.

Then, just as in [25, p. 725], we can decompose α uniquely as

α = a+ β, with a ∈ Z, β ∈M.

Hence the summation conditions in (6.10) can be rewritten as

a+ β ∈ D, N(a+ β) ≤ x, a+ β ≡ ρ mod F, a+ β ≡ 0 mod m. (∗)

From now on we think of a as a variable satisfying (∗) while β is inactive. We have the
following formula

spin(σ, α) =

(
α

σ(α)

)
=

(
a+ β

a+ σ(β)

)
=

(
β − σ(β)

a+ σ(β)

)
.

If β = σ(β) for some σ ∈ S we get no contribution. So from now on we can assume
β 6= σ(β) for all σ ∈ S. Define c(σ, β) to be the part of the ideal (β − σ(β)) coprime to
F . Then, as explained on [25, p. 726], quadratic reciprocity gives

A(x; ρ) =
∑
β∈M
±T (x; ρ, β),

where T (x; ρ, β) is given by

T (x; ρ, β) :=
∑
a∈Z

a+β sat. (∗)

∏
σ∈S

(
a+ σ(β)

c(σ, β)

)
=

∑
a∈Z

a+β sat. (∗)

∏
σ∈S

(
a+ β

c(σ, β)

)

=
∑
a∈Z

a+β sat. (∗)

(
a+ β∏

σ∈S c(σ, β)

)
. (6.11)
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Define c :=
∏
σ∈S c(σ, β) and factor c as

c = gq, (6.12)

where by definition g consists of those prime ideals p dividing c that satisfy one of the
following three properties

• p has degree greater than one;

• p is unramified of degree one and some non-trivial conjugate of p also divides c;

• p is unramified of degree one and p2 divides c.

Note that there are no ramified primes dividing c, since c is coprime to the discriminant
by construction of F . Putting all the remaining prime ideals in q, we note that q := Nq
is a squarefree number and g := Ng is a squarefull number coprime with q. The Chinese
Remainder Theorem implies that there exists a rational integer b with b ≡ β mod q.
We stress that c, g, q, g, q and b depend only on β. Define g0 to be the radical of g.
Then the quadratic residue symbol (α/g) is periodic in α modulo g0. Hence the symbol
((a+β)/g) as a function of a is periodic of period g0. Splitting the sum (6.11) in residue
classes modulo g0 we obtain

|T (x; ρ, β)| ≤
∑

a0 mod g0

∣∣∣∣∣∣∣∣
∑

a≡a0 mod g0

a+β sat. (∗)

(
a+ b

q

)∣∣∣∣∣∣∣∣ . (6.13)

Following the argument on [25, p. 728], we see that (6.13) can be written as n incomplete

character sums of length � x
1
n and modulus q � x|S|. Furthermore, the conditions (∗)

and a ≡ a0 mod g0 imply that a runs over a certain arithmetic progression of modulus
k dividing g0Fm, where m := Nm. So if q - k, Corollary 6.2.3 yields

T (x; ρ, β)�ε g0x
1−δ
n +ε (6.14)

with δ := δ(|S|n) > 0. Since q | k implies q | m, we see that (6.14) holds if q - m.
Recalling (6.12) we conclude that (6.14) holds unless

p |
∏
σ∈S

N(β − σ(β))⇒ p2 | mF
∏
σ∈S

N(β − σ(β)). (6.15)

Our next goal is to count the number of β ∈ M satisfying both (∗) for some a ∈ Z and
(6.15). For β an algebraic integer of degree n, we denote by β(1), . . . , β(n) the conjugates

of β. Now if β satisfies (∗) for some a ∈ Z, we have |β(i)| � x
1
n . So to achieve our goal,

it suffices to estimate the number of β ∈M satisfying |β(i)| ≤ x 1
n and (6.15).

To do this, we will need two lemmas. So far we have followed [25] rather closely, but we
will have to significantly improve their estimates for the various error terms given on [25,
p. 729-733]. One of the most important tasks ahead is to count squarefull norms in a
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certain Z-submodule of OK . This problem is solved in [25] by simply counting squarefull
norms in the full ring of integers. For our application this loss is unacceptable. In our
first lemma we directly count squarefull norms in this submodule, a problem described
in [25, p. 729] as potentially “very difficult”.

Lemma 6.3.1. Factor c(σ, β) as

c(σ, β) = g(σ, β)q(σ, β)

just as in (6.12). Let Kσ be the subfield of K fixed by σ and let OKσ be its ring of
integers. Decompose OK as

OK = OKσ ⊕M′.

Let ord(σ) be the order of σ in Gal(K/Q). If g0(σ, β) is the radical of Ng(σ, β), then we
have for all ε > 0

|{β ∈M′ : |β(i)| ≤ x 1
n , g0(σ, β) > Z}| �ε x

1− 1
ord(σ)

+εZ−1+ 2
ord(σ) .

Proof. The argument given here is a generalization of [42, p. 17-18]. We start with the
simple estimate

|{β ∈M′ : |β(i)| ≤ x 1
n , g0(σ, β) > Z}| ≤

∑
g

g0>Z

Ag, (6.16)

where

Ag := |{β ∈M′ : |β(i)| ≤ x 1
n , β − σ(β) ≡ 0 mod g}|.

Let M′′ be the image of M′ under the map β 7→ β − σ(β) and fix a Z-basis η1, . . . , ηr

of M′′. We remark that r = n
(

1− 1
ord(σ)

)
, which will be important later on. Because

|β(i)| ≤ x
1
n , we can write β − σ(β) as β − σ(β) =

∑r
i=1 aiηi with |ai| ≤ CKx

1
n , where

CK is a constant depending only on K. Hence we have

Ag ≤ |Λg ∩ Sx|,

where by definition

Λg := {γ ∈M′′ : γ ≡ 0 mod g}

Sx := {γ ∈M′′ : γ =

r∑
i=1

aiηi, |ai| ≤ CKx
1
n }.

Using our fixed Z-basis η1, . . . , ηr we can view M′′ as a subset of Rr via the map ηi 7→ ei,
where ei is the i-th standard basis vector. Under this identification M′′ becomes Zr and
Λg becomes a sublattice of Zr. We have

Ag ≤ |Λg ∩ Tx|, (6.17)
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where

Tx := {(a1, . . . , ar) ∈ Rr : |ai| ≤ CKx
1
n }.

Let us now parametrize the boundary of Tx. We start off by observing that Tx = x
1
nT1,

which implies that Vol(Tx) = x
r
nVol(T1). Because T1 is an r-dimensional hypercube,

we conclude that its boundary ∂T1 can be parametrized by Lipschitz functions with
Lipschitz constant L depending only on K. Therefore ∂Tx can also be parametrized by
Lipschitz functions with Lipschitz constant x

1
nL. Theorem 5.4 of [80] gives∣∣∣∣|Λg ∩ Tx| −

Vol(Tx)

det Λg

∣∣∣∣�L max
0≤i<r

x
i
n

λg,1 · . . . · λg,i
, (6.18)

where λg,1, . . . , λg,r are the successive minima of Λg. Since L depends only on K, it
follows that the implied constant in (6.18) depends only on K, so we may simply write
� by our earlier conventions.

Our next goal is to give a lower bound for λg,1. So let γ ∈ Λg be non-zero. By definition
of Λg we have g | γ and hence g | Nγ. Write

γ =

r∑
i=1

aiηi.

If a1, . . . , ar ≤ C ′Kg
1
n for a sufficiently small constant C ′K , we find that Nγ < g. But

this is impossible, since g | Nγ and Nγ 6= 0. So there is an i with ai > C ′Kg
1
n . If we

equip Rr with the standard Euclidean norm, we conclude that the length of γ satisfies
||γ|| � g

1
n and hence

λg,1 � g
1
n . (6.19)

Minkowski’s second theorem and (6.19) imply that

det Λg � g
r
n . (6.20)

Combining (6.18), (6.19), (6.20) and g ≤ x gives

|Λg ∩ Tx| �
x
r
n

g
r
n

+
x
r−1
n

g
r−1
n

� x
r
n

g
r
n
. (6.21)

Plugging (6.17) and (6.21) back in (6.16) yields

|{β ∈M′ : |β(i)| ≤ x 1
n , g0(σ, β) > Z}| ≤

∑
g

g0>Z

Ag ≤
∑
g

g0>Z

|Λg ∩ Tx| �
∑
g

g0>Z

x
r
n

g
r
n
.

If we define τK(g) to be the number of ideals of K of norm g, we can bound the last
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sum as follows∑
g

g0>Z

x
r
n

g
r
n

= x
r
n

∑
g≤x

g squarefull
g0>Z

τK(g)

g
r
n
�ε x

r
n+ε

∑
g≤x

g squarefull
g0>Z

1

g
r
n

= x
r
n+ε

∑
g≤x

g squarefull
g0>Z

g
1
2−

r
n

1

g
1
2

≤ x rn+εZ1− 2r
n

∑
g≤x

g squarefull
g0>Z

1

g
1
2

≤ x rn+εZ1− 2r
n

∑
g≤x

g squarefull

1

g
1
2

�ε x
r
n+εZ1− 2r

n .

Recalling that r = n
(

1− 1
ord(σ)

)
completes the proof of Lemma 6.3.1.

Lemma 6.3.2. Let σ, τ ∈ S be distinct. Recall that

OK = Z⊕M.

Fix an integral basis ω2, . . . , ωn of M and define the polynomials f1, f2 ∈ Z[x2, . . . , xn]
by

f1(x2, . . . , xn) = N

(
n∑
i=2

xi(σ(ωi)− ωi)

)

f2(x2, . . . , xn) = N

(
n∑
i=2

xi(τ(ωi)− ωi)

)
.

For β ∈ M with β =
∑n
i=2 aiωi we define f1(β) := f1(a2, . . . , an) = N(σ(β)− β) and

similarly for f2(β). Then

|{β ∈M : |β(i)| ≤ x 1
n , gcd(f1(β), f2(β)) > Z}| �ε x

n−1
n +εZ−

1
18 + x

n−2
n + Z

2n−4
3 .

Proof. Let Y be the closed subscheme of An−1
Z defined by f1 = f2 = 0. We claim that Y

has codimension 2, i.e. f1 and f2 are relatively prime polynomials. Suppose not. Note
that f1 and f2 factor in K[x2, . . . , xn] as

f1(x2, . . . , xn) =
∏

σ′∈Gal(K/Q)

(
n∑
i=2

xi(σ
′σ(ωi)− σ′(ωi))

)

f2(x2, . . . , xn) =
∏

τ ′∈Gal(K/Q)

(
n∑
i=2

xi(τ
′τ(ωi)− τ ′(ωi))

)
.

Hence if f1 and f2 are not relatively prime, there are σ′, τ ′ ∈ Gal(K/Q) and κ ∈ K∗
such that

n∑
i=2

xi(σ
′σ(ωi)− σ′(ωi)) = κ

n∑
i=2

xi(τ
′τ(ωi)− τ ′(ωi))
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for all x2, . . . , xn ∈ Z. Put β =
∑n
i=2 xiωi. Then we can rewrite this as

σ′σ(β)− σ′(β) = κ(τ ′τ(β)− τ ′(β)) (6.22)

for all β ∈ M. But this implies that (6.22) holds for all β ∈ K. Now we apply the
Artin-Dedekind Lemma, which gives a contradiction in all cases due to our assumptions
σ, τ ∈ S and σ 6= τ .

Having established our claim, we are in position to apply Theorem 3.3 of [4]. We embed
M in Rn−1 by sending ωi to ei, the i-th standard basis vector. Note that the image
under this embedding is Zn−1. Write β =

∑n
i=2 aiωi. Since |β(i)| ≤ x

1
n , it follows that

|ai| ≤ CKx
1
n for some constant CK depending only on K. Let B be the compact region

in Rn−1 given by B := {(a2, . . . , an) : |ai| ≤ CK}. Theorem 3.3 of [4] with our B, Y

and r = x
1
n gives

|{β ∈M : |β(i)| ≤ x 1
n , p | gcd(f1(β), f2(β)), p > M}| � x

n−1
n

M logM
+ x

n−2
n , (6.23)

where M is any positive real number. Factor

f1(β) := g1q1, (g1, q1) = 1, g1 squarefull, q1 squarefree

f2(β) := g2q2, (g2, q2) = 1, g2 squarefull, q2 squarefree.

By Lemma 6.3.1 we conclude that for all A > 0 and ε > 0

|{β ∈M : |β(i)| ≤ x 1
n , g1 > A}| �ε x

n−1
n +εA−

1
2 + 1

ord(σ) .

With the same argument applied to τ we obtain

|{β ∈M : |β(i)| ≤ x 1
n , g1 > A or g2 > A}| �ε x

n−1
n +εA−

1
2 + 1

ord(σ) + x
n−1
n +εA−

1
2 + 1

ord(τ) .
(6.24)

We discard those β that satisfy (6.23) or (6.24). From (6.24) we deduce that the remain-
ing β certainly satisfy gcd(q1, q2) > Z

A2 . Furthermore, by discarding those β satisfying
(6.23), we see that gcd(q1, q2) has no prime divisors greater than M . This implies that
gcd(q1, q2) is divisible by a squarefree number between Z

A2 and ZM
A2 . So we must still

give an upper bound for∣∣∣∣{β ∈M : |β(i)| ≤ x 1
n , r | gcd(q1, q2),

Z

A2
< r ≤ ZM

A2

}∣∣∣∣ . (6.25)

Let r be a squarefree integer and let r1, r2 be two ideals of K with norm r. Define

Er1,r2 :=
∣∣∣{β ∈M : |β(i)| ≤ x 1

n , r1 | σ(β)− β, r2 | τ(β)− β
}∣∣∣ .

We will give an upper bound for Er1,r2 following [25, p. 731-733]. Write β =
∑n
i=2 aiωi.

Then |β(i)| ≤ x 1
n implies ai � x

1
n and

n∑
i=2

ai(σ(ωi)− ωi) ≡ 0 mod r1 (6.26)

n∑
i=2

ai(τ(ωi)− ωi) ≡ 0 mod r2. (6.27)
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We split the coefficients a2, . . . , an according to their residue classes modulo r. Suppose
that p | r and let p1, p2 be the unique prime ideals of degree one dividing r1 and r2
respectively. Then we get

n∑
i=2

ai(σ(ωi)− ωi) ≡ 0 mod p1 (6.28)

n∑
i=2

ai(τ
′τ(ωi)− τ ′(ωi)) ≡ 0 mod p1, (6.29)

where τ ′ satisfies τ ′−1(p1) = p2. If we further assume that p1 is unramified, we claim
that the above two equations are linearly independent over Fp. Indeed, consider the
isomorphism

OK/p ∼= Fp × · · · × Fp.

Note that τ ′τ 6∈ {id, σ} or τ ′ 6∈ {id, σ} due to our assumption that σ and τ are distinct
elements of S. Let us deal with the case τ ′τ 6∈ {id, σ}, the other case is dealt with
similarly. Then there exists β ∈ OK such that β ≡ 1 mod p1, β ≡ 1 mod σ−1(p1),
β ≡ 1 mod τ ′−1(p1) and β is divisible by all other conjugates of p1. By our assumption
on τ ′τ it follows that β ≡ 0 mod τ−1τ ′−1(p1). Hence we obtain

σ(β)− β ≡ 0 mod p1, τ ′τ(β)− τ ′(β) ≡ −1 mod p1.

However, for p1 an unramified prime, we know that σ(β)−β ≡ 0 mod p1 can not happen
for all β ∈ OK , unless σ is the identity. This proves our claim.

If we further split the coefficients a2, . . . , an according to their residue classes modulo
p, our claim implies that there are pn−3 solutions a2, . . . , an modulo p satisfying (6.28)
and (6.29), provided that p is unramified. For ramified primes we can use the trivial
upper bound pn−1. Then we deduce from the Chinese Remainder Theorem that there
are � rn−3 solutions a2, . . . , an modulo r satisfying (6.26) and (6.27). This yields

Er1,r2 � rn−3

(
x

1
n

r
+ 1

)n−1

� x
n−1
n r−2 + rn−3.

Therefore we have the following upper bound for (6.25)∑
Z
A2<r≤ZMA2

∑
r1,r2

Nr1=Nr2=r

Er1,r2 �
∑

Z
A2<r≤ZMA2

∑
r1,r2

Nr1=Nr2=r

x
n−1
n r−2 + rn−3

�ε x
ε

∑
Z
A2<r≤ZMA2

x
n−1
n r−2 + rn−3

�ε x
ε

(
x
n−1
n
A2

Z
+

(
ZM

A2

)n−2
)
.

Note that σ ∈ S implies ord(σ) ≥ 3. Now choose A = M = Z
1
3 to complete the proof

of Lemma 6.3.2.
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With Lemma 6.3.1 and Lemma 6.3.2 in hand we return to estimating the number of
β ∈ M satisfying |β(i)| ≤ x

1
n and (6.15). We choose a σ ∈ S and we will consider it

as fixed for the remainder of the proof. Note that any integer n > 0 can be factored
uniquely as

n = q′g′r′,

where q′ is a squarefree integer coprime to mF , g′ is a squarefull integer coprime to mF
and r′ is composed entirely of primes from mF . This allows us to define sqf(n,mF ) := q′.
We start by giving an upper bound for∣∣∣{β ∈M : |β(i)| ≤ x 1

n , sqf(N(β − σ(β)),mF ) ≤ Z
}∣∣∣ .

To do this, we need a slight generalization of the argument on [25, p. 729]. Recall that
Kσ is the subfield of K fixed by σ and OKσ its ring of integers. Decompose OK as

OK = OKσ ⊕M′.

Then we have∣∣∣{β ∈M : |β(i)| ≤ x 1
n , sqf(N(β − σ(β)),mF ) ≤ Z

}∣∣∣
� x

1
ord(σ)

− 1
n

∣∣∣{β ∈M′ : |β(i)| ≤ x 1
n , sqf(N(β − σ(β)),mF ) ≤ Z

}∣∣∣ . (6.30)

The map M′ → OK given by β 7→ β−σ(β) is injective. Set γ := β−σ(β). Furthermore,

the conjugates of γ satisfy |γ(i)| ≤ 2x
1
n , which gives∣∣∣{β ∈M′ : |β(i)| ≤ x 1

n , sqf(N(β − σ(β)),mF ) ≤ Z
}∣∣∣

≤
∣∣∣{γ ∈ OK : |γ(i)| ≤ 2x

1
n , sqf(N(γ),mF ) ≤ Z

}∣∣∣ . (6.31)

Instead of counting algebraic integers γ, we will count the principal ideals they generate,
where each given ideal occurs no more than � (log x)n times. This yields the bound∣∣∣{γ ∈ OK : |γ(i)| ≤ 2x

1
n , sqf(N(γ),mF ) ≤ Z

}∣∣∣
� (log x)n |{b ⊆ OK : N(b) ≤ 2nx, sqf(N(b),mF ) ≤ Z}| .

We conclude that∣∣∣{γ ∈ OK : |γ(i)| ≤ 2x
1
n , sqf(N(γ),mF ) ≤ Z

}∣∣∣� (log x)n
∑
b≤2nx

sqf(b,mF )≤Z

τK(b), (6.32)

where we remind the reader that τK(b) denotes the number of ideals in K of norm b.

Let us count the number of b ≤ 2nx satisfying sqf(b,mF ) ≤ Z. We do this by counting
the number of possible g′, r′ ≤ 2nx that can occur in the factorization b = q′g′r′. First
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of all, there are � x
1
2 squarefull integers g′ satisfying g′ ≤ 2nx. To bound the number

of r′ ≤ 2nx, we observe that we may assume m ≤ x, because otherwise the sum in
(6.9) is empty. This implies that the number of integers r′ ≤ 2nx that are composed
entirely of primes from mF is �ε x

ε. Obviously there are at most Z squarefree integers
q′ coprime to mF satisfying q′ ≤ Z. We conclude that the number of b ≤ 2nx satisfying
sqf(b,mF ) ≤ Z is �ε Zx

1
2 +ε. Combined with the upper bound τK(b)�ε x

ε we obtain

(log x)n
∑
b≤2nx

sqf(b,mF )≤Z

τK(b)�ε Zx
1
2 +ε. (6.33)

Stringing together the inequalities (6.30), (6.31), (6.32) and (6.33) we conclude that∣∣∣{β ∈M : |β(i)| ≤ x 1
n , sqf(N(β − σ(β)),mF ) ≤ Z

}∣∣∣�ε Zx
1
2 + 1

ord(σ)
− 1
n+ε. (6.34)

Now in order to give an upper bound for the number of β satisfying |β(i)| ≤ x
1
n and

(6.15), that is

p |
∏
σ∈S

N(β − σ(β))⇒ p2 | mF
∏
σ∈S

N(β − σ(β)),

we start by picking Z = x
1

3n and discarding all β satisfying (6.34) for the σ ∈ S we fixed
earlier. For this σ ∈ S and varying τ ∈ S with τ 6= σ we apply Lemma 6.3.2 to obtain

|{β ∈M : |β(i)| ≤ x 1
n , gcd(N(β − σ(β)),N(β − τ(β))) > x

1
3n|S| }| �ε x

n−1
n −

1
54n|S|+ε.

(6.35)

We further discard all β satisfying (6.35) for some τ ∈ S with τ 6= σ. Now it is easily
checked that the remaining β do not satisfy (6.15). Hence we have completed our task

of estimating the number of β satisfying |β(i)| ≤ x 1
n and (6.15).

Let A0(x; ρ) be the contribution to A(x; ρ) of the terms α = a+ β for which (6.15) does
not hold and let A�(x; ρ) be the contribution to A(x; ρ) for which (6.15) holds. Then
we have the obvious identity

A(x; ρ) = A0(x; ρ) +A�(x; ρ).

Next we make a further partition

A0(x; ρ) = A1(x; ρ) +A2(x; ρ),

where the components run over α = a+ β, β ∈M with β such that

g0 ≤ Y in A1(x; ρ)

g0 > Y in A2(x; ρ).

Here Y is at our disposal and we choose it later. From (6.34) and (6.35) we deduce that

A�(x; ρ)�ε x
1− 1

54n|S|+ε.
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To estimate A1(x; ρ) we apply 6.14 and sum over all β ∈ M satisfying |β(i)| ≤ x
1
n ,

ignoring all other restrictions on β, to obtain

A1(x; ρ)�ε Y x
1− δ

n+ε.

We still have to bound A2(x; ρ). Recall that

c =
∏
σ∈S

c(σ, β),

leading to the factorization c = gq in (6.12). We further recall that g0 is the radical of
Ng. Now factor each term c(σ, β) as

c(σ, β) = g(σ, β)q(σ, β) (6.36)

just as in (6.12). The point of (6.36) is that

g |
∏
σ∈S

g(σ, β)
∏
σ,τ∈S
σ 6=τ

gcd(c(σ, β), c(τ, β))

and therefore

g0 |
∏
σ∈S

g0(σ, β)
∏
σ,τ∈S
σ 6=τ

gcd(c(σ, β), c(τ, β)).

We use Lemma 6.3.1 to discard all β satisfying g0(σ, β) > Y
1
|S|2 . Similarly, we use

Lemma 6.3.2 to discard all β satisfying gcd(c(σ, β), c(τ, β)) > Y
1
|S|2 . Then the remaining

β satisfy g0 ≤ Y . Furthermore, we have removed

�ε x
n−1
n +εY

− 1
18|S|2 + x

n−2
n + Y

2n−4

3|S|2 + x
n−1
n +εY

− 1
3|S|2

β in total and hence

A2(x; ρ)�ε x
1+εY

− 1
18|S|2 + x

n−1
n + x

1
nY

2n−4

3|S|2 + x1+εY
− 1

3|S|2 .

After picking Y = x
δ

2n we conclude that

A(x)�ε x
1− δ

54n|S|2
+ε
.

We will now sketch how to modify this proof for totally complex K. We have to bound

A(x) =
∑

Na≤x
(a,F )=1,m|a

r(a)
∑
t∈TK

∑
v∈VK/V 2

K

ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα). (6.37)
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We use the fundamental domain constructed for totally complex fields form subsection
6.2.4 and we pick for each principal a its generator in D. Then equation (6.37) becomes

A(x) =
∑
t∈TK

∑
v∈VK/V 2

K

∑
α∈D,Nα≤x
α≡ρ mod F
α≡0 mod m

ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα)

=
∑
t∈TK

∑
v∈VK/V 2

K

∑
α∈tvD,Nα≤x
α≡ρ mod F
α≡0 mod m

ψ(α mod F )
∏
σ∈S

spin(σ, α).

We deal with each sum of the shape∑
α∈tvD,Nα≤x
α≡ρ mod F
α≡0 mod m

ψ(α mod F )
∏
σ∈S

spin(σ, α) (6.38)

exactly in the same way as for real quadratic fields K, where it is important to note
that the shifted fundamental domain tvD still has the essential properties we need.
Combining our estimate for each sum in equation (6.38), we obtain the desired upper
bound for A(x).

6.4 Bilinear sums

Let x, y > 0 and let {va}a and {wb}b be two sequences of complex numbers bounded in
modulus by 1. Define

B(x, y) =
∑

N(a)≤x

∑
N(b)≤y

vawbsab. (6.39)

We wish to prove that for all ε > 0, we have

B(x, y)�ε

(
x−

1
6n + y−

1
6n

)
(xy)

1+ε
, (6.40)

where the implied constant is uniform in all choices of sequences {va}a and {wb}b as
above.

We split the sum B(x, y) into h2 sums according to which ideal classes a and b belong
to. In fact, since sab vanishes whenever ab does not belong to the principal class, it
suffices to split B(x, y) into h sums

B(x, y) =

h∑
i=1

Bi(x, y), Bi(x, y) =
∑

N(a)≤x
a∈Ci

∑
N(b)≤y
b∈C−1

i

vawbsab.

We will prove the desired estimate for each of the sums Bi(x, y). So fix an index
i ∈ {1, . . . , h}, let A ∈ C`a be the ideal belonging to the ideal class C−1

i , and let
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B ∈ C`b be the ideal belonging to the ideal class Ci. The conditions on a and b above
mean that

aA = (α), α � 0

and

bB = (β), β � 0.

Since A ∈ C−1
i and B ∈ Ci, there exists an element γ ∈ OK such that

AB = (γ), γ � 0.

We are now in a position to use the factorization formula for spin(ab) appearing in [25,
(3.8), p. 708], which in turn leads to a factorization formula for sab. We note that the
formula [25, (3.8), p. 708] also holds in case K is totally complex, with exactly the same
proof. We have

spin(σ, αβ/γ) = spin(σ, γ)δ(σ;α, β)

(
αγ

σ(aB)

)(
βγ

σ(bA)

)(
α

σ(β)σ−1(β)

)
, (6.41)

where δ(σ;α, β) ∈ {±1} is a factor which comes from an application of quadratic reci-
procity and which depends only on σ and the congruence classes of α and β modulo
8.

If K is real quadratic, then we set

v′a = va
∏
σ∈S

(
αγ

σ(aB)

)
, w′b = wb

∏
σ∈S

(
βγ

σ(bA)

)
,

and

δ(α, β) = ψ(αβ mod F )
∏
σ∈S

δ(σ;α, β), s(γ) =
∏
σ∈S

spin(σ, γ),

so that we can rewrite the sum Bi(x, y) as

Bi(x, y) = s(γ)
∑
α∈D

N(α)≤xN(A)
α≡0 mod A

∑
β∈D

N(β)≤yN(B)
β≡0 mod B

δ(α, β)v′(α)/Aw
′
(β)/B

∏
σ∈S

(
α

σ(β)σ−1(β)

)
. (6.42)

Now set

vα = 1(α ≡ 0 mod A) · v′(α)/A

and

wβ = 1(β ≡ 0 mod B) · w′(β)/B,

where 1(P ) is the indicator function of a property P . Also, for α, β ∈ OK with β odd,
we define

φ(α, β) =
∏
σ∈S

(
α

σ(β)σ−1(β)

)
.
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Finally, we further split Bi(x, y) according to the congruence classes of α and β modulo
F , so as to control the factor δ(α, β), which now depends on congruence classes of α and
β modulo F due to the presence of ψ(αβ mod F ). We have

Bi(x, y) = s(γ)
∑

α0∈(OK/(F ))×

∑
β0∈(OK/(F ))×

δ(α0, β0)Bi(x, y;α0, β0),

where

Bi(x, y;α0, β0) =
∑

α∈D(xN(A))
α≡α0 mod F

∑
β∈D(yN(B))
β≡β0 mod F

vαwβφ(α, β).

To prove the bound (6.40), at least in the case that K is totally real, it now suffices to
prove, for each ε > 0, the bound

Bi(x, y;α0, β0)�ε

(
x−

1
6n + y−

1
6n

)
(xy)

1+ε
, (6.43)

where the implied constant is uniform in all choices of uniformly bounded sequences
of complex numbers {vα}α and {wβ}β indexed by elements of OK . Each of the sums
Bi(x, y;α0, β0) is of the same shape as B(M,N ;ω, ζ) in Chapter 4; in the notation of
Chapter 4, f = (F ), αw corresponds to vα, βz corresponds to wβ , and γ(w, z) corresponds
to φ(α, β) (unfortunately with the arguments α and β flipped). Our desired estimate
for Bi(x, y;α0, β0), and hence also B(x, y), would now follow from Proposition 4.3.6,
provided that we can verify properties (P1)-(P3) for the function φ(α, β).

We now verify (P1)-(P3), thereby proving the bound (6.43) and hence also the bound
(6.40). Property (P1) follows from the law of quadratic reciprocity, since for odd α and
β we have

φ(α, β) =
∏
σ∈S

(
α

σ(β)

)(
α

σ−1(β)

)
=
∏
σ∈S

µ(σ;α, β)

(
σ(β)

α

)(
σ−1(β)

α

)

=

(∏
σ∈S

µ(σ;α, β)

)
·
∏
σ∈S

(
β

σ−1(α)

)(
β

σ(α)

)

=

(∏
σ∈S

µ(σ;α, β)

)
· φ(β, α),

where µ(σ;α, β) depends only on σ and the congruence classes of α and β modulo 8.
Property (P2) follows immediately from the multiplicativity of each argument of the
quadratic residue symbol (·/·). Finally, for property (P3), since σ−1 6∈ S whenever
σ ∈ S, we see that

ϕ(β) =
∏
σ∈S

σ(β)σ−1(β)
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divides N(β) =
∏
σ∈Gal(K/Q) σ(β); thus, the first part of (P3) indeed holds true. It now

suffices to prove that ∑
ξ mod N(β)

(
ξ

ϕ(β)

)
vanishes if |N(β)| is not squarefull. The sum above is a multiple of the sum∑

ξ mod ϕ(β)

(
ξ

ϕ(β)

)
,

which vanishes if the principal ideal generated by ϕ(β) is not the square of an ideal. The
proof now proceeds as in [25, Lemma 3.1]. Supposing |N(β)| is not squarefull, we take a
rational prime p such that p | N(β) but p2 - N(β). This implies that there is a degree-one
prime ideal divisor p of β such that (β) = pc with c coprime to p, i.e., coprime to all the
conjugates of p. Hence ϕ(β) factors as

(ϕ(β)) =
∏
σ∈S

σ(p)σ−1(p)
∏
σ∈S

σ(c)σ−1(c),

where the evidently non-square
∏
σ∈S σ(p)σ−1(p) is coprime to

∏
σ∈S σ(c)σ−1(c), hence

proving that (ϕ(β)) is not a square. This proves that property (P3) holds true, and then
Proposition 4.3.6 implies the estimate (6.43) and hence also (6.40), at least in the case
that K is totally real.

If K is totally complex, fix t ∈ TK and v ∈ VK/V 2
K . Then replacing α by tvα in (6.41),

we get

spin(σ, tvαβ/γ) = spin(σ, γ)δ(σ; tvα, β)(
tvαγ

σ(aB)

)(
βγ

σ(bA)

)(
tv

σ(β)σ−1(β)

)(
α

σ(β)σ−1(β)

)
,

where now δ(σ;α, β; t, v) = δ(σ; tvα, β)
(

tv
σ(β)σ−1(β)

)
∈ {±1} depends only on σ, t, v,

and the congruence classes of α and β modulo 8. Then instead of (6.42), we have

Bi(x, y) = s(γ)
∑
t∈TK

∑
v∈VK/V 2

K

∑
α∈D

N(α)≤xN(A)
α≡0 mod A

∑
β∈D

N(β)≤yN(B)
β≡0 mod B

δ(α, β; t, v)

v(t, v)′(α)/Aw
′
(β)/B

∏
σ∈S

(
α

σ(β)σ−1(β)

)
, (6.44)

where now

v(t, v)′a = va
∏
σ∈S

(
tvαγ

σ(aB)

)
, w′b = wb

∏
σ∈S

(
βγ

σ(bA)

)
,

and

δ(α, β; t, v) = ψ(tvαβ mod F )
∏
σ∈S

δ(σ;α, β; t, v), s(γ) =
∏
σ∈S

spin(σ, γ).

The rest of the proof now proceeds identically to the case when K is totally real.
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6.5 Governing fields

Let E = Q(ζ8,
√

1 + i) and let h(−4p) be the class number of Q(
√
−4p). It is well-known

that E is a governing field for the 8-rank of Q(
√
−4p); in fact 8 divides h(−4p) if and

only if p splits completely in E. We assume that K is a hypothetical governing field for
the 16-rank of Q(

√
−4p) and derive a contradiction. If K ′ is a normal field extension of

Q containing K, then K ′ is also a governing field. Therefore we can reduce to the case
that K contains E. In particular, K is totally complex.

We have Gal(E/Q) ∼= D4 and we fix an element of order 4 in Gal(E/Q) that we call r.
Let p be a rational prime that splits completely in E. Since E is a PID, we can take π
to be a prime in OE above p. It follows from Proposition 6.2 of [42], which is based on
earlier work of Bruin and Hemenway [7], that there exists an integer F and a function
ψ0 : (OE/FOE)× → C such that for all p with (p, F ) = 1 we have

16 | h(−4p)⇔ ψ0(π mod F )

(
r(π)

π

)
E,2

= 1, (6.45)

where ψ0(α mod F ) = ψ0(αu2 mod F ) for all α ∈ OK coprime to F and all u ∈ O×K .
We take S equal to the inverse image of our fixed automorphism r under the natural
surjective map Gal(K/Q) → Gal(E/Q). Then it is easily seen that σ ∈ S implies
σ−1 6∈ S. If p is a principal prime of K with generator w of norm p, we have∏
σ∈S

spin(σ,w) =
∏
σ∈S

(
w

σ(w)

)
K,2

=

(
w

r(NK/E(w))

)
K,2

= ψ1(w mod 8)

(
r(NK/E(w))

w

)
K,2

= ψ1(w mod 8)

(
r(NK/E(w))

NK/E(w)

)
E,2

.

We are now going to apply Theorem 6.1.1 to the number field K, the function

ψ(w mod F ) := ψ1(w mod 8)ψ0

(
NK/E(w) mod F

)
.

and S as defined above. Then for a principal prime p of K with generator w and norm
p

sp =
∑
t∈TK

∑
v∈VK/V 2

K

ψ (tvw mod F )
∏
σ∈S

spin(σ, tvw)

= 2|TK ||VK/V 2
K |
(

116|h(−p) −
1

2

)
, (6.46)

since the equivalence in (6.45) does not depend on the choice of π. Theorem 6.1.1 shows
oscillation of the sum ∑

N(p)≤X
p principal

sp.

The dominant contribution of this sum comes from prime ideals of degree 1 and for
these primes equation (6.46) is valid. But if K were to be a governing field, sp has to be
constant on unramified prime ideals of degree 1, which is the desired contradiction.
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Chapter 7

Vinogradov’s three primes
theorem with primes having
given primitive roots

Joint work with Christopher Frei and Efthymios Sofos

Abstract

The first purpose of our paper is to show how Hooley’s celebrated method leading to his
conditional proof of the Artin conjecture on primitive roots can be combined with the
Hardy–Littlewood circle method. We do so by studying the number of representations
of an odd integer as a sum of three primes, all of which have prescribed primitive roots.
The second purpose is to analyse the singular series. In particular, using results of
Lenstra, Stevenhagen and Moree, we provide a partial factorisation as an Euler product
and prove that this does not extend to a complete factorisation.

7.1 Introduction

Can we represent an odd integer as a sum of 3 odd primes all of which have 27 as a
primitive root? Lenstra [52] was the first to address the problem of primes with a fixed
primitive root and lying in an arithmetic progression. One of his results [52, Th.(8.3)]
states that if b 6= 5 (mod 12) then either there are no primes p ≡ b (mod 12) having 27
as a primitive root or there is exactly one such prime, namely p = 2. Hence, unless
n ≡ 3 (mod 12), no such representation exists.

In this paper, we are interested in the converse direction, at least for all sufficiently
large values of n. The existence of infinitely many primes with a given primitive root
a is currently not known unconditionally for any a ∈ Z, so we need to be content with
working under the assumption of a certain generalised Riemann Hypothesis, sometimes
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called Hooley’s Riemann Hypothesis. For any non-zero integer a, we will write HRH(a)
for the hypothesis that

for all square-free k ∈ N, the Dedekind zeta function of the number field
Q(ζk, k

√
a), where ζk ∈ C is a primitive k-th root of unity, satisfies the Rie-

mann hypothesis.

Our main theorem can be seen as a combination of the classical conditional result of
Hardy and Littlewood [31] towards ternary Goldbach with Hooley’s [36] conditional
proof of Artin’s conjecture.

Theorem 7.1.1. Let a = (a1, a2, a3) ∈ Z3 such that no ai is −1 or a perfect square.
Assuming HRH(ai) for i = 1, 2, 3, we have

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi = Aa(n)n2 + o(n2), as n→ +∞, (7.1)

with an explicit factor Aa(n) ∈ R≥0 that satisfies Aa(n)�a 1 whenever Aa(n) > 0.

The bulk of this paper will be devoted to the description and investigation of the fac-
tor Aa(n). In particular, a product decomposition of Aa(n) will allow us to interpret
Theorem 7.1.1 as a local-global principle and gives the following as a simple consequence.

Corollary 7.1.2. Assume HRH(27). Let n be a sufficiently large odd integer. Then
there are odd primes p1, p2, p3 with 27 as a primitive root and n = p1 + p2 + p3 if and
only if n ≡ 3 mod 12.

We can also get an explicit saving in the error term, for the price of working under a
stronger generalised Riemann hypothesis. Let HRH’(a) be the hypothesis that

for each square-free k > 0 all Hecke L-functions of the number field Q(ζk, k
√
a)

satisfy the Riemann hypothesis.

Theorem 7.1.3. Let a1, a2, a3 be three integers none of which is −1 or a perfect square.
Assuming HRH’(ai) for i = 1, 2, 3, we have for β ∈ (0, 1),

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi = Aa(n)n2 +Oa,β(n2(log n)−β), (7.2)

where the implied constant is effective and depends at most on a1, a2, a3 and β.

Before returning to the explicit description of our factor Aa(n), let us briefly review
the relevant literature on Artin’s conjecture and the ternary Goldbach problem, and
introduce some necessary notation along the way.
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7.1.1 Artin’s conjecture

Fix an integer a 6= −1 which is not a perfect square. A question going back to Gauss
regards the infinitude of primes having a as a primitive root. It was realised by Artin
that the question admits an interpretation through algebraic number theory. Denote
by ζk a primitive kth root of unity and define for any positive square-free integer k the
number field

Ga,k := Q(a1/k, ζk). (7.3)

Artin’s criterion states that the prime p has a as a primitive root if and only if for
every prime q the rational prime p does not split completely in Ga,q. This led to the
formulation of the following conjecture via a collective effort due to Artin, Lehmer and
Heilbronn. Define

∆a := Disc(Q(
√
a)), the discriminant of Q(

√
a) (7.4)

ha := max
{
m ∈ N : a is an mth power

}
, (7.5)

Aa :=
∏
p|ha

(
1− 1

p− 1

) ∏
p-ha

(
1− 1

p(p− 1)

)
(7.6)

and for positive integers q let

f‡a(q) :=
( ∏
p|q,p|ha

(p− 2)−1
)( ∏

p|q,p-ha

(p2 − p− 1)−1
)
. (7.7)

Here, and throughout our paper, the letter p is reserved for rational primes. We fur-
thermore define

La := Aa ·
(
1 + µ(2|∆a|)f‡a(|∆a|)

)
, (7.8)

where µ is the Möbius function. Artin’s conjecture then states that

lim
x→+∞

#
{
p ≤ x : F∗p = 〈a〉

}
#{p ≤ x}

= La. (7.9)

This conjecture is of substantial difficulty: there is no value of a for which the limit is
known to be positive. In fact, it is not even known whether for every integer a that is
not a square or −1 there exists a prime having primitive root a.

A significant step in the subject has been the, conditional under HRH(a), resolution
of Artin’s conjecture by Hooley [36]. His method is pivotal in the present work. No-
table progress was later made by Heath-Brown [33], who building on work of Gupta and
Murty [29], showed unconditionally that at least � x/(log x)2 primes p ≤ x have prim-
itive root q, r or s, where {q, r, s} is any set of non-zero integers which is multiplicative
independent and such that none of q, r, s,−3qr,−3qs,−3rs or qrs is a square. There is
a rather extensive list of further results, as well as certain cryptographic applications;
the reader is referred to the comprehensive survey of Moree [61]. Lenstra [52] used Hoo-
ley’s method to show, conditionally on HRH(a), the existence of the Dirichlet density of
primes in an arithmetic progression and with a as primitive root. An explicit formula
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for these densities was given later by Moree [60]. To describe Moree’s result we need the
following notation. Let

βa(q) :=

(−1)

∆a
gcd(q,∆a)

−1

2 gcd(q,∆a), if ∆a

gcd(q,∆a) ≡ 1 (mod 2)

1 otherwise,
(7.10)

and observe that βa(q) is a fundamental discriminant in case ∆a/ gcd(q,∆a) ≡ 1 mod 2.
For positive integers q let

f†a(q) :=
∏

p|ha,p|q

(
1− 1

p− 1

)−1 ∏
p-ha,p|q

(
1− 1

p(p− 1)

)−1

. (7.11)

Definition 7.1.4. Assume that a 6= −1 is a non-square integer, let ∆a, ha be as
in (7.4), (7.5) and assume that x, q are integers with q > 0. We define

Aa(xmod q) := Aa ·

{
f†a(q)
φ(q)

∏
p|x−1,p|q

(
1− 1

p

)
, if gcd(x− 1, q, ha) = gcd(x, q) = 1,

0, otherwise,

(7.12)
and

δa(xmod q) := Aa(xmod q)

(
1 + µ

(
2|∆a|

gcd(q,∆a)

)(
βa(q)

x

)
f‡a

(
|∆a|

gcd(q,∆a)

))
,

where φ(·) is the Euler totient function and
( ·
·
)

is the Kronecker quadratic symbol.

Moree’s result [60] states that, conditionally under HRH(a), the Dirichlet density of
primes in an arithmetic progression and with a as primitive root equals δa(xmod q).
His work will prove of central importance in our interpretation of the Artin factor for
the ternary Diophantine problem under study.

7.1.2 Ternary Goldbach problem

The ternary Goldbach problem has been one of the most central subjects in analytic
number theory; it asserts that every odd integer greater than 5 is the sum of 3 primes.
Hardy and Littlewood [31] used the circle method to provide the first serious approach
to the problem; they proved an asymptotic formula for the number of representations of
n as a sum of k primes (k ≥ 3) conditionally on the veracity of the generalised Riemann
hypothesis. This hypothesis was removed later by Vinogradov [75]. His result states
that for every β > 0 one has for all odd integers n that

∑
p1+p2+p3=n

3∏
i=1

log pi =
1

2

(∏
p

%p(n)

)
n2 +Oβ(n2(log n)−β),
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where the product is over all primes, the implied constant depends at most on β, and

%p(n) := p

( ∑
b1,b2,b3∈(Z/pZ)∗

b1+b2+b3≡n(mod p)

1

(p− 1)3

)
. (7.13)

This can be thought as the ratio of the probability that a random vector b ∈ ((Z/pZ)∗)3

satisfies
∑

1≤i≤3 bi ≡ n (mod p) to the probability that a random vector b ∈ (Z/pZ)3

satisfies
∑

1≤i≤3 bi ≡ n (mod p), as made clear from

p =

( ∑
b1,b2,b3(mod p)

b1+b2+b3≡n(mod p)

1

p3

)−1

. (7.14)

It should be mentioned that Helfgott [35] recently settled the ternary Goldbach prob-
lem. Using recent developments in additive combinatorics, Shao [66] provided general
conditions for an infinite subset P of the primes that allow solving n = p1 + p2 + p3

for large odd n with each pi in P. The result most related to our work is [66, Th.1.3];
it states that if there exists δ > 0 such that the intersection of P with each invertible
residue class modulo every integer q has density at least δ/φ(q), then, under suitable
additional assumptions, n = p1 + p2 + p3 is soluble within P. This does not cover our
situation, since if ha > 1 then the densities δa(1mod ha) vanish. Furthermore, if ha = 1
then these densities could become arbitrarily close to zero. Indeed, if q is of the form∏
p≤T p for some T > 2 then it is easy to see that

δa(1 mod q)φ(q) ≤
∏
p≤T

(
1− 1

p

)
� 1

log log q
.

It would be interesting to modify his approach in order to recover some of our results,
for example a lower bound of the correct order of magnitude as the one provided by
Theorem 7.1.1. This approach would still require HRH(ai) and besides the focal point
of our paper is the ‘Artin factor’ Aa(n) in Theorem 7.1.1. A further result related to
ours is that of Kane [39]. A very special case of his work provides an asymptotic for
the number of solutions of n = p1 + p2 + p3 when each pi lies in a prefixed Chebotarev
class of a Galois extension of Q. Primes with a prescribed primitive root do admit a
Chebotarev description, however the number of conditions involved is not fixed.

7.1.3 The factor Aa(n)

Let us now describe the representation of Aa(n) that is obtained directly from the
proof of Theorem 7.1.1. Define for q > 0 and square-free k > 0 the number field
Fa,q,k := Q(ζq, ζk, a

1/k) , so that Ga,k = Fa,k,k. Moreover, for b ∈ Z with gcd(b, q) = 1,
we let ca,q,k(b) := 1 if the restriction of the automorphism σb : ζq 7→ ζbq of Q(ζq) to
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Q(ζq) ∩ Ga,k is the identity and we otherwise let ca,q,k(b) := 0. We use the usual
notation eq(z) := exp(2πiz/q), for z ∈ C, q ∈ N. The exponential sum

Sa,q,k(z) :=
∑

b∈(Z/qZ)∗

ca,q,k(b)eq(zb) (7.15)

and the entities

La,q,k(z) :=

3∏
i=1

Sai,q,ki(z), (7.16)

da,k(q) :=

3∏
i=1

[Fai,q,ki : Q] (7.17)

will play a central role throughout this paper. For positive square-free k1, k2, k3 we
define

Sa,k(n) :=

∞∑
q=1

1

da,k(q)

∑
z∈Z/qZ

gcd(z,q)=1

eq(−nz)La,q,k(z). (7.18)

It will be made clear in §7.2 that this is the singular series for the representation problem
n = p1 + p2 + p3 where for each i the prime pi splits completely in Gai,ki . The absolute
convergence of the sum over q will be verified in Lemma 7.3.2. With this notation in
place, the leading factor in Theorem 7.1.1 and Theorem 7.1.3 is given by

Aa(n) =
1

2

( ∑
k∈N3

µ(k1)µ(k2)µ(k3)Sa,k(n)

)
. (7.19)

The sum over k will be shown to be absolutely convergent in Lemma 7.3.2. It is desirable
to describe the integers n for which Aa(n) 6= 0. An important remark is that if the
method of Hooley works in an Artin conjecture-related problem then it provides a leading
constant which is an infinite alternating sum of Euler products that is not obviously
equal to the conjectured Artin constant. Such a phenomenon is well documented and
can be observed for instance in the work of Lenstra [52], who studied the density of
primes in arithmetic progressions and with a prescribed primitive root, as well as the
work of Serre [65], who studied the density of primes p for which the reduction of an
elliptic curve over Fp is cyclic. Artin constants have not been studied in the context
of Diophantine problems prior to the present work, however, we will show that Aa(n)
factorises partially and we shall provide an interpretation for Aa(n). For every positive
integer d we define the densities

σa,n(d) := d

( ∑
b1,b2,b3(mod d)

b1+b2+b3≡n(mod d)

3∏
i=1

δai(bimod d)

Lai

)
. (7.20)

The factor d has an explanation that is identical to the explanation of the factor p
in (7.13)-(7.14). Let [·] denote the least common multiple, νp(·) be the p-adic valuation
and define

Da := 2min{ν2(∆ai
):1≤i≤3}−max{ν2(∆ai

):1≤i≤3}[∆a1
,∆a2

,∆a3
]. (7.21)
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Theorem 7.1.5. The factor Aa(n) in Theorems 7.1.1 and 7.1.3 factorises as follows,

Aa(n) =
1

2

( 3∏
i=1

Lai
)
σa,n(Da)

∏
p-Da

σa,n(p). (7.22)

Furthermore, whenever Aa(n) > 0, we have

Aa(n)�
3∏
i=1

φ(hai)

|∆ai |2hai
, (7.23)

with an absolute implied constant.

For an interpretation of the right side of (7.22) see §7.1.4. The proof of (7.22) (that
will be provided in §7.4.1) requires adroit manoeuvring. This is because the densities
δa(bimod d) in (7.20) have a complicated dependence on bi and also do not exhibit good
factorisation properties with respect to d.

Let us furthermore comment that in contrast to the usual applications of the circle
method, the constant in (7.22) does not factorise as an Euler product, see §7.4.6 for a
precise statement of this phenomenon. The following consequence of Theorem 7.1.1 and
Theorem 7.1.5 can be interpreted as a local-global principle.

Corollary 7.1.6. Let a1, a2, a3 be three integers none of which is −1 or a perfect square,
and assume HRH(ai) for i = 1, 2, 3. For every sufficiently large odd integer n, the
following statements are equivalent:

1. There are primes p1, p2, p3 not dividing 6∆a1
∆a2

∆a3
such that each ai is a prim-

itive root modulo pi and p1 + p2 + p3 = n.

2. For d ∈ {3,Da}, there are primes p1, p2, p3 with gcd(p1p2p3, 2d) = 1 such that ai
is a primitive root for pi for every i = 1, 2, 3 and p1 + p2 + p3 ≡ n mod d.

Though part (2) of Corollary 7.1.6 may not look like a purely local statement, it is one.
In fact, for any d in N, solubility of the congruence modulo d in primes not dividing
2d with prescribed primitive roots is equivalent to the statement that σa,d(n) > 0. In
Lemma 7.4.7, we shall see that σa,n(p) > 0 whenever p - 3∆a1

∆a2
∆a3

. Moreover, it is
clear from the definition in (7.20), that whether σa,d(n) = 0 or not is a local condition
modulo d.

7.1.4 Interpretation of the Artin factor for the ternary Goldbach
problem

Studying the constants in any counting problem of flavour similar to that of Artin’s
conjecture is a non-trivial task and has been analysed rather extensively. The problems
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involve primes with a fixed primitive root, primes in progressions and with a fixed
primitive root and primes such that the reduction of a fixed elliptic curve over the
corresponding finite field is cyclic, see the work of Serre [65]. The reader that is interested
in an overview of the work that has been done on these constants so far is directed at
the work of and Lenstra–Stevenhagen–Moree [53], as well as the survey of Moree [61].

We now focus on the interpretation of the “Artin-factor” Aa(n) with the help of (7.22).
First, the factor 1/2 is related to the density of solutions in R of

∑
1≤i≤3 xi = n and it

has the exact same interpretation as in the classical situation of ternary Goldbach, and
therefore, we do not further comment on this.

The term
La1La2La3

in (7.22) should be thought of as the “probability” that for all i = 1, 2, 3, a random
prime pi has primitive root ai, see (7.9).

The factors σa,n(d) for d ∈ {Da} ∪ {p prime : p - Da} admit an explanation that
is comparable to the analogous densities in the classical case of the ternary Goldbach
problem, see (7.13). There is only one difference, namely that one has to use the weight

δai(bimod d)

Lai

instead of 1/(p− 1). This new weight equals the conditional probability that a random
prime lies in the arithmetic progression bi (mod d) given that it has primitive root ai.

It would be desirable to use algebraic considerations (for example, the approach of
‘entanglement’ of splitting fields as in the work of Lenstra–Stevenhagen–Moree [53]), to
provide a prediction for Aa(n) with a method that is different to the one in §7.4.1.

7.1.5 The case where all primitive roots are equal

In our next theorem, we provide an explicit description of the local conditions in Corol-
lary 7.1.6, but for space considerations we do so only in the important case where

a1 = a2 = a3 =: a.

The first row of the following table contains the discriminant of Q(
√
a) and the second

row contains the power properties of a. For example, if a is a cube but not a fifth power
we shall write a ∈ Z3 \ Z5.

Theorem 7.1.7. Let a 6= −1 be a non-square integer and n ∈ N. Then the ’Artin
factor’

A(a,a,a)(n)

is strictly positive if and only if n satisfies one of the congruence conditions in the third
row of the following table. The second to last row refers to all integers a not considered
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in a row above it, as long as Disc(Q(
√
a)) is not divisible by 3. The last row refers to

every integer a not considered in a row above it.

Disc(Q(
√
a)) Power properties of a Congruence conditions for n

−3 Z \ ({−1} ∪ Z2) 3 (mod 6)
−4 Z \ ({−1} ∪ Z2) 1 (mod 4)
5 Z \ ({−1} ∪ Z2) 1 (mod 2) and not 0 (mod 5)
12 Z \ ({−1} ∪ Z2 ∪ Z3) 3, 5, 7, 9 (mod 12)
12 Z3 \ ({−1} ∪ Z2) 3 (mod 12)
−15 Z \ ({−1} ∪ Z2 ∪ Z3 ∪ Z5) 1 (mod 2) and not 0 (mod 15)
−15 Z3 \ ({−1} ∪ Z2 ∪ Z5) 1 (mod 2) and 3, 6, 9, 12 (mod 15)
−15 Z5 \ ({−1} ∪ Z2 ∪ Z3) 1 (mod 2) and not

0, 1, 2, 7, 8, 14 (mod 15)
−15 Z15 \ ({−1} ∪ Z2) 12 (mod 15)
−20 Z5 \ ({−1} ∪ Z2) 1 (mod 2) and not 1 (mod 20)
21 Z7 \ ({−1} ∪ Z2 ∪ Z3) 1 (mod 2) and not 8 (mod 21)
21 Z3 \ ({−1} ∪ Z2 ∪ Z7) 3 (mod 6)
21 Z21 \ ({−1} ∪ Z2) 1 (mod 2) and 3, 6, 12, 15 (mod 21)
±24 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
60 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
60 Z5 \ ({−1} ∪ Z2 ∪ Z3) 1 (mod 2) and not 31, 41 (mod 60)
−84 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
105 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
±120 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
±168 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
−420 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
±840 Z3 \ ({−1} ∪ Z2) 3 (mod 6)
other values \3Z Z3 \ ({−1} ∪ Z2) 3 (mod 6)
every other value Z \ ({−1} ∪ Z2) 1 (mod 2)

Theorem 7.1.7 enables one to describe all large enough integers having a representation
as a sum of 3 primes with a prescribed primitive root.One such example is Corollary
7.1.2, whose proof we give now.

Proof of Corollary 7.1.2. If n is a sum of 3 odd primes all of which have primitive
root 27, we saw in the first paragraph of our paper that n must be 3 mod 12. For
the opposite direction we observe that if a = 27 then we have Disc(Q(

√
a)) = 12 and

a ∈ Z3 \ ({−1} ∪ Z2), hence alluding to the fifth row in the table of Theorem 7.1.7 we
see that, conditionally on HRH(27), every sufficiently large integer n ≡ 3 (mod 12) is a
sum of three odd primes with primitive root 27.

7.1.6 Structure of the paper

We study a generalisation of the ternary Goldbach problem in §7.2, where each of the
three primes involved satisfies certain splitting conditions in a different number field
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extension of Q. The main result of §7.2 is Proposition 7.2.1, whose proof is given
in §7.2.3.

Next, §7.3.1 contains the first steps for the combination of Hooley’s argument [36] and
the Hardy–Littlewood circle method. Theorem 7.1.1 will be proved in §7.3.2, while
Theorem 7.1.3 is verified in §7.3.3.

The rest of our paper, namely §7.4, deals with the ‘Artin factor’ Aa(n). The former
part of Theorem 7.1.1, viz. (7.22), is verified in §7.4.1, while the latter part, viz. (7.23),
is established in §7.4.2. Corollary 7.1.6 and Theorem 7.1.7 are proved in §7.4.4 and
§7.4.5 respectively. Finally, we show that Aa(n) does not factorise as an Euler product
in §7.4.6.

Notation 7.1.8. The letters p and ` will always denote a rational prime. The entities
ai, hai ,∆ai are considered constant throughout our work, thus the dependence of implied
constants on them will not be recorded. On several occasions our implied constants are
absolute, this will always be specified. Finally, we will use the notation

e(z) := exp(2πiz) and eq(z) := exp(2πiz/q), (z ∈ C, q ∈ N).

Acknowledgements. This work was completed while Christopher Frei and Peter Koy-
mans were visiting the Max Planck Institute in Bonn, the hospitality of which is greatly
acknowledged.

7.2 Uniform ternary Goldbach with certain splitting
conditions

In this section the letters k, ki shall refer exclusively to positive square-free integers.
Recall (7.3) and define

Spl (Ga,k) := {p prime in N : p splits completely in Ga,k}. (7.24)

We study the asymptotics of the representation function

Va,k(n) :=
∑

p1+p2+p3=n

∀i: pi∈Spl(Gai,ki)

3∏
i=1

log pi. (7.25)

We will see that the singular series related to the estimation of Va,k(n) is the series
Sa,k(n) introduced in (7.18). Kane [39] studied a very general set of problems, one case
of which is that of evaluating Va,k(n) asymptotically. His work provides a function fa
such that for each B > 0 and square-free k1, k2, k3 we have

Va,k(n) =
1

2
Sa,k(n)n2 +OB

(
|fa(k)| n2

(log n)B

)
, (7.26)
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where the implied constant depends at most on a and B. This can be deduced by taking

N := n, X := n, k := 3, ai := 1, Ki := Gai,ki and Ci := idGai,ki

in [39, Th.2]. With this choice the constant C∞ in [39, Th.2] equals n2/2 and a long but
straightforward computation allows one to show that the ‘singular series’ Sa,k(n) can
be factored into the remaining parts of the main term in the asymptotic formula [39,
Eq.(1.2)].

Our aim in this section is to prove the following result, conditional on the hypothesis
HRH’(ai) introduced before Theorem 7.1.3. It constitutes a version of (7.26) that has a
power saving in the error term and an explicit and polynomial dependence on the ki. As
is surely familiar to circle method experts, an error term of this quality is currently out
of reach unconditionally even in the setting of the classical ternary Goldbach problem.

Proposition 7.2.1. Assume HRH’(ai) for i = 1, 2, 3. The following estimate holds for
all square-free k1, k2, k3 with 1 ≤ k1, k2, k3 ≤ n and with an implied constant depending
at most on a,

Va,k(n) =
1

2
Sa,k(n)n2 +O

(
n11/6(log n)6

(
max

1≤i≤3
ki
)6)

.

7.2.1 Algebraic considerations

We shall need explicit bounds for certain algebraic quantities associated to Ga,k. This
subsection is mostly devoted to providing the necessary estimates.

Recall the definitions of ∆a and ha, given in (7.4) and (7.5). We begin by determining
the degree of the number field Fa,q,k defined at the start of §7.1.3 (see [60, Lemma 2.3]).

Lemma 7.2.2. For k square-free, set k′ := k/ gcd(k, ha). Then we have

[Fa,q,k : Q] = k′φ([q, k])/ε(q, k),

where

ε(q, k) =

{
2, if 2 | k and ∆a | [q, k],

1, otherwise.

Lemma 7.2.3. Let k′ = k/ gcd(k, ha) and a = g
gcd(k,ha)
1 gk2 , with g1 free of k′-th powers.

Then
log |Disc(Fa,q,k)|

[Fa,q,k : Q]
≤ log k′ + log([q, k]) + 2 log |g1| .

Proof. We have |Disc(Fa,q,k)| = N(∆Fa,q,k/Q(ζ[q,k]))|Disc(Q(ζ[q,k]))|[Fa,q,k:Q(ζ[q,k])], where
N is the absolute norm of an ideal and ∆Fa,q,k/Q(ζ[q,k]) is the relative discriminant ideal.
Any k′-th root α ∈ Fa,q,k of g1 generates Fa,q,k over Q(ζ[q,k]), so it’s different d(α) 6= 0 is
in the different ideal of Fa,q,k/Q(ζ[q,k]). Since the minimal polynomial of α over Q(ζ[q,k])
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divides xk
′ − g1, we find that k′αk

′−1 is a multiple of d(α) in OFa,q,k , and thus in the
different ideal as well. Hence,

N(∆Fa,q,k/Q(ζ[q,k])) ≤ |NFa,q,k/Q(k′αk
′−1)|

≤ (k′)[Fa,q,k:Q]|g1|(k
′−1)ϕ([q,k])

≤ (k′)[Fa,q,k:Q]|g1|2[Fa,q,k:Q].

Now use

|Disc(Q(ζ[q,k]))| = [q, k]ϕ([q,k])
∏
p|qk

p−ϕ([q,k])/(p−1) ≤ [q, k]ϕ([q,k])

to complete the proof.

Clearly, the intersection Q(ζq) ∩ Ga,k contains Q(ζgcd(q,k)). More precisely, it is deter-
mined as follows (see [60, Lemma 2.4]).

Lemma 7.2.4. We have

[Q(ζq) ∩Ga,k : Q(ζgcd(q,k))] =

{
2 if 2 | k, ∆a - k and ∆a | [q, k]

1 otherwise.

In the first case, the integer βa(q) defined in (7.10) is a fundamental discriminant and
we have Q(ζq) ∩Ga,k = Q(ζgcd(q,k),

√
βa(q)).

Since both Q(ζq) and Ga,k are normal, the same holds for their compositum Fa,q,k. We
investigate the existence of certain elements of the Galois group Gal(Fa,q,k/Q). Recall
the definitions of σb and ca,q,k(b) from the start of §7.1.3.

Lemma 7.2.5. Let b ∈ Z with gcd(b, q) = 1. The following are equivalent:

1. there is an automorphism σ ∈ Gal(Fa,q,k/Q) with

σ|Q(ζq) = σb and σ|Ga,k = idGa,k , (7.27)

2. ca,q,k(b) = 1,

3. with βa(q) defined in (7.10), we have

b ≡ 1 (mod gcd(q, k)) , and (7.28)

2 | k, ∆a - k, ∆a | [q, k] implies that

(
βa(q)

b

)
= 1. (7.29)

Moreover, if σ as in (1) exists, it is unique and in the center of Gal(Fa,q,k)/Q.
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Proof. Write I := Q(ζq)∩Ga,k. The map σ 7→ (σ|Q(ζq), σ|Ga,k) provides an isomorphism

Gal(Fa,q,k/Q) ∼= {(σ1, σ2) ∈ Gal(Q(ζq)/Q)×Gal(Ga,k/Q) : σ1|I = σ2|I}.

Thus, an automorphism σ with (7.27) exists if and only if ca,q,k(b) = 1, proving the
equivalence of (1) and (2). In this case σ is necessarily unique and clearly in the center
of Gal(Fa,q,k/Q), because the Galois group Gal(Q(ζq)/Q) is abelian and idGa,k is in the
center of Gal(Ga,k/Q). Thus, let us study the conditions under which ca,q,k(b) = 1.

Since Q(ζgcd(q,k)) ⊂ I and σb|Q(ζgcd(q,k)) coincides with the automorphism given by

ζ 7→ ζb(mod gcd(q,k)), the condition (7.28) is clearly necessary. Thus, we assume it to
hold from now on, whence σb|Q(ζgcd(q,k)) = idGa,k . If the antecedent in (7.29) is false,
then we have I = Q(ζgcd(q,k)) by Lemma 7.2.4, and thus ca,q,k(b) = 1. If the antecedent

in (7.29) holds, then, invoking Lemma 7.2.4 once more, we find that
√
βa(q) ∈ Q(ζq)

and ca,q,k(b) = 1 is equivalent to

σb(
√
βa(q)) =

√
βa(q). (7.30)

Since βa(q) is a fundamental discriminant, we may invoke [60, Lemma 2.2] to see that

(7.30) is equivalent to
(
βa(q)
b

)
= 1.

7.2.2 Consequences of HRH’(a)

In this section we use the hypothesis HRH’(a) to provide estimates for certain exponen-
tial sums related to the estimation of Va,k(n).

Lemma 7.2.6. Assume HRH’(a). For any square-free k and coprime integers c, q we
have ∑

p≤x
p∈Spl(Ga,k)

(log p)eq(cp) =
x

ϕ(q)[Ga,k : Q]

∑
χ(mod q)
χ◦N=χ0

χ(c)τ(χ) +O(k2√qx(log qx)2).

Here, χ runs through all Dirichlet characters modulo q for which χ ◦N, considered as a
ray class character modulo qOGa,k , is the trivial ray class character χ0. Moreover, τ(χ)
denotes the Gauss sum τ(χ) =

∑
y(mod q) χ(y)eq(y).

Proof. We have ∑
p≤x

p∈Spl(Ga,k)

(log p)eq(cp) =
∑

p≤x,p-q
p∈Spl(Ga,k)

(log p)eq(cp) +O((log q)2). (7.31)

Bringing into play the Dirichlet characters modulo q allows us to inject, for p - q,

eq(cp) =
1

ϕ(q)

∑
b(mod q)

∑
χ(mod q)

χ(b)χ(cp)eq(b) =
1

ϕ(q)

∑
χ(mod q)

χ(cp)τ(χ)
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into (7.31), thus acquiring the validity of∑
p≤x

p∈Spl(Ga,k)

(log p)eq(cp) =
1

ϕ(q)

∑
χ(mod q)

χ(c)τ(χ)ψa,k(x, χ) +O((log q)2), (7.32)

where

ψa,k(x, χ) :=
∑
p≤x

p∈Spl(Ga,k)

(log p)χ(p) =
1

[Ga,k : Q]

∑
Np≤x

deg(p)=1

(logNp)χ(Np)

=
1

[Ga,k : Q]

∑
Nn≤x

Λ(n)χ(Nn) +O(
√
x log x).

Here and for the rest of this section p denotes a prime ideal in OGa,k , deg(p) denotes its
inertia degree over Q, n denotes an ideal in OGa,k , and Λ is the von Mangoldt function
on ideals of OGa,k , defined by Λ(pe) := logNp for e ≥ 1 and Λ(n) := 0 in all other cases.
Observing that χ ◦N defines a character of the ray class group of Ga,k modulo qOGa,k ,
we consider its Hecke L-function,

L(s, χ) :=
∑
n 6=0

χ(Nn)(Nn)−s.

It is now easy to see that

−L′(s, χ)/L(s, χ) =
∑
n 6=0

Λ(n)χ(Nn)(Nn)−s.

The Ramanujan–Petersson conjecture is obviously true for L(s, χ), since it is true for
any Hecke L-function. Hence Theorem 5.15 from [38] implies that∑

Nn≤x

Λ(n)χ(Nn) = rχx+O(x
1
2 (log x) log(x[Ga,k:Q]q(χ))),

where rχ is the order of the pole of L(s, χ) at s = 1. For the definition of q(χ), see page
95 of [38]. Furthermore, on page 129 of [38] it is proven that

q(χ) ≤ 4[Ga,k:Q]|Disc(Ga,k)|q[Ga,k:Q].

Our next task is to make explicit the value of rχ. If χ◦N is the trivial ray class character
χ0 modulo OGa,k , then we have rχ = 1; otherwise we have rχ = 0. Using |τ(χ)| ≤ √q
and Lemma 7.2.3 we can substitute in (7.32) to find that

1

ϕ(q)

∑
χ(mod q)

χ(c)τ(χ)ψa,k(x, χ) =
xϕ(q)−1

[Ga,k : Q]

∑
χ(mod q)
χ◦N=χ0

χ(c)τ(χ)+

O([Ga,k : Q]
√
qx(log qx)2),

thus concluding our proof upon observing that [Ga,k : Q] = [Fa,k,k : Q] ≤ k2.
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Although it is possible to directly evaluate the main term in Lemma 7.2.6, we will instead
use the following trick.

Lemma 7.2.7. Under the same conditions as in Lemma 7.2.6 we have∑
p≤x

p∈Spl(Ga,k)

(log p)eq(cp) =
Sa,q,k(c)

[Fa,q,k : Q]
x+ oq,k(x), as x→ +∞.

Proof. Partitioning in progressions modulo q we see that, owing to (7.31), the sum over
p in our lemma is equal to the following quantity up to an error of size oq,k(x),∑

b∈(Z/qZ)∗

eq(bc)
∑
p≤x

p≡b(mod q)
p∈Spl(Ga,k)

log p.

By Lemma 7.2.5 there exists an automorphism σ of Fa,q,k satisfying

σ|Q(ζq) = σb and σ|Ga,k = idGa,k

if and only if ca,q,k(b) = 1. Furthermore, if such an automorphism exists, it is unique.
The lemma is now a consequence of Chebotarev’s density theorem.

Combining Lemma 7.2.6 and Lemma 7.2.7 proves the following lemma.

Lemma 7.2.8. Under the same assumptions as in Lemma 7.2.6 we have∑
p≤x

p∈Spl(Ga,k)

(log p)eq(cp) =
Sa,q,k(c)x

[Fa,q,k : Q]
+O(k2√qx log2 qx).

Define for a square-free integer k > 0 the exponential sum

fa,k(α) =
∑
p≤n

p∈Spl(Ga,k)

(log p)e(αp), (α ∈ R). (7.33)

The next lemma is easily proved via partial summation and Lemma 7.2.8.

Lemma 7.2.9. Assume HRH’(a). Let k be square-free integer and define α = c/q + β,
where (c, q) = 1. Then

fa,k(α) =
Sa,q,k(c)

[Fa,q,k : Q]

∫ n

0

e(βx)dx+O
(
k2(1 + |β|n)

√
qn(log qn)2

)
.

It will be necessary to gain a better understanding of the exponential sums Sa,q,k(c).
We start by studying ca,q,k(·) in the next lemma, whose proof flows directly from (7.28)
and (7.29).
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Lemma 7.2.10. Let b, q be coprime integers and factor q as q = d
∏l
i=1 p

ei
i with d an

integer composed of primes dividing ∆a and pi distinct prime numbers not dividing ∆a.
Then we have for any square-free integer k,

ca,q,k(b) = ca,d,k(b)

l∏
i=1

ca,peii ,k
(b).

Lemma 7.2.11. Let k be square-free, assume that b, q are coprime integers and suppose
that q = q1q2, b = b1q2 +b2q1, with q1, q2 coprime. If gcd(q1,∆a) = 1 or gcd(q2,∆a) = 1
then we have

Sa,q,k(b) = Sa,q1,k(b1)Sa,q2,k(b2).

Proof. By the Chinese remainder theorem we can write each element y ∈ Z/qZ as
y1q2 + y2q1, where yi ∈ Z/qiZ, thus showing that eq(by) = eq1(b1y1q2)eq2(b2y2q1). This
leads to

Sa,q,k(b) =
∑

y∈(Z/qZ)∗

ca,q,k(y)eq(by)

=
∑

y1∈(Z/q1Z)∗

eq1(b1y1q2)
∑

y2∈(Z/q2Z)∗

eq2(b2y2q1)ca,q,k(y1q2 + y2q1).

By Lemma 7.2.10 we have ca,q,k(y1q2 + y2q1) = ca,q1,k(y1q2 + y2q1)ca,q2,k(y1q2 + y2q1).
The entity ca,q,k(y) is periodic (mod q) as a function of y, thus we can write Sa,q,k(b) as∑

y1∈(Z/q1Z)∗

eq1(b1y1q2)ca,q1,k(y1q2)
∑

y2∈(Z/q2Z)∗

eq2(b2y2q1)ca,q2,k(y2q1)

and a simple linear change of variables in each sum completes the proof.

Lemma 7.2.12. For k square-free, b an integer and p a prime with p - b∆a we have

|Sa,pj ,k(b)| =
{

1, j = 1
0, j > 1.

Proof. Let us observe that (7.29) always holds for q = pj as in the lemma, as the
antecedent is never satisfied. We first handle the case j = 1. If p - k then by Lemma 7.2.5,
Sa,p,k(b) is the classical Ramanujan sum and the result follows, while in the remaining
case, p | k, the result is also immediate from (7.28). Now suppose j > 1. Again, if p - k,
the sum in the lemma is a Ramanujan sum and the result follows. We are therefore free
to assume that p | k. Writing y = 1 + px we see that

Sa,pj ,k(b) =
∑

y(mod pj)
y≡1(mod p)

epj (by) = epj (b)
∑

x(mod pj−1)

epj−1(bx),

which is clearly sufficient since the inner sum vanishes.
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Lemma 7.2.13. Let r,Q, c ∈ Z be such that rQ 6= 0, gcd(c,Q) = 1, r divides Q and
assume that a function f : Z→ C has period |r|. If we have |r| < |Q| then the following
sum vanishes, ∑

b(mod |Q|)

e|Q|(bc)f(b).

Proof. The claim becomes clear upon writing the sum in our lemma as∑
b0(mod |r|)

e|Q|(b0c)f(b0)
∑

x(mod |Q/r|)

e|Q/r|(xc)

and observing that if |Q/r| 6= 1 then each exponential sum over x vanishes.

Lemma 7.2.14. Let k be a square-free integer, suppose that q is composed of primes
dividing ∆a and let b be an integer with gcd(b, q) = 1. If q - ∆a, then Sa,q,k(b) = 0.

Proof. First suppose 2 - k or ∆a | k or ∆a - [q, k] and write q = pe11 · · · p
el
l . We have

ca,q,k(b) =

l∏
i=1

ca,peii ,k
(b),

therefore Sa,q,k(b) = 0 can now be easily proved as before, as our hypotheses imply that
ej > 1 for at least one j.

Now suppose that 2 | k and ∆a - k and ∆a | [q, k]. For y ∈ Z, let f(y) := 1 if

y ≡ 1 mod gcd(k, q) and
(
βa(q)
y

)
= 1, and f(y) := 0 otherwise. By Lemma 7.2.5 we

have
Sa,q,k(b) =

∑
y(mod q)

f(y)eq(by).

Since gcd(k, q) | gcd(∆a, q) = |βa(q)| and βa(q) is a fundamental discriminant, we see
that f has period gcd(∆a, q), strictly dividing q by our hypotheses. Apply Lemma
7.2.13.

Combining Lemmas 7.2.11, 7.2.12 and 7.2.14 allows us to conclude that

Sa,q,k(b)� 1, (7.34)

where the implied constant depends at most on a.

7.2.3 Proof of Proposition 7.2.1

Recall (7.33). Our starting point is the circle method identity,

∑
p1+p2+p3=n
pi∈Spl(Gai,ki )

3∏
i=1

(log pi) =

∫ 1

0

fa1,k1
(α)fa2,k2

(α)fa3,k3
(α)e(−nα)dα. (7.35)
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Corollary 7.2.15. Assume HRH’(a), and suppose α, c, q fulfil |α − c/q| ≤ q−1n−2/3,
gcd(c, q) = 1, q ≤ n2/3 and that k is square-free. Then we have

fa,k(α)� (n/q + k2n5/6)(log n)2.

Proof. Observe that Lemma 7.2.2 gives

[Fa,q,k : Q]−1 � ϕ([q, k])−1 ≤ ϕ(q)−1 � (log q)q−1,

hence, by Lemma 7.2.9 and (7.34) one obtains

fa,k(α)� n(log n)q−1 + k2(1 + n1/3q−1)
√
qn(log n)2.

Our proof can then be concluded by using q ≤ n2/3.

Define P := nν , for an absolute constant ν ∈ (0, 1/6] that will be chosen later. In our
situation the major arc M(c, q) is defined for coprime c, q via

M(q, c) := {α : |α− c/q| ≤ q−1n−2/3},

while we let M be the union of all M(q, c) with 1 ≤ q ≤ P , 1 ≤ c ≤ q, gcd(c, q) = 1 and
define the minor arcs through m := [0, 1] \M. We note here that the major arcs are
disjoint owing to (qq′)−1 > (qn2/3)−1 + (q′n2/3)−1 that can be proved for all n > 8 due
to q, q′ ≤ n1/3.

Corollary 7.2.16. Assume HRH’(ai) for 1 ≤ i ≤ 3. Then∫
m

|fa1,k1
(α)fa2,k2

(α)fa3,k3
(α)|dα� n2−ν(log n)3 min

i
k2
i .

Proof. By Dirichlet’s approximation theorem, for each α there exist coprime integers c, q
with |α−c/q| ≤ q−1n−2/3 and 1 ≤ q ≤ n2/3. If α ∈ m then q > nν , hence Corollary 7.2.15
yields the estimate fa,k(α)� k2n1−ν(log n)2. We may assume k1 ≤ k2, k3 with no loss
of generality, therefore the integral in our lemma is

� k2
1n

1−ν(log n)2

∫ 1

0

|fa2,k2
(α)fa3,k3

(α)|dα,

thus Cauchy’s inequality yields the following bound for the last integral,

�
(∫ 1

0

|fa2,k2
(α)|2dα

)1/2(∫ 1

0

|fa3,k3
(α)|2dα

)1/2

.

Both integrals are at most
∑
p≤n(log p)2 � n log n, which provides the desired result.

Note that if β + c/q ∈M(q, c) for some q ≤ n1/3 then Lemma 7.2.9 shows that

fai,ki(α) =
Sai,q,ki(c)

[Fai,q,ki : Q]

∫ n

0

e(βx)dx+O

(
n5/6

q1/2
(log n)2 max

i
k2
i

)
.
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Hence the estimates∫ n

0

e(βx)dx� min{n, |β|−1} and
Sa,q,k(c)

[Fa,q,k : Q]
� ϕ(q)−1

show that fa1,k1(c/q+β)fa2,k2(c/q+β)fa3,k3(c/q+β)−La,q,k(c)da,k(q)−1
(∫ n

0
e(βx)dx

)3
is

� min{n2, |β|−2}
ϕ(q)2

n5/6

q1/2
(log n)2 max

i
k2
i +

n15/6

q3/2
(log n)6 max

i
k6
i . (7.36)

The major arcs make the following contribution towards (7.35),

∑
1≤q≤nν

∑
1≤c≤q

gcd(c,q)=1

∫ q−1n−2/3

−q−1n−2/3

fa1,k1
(c/q+β)fa2,k2

(c/q+β)fa3,k3
(c/q+β)e(−n(c/q+β))dβ,

and a straightforward analysis utilising (7.36) reveals that the last expression equals

∑
1≤q≤nν

∑
1≤c≤q

gcd(c,q)=1

eq(−cn)La,q,k(c)

da,k(q)

∫ q−1n−2/3

−q−1n−2/3

(∫ n

0

e(βx)dx

)3

e(−nβ)dβ+

O

(
n11/6(log n)6

maxi k
−6
i

)
.

The integral over β can be estimated as n2/2 +O(q2n4/3), thus by (7.34) the sum over
q is Sa,k(n)n2/2 + O((n4/3+ν + n2−ν)(log n)3) and the choice ν = 1/6 concludes the
proof of Proposition 7.2.1.

7.3 The circle method and Hooley’s approach

7.3.1 Opening phase

The aim of §7.3 is to prove Theorem 7.1.1 and Theorem 7.1.3. We commence in this
subsection by calling upon parts of Hooley’s work [36] that will prove useful. We will
make an effort to keep the notation in line with his as much as possible. In this section,
the letters p, q will be reserved for primes. Two primes p, q are said to satisfy the property
Ra(q, p) if both of the following conditions hold,

q|(p− 1); a is a qth power residue (mod p) .

A standard index calculus argument shows that for a prime p - a the integer a is a
primitive root (mod p) if and only if Ra(q, p) fails for all primes q. For any η, η1, η2 ∈ R>0

we define

Na(n, η) := #
{
p ≤ n : Ra(q, p) fails for all primes q ≤ η

}
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and

Ma(n, η1, η2) := #
{
p ≤ n : there exists q ∈ (η1, η2] such that Ra(q, p) holds

}
.

Letting
Na(n) := #{p ≤ n : a is a primitive root modulo p}

we see from the work of Hooley [36, Eq.(1)] that for each ξ1, ξ2, ξ3 ∈ R with

1 ≤ ξ1 < ξ2 < ξ3 < n− 1

we have

Na(n) = Na(n, ξ1) +O
(

Ma(n, ξ1, ξ2) + Ma(n, ξ2, ξ3) + Ma(n, ξ3, n− 1)
)
. (7.37)

Hooley makes specific choices for the parameters ξi; we will keep the same choice for ξ2
and ξ3, namely ξ2 := n

1
2 (log n)−2, ξ3 := n

1
2 log n, however, we shall later choose a differ-

ent value for ξ1. For the moment we shall only demand that 1 < ξ1 ≤ (log n)(log log n)−1.
The estimates proved in [36, Eq.(2), Eq.(3)] provide us with

Na(n) = Na(n, ξ1) +O
(

Ma(n, ξ1, ξ2) + n(log log n)(log n)−2
)
. (7.38)

The argument in [36, Eq.(33)] shows that for each ξ1 as above, one has under HRH(a)
that

Ma(n, ξ1, ξ2)� n

log n

∑
q>ξ1

1

q2
+

n

log2 n
,

which, once combined with the simple estimate
∑
q>ξ1

q−2 � ξ−1
1 and (7.38) provides

us with

Na(n) = Na(n, ξ1) +O

(
n

log n

1

ξ1
+
n log log n

log2 n

)
, (7.39)

with an implied constant depending at most on a.

Lemma 7.3.1. For any β ∈ (0, 1) and any sets of primes Pi ⊂ [1, n] of cardinality
ε(Pi)n/ log n the following estimate holds with an implied constant that depends at most
on β, ∑

p1+p2+p3=n
∃i:pi∈Pi

3∏
i=1

log pi �β n
2(max

i
ε(Pi))β .

Proof. Define r2(m) := #{(p1, p2) : pi prime, p1 + p2 = m}. The sum in the lemma is
at most

(log n)3
3∑
i=1

∑
p1+p2+p3=n

pi∈Pi

1 = (log n)3
3∑
i=1

∑
p<n

1Pi(p)r2(n− p)

and using Hölder’s inequality with exponents (1/β, 1/(1 − β)) allows us to bound the
inner sum on the right by

ε(Pi)βnβ(log n)−β(
∑
p<n

r2(n− p)1/(1−β))1−β .
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Straightforwardly, there exists c = c(β) > 0 with (1− z)/(1− 2z) ≤ (1 + cz)1−β for all
0 < z ≤ 1/3. Using this for z = 1/p′ and alluding to the following classical bound (that
can be found in [30, Eq. (7.2)], for example),

r2(m)� m

(logm)2

∏
p′|m,p′ 6=2

p′ − 1

p′ − 2

yields

r2(m)�β
m

(logm)2

∏
p′|m

(
1 +

c

p′

)1−β

.

Therefore the quantity in the lemma is

� (log n)3
(nmaxi ε(Pi)

log n

)β(( n

(log n)2

)1/(1−β) ∑
p<n

∏
p′|n−p

(1 + c/p′)
)1−β

and to finish our proof it remains to show that∑
p<n

∏
p′|n−p

(1 + c/p′)�c
n

log n
.

Rewriting this sum as
∑
d≤n µ(d)2cω(d)d−1#{p < n : p ≡ n (mod d)} we see that the

contribution from integers d > n1/2 is �
∑
n1/2<d≤n c

ω(d)d−1(n/d + 1) � n1/2+1/100.

By Brun–Titchmarsh, the contribution of terms with d ≤ n1/2 is

� n(log n)−1
∑

d≤n1/2

cω(d)(dφ(d))−1 � n(log n)−1,

thus concluding our proof.

Let us define the set

Pi :=
{
p : p|ai

}
∪
{
p ≤ n : Rai(q, p) holds for some prime q > ξ1

}
.

The arguments bounding Ma(n, ξ1, n−1) in the deduction of (7.39) show under HRH(a)
that

#Pi �
n

ξ1 log n
+
n log log n

log2 n
. (7.40)

We can now apply Lemma 7.3.1 and to do so let us observe that by (7.40) we have

ε(Pi) =
log n

n
#Pi �

1

ξ1
+

log log n

log n
� 1

ξ1
.

Therefore, under HRH(ai) for i = 1, 2, 3, and for each fixed β ∈ (0, 1) we acquire the
validity of

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi =
∑

p1+p2+p3=n,pi-ai
∀i,∀q≤ξ1: Rai (q,pi) fails

3∏
i=1

log pi +Oβ

(n2

ξβ1

)
. (7.41)
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Bringing into play the following quantity for each square-free positive integer ki,

Pa,k(n) :=
∑

p1+p2+p3=n, pi-ai
∀i: q|ki⇒Rai (q,pi) holds

3∏
i=1

log pi, (7.42)

makes the following estimate available, once the inclusion-exclusion principle has been
used,

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi =
∑
k∈N3

p|k1k2k3⇒p≤ξ1

µ(k1)µ(k2)µ(k3)Pa,k(n) +Oβ

(
n2ξ−β1

)
. (7.43)

The entity Pa,k(n) is analogous to Pa(k) that is present in the work of Hooley [36,
§3]. Indeed, the inclusion-exclusion argument above is inspired by the argument leading
to [36, Eq.(5)].

Using the arguments in [36, §4] we shall first translate the Rai(q, pi)-condition present
in (7.42) into a condition related to the factorisation properties of the prime pi in certain
number fields. Recall the definition of ha given in (7.5). For any positive square-free
integer ki we define k′i := ki/ gcd(ki, hai). Then, as explained in [36, Eq.(8)], for a prime
p - ai and a square-free integer ki, the conditions Rai(q, p) hold for all q | ki if and only
if

xk
′
i ≡ ai (mod p) is soluble and p ≡ 1 (mod ki) .

It is then proved following [36, Eq.(8)] that, in light of the Kummer–Dedekind theorem,
this is in turn equivalent to the property that p is completely split in the number field

Q(a
1/k′i
i , ζki). Recall (7.3) and let us see why

Gai,ki = Q(a
1/k′i
i , ζki).

It is clearly sufficient to show that a
1/ki
i ∈ Q(a

1/k′i
i , ζki). Writing ai = bhai and using

µ(ki)
2 = 1, we see that gcd(hai gcd(ki, hai), ki)|hai , hence there are integers x, y with

hai gcd(ki, hai)x+ kiy = hai .

This leads to the equality a
1/ki
i = (b1/ki)hai = by(a

1/ki
′

i )x, which completes the argu-
ment.

Recalling the definition of Spl (Gai,ki) in (7.24), we infer by (7.42) that for all k ∈ N3

with each ki square-free we have

Pa,k(n) =
∑

p1+p2+p3=n, pi-ai
∀i: pi∈Spl(Gai,ki)

3∏
i=1

log pi = Va,k(n) +Oβ(n2((log n)/n)β),
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for any β ∈ (0, 1). For the second equality, recall (7.25) and use Lemma 7.3.1. Inject-
ing this into (7.43) we have proved that whenever 1 < ξ1 ≤ (log n)(log logn)−1 and
0 < β < 1 then

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi =
∑
k∈N3

p|k1k2k3⇒p≤ξ1

µ(k1)µ(k2)µ(k3)Va,k(n) +Oβ

(
n2ξ−β1

)
, (7.44)

where, for 2− β < δ < 2, the estimate∑
k∈N3

p|k1k2k3⇒p≤ξ1

|µ(k1)µ(k2)µ(k3)|nδ ≤ nδ
( ∑

k∈N
p|k⇒p≤ξ1

|µ(k)|
)3

= nδ23#{p≤ξ1}

≤ nδe3ξ1 ≤ nδ+
3

log logn

�β,δ n
2(log n)−β(log log n)β ≤ n2ξ−β1

Before concluding the proofs of Theorem 7.1.1 and Theorem 7.1.3, we need a preparatory
lemma.

Lemma 7.3.2. The series defining Sa,k(n) in (7.18) and representing Aa(n) in (7.19)
are absolutely convergent. For each ε > 0 and z ≥ 1 we have

∑
k∈N3

∃i,p: p|kiand p≥z

|Sa,k(n)|
( 3∏
i=1

|µ(ki)|
)
≤
∑
k∈N3

∃i: ki≥z

( 3∏
i=1

|µ(ki)|
) ∞∑
q=1

1

da,k(q)

∑
x∈(Z/qZ)∗

|La,q,k(x)|

�ε
1

z1−ε ,

with an implied constant depending at most on a and ε.

Proof. The first inequality is clear by (7.18). Observe that k′i ≥ ki/hai � ki, hence by
Lemma 7.2.2 we obtain

1

da,k(q)
�

3∏
i=1

1

kiϕ([q, ki])
=

1

ϕ(q)3

3∏
i=1

ϕ(gcd(q, ki))

kiϕ(ki)
.

Combining this with (7.34) we see by (7.18) that for ε > 0 and square-free ki,

∞∑
q=1

1

da,k(q)

∑
x∈(Z/qZ)∗

|La,q,k(x)| �
3∏
i=1

1

kiϕ(ki)

∞∑
q=1

ϕ(gcd(q, k1))ϕ(gcd(q, k2))ϕ(gcd(q, k3))

ϕ(q)2

�ε
gcd(k1, k2, k3)

(k1k2k3)2−ε .

Therefore, the inner sum our lemma is

�
∑
k1≥z

|µ(k1)|
k2−ε

1

∑
k2∈N

|µ(k2)|
k2−ε

2

∑
k3∈N

|µ(k3)| gcd(k1, k2, k3)

k2−ε
3

.
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Using the estimates∑
k3∈N

|µ(k3)| gcd(k3,m)k3
−2+ε �ε m

ε and
∑
k1≥z

|µ(k1)|
k2−ε

1

� z−1+ε

concludes our proof of the desired bound, which implies absolute convergence of the sum
in (7.19).

7.3.2 The proof of Theorem 7.1.1

Recall (7.26). Now note that, replacing fa(x) by a larger function if necessary, we may
assume in the statement of (7.26) that fa([1,∞)3) is a subset of (1,∞). Fix any B > 0.
The function

x 7→ log(1 + x) +
∑

1≤k1,k2,k3≤x

fa(k),

is strictly increasing, hence it has an inverse, which we call ha(x). Define the function
ξ1 : (1,∞)→ R through

ξ1(x) :=
1

2
·min

{
log x

log log x
, log(ha((log x)B/2))

}
(7.45)

and observe that
lim

x→+∞
ξ1(x) = +∞, (7.46)

however, owing to the non-explicit error term in [39, Th.2] we cannot have any further
control on the rate of divergence in the last limit. For n� 1, the definition of ξ1 implies∑

1≤k1,k2,k3≤e2ξ1(n)

fa(k) ≤ (log n)B/2.

Noting that a square-free integer with all of its prime factors bounded by ξ1(n) must be
at most

∏
p≤ξ1(n) p ≤ exp(2ξ1(n)) and injecting (7.26) into (7.44) yields the following

with an implied constant depending on β and B,

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi =
n2

2

∑
k∈N3

p|k1k2k3⇒p≤ξ1(n)

( 3∏
i=1

µ(ki)
)
Sa,k(n)+

O

(
n2

ξβ1
+

n2

(log n)B

( ∑
k∈N3

∀i: ki≤e2ξ1(n)

fa(k)
))

=
n2

2

∑
k∈N3

p|k1k2k3⇒p≤ξ1(n)

( 3∏
i=1

µ(ki)
)
Sa,k(n) +O

(
n2

ξβ1
+

n2

(log n)B/2

)
.
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An application of Lemma 7.3.2 with ε = 1− β shows that

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi −
1

2

( ∑
k∈N3

µ(k1)µ(k2)µ(k3)Sa,k(n)

)
n2

�β,B
n2

min{(log n)B/2, ξ1(n)β}
,

and the proof of Theorem 7.1.1 is concluded upon invoking (7.46), up to the assertion
that Aa(n) �a 1 whenever Aa(n) > 0. This follows immediately from Theorem 7.1.5,
proved in §7.4. Moreover, we have confirmed the shape of Aa(n) given in (7.19).

Note that the reason for the non-explicit error term in Theorem 7.1.1 is that the function
ξ1 in (7.45) is not explicit.

7.3.3 The proof of Theorem 7.1.3

Let β be any real number in (0, 1) and define

ξ1(n) :=
log n

log log n
.

Injecting Proposition 7.2.1 into (7.44) provides us with

∑
p1+p2+p3=n
∀i: F∗pi=〈ai〉

3∏
i=1

log pi −
n2

2

∑
p|k1k2k3⇒p≤ξ1

Sa,k(n)

3∏
i=1

µ(ki)

�β
n2

ξβ1
+

(log n)6

n−11/6

( ∑
k∈N

p|k⇒p≤ξ1

k6|µ(k)|
)3

.

For n � 1, each k in the sum satisfies k ≤
∏
p≤ξ1 p ≤ n

2
log logn , hence the cube of the

sum over k is at most n
θ

log logn for some absolute positive constant θ. This shows that
the right side above is �β n

2ξ−β1 . Appealing to Lemma 7.3.2 completes the proof of
Theorem 7.1.3.

7.4 Artin’s factor for ternary Goldbach

In this section, we study in detail the leading factor Aa(n) in Theorems 7.1.1 and 7.1.3,
and thus prove Theorem 7.1.5, Corollary 7.1.6 and Theorem 7.1.7. Recall that we have
already confirmed the equality (7.19) in the proof of Theorem 7.1.1 in §7.3.2.
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7.4.1 The proof of (7.22)

Recall the definitions of Fa,q,k(b) and ca,q,k(b) from the start of §7.1.3. It was shown by
Lenstra [52, Th.(3.1),Eq.(2.15)] conditionally under HRH(a), that for all integers b and
q > 0 the Dirichlet density of the primes p satisfying the following conditions exists,

F∗p = 〈a〉 and p ≡ b (mod q) ,

and, furthermore, that it equals
∑
k∈N µ(k)ca,q,k(b)[Fa,q,k : Q]−1. This topic was later

revisited by Moree [60], who showed that∑
k∈N

µ(k)ca,q,k(b)

[Fa,q,k : Q]
= δa(bmod q), (7.47)

where δa(bmod q) is the arithmetic function given in Definition 7.1.4. We will make
consistent use of Moree’s result in this section.

Lemma 7.4.1. We have∑
k∈N3

µ(k1)µ(k2)µ(k3)Sa,k(n) =

∞∑
q=1

∑
c∈(Z/qZ)∗

eq(−nc)
3∏
i=1

( ∑
bi∈Z/qZ

eq(bic)δai(bimod q)

)
.

Proof. Recall (7.15) and (7.18). Lemma 7.3.2 allows us to rearrange terms, thus we can
rewrite the sum over k in our lemma as

∞∑
q=1

∑
c∈Z/qZ

gcd(c,q)=1

eq(−cn)

3∏
i=1

(∑
ki∈N

µ(ki)Sai,q,ki(c)

[Fai,q,ki : Q]

)
.

By (7.15) the sum over ki equals∑
bi∈Z/qZ

gcd(bi,q)=1

eq(bic)
∑
ki∈N

µ(ki)cai,q,ki(bi)

[Fai,q,ki : Q]

and using (7.47) concludes our proof.

The difficulty of converting the sum over k in (7.19) into a product comes from the
fact that the terms δai(bimod q) in Lemma 7.4.1 are not a multiplicative function of q.
These terms would be multiplicative in the classical Vinogradov setting, where one has
1gcd(bi,q)=1(bi)/φ(q) in place of δai(bimod q).

For brevity, we will write from now on βi(q) and ∆i for βai(q) and ∆ai .

Lemma 7.4.2. If the odd part of a positive integer q is not square-free then the following
expression vanishes,

3∏
i=1

( ∑
bi∈Z/qZ

eq(bic)δai(bimod q)

)
.

Furthermore, the expression vanishes if ν2(q) > min{ν2(∆i) : i = 1, 2, 3}.
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Proof. In the present proof we write [P ] := 1 if a proposition P holds, and [P ] := 0
otherwise. For 1 ≤ i ≤ 3, we factorise each positive integer q as q = qi,0qi,1, where the
positive integers qi,0, qi,1 are uniquely defined through the conditions p | qi,0 ⇒ p|∆i and
gcd(qi,1,∆i) = 1. Now owing to Definition 7.1.4 the quantity δai(bimod q)/Aai equals([

gcd(bi, qi,1) gcd(bi − 1, qi,1, hai) = 1
]f†ai(qi,1)

φ(qi,1)

∏
p|bi−1,p|qi,1

(
1− 1

p

))
×

(
f†i (qi,0)

φ(qi,0)

∏
p|bi−1,p|qi,0

(
1− 1

p

))
×
[

gcd(bi, qi,0) gcd(bi − 1, qi,0, hai) = 1
]
×

(
1 +

(
βi(qi,0)

bi

)
µ

(
2|∆i|

gcd(qi,0,∆i)

)
f‡ai

(
|∆i|

gcd(qi,0,∆i)

))
.

The integers qi,0 and qi,1 are coprime, hence we may write bi = qi,0bi,1 + qi,1bi,0 and use
the Chinese remainder theorem to write the sum over bi in the lemma as the product of

Aai ·
f†ai(qi,0)

φ(qi,0)

f†ai(qi,1)

φ(qi,1)

∑
bi,1(mod qi,1)

gcd(bi,1,qi,1)=1
gcd(bi,1qi,0−1,qi,1,hai )=1

e(bi,1c/qi,1)
∏

p|(bi,1qi,0−1,qi,1)

(
1− 1

p

)

and ∑
bi,0(mod qi,0)

gcd(bi,0,qi,0)=1
gcd(bi,0qi,1−1,qi,0,hai )=1

e(bi,0c/qi,0)∏
p|(bi,0qi,1−1,qi,0)(1−

1
p )−1

×

(
1 +

(
βi(qi,0)

bi,0qi,1

)
µ

(
2|∆i|

gcd(qi,0,∆i)

)
f‡ai

(
|∆i|

gcd(qi,0,∆i)

))
.

To study the sum over bi,1 we use Lemma 7.2.13 with

Q := qi,1, r :=
∏
p|qi,1

p, f(b) := [gcd(b, r) gcd(b− 1, r, hai) = 1]
∏

p|b−1,p|r

(
1− 1

p

)
to deduce that if the expression in our lemma is non-vanishing then for each i the integer
qi,1 must be square-free. Now assume that the prime p satisfies p - gcd(∆1,∆2,∆3).
Then there exists i ∈ {1, 2, 3} such that p - ∆i and then the non-vanishing of the
expression in the lemma implies that qi,1 must be square-free, thus νp(q) = νp(qi,1) ≤ 1.

Now the sum over bi,0 can be studied via Lemma 7.2.13 with Q := qi,0, r := gcd(qi,0,∆i)
and with f(b) being the product of [gcd(b, r) gcd(bqi,1 − 1, r, hai) = 1] and{

1 +

(
β(qi,0)

b

)
µ

(
2|∆i|

gcd(qi,0,∆i)

)
f‡i

(
|∆i|

gcd(qi,0,∆i)

)} ∏
p|(bqi,1−1,r)

(
1− 1

p

)
.
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We have used the fact that p | qi,0 ⇔ p | r and that the Kronecker symbol has period
|β(qi,0)| = r. Lemma 7.2.13 shows that unless the expression in our lemma vanishes,
we have gcd(qi,0,∆i) = qi,0, thus for every i we must have qi,0 | ∆i. Now if a prime p
satisfies p | gcd(∆1,∆2,∆3) we have that for every i, νp(q) = νp(qi,0) ≤ νp(∆i), thus
νp(q) ≤ min{νp(∆i) : i = 1, 2, 3}. If p 6= 2 then this shows that νp(q) ≤ 1 since the
odd part of a fundamental discriminant is square-free, while if p = 2 then we must have
ν2(q) ≤ min{ν2(∆i) : i = 1, 2, 3}.

Lemma 7.4.2 allows us to simplify the summation over q in Lemma 7.4.1 since the only
integers q making a contribution towards the sum must satisfy

∀p, i : p|∆i, p|q ⇒ νp(q) ≤ νp(∆i) and p|q, p - ∆1∆2∆3 ⇒ νp(q) ≤ 1.

To keep track of every factorisation we introduce for every q ∈ N and w ∈ {0, 1}3 the
positive integer

q(w) :=
∏
p:

∀i: p|∆i⇔w(i)=0

pνp(q)

so that q =
∏

w∈F3
2
q(w). Furthermore, w 6= u implies gcd(q(w), q(u)) = 1. Note that

for a given q, q(w) is uniquely characterised by the properties

gcd(q(w),
∏

i:w(i)=1

∆i) = 1 and q(w) | gcd{∆i : w(i) = 0}. (7.48)

In the case w = (1, 1, 1), the latter condition is interpreted as vacuous. It may be that
for certain values of ai and for all q some q(w) are equal to 1; for example, this happens
if a1 = a2 = a3, in which case we have w /∈ {(0, 0, 0), (1, 1, 1)} ⇒ q(w) = 1. We now use
the definition of q(w), Lemma 7.4.1 and Lemma 7.4.2 to infer∑

k∈N3

µ(k1)µ(k2)µ(k3)Sa,k(n) =
∑

(q(w))∈N8,
(7.48) holds

µ(q((1,1,1)))2=1

∑
c(mod

∏
w q(w))

gcd(c,
∏

w q(w))=1

e(−nc
∏
w

q(w)−1)×

3∏
i=1

( ∑
bi(mod

∏
w q(w))

e
(
bic
∏
w

q(w)−1
)
δai

(
bimod

∏
w

q(w)
))

. (7.49)

Noting that the integers
∏

w(i)=0 q(w) and
∏

w(i)=1 q(w) are coprime, that

gcd
(

∆i,
∏
w

q(w)
)

=
∏

w(i)=0

q(w)

and recalling Definition 7.1.4 we see that

δai

(
bimod

∏
w

q(w)
)

= δai

(
bimod

∏
w(i)=0

q(w)
)
Aai

(
bimod

∏
w(i)=1

q(w)
)
A−1
ai .
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Writing bi = b′i
∏

w(i)=1 q(w) + b′′i
∏

w(i)=0 q(w) and using the Chinese remainder theo-
rem we obtain∑

bi(mod
∏

w q(w))

e
(
bic
∏
w

q(w)−1
)
δai

(
bimod

∏
w

q(w)
)

=
∑

b′i(mod
∏

w(i)=0 q(w))

e
(
b′ic

∏
w(i)=0

q(w)−1
)
δai

(
b′i
∏

w(i)=1

q(w) mod
∏

w(i)=0

q(w)
)
×

×
∑

b′′i (mod
∏

w(i)=1 q(w))

e
(
b′′i c

∏
w(i)=1

q(w)−1
)
A−1
ai Aai

(
b′′i

∏
w(i)=0

q(w) mod
∏

w(i)=1

q(w)
)
.

For the further analysis of the expressions above, we introduce for r ∈ N, c ∈ Z the
quantity

Ma(c, r) :=
1

Aa

∑
b(mod r)

er(bc)Aa(bmod r), (7.50)

and for r ∈ Nk, c ∈ Zk define

Da(c, r) :=
∑

b(mod r1···rk)

e
[
b
( r∑
i=1

ci
ri

)]
δa(bmod r1 · · · rk).

Hence, writing

c =
∑

w∈{0,1}3
c[w]

∏
v 6=w

q(v),

we see that
∏

w(i)=1Mai(c
[w], q(w)) equals

A−1
ai

∑
b′′i (mod

∏
w(i)=1 q(w))

e
(
b′′i c

∏
w(i)=1

q(w)−1
)
Aai

(
b′′i

∏
w(i)=0

q(w) mod
∏

w(i)=1

q(w)
)

and that Dai((c[w])
w(i)=0

, (q(w))
w(i)=0

) is

∑
b′i(mod

∏
w(i)=0 q(w))

e
(
b′ic

∏
w(i)=0

q(w)−1
)
δai

(
b′i
∏

w(i)=1

q(w) mod
∏

w(i)=0

q(w)
)
.

Let us bring into play the entities

∆w :=
∏

p-
∏

w(i)=1 ∆i

pmin{νp(∆i) : w(i)=0},

which we interpret as 1 in case w = (1, 1, 1), and note that
∏

w ∆w coincides with the
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entity Da introduced in (7.21). We see that the sum in (7.49) becomes∑
(q(w))∈N8

w 6=(1,1,1)⇒q(w)|∆w

µ(q((1,1,1)))2=1
gcd(q((1,1,1)),∆1∆2∆3)=1

∑
(c[w])∈

∏
w(Z/q(w)Z)∗

(∏
w

eq(w)(−nc[w])
)
×

×
3∏
i=1

{
Dai((c[w])

w(i)=0
, (q(w))

w(i)=0
)
∏

w(i)=1

Mai(c
[w], q(w))

}
.

Clearly, the terms corresponding to q((1, 1, 1)) can be separated, thus, in light of (7.49),
we are led to ∑

k∈N3

µ(k1)µ(k2)µ(k3)Sa,k(n) = Sa,0(n)Sa,1(n), (7.51)

where

Sa,0(n) :=
∑

(q(w))w 6=(1,1,1)∈N7

q(w)|∆w

∑
(c[w])∈

∏
w 6=(1,1,1)(Z/q(w)Z)∗

( ∏
w 6=(1,1,1)

eq(w)(−nc[w])
)
×

3∏
i=1

{
Dai((c[w])w(i)=0, (q(w))w(i)=0)

∏
w(i)=1

w 6=(1,1,1)

Mai(c
[w], q(w))

}

and

Sa,1(n) :=
∑

gcd(q((1,1,1)),∆1∆2∆3)=1

µ(q((1, 1, 1)))2×

∑
c[(1,1,1)]∈(Z/q((1,1,1))Z)∗

eq((1,1,1))(−nc[(1,1,1)])

3∏
i=1

Mai(c
[(1,1,1)], q((1, 1, 1))). (7.52)

Lemma 7.4.3. For any q ∈ N and w ∈ {0, 1}3 define dw := ∆w/q(w).

1. Let i ∈ {1, 2, 3} and for each w with w(i) = 0 let c[w] ∈ (Z/q(w)Z)∗. Then

Dai((c[w])w(i)=0, (q(w))w(i)=0) = Dai((c[w]dw)w(i)=0, (∆w)w(i)=0).

2. Let i ∈ {1, 2, 3}, w ∈ {0, 1}3 \ {(1, 1, 1)} with w(i) = 1 and c[w] ∈ (Z/q(w)Z)∗.
Then

Mai(c
[w], q(w)) =Mai(c

[w]dw,∆w).

Proof. (1): Define

Q :=
∏

w:w(i)=0

q(w) =
∏

w:w(i)=0

∆w

dw
and D :=

∏
w:w(i)=0

∆w.
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If we assume HRH(ai) then it is immediately clear from Moree’s interpretation of δai as
Dirichlet densities [60] that the following holds,

δai
(
mmod Q

)
=

∑
b(mod D)

b≡m(mod Q)

δai
(
bmod D

)
.

One can also prove this unconditionally directly from Definition 7.1.4 via a tedious but
straightforward calculation that we do not reproduce here. To conclude the proof we
observe that

Dai((c[w])w(i)=0, (q(w))w(i)=0) =
∑

m(mod Q)

e

(
m

∑
w:w(i)=0

c[w]

q(w)

)
δai(mmod Q)

=
∑

b(mod D)

e

(
b

∑
w:w(i)=0

c[w]dw
∆w

)
δai(bmod D)

=Dai((c[w]dw)w(i)=0, (∆w)w(i)=0).

(2): Due to the assumption that w(i) = 1 we have gcd(∆w,∆i) = 1, and thus,

Aai(mmod ∆w)

Aai
=
δai(mmod ∆w)

Lai
.

We similarly have

Aai(mmod ∆w/dw)

Aai
=
δai(mmod ∆w/dw)

Lai
.

By HRH(ai) it then follows that

Aai(mmod ∆w/dw) =
∑

b(mod ∆w)
b≡m(mod ∆w/dw)

Aai(bmod ∆w),

which can also be shown unconditionally as above. The rest of the proof is conducted
as in the first part.

For the analysis of Sa,1(n), we recall the definition of σa,n(d) in (7.20) and use the
following lemma.

Lemma 7.4.4. If p - ∆1∆2∆3, then

σa,n(p) = 1 +
∑

c∈(Z/pZ)∗

ep(−nc)
3∏
i=1

Mai(c, p)
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Proof. The easily verified equality
∑
b(mod p)Aai(bmod p) = Aai shows that the expres-

sion on the right-hand side is equal to

∑
c∈Z/pZ

ep(−cn)

3∏
i=1

Mai(c, p) =
∑

b∈(Z/pZ)3

(
3∏
i=1

Aai(bimod p)

Aai

)
∑

c∈Z/pZ

ep(c(b1 + b2 + b3 − n)),

which is in turn equal to

p
∑

b∈(Z/pZ)3∑3
i=1 bi≡n(mod p)

3∏
i=1

Aai(bimod p)

Aai
.

Since p - ∆1∆2∆3, we see that Aai(bi mod p)/Aai = δai(bi mod d)/Lai .

Using (7.52), multiplicativity and Lemma 7.4.4, we infer that

Sa,1(n) =
∏

p-∆1∆2∆3

(
1 +

∑
c∈(Z/pZ)∗

ep(−nc)
3∏
i=1

Mai(c, p)
)

=
∏

p-∆1∆2∆3

σa,n(p). (7.53)

We now turn our attention to Sa,0(n). Letting dw := ∆w/q(w) we use Lemma 7.4.3 to
obtain

Sa,0(n) =
∑

(dw)w 6=(1,1,1)∈N7

dw|∆w

∑
(c[w])∈

∏
w 6=(1,1,1)

(
Z

(∆w/dw)Z

)∗
( ∏

w 6=(1,1,1)

e
(
− nc[w]dw/∆w

))
×

3∏
i=1

{
Dai((c[w]dw)w(i)=0, (∆w)w(i)=0)

∏
w(i)=1

w 6=(1,1,1)

Mai(c
[w]dw,∆w)

}
.

For any dw with dw | ∆w the elements y[w] (mod ∆w) that satisfy the condition
gcd(y[w],∆w) = dw are exactly those of the form

y[w] = c[w]dw, c[w] ∈
( Z

(∆w/dw)Z

)∗
.

We thus obtain that the sum over dw, c
[w] equals∑

(y[w])∈
∏

w 6=(1,1,1)(Z/∆wZ)

( ∏
w 6=(1,1,1)

e
(
− ny[w]/∆w

))
×

×
3∏
i=1

{
Dai((y[w])w(i)=0, (∆w)w(i)=0)

∏
w(i)=1

w 6=(1,1,1)

Mai(y
[w],∆w)

}
.
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By definition, ∆(1,1,1) = 1, so Da =
∏

w 6=(1,1,1) ∆w. Note that gcd(∆w,∆v) = 1 for

w 6= v. Using the Chinese remainder theorem and writing every y
(

mod
∏

v 6=(1,1,1) ∆w

)
as

y =
∑

w 6=(1,1,1)

y[w]
∏

v/∈{w,(1,1,1)}

∆v,

we see that the sum over y[w] equals

∑
y(mod Da)

e(−ny/Da)

3∏
i=1

( ∑
bi(mod Da)

e(biy/Da)δai(bimod Da)

)
.

This is clearly

Da

∑
b(mod Da)∑3

i=1 bi≡n(mod Da)

3∏
i=1

δai(bimod Da),

thus, recalling (7.20), we have shown that

Sa,0(n) = σa,n(Da)

3∏
i=1

Lai . (7.54)

The proof of (7.22) is concluded upon combining (7.51), (7.53) and (7.54).

7.4.2 The proof of (7.23)

We begin by finding an explicit expression for σa,n(p), for p - ∆1∆2∆3, that is explicit
in terms of n and the hai . Define

θa(p) :=

{
1, if p | ha,
1
p , if p - ha.

Lemma 7.4.5. For an integer c and a prime p with p - c we have

Ma(c, p) = − (1 + θa(p)ep(c))

(p− 1− θa(p))
.

Proof. Combining (7.12) and (7.50) we immediately infer

Ma(c, p) =
1

(p− 1− θa(p))

∑
b(mod p)

gcd(b,p)=1
gcd(b−1,p,ha)=1

ep(bc)
∏

` prime
`|gcd(b−1,p)

(
1− 1

`

)
.

It is now easy to see that the sum over b equals −1− ep(c) or −1− ep(c)/p according to
whether p | ha or p - ha.
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Let us denote the elementary symmetric polynomials in θai(p) by

Ξ0(p) := 1,

Ξ1(p) := θa1(p) + θa2(p) + θa3(p),

Ξ2(p) := θa1(p)θa2(p) + θa2(p)θa3(p) + θa1(p)θa3(p),

Ξ3(p) := θa1(p)θa2(p)θa3(p).

Lemma 7.4.6. For every odd integer n and prime p -
∏3
i=1 ∆i we have

σa,n(p) = 1− p∏
1≤i≤3 (p− 1− θai(p))

( ∑
0≤j≤3

j≡n(mod p)

Ξj(p)
)

+
∏

1≤i≤3

( 1 + θai(p)

p− 1− θai(p)

)
.

Proof. By Lemma 7.4.4 and Lemma 7.4.5 we see that

σa,n(p) = 1− 1∏
1≤i≤3 (p− 1− θai(p))

∑
c∈(Z/pZ)∗

ep(−cn)
∏

1≤i≤3

(1 + θai(p)ep(c)).

The sum over c equals∑
0≤j≤3

Ξj(p)
∑

c∈(Z/pZ)∗

ep(c(j − n)) = p
( ∑

0≤j≤3
j≡n(mod p)

Ξj(p)
)
−
∏

1≤i≤3

(1 + θai(p))

and the proof is complete.

Lemma 7.4.7. Let n be an odd integer. If 3 | ∆1∆2∆3, then
∏
p-∆1∆2∆3

σa,n(p) 6= 0.

If 3 - ∆1∆2∆3, then the following are equivalent:

1.
∏
p-∆1∆2∆3

σa,n(p) = 0,

2. σa,n(3) = 0,

3. One of the following two conditions holds,

3 divides every element in the set {ha1
, ha2

, ha3
} and 3 - n, or

3 divides exactly two elements in the set {ha1
, ha2

, ha3
}, and n ≡ 1 (mod 3) .

Furthermore,
∏
p-∆1∆2∆3

σa,n(p) 6= 0 implies
∏
p-∆1∆2∆3

σa,n(p) � 1, with an absolute
implied constant.

Proof. For a prime p - ∆1∆2∆3 with p ≥ 5 there exists at most one 0 ≤ j ≤ 3 satisfying
j ≡ n (mod p), therefore ∑

0≤j≤3
j≡n(mod p)

Ξj(p) ≤ 3.
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Invoking Lemma 7.4.6 we obtain

σa,n(p) > 1− 3p

(p− 2)3
+

1

(p− 1)3
.

Recall that no ai is a square, hence 2 - ha1ha2ha3 . The fact that n is odd implies that∑
0≤j≤3

j≡n(mod 2)

Ξj(2) = Ξ1(2) + Ξ3(2) =
13

8
,

hence if ∆1∆2∆3 is odd we can use Lemma 7.4.6 to show that σa,n(2) = 2. We have
shown that for odd n one has ∏

p-∆1∆2∆3

p 6=3

σa,n(p)� 1

with an absolute implied constant and it remains to study σa,n(3). One can find an
explicit formula for this density by fixing the congruence class of n (mod 3). For example,
in the case that n ≡ 1 (mod 3) we have

σa,n(3) = 1− 3(θa1
(3) + θa2

(3) + θa3
(3))∏

1≤i≤3 (2− θai(3))
+
∏

1≤i≤3

(1 + θai(3)

2− θai(3)

)
and we can check that σa,n(3) = 0 if and only if at most one of the θi is equal to
1/3. A case by case analysis reveals that if n ≡ 2 (mod 3) then σa,n(3) = 0 if and only
if (θai(3))i = (1, 1, 1) and that if n ≡ 0 (mod 3) then σa,n(3) never vanishes. Noting
that σa,n(3) attains only finitely many values as it only depends on n (mod 3) and the
choice of (θai(3))i ∈ {1, 1

3}
3, we see that there exists an absolute constant c such that if

σa,n(3) > 0 then σa,n(3) > c, thus concluding our proof.

We next provide a lower bound for Sa,0(n), see (7.54). One could proceed by finding
explicit expressions, however, this will lead to rather more complicated formulas than
the one for Sa,1(n) in Lemma 7.4.6. We shall instead opt to bound the densities δa(bi
mod Da) from below in (7.54) and then count the number of solutions of the equation
n ≡ x1 + x2 + x3 (mod Da) such that for every i we have δa(ximod Da) 6= 0.

Lemma 7.4.8. For any integers q and x such that q is positive and δa(xmod q) > 0 we
have

δa(xmod q)� φ(ha)

qha
,

with an absolute implied constant.

Proof. Under the assumptions of our lemma we have the following due to Definition 7.1.4,

δa(xmod q)A−1
a

φ(q)

f†a(q)

∏
p|x−1,p|q

(
1− 1

p

)−1

=

1 + µ

(
2|∆a|

gcd(q,∆a)

)(
βa(q)

x

)
f‡a

(
|∆a|

gcd(q,∆a)

)
.
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The right-hand side is either ≥ 1 or equal to 1−f‡a(|∆a| gcd(q,∆a)−1). In the latter case,
since the right-hand side must be positive and f‡a(|∆a| gcd(q,∆a)−1)−1 is an integer, we
see that the right-hand side is ≥ 1/2. Therefore, under the assumptions of our lemma
we have

δa(xmod q) ≥ Aa
2

f†a(q)

φ(q)

∏
p|x−1,p|q

(
1− 1

p

)
.

It is obvious that Aaf†a(q) � φ(ha)/ha, with an implied absolute constant. This is
sufficient for our lemma owing to

∏
p|x−1,p|q(1−

1
p ) ≥ φ(q)/q.

Recalling (7.20) we see that

σa,n(Da)

3∏
i=1

Lai = Da

∑
b1,b2,b3(mod Da)

b1+b2+b3≡n(mod Da)

3∏
i=1

δai(bimod Da),

thus, if σa,n(Da) > 0 then there exist x1, x2, x3 (mod Da) such that

3∏
i=1

δai(xi mod Da) > 0

and x1 +x2 +x3 ≡ n (mod Da). Invoking Lemma 7.4.8 we see that if σa,n(Da) > 0 then

σa,n(Da)

3∏
i=1

Lai ≥ Da

3∏
i=1

δai(xi mod Da)� D−2
a

3∏
i=1

φ(hai)

hai
.

Recalling (7.21) we obtain Da ≤ [∆1,∆2,∆3] ≤ |∆1∆2∆3|, hence

σa,n(Da)

3∏
i=1

Lai �
3∏
i=1

φ(hai)

|∆i|2hai
, (7.55)

with an absolute implied constant. Combined with Lemma 7.4.7, this concludes the
proof of (7.23).

7.4.3 The proof of Theorem 7.1.5

The proof of the first part of Theorem 7.1.5, which is (7.22) is spread throughout §7.4.1.
The proof of the second (and last) part of Theorem 7.1.5, which is (7.23), is spread
throughout §7.4.2.

7.4.4 The proof of Corollary 7.1.6

Obviously, (1) implies (2). For the reverse direction, let d ∈ {3,Da} and let p1, p2, p3

be primes not dividing 2d, such that each ai is a primitive root modulo pi and

p1 + p2 + p3 ≡ n mod d.
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Thus, for every i = 1, 2, 3 the progression pi (mod d) satisfies gcd(pi, d) = 1 and contains
an odd prime having ai as a primitive root. We can now use the following observation
due to Lenstra [52, p.g.216]: if gcd(x, d) = 1 and δa(xmod d) = 0 then either there is no
prime p ≡ x (mod d) with F∗p = 〈a〉 or there is one such prime, which must be equal to 2.
This shows that we must have δa(ximod d) > 0 for every i = 1, 2, 3. Using the fact that
x1 + x2 + x3 ≡ n (mod d), as well as Definition (7.20) shows that σa,n(Da)σa,n(3) > 0.
By Lemma 7.4.7, we get Aa(n) > 0, and thus Aa(n) � 1 by (7.23). Thus, (1) follows
immediately from Theorem 7.1.1 and the trivial estimate

∑
p1+p2+p3=n
∃i: pi|6∆1∆2∆3

(
3∏
i=1

log pi

)
� n(log n)3.

7.4.5 The proof of Theorem 7.1.7

First note that D(a,a,a) = |∆a|. It is clear that for the proof of Theorem 7.1.7 we need
to find equivalent conditions for n to satisfy

σ(a,a,a),n(|∆a|)
∏
p-∆a

σ(a,a,a),n(p) > 0.

By Lemma 7.4.7 the condition
∏
p-∆a

σ(a,a,a),n(p) 6= 0 is equivalent to{
n ≡ 3 (mod 6) , if 3 | ha and 3 - ∆a,

n ≡ 1 (mod 2) , otherwise.
(7.56)

Hence it remains to find equivalent conditions for n to satisfy σ(a,a,a),n(|∆a|) > 0.

Proposition 7.4.9. Assume that n is an odd positive integer.

1. If 3 - gcd(∆a, ha) or 3 | n, and if ∆a has a prime divisor that is greater than 7,
then σ(a,a,a),n(|∆a|) > 0.

2. If 3 | gcd(∆a, ha) and 3 - n, then σ(a,a,a),n(|∆a|) = 0.

Proof. It can be seen directly from Definition 7.1.4 that the quantity δa(ximod |∆a|) is
non-zero if and only if

gcd(xi − 1,∆a, ha) = 1, gcd(xi,∆a) = 1 and

(
∆a

xi

)
= −1. (7.57)

In view of Definition 7.20, we need to find conditions under which there are x1, x2, x3 ∈ Z
with x1 + x2 + x3 ≡ n mod ∆a, such that each xi satisfies (7.57).

To prove (2), we observe that the first two conditions in (7.57) imply that xi ≡ 2 mod 3,
hence 3 | n.
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Let us now prove (1). We can write ∆a =
∏
p|∆a

Dp, where D2 ∈ {−8,−4, 8} and

Dp = (−1)(p−1)/2p for p ≥ 3. Let p′ > 7 be the largest prime divisor of ∆a. For every

p < p′, we find x
(p)
1 , x

(p)
2 , x

(p)
3 mod Dp that solve the congruence x

(p)
1 +x

(p)
2 +x

(p)
3 ≡ n mod

Dp and satisfy gcd(x
(p)
i − 1,∆a, ha) = gcd(x

(p)
i ,∆a) = 1. If p > 3, this is possible for

every n by a simple application of the Cauchy–Davenport Theorem. If p = 3, it is
possible precisely by our assumption that then 3 - ha or 3 | n. Finally, for p = 2, it is
possible since 2 - nha.

Let us now define x
(p′)
i . Consider the sets

R :=
{
x ∈ Z/p′Z :

(
x

p′

)
= 1, x 6= 1 (mod p′)

}
, N :=

{
x ∈ Z/p′Z :

(
x

p′

)
= −1

}
.

If
∏
p|∆a

p<p′

(
Dp

x
(p)
i

)
= 1, we pick x

(p′)
i ∈ N , and if

∏
p|∆a

p<p′

(
Dp

x
(p)
i

)
= −1, we pick x

(p′)
i ∈ R.

We can always do so and achieve x
(p′)
1 + x

(p′)
2 + x

(p′)
3 ≡ n mod p′, as the sets

R+R+R, R+R+N, R+N +N, N +N +N

cover all of Z/p′Z. This follows from a direct computation if p′ = 11 and from the
Cauchy–Davenport Theorem if p′ ≥ 13.

To finish our proof of (1), we pick integers xi that satisfy xi ≡ x(p)
i mod Dp for all p | ∆a.

Then quadratic reciprocity ensures that(
∆a

xi

)
=

(
x

(p′)
i

p′

) ∏
p|∆a

p<p′

(
Dp

x
(p)
i

)
= −1

for all i. Hence, the xi satisfy (7.57), and moreover x1 + x2 + x3 ≡ n mod ∆a.

Proof of Theorem 7.1.7. First let us note that the fundamental discriminants with
every prime smaller than 11 are of the form

Di1
2 (−3)i25i3(−7)i4 ,

where D2 is an integer in the set {−4, 8,−8} and every exponent ij is either 0 or 1. This
gives a finite set of values for ∆a and it is straightforward to use a computer program
that finds all congruence classes n (mod ∆a) such that n ≡ x1 + x2 + x3 (mod ∆a) for
some x ∈ (Z/∆aZ)3 satisfying all of the conditions (7.57) for 1 ≤ i ≤ 3.

By Definition 7.1.4 these conditions are equivalent to δa(ximod |∆a|) 6= 0 and when
combined with (7.56) they provide the congruence classes for n in every row of the table
in Theorem 7.1.7 apart from the last two rows. For the last two rows, ∆a has a prime
factor greater than 7, so one sees by Proposition 7.4.9 that we only have to provide
conditions on n that are equivalent to

∏
p-∆a

σ(a,a,a),n(p) > 0, which was already done

in (7.56).
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7.4.6 Non-factorisation of Aa(n)

We finish by showing that the right side in (7.22) does not always factorise as an Euler
product of a specific form. Namely, assume that for every non-square integer a 6= −1
we are given a sequence of real numbers λa : Z2 → [0,∞) such that for every prime p
and integers x, x′ we have

δa(xmod p) > 0⇒ λa(x, p) > 0 (7.58)

and
x ≡ x′ (mod p)⇒ λa(x, p) = λa(x′, p).

Now, in parallel with (7.20) let us define

$p,a(n) :=

( ∑
b1,b2,b3(mod p)

b1+b2+b3≡n(mod p)

3∏
i=1

λa(x, p)

)( ∑
b1,b2,b3(mod p)

b1+b2+b3≡n(mod p)

1

p3

)−1

.

The fact that the quantities $p,a(n) are well-defined follows from the periodicity of λa.

We will see that one cannot have the following factorisation for all odd integers n,

L3
aσ(a,a,a),n(|∆a|) =

∏
p|∆a

$p,a(n). (7.59)

Indeed, if a := (−15)5 = −759375 then by Definition 7.1.4 we easily see that

δ−759375(xmod 15) > 0⇔ x (mod 15) ∈ {7, 13, 14 (mod 15)},

hence for all integers n ≡ 7 (mod 15) we have σ(a,a,a),n(|∆a|) = 0 due to (7.20) and

the fact that for all x ∈ {7, 13, 14}3 one has
∑3
i=1 xi 6= 7 (mod 15). Definition 7.1.4

furthermore implies that

δ−759375(xmod 3) > 0⇔ x (mod 3) ∈ {1, 2 (mod 3)}

and
δ−759375(ymod 5) > 0⇔ y (mod 5) ∈ {2, 3, 4 (mod 5)},

therefore whenever n ≡ 7 (mod 15) then the vectors x = (1, 1, 2) and y = (4, 4, 4) satisfy

3∑
i=1

xi ≡ n (mod 3) ,
3∑
i=1

yi ≡ n (mod 5)

and
3∏
i=1

δ−759375(ximod 3)δ−759375(yimod 5) > 0.

By (7.58) this implies that $3,−759375(n) > 0 and $5,−759375(n) > 0. This contradicts
equation (7.59) due to σ(a,a,a),n(|∆a|) = 0.
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Samenvatting

Dit proefschrift bestaat uit drie losse delen, die elk afzonderlijk kunnen worden gelezen.
In het eerste deel bestuderen we zogenaamde exponentiële Diophantische vergelijkingen
in positieve karakteristiek. Een voorbeeld van een exponentiële Diophantische vergelijk-
ing is

2a · 3b · 5c − 2d · 3e · 5f = 1,

waar we op zoek zijn naar oplossingen met a, b, c, d, e, f gehele getallen. Het is een
bekende stelling dat een dergelijke vergelijking slechts eindig veel oplossingen heeft. Er
is ook uitgebreid onderzoek gedaan naar een bovengrens voor het aantal oplossingen.

In de bovenstaande vergelijking zijn 2, 3 en 5 allemaal gehele getallen. Als we de gehele
getallen vervangen door vaste elementen uit een lichaam van positieve karakteristiek,
kunnen we ons nog steeds afvragen of het mogelijk is om een bovengrens te berekenen.
In dit geval is het echter niet langer waar dat er maar slechts eindig veel oplossingen
zijn. Wel kunnen de oplossingen op een natuurlijke manier in equivalentieklassen worden
verdeeld. Een van de belangrijkste resultaten in dit proefschrift, bewezen samen met
Carlo Pagano, is een bovengrens voor het aantal equivalentieklassen.

Twee andere bekende exponentiële Diophantische vergelijkingen zijn de zogenaamde
Fermat-vergelijking en de Catalan-vergelijking. De Catalan-vergelijking is

xn − ym = 1,

waar we zoeken naar gehele oplossingen x, y,m, n > 1. In 1844 sprak Eugène Catalan
al het vermoeden uit dat de enige oplossing x = 3, n = 2, y = 2 en m = 3 is. Pas
zeer recent (2002) heeft Preda Mihăilescu bewezen dat dit inderdaad klopt! In dit
proefschrift bestuderen we het analogon van deze vergelijking over lichamen van positieve
karakteristiek. Opnieuw blijken er oneindig veel oplossingen te zijn; we bewijzen dat er
slechts eindig veel oplossingen zijn op een natuurlijke equivalentierelatie na.

We sluiten het eerste deel af met een uitgebreide studie van het Fermat-oppervlak
gegeven door de vergelijking

xN + yN + zN = 1.

We zijn deze keer gëınteresseerd voor welke waarden van N er oplossingen x, y en z in
het lichaam Fp(t) bestaan. Als we dezelfde vraag zouden stellen over een lichaam van
karakteristiek 0, bijvoorbeeld de rationale getallen, dan is het nog steeds een compleet
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open probleem om de oplossingsverzameling van het Fermat-oppervlak te vinden. Samen
met Carlo Pagano heb ik bewezen dat er oneindig veel priemgetallen N zijn waarvoor
de vergelijking geen oplossingen heeft onder een extra technische voorwaarde. We laten
ook zien dat de stelling niet langer waar is zonder deze technische voorwaarde.

Het tweede deel van dit proefschrift betreft statistische eigenschappen van klassegroepen.
Al eeuwenlang zijn wiskundigen gefascineerd door klassegroepen en hun relatie met
unieke factorisatie. Cohen en Lenstra hebben in 1984 een groot aantal vermoedens
uitgesproken over de statistische eigenschappen van klassegroepen. Sindsdien is er uit-
gebreid onderzoek hiernaar gedaan en dit proefschrift gaat hier verder op in. We kunnen
de belangrijkste stellingen uit dit proefschrift als volgt informeel samenvatten.

Stelling. Laat p een priemgetal zijn en h(−p) het klassegetal van Q(
√
−p). Dan is de

dichtheid van de priemen met de eigenschap 16 | h(−p) gelijk aan 1
16 .

Stelling (samen met Djordjo Milovic). Laat p een priemgetal zijn en h(−2p) het
klassegetal van Q(

√
−2p). Dan is de dichtheid van de priemen met de eigenschap

p ≡ 1 mod 4 en 16 | h(−2p) gelijk aan 1
16 .

In het derde deel bekijken we een van de meest klassieke problemen in de analytische
getaltheorie, namelijke het vermoeden van Goldbach. Christian Goldbach sprak in 1742
het vermoeden uit dat elk oneven getal n groter dan 5 kan worden geschreven als de
som van drie priemgetallen. Ivan Vinogradov bewees in de jaren 30 van de vorige eeuw
dat dit waar is voor voldoende grote n, en Harald Helfgott heeft het in 2013 voor alle n
groter dan 5 bewezen.

Laat g > 1 een geheel getal zijn dat geen kwadraat is. We bekijken de vergelijking

p1 + p2 + p3 = n,

waar de priemen p1, p2 en p3 allemaal g als primitieve wortel hebben, d.w.z. g brengt
de groep (Z/piZ)∗ voort voor i = 1, 2, 3. We laten zien dat de bovenstaande vergelijking
voor voldoende grote n altijd een oplossing heeft onder aanname van de veralgemeende
Riemann-hypothese, zolang n voldoet aan zekere congruentie condities. Dit artikel is
samen met Christopher Frei en Efthymios Sofos geschreven.
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