STELLINGEN

In the theorems below, the following notation is used. Let k be an algebraically closed field of characteristic 0 and L an algebraic function field of transcendence degree 1 over k. Denote by g_{L} the genus of K. Further, denote by M_{L} the set of normalized discrete valuations on L that are trivial on k and define the absolute values $|\cdot|_{\nu}:=e^{-\nu(\cdot)} \mid\left(\nu \in M_{K}\right)$ and define the ring of T-integers $\mathcal{O}_{T}=\left\{x \in L:|x|_{\nu} \leqslant 1\right.$ for $\left.\nu \notin S\right\}$. For $x \in O_{T}$ define $|x|_{T}:=\prod_{\nu \in S}|x|_{\nu}$. For $x_{1}, \ldots, x_{n} \in L$, put $H_{T}\left(x_{1}, \ldots, x_{n}\right):=\prod_{n u \in T} \max _{1 \leq i \leq n}\left|x_{i}\right|_{\nu}$. Let $K=k(t)$ be the field of rational functions in the variable t and S a finite subset of M_{K} containing the valuation ν_{∞} with $\nu_{\infty}(t)=-1$.

1. Let $n \geqslant 3$. Assume $x_{1}, \ldots, x_{n} \in K$ and $\sum_{i=1}^{n} x_{i}=0$ but that no non-empty proper subsum vanishes. Then

$$
H_{S}\left(x_{1}, \ldots, x_{n}\right) \leqslant e^{\binom{n-1}{2} \max \left(2 g_{K}-2+\# S, 0\right)}\left(\prod_{i=1}^{n}\left|x_{i}\right|_{S}\right)\left(\prod_{\nu \notin S} \max _{i}\left(\left|x_{i}\right|_{\nu}\right)\right)^{n-1}
$$

In particular, if x_{1}, \ldots, x_{n} are k-linearly independent, then we can replace $\max \left(2 g_{K}-2+\# S, 0\right)$ by $2 g_{K}-2+\# S$.
(Corollary 2.2.11)
2. Let $n>2$. If l_{1}, \ldots, l_{n} are positive integers satisfying $\frac{1}{l_{1}}+\cdots+\frac{1}{l_{n}} \leqslant \frac{1}{\binom{n-1}{2}}$, then the equation $x_{1}^{l_{1}}+\cdots+x_{n}^{l_{n}}=0$ does not have a solution $x_{1}, \ldots, x_{n} \in$ $k[t]$ such that x_{1}, \ldots, x_{n} are non-constant and have no common zeros.
3. Let L be a finite normal extension of K and T the set of normalized valuations of L lying above those in $S,\left\{l_{1}, \ldots, l_{n}\right\}$ a set of linear forms in two variables with coefficients in L which is invariant under the action of $\operatorname{Gal}(L / K), \mathbb{A}$ an admissible tuple (Definition 4.3.1) and λ_{1}, λ_{2} the successive minima of $\mathcal{C}=\prod_{\nu \in S} \mathcal{C}_{\nu}$ (see Section 3.1 of this thesis), where

$$
\mathcal{C}_{\nu}=\left\{\mathbf{x} \in K_{\nu}^{2}:\left|l_{i}(\mathbf{x})\right|_{\omega} \leqslant A_{i \omega} \text { for } i=1, \ldots, n, \omega \in T, \omega \mid \nu\right\}
$$

Then

$$
\begin{gathered}
\lambda_{1} \lambda_{2} \geqslant\left(\prod_{\omega \in T} \max _{1 \leqslant i<j \leqslant n} \frac{\left|\operatorname{det}\left(l_{i}, l_{j}\right)\right|_{\omega}}{A_{i \omega} A_{j \omega}}\right)^{1 /[L: K]}, \\
\lambda_{1} \lambda_{2} \leqslant e^{(n+1) \# S}\left(\prod_{\omega \in T} \max _{1 \leqslant i<j \leqslant n} \frac{\left|\operatorname{det}\left(l_{i}, l_{j}\right)\right|_{\omega}}{A_{i \omega} A_{j \omega}}\right)^{1 /[L: K]} .
\end{gathered}
$$

(Lemma 4.3.2)
4. For a polynomial P with coefficients in K, we define $H^{*}(P):=\prod_{\nu \in M_{K}} \max \left(1,\left|p_{1}\right|_{\nu}, \ldots,\left|p_{t}\right|_{\nu}\right)$, where p_{1}, \ldots, p_{t} are the nonzero coefficients of P. Call two binary forms $F, F^{*} \in \mathcal{O}_{S} \operatorname{GL}\left(2, \mathcal{O}_{S}\right)$ equivalent if $F^{*}(X, Y)=u F(a X+b Y, c X+d Y)$ for some $u \in k^{*},\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in$ $\operatorname{GL}\left(2, \mathcal{O}_{S}\right)$.
Let $F \in \mathcal{O}_{S}[X, Y]$ be a binary cubic form of non-zero discriminant $D(F)$. Then F is $\mathrm{GL}\left(2, \mathcal{O}_{S}\right)$-equivalent to a binary form F^{*} such that

$$
H^{*}\left(F^{*}\right) \leqslant e^{12 \# S}|D(F)|_{S}
$$

(Corollary 4.3.7).
5. Let $F \in \mathcal{O}_{S}[X, Y]$ be a binary form of degree $n \geqslant 4$ with non-zero discriminant. Then F is $\operatorname{GL}\left(2, \mathcal{O}_{S}\right)$-equivalent to a binary form F^{*} such that

$$
H^{*}\left(F^{*}\right) \leqslant e^{(n-1)(\# S(n+11)-5)}|D(F)|_{S}^{20+\frac{1}{n}}
$$

(Main Theorem of Chapter 5).
6. Under the assumption of the abc-conjecture over number fields the following can be proved. Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ with non-zero discriminant. Then F is $\mathrm{GL}(2, \mathbb{Z})$-equivalent to a binary form F^{*} of height

$$
H j\left(F^{*}\right) \leq c_{1}(n)|D(F)|^{c_{2}(n)}
$$

where $H^{*}\left(F^{*}\right)$ is the maximum of the absolute values of the coefficients of F^{*}.
7. Let $n \geqslant 4$. Let $f \in k[t][x]$ be a polynomial of degree n with distinct roots $\gamma_{1}, \ldots, \gamma_{n} \in \overline{k(t)}$. Choose for every $\nu \in M_{K}$ an extension of $|\cdot|_{\nu}$ to $\overline{k(t)}$. Then for every finite subset S of M_{K},

$$
\prod_{\nu \in S} \min _{1 \leqslant i<j \leqslant n}\left|\gamma_{i}-\gamma_{j}\right|_{\nu} \geqslant c(n)^{-1} H^{*}(f)^{-n+1+\frac{n}{40 n+2}}
$$

where $c(n)=\exp \left(\frac{(n-1)((n+11) \# S-5)}{20+1 / n}\right)$.
8. Let $f \in k[t][x]$ be a cubic polynomial with distinct roots $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \overline{k(t)}$ and $\nu \in M_{K}$. Then

$$
\min _{1 \leqslant i<j \leqslant 3}\left|\gamma_{i}-\gamma_{j}\right|_{\nu} \geqslant H^{*}(f)^{-2}
$$

On the other hand, there exists $c>0$ such that for every $H>0$ there exists a cubic polynomial $f \in k[t][x]$ with

$$
\min _{1 \leqslant i<j \leqslant 3}\left|\gamma_{i}-\gamma_{j}\right|_{\nu} \leqslant c H^{*}(f)^{-2}, \quad H^{*}\left(f^{*}\right) \geq H
$$

9. It is not knowledge but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. - Carl Friedrich Gauss
10. If you have a good theory, forget about the reality. - Slavoj Žižek
