
STELLINGEN

In the theorems below, the following notation is used. Let k be an algebraically
closed field of characteristic 0 and L an algebraic function field of transcendence
degree 1 over k. Denote by gL the genus of K. Further, denote by ML the
set of normalized discrete valuations on L that are trivial on k and define the
absolute values | · |ν := e−ν(·)| (ν ∈ MK) and define the ring of T -integers
OT = {x ∈ L : |x|ν 6 1 for ν 6∈ S}. For x ∈ OT define |x|T :=

∏
ν∈S |x|ν . For

x1, . . . , xn ∈ L, put HT (x1, . . . , xn) :=
∏
nu∈T max1≤i≤n |xi|ν . Let K = k(t)

be the field of rational functions in the variable t and S a finite subset of MK

containing the valuation ν∞ with ν∞(t) = −1.

1. Let n > 3. Assume x1, . . . , xn ∈ K and
n∑
i=1

xi = 0 but that no non-empty

proper subsum vanishes. Then

HS(x1, . . . , xn) 6 e(
n−1
2 )max(2gK−2+#S,0)

( n∏
i=1

|xi|S
)( ∏

ν 6∈S

max
i

(|xi|ν)
)n−1

.

In particular, if x1, . . . , xn are k-linearly independent, then we can replace
max(2gK − 2 + #S, 0) by 2gK − 2 + #S.
(Corollary 2.2.11)

2. Let n > 2. If l1, . . . , ln are positive integers satisfying 1
l1

+· · ·+ 1
ln

6 1

(n−1
2 )

,

then the equation xl11 + · · ·+xlnn = 0 does not have a solution x1, . . . , xn ∈
k[t] such that x1, . . . , xn are non-constant and have no common zeros.

3. Let L be a finite normal extension of K and T the set of normalized
valuations of L lying above those in S, {l1, . . . , ln} a set of linear forms
in two variables with coefficients in L which is invariant under the ac-
tion of Gal(L/K), A an admissible tuple (Definition 4.3.1) and λ1, λ2 the
successive minima of C =

∏
ν∈S
Cν (see Section 3.1 of this thesis), where

Cν = {x ∈ K2
ν : |li(x)|ω 6 Aiω for i = 1, . . . , n, ω ∈ T, ω|ν}.

Then

λ1λ2 >

(∏
ω∈T

max
16i<j6n

|det(li, lj)|ω
AiωAjω

)1/[L:K]

,

λ1λ2 6 e(n+1)#S

(∏
ω∈T

max
16i<j6n

|det(li, lj)|ω
AiωAjω

)1/[L:K]

.

(Lemma 4.3.2)



4. For a polynomial P with coefficients in K, we define
H∗(P ) :=

∏
ν∈MK

max(1, |p1|ν , . . . , |pt|ν), where p1, . . . , pt are the non-
zero coefficients of P . Call two binary forms F, F ∗ ∈ OS GL(2,OS)-
equivalent if F ∗(X,Y ) = uF (aX + bY, cX +dY ) for some u ∈ k∗,

(
a b
c d

)
∈

GL(2,OS).

Let F ∈ OS [X,Y ] be a binary cubic form of non-zero discriminant D(F ).
Then F is GL(2,OS)-equivalent to a binary form F ∗ such that

H∗(F ∗) 6 e12#S |D(F )|S
(Corollary 4.3.7).

5. Let F ∈ OS [X,Y ] be a binary form of degree n > 4 with non-zero dis-
criminant. Then F is GL(2,OS)-equivalent to a binary form F ∗ such
that

H∗(F ∗) 6 e(n−1)
(
#S(n+11)−5

)
|D(F )|20+

1
n

S

(Main Theorem of Chapter 5).

6. Under the assumption of the abc-conjecture over number fields the follow-
ing can be proved. Let F ∈ Z[X,Y ] be a binary form of degree n ≥ 4 with
non-zero discriminant. Then F is GL(2,Z)-equivalent to a binary form
F ∗ of height

Hj(F ∗) ≤ c1(n)|D(F )|c2(n),
where H∗(F ∗) is the maximum of the absolute values of the coefficients
of F ∗.

7. Let n > 4. Let f ∈ k[t][x] be a polynomial of degree n with distinct roots
γ1, . . . , γn ∈ k(t). Choose for every ν ∈ MK an extension of | · |ν to k(t).
Then for every finite subset S of MK ,∏

ν∈S
min

16i<j6n
|γi − γj |ν > c(n)−1H∗(f)−n+1+ n

40n+2 ,

where c(n) = exp
(

(n−1)
(
(n+11)#S−5

)
20+1/n

)
.

8. Let f ∈ k[t][x] be a cubic polynomial with distinct roots γ1, γ2, γ3 ∈ k(t)
and ν ∈MK . Then

min
16i<j63

|γi − γj |ν > H∗(f)−2.

On the other hand, there exists c > 0 such that for every H > 0 there
exists a cubic polynomial f ∈ k[t][x] with

min
16i<j63

|γi − γj |ν 6 cH∗(f)−2, H∗(f∗) ≥ H.

9. It is not knowledge but the act of learning, not possession but the act of
getting there, which grants the greatest enjoyment. - Carl Friedrich Gauss

10. If you have a good theory, forget about the reality. - Slavoj Žižek


