STELLINGEN

behorende bij het proefschrift
On p-adic Decomposable Form Inequalities
van Junjiang Liu

Let $F=L_{1} \ldots L_{d} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be a decomposable form of degree d where $L_{1}, \ldots, L_{d} \in$ $\overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$ are linear forms. Define

$$
a(F):=\max _{\substack{\mathcal{L}\left\{\left\{\mathbf{L}_{1}, \ldots \mathbf{L}_{d}\right\} \\ 0<\operatorname{rank}(\mathcal{L})<n\right.}} \frac{|\mathcal{L}|}{\operatorname{rank}(\mathcal{L})} .
$$

Let $S=\left\{\infty, p_{1}, \ldots, p_{r}\right\}$ be a finite subset of $M_{\mathbb{Q}}$. Define

$$
\begin{aligned}
& \mathbb{A}_{F, S}(m):=\left\{\left(\mathbf{x}_{p}\right)_{p} \in \prod_{p \in S} \mathbb{Q}_{p}^{n}: \prod_{p \in S}\left|F\left(\mathbf{x}_{p}\right)\right|_{p} \leq m,\left|\mathbf{x}_{p}\right|_{p}=1 \text { for } p \in S_{0}\right\}, \\
& N_{F, S}(m):=\left|\left\{\mathbf{x} \in \mathbb{Z}^{n}: \prod_{p \in S}|F(\mathbf{x})|_{p} \leq m, \operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{n}, p_{1} \cdots p_{r}\right)=1\right\}\right| .
\end{aligned}
$$

Let μ_{∞} be the normalized Lebesgue measure on \mathbb{R} with $\mu_{\infty}([0,1])=1$ and μ_{p} be the normalized Haar measure on \mathbb{Q}_{p} with $\mu_{p}\left(\mathbb{Z}_{p}\right)=1$. On $\prod_{p \in S} \mathbb{Q}_{p}^{n}$, we define the product measure $\mu^{n}=\prod_{p \in S} \mu_{p}^{n}$. The $C_{1}(\cdot), \ldots, C_{6}(\cdot)$ below are constants which depend only on the indicated parameters.

1. Suppose $F(\mathbf{x}) \neq 0$ for every non-zero $\mathbf{x} \in \mathbb{Z}^{n}$ and $a(F)<\frac{d}{n}$. Then

$$
\mu^{n}\left(\mathbb{A}_{F, S}\right) \leq C_{1}(n, d, S)
$$

(Theorem 2.13)
2. Assume the same conditions above. Let $\mathbb{A}_{F, p}=\left\{\mathbf{x} \in \mathbb{Q}_{p}^{n}:|F(\mathbf{x})|_{p} \leq 1\right\}$. Then

$$
\mu_{p}^{n}\left(\mathbb{A}_{F, p}\right) \leq C_{2}(n, d, p)
$$

3. Suppose $F(\mathbf{x}) \neq 0$ for every non-zero $\mathbf{x} \in \mathbb{Z}^{n}$. Also suppose $a\left(\left.F\right|_{T}\right)<\frac{d}{\operatorname{dim} T}$ for every linear subspace T of dimension at least 2 of \mathbb{Q}^{n}. Then

$$
\left|N_{F, S}(m)-\mu^{n}\left(\mathbb{A}_{F, S}(m)\right)\right| \leq C_{3}(n, d, S, F) m^{\frac{n}{d+n^{-2}}} \text { as } m \rightarrow \infty
$$

(Theorem 2.14)
4. Assume the same conditions above. If $\operatorname{gcd}(n, d)=1$, then

$$
\left|N_{F, S}(m)-\mu^{n}\left(\mathbb{A}_{F, S}(m)\right)\right| \leq C_{4}(n, d, S) m^{\frac{n}{d+n^{-2}}} \text { as } m \rightarrow \infty
$$

(Theorem 4.1.1 and Theorem 5.0.3)
5. Let $F_{1}, \ldots, F_{r} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$. Suppose that F_{i} has total degree d_{i} for $i=$ $1, \ldots, r$. Let B, m_{1}, \ldots, m_{r} be positive reals and

$$
\mathcal{A}:=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left|F_{1}(\mathbf{x})\right| \leq m_{1}, \ldots,\left|F_{r}(\mathbf{x})\right| \leq m_{r}\right\} .
$$

Assume $\mathcal{A} \subseteq\left\{\mathbf{x} \in \mathbb{R}^{n}:|\mathbf{x}|_{\text {sup }} \leq B\right\}$. Then

$$
\left|\mu_{\infty}^{n}(\mathcal{A})-\left|\mathcal{A} \cap \mathbb{Z}^{n}\right|\right| \leq n 2^{r} d_{1} \cdots d_{r} \cdot(2 B+1)^{n-1}
$$

(Lemma 1.4.1)
We say that two decomposable forms $F, G \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ are S-equivalent if there exist $t \in \mathbb{Z}_{S}^{*}$ and $T \in \mathrm{GL}_{n}\left(\mathbb{Z}_{S}\right)$ such that $G=t \cdot F_{T}$.
6. Let F be a decomposable form of degree $n+1$. There exists a decomposable form G in the S-equivalent class of F such that

$$
\mathcal{H}(G) \leq C_{5}(n, S)\left(\prod_{p \in S}|D(G)|_{p}\right)^{\frac{2}{n+1}}
$$

(See (1.1.1) for the definition of $\mathcal{H}(G)$ and Definition 4.2 .2 for $D(G)$.)
Let p be a prime number. We say that F, G are $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$-equivalent if there exists $t \in \mathbb{Q}_{p}^{*}$ and $T \in \mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ such that $G=t \cdot F_{T}$.
7. The collection of decomposable forms $F \in \mathbb{Q}_{p}\left[X_{1}, \ldots, X_{n}\right]$ of degee $n+1$ with $D(F) \neq 0$ is a union of finitely many $G L_{n}\left(\mathbb{Q}_{p}\right)$-equivalence classes.
8. Let F be a decomposable form of degree $n+1$ with $D(F) \neq 0$. Then

$$
\left(\prod_{p \in S}|D(F)|_{p}\right)^{\frac{1}{2(n+1)}} \cdot \mu^{n}\left(\mathbb{A}_{F, S}\right) \leq C_{6}(n, S)
$$

9. Voor iets hoort iets. No pains no gains.
