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Abstract. We derive new, improved lower bounds for the block com-
plexity of an irrational algebraic number and for the number of digit
changes in the b-ary expansion of an irrational algebraic number. To
this end, we apply a version of the Quantitative Subspace Theorem by
Evertse and Schlickewei [14], Theorem 2.1.

1. Introduction

Throughout the present paper, b always denotes an integer ≥ 2 and ξ is a real number
with 0 < ξ < 1. There exists a unique infinite sequence a = (aj)j≥1 of integers from
{0, 1, . . . , b− 1}, called the b-ary expansion of ξ, such that

ξ =
∑
j≥1

aj

bj
,

and a does not terminate in an infinite string of the digit b− 1. Clearly, the sequence a is
ultimately periodic if, and only if, ξ is rational. With a slight abuse of notation, we also
denote by a the infinite word a1a2 . . . To measure the complexity of ξ, we measure the
complexity of a. Among the different ways to do this, two notions of complexity have been
recently studied. A first one, namely the block complexity, consists in counting the number
p(n, ξ, b) = p(n,a) of distinct blocks of length n occurring in the word a, that is,

p(n, ξ, b) = Card {ak+1ak+2 . . . ak+n : k ≥ 0}.

A second one deals with the asymptotic behaviour of the number of digit changes in a.
The function nbdc, ‘number of digit changes’, introduced in [8], is defined by

nbdc(n, ξ, b) = Card {1 ≤ k ≤ n : ak 6= ak+1}, for n ≥ 1.

Suppose from now on that ξ is algebraic and irrational. Non-trivial lower bounds for
p(n, ξ, b) and nbdc(n, ξ, b) were obtained in [1, 8] by means of transcendence criteria that
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ultimately depend on the Schmidt Subspace Theorem [24] or on the Quantitative Roth
Theorem [23, 16]. Respectively, it is known that

lim
n→+∞

p(n, ξ, b)
n

= +∞ (1.1)

and
nbdc(n, ξ, b) ≥ 3 (log n)1+1/(ω(b)+4) · (log log n)−1/4, (1.2)

for every sufficiently large n, where ω(`) counts the number of distinct prime factors of the
integer `.

Both (1.1) and (1.2) are very far from what can be expected if one believes that,
regarding these notions of complexity, algebraic irrational numbers behave like almost all
real numbers (in the sense of the Lebesgue measure). Thus, it is widely believed that the
functions n 7→ p(n, ξ, b) and n 7→ nbdc(n, ξ, b) should grow, respectively, exponentially in
n and linearly in n.

The main purpose of the present paper is to improve (1.2) for all n and (1.1) for
infinitely many n. Our results imply that

p(n, ξ, b) ≥ n(log n)0.09 for infinitely many n (1.3)

and
nbdc(n, ξ, b) ≥ c(d) (log n)3/2 · (log log n)−1/2

for every sufficiently large n, where c(d) is a constant depending only on the degree d of
ξ. In particular, we have been able to remove the dependence on b in (1.2).

The new ingredient in the proof of (1.3) is the use of a quantitative version of the
Subspace Theorem, while (1.1) was established by means of a standard qualitative version
of the Subspace Theorem. Originally, quantitative versions of the Subspace Theorem were
stated for a single inequality with a product of linear forms, and then the resulting upper
bound for the number of subspaces depended on the number of places involved. Instead,
we use a version for systems of inequalities each involving one linear form giving an upper
bound for the number of subspaces independent of the number of places. In fact, for many
applications, the version for systems of inequalities suffices, and it leads to much better
results when many non-Archimedean places are involved.

Our paper is organized as follows. We begin by stating and discussing our result upon
(1.1) in Section 2 and that upon (1.2) in Section 3. Then, we state in Section 4 our main
auxiliary tool, namely the Quantitative Parametric Subspace Theorem from [14]. We have
included an improvement of the two-dimensional case of the latter which is needed for
our improvement upon (1.2); the proof of this improvement is included in an appendix
at the end of our paper. This Quantitative Parametric Subspace Theorem is a statement
about classes of twisted heights parametrized by a parameter Q, and one can deduce
from this suitable versions of the Quantitative Subspace Theorem, dealing with (systems
of) Diophantine inequalities. In Section 5 we deduce a quantitative result for systems of
inequalities (Theorem 5.1) fine-tuned for the applications in our present paper. In the
particular case where we have only two unknowns we obtain a sharper quantitative version
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of a Ridout type theorem (Corollary 5.2). The proof of Theorem 2.1 splits in Sections 6
and 7, and that of Theorem 3.1 is given in Section 8. Finally, further applications of our
results are discussed in Section 9.

2. Block complexity of b-ary expansions of algebraic numbers

We keep the notation from the Introduction. Recall that the real number ξ is called
normal in base b if, for any positive integer n, each one of the bn words of length n on the
alphabet {0, 1, . . . , b− 1} occurs in the b-ary expansion of ξ with the same frequency 1/bn.
The first explicit example of a number normal in base 10, namely the number

0.1234567891011121314 . . . ,

whose sequence of digits is the concatenation of the sequence of all positive integers ranged
in increasing order, was given in 1933 by Champernowne [10]. It follows from the Borel–
Cantelli lemma that almost all real numbers (in the sense of the Lebesgue measure) are
normal in every integer base, but proving that a specific number, like e, π or

√
2 is normal

in some base remains a challenging open problem. However, it is believed that every real
irrational algebraic number is normal in every integer base. This problem, which was first
formulated by Émile Borel [7], is likely to be very difficult.

Assume from now on that ξ is algebraic and irrational. In particular, a is not ultimately
periodic. By a result of Morse and Hedlund [18, 19], every infinite word w that is not
ultimately periodic satisfies p(n,w) ≥ n + 1 for n ≥ 1. Consequently, p(n, ξ, b) ≥ n + 1
holds for every positive integer n. This lower bound was subsequently improved upon in
1997 by Ferenczi and Mauduit [15], who applied a non-Archimedean extension of Roth’s
Theorem established by Ridout [21] to show (see also [4]) that

lim
n→+∞

(
p(n, ξ, b)− n

)
= +∞.

Then, a new combinatorial transcendence criterion proved with the help of the Schmidt
Subspace Theorem by Adamczewski, Bugeaud, and Luca [2] enabled Adamczewski and
Bugeaud [1] to establish that

lim
n→+∞

p(n, ξ, b)
n

= +∞. (2.1)

By combining ideas from [9] with a suitable version of the Quantitative Subspace
Theorem, we are able to prove the following concerning (2.1).

Theorem 2.1. Let b ≥ 2 be an integer and ξ an algebraic irrational number with 0 <
ξ < 1. Then, for any real number η such that η < 1/11, we have

lim sup
n→+∞

p(n, ξ, b)
n(log n)η

= +∞. (2.2)
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Ideas from [9] combined with Theorem 3.1 from [14] allow us to prove a weaker version
of Theorem 2.1, namely to conclude that (2.2) holds for any η smaller than 1/(4ω(b)+15).
The key point for removing the dependence on b is the use of Theorem 5.1 below, and more
precisely the fact that the exponent on ε−1 in (5.9) does not depend of the cardinality of
the set of places S.

Remark that Theorem 2.1 does not follow from (2.1). Indeed, there exist infinite words
w having a complexity function p satisfying

lim
n→+∞

p(n,w)
n

= +∞ and lim
n→+∞

p(n,w)
n(log log n)

< +∞. (2.3)

In particular, there exist morphic words satisfying (2.3). We refer the reader to [1] for
the definition of a morphic word. An open question posed in [1] asked whether the b-ary
expansion of an irrational algebraic number can be a morphic word. Theorem 2.1 above
allows us to make a small step towards a negative answer. Indeed, by a result of Pansiot
[20], the complexity of a morphic word that is not ultimately periodic is either of order n,
n log log n, n log n, or n2. It immediately follows from Theorem 2.1 that, regardless of the
base b, if the b-ary expansion of an irrational algebraic number is generated by a morphism,
then the complexity of this morphism is either of order n log n, or of order n2. However,
by using combinatorical properties of morphic words and the transcendence criterion from
[2], Albert [3], on page 59 of his thesis, was able to show a stronger result, namely to prove
that, regardless of the base b, if the b-ary expansion of an irrational algebraic number is
generated by a morphism, then its complexity is of order n2.

Note that our method yields the existence of a positive δ such that

lim sup
n→+∞

p(n, ξ, b) · (log log n)δ

n(log n)1/11
= +∞. (2.4)

In order to avoid painful technical details, we decided not to give a proof of (2.4).

3. Digit changes in b-ary expansions of algebraic numbers

Our next result is a new lower bound for the number of digit changes in b-ary expan-
sions of irrational algebraic numbers.

Theorem 3.1. Let b ≥ 2 be an integer. Let ξ be an irrational, real algebraic number ξ
of degree d. There exist an effectively computable absolute constant c1 and an effectively
computable constant c2(ξ, b), depending only on ξ and b, such that

nbdc(n, ξ, b) ≥ c1
(log n)3/2

(log log n)1/2 (log 6d)1/2

for every integer n ≥ c2(ξ, b).

Theorem 3.1 improves upon Theorem 1 from [8], where the exponent of (log n) depends
on b and tends to 1 as the number of prime factors of b tends to infinity. This improvement
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is a consequence of the use of the two-dimensional case of Theorem 5.1 (dealing with
systems of inequalities) instead of a result of Locher [16] (dealing with one inequality with
a product of linear forms).

Theorem 3.1 allows us to improve upon straightforwardly many of the results from
[8]. We restrict our attention to Section 7 from [8], that is, to the study of the gap series

ξn,b =
∑
j≥1

b−nj

for a given integer b ≥ 2 and a non-decreasing sequence of positive integers n = (nj)j≥1.
As mentioned in [8], it easily follows from Ridout’s Theorem [21] that the assumption

lim sup
j→+∞

nj+1

nj
> 1

implies the transcendence of ξn,b, see e.g. Satz 7 from Schneider’s monograph [25].
In particular, for any positive real number ε, the real number ξn,b is transcendental

when nj = 2[εj], where [ · ] denotes the integer part function. A much sharper statement,
that improves Corollary 4 from [8], follows at once from Theorem 3.1.

Corollary 3.2. Let b ≥ 2 be an integer. For any real number η > 2/3, the sum of the
series ∑

j≥1

b−nj , where nj = 2[jη ] for j ≥ 1,

is transcendental.

To establish Corollary 3.2, it is enough to check that the number of positive integers
j such that 2[jη ] ≤ N is less than some absolute constant times (log N)1/η, and to apply
Theorem 3.1 to conclude. Stronger transcendence results for the gap series ξn,2 follow from
[5, 22], including the fact that Corollary 3.2 holds for any positive η when b = 2.

Further results are given in Section 9.

4. The Quantitative Parametric Subspace Theorem

We fix an algebraic closure Q of Q; all algebraic number fields occurring henceforth
will be subfields of Q.

We introduce the necessary absolute values. The set of places MQ of Q may be iden-
tified with {∞}∪{primes}. We denote by | · |∞ the ordinary (Archimedean) absolute value
on Q and for a prime p we denote by | · |p the p-adic absolute value, normalized such that
|p|p = p−1.

Let K be an algebraic number field. We denote by MK the set of places (equivalence
classes of non-trivial absolute values) of K. The completion of K at a place v is denoted
by Kv. Given a place v ∈ MK, we denote by pv the place in MQ lying below v. We choose
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the absolute value | · |v in v in such a way that the restriction of | · |v to Q is | · |pv . Further,
we define the normalized absolute value ‖ · ‖v by

‖ · ‖v := | · |d(v)
v where d(v) :=

[Kv : Qpv
]

[K : Q]
. (4.1)

These absolute values satisfy the product formula∏
v∈MK

‖x‖v = 1, for x ∈ K∗.

Further, they satisfy the extension formula: Suppose that E is a finite extension of K and
normalized absolute values ‖ · ‖w (w ∈ ME) are defined in precisely the same manner as
those for K. Then if w ∈ ME and v ∈ MK is the place below w, we have

‖x‖w = ‖x‖d(w|v)
v for x ∈ K, where d(w|v) :=

[Ew : Kv]
[E : K]

. (4.2)

Notice that ∑
w|v

d(w|v) = 1 (4.3)

where by ‘w|v’ we indicate that w runs through all places of E lying above v.
Let again K be an algebraic number field, and n an integer ≥ 2. Let L = (Liv : v ∈

MK, i = 1, . . . , n) be a tuple of linear forms with the following properties:

Liv ∈ K[X1, . . . , Xn] for v ∈ MK, i = 1, . . . , n, (4.4)
L1v = X1, . . . , Lnv = Xn for all but finitely many v ∈ MK, (4.5)
det(L1v, . . . , Lnv) = 1 for v ∈ MK, (4.6)

Card
( ⋃

v∈MK

{L1v, . . . , Lnv}
)
≤ r. (4.7)

Further, we define

H = H(L) =
∏

v∈MK

max
1≤i1<···<in≤s

‖det(Li1 , . . . , Lin)‖v (4.8)

where we have written {L1, . . . , Ls} for
⋃

v∈MK
{L1v, . . . , Lnv}.

Let c = (civ : v ∈ MK, i = 1, . . . , n) be a tuple of reals with the following properties:

c1v = · · · = cnv = 0 for all but finitely many v ∈ MK, (4.9)∑
v∈MK

n∑
i=1

civ = 0, (4.10)

∑
v∈MK

max(c1v, . . . , cnv) ≤ 1. (4.11)
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Finally, for any finite extension E of K and any place w ∈ ME we define

Liw = Liv, ciw = d(w|v)civ for i = 1, . . . , n, (4.12)

where v is the place of MK lying below w and d(w|v) is given by (4.2).
We define a so-called twisted height HQ,L,c on Q

n
as follows. For x ∈ Kn define

HQ,L,c(x) :=
∏

v∈MK

max
1≤i≤n

‖Liv(x)‖vQ−civ .

More generally, for x ∈ Q
n

take any finite extension E of K with x ∈ En and put

HQ,L,c(x) :=
∏

w∈ME

max
1≤i≤n

‖Liw(x)‖wQ−ciw . (4.13)

Using (4.12), (4.2), (4.3), and basic properties of degrees of field extensions, one easily
shows that this does not depend on the choice of E.

Proposition 4.1. Let n be an integer ≥ 2, let L = (Liv : v ∈ MK, i = 1, . . . , n) be a
tuple of linear forms satisfying (4.4)–(4.7) and c = (civ : v ∈ MK, i = 1, . . . , n) a tuple of
reals satisfying (4.9)–(4.11). Further, let 0 < δ ≤ 1.
Then there are proper linear subspaces T1, . . . , Tt1 of Q

n
, all defined over K, with

t1 = t1(n, r, δ) =
{

4(n+8)2δ−n−4 log(2r) log log(2r) if n ≥ 3,
225δ−3 log(2r) log

(
δ−1 log(2r)

)
if n = 2

such that the following holds: for every real Q with

Q > max
(
H1/(r

n), n2/δ
)

there is a subspace Ti ∈ {T1, . . . , Tt1} such that

{x ∈ Q
n

: HQ,L,c(x) ≤ Q−δ} ⊂ Ti .

For n ≥ 3 this is precisely Theorem 2.1 of [14], while for n = 2 this is an improvement
of this theorem. This improvement can be obtained by combining some lemmata from [14]
with more precise computations in the case n = 2. We give more details in the appendix
at the end of the present paper.

5. Systems of inequalities

For every place p ∈ MQ = {∞} ∪ {primes} we choose an extension of | · |p to Q
which we denote also by | · |p. For a linear form L =

∑n
i=1 αiXi with coefficients in

Q we define the following: We denote by Q(L) the field generated by the coefficients
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of L, i.e., Q(L) := Q(α1, . . . , αn); for any map σ from Q(L) to any other field we de-
fine σ(L) :=

∑n
i=1 σ(αi)Xi; and the inhomogeneous height of L is given by H∗(L) :=∏

v∈MK
max(1, ‖α1‖v, . . . , ‖αn‖v), where K is any number field containing Q(L). Further,

we put ‖L‖v := max(‖α1‖v, . . . , ‖αn‖v) for v ∈ MK.
Let n be an integer with n ≥ 2, ε a real with ε > 0 and S = {∞, p1, . . . , pt} a finite

subset of MQ containing the infinite place. Further, let Lip (p ∈ S, i = 1, . . . , n) be linear
forms in X1, . . . , Xn with coefficients in Q such that

det(L1p, . . . , Lnp) = 1 for p ∈ S, (5.1)

Card
( ⋃

p∈S

{L1p, . . . , Lnp}
)
≤ R, (5.2)

[Q(Lip) : Q] ≤ D for p ∈ S, i = 1, . . . , n, (5.3)
H∗(Lip) ≤ H for p ∈ S, i = 1, . . . , n, (5.4)

and eip (p ∈ S, i = 1, . . . , n) be reals satisfying

ei∞ ≤ 1 (i = 1, . . . , n), eip ≤ 0 (p ∈ S \ {∞}, i = 1, . . . , n), (5.5)∑
p∈S

n∑
i=1

eip = −ε. (5.6)

Finally let Ψ be a function from Zn to R≥0. We consider the system of inequalities

|Lip(x)|p ≤ Ψ(x)eip (p ∈ S, i = 1, . . . , n)
in x ∈ Zn with Ψ(x) 6= 0.

(5.7)

Theorem 5.1. The set of solutions of (5.7) with

Ψ(x) > max
(
2H,n2n/ε

)
(5.8)

is contained in the union of at most{
8(n+9)2(1 + ε−1)n+4 log(2RD) log log(2RD) if n ≥ 3
232(1 + ε−1)3 log(2RD) log

(
(1 + ε−1) log(2RD)

)
if n = 2

(5.9)

proper linear subspaces of Qn.

Remark. Let ‖ · ‖ be any vector norm on Zn. Then for the solutions x of (5.7) we have, in
view of (5.5),

‖x‖ � max
1≤i≤n

|Li∞(x)| � Ψ(x).

So it would not have been a substantial restriction if in the formulation of Theorem 5.1
we had restricted the function Ψ to vector norms. But for applications it is convenient to
allow other functions for Ψ.
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We deduce from Theorem 5.1 a quantitative Ridout type theorem. Let S1, S2 be finite,
possibly empty sets of prime numbers, put S := {∞} ∪ S1 ∪ S2, let ξ ∈ Q be an algebraic
number, let ε > 0, and let fp (p ∈ S) be reals such that

fp ≥ 0 for p ∈ S,
∑
p∈S

fp = 2 + ε. (5.10)

We consider the system of inequalities
|ξ − x

y | ≤ y−f∞ ,

|x|p ≤ y−fp (p ∈ S1)
|y|p ≤ y−fp (p ∈ S2)

 in (x, y) ∈ Z2 with y > 0. (5.11)

Define the height of ξ by H(ξ) :=
∏

v∈MK
max(1, ‖ξ‖v) where K is any algebraic number

field with ξ ∈ K. Suppose that ξ has degree d.

Corollary 5.2. The set of solutions of (5.11) with

y > max
(
2H(ξ), 24/ε

)
(5.12)

is contained in the union of at most

232(1 + ε−1)3 log(6d) log
(
(1 + ε−1) log(6d)

)
(5.13)

one-dimensional linear subspaces of Q2.

To obtain Corollary 5.2 one simply has to apply Theorem 5.1 with n = 2, S =
{∞} ∪ S1 ∪ S2 and with

L1∞ = X1 − ξX2, L2∞ = X2,

L1p = X1, L2p = X2 for p ∈ S1 ∪ S2,
e1∞ = 1− f∞, e2∞ = 1,
e1p = −fp, e2p = 0 for p ∈ S1,
e1p = 0, e2p = −fp for p ∈ S2,
Ψ(x) = |x2| for x = (x1, x2) ∈ Z2.

It is straightforward to verify that (5.1) is satisfied, and that (5.2), (5.3), (5.4) are satisfied
with R = 3, D = d, H = H(ξ), respectively. Further, it follows at once from (5.10) that
(5.5) and (5.6) are satisfied.

Proof of Theorem 5.1. Let K be a finite normal extension of Q, containing the coefficients
of Lip as well as the conjugates over Q of these coefficients, for p ∈ S, i = 1, . . . , n. For
v ∈ MK we put d(v) := [Kv : Qpv

] where pv is the place of Q below v, and

s(v) = d(v) if v is Archimedean, s(v) = 0 if v is non-Archimedean.
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Recall that every | · |p (p ∈ MQ) has been extended to Q so in particular to K. For every
v ∈ MK there is an automorphism σv of K such that |σv(·)|p represents v. So by (4.1) we
have

‖x‖v = |σv(x)|d(v)
pv

for x ∈ K. (5.14)

Let T denote the set of places of K lying above the places in S. Define linear forms Liv

and reals eiv (v ∈ MK, i = 1, . . . , n) by

Liv = σ−1
v (Li,pv

) (v ∈ T ), Liv = Xi (v ∈ MK \ T ) (5.15)

and
eiv = d(v)ei,pv

(v ∈ T ), eiv = 0 (v ∈ MK \ T ), (5.16)

respectively. Then system (5.7) can be rewritten as

‖Liv(x)‖v ≤ Ψ(x)eiv (v ∈ MK, i = 1, . . . , n)
in x ∈ Zn with Ψ(x) 6= 0.

(5.17)

Notice that in view of (5.17), (5.5), (5.6), and
∑

v|p d(v) = 1 for p ∈ MQ we have

eiv ≤ s(v) (i = 1, . . . , n),
∑

v∈MK

n∑
i=1

eiv ≤ −ε. (5.18)

Further, by (5.2), (5.15),

Card
⋃

v∈MK

{L1v, . . . , Lnv} ≤ r := n + DR. (5.19)

Now define
δ :=

ε

n + ε
, (5.20)

let L = (Liv : v ∈ MK, i = 1, . . . , n), and define the tuple of reals c = (civ : v ∈ MK, i =
1, . . . , n) by

civ :=
(
1 + (ε/n)

)−1
(
eiv −

1
n

n∑
j=1

ejv

)
. (5.21)

Let H = H(L) be the quantity defined by (4.8) and HQ,L,c the twisted height defined by
(4.13). We want to apply Proposition 4.1, and to this end we have to verify the conditions
(4.4)–(4.7) and (4.9)–(4.11). Condition (4.4) is obvious. (5.1) and (5.15) imply (4.5),(4.6),
while (4.7) is (5.18). Condition (4.9) is satisfied in view of (5.16), (5.20), while (4.10) follows
at once from (5.21). To verify (4.11), observe that by (5.21), (5.18) we have∑

v∈MK

max(c1v, . . . , cnv)

≤
(
1 +

ε

n

)−1( ∑
v∈MK

s(v)− 1
n

∑
v∈MK

n∑
j=1

ejv

)
=
(
1 +

ε

n

)−1(
1 +

ε

n

)
= 1.

The following lemma connects system (5.7) to Proposition 4.1.
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Lemma 5.3. Let x be a solution of (5.7) with (5.8). Put

Q := Ψ(x)1+ε/n.

Then

HQ,L,c(x) ≤ Q−δ, (5.22)

Q ≥ max
(
H1/(r

n), n2/δ
)
. (5.23)

Proof. As observed above, x satisfies (5.17). In combination with (5.21) this yields

‖Liv(x)‖vQ−civ = ‖Liv(x)‖v ·Ψ(x)−eiv ·Ψ(x)
1
n

∑n

j=1
ejv

≤ Ψ(x)
1
n

∑n

j=1
ejv

for v ∈ MK, i = 1, . . . , n. By taking the product over v ∈ MK and using (5.18), (5.20) we
obtain

HQ,L,c(x) =
∏

v∈MK

max
1≤i≤n

‖Liv(x)‖vQ−civ

≤ Ψ(x)−ε/n = Q−δ.

This proves (5.22).
To prove (5.23), write

⋃
v∈MK

{L1v, . . . , Lnv} = {L1, . . . , Ls}. Then s ≤ r by (5.19).
By (5.4), (5.15) we have H∗(Liv) ≤ H for v ∈ MK, i = 1, . . . , n. By applying e.g.,
Hadamard’s inequality for the Archimedean places and the ultrametric inequality for the
non-Archimedean places, we obtain for i1, . . . , in ∈ {1, . . . , s}, v ∈ MK,

‖det(Li1 , . . . , Lin
)‖v ≤ (nn/2)s(v)

n∏
j=1

‖Lij
‖v

≤ (nn/2)s(v)
s∏

i=1

max(1, ‖Li‖v),

hence

H ≤ nn/2
r∏

i=1

H∗(Li) ≤ nn/2Hr.

Together with (5.19), (5.20) this implies

max
(
H1/(r

n), n2/δ
)
≤ max

(
nn/2(r

n)Hr/(r
n), n2(n+ε)/ε

)
≤ max

(
2H,n2n/ε

)1+ε/n

.

So if x satisfies (5.8), then Q = Ψ(x)1+ε/n satisfies (5.23). This proves Lemma 5.3.
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We apply Proposition 4.1 with the values of r, δ given by (5.19), (5.20), i.e., r = n+DR
and δ = ε

n+ε . It is straightforward to show that for these choices of r, δ the quantity t1
from Proposition 4.1 is bounded above by the quantity in (5.9). By Proposition 4.1, there
are proper linear subspaces T1, . . . , Tt1 of Q

n
such that for every Q with (5.23) there is

Ti ∈ {T1, . . . , Tt1} with

{x ∈ Q
n

: HQ,L,c(x) ≤ Q−δ} ⊂ Ti.

Now Lemma 5.3 implies that the solutions x of (5.7) with (5.8) lie in ∪t1
i=1(Ti ∩ Qn).

Theorem 5.1 follows.

6. A combinatorial lemma for the proof of Theorem 2.1

In this section, we establish the following lemma.

Lemma 6.1. Let b ≥ 2 be an integer. Let c and u be positive real numbers. Let ξ be an
irrational real number such that 0 < ξ < 1 and

p(n, ξ, b) ≤ cn(log n)u, for n ≥ 1.

Then for every positive real number v < u, there exist integer sequences (rn)n≥1, (tn)n≥1,
(pn)n≥1 and a positive real number C depending only on c, u, v such that

|btnξ − brnξ − pn| ≤
(
btn
)−(log tn)−v

,

0 ≤ rn < tn, 2tn < tn+1, tn ≤ (2n)Cn, for n ≥ 1. (6.1)

Furthermore, b does not divide pn if rn ≥ 1.

Proof. Let b and ξ be as in the statement of the lemma. Let a denote the b-ary expansion
of ξ. Throughout this proof, c1, c2, . . . are positive constants depending only on c, u, v. The
length of a finite word W , that is, the number of letters composing W , is denoted by |W |.
The infinite word W∞ is obtained by concatenation of infinitely many copies of the finite
word W .

By assumption, the complexity function of a satisfies

p(n,a) ≤ c1 n(log n)u, for n ≥ 1.

Our aim is to show that there exists a (in some sense) ‘dense’ sequence of rational approx-
imations to ξ with special properties.

Let ` ≥ 2 be an integer, and denote by A(`) the prefix of a of length `. By the
Schubfachprinzip, there exist (possibly empty) words U`, V`,W` and X` such that

A(`) = U`V`W`V`X`,
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and
|V`| ≥ c2 `(log `)−u.

Set r` = |U`| and s` = |V`W`|. We choose the words U`, V`, W` and X` in such a way
that |V`| is maximal and, among the corresponding factorisations of A(`), such that |U`|
is minimal. In particular, either U` is the empty word, or the last digits of U` and V`W`

are different.
If ξ` denotes the rational number with b-ary expansion U`(V`W`)∞, then there exists

an integer p` such that

ξ` =
p`

br`(bs` − 1)
, |ξ − ξ`| ≤ b−r`−s`−|V`|,

and b does not divide p` if r` ≥ 1.
Take t` = r` + s`. Then

` ≥ t` ≥ s` ≥ c2`(log `)−u. (6.2)

Hence,
|bt`ξ − br`ξ − p`| ≤ b−c2`(log `)−u

≤ (bt`)−c3(log t`)
−u

.

We construct a sequence of positive integers (`k)∞k=1 such that for every k ≥ 1,

|bt`k ξ − br`k ξ − p`k
| ≤ (bt`k )−(log t`k

)−v

, (6.3)
t`k+1 > 2t`k

, (6.4)

t`k
≤ (2k)Ck. (6.5)

Then a slight change of notation establishes the lemma.
Let `1 be the smallest positive integer ` such that c3(log t`)u ≥ (log t`)v. Further, for

k = 1, 2, . . ., let `k+1 be the smallest positive integer ` such that t` > 2t`k
. This sequence

is well-defined by (6.2). It is clear that (6.3), (6.4) are satisfied.
To prove (6.5), observe that if ` is any integer with c2`(log `)−u > 2`k then, by (6.2),

t` > 2`k ≥ 2t`k
. This shows that there is a constant c4 such that `k+1 ≤ c4`k(log `k)u.

Now an easy induction yields that there exists a constant C, depending only on c, u, v,
such that `k ≤ (2k)Ck for k ≥ 1. Invoking again (6.2) we obtain (6.5).

7. Completion of the proof of Theorem 2.1

Let ξ be an algebraic irrational real number. Let v be a real number such that 0 <
v < 1/11. Define the positive real number η by

(11 + 2η)(v + η) + η = 1. (7.1)
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We assume that there exists a positive constant c such that the complexity function
of ξ in base b satisfies

p(n, ξ, b) ≤ cn(log n)v+η for n ≥ 1, (7.2)

and we will derive a contradiction. Then Theorem 2.1 follows.
Let N be a sufficiently large integer. We will often use the fact that N is large, in

order to absorb numerical constants.
Let (rn)n≥1, (tn)n≥1, and (pn)n≥1 be the sequences given by Lemma 6.1 applied with

u := v + η. Set
ε = (log tN )−v, (7.3)

and observe that, in view of (6.1) and (7.3), we have

ε−1 = (log tN )v ≤ Nv+η. (7.4)

For n = 1, . . . , N , we have

|btnξ − brnξ − pn| < (btn)−ε. (7.5)

Put
k := [2/ε] + 1. (7.6)

For each n = 1, . . . , N there is ` ∈ {0, 1, . . . , k − 1} such that

`

k
≤ rn

tn
<

` + 1
k

.

For the moment, we consider those n ∈ {1, . . . , N} such that

N

2
≤ n ≤ N,

`

k
≤ rn

tn
<

` + 1
k

, (7.7)

where ` ∈ {0, 1, . . . , k − 1} is fixed, and show that the vectors

xn := (btn , brn , pn)

satisfy a system of inequalities to which Theorem 5.1 is applicable.
Let S = {∞}∪{p : p | b} be the set of places on Q composed of the infinite place and

the finite places corresponding to the prime divisors of b. We choose

Ψ(x) = x1 for x = (x1, x2, x3) ∈ Z3.

We introduce the linear forms with real algebraic coefficients

L1∞(X) = X1, L2∞(X) = X2, L3∞(X) = −ξX1 + ξX2 + X3,

and, for every prime divisor p of b, we set

L1p(X) = X1, L2p(X) = X2, L3p(X) = X3.
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Set also
e1∞ = 1, e2∞ =

` + 1
k

, e3∞ = −ε,

and, for every prime divisor p of b,

e1p =
log |b|p
log p

, e2p =
log |b|p
log p

· `

k
, e3p = 0.

Notice that ∑
p∈S

3∑
i=1

eip = −(ε− 1/k),

ei∞ ≤ 1 (i = 1, 2, 3),
eip ≤ 0 (p ∈ S \ {∞}, i = 1, 2, 3).

(7.8)

Furthermore,
det(L1p, L2p, L3p) = 1, for p ∈ S. (7.9)

Writing d := [Q(ξ) : Q], we have

Card
⋃
p∈S

{L1p, L2p, L3p} = 4,

[Q(Lip) : Q] ≤ d, for p ∈ S, i = 1, 2, 3.
(7.10)

Further,
max

p∈S,i=1,2,3
H∗(Lip) = H(ξ). (7.11)

(7.8)–(7.11) imply that the linear forms Lip and reals eip defined above satisfy the condi-
tions (5.1)–(5.6) of Theorem 5.1 with n = 3, R = 4, D = d, H = H(ξ).

It is clear from (7.5), (7.8) that for any integer n with (7.7) we have

|Lip(xn)|p ≤ Ψ(xn)eip , for p ∈ S, i = 1, 2, 3.

Assuming that N is sufficiently large, we infer from (6.1), (7.4) that for every n with (7.7)
we have

Ψ(xn) = btn ≥ 22N/2−1 > max{2H(ξ), 36/(ε−1/k)}.

Now, Theorem 5.1 implies that the set of vectors xn = (btn , brn , pn) with n satisfying (7.7)
is contained in the union of at most

A1 := 8144
(
1 + (ε− 1/k)−1

)−7

log(8d) log log(8d)

proper linear subspaces of Q3. We now consider the vectors xn with N/2 ≤ n ≤ N and
drop the condition `/k ≤ rn/tn < (` + 1)/k. Then by (7.6), for any sufficiently large N ,
the set of vectors xn = (btn , brn , pn) with

N

2
≤ n ≤ N,
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lies in the union of at most
kA1 ≤ (ε−1)8+η

proper linear subspaces of Q3.
We claim that if N is sufficiently large, then any two-dimensional linear subspace of

Q3 contains at most (ε−1)3+η vectors xn. Having achieved this, it follows by (7.1), (7.4)
that

N

2
≤ (ε−1)8+η · (ε−1)3+η ≤ N (11+2η)(v+η) = N1−η,

which is clearly impossible if N is sufficiently large. Thus (7.2) leads to a contradiction.
So let T be a two-dimensional linear subspace of Q3, say given by an equation z1X1 +

z2X2 + z3X3 = 0 where we may assume that z1, z2, z3 are integers without a common
prime divisor. Let

N = {i1 < i2 < . . . < ir}

be the set of n with N/2 ≤ n ≤ N and xn ∈ T . So we have to prove that r ≤ (ε−1)3+η.
Recall that by Lemma 6.1, for every n ≥ 1 we have either rn = 0, or rn > 0 and b

does not divide pn. Hence the vectors xn, n ≥ 1, are pairwise non-collinear. So the exterior
product of xi1 ,xi2 must be a non-zero multiple of z = (z1, z2, z3), and therefore

max{|z1|, |z2|, |z3|} ≤ 2b2ti2 . (7.12)

By combining (7.5) with z1b
tn + z2b

rn + z3pn = 0, eliminating brn , it follows that for n in
N ∣∣∣∣ξ(z1 + z2)

ξz3 − z2
− −pn

btn

∣∣∣∣ < ∣∣∣∣ z2

ξz3 − z2

∣∣∣∣ · (btn)−1−ε. (7.13)

We want to apply Corollary 5.2 with ξ(z1 + z2)/(ξz3 − z2) instead of ξ.
Recall that d denotes the degree of ξ. By (7.12), assuming that N is sufficiently large,

we have

H

(
ξ(z1 + z2)
ξz3 − z2

)
≤ 4b2ti2 H(ξ) ≤ b3ti2 .

Likewise, ∣∣∣∣ z2

ξz3 − z2

∣∣∣∣ ≤ H

(
ξ(z1 + z2)
ξz3 − z2

)d

≤ b3dti2 .

There is no loss of generality to assume that there is an integer k ≤ r with

btik ≥ b(3dti2 )2/ε

. (7.14)

Indeed, if there is no such k then we infer from (6.1) that

bt2
r−3

i2 ≤ b(3dti2 )2/ε

≤ b
t
4/ε
i2 ,

hence

r ≤ 3 +
log(4/ε)

log 2
,
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which is stronger than what we have to prove. Letting k0 be the smallest integer k with
(7.14), we have

b
tik0 ≥ b(3dti2 )2/ε

, k0 ≤ 4 +
log(4/ε)

log 2
. (7.15)

Let N ′ = {ik0 , ik0+1, . . . , ir}. We divide this set further into

N ′′ = {n ∈ N ′ : rn 6= 0}, N ′′′ = {n ∈ N ′ : rn = 0}.

By (7.13) we have for n in N ′′∣∣∣∣ξ(z1 + z2)
ξz3 − z2

− −pn

btn

∣∣∣∣ < (btn)−1−ε/2. (7.16)

Let S1 = ∅ and S2 = {p : p | b}. Then for ` ∈ S2 we have

|btn |` ≤ (btn)log |b|`/(log b). (7.17)

Lastly,

btn ≥ b(3dti2 )2/ε

≥ max
{

H

(
ξ(z1 + z2)
ξz3 − z2

)
, 24/ε

}
. (7.18)

Now, (7.16), (7.17) and (7.18) imply that all the conditions of Corollary 5.2 are satisfied
with ε/2 instead of ε and with

x = pn, y = btn , f∞ = 1 +
ε

2
, f` = − log |b|`

log b
(` ∈ S2).

Notice that
f∞ +

∑
`∈S2

f` = 2 + ε/2,

and f∞ ≥ 0, f` ≥ 0 for ` ∈ S2. Consequently, the set of vectors (pn, btn), n ∈ N ′′, lies in
the union of at most

B(d, ε) := 232
(
1 + 2ε−1

)3 log(6d) log
(
(1 + 2ε−1) log(6d)

)
(7.19)

one-dimensional linear subspaces of Q2. But the vectors (pn, btn), n ∈ N ′′, are pairwise
non-proportional, since b does not divide pn for these values of n. Hence CardN ′′ ≤ B(d, ε).

To deal with n ∈ N ′′′, we observe that by combining (7.5) again with z1b
tn + z2b

rn +
z3pn = 0, but now eliminating pn, we obtain∣∣∣∣ξz3 + z1

ξz3 − z2
− 1

btn

∣∣∣∣ < ∣∣∣∣ z3

ξz3 − z2

∣∣∣∣ · (btn)−1−ε.

In precisely the same manner as above, one obtains that the pairs (btn , 1) lie in at most
B(d, ε) one-dimensional subspaces. Since these pairs are pairwise non-proportional, it fol-
lows that CardN ′′′ ≤ B(d, ε).
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By combining the above we obtain

CardN = r ≤ k0 + CardN ′′ + CardN ′′′ ≤ k0 + 2B(d, ε).

In view of (7.15), (7.19), this is smaller than (ε−1)3+η for N sufficiently large. This proves
the claim, hence Theorem 2.1.

8. Proof of Theorem 3.1

We closely follow Section 4 of [8]. Assume without loss of generality that

b− 1
b

< ξ < 1.

Define the increasing sequence of positive integers (nj)j≥1 by a1 = . . . = an1 , an1 6= an1+1

and anj+1 = . . . = anj+1 , anj+1 6= anj+1+1 for j ≥ 1. Observe that

nbdc(n, ξ, b) = max{j : nj ≤ n}

for n ≥ n1, and that nj ≥ j for j ≥ 1. Define

ξj :=
nj∑

k=1

ak

bk
+

+∞∑
k=nj+1

anj+1

bk
=

nj∑
k=1

ak

bk
+

anj+1

bnj (b− 1)
·

Then,

ξj =
Pj(b)

bnj (b− 1)
,

where Pj(X) is an integer polynomial of degree at most nj whose constant coefficient
anj+1 − anj

is not divisible by b. That is, b does not divide Pj(b). We have

|ξ − ξj | <
1

bnj+1
,

and this can be rewritten as ∣∣∣∣(b− 1)ξ − Pj(b)
bnj

∣∣∣∣ < b− 1
bnj+1

. (8.1)

By Liouville’s inequality,∣∣∣∣(b− 1)ξ − Pj(b)
bnj

∣∣∣∣ ≥ (2H
(
(b− 1)ξ

)
bnj
)−d

,

so, if
nj ≥ U := 1 + 3H

(
(b− 1)ξ

)
, (8.2)

then
nj+1 ≤ 2dnj . (8.3)

In what follows, constants implied by the Vinogradov symbols �, � are absolute. We
need the following lemma.
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Lemma 8.1. Let 0 < ε ≤ 1 and let j1 denote the smallest j such that nj ≥ max{U, 5/ε}.
Then

Card {j : j ≥ j1, nj+1/nj ≥ 1 + 2ε} � log(6d)ε−3 log
(
ε−1 log(6d)

)
.

Proof. For the integers j into consideration, we have

bnj > max
{
2H
(
(b− 1)ξ

)
, 24/ε

}
.

Further, by (8.1), nj ≥ U , we get∣∣∣∣(b− 1)ξ − Pj(b)
bnj

∣∣∣∣ < b− 1
(bnj )1+2ε

≤ 1
(bnj )1+ε

. (8.4)

Moreover, for every prime ` dividing b,

|bnj |` ≤
(
bnj
)log |b|`/ log b

. (8.5)

Since

1 + ε +
∑
`|b

− log |b|`
log b

= 2 + ε,

Corollary 5.2 applied to (8.4), (8.5) yields that for the integers j into consideration the
pairs (Pj(b), bnj ) lie in

� log(6d)ε−3 log
(
ε−1 log(6d)

)
one-dimensional linear subspaces of Q2. But these pairs are non-proportional since b does
not divide Pj(b). The lemma follows.

Let j0 be the smallest j such that nj ≥ U . Let J be an integer with

J > max
{
n3

j0 , (4d)6
}
. (8.6)

Let j2 be the largest integer with
nj2 ≤ 6dJ1/3. (8.7)

Then since nj2 ≥ nj0 ≥ U , we have

nj2 ≥
nj2+1

2d
≥ 3J1/3. (8.8)

Now choose

ε1 :=
( log(6d) log J

J

)1/3

(8.9)

and let k be any positive integer and ε2, . . . , εk−1 any reals such that

ε1 < ε2 < . . . < εk−1 < εk := 1. (8.10)
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We infer from (8.8) that

nj2 ≥ max{U, 5/εh}, for h = 1, . . . , k. (8.11)

Let S0 = {j2, j2 + 1, . . . , J} and, for h = 1, . . . , k, let Sh denote the set of positive integers
j such that j2 ≤ j ≤ J and nj+1 ≥ (1 + 2εh)nj . Further, let Th be the cardinality of Sh

for h = 1, . . . , k. Obviously, S0 ⊃ S1 ⊃ . . . ⊃ Sk and

S0 = (S0 \ S1) ∪ (S1 \ S2) ∪ . . . ∪ (Sk−1 \ Sk) ∪ Sk.

Now,
nJ

nj2

=
nJ

nJ−1
× nJ−1

nJ−2
× . . .× nj2+1

nj2

=
k−1∏
h=0

( ∏
j∈Sh\Sh+1

nj+1

nj

)(∏
j∈Sh

nj+1

nj

)

≤ (1 + 2ε1)J
k−1∏
h=1

(1 + 2εh+1)Th−Th+1 (2d)Tk ,

where in the last estimate we have used (8.11) and (8.3). Taking logarithms, we get

log(nJ/nj2) ≤ 2ε1J + 2
k−1∑
h=1

εh+1(Th − Th+1) + Tk log(2d)

≤ 2ε1J + 2ε2T1 + 2
k−1∑
h=2

(εh+1 − εh)Th − 2Tk + Tk log(2d).

In view of (8.11), we can apply Lemma 8.1, and obtain that

Th � log(6d)ε−3
h log

(
ε−1

h log(6d)
)

for h = 1, . . . , k. This gives

log(nJ/nj2) � ε1J + log(6d)ε2ε
−3
1 log

(
ε−1
1 log(6d)

)
+ log(6d)

k−1∑
h=2

ε−3
h log

(
ε−1

h log(6d)
)
· (εh+1 − εh)

+
(
log(6d)

)2 log log(6d).

Now, let k tend to infinity and max1≤h≤k−1 (εh+1 − εh) tend to zero. Then the sum
converges to a Riemann integral, and, after a short computation, using that in view of
(8.6), (8.9) we have ε−1

1 � d, we get

log(nJ/nj2) � ε1J + log(6d)ε−2
1 log(ε−1

1 ).
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By (8.6) and (8.7), we have nj2 ≤ J1/2 ≤ n
1/2
J , so nJ/nj2 ≥ n

1/2
J . Inserting our choice

(8.9) for ε1 and using (8.6), we get

log nJ � J2/3(log J)1/3
(
log(6d)

)1/3
,

i.e.,
J � (log nJ)3/2(log log nJ)−1/2

(
log(6d)

)−1/2
.

This proves Theorem 3.1.

9. Final remarks

We deduce from Corollary 5.2 an improvement of an extension due to Mahler [17] of
a theorem of Cugiani [11], see [9] for further references on the Cugiani–Mahler Theorem.

Let S1, S2 be finite, possibly empty sets of prime numbers, put S := {∞} ∪ S1 ∪ S2,
let ξ ∈ Q be an algebraic number, let ε > 0, and let fp (p ∈ S) be reals such that

fp ≥ 0 for p ∈ S,
∑
p∈S

fp = 2.

Let ε : Z≥1 → R>0 be a non-increasing function. We consider the system of inequali-
ties 

|ξ − x
y | ≤ y−f∞−ε(y),

|x|p ≤ y−fp (p ∈ S1)
|y|p ≤ y−fp (p ∈ S2)

 in (x, y) ∈ Z2 with y > 0 and gcd(x, y) = 1. (9.1)

Arguing as in [9], we get the following improvement of Theorem 1 on page 169 of [17],
that we state without proof. For a positive integer m, we denote by expm the mth iterate
of the exponential function and by logm the function that coincides with the mth iterate
of the logarithm function on [expm 1,+∞) and that takes the value 1 on (−∞, expm 1].

Theorem 9.1. Keep the above notation. Let m be a positive integer, and c be a positive
real number. Set

ε(y) = c (logm+1 y)−1/3 (logm+2 y), for y ≥ 1.

Let (xj/yj)j≥1 be the sequence of reduced rational solutions of (9.1) ordered such that
1 ≤ y1 < y2 < . . . Then either the sequence (xj/yj)j≥1 is finite or

lim sup
j→+∞

logm yj+1

logm yj
= +∞.

Theorem 9.1 improves upon Mahler’s result, which deals only with the case m = 1
and involves the very slowly decreasing function y 7→ (log3 y)−1/2.

Theorem 9.1 can be compared with Theorem 2 from [9] that deals with products of
linear forms and involves a function ε that depends on the cardinality of S1 ∪ S2. Note
that Theorem 6.5.10 from Chapter 6 of the monograph of Bombieri and Gubler [6], given
without proof, deals also with products of linear forms, but the function ε occurring there
does not involve the cardinality of S1 ∪ S2.

We can then proceed exactly as Mahler did ([17], Theorem 3, page 178) to construct
new explicit examples of transcendental numbers.
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Theorem 9.2. Let b ≥ 2 be an integer. Let θ be a real number with 0 < θ < 1. Let
n = (nj)j≥1 be an increasing sequence of positive integers satisfying n1 ≥ 3 and

nj+1 ≥
(

1 +
log log nj

(log nj)1/3

)
nj , (j ≥ 1).

Let (aj)j≥1 be a sequence of positive integers prime to b such that

aj+1 ≤ bθ(nj+1−nj), j ≥ 1.

Then the real number
ξ =

∑
j≥1

aj b−nj

is transcendental.

We omit the proof of Theorem 9.2, which follows from Theorem 9.1 with m = 1.
It is of interest to note that Theorem 9.2 yields Corollary 3.2 only for η > 3/4.

We would have obtained the same result by taking k = 1 in (8.10). It is precisely the
introduction of the parameter k there that allows us to get in Theorem 3.1 the exponent
of (log n) equal to 3/2 and not to 4/3.

APPENDIX

A quantitative two-dimensional Parametric Subspace Theorem

We give a proof of the two-dimensional case of Proposition 4.1. We keep the notation
and assumptions from Section 4, except that we assume n = 2. As before, K is an algebraic
number field. We recall the notation from Section 4, but now specialized to n = 2. Thus,
L = (Liv : v ∈ MK, i = 1, 2) is a tuple of linear forms satisfying

Liv ∈ K[X1, X2] for v ∈ MK, i = 1, 2, (A.1)
L1v = X1, L2v = X2 for all but finitely many v ∈ MK, (A.2)
det(L1v, L2v) = 1 for v ∈ MK, (A.3)

Card
( ⋃

v∈MK

{L1v, L2v}
)
≤ r (A.4)

and c = (civ : v ∈ MK, i = 1, 2) is a tuple of reals satisfying

c1v = c2v = 0 for all but finitely many v ∈ MK, (A.5)∑
v∈MK

2∑
i=1

civ = 0, (A.6)

∑
v∈MK

max(c1v, c2v) ≤ 1. (A.7)
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We define
H = H(L) :=

∏
v∈MK

max
1≤i1<i2≤s

‖det(Li1 , Li2)‖v (A.8)

where we have written {L1, . . . , Ls} for
⋃

v∈MK
{L1v, L2v}. Finally, for any finite extension

E of K and any place w ∈ ME we define

Liw = Liv, ciw = d(w|v)civ for i = 1, 2, (A.9)

where v is the place of MK lying below w and d(w|v) is given by (4.2).
The twisted height HQ,L,c(x) of x ∈ Q

2
is defined by taking any finite extension E of

K such that x ∈ E2 and putting

HQ,L,c(x) :=
∏

w∈ME

max
i=1,2

‖Liw(x)‖wQ−ciw ; (A.10)

this does not depend on the choice of E.

Proposition A.1. Let L = (Liv : v ∈ MK, i = 1, 2) be a tuple of linear forms and
c = (civ : v ∈ MK, i = 1, 2) a tuple of reals satisfying (A.1)–(A.7). Further, let 0 < δ ≤ 1.

Then there are one-dimensional linear subspaces T1, . . . , Tt2 of Q
2
, all defined over K, with

t2 = t2(r, δ) = 225δ−3 log(2r) log
(
δ−1 log(2r)

)
(A.11)

such that the following holds: for every real Q with

Q > max
(
H

2
r(r−1) , 41/δ

)
(A.12)

there is a subspace Ti ∈ {T1, . . . , Tt2} such that

{x ∈ Q
2

: HQ,L,c(x) ≤ Q−δ} ⊂ Ti . (A.13)

The proof of Proposition A.1 is by combining some lemmata from [14], specialized to
n = 2. We keep the notation and assumptions from above. By condition (A.4), there exists
a ‘family’ (unordered sequence with possibly repetitions) of linear forms {L1, . . . , Lr} such
that L1v, L2v belong to this family for every v ∈ MK and such that L1 = X1, L2 = X2.
Now conditions (A.1)–(A.7) imply the conditions (5.12)–(5.17) on p. 36 of [14] with n = 2.
These conditions are kept throughout [14] and so all arguments of [14] from p. 36 onwards
are applicable in our situation. Since in what follows the tuples L and c will be fixed and
only Q will vary, we will write HQ for the twisted height HQ,L,c.

Let Q be a real with Q ≥ 1. We define the “successive infima” λ1(Q), λ2(Q) of HQ as
follows: for i = 1, 2, λi(Q) is the infimum of all reals λ > 0 such that {x ∈ Q

2
: HQ(x) ≤ λ}

contains at least i linearly independent points. Since we are working on the algebraic closure
of Q and not on a given number field, these infima need not be assumed by HQ.

In [14] (specialized to n = 2), λ1(Q), λ2(Q) were defined to be the successive infima
of some sort of parallelepiped Π(Q, c) defined over Q, and the lemmata in that paper were
all formulated in terms of these infima. However, according to [14], Corollary 7.4, p. 53,
applied with n = 2 and A = (Qciv , v ∈ MK, i = 1, 2), the successive infima of Π(Q, c) are
equal to the successive infima of HQ as defined above.
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Lemma A.2. Let δ > 0, Q ≥ 1.

(i) 1
2 ≤ λ1(Q)λ2(Q) ≤ 2.

(ii) If there exists a non-zero x ∈ Q
2

with HQ(x) ≤ Q−δ then λ1(Q) ≤ Q−δ and λ2(Q) ≥
1
2Qδ.

Proof. Assertion (i) follows from [14], Corollary 7.6, p. 54. Assertion (ii) is then obvious.

Lemma A.3. (Gap Principle). Let δ > 0, and let Q0 be a real with Q0 > 41/δ. Then

there is a unique, one-dimensional linear subspace T of Q
2

with the following property:
for every Q with

Q0 ≤ Q < Q
1+δ/2
0

we have {x ∈ Q
2

: HQ(x) ≤ Q−δ} ⊂ T .

Proof. Let T be the linear subspace of Q
2

spanned by all x such that HQ0(x) ≤ Q
−δ/2
0 . If

T 6= (0) then by Lemma A.2 we have λ1(Q0) ≤ Q
−δ/2
0 and λ2(Q0) ≥ 1

2Q
δ/2
0 , which by our

assumption on Q0 is strictly larger than λ1(Q0). Hence T has dimension at most 1. So it
suffices to prove that if x ∈ Q

2
and Q are such that Q0 ≤ Q < Q

1+δ/2
0 and HQ(x) ≤ Q−δ,

then HQ0(x) ≤ Q
−δ/2
0 .

To prove this, choose a finite extension E of K such that x ∈ E2. Notice that by (A.7),
(A.9), (4.3) we have u :=

∑
w∈ME

max(c1w, c2w) ≤ 1. For w ∈ ME we have

max
(‖L1w(x)‖w

Qc1w
0

,
‖L2w(x)‖w

Qc2w
0

)
≤ max

(‖L1w(x)‖w

Qc1w
,
‖L2w(x)‖w

Qc2w

)
·
( Q

Q0

)max(c1w,c2w)

.

So
HQ0(x) ≤ HQ(x)

( Q

Q0

)u

≤ Q−δ · Q

Q0
≤ Q−δ

0 Q
δ/2
0 = Q

−δ/2
0 .

Lemma A.4. Let δ > 0 and let A,B be reals with 41/δ < A < B.

Then there are one-dimensional linear subspaces T1, . . . , Tt3 of Q
2
, with

t3 ≤ 1 +
log(log B/ log A)

log(1 + δ/2)

such that for every Q with A ≤ Q < B there is Ti ∈ {T1, . . . , Tt3} with

{x ∈ Q
2

: HQ(x) ≤ Q−δ} ⊂ Ti.
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Proof. Let k be the smallest integer with A(1+δ/2)k ≥ B. Apply Lemma A.3 with Q0 =
A(1+δ/2)i

for i = 0, . . . , k − 1.

We define the Euclidean height H2(x) for x = (x1, . . . , xm) ∈ Q
m

as follows. Choose
any number field E such that x ∈ Em, define

‖x‖w,2 :=
{( m∑

i=1

|xi|2w
)1/2} [Ew :R]

[E:Q]
if w is Archimedean,

‖x‖w,2 := max(‖x1‖w, . . . , ‖xm‖w) if w is non-Archimedean,

and put
H2(x) :=

∏
w∈ME

‖x‖w,2.

This is independent of the choice of E. For a polynomial P with coefficients in Q, define
H2(P ) := H2(p), where p is a vector consisting of the coefficients of P .

Lemma A.5. Let δ > 0. Consider the set of reals Q such that

there is xQ ∈ Q
2 \ {0} with HQ(xQ) ≤ Q−δ, (A.14)

Qδ > (2H)6(
r
2). (A.15)

Then one of the following two alternatives is true:

(i) For all Q under consideration we have H2(xQ) > Qδ/3(r
2);

(ii) There is a single one-dimensional linear subspace T0 of Q
2

such that for all Q under
consideration we have xQ ∈ T0.

Proof. This is [14], p.80, Lemma 12.4 with n = 2. Condition (A.14) and Lemma A.2 imply
λ1(Q) ≤ Q−δ which is condition (12.37) of Lemma 12.4 of [14] with n = 2. Further, the
quantity R in that lemma is ≤

(
r
2

)
(see [14], p.75, Lemma 12.1).

Let m be a positive integer and r = (r1, . . . , rm) a tuple of positive integers. We
say that a polynomial is multihomogeneous of degree r in the blocks of variables X1 =
(X11, X12), . . . ,Xm = (Xm1, Xm2) if it can be expressed as a linear combination of mono-
mials

m∏
h=1

2∏
k=1

Xihk

hk with ih1 + ih2 = rh for h = 1, . . . ,m.

(Below, h will always index the block). Given points xh = (xh1, xh2) (h = 1, . . . ,m) and a
polynomial P which is multihomogeneous in X1, . . . ,Xm, we write P (x1, . . . ,xm) for the
value obtained by substituting xhk for Xhk (h = 1, . . . ,m, k = 1, 2).

The index of a polynomial P multihomogeneous in X1, . . . ,Xm with respect to points
x1, . . . ,xm and to a tuple of positive integers r = (r1, . . . , rm), denoted by

Ind(P ; r;x1, . . . ,xm),
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is defined to be the smallest real σ with the following property: there is a tuple of non-
negative integers i = (ihk : h = 1, . . . ,m, k = 1, 2) such that(

m∏
h=1

2∏
k=1

( ∂

∂Xhk

)ihk

P

)
(x1, . . . ,xm) 6= 0;

m∑
h=1

ih1 + ih2

rh
= σ .

For a field F and a tuple of positive integers r = (r1, . . . , rm), We denote by F[r] the set of
polynomials with coefficients in F which are multihomogeneous of degree r in X1, . . . ,Xm.

We define the constant C(K) := |DK|1/[K:Q], where DK denotes the discriminant of
K. In fact, the precise value of C(K) is not of importance.

Lemma A.6. Suppose that 0 < δ ≤ 1, let θ be a real with

0 < θ ≤ δ

80
, (A.16)

m an integer with
m > 4θ−2 log(2r) (A.17)

and r = (r1, . . . , rm) a tuple of positive integers, and put q := r1 + · · ·+ rm.

Suppose that there exist positive reals Q1, . . . , Qm and non-zero points x1, . . . ,xm in Q
2

such that

r1 log Q1 ≤ rh log Qh ≤ (1 + θ)r1 log Q1 (h = 1, . . . ,m), (A.18)
HQh

(xh) ≤ Q−δ
h (h = 1, . . . ,m), (A.19)

Qδ
h > C(K)5/4q · 250H5θ−5/2. (A.20)

Then there is a non-zero polynomial P ∈ K[r] such that

Ind(P ; r;x1, . . . ,xm) ≥ mθ, (A.21)
H2(P ) ≤ C(K)1/2 · 23m(12H)q. (A.22)

Proof. This is [14], Lemma 15.1, p. 89, with n = 2. The space V[h](Qh) in that lemma
is in our situation precisely the space spanned by xh for h = 1, . . . ,m. Inequality (A.17)
comes from (14.7) on [14], p. 83; later it is assumed that s = r (see (14.10) on [14],
p.85). Inequality (A.22) comes from the inequality at the bottom of p. 87 of [14]. The
construction of the polynomial P is by means of a now standard argument, based on the
Bombieri–Vaaler Siegel’s Lemma.

Lemma A.7. (Roth’s Lemma) Let 0 < θ ≤ 1. Let m be an integer with m ≥ 2 and
r = (r1, . . . , rm) a tuple of positive integers such that

rh

rh+1
≥ 2m2

θ
(h = 1, . . . ,m− 1). (A.23)
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Further, let P be a non-zero polynomial in Q[r] and x1, . . . ,xm non-zero points in Q
2

such
that

H2(xh)rh ≥
(
eqH2(P )

)(3m2/θ)m

(h = 1, . . . ,m) (A.24)

where e = 2.7182 . . ., q = r1 + · · ·+ rm. Then

Ind(P ; r;x1, . . . ,xm) < mθ . (A.25)

Proof. This is the case n = 2 of [13], Lemma 24. It is an immediate consequence of [12],
Theorem 3.

We keep our assumption 0 < δ ≤ 1 and define the integer

m := 1 + [25600 · δ−2 log(2r)]. (A.26)

Put
C := (36H)m·(240m2/δ)m·3(r

2)/δ. (A.27)

Denote by S the set of reals Q such that

Q ≥ C; there is x ∈ Q
2 \ {0} with HQ(x) ≤ Q−δ. (A.28)

Lemma A.8. One of the following two alternatives is true:

(i) There is a single, one-dimensional linear subspace T0 of Q
2

such that for every Q ∈ S
we have {x ∈ Q

2
: HQ(x) ≤ Q−δ} ⊂ T0;

(ii) There are reals Q1, . . . , Qm−1 with C ≤ Q1 < · · · < Qm−1 such that

S ⊂
m−1⋃
h=1

[Qh, Q
162m2/δ
h ]. (A.29)

Proof. We assume that neither of the alternatives (i) or (ii) is true. From this assumption,
we will deduce that there are a tuple of positive integers r = (r1, . . . , rm), a non-zero
polynomial P ∈ K[r], and non-zero points x1, . . . ,xm ∈ Q

2
, satisfying both (A.21) and

(A.25). This is obviously impossible.
By our assumption, there are reals Q1, . . . , Qm ∈ S with

log Qh+1

log Qh
≥ 162m2

δ
(h = 1, . . . ,m− 1), (A.30)

and non-zero points x1, . . . ,xm ∈ Q
2

with

HQh
(xh) ≤ Q−δ

h (h = 1, . . . ,m). (A.31)
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Put θ := δ/80. First choose a positive integer s1 such that θs1 log Q1 > log Qh for h =
2, . . . ,m. Then there are integers s2, . . . , sm such that

s1 log Q1 ≤ sh log Qh ≤ (1 + θ)s1 log Q1 (h = 1, . . . ,m).

Now take rh := tsh (h = 1, . . . ,m), r = (r1, . . . , rm), where t is a positive integer, chosen
large enough such that the right-hand side of (A.20) is smaller than Cδ and the right-hand
side of (A.22) is smaller than (13H)q, where q = r1 + · · · + rm. Then conditions (A.18)–
(A.20) of Lemma A.6 are satisfied, hence there exists a non-zero polynomial P ∈ K[r] such
that (A.21), (A.22) are satisfied. So we have in fact

H2(P ) ≤ (13H)q. (A.32)

We now show that P , r, x1, . . . ,xm satisfy conditions (A.23), (A.24) of Lemma A.7.
Then it follows that (A.25) holds, and we arrive at the contradiction we wanted.

In view of (A.30), (A.18) and θ = δ
80 ≤

1
80 we have

rh

rh+1
=

rh log Qh

rh+1 log Qh+1
· log Qh+1

log Qh

≥ 1
1 + θ

· 162m2

δ
≥ 160m2

δ
=

2m2

θ

for h = 1, . . . ,m− 1, which is (A.23).
Our reals Q ∈ S satisfy conditions (A.14), (A.15) of Lemma A.5. Since we assumed

that alternative (i) of Lemma A.8 is false, alternative (ii) of Lemma A.5 must be false. So
alternative (i) of that lemma must be true. This implies in particular, that

H2(xh) > Q
δ/2(r

2)
h (h = 1, . . . ,m).

By combining this with (A.18), (A.32), this implies

H2(xh)rh ≥ (Qrh

h )δ/3(r
2) ≥ (Qr1

1 )δ/3(r
2) ≥ Cr1δ/3(r

2)

≥ (36H)mr1(3m2/θ)m

≥ (eqH2(P ))(3m2/θ)m

for h = 1, . . . ,m, which is (A.25). This completes our proof.

Proof of Proposition A.1. First suppose that alternative (ii) of Lemma A.8 is true. By
applying Lemma A.4 with A = Qh, B = Q

162m2/δ
h for h = 1, . . . ,m − 1 we conclude the

following:

There are one-dimensional linear subspaces T1, . . . , Tt4 of Q
2
, with

t4 ≤ (m− 1)
{

1 +
log(162m2/δ)
log(1 + δ/2)

}
≤ 5δ−1m log(162m2/δ)
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such that for every Q with

Q ≥ C := (36H)(240m2/δ)m·3m(r
2)/δ

there is Ti ∈ {T1, . . . , Tt4} with {x ∈ Q
2

: HQ(x) ≤ Q−δ} ⊂ Ti. This holds true trivially
also if alternative (i) of Lemma A.8 is true; so it holds true in all cases.

It remains to consider those values Q with

max
(
H1/(r

2), 41/δ
)

=: C ′ < Q < C. (A.33)

Notice that C ′ ≥ (36H)1/12(r
2). Hence by Lemma A.4, there are one-dimensional linear

subspaces T ′
1, . . . , T

′
t5 of Q

2
, with

t5 ≤ 1 +
log(log C/ log C ′)

log(1 + δ/2)

≤ 5δ−1
(
m log(240m2/δ

)
+ log

(
3m

(
r

2

))
+ log

(
12
(

r

2

))
≤ 6δ−1m log(240m2/δ)

such that for every Q with (A.33) there is T ′
i ∈ {T ′

1, . . . , T
′
t5} with

{x ∈ Q
2

: HQ(x) ≤ Q−δ} ⊂ T ′
i .

Collecting the above, we get that there are one-dimensional linear subspaces
T1, . . . , Tt2 of Q

2
, with

t2 ≤ t4 + t5 ≤ 11δ−1m log(240m2/δ) ≤ 33δ−1m log m

such that for every Q > C ′ there is Ti ∈ {T1, . . . , Tt2} with
{x ∈ Q

2
: HQ(x) ≤ Q−δ} ⊂ Ti. Substituting (A.26) for m we obtain

t2 ≤ 33δ−1 · 25601δ−2 log(2r) log(25601δ−2 log(2r))

< 225δ−3 log(2r) log
(
δ−1 log(2r)

)
which is the right-hand side of (A.11).

To finish the proof of Proposition A.1, it remains to show that the spaces T1, . . . , Tt2

are defined over K. Let Q be any real ≥ 1. Suppose that there are non-zero vectors x ∈ Q
2

with HQ(x) ≤ Q−δ, and that these vectors span a one-dimensional linear subspace T of
Q

2
. According to [14], Lemma 4.1, p.32, we have for any K-automorphism σ of Q that

HQ(σ(x)) = HQ(x), where σ(x) is obtained by applying σ to the coordinates of x; hence
σ(x) ∈ T . This implies that T is defined over K.
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[4] J.-P. Allouche, Nouveaux résultats de transcendance de réels à développements non
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169, Ed. C. Tanburini, Milano, pagg. 5 (1958).

[12] J.-H. Evertse, An explicit version of Faltings’ Product Theorem and an improvement
of Roth’s Lemma, Acta Arith. 73 (1995), 215–248.

[13] J.-H. Evertse, An improvement of the quantitative Subspace Theorem, Compos. Math.
101 (1996), 225–311.

[14] J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Subspace
Theorem, J. reine angew. Math. 548 (2002), 21–127.

[15] S. Ferenczi and Ch. Mauduit, Transcendence of numbers with a low complexity ex-
pansion, J. Number Theory 67 (1997), 146–161.

[16] H. Locher, On the number of good approximations of algebraic numbers by algebraic
numbers of bounded degree, Acta Arith. 89 (1999), 97–122.

[17] K. Mahler, Lectures on Diophantine approximation, Part 1: g-adic numbers and
Roth’s theorem, University of Notre Dame, Ann Arbor, 1961.

[18] M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–
866.

[19] M. Morse and G. A. Hedlund, Symbolic dynamics II, Amer. J. Math. 62 (1940), 1–42.

30



[20] J.-J. Pansiot, Bornes inférieures sur la complexité des facteurs des mots infinis en-
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[25] T. Schneider, Einführung in die transzendenten Zahlen. Springer–Verlag, Berlin–
Göttingen–Heidelberg, 1957.

Yann Bugeaud
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