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1. Introduction.

We deal with equations

a1ζ1 + · · ·+ anζn = 1 in roots of unity ζ1, . . . , ζn (1.1)

with non-zero complex coefficients. Clearly, from a solution of which one of the sub-
sums at the left-hand side is zero, it is possible to construct infinitely many other
solutions. Therefore, we restrict ourselves to solutions of (1.1) for which all subsums
at the left-hand side are non-zero, i.e.,∑

i∈I
aiζi 6= 0 for each non-empty subset I of {1, . . . , n}.

Such solutions of (1.1) are called non-degenerate.

Denote by ν(a1, . . . , an) the number of non-degenerate solutions of (1.1). First, let
a1, . . . , an be non-zero rational numbers. In 1965, Mann [2] showed that if (ζ1, . . . , ζn)
is a non-degenerate solution of (1.1), then ζd1 = · · · = ζdn = 1, where d is a product of
distinct primes ≤ n+1. From this result it can be deduced that ν(a1, . . . , an) ≤ ec1n2

for some absolute constant c1. Later, Conway and Jones [1] showed that for every
non-degenerate solution (ζ1, . . . , ζn) of (1.1) one has ζd1 = · · · = ζdn = 1, where d is
the product of distinct primes p1, . . . , pl with

∑l
i=1(pi−2) ≤ n−1. This implies that

ν(a1, . . . , an) ≤ ec2n3/2(log n)1/2
for some absolute constant c2. Schinzel [3] showed that

if a1, . . . , an are non-zero and generate an algebraic number field of degree D, then
ν(a1, . . . , an) ≤ c2(n,D) for some function c2 depending only on n and D. Later,
Zannier [5] gave a different proof of this fact and computed c2 explicitly. Finally,
Schlickewei [4] succeeded to derive an upper bound for the number of non-degenerate
solutions of (1.1) depending only on n for arbitrary complex coefficients a1, . . . , an.
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His result was that
ν(a1, . . . , an) ≤ 24(n+1)! .

The purpose of this paper is to derive the following improvement of Schlickewei’s
result:

Theorem. Let n ≥ 1 and let a1, . . . , an be non-zero complex numbers. Then (1.1)
has at most

(n+ 1)3(n+1)2

non-degenerate solutions.

The constant 3 can be improved to 2+ε for every ε > 0 and every sufficiently large n.
We shall not work this out. Further, the proof of our Theorem works without modifi-
cations for equations (1.1) with coefficients a1, . . . , an from any field of characteristic
zero.

We mention that the proofs of Mann, Conway and Jones, Schinzel and Zannier are
effective, in that they provide methods to determine all solutions of (1.1), whereas
Schlickewei’s proof is not. Our proof has the same defect. Further, in the case that
a1, . . . , an are rational numbers, our method of proof can not be used to improve
upon the estimate of Conway and Jones.

Acknowledgement. I am very grateful to Hans Peter Schlickewei for detecting an
error in a previous draft of this paper, and for a suggestion with which I could improve
my bound ncn

3
in that draft to ncn

2
.

2. Equations with rational coefficients.

It will be more convenient to deal with a homogeneous version of eq. (1.1). Thus, we
consider the equation

a1ζ1 + · · ·+ akζk = 0 in roots of unity ζ1, . . . , ζk, (2.1)

where k := n+ 1 ≥ 2 and where a1, . . . , ak are non-zero complex numbers. Two solu-
tions (ζ1, . . . , ζk) and (ζ ′1, . . . , ζ

′
k) of (2.1) are said to be proportional if there is a root

of unity ρ such that ζ ′i = ρζi for i = 1, . . . , k. A solution (ζ1, . . . , ζk) of (2.1) is called
non-degenerate if

∑
i∈I aiζi 6= 0 for each proper, non-empty subset I of {1, . . . , k}.

Thus, the Theorem is equivalent to the statement that up to proportionality, (2.1)
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has at most

k3k2

non-degenerate solutions (i.e., there is a subset of solutions of (2.1) of cardinality
≤ k3k2

such that every non-degenerate solution of (2.1) is proportional to a solution
from this subset).

In the remainder of this section we assume

a1, . . . , ak ∈ Q∗ .

Many of the arguments in the proof of Lemma 1 below have been borrowed from
the proof of Theorem 1 of Mann [2]. This result states that every non-degenerate
solution of (2.1) is proportional to a solution consisting of (not necessarily primitive)
d-th roots of unity, where d is the product of distinct primes ≤ k. We could have
given a slightly shorter proof of our Lemma 1 by applying Theorem 1 of [2], but
we preferred to keep our paper self-contained. The order of a root of unity ζ is the
smallest positive integer d such that ζd = 1.

Lemma 1. Let (ζ1, . . . , ζk) be a (not necessarily non-degenerate) solution of (2.1).
Then there are indices i, j with 1 ≤ i < j ≤ k such that ζi/ζj is a root of unity of
order ≤ k2.

Proof. We proceed by induction on k. If k = 2, then ζ1/ζ2 = −a2/a1 ∈ Q, hence
ζ1/ζ2 = ±1. Let k ≥ 3 and suppose that Lemma 2 holds for equations (2.1) with
fewer than k unknowns. We assume that (ζ1, . . . , ζk) is non-degenerate. This is no
loss of generality since if the left-hand side of (2.1) has a proper vanishing subsum
then Lemma 1 follows by applying the induction hypothesis to that subsum. We
assume also that ζ1 = 1. Again, this is no restriction, since replacing (ζ1, . . . , ζk) by
a proportional solution does not affect the quotients ζi/ζj . Lastly, we assume that
(ζ1, . . . , ζk) 6= (1, . . . , 1).

Let d be the smallest positive integer such that ζd1 = · · · = ζdk = 1. Then d > 1.
Choose any prime p dividing d and let pm be the largest power of p dividing d. We
have unique expressions

ζi = ζ∗i · ζνi for i = 1, . . . , k , (2.2)

in which ζ is a primitive pm-th root of unity and for i = 1, . . . , k, ζ∗i is a root of unity
with (ζ∗i )d/p = 1 and νi ∈ {0, . . . , p − 1}. Let K = Q(ζ∗), where ζ∗ is a primitive
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(d/p)-th root of unity. By inserting (2.2) into (2.1) and using a1, . . . , ak ∈ Q∗ we get

p−1∑
q=0

a(q)ζq = 0 with a(q) =
∑
i:νi=q

aiζ
∗
i ∈ K for q = 0, . . . , p− 1. (2.3)

From the minimality of d it follows that at least one of the exponents ν1, . . . , νk in
(2.2) is non-zero. Recalling that ζ1 = 1 we have ν1 = 0. Hence {i : νi = 0} is a
proper, non-empty subset of {1, . . . , k}. But together with the fact that (ζ1, . . . , ζk)
is non-degenerate this implies

a(0) =
∑
i:νi=0

aiζ
∗
i 6= 0 . (2.4)

From (2.3) and (2.4) it follows that ζ has degree at most p− 1 over K. This implies
that p2 does not divide d, since otherwise ζ would have had degree p over K. Since
p was an arbitrary prime divisor of d, we infer that d is square-free.

But then, ζ is a primitive p-th root of unity and ζ has degree p − 1 over K and
minimal polynomial Xp−1 +Xp−2 + · · ·+ 1 over K. Together with (2.3) this implies
a(0) = · · · = a(p− 1), that is,∑

i:νi=q1

aiζ
∗
i +

∑
i:νi=q2

(−ai)ζ∗i = 0 (2.5)

for each pair q1, q2 ∈ {0, . . . , p− 1} with q1 6= q2.

We want to apply the induction hypothesis to (2.5). Let p be the largest prime
dividing d. If p ≤ 3 then from the fact that d is square-free it follows that d ≤ 6
hence ζi/ζj is a root of unity of order ≤ 6 < k2 for all i, j ∈ {1, . . . , k}. Suppose that
p ≥ 5. By (2.4) and a(0) = · · · = a(p − 1) we have that a(q) 6= 0 and therefore that
{i : νi = q} is non-empty for q = 0, . . . , p−1. From this fact and p ≥ 5 it follows that
there are distinct q1, q2 ∈ {0, . . . , p− 1} such that the set T := {i : νi ∈ {q1, q2}} has
cardinality at most

2
p
· k < k .

Now the induction hypothesis applied to (2.5) with these indices q1, q2 implies that
there are different indices h, j ∈ T such that ζ∗h/ζ

∗
j is a root of unity of order at most

(2k/p)2 .

By (2.3) we have

ζh/ζj = ζa(ζ∗h/ζ
∗
j ) with a ∈ {0, q1 − q2, q2 − q1} .
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Recalling that ζ has order p, we infer that ζh/ζj has order at most

p×
(2
p
· k
)2 =

4
p
k2 < k2 ;

here we used again that p ≥ 5. This completes the proof of Lemma 1. ut

An immediate consequence of Lemma 1 is the following:

Lemma 2. There is a set U of cardinality at most k4, depending only on k, such
that for every solution (ζ1, . . . , ζk) of (2.1) there are distinct indices i, j ∈ {1, . . . , k}
for which

ζi/ζj ∈ U .

Proof. Let U be the set of roots of unity of order ≤ k2. This set has cardinality at
most

∑k2

i=1 i ≤ k4. Lemma 1 implies that Lemma 2 holds with this set U . ut

3. Proof of the Theorem.

In this section we consider eq. (2.1) with arbitrary, non-zero complex coefficients
a1, . . . , ak. We first prove:

Lemma 3. There exists a set U1, depending on a1, . . . , ak and of cardinality at most

(k!)6

such that for every solution (ζ1, . . . , ζk) of (2.1) there are distinct indices i, j ∈
{1, . . . , k} with

ζi/ζj ∈ U1 .

Proof. Similarly to [4], our approach is to take the determinant of k solutions of
(2.1), which is equal to 0, and then to expand this determinant as a sum of k! terms.
Thus, let z1 = (ζ11, . . . , ζ1k), . . . , zk = (ζk1, . . . , ζkk) be k solutions of (2.1). Then∣∣∣∣∣∣∣

ζ11 · · · ζ1k
...

...
ζk1 · · · ζkk

∣∣∣∣∣∣∣ = 0
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and by expanding the determinant, we get∑
σ

sgn(σ)ζ1,σ(1) · · · ζk,σ(k) = 0 , (3.1)

where the sum is taken over all permutations σ of (1, . . . , k) and sgn(σ) denotes the
sign of σ. Note that the left-hand side of (3.1) is a sum of k! roots of unity. By
applying Lemma 2 to this sum, with k replaced by k!, we infer that there exists a set
U2 of cardinality at most (k!)4, such that for every k-tuple of solutions z1, . . . , zk of
(2.1), there are distinct permutations σ, τ of (1, . . . , k) with

ζ1,σ(1)

ζ1,τ(1)
· · ·

ζk,σ(k)

ζk,τ(k)
∈ U2 . (3.2)

Let m ≤ k be the smallest integer with the following property: for every m-tuple z1 =
(ζ11, . . . , ζ1k), . . . , zm = (ζm1, . . . , ζmk) of solutions of (2.1) there are permutations σ,
τ of (1, . . . , k) with

σ 6= τ , σ(m+ 1) = τ(m+ 1), . . . , σ(k) = τ(k) (3.3)

such that
ζ1,σ(1)

ζ1,τ(1)
· · ·

ζm,σ(m)

ζm,τ(m)
∈ U2 (3.4)

(where the condition σ(m + 1) = τ(m + 1), . . . , σ(k) = τ(k) is understood to be
empty if m = k). Then clearly, 2 ≤ m ≤ k. First suppose that m ≥ 3. From the
minimality of m it follows that (2.1) has solutions z1, . . . , zm−1 such that for all pairs
of permutations σ, τ of (1, . . . , k) with

σ 6= τ , σ(m) = τ(m), . . . , σ(k) = τ(k) (3.5)

we have
ζ1,σ(1)

ζ1,τ(1)
· · ·

ζm−1,σ(m−1)

ζm−1,τ(m−1)
6∈ U2 . (3.6)

We fix such solutions z1, . . . , zm−1 and allow zm to vary. Writing z = (ζ1, . . . , ζk) for
zm, we infer from (3.3), (3.4), (3.5) and (3.6) that for every solution z of (2.1) there
are permutations σ, τ of (1, . . . , k) with

ζ1,σ(1)

ζ1,τ(1)
· · ·

ζm−1,σ(m−1)

ζm−1,τ(m−1)
·
ζσ(m)

ζτ(m)
∈ U2, σ(m) 6= τ(m) . (3.7)

Now suppose that m = 2. Fix a solution z1 of (2.1). Then for every other solution z
of (2.1), there are permutations σ, τ with (3.3) such that

ζ1,σ(1)

ζ1,τ(1)
·
ζσ(2)

ζτ(2)
∈ U2 .
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We have σ(2) 6= τ(2), since otherwise σ(i) = τ(i) for i = 2, . . . , k which contradicts
σ 6= τ . It follows that also for m = 2, and so for each possible value of m, one can
find for every solution z of (2.1) permutations σ, τ with (3.7).

Writing σ(m) = i, τ(m) = j in (3.7), we infer that for every solution z of (2.1) there
are distinct indices i, j ∈ {1, . . . , k} such that

ζi/ζj ∈ U1 ,

where U1 is the set consisting of all numbers of the form

β ·
ζ1,τ(1)

ζ1,σ(1)
· · ·

ζm−1,τ(m−1)

ζm−1,σ(m−1)
,

with β ∈ U2 and with σ, τ being distinct permutations of (1, . . . , k). As mentioned
before, U2 has cardinality at most (k!)4. Further, the solutions z1, . . . , zm−1 are fixed
and for σ, τ we have k! possibilities each. Therefore, U1 has cardinality at most (k!)6.
This completes the proof of Lemma 3. We mention that the choice of the solutions
z1, . . . , zm−1 was ineffective; therefore, the set U1 is ineffective. ut

Proof of the Theorem. We have to show that up to proportionality, (2.1) has at most
k3k2

non-degenerate solutions. We proceed by induction on k.

For k = 2, this assertion is trivial. Let k ≥ 3 and assume that each equation (2.1)
in k − 1 variables with non-zero complex coefficients has up to proportionality at
most (k − 1)3(k−1)2

non-degenerate solutions. Let U1 be the set from Lemma 3.
Thus, for every solution (ζ1, . . . , ζk) of (2.1) there are α ∈ U1 and distinct indices
i, j ∈ {1, . . . , k} such that ζi/ζj = α. The number of triples (α, i, j) with α ∈ U1,
i, j ∈ {1, . . . , k} is at most

(k!)6 · k2 ≤ k6k−4 . (3.8)

We now estimate from above the number of non-degenerate solutions (ζ1, . . . , ζk) of
(2.1) with

ζi/ζj = α , (3.9)

where (α, i, j) is a fixed triple with α ∈ U1 and i, j ∈ {1, . . . , k} with i 6= j. Assume
for convenience that i = k, j = k − 1. Then for every solution of (2.1) with (3.9) we
have ak−1ζk−1 + akζk = a′k−1ζk−1 with a′k−1 = ak−1 + αak and by substituting this
into (2.1), we obtain

a1ζ1 + · · ·+ ak−2ζk−2 + a′k−1ζk−1 = 0 . (3.10)

We may assume that a′k−1 6= 0, for otherwise we have for every solution of (2.1) with
(3.9) that ak−1ζk−1 + akζk = 0, i.e., (2.1) does not have non-degenerate solutions
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with (3.9). Further, if (ζ1, . . . , ζk) is a non-degenerate solution of (2.1) with (3.9),
then (ζ1, . . . , ζk−1) is a non-degenerate solution of (3.10). By the induction hypothesis,
(3.10) has up to proportionality at most (k−1)3(k−1)2

non-degenerate solutions. Since
each such solution determines uniquely a solution of (2.1) with (3.9), it follows that
(2.1) has up to proportionality at most (k − 1)3(k−1)2

non-degenerate solutions with
(3.9). Together with the upper bound (3.8) for the total number of triples (α, i, j), it
follows that (2.1) has up to proportionality at most

(k − 1)3(k−1)2
· k6k−4 ≤ k3k2−6k+3+6k−4 ≤ k3k2

solutions. This completes the proof of the Theorem. ut
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