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The Absolute Subspace Theorem
and linear equations with unknowns

from a multiplicative group
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To Professor Andrzej Schinzel on his 60-th birthday

0. Introduction

We deal with the equation

a1x1 + . . .+ anxn = 1 in x1, . . . , xn ∈ G (0.1)

where the coefficients a1, . . . , an are non-zero elements of a given algebraic num-
ber field K and where G is a finitely generated subgroup of the multiplicative
group K∗. Independently, Evertse [8] and van der Poorten and Schlickewei [24]
showed that (0.1) has only finitely many solutions with non-vanishing subsums,
i.e. ∑

i∈I
aixi 6= 0 for each non-empty subset I of {1, . . . , n}. (0.2)

They both gave essentially the same proof, based on the Subspace Theorem (more
precisely, Schlickewei’s generalisation to p-adic absolute values and number fields
[30] of the Subspace Theorem proved by Schmidt in 1972 [41]).

In 1984, Evertse [7] showed that if G is the group of S-units in K and a, b ∈ K∗,
then the equation ax+ by = 1 has at most 3×74s solutions in x, y ∈ G, where s is
the cardinality of S. The significant feature of this bound is its uniformity. It does
not depend upon the coefficients a and b and it involves only the cardinality of the
set S but not the particular primes belonging to S. Schmidt’s pioneering work from
1989 [42] in which he obtained a quantitative version of his Subspace Theorem from
1972 giving an explicit upper bound for the number of subspaces involved, opened
the possibility to determine explicit upper bounds for the number of solutions of
Diophantine equations from several classes, including eq. (0.1) in n ≥ 3 unknowns.
In fact, many of the generalisations and improvements of Schmidt’s result obtained
later were motivated by the desire to derive good explicit uniform upper bounds for
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the number of solutions of (0.1). Schlickewei [32] obtained a quantitative version
of the p-adic Subspace Theorem over number fields from [30] and was the first
to derive an explicit uniform upper bound for the number of solutions of (0.1)
for arbitrary n [31]. His results were improved later by Evertse [11], [9]. In another
direction, Schlickewei [34] derived a quantitative version of the so-called Parametric
Subspace Theorem and deduced from this an explicit upper bound for the number
of solutions of (0.1) depending only on the rank r ofG (that is the rank ofGmodulo
its torsion subgroup), the number of unknowns n and the degree d of K [36]. An
important open problem was, to remove the dependence on d, that is, to derive
an upper bound depending only on r and n. The dependence on d was caused
inter alia by a dependence of the bound in Schlickewei’s quantitative Parametric
Subspace Theorem on the discriminant of K; so another important open problem
was to remove the discriminant from this result of Schlickewei.

In this survey paper, we present among others an improvement of Schlickewei’s
quantitative Parametric Subspace Theorem which is indeed independent of the dis-
criminant. In fact, we present an “absolute” generalisation in which the unknowns
are taken from the algebraic closure Q of Q instead of from a number field K.
A complete proof will be published in [14]. The main new ingredient is what may
be viewed as an absolute Minkowski’s theorem proved by Roy and Thunder ([27]
Thm. 6.3; [28] Thm. 2).

As a consequence we proved, together with W.M. Schmidt, the following result:

Suppose that G has rank r; then the number of solutions of eq. (0.1) with property
(0.2) is at most c(n)r+2 with c(n) = exp{(6n)4n}.

The proof will be published in [15].
In Section 1 we introduce some notation. In Section 2 we give an overview of

the history and explain the interrelationship between eq. (0.1) and the Subspace
Theorem and in Section 3 we present our new results.

1. Notation

We introduce absolute values, norms and heights.
Let M(Q) = {∞} ∪ {prime numbers} be the set of places of Q, | · |∞ = | · |

the ordinary absolute value on Q and for every prime number p, | · |p the p-adic
absolute value on Q with |p|p = 1/p. Now let K be an algebraic number field and
denote by

M(K) the set of all places of K,
M∞(K) the set of infinite (archimedean) places of K,

Mfin(K) the set of finite (non-archimedean) places of K.

We denote by Qp the completion of Q at p and by Kv the completion of K at v.
For every v ∈ M(K), choose the absolute value | · |v such that if v lies above
p ∈M(Q), then | · |v is a continuation of | · |p, i.e. |x|v = |x|p for x ∈ Q. We mostly
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deal with the normalised absolute value ‖ · ‖v on K given by

‖ · ‖v = | · |d(v)
v where d(v) =

[Kv : Qp]
[K : Q]

. (1.1)

These normalised absolute values satisfy the product formula∏
v∈M(K)

‖x‖v = 1 for x ∈ K∗.

Such normalised absolute values are introduced in precisely the same way for
every finite extension of K. Thus we obtain for every finite extension F of K, every
v ∈M(K) and every place w of F lying above v the relation

‖x‖w = ‖x‖d(w|v)
v for x ∈ K, where d(w|v) =

[Fw : Kv]
[F : K]

(1.2)

(here Fw denotes the completion of F at w). Recall that∑
w|v

d(w|v) = 1, (1.3)

where ‘w|v’ means that the sum is taken over all places w ∈M(F ) lying above v.
We fix an algebraic closure Q of Q and assume that every number field K

is contained in Q. For every v ∈ M(K) we choose and then fix henceforth a
continuation of ‖ · ‖v to Q (by continuing ‖ · ‖v to the algebraic closure Kv of Kv

and choosing an isomorphic embedding of Q into Kv) and denote this also by ‖·‖v.
Thus, for every number field K and every v ∈ M(K) we have an absolute value
‖ · ‖v on Q.

We introduce v-adic norms and heights for points x = (x1, . . . , xn) ∈ Q
n
.

Given x, let K be a number field with x ∈ Kn. For v ∈M(K) put

‖x‖v := max(‖x1‖v, . . . , ‖xn‖v).

Then the height of x is defined by

H(x) :=
∏

v∈M(K)

‖x‖v .

By (1.2), (1.3) this does not depend on the choice of K. Occasionally, we need
another height H2 which is defined by taking Euclidean norms at the infinite
places. That is, for x = (x1, . . . , xn) ∈ Q

n
we define

H2(x) =
∏

v∈M(K)

‖x‖v,2 ,

where K is any number field with x ∈ Kn and where

‖x‖v,2 =
(( n∑

i=1

|xi|2v
)1/2)d(v)

for v ∈M∞(K),

‖x‖v,2 = ‖x‖v for v ∈Mfin(K).
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Thus,
H(x) ≤ H2(x) ≤ n1/2H(x) for x ∈ Q

n
.

For a linear form L = a1X1 + . . .+ anXn with coefficient vector a = (a1, . . . , an)
in Q

n
, a number field K and v ∈M(K) we define

‖L‖v = ‖a‖v, H(L) = H(a), H2(L) = H2(a).

As usual, for a number field K and a finite set of places S on K containing the
infinite places, we define

OS = {x ∈ K : ‖x‖v ≤ 1 for v 6∈ S} : the ring of S-integers,
O∗S = {x ∈ K : ‖x‖v = 1 for v 6∈ S} : the multiplicative group of S-units.

2. History

We start with recalling Schmidt’s quantitative Subspace Theorem from 1989. Let
Li = αi1X1 + . . . + αinXn (i = 1, . . . , n) be n linearly independent linear forms
with coefficients in Q such that

H2(Li) ≤ H2 for i = 1, . . . , n, [Q({αij : 1 ≤ i, j ≤ n}) : Q] ≤ D. (2.1)

Consider the inequality

|L1(x) · · ·Ln(x)| ≤ |det(L1, . . . , Ln)| ·H2(x)−δ in x ∈ Zn, (2.2)

where det(L1, . . . , Ln) = det((αij)1≤i,j≤n) and where 0 < δ ≤ 1.

Theorem A (Schmidt [42]). The set of solutions of (2.2) with

H2(x) ≥ max
(
(n!)8/δ,H2

)
(2.3)

is contained in some finite union T1 ∪ . . . ∪ Ta of proper linear subspaces of Qn

with
a ≤ (2D)226nδ−2

.

Schlickewei [32] proved a generalisation of Theorem A over number fields al-
lowing an arbitrary finite set of absolute values. One of the main ingredients in
the proofs of Schmidt and Schlickewei was Roth’s lemma, a non-vanishing result
for polynomials proved by Roth in 1955 [26]. In [10], Evertse derived a sharpening
of Roth’s lemma1) and by means of this, in [11] he considerably improved upon

1) In his paper [16] (cf. Section 3), Faltings proved in a non-explicit form his Prod-
uct theorem which is a far-reaching generalisation of Roth’s lemma. Part of the
arguments in Faltings’ proof were made explicit by van der Put [25]. Evertse went
further on this and worked out a completely explicit version of Faltings’ Product
theorem [10]. A similar explicit version of the Product theorem was obtained in-
dependently by Ferretti [17]. Evertse obtained his sharpening of Roth’s lemma by
slightly refining the techniques used in the proof of the Product theorem.



Absolute Subspace Theorem 5

Theorem A and Schlickewei’s generalisation. We recall only Evertse’s quantitative
Subspace Theorem. For a field F and a linear form L = a1X1 + . . .+anXn with co-
efficients in some extension of F , we define the field F (L) = F (a1/ai, , . . . , an/ai)
for any index i with ai 6= 0. Let K be an algebraic number field and S a finite
set of places on K of cardinality s, containing all infinite places. For v ∈ S, let
L

(v)
1 , . . . , L

(v)
n be linearly independent linear forms in X1, . . . , Xn with coefficients

in Q such that

H2(L(v)
i ) ≤ H2, [K(L(v)

i ) : K] ≤ D for v ∈ S, i = 1, . . . , n. (2.4)

Consider the analogue of (2.2) for number fields,∏
v∈S

n∏
i=1

‖L(v)
i (x)‖v
‖x‖v,2

≤
(∏
v∈S
‖det(L(v)

1 , . . . , L(v)
n )‖v

)
·H2(x)−n−δ in x ∈ Kn (2.5)

with 0 < δ ≤ 1. Then one has [11]:

Theorem B. The set of solutions of (2.5) with

H2(x) ≥ H2 (2.6)

is contained in some finite union T1 ∪ . . . ∪ Ta of proper linear subspaces of Kn

with
a ≤

(
260n2

δ−7n
)s · log 4D log log 4D. (2.7)

Let us now turn to applications of the Subspace Theorem. Let K be an algebraic
number field and let G be a finitely generated subgroup of the multiplicative
group K∗. Consider the equation

a1x1 + . . .+ anxn = 1 in x1, . . . , xn ∈ G
with

∑
i∈I aixi 6= 0 for each non-empty subset I of {1, . . . , n},

}
(2.8)

where a1, . . . , an ∈ K∗. As mentioned in the Introduction, the (qualitative) Sub-
space Theorem implies that (2.8) has only finitely many solutions.

By using his quantitative version of the Subspace Theorem from [32],
Schlickewei [31] derived an explicit upper bound for the number of solutions
of (2.8) in the case when G is the group of S-units:

Theorem C. Let K be an algebraic number field of degree d, let S be a set of
places of K of finite cardinality s containing all infinite places, and let G = O∗S.
Then (2.8) has at most

(4sd!)236nd!s6

solutions.

Later, he improved this to 2227ns [36]. Using his Theorem B, Evertse [9] further
improved Schlickewei’s bound to

(235n2)n
3s. (2.9)
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Note that O∗S (that is, O∗S modulo its torsion subgroup) has rank s − 1 and
that s ≥ d/2 (since S contains all infinite places). Hence Theorem C and its
improvements give for G = O∗S an upper bound for the number of solutions of (2.8)
depending only on n and the rank of O∗S . The ultimate goal was, to obtain for
arbitrary finitely generated multiplicative groupsG an upper bound for the number
of solutions of (2.8) depending only on n and the rank of G. Theorem C and its
improvements imply for finitely generated subgroups G of K∗ only an upper bound
depending on s, where s is the cardinality of the smallest set of places S such that
S contains all infinite places and G ⊂ O∗S . The number s can be much larger than
the rank of G, for instance if G is a cyclic group with a generator α with ‖α‖v 6= 1
for precisely s places v.

If one applies to (2.8) a quantitative version of the Subspace Theorem such as
Theorem B with an upper bound for the number of subspaces depending on s, one
necessarily obtains an upper bound for the number of solutions of (2.8) depend-
ing on s and one cannot exploit the fact that G has rank much smaller than s.
Schlickewei considered a different approach, by reducing (2.8) to the Parametric
Subspace Theorem. The latter can be stated as follows. Let K,S be as above. For
v ∈ S, let L(v)

1 , . . . , L
(v)
n be linearly independent linear forms in X1, . . . , Xn with

coefficients in Q. For a fixed tuple of reals c = (civ : v ∈ S, i = 1, . . . , n) and a
varying parameter Q ≥ 1, define the “parallelepiped”

Π(Q, c) = {x ∈ OnS : ‖L(v)
i (x)‖v ≤ Qciv for v ∈ S, i = 1, . . . , n}. (2.10)

Parametric Subspace Theorem (Qualitative version). Let c be a fixed tuple
with ∑

v∈S

n∑
i=1

civ =: −δ < 0.

Then there are finitely many proper linear subspaces T1, . . . , Tb of Kn such that
for every Q ≥ 1 we have

Π(Q, c) ⊂ T1 ∪ . . . ∪ Tb .

The Parametric Subspace Theorem is in fact equivalent to the (qualitative)
Subspace Theorem. We sketch how the Parametric Subspace Theorem implies the
Subspace Theorem, i.e., that the set of solutions of∏

v∈S

n∏
i=1

‖L(v)
i (x)‖v
‖x‖v

≤ H(x)−n−δ in x ∈ Kn (2.11)

is contained in the union of finitely many proper linear subspaces of Kn. Let x
be a solution of (2.11) with L

(v)
i (x) 6= 0 for v ∈ S, i = 1, . . . , n. Note that (2.11)

is homogeneous in x. By replacing x by a scalar multiple if necessary, we may
assume that x ∈ OnS and

∏
v∈S ‖x‖v � H(x), where the constant implied by �

depends on K. Then (2.11) implies
∏
v∈S

∏n
i=1 ‖L

(v)
i (x)‖v � H(x)−δ. Define Q
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and the tuple c by

Q = H(x), ‖L(v)
i (x)‖v = Qciv for v ∈ S, i = 1, . . . , n.

Then clearly,

x ∈ Π(Q, c),
∑
v∈S

n∑
i=1

civ � −δ < 0.

But the tuple c varies with x whereas the Parametric Subspace Theorem requires
c to be fixed. However, one can show that if x runs through the set of solutions
of (2.11), then c runs through a bounded subset of Rns, where s is the cardinality
of S. By covering this bounded set with small cubes, one infers that there is a finite
set C in Rns such that every c in the bounded set is very close to some c′ ∈ C.
More precisely one can show that there is a finite set C of cardinality ≤ c(n, δ)ns

(with c(n, δ) a function of n and δ only) such that for every solution x of (2.11)
there is a c′ = (c′iv : v ∈ S, i = 1, . . . , n) ∈ C very close to c with

x ∈ Π(Q, c′),
∑
v∈S

n∑
i=1

c′iv ≤ −
δ

2
.

Now by applying the Parametric Subspace Theorem to Π(Q, c′) for every c′ ∈ C
we infer that there is a union of finitely many proper linear subspaces of Kn

containing the set of solutions of (2.11). ut

This argument implies that if we had a quantitative version of the Parametric
Subspace Theorem with a uniform upper bound for the number b of subspaces, then
by multiplying this with c(n, δ)ns we would obtain, similarly as in Theorem B, an
upper bound depending on s for the number of subspaces in the Subspace Theorem.
We will see later that in contrast, the number of subspaces in the Parametric
Subspace Theorem can be estimated from above independently of s.

We consider again eq. (2.8) where G is a subgroup of K∗ of rank r. We sketch
Schlickewei’s argument to reduce (2.8) to the Parametric Subspace Theorem. If
we want to derive an upper bound for the number of solutions of (2.8) depending
only on n and r we may as well assume that all coefficients a1, . . . , an of (2.8) are
equal to 1, since if we add a1, . . . , an as new generators to G, then the rank of G
increases by at most n. That is, we may restrict ourselves to the equation

x1 + . . .+ xn = 1 in x1, . . . , xn ∈ G. (2.12)

We choose a number field K and a finite set of places S on K, containing all
infinite places, such that G ⊂ O∗S . Let x = (x1, . . . , xn) be a solution of (2.12), put
x0 := 1 and choose

Q = H(x′) where x′ = (x0, x1, . . . , xn). (2.13)

Define the tuple of reals e = (eiv : v ∈ S, i = 0, . . . , n) by

‖xi‖v = Qeiv for v ∈ S, i = 0, . . . , n. (2.14)
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For v ∈ S choose i(v) from {0, . . . , n} such that

ei(v),v = max(e0v, . . . , env).

Now choose linear forms L(v)
i (v ∈ S, i = 1, . . . , n) and a tuple of reals c = (civ :

v ∈ S, i = 1, . . . , n) such that for v ∈ S we have

{L(v)
1 , . . . , L(v)

n } = {X0, X1, . . . , Xn}\{Xi(v)}
where X0 := X1 + . . .+Xn ,

(2.15)

civ = ejv if L(v)
i = Xj . (2.16)

Then clearly, x ∈ Π(Q, c), where Π(Q, c) is given by (2.10). Further, by the product
formula and x0, . . . , xn ∈ O∗S we have∏

v∈S
‖xi‖v = 1, whence

∑
v∈S

eiv = 0 for i = 0, . . . , n

and by ‖x′‖v = Qei(v),v for v ∈ S, ‖x′‖v = 1 for v 6∈ S and (2.13) we have∑
v∈S

ei(v),v = 1.

Hence ∑
v∈S

n∑
i=1

civ = −1 < 0.

Now the tuple e defined by (2.14) varies with x and therefore so do the tuple
(i(v) : v ∈ S) and the tuple c. If x runs through the solutions of (2.12), then the
vector x′ = (1, x1, . . . , xn) runs through a group of rank nr. Using this, one can
prove that the tuple e defined by (2.14) runs through an nr-dimensional linear
subspace of R(n+1)s, where s is the cardinality of S. Schlickewei showed in [34]
that if x runs through the solutions of (2.12), then e runs through a bounded
subset of this linear subspace and moreover, that every element from this bounded
subset can be closely approximated by an element from a finite set D of cardinality
at most a function c1(n, r) of n and r. More precisely, Schlickewei proved that for
the tuple e defined by (2.14), one can choose a tuple e′ from D close to e such
that if (i(v) : v ∈ S) and c are defined in precisely the same way as above but
with e′ replacing e, then x ∈ Π(Q, c), where Q is slightly larger than H(x′) and∑

v∈S

n∑
i=1

civ ≤ − 99
100 , (2.17)

say. Stated otherwise, we have x ∈ Π(Q, c), where the tuple of linear forms and
reals ({L(v)

i }; c) satisfies (2.15) and (2.17) and belongs to a collection of cardinality
c1(n, r) independent of x. ut

Let us speculate and let us suppose that (for linear forms L(v)
i defined by (2.15))

the number of subspaces b in the Parametric Subspace Theorem is bounded above
by a quantity depending only on δ = −

(∑
v∈S

∑n
i=1 civ

)
and n, say. Then by
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substituting δ = 99/100 and multiplying this quantity with c1(n, r) we would
obtain an upper bound c2(n, r) for the number of proper linear subspaces of Kn

containing the set of solutions of (2.12). By an argument using induction on n we
would then deduce an upper bound for the number of solutions of (2.12) or of (2.8)
depending on n and r only.

We recall Schlickewei’s quantitative Parametric Subspace Theorem from [34].
Let K be a number field, DK the discriminant of K and d = [K : Q]. Further, let
S be a finite set of places of K, containing all infinite places and for v ∈ S, let
L

(v)
1 , . . . , L

(v)
n be linearly independent linear forms with

{L(v)
1 , . . . , L(v)

n } ⊂ {X1, . . . , Xn, X1 + . . .+Xn} (2.18)

(which is sufficient for applications to (2.8) in view of (2.15)). Lastly, let c = (civ :
v ∈ S, i = 1, . . . , n) be a tuple of reals with∑

v∈S

n∑
i=1

civ ≤ −δ with 0 < δ ≤ 1,
∑
v∈S

n∑
i=1

|civ| ≤ 1 (2.19)

(the second inequality is some normalisation assumption). The following result is
a slight reformulation of Lemma 6.1 of [34].

Theorem D. There are proper linear subspaces T1, . . . , Tb of Kn, with

b ≤ 2222nδ−2

such that for every Q satisfying

Q ≥ max(n2n/δ, |DK |1/2d) and a technical condition (2.20)

we have Π(Q, c) ⊂ T1 ∪ . . . ∪ Tb.

The technical condition in (2.20) is too complicated to be stated here but quite
harmless. The lower bound for Q is a much more serious problem. When applying
Theorem D to (2.8), Q roughly speaking corresponds to the height of a solution
of (2.8) and δ is a constant (cf. (2.13), (2.17)). So Theorem D can be applied only
to the “large” solutions of (2.8). Schlickewei managed to determine an explicit
upper bound for the number of “small” solutions of (2.8), depending on n, r and
the degree d of [K : Q]. Thus, he obtained the following result [36]:

Theorem E. Let K be an algebraic number field of degree d and G a subgroup
of rank r of the multiplicative group K∗. Then the number of solutions of (2.8) is
at most

2226n
· 216n4r+4n2r2

· d6n2(r+1).

We recall that for G = O∗S we have d ≤ 2(rankO∗S + 1).
By applying Evertse’s sharpening of Roth’s lemma [10], Schlickewei [38] im-

proved the upper bound for b in Theorem D to 8(n+5)2
δ−n−4, but with the same
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condition (2.20) imposed on Q. Schlickewei and Schmidt [39] then improved the
bound in Theorem E to (2d)41n3rrn

2r.
Schmidt (Theorem 5 of [44]; cf. Theorem I in Section 3 of the present paper)

obtained an upper bound for the number of “very small” solutions of (2.8). In
combination with a hypothetical version of Theorem D where (2.20) is replaced by
a lower bound for Q depending only on n and δ, this would have given an upper
bound for the total number of solutions of (2.8) depending only on n and r. Thus,
to obtain such an upper bound, the term |DK |1/2d in (2.20) is the only remaining
obstacle.

We explain why the term |DK |1/2d in (2.20) introduces a dependence on d in the
upper bound for the number of solutions of (2.8). To this end, we use the following
“Gap principle,” ([34], Lemma 8.6) which states that if Q runs through a small
interval, then the points in Π(Q, c) run through a small number of subspaces.

Gap principle. Let L(v)
i (v ∈ S, i = 1, . . . , n) be linear forms satisfying (2.18)

and c a tuple satisfying (2.19). For every Q0 ≥ n2n/δ, E > 1, there are proper
linear subspaces T1, . . . , Tk of Kn with

k ≤ 1 +
4n
δ

logE,

such that for every Q ∈ [Q0, Q
E
0 ) we have Π(Q, c) ⊂ T1 ∪ . . . ∪ Tk.

Assume (2.18), (2.19). Let x = (x1, . . . , xn) ∈ Π(Q, c). Suppose that for some j
with xj 6= 0, the quotients xi/xj (1 ≤ i ≤ n) generate K and are not all equal to
roots of unity. Under this hypothesis, Silverman [46] (Theorem 2) showed that

H(x) ≥ d−1/d|DK |1/2d(d−1).

Now from

‖x‖v � max
1≤i≤n

‖L(v)
i ‖v � Qmax(c1v,...,cnv) � Q

∑n
i=1 |civ| for v ∈ S,

‖x‖v ≤ 1 for v 6∈ S since x ∈ OnS ,

and (2.19) it follows that H(x) � Q. (Here and below constants implied by �
depend only on n and δ.) Hence

Q� |DK |1/2d(d−1).

By the Gap principle, the union of the sets Π(Q, c), with |DK |1/2d(d−1) � Q <
|DK |1/2d, is contained in the union of � log d proper linear subspaces of Kn.
Therefore, in order to incorporate the solutions x with Q ≤ |DK |1/2d we have
to add a quantity � log d to the upper bound for the number of subspaces in
Theorem D. Thus, the final result on the number of solutions of (2.8) involves the
parameter d. ut

We now review some results about the equation in two unknowns

ax+ by = 1 in x, y ∈ G, (2.21)
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where as above G is a finitely generated subgroup of K∗ of rank r and where
a, b ∈ K∗. Schlickewei [34] proved for the case n = 2 a version of Theorem D inde-
pendent of the discriminant. Further, he derived [37] an estimate for the number
of “small” solutions of (2.21) (which preceded Schmidt’s result mentioned above).
By combining these results he obtained in the same paper [37] an upper bound for
the total number of solutions of (2.21) depending only on the rank r. Schlickewei
considered the general case that G is a finite type subgroup of the multiplicative
group of complex numbers C∗. Here, G is called a finite type group if it has a free
subgroup G0 of finite rank such that G/G0 is a torsion group; the rank of G is
then defined as the rank of G0. By a simple argument, Schlickewei reduced the
general case to the special case that G is a finitely generated multiplicative group
in some number field. His result is as follows:

Theorem F. Let G be a finite type subgroup of C∗ of rank r and a, b ∈ C∗. Then
(2.21) has at most 2226+9r2

solutions.

Later, Schlickewei and Schmidt [39] improved this to 214r+63r2r. By using
hypergeometric functions instead of Theorem D in dimension 2, Beukers and
Schlickewei [1] obtained the bound 216(r+1). This last result is comparable to
Evertse’s upper bound 3×74s for the case G = O∗S where S has cardinality s [7].

By a very different method, Bombieri, Mueller and Poe [3] showed that if G
has rank r and is contained in a number field of degree d, then (2.21) has at most
d9r2125r2

solutions. They obtained their result by extending an idea of Poe [23] to a
general “cluster principle” entailing that the solutions of (2.21) can be divided into
clusters of solutions lying close together, and by combining this with an effective
upper bound for the heights of the solutions of (2.21) obtained by means of lower
bounds for linear forms in logarithms.

Silverman [47] showed that for any algebraic number field K of degree d and
any given element α of the unit group O∗K of the ring of integers of K, the equation
αm + ε = 1 has at most d1+o(1) solutions in m ∈ Z, ε ∈ O∗K , in other words, there
are at most d1+o(1) integers m such that αm is an exceptional unit. This does not
follow from any of the results mentioned above.

Further information about equations (2.8) and (2.21) and their applications
can be found in the survey papers [18] and [13].

3. New results

We present an improvement of Theorem D which is independent of the discrim-
inant. In his proof of Theorem D, Schlickewei used a generalisation to number
fields of Minkowski’s theorem on successive minima, proved by McFeat [22] and
later independently by Bombieri and Vaaler [4]. We used instead an “absolute
Minkowski’s theorem” of Roy and Thunder ([27], Thm. 6.3; [28], Thm. 2). First,
we recall the result of McFeat and Bombieri and Vaaler, as well as that of Roy
and Thunder.
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Let K be a number field of degree d and of discriminant DK . For every
v ∈M(K) we extend ‖ · ‖v to the completion Kv. Let S be a finite set of places
on K, containing all infinite places. Thus,

S = M∞(K) ∪ Sfin,

where Sfin consists of the finite places in S. For v ∈ S, let L(v)
1 , . . . , L

(v)
n be linearly

independent linear forms in X1, . . . , Xn with coefficients in Kv. Let Q ≥ 1 be a
real, and c = (civ : v ∈ S, i = 1, . . . , n) a tuple of reals and define as before,

Π(Q, c) = {x ∈ OnS : ‖L(v)
i (x)‖v ≤ Qciv for v ∈ S, i = 1, . . . , n}.

For reals λ > 0, define

λΠ(Q, c) =

{
x ∈ OnS :

‖L(v)
i (x)‖v ≤ λd(v)Qciv for v ∈M∞(K), i = 1, . . . , n,

‖L(v)
i (x)‖v ≤ Qciv for v ∈ Sfin, i = 1, . . . , n

}
,

where d(v) = 1/d if Kv = R and d(v) = 2/d if Kv = C. For i = 1, . . . , n, the i-th
successive minimum λi = λi(Q, c) of Π(Q, c) is the infimum of all λ > 0 such that
λΠ(Q, c) contains i linearly independent vectors. Obviously, λ1 ≤ . . . ≤ λn. Put

∆ =
∏
v∈S
‖det(L(v)

1 , . . . , L(v)
n )‖v, δ = −

(∑
v∈S

n∑
i=1

civ

)
. (3.1)

The following result, which was used by Schlickewei in his proof of Theorem D, is
a consequence of [22], Thm. 5, p. 15 and Thm. 6, p. 23 and of [4], Thm. 3, p. 18
and Thm. 6, p. 23.

Theorem G. Suppose that for v ∈ Sfin, i = 1, . . . , n, the number Qciv belongs to
the value set of ‖ · ‖v. Then

n−n/2∆Qδ ≤ λ1 · · ·λn ≤ |DK |n/2d∆Qδ.

It is important to remark that the occurrence of the term |DK |1/2d in (2.20)
was caused only by the factor |DK |n/2d in the upper bound for λ1 · · ·λn.

Below, we give an analogous result for the “algebraic closures” of the sets
Π(Q, c), which is a consequence of the result of Roy and Thunder. Let F be a
finite extension of K and denote by SF the set of places of F lying above those
in S. Thus, OSF is the integral closure of OS in F . For each place v ∈ S and for
each place w ∈ SF lying above v we introduce linear forms L(w)

i and reals ciw by

L
(w)
i = L

(v)
i , ciw = d(w|v) · civ (i = 1, . . . , n), (3.2)

where d(w|v) is given by (1.2). Define

ΠF (Q, c) = {x ∈ OnSF : ‖L(w)
i (x)‖w ≤ Qciw for w ∈ SF , i = 1, . . . , n}.

By (1.2), for every pair of finite extensions F,E of K with F ⊆ E we have
ΠE(Q, c) ∩ Fn = ΠF (Q, c). Now we define the algebraic closure of Π(Q, c) by

Π(Q, c) =
⋃
F⊇K

ΠF (Q, c),
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where the union is taken over all finite extensions F of K. Note that Π(Q, c) ⊂ OnS ,
where OS is the integral closure of OS in Q.

For λ > 0 we define

λΠ(Q, c) =
⋃
F⊇K

(
λΠF (Q, c)

)
,

where for every finite extension F of K the set λΠF (Q, c) is given by{
x ∈ OnSF :

‖L(w)
i (x)‖w ≤ λd(w)Qciw for w ∈M∞(F ), i = 1, . . . , n,

‖L(w)
i (x)‖w ≤ Qciw for w ∈ Sfin

F , i = 1, . . . , n,

}
(with d(w) = 1

[F :Q] if Fw = R and d(w) = 2
[F :Q] if Fw = C). The i-th successive

minimum λi = λi(Q, c) of Π(Q, c) is the infimum of all λ > 0 such that λΠ(Q, c)
contains i linearly independent vectors from OnS . The next result is a consequence
of Roy and Thunder [28], Thm. 2, which in turn is a slight improvement of [27],
Thm. 6.3.

Theorem H. Π(Q, c) has precisely n successive minima with 0 < λ1 ≤ . . . ≤
λn <∞ and

n−n/2∆Qδ ≤ λ1 · · ·λn ≤ en(n−1)/4∆Qδ.

In Theorem H, there is no dependence on the discriminant of some number field
but the price is, that we have no information about the number field generated
by the coordinates of the vectors corresponding to the successive minima. In his
proof of Theorem D, Schlickewei dealt only with vectors in Kn for some given
number field K. Fortunately, we were able to extend Schlickewei’s arguments in
such a way that we could work with arbitrary vectors from Q

n
. This allowed

us to apply Theorem H instead of Theorem G. Thus, we succeeded to prove a
Parametric Subspace Theorem which does not involve anymore the discriminant.
In fact, since we had to deal with vectors in Q

n
anyhow, we were able to prove

a quantitative “absolute” Parametric Subspace Theorem dealing with algebraic
closures Π(Q, c) ⊂ Q

n
rather than sets Π(Q, c) ⊂ Kn. Further, we considerably

relaxed conditions (2.18) and (2.19).
Let K,S be as above, and let L(v)

i (v ∈ S, i = 1, . . . , n) be linear forms with
the following properties:

for v ∈ S, {L(v)
1 , . . . , L

(v)
n } is a linearly independent set of linear forms

in X1, . . . , Xn with coefficients in K,

H(L(v)
i ) ≤ H, ‖L(v)

i ‖v = 1 for v ∈ S, i = 1, . . . , n,

there are exactly R distinct sets among {L(v)
1 , . . . , L

(v)
n } (v ∈ S).

 (3.3)

Further, let c = (civ : v ∈ S, i = 1, . . . , n) be a fixed tuple of reals with∑
v∈S

n∑
i=1

civ ≤ −δ with 0 < δ ≤ 1,
∑
v∈S

max(c1v, . . . , cnv) ≤ 1 (3.4)
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and put

∆ =
∏
v∈S
‖det(L(v)

1 , . . . , L(v)
n )‖v .

The complete proof of the following result will be published in [14]:

Theorem 1. There are proper linear subspaces T1, . . . , Tb of Q
n

, all defined
over K, with

b ≤ 4(n+5)2
δ−n−4 log 4R · log log 4R

such that for every Q with

Q ≥ max
(
H, (nn/2∆−1)2/δ

)
(3.5)

there is an i ∈ {1, . . . , b} with

Π(Q, c) ⊂ Ti .

In the special case when {L(v)
1 , . . . , L

(v)
n } ⊂ {X1, . . . , Xn, X1 + . . . + Xn} for

v ∈ S, we have H = 1, R ≤ n + 1 and ∆ = 1, whence both the upper bound
for b and the lower bound for Q depend only on n and δ. So Theorem 1 gives us
precisely the improvement of Theorem D we were aiming at. Let G be a finitely
generated multiplicative group contained in a number field. Using, as indicated in
Section 1, Theorem 1 for the “large solutions” of (2.8) and Schmidt’s result ([44],
Thm. 5) for the “small” solutions, we obtained together with Schmidt an upper
bound for the total number of solutions of (2.8) depending on n and the rank r
of G only.

Van der Poorten and Schlickewei [24] showed that eq. (2.8) has only finitely
many solutions for every finitely generated subgroup G of C∗, by means of some
specialisation argument, reducing to the case that G is contained in a number field.
Together with some Kummer theory worked out by Laurent [19] this implies that
(2.8) has only finitely many solutions if G is a finite type subgroup of C∗. The
specialisation argument can be considerably simplified and the Kummer theory
can be avoided if one already knows that in the case when G is contained in some
number field the number of solutions is bounded above by a function of n and r.
Thus, together with Schmidt, we obtained the following result for arbitrary finite
type subgroups of C∗ [15]:

Theorem 2. Let G be a finite type subgroup of C∗ of rank r and a1, . . . , an ∈ C∗.
Then the number of solutions of the equation)

a1x1 + . . .+ anxn = 1 in x1, . . . , xn ∈ G
with

∑
i∈I aixi 6= 0 for each non-empty subset I of {1, . . . , n}

}
is at most

c(n)r+2 with c(n) = exp
(
(6n)4n

)
.
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From Theorem 1 we derived (in the case that G is contained in a number
field) an upper bound for the number of “large” solutions of (2.8) depending ex-
ponentially on n3. Unfortunately, Schmidt’s estimate for the number of “small”
solutions gave a contribution to the upper bound of Theorem 2 depending doubly
exponentially on n. At the end of this section we discuss Schmidt’s result in more
detail.

In certain special cases, results much better than Theorem 2 are known. If G
is the group of S-units O∗S in some number field, Evertse’s bound (2.9) is much
sharper. Now suppose that G is the group of roots of unity in C∗ (i.e. G has rank 0).
Let n1 = n + 1. ¿From results of Mann [21] and Conway and Jones [6] it follows
that if the coefficients a1, . . . , an are rational numbers, then (2.8) has at most
exp(2n3/2

1 log n1) solutions. Schlickewei [33] derived the upper bound exp(4n1!) if
a1, . . . , an are arbitrary complex numbers. Recently, Evertse [12] improved this to
exp(3n2

1 log n1).
We mention that to prove Theorem 2 already a “non-absolute” Parametric

Subspace Theorem (i.e., dealing with sets Π(Q, c) and not with their algebraic
closures) would have sufficed, as long as the result would not have involved the
discriminant. The absolute generalisation as stated in Theorem 1 dealing with
algebraic closures Π(Q, c) was not necessary but we obtained this as a by-product
of some independent interest.

We present some corollaries of Theorems 1 and 2. Our first corollary is a con-
sequence of Theorem 2 for recurrence sequences. Let U = {um}m∈Z be a sequence
of complex numbers satisfying a recurrence relation of order q,

um = c1um−1 + . . .+ cqum−q

with c1, . . . , cq ∈ C, cq 6= 0. As is well-known, we have

um =
n∑
i=1

gi(m)αmi for m ∈ Z,

where α1, . . . , αn are distinct, non-zero complex numbers and g1, . . . , gn ∈ C[X]
polynomials with

n∏
i=1

(X − αi)deg gi+1 = Xq − c1Xq−1 − . . .− cq .

Denote by NU (a) the number of integers m with

um = a.

The sequence U is called non-degenerate if neither α1, . . . , αn, nor any of the
quotients αi/αj (1 ≤ i < j ≤ n) is a root of unity. From the Theorem of Skolem-
Mahler-Lech (cf. [20]) it follows that then NU (a) is finite for every a ∈ C. Using his
Theorem D, Schlickewei [34] showed that if U is non-degenerate, and α1, . . . , αn
and the coefficients of g1, . . . , gn generate an algebraic number field K of degree d,
then for every a ∈ K we have

NU (a) ≤ d6q2
2228q!

.
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If we assume that g1, . . . , gn are all constant, we obtain the following improvement,
by applying Theorem 2 to the group G generated by α1, . . . , αn which has at most
rank n:

Corollary 3. Let U be a recurrence sequence satisfying

um = g1α
m
1 + . . .+ gnα

m
n for m ∈ Z,

where α1, . . . , αn are non-zero complex numbers such that neither α1, . . . , αn, nor
any of the quotients αi/αj (1 ≤ i < j ≤ n) is a root of unity and where g1, . . . , gn
are non-zero complex numbers. Then for every a ∈ C we have

NU (a) ≤ exp
(
(n+ 2)×(6n)4n

)
.

We mention that for n = 2, Schlickewei [35] had previously established an ab-
solute bound for NU (a). His bound had been substantially improved by Beukers
and Schlickewei [1] who showed NU (a) ≤ 61. Very recently, Schmidt [45] ob-
tained the remarkable result that for arbitrary non-degenerate complex recur-
rence sequences U of order q (i.e., with arbitrary polynomials g1, . . . , gn) one has
NU (a) ≤ C(q), where C(q) depends only (and in fact triply exponentially) on q.
His proof uses Corollary 3 stated above.

We now present some consequences of Theorem 1 for Diophantine inequali-
ties whose proofs will be published in [14]. In what follows, K,S are as above,
L

(v)
i (v ∈ S, i = 1, . . . , n) are linear forms satisfying (3.3) and c is a tuple of

reals with (3.4). Further, we put ∆ =
∏
v∈S ‖det(L(v)

1 , . . . , L
(v)
n ‖v. For every finite

extension F of K, the linear forms L(w)
i and the reals ciw are defined by (3.2).

Consider for every finite extension F of K the system of inequalities

‖L(w)
i (x)‖w ≤ H(x)ciw (w ∈ SF , i = 1, . . . , n) in x ∈ OnSF . (3.6)

Note that every x satisfying (3.6) for some finite extension F of K belongs
to Π(Q, c) with Q = H(x). Therefore, Theorem 1 implies at once:

Corollary 4. There are proper linear subspaces T1, . . . , Tb of Q
n

, all defined
over K, with

b ≤ 4(n+5)2
δ−n−4 log 4R · log log 4R

such that for every finite extension F of K, the set of solutions of (3.6) with

H(x) ≥ max
(
H, (nn/2∆−1)2/δ

)
is contained in T1 ∪ . . . ∪ Tb.

Now consider for every finite extension F of K the inequality∏
w∈SF

n∏
i=1

‖L(w)
i (x)‖w
‖x‖w

≤ H(x)−n−δ in x ∈ Fn.
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The usual procedure is to split up the product at the left-hand side in separate
factors so to obtain a system of inequalities of type (3.6). But the number of ways
to split up the product may depend on F and this results in an upper bound
for the number of subspaces depending on F . Instead, we consider for each finite
extension F of K the inequality∏

v∈S

n∏
i=1

(
max
w|v

‖L(v)
i (x)‖w
‖x‖w

)1/d(w|v)

≤ H(x)−n−δ in x ∈ Fn (3.7)

where the maximum is taken over all places w ∈ M(F ) lying above v. The ex-
ponents 1/d(w|v) are needed to normalise the absolute values with respect to K.
Note that for F = K we get (2.11). By a combinatorial argument going back to
Mahler which we do not work out, we can show that every solution x ∈ Fn of (3.7)
has a scalar multiple which satisfies (3.6) for some possibly other number field F ′

and some tuple c having (3.4) with δ/2 instead of δ. Here c belongs to a finite
set independent of x of cardinality depending on n, δ and s, where s denotes the
cardinality of S. This introduces a dependence on s in the upper bound for the
number of subspaces. Using R ≤ s we get rid of the parameter R. Thus, we obtain
the following “quantitative Absolute Subspace Theorem:”

Corollary 5. There are proper linear subspaces T1, . . . , Ta of Q
n

, all defined
over K, with

a ≤ 8(n+6)2
(50/δ)ns+n+3,

such that for every finite extension F of K, the set of solutions of (3.7) with

H(x) ≥ max
(
H, (nn/2∆−1)4/δ

)
is contained in T1 ∪ . . . ∪ Ta.

It should be noted that the exceptional set of solutions with H(x) less than
max

(
H, (nn/2∆−1)2/δ

)
need not be contained even in the union of finitely many

proper linear subspaces of Q
n
. For instance, if L(v)

i = Xi for v ∈ S, i = 1, . . . , n,
then for every vector x consisting of roots of unity there is a finite extension F
of K such that x satisfies (3.7).

The last consequence of Theorem 1 we mention is an absolute analogue of
Schmidt’s Theorem A. Denote by Gal(Q/Q) the Galois group of Q/Q. For
σ ∈ Gal(Q/Q), x = (x1, . . . , xn) ∈ Q

n
, define σ(x) = (σ(x1), . . . , σ(xn)). Let

Li = αi1X1 + . . .+ αinXn (i = 1, . . . , n) be linearly independent linear forms with
coefficients in Q such that

H(Li) ≤ H, [Q(Li) : Q] ≤ D, |Li| := max
1≤j≤n

|αij | = 1 for i = 1, . . . , n.

Consider the inequality
n∏
i=1

(
max

σ∈Gal(Q/Q)

|Li(σ(x))|
|σ(x)|

)
≤ H(x)−n−δ in x ∈ Q

n
(3.8)

with 0 < δ ≤ 1, where |σ(x)| denotes the maximum norm of σ(x).
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Corollary 6. The set of solutions of (3.8) with

H(x) ≥ max
(
H, (nn/2 · |det(L1, . . . , Ln)|−1)4/δ

)
is contained in the union of finitely many proper linear subspaces T1, . . . , Ta of Q

n
,

all defined over Q, with

a ≤ 16(n+6)2
· δ−2n−3 log 4D · log log 4D.

We return to Schmidt’s result on the number of small solutions of (2.8). For
x ∈ Q

∗
define the logarithmic (absolute Weil-) height by

h(x) =
∑

v∈M(K)

log max(1, ‖x‖v),

where K is any number field containing x. For x = (x1, . . . , xn) ∈ (Q
∗
)n define

the logarithmic norm

hs(x) =
n∑
i=1

h(xi).

For x,y ∈ (Q
∗
)n let x ∗ y denote the coordinatewise product of x,y and xm the

coordinatewise m-th power of x for m ∈ Z. Then hs satisfies the norm axioms
hs(x) ≥ 0 and hs(x) = 0 if and only if x is torsion, i.e. consists of roots of unity;
hs(xm) = |m|hs(x) for m ∈ Z; hs(x∗y) ≤ hs(x)+hs(y). The following is a special
case of [44], Thm. 5:

Theorem I (Schmidt [44]). Let G be a finite type subgroup of Q
∗

of rank r and
C ≥ 0. Put q = exp((4n)2n). Then (2.8) has at most

q(qC)r

solutions x = (x1, . . . , xn) ∈ Gn with hs(x) ≤ C.

Results such as Theorem I heavily rely on good explicit lower bounds for the
logarithmic norms of algebraic points lying on algebraic varieties. The research on
such lower bounds was started by Zhang [49], who by means of Arakelov theory
proved a general result about the logarithmic norms of algebraic points on curves,
a special case of which is as follows: there is an absolute constant C > 0 such that
every algebraic point x = (x, y) for which x+y = 1 and x, y are not both equal to 0
or a root of unity has hs(x) ≥ C. After that, by an elementary method, Zagier [48]
showed that every such point x = (x, y) satisfies hs(x) ≥ 1

2 log{ 1
2 (1+

√
5)}. Zagier’s

result was further extended by Schlickewei and Wirsing [40]. Schlickewei derived
from their result the estimate for the number of “small” solutions of ax+ by = 1
in x, y ∈ G that he needed in the proof of Theorem F. The results of Zhang,
Zagier, and Schlickewei and Wirsing were further improved and generalised by
Beukers and Zagier [2], Schmidt [43], again Zhang [50], Bombieri and Zannier [5]
and again Schmidt [44]. Theorem 3 of the last paper gives in the most general
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situation an explicit lower bound for the logarithmic norm of an algebraic point
on an algebraic variety. The following result is the special case of this needed in the
proof of Theorem I. For a positive integer n and a positive real h, let A(n, h) denote
the smallest integer A such that {1, . . . , A} contains an arithmetic progression of
length n all of whose terms are composed of primes > h.

Theorem J (Schmidt [44]). Let x = (x1, . . . , xn) ∈ (Q
∗
)n be such that

x1 + . . .+ xn = 1,
∑
i∈I

xi 6= 0 for each subset I of {1, . . . , n},

x1, . . . , xn are not all roots of unity.

Then hs(x) ≥ 1/A(n, 5n).

Schmidt [44] proved that

A(n, h) < n · e1.017h, A(n, h) < (c1h)c2n, (3.9)

respectively. Using a result of Schinzel [29] (Lemma 1) one gets the second estimate
in the following explicit form A(n, h) < (2h)20n.

We mention that Beukers and Zagier [2] (Cor. 2.1) obtained the much bet-
ter lower bound hs(x) ≥ 1

2 log{ 1
2 (1 +

√
5)} but only subject to the restriction

x−1
1 + . . .+ x−1

n 6= 1 which makes their result not applicable for our purposes.
We give a rough idea how Theorem J is applied to obtain Theorem I. Define

the logarithmic distance of x, y ∈ (Q
∗
)n by δ(x,y) = hs(x ∗ y−1). Let S be the

set of solutions x of (2.8) with hs(x) ≤ C. We select from S a maximal subset,
such that any two points in this subset have logarithmic distance ≥ ε, say, where
ε > 0 is a real that has to be chosen optimally. Using that G has rank r one shows
by an elementary argument that this subset has cardinality at most

(1 + (2C/ε))nr. (3.10)

(cf. [43], Lemma 4). So it remains to estimate from above the number of solutions
lying in a “ball”

B(y, ε) = {x ∈ Gn : δ(x,y) < ε }

where y = (y1, . . . , yn) is a fixed solution of (2.8). By replacing the coefficients
of (2.8) by a′i = aiyi for i = 1, . . . , n, we see that it suffices to estimate from above
the number of solutions of

a′1x1 + . . .+ a′nxn = 1 in x = (x1, . . . , xn) ∈ Gn with hs(x) < ε. (3.11)

Note that (1, . . . , 1) is a solution of (3.11). Take n other solutions xi = (xi1, . . . , xin)
of (3.11). Then we obtain the determinant equation∣∣∣∣∣∣∣∣

1 1 · · · 1
1 x11 · · · x1n
...

...
...

1 xn1 · · · xnn

∣∣∣∣∣∣∣∣ = 0.
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Put x0i = 1, xi0 = 1 for i = 0, . . . , n. The determinant is an alternating sum of
(n + 1)! terms xσ = x0,σ(0) · · ·xn,σ(n), where σ runs through the permutations of
{0, . . . , n}. By taking a minimal vanishing subsum and dividing by one term we
get ∑

σ∈I
± xσ
xσ0

= 1, (3.12)

where I is some set of permutations of {0, . . . , n}, σ0 is a fixed permutation, and
the left-hand side has no vanishing subsums. Now one can show that if (3.11) has
many solutions, there are n solutions x1, . . . ,xn among these for which at least
one of the terms in the left-hand side of (3.12) is not a root of unity. So we can
apply Theorem J to (3.12). On noting that I has cardinality smaller than (n+ 1)!
we obtain for the vector X = (xσ/xσ0 : σ ∈ I)

hs(X) ≥ B−1 with B = A((n+ 1)!, 5(n+ 1)!).

On the other hand, by taking ε sufficiently small, one can show that hs(X) < B−1

and this gives a contradiction. ut

Both estimates in (3.9) imply an upper bound for B which is doubly expo-
nential in n and this results in an upper bound for ε−1 doubly exponential in n.
Consequently, already the quantity (3.10) gives a contribution to the upper bound
in Theorem I doubly exponential in n.
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