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∗)

1. Introduction

In [16], Schmidt introduced the notion of family of solutions of norm form equa-
tions and showed that there are only finitely many such families. In [18], Voutier
gave an explicit upper bound for the number of families. Independently, in [5],
Győry extended the notion of family of solutions of norm form equations to de-
composable form equations and gave an explicit upper bound for the number of
families. In this paper, we obtain a significant improvement of the upper bounds
of Voutier and Győry, by applying the results from Evertse [4].

Let β be a non-zero rational integer. Further, let M denote an algebraic number
field of degree r and l(X) = α1X1 + · · ·+ αmXm a linear form with coefficients in
M . There is a non-zero c ∈ Q such that the norm form

(1.1) F (X) = cNM/Q(l(X)) = c

r∏
i=1

(α(i)
1 X1 + · · ·+ α(i)

m Xm)

has its coefficients in Z. Here, we denote by α(1), ..., α(r) the conjugates of α ∈M .
We deal among other things with norm form equations of the shape

F (x) = ±β in x ∈ Zm.

It is more convenient for us to consider the equivalent equation which is also called
a norm form equation,

(1.2) cNM/Q(x) = ±β in x ∈M ,

where M is the Z-module {x = l(x) : x ∈ Zm} which is contained in M .
In 1971, Schmidt [15] proved his fundamental result, that (1.2) has only finitely

many solutions ifM satisfies some natural non-degeneracy condition. Later, Schmidt
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[16] dealt also with the case that M is degenerate and showed that in that case,
the set of solutions of (1.2) can be divided in a natural way into families, and is
the union of finitely many such families. Below, we give a precise definition of a
family of solutions of (1.2); here we mention that it is a coset xUM,J contained in
M, where x is a solution of (1.2) and UM,J is a particular subgroup of finite index
in the unit group of the ring of integers of some subfield J of M . Schmidt’s results
have been generalised to equations of the type

(1.3) cNM/K(x) ∈ βO∗S in x ∈M ,

where K is an algebraic number field, OS is the ring of S-integers in K for some
finite set of places S, O∗S is the unit group of OS , c, β are elements of K∗ = K\{0},
M is a finite extension of K, and M is a finitely generated OS-module contained
in M . In fact, Schlickewei [13] proved the analogue of Schmidt’s result on families
of solutions in case that OS is contained in Q, and Laurent [9] generalised this to
arbitrary algebraic number fields K. The main tools in the proofs of these results
were Schmidt’s Subspace theorem and Schlickewei’s generalisation to the p-adic
case and to number fields.

In [5], Győry generalised the concept of family of solutions to decomposable form

equations over OS , i.e. to equations of the form

(1.4) F (x) ∈ βO∗S in x = (x1, ..., xm) ∈ OmS ,

where K,S are as above, β is a non-zero element of OS and F (X) = F (X1, ..., Xm)
is a decomposable form with coefficients in OS , that is, F can be expressed as
a product of linear forms in m variables with coefficients in some extension of
K. We can reformulate (1.4) in a shape similar to (1.3) as follows. According
to [1], pp. 77-81, there are finite extension fields M1, ...,Mt of K, linear forms
lj(X) = α1jX1 + · · · + αmjXm with coefficients in Mj for j = 1, ..., t and c ∈ K∗

such that

(1.5) F (X) = c
t∏

j=1

NMj/K(lj(X)) .

Now let
A = M1 ⊕ · · · ⊕Mt

be the direct K-algebra sum of M1, ...,Mt, that is, the cartesian product M1×· · ·×
Mt endowed with coordinatewise addition and multiplication. If we express an
element of A as (α1, ..., αt), then we implicitly assume that αj ∈Mj for j = 1, ..., t.
We define the norm NA/K(a) of a = (α1, ..., αt) ∈ A to be the determinant of the
K-linear map x 7→ ax from A to itself. This norm is known to be multiplicative.
Further, we have

(1.6) NA/K(a) = NM1/K(α1) · · ·NMt/K(αt)
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where NMj/K is the usual field norm. Note that the OS-module

M = {x = (l1(x), ..., lt(x)) : x ∈ OmS }

is contained in A. Now (1.5) and (1.6) imply that eq. (1.4) is equivalent to

(1.7) cNA/K(x) ∈ βO∗S in x ∈M ;

(1.7) will also be referred to as a decomposable form equation. In [5], Győry showed
that the set of solutions of (1.7) is the union of finitely many families. Further, in
[5] he extended some of his results to decomposable form equations over arbitrary
finitely generated integral domains over Z.

In [17], Schmidt made a further significant advancement by deriving, as a con-
sequence of his quantitative Subspace theorem, an explicit upper bound for the
number of solutions of norm form equation (1.2) over Z for every non-degenerate
module M. Schlickewei proved a p-adic generalisation of Schmidt’s quantitative
Subspace theorem and used this to derive an explicit upper bound for the number
of solutions of S-unit equations [14]. Among others, this was used by Győry [5] to
obtain an explicit upper bound for the number of families of solutions of decom-
posable form equation (1.7). Independently, Voutier [18] obtained upper bounds
similar to Győry’s for the number of families of solutions of norm form equation
(1.3), in the special case that K = Q, β = 1. Recently, Evertse [4] improved the
results of Schmidt and Schlickewei just mentioned. In this paper, we apply the
results from [4] to obtain an upper bound for the number of families of solutions of
(1.7) which is much sharper than Győry’s and Voutier’s (cf. Theorem 1 in Section
1.2).

In Section 1.1 we introduce the necessary terminology. In Section 1.2 we state our
main results (Theorems 1 and 2) and some corollaries. In particular, in Corollary
2 we give an upper bound for the number of O∗S-cosets of solutions of (1.7) in case
that that number is finite; here, an O∗S-coset is a set xO∗S = {εx : ε ∈ O∗S} where
x is a fixed solution of (1.7). Further, in Section 2 we derive from Theorem 1 an
asymptotic formula (cf. Corollary 4) for the number of O∗S-cosets of solutions of
(1.7), in case that this number is infinite. The other sections are devoted to the
proofs of Theorems 1 and 2.
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1.1. Terminology.
Here and in the sequel we use the following notation: the unit group of a ring R

with 1 is denoted by R∗ and for x ∈ R and a subset H of R we define xH := {xh :
h ∈ H}. Let K be an algebraic number field. Denote by OK the ring of integers and
by MK the collection of places (equivalence classes of absolute values) on K. Recall
that MK consists of finitely many infinite (i.e. archimedean) places (the number
of these being r1 + r2 where r1, r2 denote the number of isomorphic embeddings of
K into R and the number of complex conjugate pairs of isomorphic embeddings
of K into C, respectively) and of infinitely many finite (non-archimedean) places
which may be identified with the prime ideals of OK . For every v ∈MK we choose
an absolute value | · |v from v. Now let S be a finite subset of MK containing all
infinite places. The ring of S-integers and its unit group, the group of S-units, are
defined by

OS = {x ∈ K : |x|v ≤ 1 for v /∈ S}, O∗S = {x ∈ K : |x|v = 1 for v /∈ S},

respectively, where ‘v /∈ S’ means ‘v ∈ MK\S.’ For a finite extension J of K, we
denote by OJ,S the integral closure of OS in J .

We first introduce families of solutions for norm form equations

(1.3) cNM/K(x) ∈ βO∗S in x ∈M ,

where, as before, M is a finite extension of K,M is a finitely generated OS-module
contained in M and c, β are elements of K∗. Let V := KM be the K-vector space
generated by M. For a subfield J of M containing K, define the sets

(1.8) V J = {x ∈ V : xJ ⊆ V }, MJ = V J ∩M .

As is easily seen, we have λx ∈ V J for x ∈ V J , λ ∈ J . Further, define the subgroup
of the unit group of OJ,S ,

(1.9) UM,J := {ε ∈ O∗J,S : εMJ =MJ}.

For instance from Lemma 9 of [5] it follows that UM,J has finite index in O∗J,S .
Note that NM/K(ε) ∈ O∗S for ε ∈ UM,J . Hence if x ∈ MJ is a solution of (1.3)
then so is every element of the coset xUM,J . Such a coset is called a family of

solutions (or rather an (M, J)-family of solutions) of (1.3). Laurent [9] proved the
generalisation of Schmidt’s result that the set of solutions of eq. (1.3) is the union
of at most finitely many families.

Now let A = M1 ⊕ · · · ⊕ Mt be the direct K-algebra sum of finite extension
fields M1, ...,Mt of K. Note that A has unit element 1A = (1, ..., 1) (t times) where
1 is the unit element of K and that the unit group of A is A∗ = {(ξ1, ..., ξt) ∈
A : ξ1 · · · ξt 6= 0}. For each K-subalgebra B of A, denote by OB,S the integral
closure of OS in B. Thus,

OA,S = OM1,S ⊕ · · · ⊕ OMt,S
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is the direct sum of the integral closures of OS in M1, ...,Mt, respectively, and

OB,S = OA,S ∩B

for each K-subalgebra B of A. From these facts and (1.6) it follows easily, that for
b ∈ OA,S we have NA/K(b) ∈ OS and that for b in the unit group O∗A,S we have
NA/K(b) ∈ O∗S .

Let c, β ∈ K∗, let M be a finitely generated OS-module contained in A, and
consider the equation

(1.7) cNA/K(x) ∈ βO∗S in x ∈M .

Families of solutions of (1.7) are defined in precisely the same way as for (1.3), but
now the role of the subfields J of M in (1.3) is played by the K-subalgebras B of A
that contain the unit element 1A of A. Thus, let V := KM be the K-vector space,
contained in A, generated by M and for each K-subalgebra B of A with 1A ∈ B
define the sets

(1.10) V B := {x ∈ V : xB ⊆ V }, MB := V B ∩M

and the subgroup of the unit group of OB,S ,

(1.11) UM,B := {ε ∈ O∗B,S : εMB =MB}

which is known to have finite index [O∗B,S : UM,B ] in O∗B,S (cf. [5], Lemma 9).
Clearly, V B is closed under multiplication by elements of B (and in fact the largest
subspace of V with this property). A(n (M, B)-) family of solutions of (1.7) is a
coset xUM,B , where B is a K-subalgebra of A containing 1A and x ∈ MB is a
solution of (1.7); since NA/K(ε) ∈ O∗S for ε ∈ UM,B , every element of xUM,B is
a solution of (1.7). If A = M is a finite extension field of K this notion of family
of solutions coincides with that for norm form equation (1.3) since then, the K-
subalgebras of A containing 1A are precisely the subfields of M containing K. In
[5], Győry proved among other things that the set of solutions of (1.7) is the union
of finitely many families.
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1.2 Results.
Below, we first recall Győry’s result on the number of families of solutions of (1.7)

and then state our improvement. As before, let K be an algebraic number field, S
a finite set of places on K containing all infinite places, A = M1 ⊕ · · · ⊕Mt where
M1, ...,Mt are finite extensions of K, and M a finitely generated (not necessarily
free) OS-submodule of A. Let ai = (αi1, ..., αit) (i = 1, ...,m) be a set of generators
of M. Thus,

M = {x = (l1(x), ..., lt(x)) : x ∈ OmS }

where lj(x) = α1jx1 + · · ·+αmjxm for j = 1, ..., t, and by (1.6) we have NA/K(x) =∏t
j=1NMj/K(lj(x)). We call d a denominator ofM if d ∈ K∗ and if the polynomial

d
∏t
j=1NMj/K(lj(X)) has its coefficients inOS . This notion of denominator is easily

shown to be independent of the choice of the generators a1, ..., am.
We consider eq. (1.7), and impose the following conditions on S, A, M, β and

c:

(1.12)


S has cardinality s,

A has dimension as a K-vector space
∑t
i=1[Mi : K] = r ≥ 2,

the K-vector space V := KM has dimension n ≥ 2,

β ∈ OS\{0}, c is a denominator of M.

For every finite place v on K, let ordv(·) denote the discrete valuation corresponding
to v with value group Z; recall that | · |v = C

−ordv(·)
v for some Cv > 1. For β ∈ K∗,

let ωS(β) denote the number of v /∈ S with ordv(β) 6= 0 and put

ψ1(β) :=
(

r

n− 1

)ωS(β)

·
∏
v/∈S

(
r · ordv(β) + n

n

)
.

Further, let D be the degree over Q of the normal closure of the composite M1...Mt

over Q; thus, [K : Q] ≤ D ≤ (r[K : Q])!. Győry [5] proved that the set of solutions
of (1.7) is contained in some finite union of cosets of unit groups

(1.13) x1O∗B1,S ∪ · · · ∪ xwO
∗
Bw,S with w ≤ (4sD)237nDs6 · ψ1(β),

where for i = 1, ..., w, Bi is a K-subalgebra of A with 1A ∈ Bi, xi ∈ A∗ with
xiBi ⊂ V , and where the set of solutions of (1.7) contained in xiO∗Bi,S is the union
of at most [O∗Bi,S : UM,Bi ] (M, Bi)-families of solutions. This implies an upper
bound for the number of families of solutions of (1.7) which depends on n, r, β, s

and the indices [O∗Bi,S : UM,B ] (cf. [5], Theorem 3), so ultimately on the module
M. We mention that Voutier [18], Chap. V independently obtained a result similar
to (1.13) but only for norm form equation (1.3) and with K = Q, β = 1.

Győry’s result can be improved as follows. A K-subalgebra B of A is said to be
S-minimal if 1A ∈ B, and if for each proper K-subalgebra B′ of B with 1A ∈ B′,
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the quotient group O∗B,S/O∗B′,S is infinite. A family of solutions of (1.7) is said to
be reducible if it is the union of finitely many strictly smaller families of solutions,
and irreducible otherwise. Put

(1.14)
ψ2(β) :=

(
r

n− 1

)ωS(β)

·
∏
v/∈S

(
ordv(β) + n− 1

n− 1

)
,

e(n) :=
1
3
n(n+ 1)(2n+ 1)− 2.

Theorem 1. Assume (1.12). The set of solutions of

(1.7) cNA/K(x) ∈ βO∗S in x ∈M

can be expressed as a finite union of irreducible families of solutions. More precisely,
the set of solutions of (1.7) is contained in some finite union of cosets

(1.15) x1O∗B1,S ∪ · · · ∪ xwO
∗
Bw,S with w ≤

(
233r2

)e(n)s · ψ2(β)

such that for i = 1, ..., w, Bi is an S-minimal K-subalgebra of A, xi ∈ A∗ with
xiBi ⊂ V , and the set of solutions of (1.7) contained in xiO∗Bi,S is the union of at
most [O∗Bi,S : UM,Bi ] (M, Bi)-families of solutions which are all irreducible.

Remark 1. The right-hand side of Győry’s bound (1.13) depends doubly expo-
nentially on n and in the worst case that D = (r[K : Q])! triply exponentially on r,
whereas our bound (1.15) depends only polynomially on r and exponentially on n3.
(1.13) can be better than (1.15) in terms of r only if D is very small compared with
r, e.g. if A = Qr for some large r. It is likely that, in (1.15), 233 can be improved
upon, and that e(n) can be replaced by a linear expression of n.

For some very special type of norm form equation, Voutier succeeded in deriving
an upper bound for the number of families of solutions independent of the module
M (see the remark after Corollary 1). It is an open problem whether an explicit
bound independent of M exists in full generality, for equations (1.3) or (1.7).
Remark 2. We can express the set of solutions of (1.7) as a minimal finite union of
irreducible families, that is, as a union F1∪· · ·∪Fg where F1, ...,Fg are irreducible
families of solutions, none of which is contained in the union of the others. We
claim that every other irreducible family of solutions of (1.7) is contained in one
of F1, ...,Fg. In other words F1, ...,Fg are the maximal irreducible families of
solutions of (1.7). Hence Theorem 1 above gives automatically an upper bound
for the number of maximal irreducible families. To prove our claim, let G be an
arbitrary irreducible family of solutions of (1.7). Then G is the union of the sets
G ∩Fi for i = 1, ..., g and by Lemma 3 in Section 2, each of these sets is a union of
finitely many families. Then one of these families, contained in F1, say, is equal to
G. Hence G ⊆ F1.
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Remark 3. There is only one way to express the set of solutions of (1.7) as a
minimal union of irreducible families, since the families appearing in such a union
are the maximal irreducible families of solutions of (1.7).

We also investigate the problem to give an upper bound for the number of K-
subalgebras B of A for which (1.7) has (M, B)-families of solutions. Let again
V = KM. Suppose again that dimK A = r and dimK V = n. If x is a solution in
MB , then x ∈ V B ∩ A∗, where A∗ is the unit group of A. Hence (1.7) can have
(M, B)-families of solutions only for those K-subalgebras B of A for which

(1.16) 1A ∈ B, V B ∩A∗ 6= ∅ .

In [5], Győry proved that the number of algebras B with (1.16) is at most nr. We
can improve this as follows:

Theorem 2. The number of K-subalgebras B of A with (1.16) is at most(
nmax(r − n, 2)

)n
.

We do not know whether the dependence on r is necessary.
We derive some corollaries from Theorem 1. First we specialise Theorem 1

to norm form equation (1.3). Let K,S be as above so that in particular S has
cardinality s. Further, let M be a finite extension of K of degree r ≥ 2, M
a finitely generated OS-submodule of M such that the K-vector space KM has
dimension n ≥ 2, and c, β constants such that β ∈ OS\{0} and c is a denominator
of M. Then, by applying Theorem 1 with A = M , we get at once the following
result which improves upon the corresponding results in [5] and [18]:

Corollary 1. The set of solutions of

(1.3) cNM/K(x) ∈ βO∗S in x ∈M

can be expressed as a finite union of irreducible families of solutions. More precisely,
the set of solutions of (1.3) is contained in some finite union of cosets

x1O∗J1,S ∪ · · · ∪ xwO
∗
Jw,S with w ≤

(
233r2

)e(n)s · ψ2(β)

such that for i = 1, ..., w, Ji is a subfield of M containing K, xi ∈ M∗ is such
that xiJi ⊂ V , and the set of solutions of (1.3) in xiO∗Ji,S is the union of at most
[O∗Ji,S : UM,Ji ] (M, Ji)-families of solutions which are all irreducible.

As mentioned before, for a very special type of norm form equation Voutier ([18],
Theorem V.3) obtained an upper bound for the number of families independent of
M: namely, he proved that if M is a Z-module of rank 3 contained in the ring of
integers of an algebraic number field M of degree r >rank M = 3, then the set of
solutions of the equation

NM/Q(x) = 1 in x ∈M
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is the union of at most r286r2
families.

We return to eq. (1.7). In what follows, we consider K as a K-subalgebra of
A by indentifying α ∈ K with α · 1A. The set of solutions of (1.7) can be divided
into O∗S-cosets xO∗S . Győry [5], Corollary 2, gave an explicit upper bound for the
number of O∗S-cosets of solutions of (1.7) in case that this number is finite. We can
improve this as follows:

Corollary 2. Assume (1.12). Suppose that (1.7) has only finitely many O∗S-cosets
of solutions. Then this number is at most

(233r2)e(n)s · ψ2(β) .

For β = 1, this gives the Corollary to Theorem 1 of [4].

Proof. Let B be one of the S-minimal K-subalgebras of A occurring in (1.15).
We may assume that (1.7) has an (M, B)-family of solutions, xUM,B , say. By
identifying ε ∈ O∗S with ε ·1A, we may view O∗S as a subgroup of UM,B . Let w ≤ ∞
be the index of O∗S in UM,B . Then xUM,B is the union of precisely w O∗S-cosets.
So our assumption implies that w is finite. Therefore, [O∗B,S : O∗S ] is finite. Now
since B is S-minimal, it follows that B = K. So each algebra Bi occurring in (1.15)
is equal to K, i.e. O∗Bi,S = O∗S , and Corollary 2 follows. �

In general, it is as yet not effectively decidable whether (1.7) has only finitely
many O∗S-cosets of solutions. Schmidt [17] Theorem 3, derived an explicit upper
bound for the number of solutions of norm form equations over Z satisfying an
effectively decidable non-degeneracy condition. It is possible to give a similar ef-
fective non-degeneracy condition for eq. (1.7) as well, which implies that for every
β ∈ OS \ {0}, the number of O∗S-cosets of solutions is finite. Moreover, under that
condition we can derive an upper bound for the number of O∗S-cosets of solutions
with a better dependence on β in that unlike the bound in Corollary 2, it does not
depend on the quantities ordv(β) (v ∈MK\S) appearing in ψ2(β).

The vector space V = KM is said to be non-degenerate if V B∩A∗ = ∅ for every
K-subalgebra B of A with 1A ∈ B, B 6= K, where A∗ is the unit group of A. (1.16)
implies that in that case, each algebra Bi occurring in (1.15) is equal to K. Hence
the set of solutions of (1.7) is the union of finitely many O∗S-cosets.

Corollary 3. Assume (1.12) and in addition that V = KM is non-degenerate.
Then the set of solutions of (1.7) is the union of at most

(233r2)e(n)(s+ωS(β))

O∗S-cosets.

Proof. We apply Theorem 1 with S′ := S ∪ {v /∈ S : ordv(β) > 0} replacing S.
Thus, β ∈ O∗S′ . We have to replace s by the cardinality of S′ which is s′ := s+ωS(β).
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Moreover, in the definition of ψ2(β), S has to be replaced by S′ which means that
ψ2(β) has to be replaced by 1. LetM′ be the OS′ -module generated byM. Thus,
every solution of (1.7) satisfies

(1.7’) cNA/K(x) ∈ O∗S′ in x ∈M′ .

Clearly, c is a denominator of M′. Moreover, since V is non-degenerate, the set of
solutions of (1.7’) is the union of finitely many O∗S′ -cosets. So by Corollary 2, the
set of solutions of (1.7’), and hence also the set of solutions of (1.7), is contained
in the union of at most (233r2)e(n)s′ O∗S′ -cosets. Now if any two solutions x1, x2 of
(1.7) belong to the same O∗S′ -coset then they belong to the same O∗S-coset: for if
x2 = εx1 with ε ∈ O∗S′ , then εr = cNA/K(x2)/cNA/K(x1) ∈ O∗S , hence ε ∈ O∗S .
This proves Corollary 3. �

2. An asymptotic formula

In this section, we state and prove an asymptotic density result for the collection
of O∗S-cosets of solutions of equation (1.7), in case that the number of these is
infinite. This asymptotic density result is a consequence of (the qualitative part of)
Theorem 1.

We recall the definition of absolute (multiplicative) Weil height. Let Q denote the
algebraic closure of Q. Let x = (x1, ..., xn) ∈ Q

n\{0}. Take any algebraic number
field L containing x1, ..., xn, and let σ1, ..., σd be the isomorphic embeddings of L
into Q, where d = [L : Q]. Further, let (x1, ..., xn) denote the fractional ideal
with respect to the ring of integers of L generated by x1, ..., xn, and denote by
NL/Q((x1, ..., xn)) its norm. Then the absolute Weil height of x is defined by

H(x) = H(x1, ..., xn) :=

{∏d
i=1 max(|σi(x1)|, ..., |σi(xn)|)

NL/Q((x1, ..., xn))

}1/d

.

It is clear that H(x) does not depend on the choice of L. Further,

(2.1) H(λx) = H(x) for x ∈ Q
n\{0}, λ ∈ Q

∗
.

Now let K be an algebraic number field and A = M1 ⊕ ...⊕Mt, where M1, ...,Mt

are finite extension fields of K. We define the height H(x) of x = (ξ1, ..., ξt) ∈ A
to be the absolute Weil height of the vector with coordinates consisting of ξ1, ..., ξt
and their conjugates over K, that is, if τi,1, ..., τi,ri with ri = [Mi : K] are the
K-isomorphic embeddings of Mi into Q then we put

H(x) := H(τ1,1(ξ1), ..., τ1,r1(ξ1), ..., τt,1(ξt), ..., τt,rt(ξt)).

Note that by (2.1) we have

(2.2) H(x) = H(λx) for x ∈ A\{0}, λ ∈ K∗ ,
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i.e. H may be viewed as a height on the collection (A\{0})/K∗ of K∗-cosets
xK∗ (x ∈ A\{0}). This height satisfies

(2.3) #{x ∈ (A\{0})/K∗ : H(x) ≤ X} <∞ for X > 0 .

Namely, by Northcott’s theorem [10], [11] we have that for every d > 0, X > 0, there
are, up to multiplication by elements from Q

∗
, only finitely many x = (ξ1, ..., ξn) ∈

Q
n\{0} with H(x) ≤ X and [Q(ξi) : Q] ≤ d for i = 1, ..., n. This implies that

the set of non-zero elements x of A with H(x) ≤ X can be divided into finitely
many classes, where x = (ξ1, ..., ξt), y = (η1, ..., ηt) ∈ A are said to belong to the
same class if (τ1,1(ξ1), ..., τt,rt(ξt)) = α(τ1,1(η1), ..., τt,rt(ηt)) for some α ∈ Q

∗
. But

clearly, if for instance ξ1 6= 0, then α = τ1,1(η1/ξ1) = · · · = τ1,r1(η1/ξ1) which
implies that α ∈ K. So if x, y ∈ A\{0} belong to the same class then they belong
to the same K∗-coset.

For a finitely generated abelian group Λ, denote by Λtors the torsion subgroup
of Λ and by rank Λ the rank of the free abelian group Λ/Λtors. Let as usual S be
a finite set of places on K which contains all infinite places. For a K-subalgebra B
of A containing the unit element 1A of A we put

ρB,S := rank O∗B,S/O∗S ,

where we view O∗S as a subgroup of O∗B,S by identifying ε ∈ O∗S with ε · 1A.
By a straightforward generalisation of Dirichlet’s unit theorem, O∗B,S is finitely
generated, hence ρB,S is finite.

Let again β, c ∈ K∗, and letM be a finitely generated OS-submodule of A such
that condition (1.12) holds. For every X > 0 we consider the set of solutions of

(2.4) cNA/K(x) ∈ βO∗S in x ∈M with H(x) ≤ X .

¿From (2.2) and O∗S ⊂ K∗ it follows that the set of solutions of (2.4) can be
divided into O∗S-cosets xO∗S . Denote by N(X) the maximal number of distinct
O∗S-cosets contained in the set of solutions of (2.4). From (2.3) it follows that
N(X) is finite: namely if x, y are solutions of (2.4) with y = εx for some ε ∈ K∗,
then εr = NA/K(y)/NA/K(x) ∈ O∗S , so x, y belong to the same O∗S-coset. In case of
norm form equations over Q, asymptotic formulas for N(X) were derived by Győry
and Pethő [6] (in the archimedean case) and Pethő [12] (for an arbitrary finite set
of places S); Győry and Pethő [7] and Everest [2] obtained more precise results
in certain special cases. From (the qualitative part of) Theorem 1 we derive the
following generalisation of Pethő’s result [12]:

Corollary 4. We have

N(X) = γ · (logX)ρ +O((logX)ρ−1) as X →∞ ,
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where γ is a positive number independent of X and where ρ is the maximum of
the numbers ρB,S, taken over all K-subalgebras B of A with 1A ∈ B for which the
equation cNA/K(x) ∈ βO∗S in x ∈M has (M, B)-families of solutions.

We mention that in the case OS = Z, Everest and Győry [3] recently obtained some
refinements for equations of the form (1.4).
Remark 4. γ, ρ and the constant in the error term are all ineffective. By (1.16),
we can estimate ρ from above by the effectively computable number ρ0, which is the
maximum of the numbers ρB,S , taken over all K-subalgebras B of A with 1A ∈ B,
V B ∩ A∗ 6= ∅. Further, using the explicit bound in Theorem 1, one can effectively
compute an upper bound for γ; we shall not work this out.

To derive Corollary 4 we need some lemmas. The first lemma is undoubtedly
well-known but we could not find a proof of it in the literature.

Lemma 1. Let Λ be a finitely generated additive abelian group of rank ρ, and let
f be a function from Λ to R with the following properties:

f(x) ≥ 0 for x ∈ Λ;(2.5)

f(x+ y) ≤ f(x) + f(y) for x, y ∈ Λ;(2.6)

f(λx) = λf(x) for x ∈ Λ, λ ∈ Z≥0;(2.7)

for every Y > 0, the set {x ∈ Λ : f(x) ≤ Y } is finite.(2.8)

Then

(2.9) #{x ∈ Λ : f(x) ≤ Y } = γ · Y ρ +O(Y ρ−1) as Y →∞

where γ = γ(Λ, f) is a positive constant.

Proof. We first assume that Λ = Zρ. For x = (ξ1, ..., ξρ) ∈ Rρ we define the
maximum norm ||x|| := max(|ξ1|, ..., |ξρ|). Letting ei = (0, ..., 1, ..., 0) (i = 1, ..., ρ)
denote the vector in Zρ with a single 1 on the i-th place, we infer from (2.5)-(2.7)
that for x = (ξ1, ..., ξρ), y = (η1, ..., ηρ) ∈ Zρ we have

|f(x)− f(y)| ≤ max(f(x− y), f(y − x)) ≤
ρ∑
i=1

|ξi − ηi|max(f(ei), f(−ei)) ,

whence

(2.10) |f(x)− f(y)| ≤ C · ||x− y||,

where C :=
∑ρ
i=1 max(f(ei), f(−ei)).

We extend f to a function on Qρ by putting f(x) := λ−1f(λx) for x ∈ Qρ where
λ is the smallest positive integer such that λx ∈ Zρ. This extended f satisfies again
(2.5)-(2.7) and (2.10), but now for all x, y ∈ Qρ and λ ∈ Q≥0. Using (2.10) and
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taking limits we can extend f to a continuous function f : Rρ 7→ R which satisfies
(2.5)-(2.7) and (2.10) for all x, y ∈ Rρ and λ ∈ R≥0.

For Y > 0 we define the set CY := {x ∈ Rρ : f(x) ≤ Y }. Since f is continuous,
this set is Lebesgue measurable. By (2.7) we have CY = {Y x : x ∈ C1}. Hence
CY has Lebesgue measure γ · Y ρ, where γ is the Lebesgue measure of C1. We can
cover Rρ by the unit cubes Uz := {x ∈ Rρ : ||x− z|| ≤ 1

2} (z ∈ Zρ). These cubes
have Lebesgue measure 1, and any two different cubes have at most part of their
boundary in common. (2.7) and (2.10) imply that

CY− 1
2C
⊆

⋃
z∈Zρ

f(z)≤Y

Uz ⊆ CY+ 1
2C

for Y ≥ 1
2C .

Now let n(Y ) be the number of z ∈ Zρ with f(z) ≤ Y . By comparing Lebesgue
measures, we get

(2.11) γ · (Y − 1
2C)ρ ≤ n(Y ) ≤ γ · (Y + 1

2C)ρ for Y ≥ 1
2C .

¿From (2.8) it follows that n(Y ) is finite; hence γ is finite. Moreover, for Y suffi-
ciently large, n(Y ) > 0, hence γ > 0. Now (2.9) follows at once from (2.11). This
settles the case Λ = Zρ.

Now let Λ be an arbitrary additive abelian group. There are u1, ..., uρ ∈ Λ such
that every x ∈ Λ can be expressed uniquely as

x = t+ ζ1u1 + · · ·+ ζρuρ with t ∈ Λtors, z = (ζ1, ..., ζρ) ∈ Zρ .

Put f ′(z) := f(ζ1u1 + · · · + ζρuρ). (2.6) implies that f ′(z) − f(−t) ≤ f(x) ≤
f ′(z) + f(t). Further, (2.7) with λ = 0 implies that f(0) = 0. More generally, (2.7)
implies that f(t) = 0 for t ∈ Λtors since for such t there is a positive integer λ with
λt = 0. Hence f(x) = f ′(z) for x ∈ Λ. Clearly, f ′ and Zρ satisfies (2.5)-(2.8). So
by what we proved above we have

#{z ∈ Zρ : f ′(z) ≤ Y } = γ′Y ρ +O(Y ρ−1) as Y →∞

with some positive γ′. From this, one deduces easily that (2.9) holds with γ =
γ′ ·#Λtors. This completes the proof of Lemma 1. �

For a subset F of A with the property that for each x ∈ F the coset xO∗S is
contained in F , we denote by NF (X) the maximal number of distinct O∗S-cosets
xO∗S with x ∈ F and H(x) ≤ X.

Lemma 2. Let F = xUM,B be a family of solutions of (1.7), where B is a K-
subalgebra of A containing 1A and x ∈MB. Then for some positive real γ depend-
ing only on M and B we have

(2.12) NF (X) = γ(logX)ρB,S +O((logX)ρB,S−1) as X →∞ .
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Proof. We use the following properties of the absolute Weil height which are straight-
forward consequences of its definition:

(2.13)


H(x) ≥ 1 for x ∈ Q

n\{0},
H(x1y1, ..., xnyn) ≤ H(x1, ..., xn)H(y1, ..., yn)

for x1, ..., xn, y1, ..., yn ∈ Q,

H(xλ1 , ..., x
λ
n) = H(x1, ..., xn)λ for x1, ..., xn ∈ Q, λ ∈ Z≥0.

Let U := UM,B and ρ0 := ρB,S . Since U has finite index in O∗B,S , the factor group
U/O∗S has rank ρ0. We apply Lemma 1 to Λ = U/O∗S and f = logH. By (2.2), f is
well-defined on Λ. Further, (2.13) implies (2.5)-(2.7), and (2.8) follows from (2.3)
and the fact that U/O∗S = U/(K∗ ∩ U) may be viewed as a subgroup of A∗/K∗. It
follows that

(2.14) NU(X) = γ(logX)ρ0 +O((logX)ρ0−1) as X →∞

for some positive constant γ. By (2.13) we have c1H(xu) ≤ H(u) ≤ c2H(xu) for
u ∈ U, where c1 = H(x)−1 and c2 = H(x−1), and this implies that NU(c−1

2 X) ≤
NxU(X) ≤ NU(c−1

1 X). Now Lemma 2 follows from (2.14) and the fact that both(
log(c−1

1 X)
)ρ0 and

(
log(c−1

2 X)
)ρ0 differ from (logX)ρ0 by at most O((logX)ρ0−1).

�

Lemma 3. For any two K-subalgebras B1, B2 of A containing 1A, the intersection
of an (M, B1)-family and an (M, B2)-family is the union of at most finitely many
(M, B1 ∩B2)-families.

Proof. Let Gi = xiUM,Bi with xi ∈MBi for i = 1, 2 be the two families of solutions
and put B := B1 ∩ B2. Let x0 ∈ G1 ∩ G2. Then x0 ∈ MB1 ∩ MB2 . From
definition (1.10) it follows easily thatMBi ⊆MB for i = 1, 2. Therefore, x0 ∈MB .
Further, we have Gi = x0UM,Bi for i = 1, 2, hence G1 ∩ G2 = x0

(
UM,B1 ∩ UM,B2

)
.

We claim that UM,B is a subgroup of finite index in UM,B1 ∩ UM,B2 ; then it
follows at once that G1 ∩ G2 is the union of finitely many families yUM,B with
y ∈ MB . To prove the claim, let ε ∈ UM,B and take i ∈ {1, 2}. Then ε ∈ B ⊆ Bi,
whence by (1.10), εMBi ⊆ V Bi where V = KM. Further, by (1.11) we have
εMBi ⊆ εMB = MB ⊆ M. Therefore, by (1.10) εMBi ⊆ MBi . Similarly, we
find ε−1MBi ⊆ MBi . Hence εMBi = MBi , i.e. ε ∈ UM,Bi for i = 1, 2. So
UM,B ⊆ UM,B1 ∩ UM,B2 . Now our claim follows from the fact that both groups
have finite index in O∗B,S = O∗B1,S

∩ O∗B2,S
. �

Proof of Corollary 4. By Theorem 1, the set of solutions of (1.7) can be expressed
as

(2.15) F1 ∪ ... ∪ Fp
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where for each i, Fi is an (M, Bi)-family of solutions of (1.7) for some K-subalgebra
Bi of A containing 1A. For a tuple I = {i1 < ... < it} of integers from {1, ..., p}, let
BI := Bi1 ∩ ... ∩ Bit , FI := Fi1 ∩ ... ∩ Fit , and NI(X) the number of cosets xO∗S
with x ∈ FI and H(x) ≤ X. Put ρ1 := max{ρBi,S : i = 1, ..., p}. Thus, ρBI ,S ≤ ρ1

for each tuple I as above. Lemma 3 implies that for each I, FI is the union of
finitely many (M, BI)-families. So by Lemma 2 we have

NI(X) = γI(logX)ρ1 +O((logX)ρ1−1) as X →∞

where γI = 0 if ρBI ,S < ρ1. Note that γi > 0 for at least one i ∈ {1, ..., p}. Now by
(2.15) and the rule of inclusion and exclusion we have

N(X) =
p∑
i=1

Ni(X)−
∑

#I=2

NI(X) +
∑

#I=3

NI(X)− · · · ,

hence
N(X) = γ(logX)ρ1 +O((logX)ρ1−1) as X →∞

where

γ =
p∑
i=1

γi −
∑

#I=2

γI +
∑

#I=3

γI − · · · .

Since N(X) ≥ Ni(X) for i = 1, ..., p we have γ ≥ γi for i = 1, ..., p, hence γ > 0.
Lemma 2 implies that (1.7) does not have any family of solutions xUM,B with
ρB,S > ρ1; therefore, ρ1 = ρ. This completes the proof of Corollary 4. �

3. Reduction to O∗A,S-cosets

Let K be an algebraic number field, and let S,M1, . . . ,Mt, A = M1⊕· · ·⊕Mt,M
be as in Section 1.2. Further, let s = #S, r = dimKA ≥ 2, n = dimKKM≥ 2, c, β
be as in (1.12). For x ∈ A, we define the coset xO∗A,S = {εx : ε ∈ O∗A,S}. In this
section we prove Lemma 4 below which is in fact an improvement of Lemma 5 of
[5].

Lemma 4. The set of solutions of

(1.7) cNA/K(x) ∈ βO∗S in x ∈M

is contained in some union x1O∗A,S ∪ . . .∪xt1O∗A,S where t1 ≤ ψ2(β) and where for
j = 1, . . . , t1, xj ∈M is a solution of (1.7).

We prove this by slightly refining some arguments of Schmidt [17]. In the proof
of Lemma 4 we need some further lemmas. We first recall some lemmas from
[17]. Let E be a field endowed with a non-archimedian additive valuation V (i.e.
V (xy) = V (x) + V (y), V (x + y) ≥ min(V (x), V (y)) for x, y ∈ E, V (0) = ∞, and
there is an x ∈ E with V (x) 6= 0, V (x) 6= ∞). For z = (z1, . . . , zn) ∈ En, put
V (z) = min(V (z1), . . . , V (zn)). Further, let L1, . . . , Lr be r ≥ n linear forms in n

variables with coefficients in E.
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Lemma 5. Let z ∈ En with z 6= 0. There is a subset S of {1, . . . , r} of cardinality
n− 1 such that every z’ ∈ En with

V (z’) ≥ V (z), V (Li(z’)) ≥ V (Li(z)) for i ∈ S

satisfies
V (Li(z’)) ≥ V (Li(z)) for i = 1, . . . , r.

Proof. This is precisely Lemma 13 of [17], except that that Lemma has the ad-
ditional condition V (z) = 0. Suppose that V (z) 6= 0. Let λ ∈ E be such that
V (λ) = V (z) and put z1 := λ−1z. Then V (z1) = 0. Now Lemma 5 follows at once
from Lemma 13 of [17] applied to z1, on observing that V (Li(z1)) = V (Li(z))−V (λ)
for i = 1, . . . , r. �

We call the subset S related to z as in Lemma 5 an anchor for z.

Lemma 6. Let d1, . . . , dr be positive rational numbers, γ a real and S a subset of
{1, . . . , r} of cardinality n− 1. Put

T (S) := {z ∈ En :
r∑
i=1

diV (Li(z)) = γ,S is an anchor for z}.

Then for any z1, z2 ∈ T (S) with V (Li(z1)) = V (Li(z2)) for i ∈ S we have that
V (Li(z1)) = V (Li(z2)) for i = 1, . . . , r.

Proof. Let z1, z2 ∈ T (S) with V (Li(z1)) = V (Li(z2)) for i ∈ S. We may as-
sume without loss of generality that V (z2) ≥ V (z1). Then by Lemma 5 we have
V (Li(z2)) ≥ V (Li(z1)) for i = 1, . . . , r. Together with

∑r
i=1 diV (Li(zj)) = γ for

j = 1, 2 this implies that V (Li(z2)) = V (Li(z1)) for i = 1, . . . , r. �

As before, if we express an element of A as a t-tuple (ξ1, . . . , ξt), say, then it is
implicitly assumed that ξi ∈Mi for i = 1, . . . , t. Fix v ∈MK \ S. For i = 1, . . . , t,
let wi,1, . . . , wi,gi denote the places on Mi which lie above v, and denote by eij , fij
the ramification index and residue class degree, respectively, of wij over v. Let K
denote the algebraic closure of K. Choose a continuation of ordv to K and denote
this also by ordv; then ordv assumes its values in Q. For i = 1, . . . , t let Ei denote
the collection of K-isomorphic embeddings of Mi into K; then Ei can be expressed
as a disjoint union,

Ei = Ei1 ∪ . . . ∪ Eigi with #Eij = eijfij for j = 1, . . . , gi

such that for j = 1, . . . , gi

(3.1) ordwij (α) = eijordv(σ(α)) for α ∈Mi, σ ∈ Eij .
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Lemma 7. There are integers cij (i = 1, . . . , t, j = 1, . . . , gi) and uv with uv ≤
ordv(β) such that for every solution x = (ξ1, . . . , ξt) ∈M of (1.7) we have

(3.2) ordwij (ξi)− cij ≥ 0 for i = 1, . . . , t, j = 1, . . . , gi,

(3.3)
t∑
i=1

gi∑
j=1

fij{ordwij (ξi)− cij} = uv.

Proof. Let {ak = (αk1, . . . , αkt) : k = 1, . . . ,m} be a set of generators of M as an
OS-module. Define the integers

(3.4) cij = min{ordwij (αki) : k = 1, . . . ,m} for i = 1, . . . , t, j = 1, . . . , gi.

Let x = (ξ1, . . . , ξt) ∈ M be a solution of (1.7). Then x =
∑m
k=1 βkak for certain

β1, . . . , βm ∈ OS . Since the place wij lies above v ∈MK\S, we have ordwij (βk) ≥ 0
for i = 1, . . . , t, j = 1, . . . , gi. Together with ξi =

∑m
k=1 βkαki for i = 1, . . . , t and

(3.4), this implies ordwij (ξij) ≥ cij for i = 1, . . . , t, j = 1, . . . , gi. This proves (3.2).
We now prove (3.3) for some uv. By assumption, c is a denominator for M, i.e.

c
t∏
i=1

NMi/K(α1iX1 + . . .+ αmiXm) ∈ OS [X1, . . . , Xm].

Since x = (ξ1, . . . , ξt) is a solution of (1.7) we have c
∏t
i=1NMi/K(ξi) ∈ βO∗S , so

(3.5) F (X) = β
t∏
i=1

NMi/K

(
m∑
k=1

αki
ξi
Xk

)
∈ OS [X1, . . . , Xm].

For a polynomial P (X) ∈ K[X1, . . . , Xm] denote by ordv(P ) the minimum of the
numbers ordv(α) for all coefficients α of P . By Gauss’ lemma (cf. [8], p.55,
Prop.2.1) we have ordv(PQ)=ordv(P )+ordv(Q) for P,Q ∈ K[X1, . . . , Xm]. By
applying this to (3.5) we obtain

0 ≤ ordv(F ) = ordv(β) +
t∑
i=1

∑
σ∈Ei

min
1≤k≤m

ordv(σ(αki/ξi))

= ordv(β) +
t∑
i=1

gi∑
j=1

∑
σ∈Eij

min
1≤k≤m

ordv(σ(αki/ξi))

= ordv(β) +
t∑
i=1

gi∑
j=1

fij min
1≤k≤m

ordwij (αki/ξi) by (3.1)

= ordv(β) +
t∑
i=1

gi∑
j=1

fij{cij − ordwij (ξi)} by (3.4).

This implies (3.3) with uv = ordv(β)− ordv(F ). �
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Lemma 8. If x = (ξ1, . . . , ξt) runs through the set of solutions of (1.7), then
the tuple ψv(x) := (ordwij (ξi) : i = 1, . . . , t, j = 1, . . . , gi) runs through a set of
cardinality at most

(
r

n−1

)(
ordv(β)+n−1

n−1

)
.

Proof. Let
Ov := {y ∈ K : ordv(y) ≥ 0}, Mv :=MOv

be the local ring at v, and the localisation of M at v, respectively. We note that
OS ⊂ Ov and M ⊂ Mv. Since Ov is a principal ideal domain, the Ov-module
Mv is free of rank n = dimKKM. Let {ak = (αk1, . . . , αkt) : k = 1, . . . , n} be an
Ov-basis ofMv. Further, let x = (ξ1, . . . , ξt) ∈M be a solution of (1.7). Then x =
z1a1+. . .+znan for some vector z = (z1, . . . , zn) ∈ Onv which is uniquely determined
by x. For each i ∈ {1, . . . , t} and each σ ∈ Ei (the collection of K-isomorphic
embeddings of Mi into K) define the linear form Liσ(z) := σ(α1i)z1+. . .+σ(αni)zn.
Thus

(3.6) σ(ξi) = Liσ(z) for i = 1, ..., t, σ ∈ Ei .

Recall that
∑t
i=1[Mi : K] = r. Let L1, ..., Lr be the linear forms Liσ (i =

1, ..., t, σ ∈ Ei) in some order. For i = 1, ..., t, j = 1, ..., gi, let

Fij = {k ∈ {1, ..., r} : Lk = Liσ for some σ ∈ Eij},

where the set Eij is defined by (3.1). Then by (3.1), (3.6),

(3.7)
ordwij (ξi) = eijordv(σ(ξi)) = eijordv(Lk(z))

for i = 1, ..., t, j = 1, ..., gi, k ∈ Fij .

We apply Lemma 6 with E = K and V = ordv. Let Sx ⊂ {1, ..., r} be an anchor
for z in the sense of Lemma 5. Then Sx has cardinality n − 1, and the tuple
(ordv(Lk(z)) : k = 1, ..., r) is uniquely determined by Sx and the (n − 1)-tuple
(ordv(Lk(z)) : k ∈ Sx). Let

S ′x = {(i, j) : 1 ≤ i ≤ t, 1 ≤ j ≤ gi, Fij ∩ Sx 6= ∅}.

Now (3.7) implies that once Sx is given, the tuple (ordwij (ξi) : (i, j) ∈ S ′x) deter-
mines uniquely (ordv(Lk(z)) : k ∈ Sx), the latter determines uniquely (ordv(Lk(z)) :
k = 1, ..., r) and this last tuple determines uniquely (ordwij (ξi) : i = 1, ..., t, j =
1, ..., gi) = ψv(x), again by (3.7). We conclude that ψv(x) is determined uniquely
by Sx and the tuple (ordwij (ξi) : (i, j) ∈ S ′x).

By Lemma 7 there are integers cij (i = 1, ..., t, j = 1, ..., gi) such that
ordwij (ξi)− cij ≥ 0 for (i, j) ∈ S ′x and

(3.8)
∑

(i,j)∈S′x

{ordwij (ξi)− cij} ≤
t∑
i=1

gi∑
j=1

fij{ordwij (ξi)− cij} ≤ ordv(β).
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The set S ′x has cardinality ≤ n− 1, since Sx has cardinality n− 1 and the sets Fij
are pairwise disjoint. Given the set Sx, (3.8) implies that for the tuple (ordwij (ξi) :
(i, j) ∈ S ′x) we have at most

(
ordv(β)+#S′x

#S′x

)
≤
(

ordv(β)+n−1
n−1

)
possibilities. Moreover,

as Sx is a subset of {1, ..., r} of cardinilaty n−1, we have at most
(
r

n−1

)
possibilities

for Sx. This proves Lemma 8. �

Proof of Lemma 4. For x = (ξ1, ..., ξt) ∈ A define the tuple of integers ψ(x) :=
(ordwi(ξi) : i = 1, ..., t, wi - S) where ‘wi - S’ indicates that wi runs through
all places on Mi not lying above a place in S. ψ is an additive homomorphism
on A∗ with kernel O∗A,S , since x = (ξ1, ..., ξt) ∈ O∗A,S ⇐⇒ ξi ∈ O∗Mi,S

for
i = 1, ..., t ⇐⇒ ordwi(ξi) = 0 for i = 1, ..., t, wi - S. In particular, for x1, x2 ∈ A∗

we have ψ(x1) = ψ(x2) ⇐⇒ x1O∗A,S = x2O∗A,S .
Now ψ(x) can be obtained by combining all tuples ψv(x) (v ∈ MK \ S) from

Lemma 8. Hence if x runs through all solutions of (1.7), then ψ(x) runs through a
set of cardinality at most

∏
v∈MK\S

(
r

n− 1

)(
ordv(β) + n− 1

n− 1

)
= ψ2(β).

This completes the proof of Lemma 4. �

4. Proof of Theorem 1

Let K, S, s = #S, M1, ...,Mt, A = M1 ⊕ ... ⊕Mt, r = dimKA ≥ 2, M, n =
dimKKM, c, β be as in (1.12). Further, put V := KM. By Lemma 4, the set of
solutions of (1.7) is contained in some finite union of O∗A,S-cosets. For the moment,
we consider only the solutions of (1.7) in a fixed O∗A,S-coset x0O∗A,S . More generally,
we deal with elements of the set

(4.1) V ∩ x0O∗A,S

where x0 is a fixed element of A∗. As before, we view K as a K-subalgebra of A
by identifying α ∈ K with α1A = (α, ..., α) (r times).

Lemma 9. Let B = {a ∈ A : aV ⊆ V } be the algebra of scalars of V . Suppose
that n ≥ 2 and that the quotient group O∗B,S/O∗S is finite. Then there are proper
K-linear subspaces Y1, ..., Yt2 of V such that

V ∩ x0O∗A,S ⊆ Y1 ∪ ... ∪ Yt2 with t2 ≤ (266r4)
n2s

.

Proof. We assume that x0 = 1; this is no loss of generality since if x0 6= 1, we may
prove Lemma 9 with x−1

0 V ∩O∗A,S replacing V ∩x0O∗A,S . We want to apply Lemma
16 of [4] and for this purpose we must introduce some notation.
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For i = 1, ..., t, let τi,1, ..., τi,ri (ri = [Mi : K]) be the K-isomorphic embeddings
of Mi into K and define the map f : A 7→ K

r
by

f(x) := (τ1,1(ξ1), ..., τ1,r1(ξ1), ..., τt,1(ξt), ..., τt,rt(ξt)) for x = (ξ1, ..., ξt) ∈ A.

Thus, f(x) = (x1, ..., xr) ∈ K
r
. Let G denote the Galois group of K/K. Clearly, for

σ ∈ G, i = 1, ..., t, σ ◦ τi,1, ..., σ ◦ τi,ri is a permutation of τi,1, ..., τi,ri . This implies
that there is an action by G on {1, ..., r} attaching to each σ ∈ G a permutation
(σ(1), ..., σ(r)) of (1, ..., r) such that for x ∈ A we have

σ(xi) = xσ(i) for i = 1, ..., r, σ ∈ G,

where (x1, ..., xr) = f(x). Define the K-algebra

Λ = {x = (x1, ..., xr) ∈ K
r

: σ(xi) = xσ(i) for i = 1, ..., r, σ ∈ G}.

Then f is an injective K-homomorphism from A to Λ. For instance from Lemma
2 of [4] it follows that K-linearly independent vectors of Λ are also K-linearly
independent; so dimKΛ ≤ r = dimKA. It follows that f is also surjective, i.e. a
K-algebra isomorphism from A to Λ. Let OS denote the integral closure of OS
in K, O∗S the unit group of OS , and O∗S

r
the r-fold cartesian product of this unit

group. It is easy to verify that

(4.2) f(O∗A,S) = Λ ∩ (O∗S
r
).

A symmetric partition of {1, ..., r} is a collection of sets P = {P1, ..., Pq} such that
P1 ∪ ... ∪ Pq = {1, ..., r}, Pi ∩ Pj = ∅ for 1 ≤ i < j ≤ q and such that for each
P ∈ P, σ ∈ G, the set σ(P ) = {σ(k) : k ∈ P} belongs also to P. To a symmetric
partition P we attach the K-subalgebra of Λ,

ΛP = {x = (x1, ..., xr) ∈ Λ : xi = xj for each pair of indices i, j

belonging to the same set of P}.

Let W := f(V ) and let P be a symmetric partition of {1, ..., r} such that

(4.3) xW ⊆W for x ∈ ΛP .

Let B̃ := f−1(ΛP). Then B̃ is a K-subalgebra of B. Hence O∗
B̃,S

/O∗S (with ε ∈ O∗S
identified with (ε, ..., ε) (t times)) is finite. Now (4.2) implies that f maps O∗

B̃,S
to

O∗P,S := ΛP∩(O∗S)r. Further, f maps O∗S to f(O∗S) := {(ε, ..., ε) (r times) : ε ∈ O∗S}.
Hence

(4.4) O∗P,S/f(O∗S) is finite.

Now let P be the symmetric partition specified in the statement of Lemma 16 of
[4]. This P satisfies (4.3), hence (4.4) and so the condition of Lemma 16 of [4] is
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satisfied. Therefore, according to Lemma 16 of [4], the set W ∩ (O∗S)r is contained

in some union W1 ∪ ...∪Wt2 of proper linear subspaces of W with t2 ≤ (266r4)n
2s.

By (4.2) we have V ∩O∗A,S = f−1(W ∩ (O∗S)r). Hence V ∩O∗A,S ⊆ Y1∩ ...∩Yt2 with
Yi = f−1(Wi) for i = 1, ..., t2. This proves Lemma 9. �

We want to relax the condition of Lemma 9 that O∗B,S/O∗S be finite and for this,
we need some preparations.

We recall that a K-subalgebra B of A is said to be S-minimal if 1A ∈ B, and if B
has no proper K-subalgebra B′ with 1A ∈ B′ for which O∗B,S/O∗B′,S is finite. Every
K-subalgebra B of A with 1A ∈ B has an S-minimal K-subalgebra B′ for which
O∗B,S/O∗B′,S is finite. Namely, let B′ be the intersection of all K-subalgebras B1

of B with 1A ∈ B1 for which O∗B,S/O∗B1,S
is finite. Then O∗B′,S is the intersection

of all groups O∗B1,S
. Furthermore, B has only finitely many K-subalgebras. Hence

O∗B,S/O∗B′,S is finite. If B′′ is a K-subalgebra of B′ with 1A ∈ B′′ such that
O∗B′,S/O∗B′′,S is finite, then O∗B,S/O∗B′′,S is finite, and therefore B′′ ⊇ B′. Hence
B′ is S-minimal.

In what follows, let
B = {x ∈ A : xV ⊆ V }

be the algebra of scalars of A, and let B′ be an S-minimal K-subalgebra of B for
whichO∗B,S/O∗B′,S is finite. Every K-subalgebra of A is semi-simple, i.e. isomorphic
to a direct sum of finite extension fields of K. So in particular we have

B′ ∼= L′1 ⊕ ...⊕ L′q

for certain finite extension fields L′1, ..., L
′
q of K. Then B′ has K-subalgebras

L′′1 , ..., L
′′
q such that

(4.5) B′ = L′′1 + ...+ L′′q as vector space, L′′i · L′′j = (0) for 1 ≤ i < j ≤ q,

L′′i
∼= L′i for i = 1, ..., q.

For i = 1, ..., q, denote by 1i the unit element of L′′i . (4.5) and 1A ∈ B′ imply that

(4.6) 1A = 11 + ...+ 1q, 1i · 1j = 0 for 1 ≤ i < j ≤ q.

Let 1i = (ξi1, ..., ξit) with ξij ∈Mj for j = 1, ..., t. Since 12
i = 1i, we have ξ2

ij = ξij ,
whence ξij ∈ {0, 1} for j = 1, ..., t. Together with (4.6) this implies that there are
subsets P1, ..., Pq of {1, ..., t} such that

(4.7) 1i = (ξi1, ..., ξit) with ξij = 1 for j ∈ Pi, ξij = 0 for j /∈ Pi,

(4.8) P1 ∪ ... ∪ Pq = {1, ..., t}, Pi ∩ Pj = ∅ for 1 ≤ i < j ≤ q.

Define the K-algebras
Ai = ⊕

j∈Pi
Mj for i = 1, ..., q,



22 J.-H. EVERTSE AND K. GYŐRY

the projections

Πi : A 7→ Ai : (ξ1, ..., ξt) 7→ (ξj : j ∈ Pi) for i = 1, ..., q,

and
Π = (Π1, ...,Πq) : A 7→ A1 ⊕ ...⊕Aq : x 7→ (Π1(x), ...,Πq(x)).

Π is merely a permutation of coordinates, so Π is a K-algebra isomorphism from
A to A1 ⊕ ...⊕Aq. Further define

Bi := Πi(B), Li := Πi(B′), Vi := Πi(V ) for i = 1, ..., q,

where Bi, Li are K-subalgebras, and Vi is a subspace of Ai. Then we have:

Lemma 10. (i). Π(B) = B1⊕ ...⊕Bq, Π(B′) = L1⊕ ...⊕Lq, Π(V ) = V1⊕ ...⊕Vq.
(ii). For i = 1, ..., q, Li is isomorphic to a finite extension field of K.
(iii). Bi = {x ∈ Ai : xVi ⊆ Vi} for i = 1, ..., q.

Proof. (i). We prove only that Π(V ) = V1 ⊕ ... ⊕ Vq; the proofs that Π(B) =
B1 ⊕ ... ⊕ Bq and Π(B′) = L1 ⊕ ... ⊕ Lq are entirely similar. It is obvious that
Π(V ) ⊆ V1 ⊕ ... ⊕ Vq. Conversely, let x = (x1, ..., xq) with xj ∈ Vj for j = 1, ..., q.
Choose yj ∈ V such that Πj(yj) = xj for j = 1, ..., q and put y :=

∑q
j=1 1j · yj .

Since 1j ∈ L′′j ⊆ B′ ⊆ B we have 1jV ⊆ V for j = 1, ..., q; hence y ∈ V . Now
(4.7) and (4.8) imply that for j = 1, ..., q, the coordinates of y with indices in Pj

are equal to the corresponding coordinates of yj . Hence Πj(y) = Πj(yj) = xj for
j = 1, ..., q. Therefore, Π(y) = x. We infer that indeed Π(V ) = V1 ⊕ ...⊕ Vq.

(ii). Let i ∈ {1, ..., q}. We first show that Πi(L′′i ) = Πi(B′). L′′i is a K-subalgebra
of B′, hence Πi(L′′i ) ⊆ Πi(B′). Conversely, let x ∈ B′. Then x = x1 + ...+ xq with
xj ∈ L′′j for j = 1, ..., q. Now Πi(1i) = (1, ..., 1) and by (4.5) we have 1ixj = 0 for
j 6= i. Hence

Πi(x) = Πi(1ix) = Πi(1ixi) = Πi(xi) ∈ Πi(L′′i ).

This shows that indeed Πi(L′′i ) = Πi(B′). Now Πi is non-trivial as its image
contains (1, ..., 1) and L′′i is a field, hence Li = Πi(L′′i ) is a field.

(iii). Let i ∈ {1, ..., q}. Put B̃i := {x ∈ Ai : xVi ⊆ Vi}. For x ∈ Bi we have x =
Πi(y) for some y ∈ B, whence xVi = Πi(yV ) ⊆ Πi(V ) = Vi. Therefore, Bi ⊆ B̃i.
To prove the opposite inclusion, consider B̃ = Π−1(B̃1 ⊕ ... ⊕ B̃q). Then B̃ is a
K-subalgebra of A and for x ∈ B̃ we have by (i) xV = Π−1(Π(x) · (V1⊕ ...⊕Vq)) ⊆
Π−1(V1⊕...⊕Vq) = V ; therefore, B̃ ⊆ B. It follows that B̃i ⊆ Πi(B̃) ⊆ Πi(B) = Bi,
which completes the proof. �

Fix again i ∈ {1, ..., q}. We have Li ⊆ Bi ⊆ Ai, so that Ai may be viewed as
an Li-algebra and Bi as an Li-subalgebra of Ai. Further, the unit element 1Ai
of Ai is just the unit element of Li, and so 1Ai ∈ Bi. Lastly, by (iii) of Lemma
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10, Vi is an Li-vector space. Note that OAi,S = ⊕
j∈Pi
OMj ,S , OBi,S = OAi,S ∩ Bi,

OLi,S = OAi,S∩Li are the integral closures of OS in Ai, Bi, Li, respectively. Clearly,
O∗Bi,S/O

∗
Li,S

is a homomorphic image of O∗B,S/O∗B′,S , so

(4.9) O∗Bi,S/O
∗
Li,S is finite.

We are now ready to prove the following generalisation of Lemma 9:

Lemma 11. We have that either V = yB′ for some y ∈ A, or there are proper
K-linear subspaces Y1, ..., Yt3 of V such that

V ∩ x0O∗A,S ⊆ Y1 ∪ ... ∪ Yt3 with t3 ≤ (266r4)
n2s

.

Proof. As mentioned before, for i = 1, ..., q, Vi may be viewed as an Li-vector
space. First assume that dimLiVi = 1 for i = 1, ..., q. Then for i = 1, ..., q there is
an yi ∈ Ai, such that Vi = yiLi. Together with part (i) of Lemma 10 this implies
that V = Π−1(y1L1 ⊕ ...⊕ yqLq) = yB′ with y = Π−1((y1, ..., yq)).

Now assume that dimL1V1 ≥ 2, say. Put n1 := dimL1V1, r1 := dimL1A1, let S1

be the set of places lying above those in S, and s1 the cardinality of S1. Then since
V1 is a K-linear subspace of Π(V ) ∼= V , and A1 of Π(A) ∼= A, we have

n1[L1 : K] = dimKV1 ≤ n, r1[L1 : K] = dimKA1 ≤ r,

s1 ≤ s[L1 : K].

Further, putting x′0 := Π1(x0), we have

Π1(V ∩ x0O∗A,S) ⊆ V1 ∩ x′0O∗A,S .

In view of part (iii) of Lemma 10 and of (4.9), we may apply Lemma 9 with
L1, A1, B1, V1, S1 replacing K,A,B, V, S. Thus, there are proper L1-linear sub-
spaces Z1, ..., Zt3 of V1, with

t3 ≤ (266r4
1)
n2

1s1 ≤ (266r4)
n2s

such that V1∩x′0O∗A1,S
⊆ Z1∪ ...∪Zt3 . But each of these subspaces Zj is a K-linear

subspace of V1. Hence it follows that V ∩x0O∗A,S ⊆ Y1∪...∪Yt3 where Yj = Π−1
1 (Zj)

is a proper K-linear subspace of V . This proves Lemma 11. �

We recall that e(n) is defined by e(n) = 1
3n(n+ 1)(2n+ 1)− 2.

Lemma 12. There are y1, ..., yt4 ∈ A∗ and S-minimal K-subalgebras B1, ..., Bt4 of
A, such that

yiBi ⊆ V for i = 1, ..., t4,

V ∩ x0O∗A,S ⊆ y1O∗B1,S ∪ ... ∪ yt4O
∗
Bt4 ,S

with t4 ≤ (233r2)
e(n)s

.
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Proof. We first deal with the special case that V = yB1 for some y ∈ A and
some S-minimal K-subalgebra B1 of A. Assume that V ∩ x0O∗A,S 6= ∅ and let
y1 ∈ V ∩ x0O∗A,S . Then x0O∗A,S = y1O∗A,S . By assumption we have x0 ∈ A∗,
hence it follows that y1 ∈ A∗. Further, y1 = yz for some z ∈ B1, and so z ∈ B∗1 .
Therefore, V = yB1 = y1B1. It follows that

V ∩ x0O∗A,S = y1B1 ∩ y1O∗A,S = y1O∗B1,S ,

which implies Lemma 12 for V = yB1.
We prove Lemma 12 in full generality by induction on n = dimKV . If n = 1,

then V = yK for some y ∈ A and we are done since K is an S-minimal subalgebra of
A. Suppose that n ≥ 2, and that V is not equal to yB for some y ∈ A and some S-
minimalK-subalgebraB ofA. Then by Lemma 11 we have V ∩x0O∗A,S ⊆ Y1∪...∪Yt3
with t3 ≤ (266r4)n

2s, where Y1, ..., Yt3 are proper K-linear subspaces of V . Now by
the induction hypothesis we have for i = 1, ..., t3,

Yi ∩ x0O∗A,S ⊆ yi,1O∗Bi,1,S ∪ ... ∪ yi,t5O
∗
Bi,t5 ,S

with t5 ≤ (233r2)
e(n−1)s

where yi,j ∈ A∗, and Bi,j is an S-minimal K-subalgebra of A with yi,jBi,j ⊆ Yi for
j = 1, ..., t5. It follows that

V ∩ x0O∗A,S ⊆
t3∪
i=1

t5∪
j=1

yi,jO∗Bi,j ,S with yi,jBi,j ⊆ V.

Since t3t5 ≤ (233r2){2n
2+e(n−1)}s = (233r2)e(n)s, this proves Lemma 12. �

Before finishing the proof of Theorem 1, we prove the following Lemma:

Lemma 13. Let B be an S-minimal K-subalgebra of A, and x0UM,B an (M, B)-
family of solutions of (1.7), with x0 ∈MB. Then x0UM,B is irreducible.

Proof. Suppose that x0UM,B is reducible. Then there are proper subfamilies x1UM,B1 ,
..., xwUM,Bw of x0UM,B such that

(4.10) x0UM,B = x1UM,B1 ∪ ... ∪ xwUM,Bw .

Further, there is no loss of generality to assume that

(4.11) xi ∈MBi , Bi $ B for i = 1, ..., w.

Namely, if for instance B1 is not a K-subalgebra of B then by Lemma 3, x1UM,B1 =
xUM,B ∩x1UM,B1 is the union of finitely many (M, B∩B1)-families and, in (4.10),
we may replace x1UM,B1 by this union. Further, if B1 = B then x1UM,B1 is not a
proper subfamily of x0UM,B .

Put ρB := rankO∗B,S/O∗S , ρ := maxi=1,...,w{rankO∗Bi,S/O
∗
S}. From (4.11) and

the fact that B is S-minimal, it follows that ρ < ρB . On the other hand, letting
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NF (X) be the quantity in the statement of Lemma 2, it follows from Lemma 2 and
(4.10) that

Nx0UM,B
(X) = γ(logX)ρB +O((logX)ρB−1) as X →∞ with γ > 0,

Nx0UM,B
(X) = N∪wi=1xiUM,Bi

(X) = O((logX)ρ) as X →∞.

Thus, the assumption that x0UM,B is reducible leads to a contradiction. This
proves Lemma 13. �

Proof of Theorem 1. By Lemma 14 , the set of solutions of (1.7) is contained in
some union ∪t1j=1{V ∩ xjO∗A,S} with xj ∈ A∗ for j = 1, ..., t1 and t1 ≤ ψ2(β).
By Lemma 12, for j = 1, ..., t1, V ∩ xjO∗A,S is a subset of some finite union

∪t4jh=1yjhO∗Bjh,S with t4j ≤ (233r2)e(n)s, where yjh ∈ A∗ and Bjh is an S-minimal
K-subalgebra of A with yjhBjh ⊆ V , h = 1, ..., t4j . It follows that the set of so-
lutions of (1.7) is contained in ∪wh=1yhO∗Bh,S with w ≤ (233r2)e(n)s

ψ2(β), where
yh ∈ A∗ and Bh is an S-minimal K-subalgebra of A with yhBh ⊆ V , h = 1, ..., w.

We recall that if B is an S-minimal K-subalgebra of A, then, by Lemma 13, any
(M, B)-family of solutions is automatically irreducible. Hence the proof of Theorem
1 is complete once we have shown that the set of solutions of (1.7) belonging to
some coset yO∗B,S with y ∈ A∗, yB ⊆ V is the union of at most I := [O∗B,S : UM,B ]
(M, B)-families of solutions. Clearly, yO∗B,S is the union of I cosets zUM,B with
z ∈ A∗. Suppose that zUM,B contains a solution, say z0, of (1.7). Then zUM,B =
z0UM,B . We have z0 ∈M and also z0B = zB = yB ⊆ V , so z0 ∈ V B ∩M =MB ,
which implies that z ∈ MB . This proves that zUM,B is an (M, B)-family of
solutions of (1.7). This completes the proof of Theorem 1. �

5. Proof of Theorem 2

We will prove Theorem 2 more generally, for arbitrary fields K of characteristic
0. Thus, let K be any field of characteristic 0, A = M1 ⊕ ...⊕Mt where M1, ...,Mt

are finite extension fields of K with dimKA =
∑t
i=1[Mi : K] = r, and V is an

n-dimensional K-linear subspace of A. It is our purpose to prove that there are at
most {nmax(r − n, 2)}n K-subalgebras of A with

(1.16) 1A ∈ B, V B ∩A∗ 6= ∅.

We make some reductions. Let K be the algebraic closure of K and A = K
r

with
coordinatewise addition and multiplication. For x = (ξ1, ..., ξt) ∈ A, put f(x) :=
(τ1,1(ξ1), ..., τ1,r1(ξ1), ..., τt,1(ξt), ..., τt,rt(ξt)), where for i = 1, ..., t τi,1, ..., τi,ri (ri =
[Mi : K]) are the K-isomorphic embeddings of Mi into K. Then f is an injective
K-algebra homomorphism from A into A. It is easy to check that f maps K-linearly
independent elements of A to K-linearly independent elements of A. Hence, if for
a K-linear subspace W of A we define W to be the K-vector space generated by
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f(W ), we have that dimKW = dimKW and that W is uniquely determined by
W . Finally, if B is a K-subalgebra of A then B is a K-subalgebra of A: namely,
if x, y ∈ B, then x =

∑
ξif(xi), y =

∑
ηjf(yj) with ξi, ηj ∈ K, xi, yj ∈ B and

therefore, xy =
∑
ξiηjf(xiyj) ∈ B. Note that 1 = (1, ..., 1) (r times) is the element

of A and that A
∗

= {(ξ1, ..., ξr) ∈ K
r

: ξ1...ξr 6= 0}. For K-subalgebras B of A
with (1.16) we have

(5.1) 1 ∈ B, V B ∩A∗ 6= ∅.

Namely, it is clear that 1 ∈ B. Further, if x ∈ V B ∩A∗, we have f(x) ∈ A∗ and also

xB ⊆ V , whence f(x)B ⊆ V , i.e. f(x) ∈ V B ∩ A∗. Since B is uniquely determined
by B, it follows that the number of K-subalgebras B of A with (1.16) is at most
the number of K-subalgebras B of A with (5.1). Hence it suffices to prove the
following:

Lemma 14. A has at most {nmax(r − n, 2)}n K-subalgebras B with (5.1).

Proof. Let B be a K-subalgebra of A with (5.1). Then, for some q ≤ r, B is
isomorphic to K

q
with coordinatewise operations. This implies that B has K-

subalgebras L′′1 , ..., L
′′
q such that L′′i ∼= K for i = 1, ..., q, L′′1 + ... + L′′q = B, and

L′′i ·L′′q = (0) for 1 ≤ i < j ≤ q. Letting 1i be the unit element of L′′i for i = 1, ..., q,
we find, completely similarly to (4.7) and (4.8), that there are non-empty subsets
P1, ..., Pq of {1, ..., r} such that

(5.2) 1i = (ξi1, ..., ξir) with ξij = 1 for j ∈ Pi, ξij = 0 for j /∈ Pi,

(5.3) P1 ∪ ... ∪ Pq = {1, ..., r}, P1 ∩ Pj = ∅ for 1 ≤ i < j ≤ r.

First suppose that r > n. On noting that dimKV = n, after a permutation of
coordinates if necessary, we may assume that V is the set of solutions (ξ1, ..., ξr) of
a system of linear equations

(5.4) ξk =
n∑
j=1

ckjξj for k = n+ 1, ..., r,

with ckj ∈ K. Let (ξ1, ..., ξr) ∈ V
B ∩ A∗. Then 1ix ∈ V for i = 1, ..., q. (5.2)

implies that the coordinates of 1ix with indices in Pi are the same as those of x,
while the coordinates of 1ix with indices outside Pi are 0. Together with (5.4) this
implies

(5.5)


ξk =

∑
j∈Qi

ckjξj for k ∈ Ri, i = 1, ..., q,

0 =
∑
j∈Qi

ckjξj for k ∈ R̃i := {n+ 1, ..., r} \Ri, i = 1, ..., q,
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where Qi := Pi ∩ {1, ..., n}, Ri := Pi ∩ {n+ 1, ..., r}, i = 1, ..., q. Note that

(5.6)


Q1 ∪ ... ∪Qq = {1, ..., n}, Qi ∩Qj = ∅ for 1 ≤ i < j ≤ q,
R1 ∪ ... ∪Rq = {n+ 1, ..., r}, Ri ∩Rj = ∅ for 1 ≤ i < j ≤ q,
Qi ∩Rj 6= ∅ for i, j = 1, ..., q.

Further, by (5.2) and the fact that B = L′′1 +...+L′′q = 11K+...+1qK, we have that
B is determined uniquely by P1, ..., Pq, whence by Q1, ..., Qq, R1, ..., Rq. Recalling
that x ∈ A∗ we infer that it suffices to prove

(5.7)
there are at most {nmax(r − n, 2)}n collections {Q1, ..., Qq, R1, ..., Rq}
with (5.6) such that (5.5) has a solution with ξ1...ξr 6= 0.

For the moment, we fix Q1, ..., Qq and determine an upper bound for the number
of collections {R1, ..., Rq} for which (5.5) has a solution with ξ1...ξr 6= 0. Let
ni := #Qi for i = 1, ..., q. Take i ∈ {1, ..., q}. We have Qi 6= ∅ since otherwise
Ri 6= ∅ and each solution of (5.5) has ξk = 0 for k ∈ Ri. Define the vectors
ck = (ckj : j ∈ Qi) (k = n + 1, ..., r). We have rank{ck : k ∈ R̃i} ≤ ni − 1,
since otherwise each solution of (5.5) has ξj = 0 for j ∈ Qi. Further, for each
l ∈ Ri the vector cl is linearly independent of {ck : k ∈ R̃i}, since otherwise the
equations

∑
j∈Qi ckjξj = 0 for k ∈ R̃i imply

∑
j∈Qi cljξj = 0 for some l ∈ Ri

and so each solution of (5.5) has ξl = 0. It follows that {ck : k ∈ R̃i} consists of
all vectors in {ck : k = n + 1, ..., r} that are linear combinations of some linearly
independent subset of {ck : k ∈ R̃i}. But then, this linearly independent subset
uniquely determines Ri. Recalling that rank{ck : k ∈ R̃i} ≤ ni − 1, we infer that
the number of possibilities for Ri is at most the number of linearly independent
subsets of {ck : k = n+ 1, ..., r} of cardinality ≤ ni − 1, and the latter is at most(

r − n
0

)
+
(
r − n

1

)
+ ...+

(
r − n
ni − 1

)
≤ {max(r − n, 2)}ni .

Therefore, for given Q1, ..., Qq, the number of possibilities for {R1, ..., Rq} is at most

{max(r − n, 2)}n1+...+nq = {max(r − n, 2)}n.

The number of possibilities for {Q1, ..., Qq} is at most the number of partitions of
{1, ..., n} into disjoint sets which is ≤ nn. This implies (5.7), hence Lemma 14 for
for r > n. If r = n, then the sets R1, ..., Rq do not occur and we have only to
estimate the number of possibilities for {Q1, ..., Qq}. So in that case, Lemma 14
follows also. �
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