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Abstract: We describe the pairs of non-singular 2× 2-matrices (A,B) with com-

plex entries such that the set of pairs of integers m,n for which Am−Bn is singular

is infinite.

§1. Introduction.

Suppose A and B are non-singular 2 × 2 matrices with rational integral entries.

A.D. Pollington asked whether the following two statements are correct:

a) Assume that for every large N there are at least N2/(logN)2 pairs of positive

integers m,n with max(m,n) ≤ N such that Am − Bn is singular. Then one of

the eigenvalues of A,B is a root of unity.

b) Assume that A and B have non-real eigenvalues and that for every ε > 0 and

for every N exceeding some bound in terms of ε, there are at least N1−ε pairs of

positive integers m,n with max(m,n) ≤ N such that Am − Bn is singular. Then

there are integers r, s, not both zero, such that Ar = Bs.

Brown, Moran and Pollington [3] needed such results for their research on a con-

jecture of Schmidt [6] on normality with respect to matrices. Some further work

on this conjecture of Schmidt was done by Brown and Moran [1,2].

In the present paper we show that statements a) and b) are correct. More gen-

erally, in statement a) we allow A,B to have complex entries, N2/(logN)2 may

be replaced by Nf(N) for any function f which is unbounded in N , and we show

that either both A and B have an eigenvalue equal to a root of unity or one of
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the matrices A,B has two eigenvalues equal to a root of unity. In statement b),

the conclusion remains valid if A,B are any real 2 × 2-matrices with non-real

eigenvalues such that Am −Bn is singular for infinitely many pairs (m,n).

Let A,B be two matrices in GLk(C), i.e. the group of non-singular k×k-matrices

with complex entries. Define

SA,B := {(m,n) ∈ Z2 : Am −Bn is singular}.

Denote the transpose of a matrix C by CT . It is obvious that SAT ,BT = SA,B .

Two pairs (A,B), (A1, B1) of matrices in GLk(C), are called similar if

(1.1) A1 = JAJ−1, B1 = JBJ−1 for some J ∈ GLk(C).

Since (1.1) implies that Am1 − Bn1 = J(Am − Bn)J−1 we have SA,B = SA1,B1 for

similar pairs (A,B), (A1, B1).

We are interested in the problem to determine the matrices A,B for which SA,B
is infinite. Clearly, if (A,B), (A1, B1) are pairs in GLk(C) such that

(1.2) (A,B) is similar to (A1, B1), (B1, A1), (AT1 , B
T
1 ) or (BT1 , A

T
1 )

then SA,B is infinite if and only if SA1,B1 is infinite. For pairs of matrices (A,B),

(A1, B1) satisfying (1.2) we say that (A,B) is related to (A1, B1).

In this paper we restrict our attention to 2 × 2-matrices. We describe four types

of pairs of matrices (A1, B1) in GL2(C) for which SA1,B1 is infinite.

I) Ar1 =
(
θ
0
∗
∗

)
, Bs1 =

(
θ
0
∗
∗

)
for certain integers r, s, not both zero and some

non-zero θ ∈ C. Then Art1 −Brt1 =
(
θt−θt

0
∗
∗

)
is singular for every t ∈ Z.

II) Ar1 =
(
θ
0

0
κ

)
, Bs1 =

(
0
λ
λ
0

)
for certain integers r, s with rs 6= 0 and for some

non-zero θ, κ, λ ∈ C with θκ = λ2. Then A
r(2t+1)
1 − Bs(2t+1)

1 =
(

θ2t+1

−λ2t+1
−λ2t+1

κ2t+1

)
is singular for every t ∈ Z.
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III) Ar1 =
(
θ
0

0
κ

)
, Bs1 =

(
2λ+θ
−(λ+θ)

2(λ+θ)
−2θ−λ

)
for certain integers r, s with rs 6= 0

and for some non-zero θ, κ, λ ∈ C with θ2 = κλ. Then A
r(2t+1)
1 − B

s(2t+1)
1 =(

θ2t+1−2λ2t+1−θ2t+1

λ2t+1+θ2t+1
−2(λ2t+1+θ2t+1)

κ2t+1+2θ2t+1+λ2t+1

)
is singular for every t ∈ Z.

IV) A1 =
(
α
0
α
α

)
, B1 =

(
(1−
√
λµ)ρ

−µρ
λρ

(1+
√
λµ)ρ

)
where α, ρ, λ, µ are complex num-

bers such that

(1.3)

{
(αm − ρn)2 = µmnαmρn for infinitely many (m,n) ∈ Z2 and

µ 6= 0, and α and ρ are not roots of unity.

The equality in (1.3) is equivalent to det(Am1 − Bn1 ) = 0. Hence for every pair

(m,n) ∈ Z2 satisfying (1.3) we have that Am1 −Bn1 is singular.

It is easy to check that there are pairs of matrices (A1, B1) of type I, II or III. We

do not know, whether there are pairs of type IV. We have been able to prove only

(cf. §3, Lemma 8) that (1.3) implies

(1.4)

{
αr = ρs =: ε is a real quadratic unit for certain r, s ∈ Z and

µ ∈ Q.

Our main result is as follows:

Theorem 1. Let (A,B) be a pair of matrices in GL2(C) for which SA,B =

{(m,n) ∈ Z2 : Am − Bn is singular} is infinite. Then (A,B) is related to a

pair (A1, B1) of type I, II, III or IV.

Remark: From (1.4) it follows that if (A,B) is related to a pair of type IV then

both A and B have a double, irrational eigenvalue. This implies that a pair of

matrices with entries in Q cannot be related (over C) to a pair of type IV.

From Theorem 1 we shall derive the positive answer to question b) of Pollington:

Corollary. Let (A,B) be a pair of non-singular 2 × 2-matrices with real entries

and with non-real eigenvalues for which the set SA,B is infinite. Then there are

integers r, s, not both zero, such that Ar = Bs.
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We now consider the case that SA,B has ‘large density.’ Define the maximum norm

of h = (h1, ..., hr) ∈ Cr by

|h| = max(|h1|, ..., |hr|)

and for T ⊆ Zr, N ∈ Z, N > 0, put

T (N) := {h ∈ T : |h| ≤ N}.

Note that if (A,B) is related to a pair (A1, B1) of type I, II or III, then

lim sup
N→∞

#SA,B(N)
N

> 0.

We now consider the pairs (A,B) of matrices in GL2(C) for which lim supN→∞
1
N ·#SA,B(N) =∞. We describe two types of pairs (A1, B1) with this property:

V) Ar1 =
(

1
0
∗
∗
)
, Bs1 =

(
1
0
∗
∗
)

for certain non-zero integers r, s. Then Art1 −Bsu1 =(
0
0
∗
∗
)

is singular for every t, u ∈ Z. Note that at least one of the eigenvalues of

A1 and at least one of the eigenvalues of B1 is a root of unity.

VI) Ar1 =
(
θ
0

0
κ

)
, Bs1 =

(
0
1

1
0

)
for certain non-zero integers r, s and for θ, κ ∈ C

with θκ = 1. Then A
r(2t+1)
1 − B

s(2u+1)
1 =

(
θ2t+1

−1
−1
κ2t+1

)
is singular for every

t, u ∈ Z. Note that both A1, B1 can be diagonalised, that both eigenvalues of B1

are roots of unity and that the product of the eigenvalues of A1 is a root of unity.

The following result implies Pollington’s statement a):

Theorem 2. Let (A,B) be a pair of matrices in GL2(C) for which the sequence

(1.5)
#SA,B(N)

N
(N = 1, 2, ...) is unbounded.

Then (A,B) is related to a pair (A1, B1) of type V or VI.

Note that SA,B is the set of solutions of the equation det(Am − Bn) = 0 in

(m,n) ∈ Z2. This is a special type of exponential polynomial equation. We
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derive our results stated above from a theorem of Laurent ([4], Théorème 1) on

the structure of the set of solutions of exponential polynomial equations. In §2 we

recall Laurent’s theorem and refine this a little bit and in §3 we prove our results.

§2. Exponential polynomial equations.

Let n be a positive integer. For α = (α1, ..., αn) ∈ Cn with α1...αn 6= 0 and h =

(h1, ..., hn) ∈ Zn we write αh := αh1
1 ...αhnn . We consider the so-called exponential

polynomial equation

(2.1)
∑
i∈I

fi(h)αh
i = 0 in h ∈ Zn,

where I is a finite index set and for each i ∈ I, fi(X) is a non-zero polynomial

in C[X1, ..., Xn], and αi = (αi1, ..., αin) is a vector with non-zero complex coordi-

nates.

For each solution of (2.1), the left-hand side of (2.1) can be split into vanishing

subsums which are minimal in the sense that each proper subsum of any of the

vanishing subsums is non-zero. We shall deal with all solutions corresponding

to a given splitting into minimal vanishing subsums. More precisely, let P be a

partition of I, i.e. a collection of non-empty, pairwise disjoint sets {P1, ..., Pt} with

P1 ∪ ... ∪ Pt = I. For a set P we write P ≺ P if P is a subset of one of P1, ..., Pt,

and P � P if P is a proper subset of one of P1, ..., Pt. We shall deal with the

subset of solutions of (2.1),

(2.2) UP =

{
h ∈ Zn :

∑
i∈Pj fi(h)αh

i = 0 for j = 1, ..., t,∑
i∈P fi(h)αh

i 6= 0 for each non-empty P � P

}
.

To P we associate two other sets. A pair i P∼ j is a pair i, j ∈ I such that i, j

belong to the same set of P. Define the abelian subgroup of Zn,

HP =
{

h ∈ Zn : αh
i = αh

j for each pair i P∼ j
}
.
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(If P consists of singletons , i.e. sets of cardinality 1, then HP = Zn.) Let r = rP

:= rank HP . As is well known , Zn has a basis {a1, ...,an} such that for certain

positive integers d1, ..., dr, {d1a1, ..., drar} is a basis of HP . Now let

SP =
{ n∑
i=1

ξiai : ξi ∈ Z for i = 1, ..., n, 0 ≤ ξi < di for i = 1, ..., r
}
.

Then clearly, every h ∈ Zn can be expressed uniquely as

(2.3) h = h′ + h′′ with h′ ∈ SP , h′′ ∈ HP .

In what follows, for given h ∈ Zn, h′,h′′ will always denote the vectors defined

by (2.3).

In this section, we write A � B or B � A if A ≤ c · (B + 1) for some positive

constant c depending only on the polynomials fi and the vectors αi appearing in

(2.1). We shall use frequently that for h =
∑n
i=1 ξiai with ξ = (ξ1, ..., ξn) ∈ Zn we

have

(2.4) |h| �� |ξ|,

with | · | denoting the maximum norm.

Lemma 1. Let h ∈ UP . Then for the vector h′ ∈ SP defined by (2.3) we have

(2.5) |h′| � log |h|.

Proof. This is a straightforward consequence of Laurent [4], Théorème 1. By this

theorem, we have h = h′1 + h′′1 with h′′1 ∈ HP and |h′1| � log |h| (Laurent proves

this only under the hypothesis that the partition P does not contain singletons.

If P does contain singletons, {i1}, ..., {is}, say, then we can reduce to the case

that there are no singletons by removing i1, ..., is from I and {i1}, ..., {is} from P,

which makes the set UP larger but does not affect HP). We have h′1 = h′2 + h′′2
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with h′2 ∈ SP , h′′2 ∈ HP . This gives h = h′2 + (h′′2 + h′′1) with h′′2 + h′′1 ∈ HP .

Hence h′2 = h′. As {a1, ...,an} is a basis of Zn we have

h′1 =
n∑
i=1

ξiai, h′2 =
n∑
i=1

ηiai with ξ = (ξ1, ..., ξn), η = (η1, ..., ηn) ∈ Zn

and since h′1 − h′2 ∈ HP , i.e. is a linear combination of a1, ...,ar, we have ξi = ηi

for i = r + 1, ..., n. Together with (2.4) and |ξi| < di, |ηi| < di for i = 1, ..., r this

implies that

|h′| = |h′2| � |η| � |ξ| � |h′1| � log |h|,

which is (2.5). �

We need some more precise information about the set UP . To this end we need

the following lemma.

Lemma 2. Let f(X) ∈ C[X1, ..., Xn] be a polynomial of total degree d that does

not vanish identically on HP .

(i). For every N ∈ N we have #{h ∈ HP : |h| ≤ N, f(h) = 0} �d N
r−1.

(ii). There is an h ∈ HP with |h| �d 1 and f(h) 6= 0.

Here r = rank HP and the constants implied by �d depend only on d and HP .

Proof. We claim that for every non-zero polynomial g(Y1, ..., Yr) ∈ C[Y1, ..., Yr]

of total degree d we have a) #{y ∈ Zr : |y| ≤ N, g(y) = 0} ≤ dNr−1 and b) there

is an y ∈ Zr with |y| ≤ d and g(y) 6= 0. We obtain Lemma 2 by applying a), b)

to g(Y) := f(Y1a1a1 + ...+ Yrdrar) and using (2.4).

We prove a), b) by induction on r. For r = 1 a) and b) are obvious since then g

has at most d zeros. Suppose that r ≥ 2 and that a), b) are true for polynomials

in fewer than r variables. Write g(Y) =
∑s
i=0 gi(Y1, ..., Yr−1)Y ir where s ≤ d,

gi ∈ C[Y1, ..., Yr−1] is a polynomial of total degree ≤ d− i for i = 0, ..., s and gs is

not identically zero. We express y ∈ Zr as (ỹ, yr) with ỹ = (y1, ..., yr−1) ∈ Zr−1.

The set S := {y ∈ Zr : |y| ≤ N, g(y) = 0} can be divided into S1 := {y ∈ S :
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gs(ỹ) = 0} and S2 := {y ∈ S : gs(ỹ) 6= 0}. By the induction hypothesis, the

set {ỹ ∈ Zr−1 : |ỹ| ≤ N, gs(ỹ) = 0} has cardinality ≤ (d − s)Nr−2. Together

with the ≤ N possibilities for yr this implies that #S1 ≤ (d − s)Nr−1. For

each ỹ ∈ Zr−1 with |ỹ| ≤ N and gs(ỹ) 6= 0 there are at most s values yr ∈ Z

with g(y) =
∑s
i=0 gi(ỹ)yir = 0. Hence #S2 ≤ sNr−1. It follows that #S ≤ dNr−1

which is a). Again by the induction hypothesis, there is a ỹ ∈ Zr−1 with |ỹ| ≤ d−s

and gs(ỹ) 6= 0 and there is an yr ∈ Z with |yr| ≤ s and g(y) =
∑s
i=0 gi(ỹ)yir 6= 0.

This implies b). �

For every h′ ∈ SP and each set P ≺ P, define the polynomial

gh′,P (X) =
∑
i∈P

fi(h′ + X)αh′

i .

From (2.2) and from αh′′

i = αh′′

j for every h′′ ∈ HP and for each pair i P∼ j, it

follows that

(2.6) UP =

{
h ∈ Zn : gh′,Pj (h

′′) = 0 for j = 1, ..., t,
gh′,P (h′′) 6= 0 for each non-empty P � P

}
,

where h′ ∈ SP , h′′ ∈ HP are the vectors with h = h′ + h′′ defined by (2.3). We

divide UP into

U
(1)
P =

{
h ∈ UP : at least one of the polynomials gh′,Pj (j = 1, ..., t)

is not identically zero onHP
}
,(2.7)

U
(2)
P =

{
h ∈ UP : the polynomial gh′,Pj

is identically zero onHP for j = 1, ..., t
}
.

Lemma 3. Letting U
(1)
P (N) = {h ∈ U (1)

P : |h| ≤ N} we have

#U (1)
P (N)� Nr−1(logN)n−r for N > 1 if 0 < r := rank HP ≤ n and

U
(1)
P = ∅ if r = 0 or if all polynomials fi (i ∈ I) are constant on HP .

Proof. If all polynomials fi (i ∈ I) are constant on HP or if r = 0 then for every

h′ ∈ SP , j = 1, ..., t the polynomial gh′,Pj is constant on HP , the constancy being
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trivial if r = 0. Hence gh′,Pj is either identically zero on HP or has no zeros in HP

and from (2.6) it follows that in both cases U (1)
P = ∅. Suppose that r > 0 and that

not all polynomials fi are constant on HP . By Lemma 1 we have for h ∈ U (1)
P (N)

that |h′| � logN . We can express h′ as
∑n
i=1 ξiai with (ξ1, ..., ξn) ∈ Zn where

0 ≤ ξi < di for i = 1, ..., r by the definition of SP and |ξi| � |h′| � logN for

i = r + 1, ..., n by (2.4). Hence the set S := {h′ ∈ SP : ∃h′′ ∈ HP with h′ + h′′ ∈

U
(1)
P (N)} has cardinality� (logN)n−r. Further, Lemma 2 (i) implies that for each

h′ ∈ S the set {h′′ ∈ HP : |h′′| ≤ N, gh′Pj (h′′) = 0 for j = 1, ..., t} has cardinality

� Nr−1. It follows that #U (1)
P (N)� #S ·Nr−1 � Nr−1(logN)n−r. �

For a set S ⊆ Zn and an abelian subgroup H of Zn, we define S + H = {a + h :

a ∈ S,h ∈ H}.

Lemma 4. There is a finite set S ⊆ SP such that:

(i). U
(2)
P ⊆ S +HP ;

(ii). Every h ∈ S +HP satisfies
∑
i∈Pj fi(h)αh

i = 0 for j = 1, ..., t.

Proof. Let S = {h′ ∈ SP : ∃h′′ ∈ HP with h′ + h′′ ∈ U
(2)
P }. Obviously

U
(2)
P ⊆ S +HP . Further, by (2.7) we have for h′ ∈ S,h′′ ∈ HP that

∑
i∈Pj

fi(h′ + h′′)αh′+h′′

i = αh′′

ij gh′,Pj (h
′′) = 0

for j = 1, ..., t where ij ∈ Pj . Hence it suffices to show that S is finite. Take

h′ ∈ S. Since there is an h′′ ∈ HP with h′ + h′′ ∈ U (2)
P ⊆ UP , the polynomial

g(X) :=
∏
P�P gh′,P (X) is not identically zero on HP . By Lemma 2, there is an

h′′ ∈ HP with |h′′| � 1, g(h′′) 6= 0, i.e. gh′,P (h′′) 6= 0 for each P � P. Together

with (2.8), (2.2) this implies that h′ + h′′ ∈ UP . But then, by Lemma 1,

|h′| � log |h′ + h′′| � log |h′|.

This implies that |h′| is bounded, i.e. that S is finite. �
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We need the following result for exponential polynomial equations in one variable

(2.9)
∑
i∈I

fi(h)αhi = 0 in h ∈ Z,

where as before, I is a finite index set and for each i ∈ I, fi(X) ∈ C[X] is non-zero

and αi ∈ C is non-zero.

Lemma 5. Assume that (2.9) has infinitely many solutions. Then there is a

partition P of I, consisting of sets of cardinality ≥ 2, such that for each pair i, j

contained in one of the sets of P, αi/αj is a root of unity.

Proof. This result was proved by Skolem-Mahler-Lech, cf. [5]. It is a straight-

forward consequence of our Lemmas 3 and 4. Since the set of solutions of (2.9)

is the union of finitely many sets UP , there is a partition P of I for which UP is

infinite. There are no singletons in P since fi(h)αhi has only finitely many zeros.

By Lemmas 3 and 4, rank HP = 0 implies that U (1)
P = ∅ and U

(2)
P is finite, hence

that UP is finite. Therefore, HP = {h ∈ Z : αhi = αhj for each pair i P∼ j} has

rank 1. This implies Lemma 5. �

§3. Proofs of the results.

We first prove Theorems 1 and 2 simultaneously, and then derive the Corollary.

A matrix N ∈ GL2(C) is said to be in normal form if either N =
(
α
0

0
β

)
with

α, β ∈ C∗ or N =
(
α
0
α
α

)
with α ∈ C∗. It is well-known that every A ∈ GL2(C)

can be expressed as JNJ−1, with J ∈ GL2(C) and N in normal form. Let

(A,B) be the pair of matrices from Theorems 1 and 2. Then A = J1N1J
−1
1 , B =

J2N2J
−1
2 with J1, J2 ∈ GL2(C) and N1, N2 in normal form. (A,B) is related to

(J−1
1 AJ1, J

−1
1 BJ1). Hence it suffices to prove Theorems 1 and 2 with

A in normal form,(3.1)

B = JNJ−1 with J ∈ GL2(C) and N in normal form.
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In what follows, (A,B) is a pair of matrices satisfying (3.1) and we write J =(
a
c
b
d

)
. Thus, ad− bc = det J 6= 0. Note that

Am −Bn is singular ⇐⇒ Am − JNnJ−1 is singular

⇐⇒ AmJ − JNn is singular.

Hence SA,B = {(m,n) ∈ Z2 : Am −Bn is singular} is the set of solutions of

(3.2) det(AmJ − JNn) = 0 in (m,n) ∈ Z2.

We distinguish the following cases:

a) A =
(
α
0

0
β

)
, N =

(
ρ
0

0
σ

)
. Then (3.2) becomes (noting that Am =

(
αm

0
0
βm

)
,

etc.),

ad(αm − ρn)(βm − σn)− bc(αm − σn)(βm − ρn) =

(ad− bc)(αβ)m + (ad− bc)(ρσ)n(3.2a)

− adαmσn − adβmρn + bcαmρn + bcβmσn = 0.

b) A =
(
α
0

0
β

)
, N =

(
ρ
0
ρ
ρ

)
. Then (3.2) becomes (noting that Nn =

(
ρn

0
nρn

ρn

)
),

(ad− bc)(αm − ρn)(βm − ρn)− acnρn(am − βm) =

(ad− bc)(αβ)m + (ad− bc)ρ2n(3.2b)

+ {−(ad− bc)− acn}αmρn + {−(ad− bc) + acn}βmρn = 0.

c) A =
(
α
0
α
α

)
, N =

(
ρ
0
ρ
ρ

)
. Then (3.2) gives

(ad− bc)(αm − ρn)2 − c2mnαmρn =

(ad− bc)α2m + (ad− bc)ρ2n + {−2(ad− bc)− c2mn}αmρn = 0.(3.2c)
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In the proof of Theorems 1 and 2 we have to consider all partitions of the left-

hand sides of (3.2a), (3.2b) and (3.2c) into vanishing subsums. We can reduce

the number of cases by using the following “symmetry considerations,” which are

consequences of the fact that in the proofs of our results (A,B) may be replaced

by any related pair satisfying (3.1):

1) in case a), (α, β, ρ, σ, a, b, c, d) may be replaced by (ρ, σ, α, β,−d, b, c,−a) and

in case c), (α, ρ, a, b, c, d) may be replaced by (ρ, α,−d, b, c,−a).

Namely, (A,B) is related to (N, J−1AJ) = (N,
(
−d
c

b
−a

)
A
(
−d
c

b
−a

)−1

).

2) in case a), (ρ, σ, a, b, c, d) may be replaced by (σ, ρ, b,−a, d,−c).

Namely, B =
(
b
d
−a
−c

)(
σ
0

0
ρ

)(
b
d
−a
−c

)−1

.

3) in cases a) and b), (α, β, a, b, c, d) may be replaced by (β, α,−c,−d, a, b).

Namely, (A,B) is related to
(

0
1
−1
0

)
A
(

0
1
−1
0

)−1
,
(

0
1
−1
0

)
B
(

0
1
−1
0

)−1
) =

(
(
β
0

0
α

)
,
(
−c
a
−d
b

)
N
(
−c
a
−d
b

)−1

).

4) in case a), (α, β, ρ, σ, a, b, c, d) may be replaced by (β, α, σ, ρ, a,−b,−c, d) and

in case b), (α, β, a, b, c, d) may be replaced by (β, α, a,−b,−c, d).

Namely, (A,B) is related to (
(

0
1

1
0

)
AT
(

0
1

1
0

)
,
(

0
1

1
0

)
BT

(
0
1

1
0

)
) =

(
(
β
0

0
α

)
,
(

a
−c
−b
d

)
N ′
(

a
−c
−b
d

)−1

), where N ′ =
(

0
1

1
0

)
NT

(
0
1

1
0

)
=
(
σ
0

0
ρ

)
in case

a) and
(
ρ
0
ρ
ρ

)
in case b).

Each of the above replacements leads to a permutation of the terms in (3.2a, b,

c), provided that with replacement 1), m and n are interchanged.

We deal with a simple case first:

Lemma 6. Assume that abcd = 0 in case a), or ac = 0 in case b), or c = 0 in

case c). If SA,B is infinite then (A,B) is related to a pair of type I. If the sequence

#SA,B(N)/N (N = 1, 2, ...) is unbounded, then (A,B) is related to a pair of type

V.
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Proof. By symmetry consideration 3, it is no loss of generality to assume bc = 0

in case a) and c = 0 in case b). Further, since in case a), (A,B) is related to

the transposed pair (AT , BT ) = (
(
α
0

0
β

)
,
(
−d
b

c
−a

) (
ρ
0

0
σ

) (−d
b

c
−a

)−1

), we may

assume that c = 0 in cases a), b) and c). By substituting c = 0 and using that

ad− bc = detJ 6= 0, (3.2a, b, c) become (αm−ρn)(βm−σn) = 0, (αm−ρn)(βm−

ρn) = 0, αm−ρn = 0, respectively. In view of symmetry consideration 4, it suffices

to prove Lemma 6 with the hypotheses SA,B infinite, #SA,B(N)/N (N = 1, 2, ...)

unbounded being replaced by

S ′ := {(m,n) ∈ Z2 : αm = ρn} is infinite(3.3)

#S ′(N)/N (N = 1, 2, ...) is unbounded,(3.4)

respectively, for all three cases a), b), c). If (3.3) holds, then take (r, s) ∈ S ′

with (r, s) 6= (0, 0). Then Ar =
(
αr

0
∗
∗

)
, Bs =

(
a
0
b
d

)(
ρs

0
∗
∗

)(
a
0
b
d

)−1

=
(
ρs

0
∗
∗

)
,

hence (A,B) is of type I with αr = ρs = θ. If (3.4) holds then take linearly

independent (r1, s1), (r2, s2) ∈ S ′ (these exist since for each ‘line’ T = {t(r, s) : t ∈

Z} ⊆ S ′ we have #T (N) � N). Then αr1s2−r2s1 = ρr1s2−r2s1 = 1, Ar1s2−r2s1 =(
1
0
∗
∗
)
, Br1s2−r2s1 =

(
a
0
b
d

) (
1
0
∗
∗
) (

a
0
b
d

)−1

=
(

1
0
∗
∗
)
, whence (A,B) is of type V.

�

In the sequel we assume that abcd 6= 0 in case a), ac 6= 0 in case b), c 6= 0

in case c). We write h = (m,n) and in the left-hand sides of (3.2a,b,c) we de-

note the i-th term from the left by fi(h)αh
i . For instance, in (3.2a) we have

f1(h)αh
1 = (ad − bc) · (αβ)m1n with f1(h) = ad − bc, α1 = (αβ, 1), f2(h)αh

2 =

(ad − bc) · 1m(ρσ)n, ..., f6(h)αh
6 = bc · βmσn. Thus, (3.2a, b, c) can be rewritten

as
∑
i∈I fi(h)αh

i = 0 with I = {1, ..., 6} in (3.2.a), I = {1, ..., 4} in (3.2b) and

I = {1, 2, 3} in (3.2c). By our assumptions on a, b, c, d we have that fi(h) is not

identically zero for i ∈ I. By applying the theory of §2 to exponential polynomials

in n = 2 variables we infer that Theorems 1 and 2 follow from:

Proposition. (i). Suppose that in cases a), b) or c) there is a partition P of I

for which rank HP ≥ 1 and UP is infinite. Then (A,B) is related to a pair of type

13



I, II, III or IV.

(ii). Suppose that for some partition P = {P1, ..., Pt} of I and some a ∈ Z2 we have

rank HP = 2 and every h ∈ a + HP satisfies
∑
i∈Pj fi(h)αh

i = 0 for j = 1, ..., t.

Then (A,B) is related to a pair of type V or VI.

Namely, if SA,B is infinite, then there is a partition P of I for which UP is infinite.

By Lemmas 3 and 4 this is possible only if rank HP ≥ 1. Since #(S +HP)(N)�

N rank HP for any finite set S, we have by Lemmas 3 and 4 that #U (1)
P (N) �

logN,#U (2)
P (N)� N if rank HP = 1 and #U (1)

P (N)� N if rank HP = 2. Hence

if #SA,B(N)/N (N = 1, 2, ...) is unbounded then there must be a partition P of

I with rank HP = 2 and U
(2)
P 6= ∅. Then Lemma 4 implies that for some a ∈ Z2,

every h ∈ a +HP satisfies
∑
i∈Pj fi(h)αh

i = 0 for j = 1, ..., t. �

The following situation will occur frequently:

Lemma 7. Let P be a partition of I such that for some positive integer k,

HP is contained in one of the groups {αkm = βkm = ρkn} ∗) (in cases a), b)),

{αkm = βkm = σkn}, {αkm = ρkn = σkn}, {βkm = ρkn = σkn} (in case a)).

If rank HP ≥ 1 then (A,B) is related to a pair of type I and if rank HP = 2 then

(A,B) is related to a pair of type V.

Proof. By the symmetry considerations, it suffices to consider the case HP ⊆

{αkm = βkm = ρkn}. Recall that (A,B) is related to (A1, B1) with A1 =

J−1AJ,B1 = J−1BJ = N . If rank HP ≥ 1 then for (r, s) ∈ HP\{(0, 0)} we

have

Akr1 = J−1

(
αkr

0
0
βkr

)
J =

(
αkr

0
0
αkr

)
,

Bks1 = Nks =
(
ρks

0
∗
∗

)
=
(
αkr

0
∗
∗

)
,

i.e. (A1, B1) is of type I. If rank HP = 2 then there are linearly independent

(r1, s1), (r2, s2) ∈ HP and from αkri = βkri = ρksi for i = 1, 2 it follows that

∗) short hand for {(m,n)∈Z2: αkm=βkm=ρkn}

14



αk(r1s2−r2s1) = βk(r1s2−r2s1) = ρk(r1s2−r2s1) = 1, hence

A
k(r1s2−r2s1)
1 =

(
1
0

0
1

)
, B

k(r1s2−r2s1)
1 =

(
1
0
∗
∗

)
,

i.e. (A1, B1) is of type V. �

Proof of the Proposition. We first deal with case a). Recall that the left-hand

side of (3.2a) has six terms fi(h)αh
i (i ∈ I = {1, ..., 6}), fi(h)αh

i being the i-th

term from the left. If the partition P of I contains singletons then UP = ∅ since

each fi is constant. Therefore we consider only partitions of I without singletons.

To each such partition P we associate a graph G as follows: the vertices of G

are V1 = {1, 2}, V2 = {3, 4}, V3 = {5, 6} and [Vi, Vj ] with i 6= j is an edge of G

if there are k ∈ Vi, l ∈ Vj belonging to the same set of P. Note that if [V1, V2]

is an edge of G then HP ⊆ {αm = ρn} or HP ⊆ {βm = σn}, if [V1, V3] is an

edge then HP ⊆ {αm = σn} or HP ⊆ {βm = ρn} and if [V2, V3] is an edge then

HP ⊆ {αm = βm} or HP ⊆ {ρn = σn}.

Subcase a1) G has at least two edges.

Then HP satisfies the conditions of Lemma 7 with k = 1 and the Proposition

follows.

Subcase a2) G has no edges.

Then P = {{1, 2}, {3, 4}, {5, 6}}. Hence HP = {(αβ)m = (ρσ)n, αmσn = βmρn,

αmρn = βmσn}. For (m,n) ∈ HP we have αmσn · αmρn = βmρn · βmσn, whence

α2m = β2m and αmρn · βmρn = βmσn · αmσn, whence ρ2n = σ2n. This implies

α4m = (αβ)2m = (ρσ)2n = ρ4n. So HP ⊆ {α4m = β4m = ρ4n}. Therefore, we can

again apply Lemma 7 and derive the Proposition.

Subcase a3) [V2, V3] is the only edge of G.

Then P = {{1, 2}, {3, 5}, {4, 6}} or P = {{1, 2}, {3, 6}, {4, 5}}. We consider only

P = {{1, 2}, {3, 5}, {4, 6}}; the other possibility can be reduced to this one by our

15



symmetry considerations. With this P we have

HP = {(αβ)m = (ρσ)n, ρn = σn},

UP = {(αβ)m + (ρσ)n = 0, adσn = bcρn, adρn = bcσn}.

Assuming that UP 6= ∅, we have ad/bc = bc/ad = (ρ/σ)n for some n ∈ N, hence

ad/bc = ±1. But ad − bc = det J 6= 0, so ad = −bc. Now (A,B) is related to

(A1, B1) with

A1 =
(

1
0

0
b/d

)
A

(
1
0

0
b/d

)−1

=
(
α

0
0
β

)
,

B1 =
(

1
0

0
b/d

)
B

(
1
0

0
b/d

)−1

=
(

a

−a
b

b

)(
ρ

0
0
σ

)(
a

−a
b

b

)−1

=

(
1
2 (ρ+ σ)
1
2 (σ − ρ)

1
2 (σ − ρ)
1
2 (ρ+ σ)

)
.

For (r, s) ∈ UP we have ρs = −σs, (αβ)r = −(ρσ)s = ρ2s, and

Ar1 =
(
αr

0
0
βr

)
, Bs1 =

(
1
2 (ρs + σs)
1
2 (σs − ρs)

1
2 (σs − ρs)
1
2 (ρs + σs)

)
=
(

0
σs

σs

0

)
.

Hence (A1, B1) is of type II, with θ = αr, κ = βr, λ = σs.

Now suppose that rank HP = 2. For linearly independent pairs (m1, n1), (m2, n2)

∈ HP we have (αβ)m1n2−m2n1 = (ρσ)m1n2−m2n1 = 1, (ρ/σ)n1 = (ρ/σ)n2 = 1,

hence αβ, ρ and σ are roots of unity. Now choose (r, s) ∈ UP and let A1, B1 be as

above. Let u be an odd integer with σu = ±1. (A,B) is related to (A2, B2) with

A2 =
(

(±1)s

0
0
1

)
A1

(
(±1)s

0
0
1

)
=
(
α

0
0
β

)
,

B2 =
(

(±1)s

0
0
1

)
B1

(
(±1)s

0
0
1

)
=

(
1
2 (ρ+ σ)

(±1)s · 1
2 (σ − ρ)

(±1)s · 1
2 (σ − ρ)

1
2 (ρ+ σ)

)

and we have αru · βru = σ2su = 1,

Aru2 =
(
αru

0
0
βru

)
, Bsu2 =

(
0

(±1)sσsu
(±1)sσsu

0

)
=
(

0
1

1
0

)
.

Hence (A2, B2) is a pair of type VI.
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Subcase a4) [V1, V2] or [V1, V3] is the only edge of G.

Then P = {{1, 3}, {2, 4}, {5, 6}} or {{1, 4}, {2, 3}, {5, 6}} or {{1, 5}, {2, 6}, {3, 4}},

or {{1, 6}, {2, 5}, {3, 4}}. We deal only with P = {{1, 3}, {2, 4}, {5, 6}}; the other

possibilities can be reduced to this one by our symmetry considerations. With this

P we have

HP = {βm = σn, αmρn = βmσn},

UP = {(ad− bc)βm = adσn, (ad− bc)σn = adβm, αmρn + βmσn = 0}.

Assuming that UP 6= ∅ we have (ad− bc)/ad = ad/(ad− bc). Together with bc 6= 0

this implies that (ad − bc)/ad = −1, i.e. bc = 2ad. Now (A,B) is related to

(A1, B1) with

A1 =
(

0
1
−b/d

0

)
A

(
0
1
−b/d

0

)−1

=
(
β

0
0
α

)
,

B1 =
(

0
1
−b/d

0

)
B

(
0
1
−b/d

0

)−1

=
(
−2a
a

−b
b

)(
ρ

0
0
σ

)(
−2a
a

−b
b

)−1

=
(

2ρ− σ
σ − ρ

2(ρ− σ)
2σ − ρ

)
.

Take (r, s) ∈ UP . Then βr = −σs, αrρs = −βrσs = σ2s and

Ar1 =
(
βr

0
0
αr

)
, Bs1 =

(
2ρs − σs

σs − ρs
2(ρs − σs)
2σs − ρs

)
,

hence (A1, B1) is a pair of type III with θ = βr, κ = αr, ρs = λ, σs = −θ.

Suppose that rank HP = 2. Choose linearly independent (m1, n1), (m2, n2) ∈

HP . Then βmi = σni , (α/β)mi = (σ/ρ)ni for i = 1, 2, hence βm1n2−m2n1 =

σm1n2−m2n1 = 1, (α/β)m1n2−m2n1 = (σ/ρ)m1n2−m2n1 = 1, which implies that

α, β, ρ, σ are roots of unity. Letting k be a non-zero integer with αk = βk = ρk =

σk = 1, we infer that HP ⊆ {αkm = βkm = ρkn}. Together with Lemma 7 this

implies that (A,B) is related to a pair of type V.

We continue with case b). Recall that the left-hand side of (3.2b) has four terms,

the i-th from the left being denoted by fi(h)αh
i . Again we have to consider some

possibilities for P.
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Subcase b1) P contains singletons.

f1(h), f2(h) are constants, f3(h) = 0 implies that n = −(ad−bc)/ac and f4(h) = 0

implies that n = (ad − bc)/ac. Hence if UP 6= ∅ then P does not contain {1} or

{2} and at most one of {3}, {4}. Thus, P = {{1, 2, 4}, {3}} or {{1, 2, 3}, {4}} and

in both cases we have HP = {αm = βm = ρn}. Now the Proposition follows from

Lemma 7.

Subcase b2) P = {{1, 2}, {3, 4}} or {{1, 2, 3, 4}}.

Then HP ⊆ {(αβ)m = ρ2n, αmρn = βmρn} ⊆ {α2m = β2m = ρ2n}. Again the

Proposition follows from Lemma 7.

Subcase b3) P = {{1, 3}, {2, 4}} or {{1, 4}, {2, 3}}.

We deal only with P = {{1, 4}, {2, 3}} as the other possibility can be reduced to

this one by our symmetry considerations. For this P we have

UP =
{

(ad− bc)(αβ)m +
(
− (ad− bc) + acn

)
βmρn = 0,

(ad− bc)ρ2n +
(
− (ad− bc)− acn

)
αmρn = 0

}
.

For (m,n) ∈ UP we have(
1− acn/(ad− bd)

)
·
(
1 + acn/(ad− bc)

)
= (αm/ρn) · (ρn/αm) = 1,

hence n = 0. Therefore, UP = {αm = 1, n = 0}. If UP is infinite then there is

a positive integer r with αr = 1; hence Ar =
(

1
0
∗
∗
)
, B0 =

(
1
0
∗
∗
)

and (A,B) is

of type I. Recall that P = {P1, P2} with P1 = {1, 4}, P2 = {2, 3} and that UP is

the set of solutions of (∗)
∑
i∈Pj fi(h)αh

i = 0 for j = 1, 2. So if rank HP = 2 then

there is no a ∈ Z2 such that every h ∈ a +HP satisfies (∗), i.e. P cannot satisfy

the hypothesis of part (ii) of the Proposition.

Finally, we deal with case c). For each partition P of {1, 2, 3} containing a single-

ton, UP is finite; namely f1(h), f2(h) are constants and f3(h) = −2(ad−bc)−c2mn

has only finitely many zeros (m,n) ∈ Z2. Therefore, we have to deal only with

the case P = {1, 2, 3}. (3.2c) can be rewritten as

(3.5) (αm − ρn)2 − µmnαmρn = α2m + ρ2n + (−2− µmn)αmρn = 0,
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where µ = c2/(ad− bc). We have µ 6= 0 since we assumed that c 6= 0. Further,

HP = {αm = ρn}.

The hypothesis of part (ii) of the Proposition cannot be satisfied. Namely, suppose

that rank HP = 2 and that for some a = (a, b) ∈ Z2 every (m,n) ∈ a+HP satisfies

(3.5). We have HP ⊇ dZ2 for some positive integer d, hence (a+du, b+dv) satisfies

(3.5), i.e.

(αa − ρb)2 − µ(a+ du)(b+ dv)αaρb

= α−duρ−dv{(αa+du − ρb+dv)2 − µ(a+ du)(b+ dv)αa+duρb+dv} = 0

for every (u, v) ∈ Z2. But this is clearly impossible. So we have to prove only

part (i) of the Proposition. If one of α, ρ, which by our symmetry considerations

we may assume to be α, is a root of unity then (A,B) is related to a pair of type

I: namely, if αr = 1 for some positive integer r then Ar =
(
αr

0
∗
∗

)
=
(

1
0
∗
∗
)

and

B0 =
(

1
0
∗
∗
)
.

Assume that α and ρ are not roots of unity, that rank HP = 1, and that UP , i.e.

the set of solutions of (3.5) is infinite. We recall that µ 6= 0. Hence (1.3) holds.

Further,

B =
(
a

c

b

d

)(
ρ

0
ρ

ρ

)(
a

c

b

d

)−1

=
(

(1−
√
λµ)ρ

−µρ
λρ

(1 +
√
λµ)ρ

)
with λ = a2/(ad−bc), µ = c2/(ad−bc). Hence (A,B) is of type IV. This completes

the proof of the Proposition. �

We now show that (1.3) implies (1.4):

Lemma 8. Let α, ρ, µ be non-zero complex numbers such that α and ρ are not

roots of unity and such that (αm−ρn)2 = µmnαmρn has infinitely many solutions

in integers m,n. Then µ ∈ Q and there are integers r, s such that αr = ρs =: ε is

a real quadratic unit.
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Proof. By Lemmas 3 and 4 (with n = 2) applied to (3.5) and by the fact that α

and ρ are not roots of unity, we have that HP = {αm = ρn} has rank 1, i.e.

(3.6) HP = {t(r1, s1) : t ∈ Z}

for some fixed (r1, s1) ∈ Z2 with r1s1 6= 0. Now (m,n) ∈ Z2 can be expressed

uniquely as t(r1, s1) + (u, p) with t, u ∈ Z, p ∈ {0, ..., s1 − 1}. So for some p ∈

{0, ..., s1−1}, (3.5) has infinitely many solutions (tr1 +u, ts1 +p). In what follows,

we fix this p. Thus, there are infinitely many pairs (u, t) ∈ Z2 satisfying

(αtr1+u − ρts1+p)2 = µ(tr1 + u)(ts1 + p)αtr1+uρts1+p

or, dividing by α2r1t = ρ2s1t = αr1tρs1t,

(3.7)
αu

ρp
+
ρp

αu
− 2 = µ(tr1 + u)(ts1 + p).

We first show that α, ρ are algebraic. For given u, there are only finitely many t sat-

isfying (3.7). Hence if (u, t) runs through all solutions of (3.7) then u runs through

an infinite set. Choose solutions (u1, t1), (u2, t2) of (3.7) with u1 6= u2, α
ui 6= ρp

for i = 1, 2. Put δ := α1/s1 . Then δ = ζρ1/r1 for some root of unity ζ. Hence

ζr1pδs1u1−r1p + ζ−r1pδr1p−s1u1 − 2
ζr1pδs1u2−r1p + ζ−r1pδr1p−s1u2 − 2

=
µ(t1r1 + u1)(t1s1 + p)
µ(t2r1 + u2)(t2s1 + p)

=: a ∈ Q.

This shows that δ is a zero of a non-identically zero polynomial with algebraic

coefficients, i.e. δ is algebraic. It follows that indeed α, ρ are algebraic.

Let K be a finite normal extension of Q containing α, ρ. Then µ ∈ K. Let σ be an

element of the Galois group G of K/Q. Then every solution (u, t) of (3.7) satisfies

(3.8) µ−1

(
αu

ρp
+
ρp

αu
− 2
)

= σ(µ)−1

(
σ(α)u

σ(ρ)p
+
σ(ρ)p

σ(α)u
− 2
)

or

(µ−1ρ−p)αu + (µ−1ρp)α−u − (σ(µ)−1σ(ρ)−p)σ(α)u(3.9)

− (σ(µ)−1σ(ρ)p)σ(α)−u + 2(σ(µ)−1 − µ−1)1u = 0.
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(3.9) is an exponential polynomial equation with infinitely many solutions u ∈ Z.

Suppose that σ(µ) 6= µ. By Lemma 5, there is a β ∈ {α, α−1, σ(α), σ(α)−1} such

that β/1 is a root of unity. Hence α is a root of unity but this is against our

assumption. Therefore, σ(µ) = µ. This holds for every σ ∈ G; hence µ ∈ Q.

By inserting µ ∈ Q in (3.8) we infer that for every solution (u, t) and for every

σ ∈ G we have

(3.10) ρ−pαu + ρpα−u − σ(ρ)−pσ(α)u − σ(ρ)pσ(α)−u = 0.

From Lemma 5 and the fact that α is not a root of unity, it follows that either

α/σ(α) or ασ(α) is a root of unity. So there is a positive integer r2 such that for

each σ ∈ G we have either σ(αr2) = αr2 or σ(αr2) = α−r2 . Hence G′ := {σ ∈

G : σ(αr2) = αr2} is a subgroup of index ≤ 2 in G and so its field of invariants

L = Q(αr2) is either Q or a quadratic field. We infer that with r = r1r2, s = s1r2

we have αr = ρs =: ε ∈ L.

We show that ε is a real quadratic unit. Let p be a prime ideal of K. The right-

hand side of (3.7) is a rational number with a fixed denominator. Hence there is

a constant C such that ordp(αu/ρp + ρp/αu − 2) ≥ C for every solution (u, t) of

(3.7). As we mentioned above, (3.7) has solutions with arbitrarily large u. Hence

ordp(α) = 0. This being the case for every prime ideal p, it follows that α, hence

ε, is a unit in L. However, α, hence ε, is not a root of unity, and therefore ε is a

real quadratic unit. This completes the proof of Lemma 8. �

Proof of the Corollary. Assume that A,B are non-singular matrices with real

entries and non-real eigenvalues such that Am−Bn is singular for infinitely many

pairs (m,n) ∈ Z2. The eigenvalues of A are complex conjugates, α, α, say. Simi-

larly, B has complex conjugate eigenvalues ρ, ρ. By Theorem 1, (A,B) is related

to a pair (A1, B1) of type I, II, III, or IV. After interchanging A,B or taking trans-

poses, we may assume that A = JA1J
−1, B = JB1J

−1 for some J ∈ GL2(C). We

consider all possibilities.
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Suppose (A1, B1) is of type I, i.e. Ar1 =
(
θ
0
∗
∗

)
, Bs1 =

(
θ
0
∗
∗

)
for some r, s ∈ Z not

both zero and some non-zero θ ∈ C. After interchanging α, α or ρ, ρ if necessary,

we have that θ = αr = ρs. We have A = J1

(
α
0

0
α

)
J−1

1 for some J1 ∈ GL2(C). If

αr = αr, then Ar = J1

(
αr

0
0
αr

)
J−1

1 =
(
αr

0
0
αr

)
. Further, it follows that ρs = ρs,

and so Bs =
(
ρs

0
0
ρs

)
= Ar. Suppose that αr 6= αr, i.e. θ 6= θ. Note that θ is

an eigenvalue of Ar and Bs with the same eigenvector, a, say. By taking complex

conjugates, we obtain a common eigenvector a′ of Ar and Bs with eigenvalue θ.

Hence Ar and Bs have the same action on two linearly independent vectors, i.e.

Ar = Bs.

Suppose (A1, B1) is of type II, i.e. Ar1 =
(
θ
0

0
κ

)
, Bs1 =

(
0
λ
λ
0

)
for some r, s ∈ Z

and some non-zero θ, κ, λ ∈ C with θκ = λ2. Note that Ar, Bs have the same

eigenvalues as Ar1, B
s
1 respectively. Hence θκ = αrαr > 0, λ2 = −ρsρs < 0. But

this contradicts θκ = λ2. Hence (A,B) is not related to a pair of type II.

Suppose (A1, B1) is of type III, i.e. Ar1 =
(
θ
0

0
κ

)
, Bs1 =

(
2λ+θ
−(λ+θ)

2(λ+θ)
−2θ−λ

)
for some

r, s ∈ Z with rs 6= 0 and some θ, κ, λ ∈ C with θ2 = κλ. Since Ar, Bs have the

same eigenvalues as Ar1, B
s
1, respectively, we may assume, after interchanging α, α

or ρ, ρ if necessary, that αr = θ, αr = κ, ρs = θ, ρs = −λ. Thus, κ = −λ = θ, and

therefore, θ2 = κλ = −θ2
, θ4 = θ

4
. This implies that α4r = α4r = ρ4s = ρ4s. Now

as A = J1

(
α
0

0
α

)
J−1

1 for some J1 ∈ GL2(C) we have A4r = J1

(
α4r

0
0
α4r

)
J−1

1 =(
α4r

0
0
α4r

)
, and similarly, B4s =

(
ρ4s

0
0
ρ4s

)
= A4r.

Finally, we mention that both A and B have two distinct eigenvalues. Hence

(A,B) cannot be related to a pair (A1, B1) of type IV. This proves the Corollary.

�

References.
[1] G. Brown, W. Moran, Schmidt’s conjecture on normality for commuting matrices, Invent. Math.

111 (1993), 449-463.

[2] G. Brown, W. Moran, Normality with respect to matrices, Comptes Rendus, to appear.

[3] G. Brown, W. Moran, A.D. Pollington, The Schmidt conjecture on normality in two dimensions,
in preparation.
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