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Abstract

Let A ⊃ Z be an integral domain which is finitely generated over Z and let a, b, c be
non-zero elements of A. Extending earlier work of Siegel, Mahler and Parry, in 1960 Lang
proved that the equation (*) aε + bη = c in ε, η ∈ A∗ has only finitely many solutions.
Using Baker’s theory of logarithmic forms, Győry proved, in 1979, that the solutions of (*)
can be determined effectively if A is contained in an algebraic number field. In this paper
we prove, in a quantitative form, an effective finiteness result for equations (*) over an ar-
bitrary integral domain A of characteristic 0 which is finitely generated over Z. Our main
tools are already existing effective finiteness results for (*) over number fields and function
fields, an effective specialization argument developed by Győry in the 1980’s, effective res-
ults of Hermann (1926) and Seidenberg (1974) on linear equations over polynomial rings
over fields, and similar such results by Aschenbrenner, from 2004, on linear equations over
polynomial rings over Z. We prove also an effective result for the exponential equation
aγ

v1
1 · · · γ vs

s + bγ
w1
1 · · · γ ws

s = c in integers v1, . . . , ws , where a, b, c and γ1, . . . , γs are
non-zero elements of A.

1. Introduction

Let A be an integral domain which is finitely generated over Z, that is a commutative ring
without zero divisors which contains Z and which is finitely generated over Z as a Z-algebra.
As usual, we denote by A∗ the unit group of A. We consider equations

aε + bη = c in ε, η ∈ A∗ (1·1)

† K. Győry has been supported by the Hungarian Academy of Sciences, and by the OTKA-grants no.
67580,75566 and 100339.
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where a, b, c are non-zero elements of A. Such equations, usually called unit equations, have
a great number of applications. For instance, the ring of S-integers in an algebraic number
field is finitely generated over Z, so the S-unit equation in two unknowns is a special case
of (1·1). In this paper, we consider equations (1·1) in the general case, where A may contain
transcendental elements, too.

Siegel [25] proved that (1·1) has only finitely many solutions in the case that A is the ring
of integers of a number field, and Mahler [18] did this in the case that A = Z[1/p1 · · · pt ]
for certain primes p1, . . . , pt . For S-unit equations over number fields, the finiteness of the
number of solutions of (1·1) follows from work of Parry [20]. Finally, Lang [13] proved
for arbitrary integral domains A finitely generated over Z that (1·1) has only finitely many
solutions. The proofs of all these results are ineffective.

Baker [2] and Coates [5] implicitly proved effective finiteness results for certain special
(S-)unit equations. Later, Győry [6, 7], showed, in the case that A is the ring of S-integers
in a number field, that the solutions of (1·1) can be determined effectively in principle. His
proof is based on estimates for linear forms in ordinary and p-adic logarithms of algebraic
numbers. In his papers [8 and 9], Győry introduced an effective specialization argument, and
he used this to establish effective finiteness results for decomposable form equations and dis-
criminant equations over a wide class of finitely generated integral domains A containing
both algebraic and transcendental elements, of which the elements have some “good” ef-
fective representations. His results contain as a special case an effective finiteness result for
equations (1·1) over these integral domains. Győry’s method of proof could not be extended
to arbitrary finitely generated integral domains A.

It is the purpose of this paper to prove an effective finiteness result for (1·1) over arbitrary
finitely generated integral domains A. In fact, we give a quantitative statement, with effective
upper bounds for the “sizes” of the solutions ε, η. The main new ingredient of our proof is an
effective result by Aschenbrenner [1] on systems of linear equations over polynomial rings
over Z.

We introduce the notation used in our theorems. Let again A ⊃ Z be an integral domain
which is finitely generated over Z, say A = Z[z1, . . . , zr ]. Let I be the ideal of polynomials
f ∈ Z[X1, . . . , Xr ] such that f (z1, . . . , zr ) = 0. Then I is finitely generated, hence

A �Z[X1, . . . , Xr ]/I, I = ( f1, . . . , fm) (1·2)

for some finite set of polynomials f1, . . . , fm ∈ Z[X1, . . . , Xr ]. We observe here that given
f1, . . . , fm , it can be checked effectively whether A is a domain containing Z. Indeed, this
holds if and only if I is a prime ideal of Z[X1, . . . , Xr ] with I � Z = (0), and the latter
can be checked effectively for instance using Aschenbrenner [1, proposition 4·10, corollary
3·5].

Denote by K the quotient field of A. For α ∈ A, we call f a representative for α, or say
that f represents α if f ∈ Z[X1, . . . , Xr ] and α = f (z1, . . . , zr ). Further, for α ∈ K , we call
( f, g) a pair of representatives for α or say that ( f, g) represents α if f, g ∈ Z[X1, . . . , Xr ],
g � I and α = f (z1, . . . , zr )/g(z1, . . . , zr ). We say that α ∈ A (resp. α ∈ K ) is given if a
representative (resp. pair of representatives) for α is given.

To do explicit computations in A and K , one needs an ideal membership algorithm for
Z[X1, . . . , Xr ], that is an algorithm which decides for any given polynomial and ideal of
Z[X1, . . . , Xr ] whether the polynomial belongs to the ideal. In the literature there are various
such algorithms; we mention only the algorithm of Simmons [26], and the more precise
algorithm of Aschenbrenner [1] which plays an important role in our paper; see Lemma 2·5
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below for a statement of his result. One can perform arithmetic operations on A and K by
using representatives. Further, one can decide effectively whether two polynomials f1, f2

represent the same element of A, i.e., f1 − f2 ∈ I , or whether two pairs of polynomials
( f1, g1), ( f2, g2) represent the same element of K , i.e., f1g2 − f2g1 ∈ I , by using one of the
ideal membership algorithms mentioned above.

The degree deg f of a polynomial f ∈ Z[X1, . . . , Xr ] is by definition its total degree. By
the logarithmic height h( f ) of f we mean the logarithm of the maximum of the absolute
values of its coefficients. The size of f is defined by

s( f ) := max(1, deg f, h( f )).

Clearly, there are only finitely many polynomials in Z[X1, . . . , Xr ] of size below a given
bound, and these can be determined effectively.

THEOREM 1·1. Assume that r � 1. Let ã, b̃, c̃ be representatives for a, b, c, respectively.
Assume that f1, . . . , fm and ã, b̃, c̃ all have degree at most d and logarithmic height at most
h, where d � 1, h � 1. Then for each solution (ε, η) of (1·1), there are representatives
ε̃, ε̃′, η̃, η̃′ of ε, ε−1, η, η−1, respectively, such that

s (̃ε), s (̃ε′), s (̃η), s (̃η′) � exp
(
(2d)cr

1(h + 1)
)
,

where c1 is an effectively computable absolute constant > 1.

By a theorem of Roquette [22], the unit group of an integral domain finitely generated
over Z is finitely generated. In the case that A = OS is the ring of S-integers of a number
field it is possible to determine effectively a system of generators for A∗, and this was used
by Győry in his effective finiteness proof for (1·1) with A = OS . However, no general
algorithm is known to determine a system of generators for the unit group of an arbitrary
finitely generated domain A. In our proof of Theorem 1·1, we do not need any information
on the generators of A∗.

By combining Theorem 1·1 with an ideal membership algorithm for Z[X1, . . . , Xr ], one
easily deduces the following:

COROLLARY 1·2. Given f1, . . . , fm, a, b, c, the solutions of (1·1) can be determined ef-
fectively.

Proof. Clearly, ε, η is a solution of (1·1) if and only if there are polynomials ε̃, ε̃′, η̃, η̃′ ∈
Z[X1, . . . , Xr ] such that ε̃, η̃ represent ε, η, and

ã · ε̃ + b̃ · η̃ − c̃, ε̃ · ε̃′ − 1, η̃ · η̃′ − 1 ∈ I. (1·3)

Thus, we obtain all solutions of (1·1) by checking, for each quadruple of polynomials
ε̃, ε̃′, η̃, η̃′ ∈ Z[X1, . . . , Xr ] of size at most exp((2d)cr

1(h + 1)) whether it satisfies (1·3).
Further, using the ideal membership algorithm, it can be checked effectively whether two
different pairs (̃ε, η̃) represent the same solution of (1·1). Thus, we can make a list of rep-
resentatives, one for each solution of (1·1).

Let γ1, . . . , γs be multiplicatively independent elements of K ∗ (the multiplicative inde-
pendence of γ1, . . . , γs can be checked effectively for instance using Lemma 7·2 below).
Let again a, b, c be non-zero elements of A and consider the equation

aγ
v1
1 · · · γ vs

s + bγ
w1
1 · · · γ ws

s = c in v1, . . . , vs, w1, . . . , ws ∈ Z. (1·4)
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THEOREM 1·3. Let ã, b̃, c̃ be representatives for a, b, c and for i = 1, . . . , s, let (gi1, gi2)

be a pair of representatives for γi . Suppose that f1, . . . , fm, ã, b̃, c̃ and gi1, gi2 (i = 1, . . . , s)
all have degree at most d and logarithmic height at most h, where d � 1, h � 1. Then for
each solution (v1, . . . , ws) of (1·4) we have

max
(|v1|, . . . , |vs |, |w1|, . . . , |ws |

)
� exp

(
(2d)cr+s

2 (h + 1)
)
,

where c2 is an effectively computable absolute constant > 1.

An immediate consequence of Theorem 1·3 is that for given f1, . . . , fm , a, b, c and
γ1, . . . , γs , the solutions of (1·4) can be determined effectively.

Since every integral domain finitely generated over Z has a finitely generated unit group,
equation (1·1) maybe viewed as a special case of (1·4). But since no general effective al-
gorithm is known to find a finite system of generators for the unit group of a finitely gener-
ated integral domain, we cannot deduce an effective result for (1·1) from Theorem 1·3. In
fact, we argue reversely, and prove Theorem 1·3 by combining Theorem 1·1 with an effect-
ive result on Diophantine equations of the type γ

v1
1 · · · γ vs

s = γ0 in integers v1, . . . , vs , where
γ1, . . . , γs, γ0 ∈ K ∗ (see Corollary 7·3 below).

The idea of the proof of Theorem 1·1 is roughly as follows. We first estimate the degrees
of the representatives of ε, η using Mason’s effective result [19] on two term S-unit equations
over function fields. Next, we apply many different specialization maps A → Q to (1·1) and
obtain in this manner a large number of S-unit equations over different number fields. By
applying an existing effective finiteness result for such S-unit equations (e.g., Győry and
Yu [10]) we collect enough information to retrieve an effective upper bound for the heights
of the representatives of ε, η. In our proof, we apply the specialization maps on an integral
domain B ⊃ A of a special type which can be dealt with more easily. In the construction
of B, we use an effective result of Seidenberg [24] on systems of linear equations over
polynomial rings over arbitrary fields. To be able to go back to equation (1·1) over A, we
need an effective procedure to decide whether a given element of B belongs to A∗. For this
decision procedure, we apply an effective result of Aschenbrenner [1] on systems of linear
equations over polynomial rings over Z.

The above approach was already followed by Győry [8, 9]. However, in these papers the
integral domains A are represented over Z in a different way. Hence, to select those solutions
from B of the equations under consideration which belong to A, certain restrictions on the
integral domains A had to be imposed.

In a forthcoming paper, written with Bérczes, we will give some applications of our
method of proof to other classes of Diophantine equations over finitely generated integral
domains.

2. Effective linear algebra over polynomial rings

We have collected some effective results for systems of linear equations to be solved in
polynomials with coefficients in a field, or with coefficients in Z.

Here and in the remainder of this paper, we write

log∗ x := max(1, log x) for x > 0, log∗ 0 := 1.

We use notation O(·) as an abbreviation for c times the expression between the parentheses,
where c is an effectively computable absolute constant. At each occurrence of O(·), the
value of c may be different.
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Given an integral domain R, we denote by Rm,n the R-module of m × n-matrices with
entries in R and by Rn the R-module of n-dimensional column vectors with entries in R.
Further, GLn(R) denotes the group of matrices in Rn,n with determinant in the unit group
R∗. The degree of a polynomial f ∈ R[X1, . . . , X N ], that is, its total degree, is denoted by
deg f .

From matrices A, B with the same number of rows, we form a matrix [A, B] by placing
the columns of B after those of A. Likewise, from two matrices A, B with the same number
of columns we form

[
A
B

]
by placing the rows of B below those of A.

The logarithmic height h(S) of a finite set S = {a1, . . . , at} ⊂ Z is defined by
h(S) := log max(|a1|, . . . , |at |). The logarithmic height h(U ) of a matrix with entries in Z is
defined by the logarithmic height of the set of entries of U . The logarithmic height h( f ) of
a polynomial with coefficients in Z is the logarithmic height of the set of coefficients of f .

LEMMA 2·1. Let U ∈ Zm,n. Then the Q-vector space of y ∈ Qn with Uy = 0 is generated
by vectors in Zn of logarithmic height at most mh(U ) + (1/2)m log m.

Proof. Without loss of generality we may assume that U has rank m, and moreover, that
the matrix B consisting of the first m columns of U is invertible. Let � := det B. By
multiplying with �B−1, we can rewrite Uy = 0 as [�Im, C]y = 0, where Im is the m × m-
unit matrix, and C consists of m×m-subdeterminants of U . The solution space of this system
is generated by the columns of [ −C

�In−m
]. An application of Hadamard’s inequality gives the

upper bound from the lemma for the logarithmic heights of these columns.

PROPOSITION 2·2. Let F be a field, N � 1, and R := F[X1, . . . , X N ]. Further, let A be
an m × n-matrix and b and m-dimensional column vector, both consisting of polynomials
from R of degree � d where d � 1.

(i) The R-module of x ∈ Rn with Ax = 0 is generated by vectors x whose coordinates
are polynomials of degree at most (2md)2N

.
(ii) Suppose that Ax = b is solvable in x ∈ Rn. Then it has a solution x whose coordin-

ates are polynomials of degree at most (2md)2N
.

Proof. See Aschenbrenner [1, theorems 3·2, 3·4]. Results of this type were obtained
earlier, but not with a completely correct proof, by Hermann [12] and Seidenberg [24].

COROLLARY 2·3. Let R := Q[X1, . . . , X N ]. Further, Let A be an m × n-matrix of poly-
nomials in Z[X1, . . . , X N ] of degrees at most d and logarithmic heights at most h where
d � 1, h � 1. Then the R-module of x ∈ Rn with Ax = 0 is generated by vectors x,
consisting of polynomials in Z[X1, . . . , X N ] of degree at most (2md)2N

and height at most
(2md)6N

(h + 1).

Proof. By Proposition 2·2 (i) we have to study Ax = 0, restricted to vectors x ∈ Rn

consisting of polynomials of degree at most (2d)2N
. The set of these x is a finite dimen-

sional Q-vector space, and we have to prove it is generated by vectors whose coordinates
are polynomials in Z[X1, . . . , X N ] of logarithmic height at most (2md)6N

(h + 1).
If x consists of polynomials of degree at most (2md)2N

, then Ax consists of m polynomials
with coefficients in Q of degrees at most (2md)2N + d, all whose coefficients have to be set
to 0. This leads to a system of linear equations Uy = 0, where y consists of the coefficients
of the polynomials in x and U consists of integers of logarithmic heights at most h. Notice
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that the number m∗ of rows of U is m times the number of monomials in N variables of
degree at most (2md)2N + d, that is

m∗ � m

(
(2md)2N + d + N

N

)
.

By Lemma 2·1 the solution space of Uy = 0 is generated by integer vectors of logarithmic
height at most

m∗h + 1
2 m∗ log m∗ � (2md)6N

(h + 1).

This completes the proof of our corollary.

LEMMA 2·4. Let U ∈ Zm,n, b ∈ Zm be such that Uy = b is solvable in Zn. Then it has a
solution y ∈ Zn with h(y) � mh([U, b]) + (1/2)m log m.

Proof. Assume without loss of generality that U and [U, b] have rank m. By a result of
Borosh, Flahive, Rubin and Treybig [4], Uy = b has a solution y ∈ Zn such that the absolute
values of the entries of y are bounded above by the maximum of the absolute values of the
m × m-subdeterminants of [U, b]. The upper bound for h(y) as in the lemma easily follows
from Hadamard’s inequality.

PROPOSITION 2·5. Let N � 1 and let f1, . . . , fm, b ∈ Z[X1, . . . , X N ] be polynomials of
degrees at most d and logarithmic heights at most h where d � 1, h � 1, such that

f1x1 + · · · + fm xm = b (2·1)

is solvable in x1, . . . , xm ∈ Z[X1, . . . , xN ]. Then (2·1) has a solution in polynomials
x1, . . . , xm ∈ Z[X1, . . . , X N ] with

deg xi � (2d)exp O(N log∗ N )(h + 1), h(xi) � (2d)exp O(N log∗ N )(h + 1)N+1 (2·2)

for i = 1, . . . , m.

Proof. Aschenbrenner’s main theorem [1, theorem A] states that Equation (2·1) has a
solution x1, . . . , xm ∈ Z[X1, . . . , X N ] with deg xi � d0 for i = 1, . . . , m, where

d0 = (2d)exp O(N log∗ N )(h + 1).

So it remains to show the existence of a solution with small logarithmic height.
Let us restrict to solutions (x1, . . . , xm) of (2·1) of degree � d0, and denote by y the vector

of coefficients of the polynomials x1, . . . , xm . Then (2·1) translates into a system of linear
equations Uy = b which is solvable over Z. Here, the number of equations, i.e., number of
rows of U , is equal to m∗ := (d0+d+N

N

)
. Further, h([U, b]) � h. By Lemma 2·4, Uy = b has

a solution y with coordinates in Z of height at most

m∗h + 1
2 m∗ log m∗ � (2d)exp O(N log∗ N )(h + 1)N+1.

It follows that (2·1) has a solution x1, . . . , xm ∈ Z[X1, . . . , X N ] satisfying (2·2).

Remarks. (1) Aschenbrenner gives in [1] an example which shows that the upper bound
for the degrees of the xi cannot depend on d and N only.

(2) The above lemma gives an effective criterion for ideal membership in Z[X1, . . . , X N ].
Let b ∈ Z[X1, . . . , X N ] be given. Further, suppose that an ideal I of Z[X1, . . . , X N ] is
given by a finite set of generators f1, . . . , fm . By the above lemma, if b ∈ I then there are
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x1, . . . , xm ∈ Z[X1, . . . , X N ] with upper bounds for the degrees and heights as in (2·2) such
that b = ∑m

i=1 xi fi . It requires only a finite computation to check whether such xi exist.

3. A reduction

We reduce the general unit equation (1·1) to a unit equation over an integral domain B of
a special type which can be dealt with more easily.

Let again A = Z[z1, . . . , zr ] be an integral domain finitely generated over Z and denote
by K the quotient field of A. We assume that r > 0. We have

A �Z[X1, . . . , Xr ]/I (3·1)

where I is the ideal of polynomials f ∈ Z[X1, . . . , Xr ] such that f (z1, . . . , zr ) = 0. The
ideal I is finitely generated. Let d � 1, h � 1 and assume that

I = ( f1, . . . , fm) with deg fi � d, h( fi ) � h (i = 1, . . . , m). (3·2)

Suppose that K has transcendence degree q � 0. In case that q > 0, we assume without
loss of generality that z1, . . . , zq form a transcendence basis of K/Q. We write t := r − q
and rename zq+1, . . . , zr as y1, . . . , yt , respectively. In case that t = 0 we have A =
Z[z1, . . . , zq], A∗ = {±1} and Theorem 1·1 is trivial. So we assume henceforth that t > 0.

Define

A0 := Z[z1, . . . , zq], K0 := Q(z1, . . . , zq) if q > 0,

A0 := Z, K0 := Q if q = 0.

Then

A = A0[y1, . . . , yt ], K = K0(y1, . . . , yt).

Clearly, K is a finite extension of K0, so in particular an algebraic number field if q = 0.
Using standard algebra techniques, one can show that there exist y ∈ A, f ∈ A0 such that
K = K0(y), y is integral over A0, and

A ⊆ B := A0[ f −1, y], a, b, c ∈ B∗.

If ε, η ∈ A∗ is a solution to (1·1), then ε1 := aε/c, η1 := bη/c satisfy

ε1 + η1 = 1, ε1, η1 ∈ B∗. (3·3)

At the end of this section, we formulate Proposition 3·8 which gives an effective result for
equations of the type (3·3). More precisely, we introduce a different type of degree and
height deg (α) and h(α) for elements α of B, and give effective upper bounds for the deg
and h of ε1, η1. Subsequently we deduce Theorem 1·1.

The deduction of Theorem 1·1 is based on some auxiliary results which are proved first.
We start with an explicit construction of y, f , with effective upper bounds in terms of r ,
d, h and a, b, c for the degrees and logarithmic heights of f and of the coefficients in A0

of the monic minimal polynomial of y over A0. Here we follow more or less Seidenberg
[24]. Second, for a given solution ε, η of (1·1), we derive effective upper bounds for the
degrees and logarithmic heights of representatives for ε, ε−1, η, η−1 in terms of deg (ε1),
h(ε1), deg (η1), h(η1). Here we use Proposition 2·5 (Aschenbrenner’s result).

We introduce some further notation. First let q > 0. Then since z1, . . . , zq are algebraic-
ally independent, we may view them as independent variables, and for α ∈ A0, we denote by
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deg α, h(α) the total degree and logarithmic height of α, viewed as polynomial in z1, . . . , zq .
In case that q = 0, we have A0 = Z, and we agree that deg α = 0, h(α) = log |α| for α ∈ A0.
We frequently use the following estimate, valid for all q � 0:

LEMMA 3·1. Let g1, . . . , gn ∈ A0 and g = g1 · · · gn. Then

|h(g) −
n∑

i=1

h(gi )| � q deg g.

Proof. See Bombieri and Gubler [3, lemma 1·6·11, pp. 27].

We write Y = (Xq+1, . . . , Xr ) and K0(Y) := K0(Xq+1, . . . , Xr ), etc. Given f ∈
Q(X1, . . . , Xr ) we denote by f ∗ the rational function of K0(Y) obtained by substituting
zi for Xi for i = 1, . . . , q (and f ∗ = f if q = 0). We view elements f ∗ ∈ A0[Y] as polyno-
mials in Y with coefficients in A0. We denote by degY f ∗ the (total) degree of f ∗ ∈ K0[Y]
with respect to Y. We recall that the total degree deg g is defined for elements g ∈ A0 and is
taken with respect to z1, . . . , zq . With this notation, we can rewrite (3·1), (3·2) as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

A � A0[Y]/( f ∗
1 , . . . , f ∗

m);
degY f ∗

i � d for i = 1, . . . , m;
the coefficients of f ∗

1 , . . . , f ∗
m in A0 have degrees at most d

and logarithmic heights at most h.

(3·4)

Put D := [K : K0] and denote by σ1, . . . , σD the K0- isomorphic embeddings of K in an
algebraic closure K0 of K0.

LEMMA 3·2. (i) We have D � dt .
(ii) There exist integers a1, . . . , at with |ai | � D2 for i = 1, . . . , t such that for w :=
a1 y1 + · · · + at yt we have K = K0(w).

Proof. (i) The set

W := {y ∈ K0
t : f ∗

1 (y) = · · · = f ∗
m(y) = 0}

consists precisely of the images of (y1, . . . , yt) under σ1, . . . , σD . So we have to prove that
W has cardinality at most dt .

In fact, this follows from a repeated application of Bézout’s Theorem. Given g1, . . . , gk ∈
K0[Y], we denote by V(g1, . . . , gk) the common set of zeros of g1, . . . , gk in K0

t
. Let g1 :=

f ∗
1 . Then by the version of Bézout’s Theorem in Hartshorne [11, p. 53, theorem 7·7], the

irreducible components of V(g1) have dimension t − 1, and the sum of their degrees is at
most degY g1 � d. Take a K0-linear combination g2 of f ∗

1 , . . . , f ∗
m not vanishing identically

on any of the irreducible components of V(g1). For any of these components, say V , the
intersection of V and V(g2) is a union of irreducible components, each of dimension t − 2,
whose degrees have sum at most degY g2 · degV � d degV . It follows that the irreducible
components of V(g1, g2) have dimension t − 2 and that the sum of their degrees is at most
d2. Continuing like this, we see that there are linear combinations g1, . . . , gt of f ∗

1 , . . . , f ∗
m

such that for i = 1, . . . , t , the irreducible components of V(g1, . . . , gi ) have dimension d −i
and the sum of their degrees is at most di . For i = t it follows that V(g1, . . . , gt) is a set of
at most dt points. Since W ⊆ V(g1, . . . , gt) this proves (i).



Unit equations over finitely generated integral domains 359

(ii) Let a1, . . . , at be integers. Then w := ∑t
i=1 ai yi generates K over K0 if and only if∑t

j=1 a jσi(y j ) (i = 1, . . . , D) are distinct. There are integers ai with |ai | � D2 for which
this holds.

In what follows, w will be the quantity from Lemma 3·2, with integers ai with |ai | � D2

for i = 1, . . . , t .

LEMMA 3·3. There are G0, . . . ,GD ∈ A0 such that

D∑
i=0

Giw
D−i = 0, G0GD � 0, (3·5)

degGi � (2d)exp O(r), h(Gi ) � (2d)exp O(r)(h + 1) (i = 0, . . . , D). (3·6)

Proof. In what follows we write Y = (Xq+1, . . . , Xr ) and Yu := Xu1
q+1 · · · Xut

q+t , |u| :=
u1 + · · · + ut for tuples of non-negative integers u = (u1, . . . , ut). Further, we define W :=∑t

j=1 a j Xq+ j .
G0, . . . ,GD as in (3·5) clearly exist since w has degree D over K0. By (3·4), there are

g∗
1 , . . . , g∗

m ∈ A0[Y] such that

D∑
i=0

Gi W
D−i =

m∑
j=1

g∗
j f ∗

j . (3·7)

By Proposition 2·2 (ii), applied with the field F = K0, there are polynomials g∗
j ∈ K0[Y]

(so with coefficients being rational functions in z) satisfying (3·7) of degree at most
(2 max(d, D))2t � (2dt)2t =: d0 in Y. By multiplying G0, . . . ,GD with an appropriate
non-zero factor from A0 we may assume that the g∗

j are polynomials in A0[Y] of degree at
most d0 in Y. By considering (3·7) with such polynomials g∗

j , we obtain

D∑
i=0

Gi W
D−i =

m∑
j=1

( ∑
|u|�d0

g j,uYu
)

·
( ∑

|v|�d

f j,vYv
)
, (3·8)

where g j,u ∈ A0 and f ∗
j = ∑

|v|�d f j,vYv with f j,v ∈ A0. We view G0, . . . ,GD and the
polynomials g j,u as the unknowns of (3·8). Then (3·8) has solutions with G0GD � 0.

We may view (3·8) as a system of linear equations Ax = 0 over K0, where x consists
of Gi (i = 0, . . . , D) and g j,u ( j = 1, . . . , m, |u| � d0). By Lemma 3·2 and an ele-
mentary estimate, the polynomial W D−i = (

∑t
k=1 ak Xq+k)

D−i has logarithmic height at
most O(D log(2D2t)) � (2d)O(t). By combining this with (3·4), it follows that the entries
of the matrix A are elements of A0 of degrees at most d and logarithmic heights at most
h0 := max((2d)O(t), h). Further, the number of rows of A is at most the number of monomi-
als in Y of degree at most d0 +d which is bounded above by m0 := (d0+d+t

t

)
. So by Corollary

2·3, the solution module of (3·8) is generated by vectors x = (G0, . . . ,GD, {gi,u}), consisting
of elements from A0 of degree and height at most(

2m0d
)2q

� (2d)exp O(r),
(
2m0d

)6q

(h0 + 1) � (2d)exp O(r)(h + 1),

respectively.
At least one of these vectors x must have G0GD � 0 since otherwise (3·8) would have no

solution with G0GD � 0, contradicting (3·5). Thus, there exists a solution x whose compon-
ents G0, . . . ,GD satisfy both (3·5), (3·6). This proves our lemma.
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It will be more convenient to work with

y := G0w = G0 · (a1 y1 + · · · + at yt).

In the case D = 1 we set y := 1. The following properties of y follow at once from Lemmas
3·1–3·3.

COROLLARY 3·4. We have K = K0(y), y ∈ A, y is integral over A0, and y has minimal
polynomial F(X) = X D + F1 X D−1 + · · · + FD over K0 with

Fi ∈ A0, degFi � (2d)exp O(r), h(Fi ) � (2d)exp O(r)(h + 1)

for i = 1, . . . , D.

Recall that A0 = Z if q = 0 and Z[z1, . . . , zq] if q > 0, where in the latter case, z1, . . . , zq

are algebraically independent. Hence A0 is a unique factorization domain, and so the gcd of
a finite set of elements of A0 is well-defined and up to sign uniquely determined. With every
element α ∈ K we can associate an up to sign unique tuple Pα,0, . . . , Pα,D−1, Qα of elements
of A0 such that

α = Q−1
α

D−1∑
j=0

Pα, j y j with Qα � 0, gcd(Pα,0, . . . , Pα,D−1, Qα) = 1. (3·9)

Put {
deg α := max(deg Pα,0, . . . , deg Pα,D−1, deg Qα),

h(α) := max
(
h(Pα,0), . . . , h(Pα,D−1), h(Qα)

)
.

(3·10)

Then for q = 0 we have deg α = 0, h(α) = log max
(|Pα,0|, . . . , |Pα,D−1|, |Qα|

)
.

LEMMA 3·5. Let α ∈ K ∗ and let (a, b) be a pair of representatives for α, with a, b ∈
Z[X1, . . . , Xr ], b � I . Put d∗ := max(d, deg a, deg b), h∗ := max(h, h(a), h(b)). Then

deg α � (2d∗)exp O(r), h(α) � (2d∗)exp O(r)(h∗ + 1). (3·11)

Proof. Consider the linear equation

Q · α =
D−1∑
j=0

Pj y j (3·12)

in unknowns P0, . . . , PD−1, Q ∈ A0. This equation has a solution with Q � 0, since α ∈
K = K0(y) and y has degree D over K0. Write again Y = (Xq+1, . . . , Xr ) and put Y :=
G0 · (

∑t
j=1 a j Xq+ j ). Let a∗, b∗ ∈ A0[Y] be obtained from a, b by substituting zi for Xi for

i = 1, . . . , q (a∗ = a, b∗ = b if q = 0). By (3·4), there are g∗
j ∈ A0[Y] such that

Q · a∗ − b∗
D−1∑
j=0

Pj Y
j =

m∑
j=1

g∗
j f ∗

j . (3·13)

By Proposition 2·2 (ii) this identity holds with polynomials g∗
j ∈ A0[Y] of degree in Y at

most (2 max(d∗, D))2t � (2d∗)t2t
, where possibly we have to multiply (P0, . . . , PD−1, Q)

with a non-zero element from A0. Now completely similarly as in the proof of Lemma 3·3,
one can rewrite (3·13) as a system of linear equations over K0 and then apply Corollary 2·3.
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It follows that (3·12) is satisfied by P0, . . . , PD−1, Q ∈ A0 with Q � 0 and

deg Pi , deg Q � (2d∗)exp O(r),

h(Pi ), h(Q) � (2d∗)exp O(r)(h∗ + 1) (i = 0, . . . , D − 1).

By dividing P0, . . . , PD−1, Q by their gcd and using Lemma 3·1 we obtain elements
Pα,0, . . . , PD−1,α, Qα ∈ A0 satisfying both (3·9) and

deg Pi,α, deg Qα � (2d∗)exp O(r),

h(Pi,α), h(Qα) � (2d∗)exp O(r)(h∗ + 1) (i = 0, . . . , D − 1).

LEMMA 3·6. Let α1, . . . , αn ∈ K ∗. For i = 1, . . . , n, let (ai , bi) be a pair of representat-
ives for αi , with ai , bi ∈ Z[X1, . . . , Xr ], bi � I . Put

d∗∗ := max(d, deg a1, deg b1, . . . , deg an, deg bn),

h∗∗ := max
(
h, h(a1), h(b1), . . . , h(an), h(bn)

)
.

Then there is a non-zero f ∈ A0 such that

A ⊆ A0[y, f −1], α1, . . . , αn ∈ A0[y, f −1]∗, (3·14)

deg f � (n + 1)(2d∗∗)exp O(r), h( f ) � (n + 1)(2d∗∗)exp O(r)(h∗∗ + 1). (3·15)

Proof. Take

f :=
t∏

i=1

Qyi ·
n∏

j=1

(
Qαi Qα−1

i

)
.

Since in general, Qββ ∈ A0[y] for β ∈ K ∗, we have fβ ∈ A0[y] for each β in the set
{y1, . . . , yt , α1, α

−1
1 , . . . , αn, α

−1
n }. This implies (3·14). The inequalities (3·15) follow at

once from Lemmas 3·5 and 3·1.

LEMMA 3·7. Let λ ∈ K ∗ and let ε be a non-zero element of A. Let (a, b) with a, b ∈
Z[X1, . . . , Xr ] be a pair of representatives for λ. Put

d0 := max(deg f1, . . . , deg fm, deg a, deg b, deg λε),

h0 := max
(
h( f1), . . . , h( fm), h(a), h(b), h(λε)

)
.

Then ε has a representative ε̃ ∈ Z[X1, . . . , Xr ] such that

deg ε̃ � (2d0)
exp O(r log∗ r)(h0 + 1), h(̃ε) � (2d0)

exp O(r log∗ r)(h0 + 1)r+1.

If moreover ε ∈ A∗, then ε−1 has a representative ε̃′ ∈ Z[X1, . . . , Xr ] with

deg ε̃′ � (2d0)
exp O(r log∗ r)(h0 + 1), h(̃ε′) � (2d0)

exp O(r log∗ r)(h0 + 1)r+1.

Proof. In case that q > 0, we identify zi with Xi and view elements of A0 as polynomials
in Z[X1, . . . , Xq]. Put Y := G0 · (

∑t
i=1 ai Xq+i ). We have

λε = Q−1
D−1∑
i=0

Pi yi (3·16)

with P0, . . . , PD−1, Q ∈ A0 and gcd(P0, . . . , PD−1, Q) = 1. According to (3·16), ε̃ ∈
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Z[X1, . . . , Xr ] is a representative for ε if and only if there are g1, . . . , gm ∈ Z[X1, . . . , Xr ]
such that

ε̃ · (Q · a) +
m∑

i=1

gi fi = b
D−1∑
i=0

Pi Y
i . (3·17)

We may view (3·17) as an inhomogeneous linear equation in the unknowns ε̃, g1, . . . , gm .
Notice that by Lemmas 3·2–3·5 the degrees and logarithmic heights of Qa and b

∑D−1
i=0 Pi Y i

are all bounded above by (2d0)
exp O(r), (2d0)

exp O(r)(h0 + 1), respectively. Now Proposition
2·5 implies that (3·17) has a solution with upper bounds for deg ε̃, h(̃ε) as stated in the
lemma.

Now suppose that ε ∈ A∗. Again by (3·16), ε̃′ ∈ Z[X1, . . . , Xr ] is a representative for ε−1

if and only if there are g′
1, . . . , g′

m ∈ Z[X1, . . . , Xr ] such that

ε̃′ · b
D−1∑
i=0

Pi Y
i +

m∑
i=1

g′
i fi = Q · a.

Similarly as above, this equation has a solution with upper bounds for deg ε̃′, h(̃ε′) as stated
in the lemma.

Recall that we have defined A0 = Z[z1, . . . , zq], K0 = Q(z1, . . . , zq) if q > 0 and
A0 = Z, K0 = Q if q = 0, and that in the case q = 0, degrees and deg -s are always
zero. Theorem 1·1 can be deduced from the following Proposition, which makes sense also
if q = 0. The proof of this Proposition is given in Sections 4–6.

PROPOSITION 3·8. Let f ∈ A0 with f � 0, and let

F = X D + F1 X D−1 + · · · + FD ∈ A0[X ] (D � 1)

be the minimal polynomial of y over K0. Let d1 � 1, h1 � 1 and suppose

max(deg f, degF1, . . . , degFD) � d1, max(h( f ), h(F1), . . . , h(FD)) � h1.

Define the domain B := A0[y, f −1]. Then for each pair (ε1, η1) with

ε1 + η1 = 1, ε1, η1 ∈ B∗ (3·18)

we have

deg ε1, deg η1 � 4q D2 · d1, (3·19)

h(ε1), h(η1) (3·20)

� exp O
(

2D(q + d1)
(

log∗{2D(q + d1)}
)2 + D log∗ Dh1

)
.

Proof of Theorem 1·1. Let a, b, c ∈ A be the coefficients of (1·1), and ã, b̃, c̃ the rep-
resentatives for a, b, c from the statement of Theorem 1·1. By Lemma 3·6, there exists
non-zero f ∈ A0 such that that A ⊆ B := A0[y, f −1], a, b, c ∈ B∗, and moreover,
deg f � (2d)exp O(r) and h( f ) � (2d)exp O(r)(h + 1). By Corollary 3·4 we have the same
type of upper bounds for the degrees and logarithmic heights of F1, . . . ,FD . So in Proposi-
tion 3·8 we may take d1 = (2d)exp O(r), h1 = (2d)exp O(r)(h + 1). Finally, by Lemma 3·2 we
have D � dt .
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Let (ε, η) be a solution of (1·1) and put ε1 := aε/c, η1 := bη/c. By Proposition 3·8 we
have

deg ε1 � 4qd2t(2d)exp O(r) � (2d)exp O(r), h(ε1) � exp
(
(2d)exp O(r)(h + 1)

)
.

We apply Lemma 3·7 with λ = a/c. Notice that λ is represented by (̃a, c̃). By assumption,
ã and c̃ have degrees at most d and logarithmic heights at most h. Letting ã, c̃ play the role

of a, b in Lemma 3·7, we see that in that lemma we may take h0 = exp
(
(2d)exp O(r)(h +1)

)
and d0 = (2d)exp O(r). It follows that ε, ε−1 have representatives ε̃, ε̃′ ∈ Z[X1, . . . , Xr ] such
that

deg ε̃, deg ε̃′, h(̃ε), h(̃ε′) � exp
(
(2d)exp O(r)(h + 1)

)
.

We observe here that the upper bound for h(ε1) dominates by far the other terms in
our estimation. In the same manner one can derive similar upper bounds for the degrees
and logarithmic heights of representatives for η and η−1. This completes the proof of
Theorem 1·1.

Proposition 3·8 is proved in Sections 4–6. In Section 4 we deduce the degree bound (3·19).
Here, our main tool is Mason’s effective result on S-unit equations over function fields [19].
In Section 5 we work out a more precise version of an effective specialization argument of
Győry [8, 9]. In Section 6 we prove (3·20) by combining the specialization argument from
Section 5 with a recent effective result for S-unit equations over number fields, due to Győry
an Yu [10].

4. Bounding the degree

We start with recalling some results on function fields in one variable. Let k be an algeb-
raically closed field of characteristic 0 and let z be transcendental over k. Let K be a finite
extension of k(z). Denote by gK/k the genus of K , and by MK the collection of valuations
of K/k, i.e, the valuations of K with value group Z which are trivial on k. Recall that these
valuations satisfy the sum formula∑

v∈MK

v(x) = 0 for x ∈ K ∗.

As usual, for a finite subset S of MK the group of S-units of K is given by

O∗
S = {x ∈ K ∗ : v(x) = 0 for v ∈ MK \ S}.

The (homogeneous) height of x = (x1, . . . , xn) ∈ K n relative to K/k is defined by

HK (x) = HK (x1, . . . , xn) := −
∑
v∈MK

min(v(x1), . . . , v(xn)).

By the sum formula,

HK (αx) = HK (x) for α ∈ K ∗. (4·1)

The height of x ∈ K relative to K/k is defined by

HK (x) := HK (1, x) = −
∑
v∈MK

min(0, v(x)).

If L is a finite extension of K , we have

HL(x1, . . . , xn) = [L : K ]HK (x1, . . . , xn) for (x1, . . . , xn) ∈ K n. (4·2)
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By deg f we denote the degree of f ∈ k[z]. Then for f1, . . . , fn ∈ k[z] with
gcd( f1, . . . , fn) = 1 we have

Hk(z)( f1, . . . , fn) = max(deg f1, . . . , deg fn). (4·3)

LEMMA 4·1. Let y1, . . . , ym ∈ K and suppose that

Xm + f1 Xm−1 + · · · + fm = (X − y1) · · · (X − ym)

for certain f1, . . . , fm ∈ k[z]. Then

[K : k(z)] max(deg f1, . . . , deg fm) =
m∑

i=1

HK (yi).

Proof. By Gauss’ Lemma we have for v ∈ MK ,

min(v( f1), . . . , v( fm)) =
m∑

i=1

min(0, v(yi)).

Now take the sum over v ∈ MK and apply (4·2), (4·3).

LEMMA 4·2. Let K be the splitting field over k(z) of F := Xm + f1 Xm−1 + · · · + fm,
where f1, . . . , fm ∈ k[z]. Then

gK/k � (d − 1)m · max
1�i�m

deg fi ,

where d := [K : k(z)].
Proof. This is lemma H of Schmidt [23].

In what follows, the cardinality of a set S is denoted by |S|.
PROPOSITION 4·3. Let K be a finite extension of k(z) and S be a finite subset of MK .

Then for every solution of

x + y = 1 in x, y ∈ O∗
S \ k∗ (4·4)

we have max(HK (x), HK (y)) � |S| + 2gK/k − 2.

Proof. See Mason [19].

We keep the notation from Proposition 3·8. We may assume that q > 0 because the case
q = 0 is trivial. Let as before K0 = Q(z1, . . . , zq), K = K0(y), A0 = Z[z1, . . . , zq],
B = Z[z1, . . . , zq, f −1, y].

Fix i ∈ {1, . . . , q}. Let ki := Q(z1, . . . , zi−1, zi+1, . . . , zq) and ki its algebraic closure.
Thus, A0 is contained in ki [zi ]. Let y(1) = y, . . . , y(D) denote the conjugates of y over K0.
Let Mi denote the splitting field of the polynomial X D + F1 X D−1 + · · · + FD over ki (zi),
i.e.

Mi := ki (zi , y(1), . . . , y(D)).

The subring

Bi := ki [zi , f −1, y(1), . . . , y(D)]
of Mi contains B = Z[z1, . . . , zq, f −1, y] as a subring. Put �i := [Mi : ki (zi)].
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We apply Lemmas 4·1, 4·2 and Proposition 4·3 with zi , ki , Mi instead of z, k, K . Denote
by gMi the genus of Mi/ki . The height HMi is taken with respect to Mi/ki . For P ∈ A0, we
denote by degzi

P the degree of P in the variable zi .

LEMMA 4·4. Let α ∈ K and denote by α(1), . . . , α(D) the conjugates of α over K0. Then

deg α � q D · d1 +
q∑

i=1

�−1
i

D∑
j=1

HMi (α
( j)).

Proof. We have

α = Q−1
D−1∑
j=0

Pj y j

for certain P0, . . . , PD−1, Q ∈ A0 with gcd(Q, P0, . . . , PD−1) = 1. Clearly,

deg α �
q∑

i=1

μi , where μi := max(degzi
Q, degzi

P0, . . . , degzi
PD−1). (4·5)

Below, we estimate μ1, . . . , μq from above. We fix i ∈ {1, . . . , q} and use the notation
introduced above.

Obviously,

α(k) = Q−1
D−1∑
j=0

Pj · (y(k)) j for k = 1, . . . , D.

Let 
 be the D × D-matrix with rows

(1, . . . , 1), (y(1), . . . , y(D)), . . . ,
(
(y(1))D−1, . . . , (y(D))D−1

)
.

By Cramer’s rule, Pj/Q = δ j/δ, where δ = det 
, and δ j is the determinant of the matrix
obtained by replacing the j-th row of 
 by (α(1), . . . , α(D)).

Gauss’ Lemma implies that gcd(P0, . . . , PD−1, Q) = 1 in the ring ki [zi ]. By (4·3) (with
zi in place of z) we have

μi = max(degzi
Q, degzi

P0, . . . , degzi
PD−1)

= Hk(zi )
(Q, P0, . . . , PD−1).

Using [Mi : ki(zi)] = �i , the identities (4·2), (4·1) (with zi instead of z) and the fact that
(δ, δ1, . . . , δD) is a scalar multiple of (Q, P0, . . . , PD−1) we obtain

�iμi = HMi (Q, P0, . . . , PD−1) = HMi (δ, δ1, . . . , δD). (4·6)

We bound from above the right-hand side. A straightforward estimate yields that for every
valuation v of Mi/ki ,

− min(v(δ), v(δ1), . . . , v(δD))

� −D
D∑

j=1

min(0, v(y( j))) −
D∑

j=1

min(0, v(α( j))).
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Then summation over v and an application of Lemma 4·1 lead to

HMi (δ, δ1, . . . , δD) � D
D∑

j=1

HMi (y( j)) +
D∑

j=1

HMi (α
( j)),

� D�i max(degzi
F1, . . . , degFD) +

D∑
j=1

HMi (α
( j))

� �i · Dd1 +
D∑

j=1

HMi (α
( j)),

and then a combination with (4·6) gives

μi � Dd1 + �−1
i

D∑
j=1

HMi (α
( j)).

Now these bounds for i = 1, . . . , q together with (4·5) imply our Lemma.

Proof of (3·19). We fix again i ∈ {1, . . . , q} and use the notation introduced above. By
Lemma 4·2, applied with ki , zi , Mi instead of k, z, K and with F = F = X D + F1 X D−1 +
· · · + FD , we have

gMi � (�i − 1)D max
j

degzi
(F j ) � (�i − 1) · Dd1. (4·7)

Let S denote the subset of valuations v of Mi/ki such that v(zi ) < 0 or v( f ) > 0. Each
valuation of ki (zi) can be extended to at most [Mi : ki (zi)] = �i valuations of Mi . Hence Mi

has at most �i valuations v with v(zi) < 0 and at most �i deg f valuations with v( f ) > 0.
Thus,

|S| � �i + �i degzi
f � �i (1 + deg f ) � �i (1 + d1). (4·8)

Every α ∈ Mi which is integral over ki [zi , f −1] belongs to OS . The elements
y(1), . . . , y(D) belong to Mi and are integral over A0 = Z[z1, . . . , zq] so they certainly be-
long to OS . As a consequence, the elements of B and their conjugates over Q(z1, . . . , zq)

belong to OS . In particular, if ε1, η1 ∈ B∗ and ε1 + η1 = 1, then

ε
( j)
1 + η

( j)
1 = 1, ε

( j)
1 , η

( j)
1 ∈ O∗

S for j = 1, . . . , D. (4·9)

We apply Proposition 4·3 and insert the upper bounds (4·7), (4·8). It follows that for
j = 1, . . . , D we have either ε

( j)
1 ∈ ki or

HMi (ε
( j)
1 ) � |S| + 2gMi − 2 � 3�i · Dd1;

in fact the last upper bound is valid also if ε
( j)
1 ∈ ki . Together with Lemma 4·4 this gives

deg ε1 � q Dd1 + q D · 3Dd1 � 4q D2d1.

For deg η1 we derive the same estimate. This proves (3·19).

5. Specializations

In this section we prove some results about specialization homomorphisms from the
domain B from Proposition 3·8 to Q. We start with some notation and some preparatory
lemmas.
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The set of places of Q is MQ = {∞}� {primes}. By | · |∞ we denote the ordinary absolute
value on Q and by |·|p (p prime) the p-adic absolute value, with |p|p = p−1. More generally,
let L be an algebraic number field and denote by ML its set of places. Given v ∈ ML , we
define the absolute value | · |v in such a way that its restriction to Q is | · |p if v lies above
p ∈ MQ. These absolute values satisfy the product formula∏

v∈ML

|x |dv

v = 1 for x ∈ L∗, where dv := [Lv : Qp]/[L : Q].

Note that for p ∈ MQ we have ∑
v|p

dv = 1, (5·1)

where the sum is over all places v of L lying above p. The (absolute logarithmic) height of
α ∈ L is defined by

h(α) = log
∏

v∈ML

max(1, |α|dv

v ).

This depends only on α and not on the choice of the number field L � α, hence it defines a
height on Q.

Let G be a polynomial with coefficients in L . If a1, . . . , ar are the non-zero coefficients of
G, we put |G|v := max(|a1|v, . . . , |ar |v) for v ∈ ML . For a polynomial G with coefficients
in Z we define h(G) := log |G|∞.

We start with four auxiliary results that are used in the construction of our specializations.

LEMMA 5·1. Let m � 1, α1, . . . , αm ∈ Q and suppose that G(X) := ∏m
i=1(X − αi ) ∈

Z[X ]. Then

|h(G) −
m∑

i=1

h(αi )| � m.

Proof. See Bombieri and Gubler [3, theorem 1·6·13, pp. 28].

LEMMA 5·2. Let m � 1, let α1, . . . , αm ∈ Q be distinct and suppose that G(X) :=∏m
i=1(X − αi) ∈ Z[X ]. Let q, p0, . . . , pm−1 be integers with

gcd(q, p0, . . . , pm−1) = 1,

and put

βi :=
m−1∑
j=0

(p j/q)α
j
i (i = 1, . . . , m).

Then

log max(|q|, |p0|, . . . , |pm−1|) � 2m2 + (m − 1)h(G) +
m∑

j=1

h(β j ).

Proof. For m = 1 the assertion is obvious, so we assume m � 2. Let L = Q(α1, . . . , αm).
Let 
 be the m × m matrix with rows (αi

1, . . . , α
i
m) (i = 0, . . . , m − 1). By Cramer’s rule

we have pi/q = δi/δ (i = 0, . . . , m − 1), where δ = det 
 and δi is the determinant of the
matrix, obtained by replacing the i th row of 
 by (β1, . . . , βm). Put

μ := log max(|q|, |p0|, . . . , |pm−1|).
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Then since (δ, δ1, . . . , δm−1) is a scalar multiple of (q, p1 · · · pm−1) we have, by (5·1) and
the product formula,

μ =
∑
p∈MQ

log max(|q|p, |p1|p, . . . , |pm−1|p) (5·2)

=
∑
v∈ML

dv log max(|q|v, |p1|v, . . . , |pm−1|v)

=
∑
v∈ML

dv log max(|δ|v, |δ1|v, . . . , |δm−1|v).

Estimating the determinants using Hadamard’s inequality for the infinite places and the ul-
trametric inequality for the finite places, we get

max(|δ|v, |δ1|v, . . . , |δm |v) � cv

m∏
i=1

max(1, |αi |v)m−1 max(1, |βi |v)

for v ∈ ML , where cv = mm/2 if v is infinite and cv = 1 if v is finite. Together with (5·2)
this implies

μ � 1
2 m log m +

m∑
i=1

(
(m − 1)h(αi) + h(βi)

)
.

A combination with Lemma 5·1 implies Lemma 5·2.

LEMMA 5·3. Let g ∈ Z[z1, . . . , zq] be a non-zero polynomial of degree d and N a subset
of Z of cardinality > d. Then

|{u ∈ N q : g(u) = 0}| � d|N |q−1.

Proof. We proceed by induction on q. For q = 1 the assertion is clear. Let q � 2. Write
g = ∑d0

i=0 gi (z1, . . . , zq−1)zi
q with gi ∈ Z[z1, . . . , zq−1] and gd0 � 0. Then deg gd0 � d − d0.

By the induction hypothesis, there are at most (d −d0)|N |q−2 ·|N | tuples (u1, . . . , uq) ∈ N q

with gd0(u1, . . . , uq−1) = 0. Further, there are at most |N |q−1 · d0 tuples u ∈ N q with
gd0(u1, . . . , uq−1)� 0 and g(u1, . . . , uq) = 0. Summing these two quantities implies that g
has at most d|N |q−1 zeros in N q .

LEMMA 5·4. Let g1, g2 ∈ Z[z1, . . . , zq] be two non-zero polynomials of degrees D1, D2,
respectively, and let N be an integer � max(D1, D2). Define

S := {u ∈ Zq : |u| � N , g2(u)� 0}.
Then S is non-empty, and

|g1|p � (4N )q D1(D1+1)/2 max{|g1(u)|p : u ∈ S} (5·3)

for p ∈ MQ = {∞} � {primes}.

Proof. Put Cp := max{|g1(u)|p : u ∈ S} for p ∈ MQ. We proceed by induction on q,
starting with q = 0. In the case q = 0 we interpret g1, g2 as non-zero constants with
|g1|p = Cp for p ∈ MQ. Then the lemma is trivial. Let q � 1. Write

g1 =
D′

1∑
j=0

g1 j (z1, . . . , zq−1)z
j
q, g2 =

D′
2∑

j=0

g2 j (z1, . . . , zq−1)z
j
q,
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where g1,D′
1
, g2,D′

2
� 0. By the induction hypothesis, the set

S ′ := {u′ ∈ Zq−1 : |u′| � N , g2,D′
2
(u′)� 0}

is non-empty and moreover,

max
0� j�D′

1

|g1 j |p � (4N )(q−1)D1(D1+1)/2C ′
p for p ∈ MQ (5·4)

where

C ′
p := max{|g1 j (u′)|p : u′ ∈ S ′, j = 0, . . . , D′

1}.
We estimate C ′

p from above in terms of Cp. Fix u′ ∈ S ′. There are at least 2N +1− D′
2 �

D′
1 + 1 integers uq with |uq | � N such that g2(u′, uq) � 0. Let a0, . . . , aD′

1
be distinct

integers from this set. By Lagrange’s interpolation formula,

g1(u′, X) =
D′

1∑
j=0

g1 j (u′)X j

=
D′

1∑
j=0

g1(u′, a j )

D′
1∏

i=0
i�j

X − ai

a j − ai
.

Since in general, the coefficients of a polynomial
∏m

k=1(X − ck) with c1, . . . , cm ∈ C have
absolute values at most

∏m
k=1(1 + |ck |), we deduce

max
0� j�D′

1

|g1 j (u′)| � C∞
D′

1∑
j=0

D′
1∏

i=0
i�j

1 + |ai |
|a j − ai |

� C∞(D′
1 + 1)(N + 1)D′

1 � (4N )D′
1(D′

1+1)/2C∞.

Now let p be a prime and put � := ∏
1�i< j�D′

1
|a j − ai |. Then

max
0� j�D′

1

|g1 j (u′)|p � Cp|�|−1
p � �Cp � (4N )D′

1(D′
1+1)/2Cp.

It follows that C ′
p � (4N )D′

1(D′
1+1)/2Cp for p ∈ MQ. A combination with (5·4) gives (5·3).

We now introduce our specializations B → Q and prove some properties. We assume
q > 0 and apart from that keep the notation and assumptions from Proposition 3·8. In
particular, A0 = Z[z1, . . . , zq], K0 = Q(z1, . . . , zq) and

K = Q(z1, . . . , zq, y), B = Z[z1, . . . , zq, f −1, y],
where f is a non-zero element of A0, y is integral over A0, and y has minimal polynomial

F := X D + F1 X D−1 + · · · + FD ∈ A0[X ]
over K0. In the case D = 1, we take y = 1, F = X − 1.

To allow for other applications (e.g., Lemma 7·2 below), we consider a more general
situation than what is needed for the proof of Proposition 3·8. Let d1 � d0 � 1, h1 � h0 � 1
and assume that {

max(degF1, . . . , degFD) � d0, max(d0, deg f ) � d1,

max
(
h(F1), . . . , h(FD)

)
� h0, max(h0, h( f )) � h1.

(5·5)
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Let u = (u1, . . . , uq) ∈ Zq . Then the substitution z1 �→ u1, . . . , zq �→ uq defines a ring
homomorphism (specialization)

ϕu : α �−→ α(u) : {g1/g2 : g1, g2 ∈ A0, g2(u)� 0} −→ Q.

We want to extend this to a ring homomorphism from B to Q and for this, we have to
impose some restrictions on u. Denote by �F the discriminant of F (with �F := 1 if
D = degF = 1), and let

H := �FFD · f. (5·6)

Then H ∈ A0. Using that �F is a polynomial of degree 2D − 2 with integer coefficients in
F1, . . . ,FD , it follows easily that

degH � (2D − 1)d0 + d1 � 2Dd1. (5·7)

Now assume that

H(u)� 0. (5·8)

Then f (u)� 0 and moreover, the polynomial

Fu := X D + F1(u)X D−1 + · · · + FD(u)

has D distinct zeros which are all different from 0, say y1(u), . . . , yD(u) (these numbers
should not be confused with the algebraic functions y1, . . . , yt from Section 3). Thus, for
j = 1, . . . , D the assignment

z1 �−→ u1, . . . , zq �−→ uq, y �−→ y j (u)

defines a ring homomorphism ϕu, j from B to Q; in the case D = 1 it is just ϕu. The image
of α ∈ B under ϕu, j is denoted by α j (u). Recall that we may express elements α of B as

α =
D−1∑
i=0

(Pi/Q)yi (5·9)

with P0, . . . , PD−1, Q ∈ A0, gcd(P0, . . . , PD−1, Q) = 1.

Since α ∈ B, the denominator Q must divide a power of f , hence Q(u)� 0. So we have

α j (u) =
D−1∑
i=0

(Pi(u)/Q(u))y j(u)i ( j = 1, . . . , D). (5·10)

It is obvious that ϕu, j is the identity on B � Q. Thus, if α ∈ B � Q, then ϕu, j (α) has the
same minimal polynomial as α and so it is conjugate to α.

For u = (u1, . . . , uq) ∈ Zq , we put |u| := max(|u1|, . . . , |uq |). It is easy to verify that for
any g ∈ A0, u ∈ Zq ,

log |g(u)| � q log deg g + h(g) + deg g log max(1, |u|). (5·11)

In particular,

h(Fu) � q log d0 + h0 + d0 log max(1, |u|) (5·12)

and so by Lemma 5·1,

D∑
j=1

h(y j (u)) � D + 1 + q log d0 + h0 + d0 log max(1, |u|). (5·13)
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Define the algebraic number fields Ku, j := Q(y j (u)) ( j = 1, . . . , D). Denote by �L the
discriminant of an algebraic number field L . We derive an upper bound for the discriminant
�Ku, j of Ku, j .

LEMMA 5·5. Let u ∈ Zq with H(u)� 0. Then for j = 1, . . . , D we have [Ku, j : Q] � D
and

|�Ku, j | � D2D−1
(
dq

0 · eh0 max(1, |u|)d0
)2D−2

.

Proof. Let j ∈ {1, . . . , D}. The estimate for the degree is obvious. To estimate the dis-
criminant, let P j be the monic minimal polynomial of y j (u). Then �Ku, j divides the dis-
criminant �P j of P j . Using the expression of the discriminant of a monic polynomial as the
product of the squares of the differences of its zeros, one easily shows that �P j divides �Fu

in the ring of algebraic integers and so also in Z. Therefore, �Ku, j divides �Fu in Z.
It remains to estimate from above the discriminant of Fu. By, e.g., Lewis and Mahler [14,

bottom of p. 335], we have

|�Fu | � D2D−1|Fu|2D−2,

where |Fu| denotes the maximum of the absolute values of the coefficients of Fu. By (5·12),
this is bounded above by dq

0 eh0 max(1, |u|)d0 , so

|�Fu | � D2D−1
(
dq

0 eh0 max(1, |u|)d0
)2D−2

.

This implies our lemma.

We finish with two lemmas, which relate the height of α ∈ B to the heights of α j (u) for
u ∈ Zq .

LEMMA 5·6. Let u ∈ Zq with H(u)� 0. Let α ∈ B. Then for j = 1, . . . , D,

h(α j (u)) � D2 + q(D log d0 + log deg α) + Dh0 + h(α)

+(Dd0 + deg α) log max(1, |u|).

Proof. Let P0, . . . , PD−1, Q as in (5·9) and write α j (u) as in (5·10). Let L = Q(y j (u)).
Then for v ∈ ML we have

|α j (u)|v � cv Av max(1, |y j (u)|D−1
v ),

where cv = D if v is infinite, cv = 1 if v is finite, and

Av = max(1, |P0(u)/Q(u)|v, . . . , |PD−1(u)/Q(u)|v).
Hence

h(α j (u)) � log D +
∑
v∈ML

dv log Av + (D − 1)h(y j (u)). (5·14)

From (5·1), the product formula, and (5·11) we infer∑
v∈ML

dv log Av =
∑
p∈MQ

log max(1, |P0(u)/Q(u)|p, . . . , |PD−1(u)/Q(u)|p)

� log max(|Q(u)|, |P0(u)|, . . . , |PD−1(u)|)
� q log deg α + h(α) + deg α · log max(1, |u|).
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By combining (5·14) with this inequality and with (5·13), our lemma easily follows.

LEMMA 5·7. Let α ∈ B, α � 0, and let N be an integer with

N � max
(
deg α, 2Dd0 + 2(q + 1)(d1 + 1)

)
.

Then the set

S := {u ∈ Zq : |u| � N , H(u)� 0}
is non-empty, and

h(α) � 5N 4(h1 + 1)2 + 2D(h1 + 1)H

where H := max{h(α j (u)) : u ∈ S, j = 1, . . . , D}.
Proof. It follows from our assumption on N , (5·7), and Lemma 5·4 that S is non-empty.

We proceed with estimating h(α).
Let P0, . . . , PD−1, Q ∈ A0 be as in (5·9). We analyse Q more closely. Let

f = ±pk1
1 · · · pkm

m gl1
1 · · · gln

n

be the unique factorization of f in A0, where p1, . . . , pm are distinct prime numbers, and
±g1, . . . , ±gn distinct irreducible elements of A0 of positive degree. Notice that

m � h( f )/ log 2 � h1/ log 2, (5·15)

n∑
i=1

li h(gi ) � qd1 + h1, (5·16)

where the last inequality is a consequence of Lemma 5·1. Since α ∈ B, the polynomial Q is
also composed of p1, . . . , pm , g1, . . . , gn . Hence

Q = aQ̃ with a = ±p
k ′

1
1 · · · pk ′

m
m , Q̃ = g

l ′1
1 · · · gl ′n

n (5·17)

for certain non-negative integers l ′
1, . . . , l ′

n . Clearly,

l ′
1 + · · · + l ′

n � deg Q � deg α � N ,

and by Lemma 3·1 and (5·16),

h(Q̃) � q deg Q +
n∑

i=1

l ′
i h(gi ) � N (q + qd1 + h1) � N 2(h1 + 1). (5·18)

In view of (5·11), we have for u ∈ S,

log |Q̃(u)| � q log d1 + h(Q̃) + deg Q log N

� 3
2 N log N + N 2(h1 + 1) � N 2(h1 + 2).

Hence

h(Q̃(u)α j (u)) � N 2(h1 + 2) + H

for u ∈ S, j = 1, . . . , D. Further, by (5·10), (5·16) we have

Q̃(u)α j (u) =
D−1∑
i=0

(Pi (u)/a)y j (u)i .
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Put

δ(u) := gcd(a, P0(u), . . . , PD−1(u)).

Then by applying Lemma 5·2 and then (5·12) we obtain

log

(
max(|a|, |P0(u)|, . . . , |PD−1(u)|

δ(u)

)
(5·19)

� 2D2 + (D − 1)h(Fu) + D
(
N 2(h1 + 2) + H

)
� 2D2 + (D − 1)(q log d1 + h1 + d1 log N ) + D

(
N 2(h1 + 2) + H

)
� N 3(h1 + 2) + DH.

Our assumption that gcd(Q, P0, . . . , PD−1) = 1 implies that the gcd of a and the coeffi-
cients of P0, . . . , PD−1 is 1. Let p ∈ {p1, . . . , pm} be one of the prime factors of a. There
is j ∈ {0, . . . , D − 1} such that |Pj |p = 1. Our assumption on N and (5·7) imply that
N � max(degH, deg Pj ). This means that Lemma 5·4 is applicable with g1 = Pj and
g2 = H. It follows that

max{|Pj (u)|p : u ∈ S} � (4N )−q N (N+1)/2.

That is, there is u0 ∈ S with |Pj (u0)|p � (4N )−q N (N+1)/2. Hence

|δ(u0)|p � (4N )−q N (N+1)/2.

Together with (5·19), this implies

log |a|−1
p � log |a/δ(u0)| + log |δ(u0)|−1

p

� N 3(h1 + 2) + DH + 1
2 N 3 log 4N � N 4(h1 + 3) + DH.

Combining this with the upper bound (5·15) for the number of prime factors of a, we obtain

log |a| � 2N 4h1(h1 + 3) + 2Dh1 · H. (5·20)

Together with (5·17), (5·18), this implies

h(Q) � 2N 4h1(h1 + 3) + 2Dh1 · H + N 2(h1 + 1) (5·21)

� 3N 4(h1 + 1)2 + 2Dh1 · H.

Further, the right-hand side of (5·20) is also an upper bound for log δ(u), for u ∈ S. Com-
bining this with (5·19) gives

log max{|Pj (u)| : u ∈ S, j = 0, . . . , D − 1}
� N 3(h1 + 2) + DH + 3N 4(h1 + 1)2 + 2Dh1 · H

� 4N 4(h1 + 1)2 + 2D(h1 + 1) · H.

Another application of Lemma 5·4 yields

h(Pj ) � 1
2 q N (N + 1) log 4N + 4N 4(h1 + 1)2 + 2D(h1 + 1) · H

� 5N 4(h1 + 1)2 + 2D(h1 + 1) · H

for j = 0, . . . , D − 1. Together with (5·21) this gives the upper bound for h(α) from our
lemma.
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6. Completion of the proof of Proposition 3·8
It remains only to prove the height bound in (3·20). We use an effective result of Győry

and Yu [10] on S-unit equations in number fields. To state this, we need some notation.
Let L be an algebraic number field of degree dL . We denote by OL , ML , �L , hL , RL the

ring of integers, set of places, discriminant, class number and regulator of L . The norm of
an ideal a of OL , i.e., |OL/a|, is denoted by Na.

Further, let S be a finite set of places of L , containing all infinite places. Suppose S has
cardinality s. Recall that the ring of S-integers OS and the group of S-units O∗

S are given by

OS = {x ∈ L : |x |v � 1 for v ∈ ML \ S},
O∗

S = {x ∈ L : |x |v = 1 for v ∈ ML \ S}.
In case that S consists only of the infinite places of L , we put P := 2, Q := 2. If S contains
also finite places, let p1, . . . , pt denote the prime ideals corresponding to the finite places of
S, and put

P := max{Np1, . . . , Npt}, Q := N (p1 · · · pt).

Further, let RS denote the S-regulator associated with S. In case that S consists only of the
infinite places of L it is equal to RL , while otherwise

RS = hS RL

t∏
i=1

log Npi ,

where hS is a divisor of hL whose definition is not important here. By, e.g., [10, formula
(59)] (which is an easy consequence of Louboutin [16, formula (2)]) we have

hL RL � |�L |1/2(log∗ |�L |)dL−1.

By the inequality of the geometric and arithmetic mean, we have for t > 0,
t∏

i=1

log Npi �
(
t−1 log(Np1 · · · Npt))

t � (log Q)s

and hence,

RS � |�L |1/2(log∗ |�L |)dL−1 · (log∗ Q)s . (6·1)

This is clearly true also if t = 0.

PROPOSITION 6·1. Let ε, η such that

ε + η = 1, ε, η ∈ O∗
S . (6·2)

Then

max(h(ε), h(η)) � c1 P RS

(
1 + log∗ RS/ log P

)
, (6·3)

where

c1 = max(1, π/dL)s2s+3.527s+27(log 2s)d2(s+1)

L (log∗ 2dL)3.

Proof. This is theorem 1 of Győry, Yu [10] with α = β = 1.

Proof of (3·20). As before, we use O(·) to denote a quantity which is c times the expres-
sion between the parentheses, where c is an effectively computable absolute constant which
may be different at each occurrence of the O-symbol.
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We first consider the case q > 0. Let ε1, η1 be a solution of (3·18). Pick u ∈ Zq with
H(u) � 0, pick j ∈ {1, . . . , D} and put L := Ku, j . Further, let the set of places S consist
of all infinite places of L , and all finite places of L lying above the rational prime divisors
of f (u). Note that y j (u) is an algebraic integer, and f (u) ∈ O∗

S . Hence ϕu, j (B) ⊆ OS and
ϕu, j (B∗) ⊆ O∗

S . So

ε1, j (u) + η1, j (u) = 1, ε1, j (u), η1, j (u) ∈ O∗
S, (6·4)

where ε1, j (u), η1, j (u) are the images of ε1, η1 under ϕu, j .
We estimate from above the upper bound (6·3) from Proposition 6·1. By assumption, f

has degree at most d1 and logarithmic height at most h1, hence

| f (u)| � dq
1 eh1 max(1, |u|)d1 =: R(u). (6·5)

Since the degree of L is dL � D, the cardinality s of S is at most s � D(1 + ω), where
ω is the number of prime divisors of f (u). Using the inequality from prime number theory,
ω � O(log | f (u)|/ log log | f (u)|), we obtain

s � O

(
D log∗ R(u)

log∗ log∗ R(u)

)
. (6·6)

From this, one easily deduces that

c1 � exp O(D log∗ D log∗ R(u)). (6·7)

Next, we estimate P and RS . By (6·5), we have

P � Q � | f (u)|D � exp O(D log∗ R(u)). (6·8)

To estimate RS , we use (6·1). By Lemma 5·5 (using d0 � d1) we have

|�L | � D2D−1
(
dq

1 eh1 max(1, |u|)d1
)2D−2 � exp O(D log∗ DR(u)),

and this easily implies

|�L |1/2(log∗ �L)D−1 � exp O(D log∗ DR(u)).

Together with the estimates (6·6),(6·8) for s and Q, this leads to

RS � exp O
(

D log∗ DR(u) + s log∗ log∗ Q
)

� exp O(D log∗ DR(u)). (6·9)

Now by collecting (6·7)–(6·9), we infer that the right-hand side of (6·3) is bounded above
by exp O(D log ∗D log∗ R(u)). So applying Proposition 6·1 to (6·4) gives

h(ε1, j (u)), h(η1, j (u)) � exp O(D log∗ D log∗ R(u)). (6·10)

We apply Lemma 5·7 with N := 4D2(q + d1 + 1)2. From the already established (3·19)
it follows that deg ε1, deg η1 � N . Further, since d1 � d0 we have N � 2Dd0 + 2(d1 + 1)

(q + 1). So indeed, Lemma 5·7 is applicable with this value of N . It follows that the set
S := {u ∈ Zq : |u| � N , H(u) � 0} is not empty. Further, for u ∈ S, j = 1, . . . , D, we
have

h(ε1, j (u)) � exp O(D log∗ D(q log d1 + h1 + d1 log∗ N ))

� exp O(N 1/2(log∗ N )2 + (D log∗ D)h1),

and so by Lemma 5·7,

h(ε1) � exp O(N 1/2(log∗ N )2 + (D log∗ D)h1).
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For h(η1) we obtain the same upper bound. This easily implies (3·20) in the case q > 0.
Now assume q = 0. In this case, K0 = Q, A0 = Z and B = Z[ f −1, y] where y is an

algebraic integer with minimal polynomial F = X D + F1 X D−1 + · · · + FD ∈ Z[X ] over
Q, and f is a non-zero rational integer. By assumption, log | f | � h1, log |Fi | � h1 for
i = 1, . . . , D. Denote by y1, . . . , yD the conjugates of y, and let L = Q(y j ) for some j .
By a similar argument as in the proof of Lemma 5·5, we have |�L | � D2D−1e(2D−2)h1 . The
isomorphism given by y �→ y j maps K to L and B to OS , where S consists of the infinite
places of L and of the prime ideals of OL that divide f . The estimates (6·5)–(6·9) remain
valid if we replace R(u) by eh1 . Hence for any solution ε1, η1 of (3·18),

h(ε1, j ), h(η1, j ) � exp O((D log∗ D)h1),

where ε1, j ,η1, j are the j-th conjugates of ε1, η1, respectively. Now an application of Lemma
5·2 with g = F , m = D, β j = ε1, j gives

h(ε1) � exp O((D log∗ D)h1).

Again we derive the same upper bound for h(η1), and deduce (3·20). This completes the
proof of Proposition 3·8.

7. Proof of Theorem 1·3
We start with some results on multiplicative (in)dependence.

LEMMA 7·1. Let L be an algebraic number field of degree d, and γ0, . . . , γs non-zero
elements of L such that γ0, . . . , γs are multiplicatively dependent, but any s elements among
γ0, . . . , γs are multiplicatively independent. Then there are non-zero integers k0, . . . , ks such
that

γ
k0
0 · · · γ ks

s = 1,

|ki | � 58(s!es/ss)ds+1(log d)h(γ0) · · · h(γs)/h(γi) for i = 0, . . . , s.

Proof. This is corollary 3·2 of Loher and Masser [15]. They attribute this result to Yu
Kunrui. Another result of this type was obtained earlier by Loxton and van der Poorten [17].

We prove a generalization for arbitrary finitely generated integral domains. As before,
let A = Z[z1, . . . , zr ] ⊇ Z be an integral domain finitely generated over Z, and suppose
that the ideal I of polynomials f ∈ Z[X1, . . . , Xr ] with f (z1, . . . , zr ) = 0 is generated
by f1, . . . , fm . Let K be the quotient field of A. Let γ0, . . . , γs be non-zero elements of
K , and for i = 1, . . . , s, let (gi1, gi2) be a pair of representatives for γi , i.e., elements of
Z[X1, . . . , Xr ] such that

γi = gi1(z1, . . . , zr )

gi2(z1, . . . , zr )
.

LEMMA 7·2. Assume that γ0, . . . , γs are multiplicatively dependent. Further, assume that
f1, . . . , fm and gi1, gi2 (i = 0, . . . , s) have degrees at most d and logarithmic heights at
most h, where d � 1, h � 1. Then there are integers k0, . . . , ks, not all equal to 0, such that

γ
k0
0 · · · γ ks

s = 1, (7·1)

|ki | � (2d)exp O(r+s)(h + 1)s for i = 0, . . . , s. (7·2)
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Proof. We assume without loss of generality that any s numbers among γ0, . . . , γs are
multiplicatively independent (if this is not the case, take a minimal multiplicatively depend-
ent subset of {γ0, . . . , γs} and proceed further with this subset). We first assume that q > 0.
We use an argument of van der Poorten and Schlickewei [21]. We keep the notation and
assumptions from Sections 3–5. In particular, we assume that z1, . . . , zq is a transcend-
ence basis of K , and rename zq+1, . . . , zr as y1, . . . , yt , respectively. For brevity, we have
included the case t = 0 as well in our proof. But it should be possible to prove in this
case a sharper result by means of a more elementary method. In the case t > 0, y and
F = X D + F1 X D−1 + · · · + FD will be as in Corollary 3·4. In the case t = 0 we take
m = 1, f1 = 0, d = h = 1, y = 1, F = X − 1, D = 1. We construct a specialization such
that among the images of γ0, . . . , γs no s elements are multiplicatively dependent, and then
apply Lemma 7·1.

Let V � 2d be a positive integer. Later we shall make our choice of V more precise. Let

V := {v = (v0, . . . , vs) ∈ Zs+1 \ {0} : (7·3)

|vi | � V for i = 0, . . . , s, and with vi = 0 for some i}.
Then

γv :=
( s∏

i=0

γ
vi
i

)
− 1 (v ∈ V)

are non-zero elements of K . It is not difficult to show that for v ∈ V , γv has a pair of
representatives (g1,v, g2,v) such that

deg g1,v, deg g2,v � sdV .

In the case t > 0, there exists by Lemma 3·6 a non-zero f ∈ A0 such that

A ⊆ B := A0[y, f −1], γv ∈ B∗ for v ∈ V

and

deg f � V s+1(2sdV )exp O(r) � V exp O(r+s).

In the case t = 0 this holds true as well, with y = 1 and f = ∏
v∈V(g1,v · g2,v). We apply the

theory on specializations explained in Section 5 with this f . We put H := �FFD f , where
�F is the discriminant of F . Using Corollary 3·4 and inserting the bound D � dt from
Lemma 3·2 we get for t > 0:{

d0 := max(deg f1, . . . , deg fm, degF1, . . . , degFD) � (2d)exp O(r);
h0 := max

(
h( f1), . . . , h( fm), h(F1), . . . , h(FD)

)
� (2d)exp O(r)(h + 1); (7·4)

with the provision deg 0 = h(0) = −∞ this is true also if t = 0. Combining this with
Lemma 3·5, we obtain

degH � (2D − 1)d0 + deg f � V exp O(r+s).

By Lemma 5·3 there exists u ∈ Zq with

H(u)� 0, |u| � V exp O(r+s). (7·5)

We proceed further with this u.
As we have seen before, γv ∈ B∗ for v ∈ V . By our choice of u, there are D distinct

specialization maps ϕu, j ( j = 1, . . . , D) from B to Q. We fix one of these specializations,
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say ϕu. Given α ∈ B, we write α(u) for ϕu(α). As the elements γv are all units in B, their
images under ϕu are non-zero. So we have

s∏
i=0

γi (u)vi � 1 for v ∈ V, (7·6)

where V is defined by (7·3).
We use Lemma 5·6 to estimate the heights h(γi (u)) for i = 0, . . . , s. Recall that by

Lemma 3·5 we have

deg γi � (2d)exp O(r), h(γi ) � (2d)exp O(r)(h + 1)

for i = 0, . . . , s. By inserting these bounds, together with the bound D � dt from Lemma
3·2, those for d0, h0 from (7·4) and that for u from (7·5) into the bound from Lemma 5·6,
we obtain for i = 0, . . . , s,

h(γi (u)) � (2d)exp O(r)(1 + h + log max(1, |u|)) (7·7)

� (2d)exp O(r+s)(1 + h + log V ).

Assume that among γ0(u), . . . , γs(u) there are s numbers which are multiplicatively de-
pendent. By Lemma 7·1 there are integers k0, . . . , ks , at least one of which is non-zero and
at least one of which is 0, such that

s∏
i=0

γi (u)ki = 1,

|ki | � (2d)exp O(r+s)(1 + h + log V )s−1 for i = 0, . . . , s.

Now for

V = (2d)exp O(r+s)(h + 1)s−1 (7·8)

(with a sufficiently large constant in the O-symbol), the upper bound for the numbers |ki |
is smaller than V . But this would imply that

∏s
i=0 γi (u)vi = 1 for some v ∈ V , contrary to

(7·6). Thus we conclude that with the choice (7·8) for V , there exists u ∈ Zq with (7·5), such
that any s numbers among γ0(u), . . . , γs(u) are multiplicatively independent. Of course, the
numbers γ0(u), . . . , γs(u) are multiplicatively dependent, since they are the images under ϕu

of γ0, . . . , γs which are multiplicatively dependent. Substituting (7·8) into (7·7) we obtain

h(γi (u)) � (2d)exp O(r+s)(h + 1) for i = 0, . . . , s. (7·9)

Now Lemma 7·1 implies that there are non-zero integers k0, . . . , ks such that

s∏
i=0

γi (u)ki = 1, (7·10)

|ki | � (2d)exp O(r+s)(h + 1)s for i = 0, . . . , s. (7·11)

Our assumption on γ0, . . . , γs implies that there are non-zero integers l0, . . . , ls such that∏s
i=0 γ

li
i = 1. Hence

∏s
i=0 γi (u)li = 1. Together with (7·10) this implies

s∏
i=1

γi (u)l0ki −li k0 = 1.
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But γ1(u), . . . , γs(u) are multiplicatively independent, hence l0ki −li k0 = 0 for i = 1, . . . , s.
That is,

l0(k0, . . . , ks) = k0(l0, . . . , ls).

It follows that
s∏

i=0

γ
ki
i = ρ

for some root of unity ρ. But ϕu(ρ) = 1 and it is conjugate to ρ. Hence ρ = 1. So in
fact we have

∏s
i=0 γ

ki
i = 1 with non-zero integers ki satisfying (7·11). This proves our

Lemma, but under the assumption q > 0. If q = 0 then a much simpler argument, without
specializations, gives h(γi ) � (2d)exp O(r+s)(h + 1) for i = 0, . . . , s instead of (7·9). Then
the proof is finished in the same way as in the case q > 0.

COROLLARY 7·3. Let γ0, γ1, . . . , γs ∈ K ∗, and suppose that γ1, . . . , γs are multiplicat-
ively independent and

γ0 = γ
k1
1 · · · γ ks

s

for certain integers k1, . . . , ks. Then

|ki | � (2d)exp O(r+s)(h + 1)s for i = 1, . . . , s.

Proof. By Lemma 7·2, and by the multiplicative independence of γ1, . . . , γs , there are
integers l0, . . . , lm such that

m∏
i=0

γ
li
i = 1,

l0 � 0, |li | � (2d)exp O(r+s)(h + 1)s for i = 0, . . . , s.

Now clearly, we have also
s∏

i=1

γ
l0ki −li
i = 1,

hence l0ki − li = 0 for i = 1, . . . , s. It follows that |ki | = |li/ l0| � (2d)exp O(r+s)(h + 1)s for
i = 1, . . . , s. This implies our Corollary.

Proof of Theorem 1·3. We keep the notation and assumptions from the statement of The-
orem 1·3. Define the ring

Ã := A[γ1, γ
−1
1 , . . . , γs, γ

−1
s ].

Then

Ã �Z[X1, . . . , Xr , Xr+1, . . . , Xr+2s]/ Ĩ

with

Ĩ = (
f1, . . . , fm, g12 Xr+1 − g11, g11 Xr+2 − g12, . . .

. . . , gs2 Xr+2s−1 − gs1, gs1 Xr+2s − gs2

)
.

Let (v1, . . . , ws) be a solution of (1·4), and put ε := ∏s
i=1 γ

vi
i , η := ∏s

i=1 γ
wi
i . Then

aε + bη = c, ε, η ∈ Ã∗.
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By Theorem 1·1, ε has a representative ε̃ ∈ Z[X1, . . . , Xr+2s] of degree and logarithmic
height both bounded above by

exp
(
(2d)exp O(r+s)(h + 1)

)
.

Now Corollary 7·3 implies

|vi | � exp
(
(2d)exp O(r+s)(h + 1)

)
for i = 1, . . . , s.

For |wi | (i = 1, . . . , s) we derive a similar upper bound. This completes the proof of
Theorem 1·3.
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