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Abstract. Let f be a polynomial with coefficients in the ring OS of

S-integers of a given number field K, b a non-zero S-integer, and m

an integer ≥ 2. Suppose that f has no multiple zeros. We consider

the equation (*) bym = f(x) in x, y ∈ OS . In the present paper we

give explicit upper bounds in terms of K,S, b, f,m for the heights of

the solutions of (*). Further, we give an explicit bound C in terms of

K,S, b, f such that if m > C then (*) has only solutions with y = 0 or a

root of unity. Our results are more detailed versions of work of Trelina,

Brindza, and Shorey and Tijdeman. The results in the present paper are

needed in a forthcoming paper of ours on Diophantine equations over

integral domains which are finitely generated over Z.

1. Introduction

Let f ∈ Z[X] be a polynomial of degree n without multiple roots and m

an integer ≥ 2. Siegel proved that the equation

(1.1) ym = f(x)

has only finitely many solutions in x, y ∈ Z if m = 2, n ≥ 3 [24] and if

m ≥ 3, n ≥ 2 [25]. Siegel’s proof is ineffective. In 1969, Baker [1] gave an
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effective proof of Siegel’s result. More precisely, he showed that if (x, y) is

a solution of (1.1), then

max(|x|, |y|) ≤

{
exp exp

{
(5m)10(n10nH)n

2
}

if m ≥ 3, n ≥ 2,

exp exp exp {(1010nH)2} if m = 2, n ≥ 3,

where H is the maximum of the absolute values of the coefficients of f . In

1976, Schinzel and Tijdeman [21] proved that there is an effectively com-

putable number C, depending only on f , such that (1.1) has no solutions

x, y ∈ Z with y 6= 0,±1 if m > C. The proofs of Baker and of Schinzel and

Tijdeman are both based on Baker’s results on linear forms in logarithms

of algebraic numbers.

First Trelina [27] and later in a more general form Brindza [5] generalized

the results of Baker to equations of the type (1.1) where the coefficients

of f belong to the ring of S-integers OS of a number field K for some

finite set of places S, and where the unknowns x, y are taken from OS.

In their proof they used Baker’s result on linear forms in logarithms, as

well as a p-adic analogue of this. In fact, Baker, Schinzel and Tijdeman,

Trelina and Brindza considered (1.1) also for polynomials f which may have

multiple roots. Brindza gave an effective bound for the solutions in the most

general situation where (1.1) has only finitely many solutions. This was later

improved by Bilu [2] and Bugeaud [6]. Shorey and Tijdeman [22, Theorem

10.2] extended the theorem of Schinzel and Tijdeman to equation (1.1) over

the S-integers of a number field. For further related results and applications

we refer to [23], [2], [6], [13] and the references given there.

In a forthcoming paper, we will prove effective analogues of the theorems

of Baker and Schinzel and Tijdeman for equations of the type (1.1) where

the unknowns x, y are taken from an arbitrary finitely generated domain

over Z. For this, we need effective finiteness results for Eq. (1.1) over the

ring of S-integers of a number field which are more precise than the results

of Trelina, Brindza, Bilu, Bugeaud and Shorey and Tijdeman mentioned

above. In the present paper, we derive such precise results. Here, we follow

improved, updated versions of standard methods. For technical convenience,

we restrict ourselves to the case that the polynomial f has no multiple roots.

We mention that recently, Gallegos-Ruiz [11] obtained an explicit bound for

the heights of the solutions of the hyperelliptic equation y2 = f(x) in S-

integers x, y over Q, but his result is not adapted to our purposes.
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In Theorems 2.1 and 2.2 stated below we give for any fixed exponent m

effective upper bounds for the heights of the solutions x, y ∈ OS of (1.1)

which are fully explicit in terms of m, the degree and height of f , the degree

and discriminant of K and the prime ideals in S. In Theorem 2.3 below

we generalize the Schinzel-Tijdeman Theorem to the effect that if (1.1) has

a solution x, y ∈ OS with y not equal to 0 or to a root of unity, then m

is bounded above by an explicitly given bound depending only on n, the

height of f , the degree and discriminant of K and the prime ideals in S.

2. Results

We start with some notation. Let K be a number field. We denote by

d,DK the degree and discriminant of K, by OK the ring of integers of K

and by MK the set of places of K. The set MK consists of real infinite

places, these are the embeddings σ : K ↪→ R; complex infinite places, these

are the pairs of conjugate complex embeddings {σ, σ : K ↪→ C}, and finite

places, these are the prime ideals of OK . We define normalized absolute

values | · |v (v ∈MK) as follows:

(2.1)


| · |v = |σ(·)| if v = σ is real infinite;

| · |v = |σ(·)|2 if v = {σ, σ} is complex infinite;

| · |v = (NKp)− ordp(·) if v = p is finite;

here NKp = #OK/p is the norm of p and ordp(x) denotes the exponent of

p in the prime ideal decomposition of x, with ordp(0) =∞.

The logarithmic height of α ∈ K is defined by

h(α) :=
1

[K : Q]
log

∏
v∈MK

max(1, |α|v).

Let S be a finite set of places of K containing all (real and complex)

infinite places. We denote by OS the ring of S integers in K, i.e.

OS = {x ∈ K : |x|v ≤ 1 for v ∈MK \ S}.
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Let s := #S and put

PS = QS := 1 if S consists only of infinite places,

PS = max
i=1,...,t

NKpi, QS :=
t∏
i=1

NKpi

if p1, . . . , pt are the prime ideals in S.

We are now ready to state our results. In what follows,

(2.2) f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ OS[X]

is a polynomial of degree n ≥ 2 without multiple roots and b is a non-zero

element of OS. Put

ĥ :=
1

d

∑
v∈MK

log max(1, |b|v, |a0|v, . . . , |an|v).

Our first result concerns the superelliptic equation

(2.3) f(x) = bym in x, y ∈ OS.

with a fixed exponent m ≥ 3.

Theorem 2.1. Assume that m ≥ 3, n ≥ 2. If x, y ∈ OS is a solution to

the equation (2.3) then we have

(2.4) h(x), h(y) ≤ (6ns)14m
3n3s|DK |2m

2n2

Q3m2n2

S e8m
2n3dĥ.

We now consider the hyperelliptic equation

(2.5) f(x) = by2 in x, y ∈ OS.

Theorem 2.2. Assume that n ≥ 3. If x, y ∈ OS is a solution to the equation

(2.5) then we have

(2.6) h(x), h(y) ≤ (4ns)212n
4s|DK |8n

3

Q20n3

S e50n
4dĥ.

Our last result is an an explicit version of the Schinzel-Tijdeman theorem

over the S-integers.

Theorem 2.3. Assume that (2.3) has a solution x, y ∈ OS where y is

neither 0 nor a root of unity. Then

(2.7) m ≤ (10n2s)40ns|DK |6nP n2

S e11ndĥ.
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3. Notation and auxiliary results

We denote by d,DK , hK , RK the degree, discriminant, class number and

regulator, and by OK the ring of integers of K. Further, we denote by P(K)

the collection of non-zero prime ideals of OK . For a non-zero fractional ideal

a of OK we have the unique factorization

a =
∏

p∈P(K)

pordp a,

where there are only finitely many prime ideals p ∈ P(K) with ordp a 6= 0.

Given α1, . . . , αn ∈ K, we denote by [α1, . . . , αn]K the fractional ideal of

OK generated by α1, . . . , αn. For a polynomial f ∈ K[X] we denote by [f ]K
the fractional ideal generated by the coefficients of f . We denote by NKa

the absolute norm of a fractional ideal of OK . In case that a ⊆ OK we have

NKa = #OK/a.

We define log∗ x := max(1, log x) for x ≥ 0.

3.1. Discriminant estimates. Let L be a finite extension of K. Recall

that the relative discriminant ideal dL/K of L/K is the ideal of OK generated

by the numbers

DL/K(ω1, . . . , ωn) with ω1, . . . ωn ∈ OL,

where n := [L : K].

Lemma 3.1. Suppose that L = K(α) and let f ∈ K[X] be a square-free

polynomial of degree m with f(α) = 0. Then

(3.1) dL/K ⊇
[D(f)]K

[f ]2m−2K

.

Proof. We have inserted a proof for lack of a good reference. We write [·] for

[·]K . Let g ∈ K[X] be the monic minimal polynomial of α. Then f = g1g2
with g2 ∈ K[X]. Let n := deg g1 and k := deg h1. Then

D(f) = D(g1)D(g2)R(g1, g2)
2,

where R(g1, g2) is the resultant of g1 and g2. Using determinantal expres-

sions for D(g1), D(g2), R(g1, g2) we get

D(g1) ∈ [g1]
2n−2, D(g2) ∈ [g2]

2k−2, R(g1, g2) ∈ [g1]
k[g2]

n,
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and by Gauss’ Lemma, [f ] = [g1] · [g2]. Hence

[D(f)]

[f ]2m−2
=

[D(g1)]

[g1]2n−2
[D(g2)]

[g2]2k−2
[R(g1, g2)]

[g1]k[g2]n
⊆ [D(g1)]

[g1]2n−2
.

Therefore, it suffices to prove

dL/K ⊃
[D(g1)]

[g1]2n−2
.

Note that [g1]
−1 consists of all λ ∈ K with λg1 ∈ OK [X]. Hence the ideal

[D(g1)] · [g1]−2n+2 is generated by the numbers λ2n−2D(g1) = D(λg1) such

that λg1 ∈ OK [X]. Writing h := λg1, we see that it suffices to prove that if

h ∈ OK [X] is irreducible in K[X] and h(α) = 0 with L = K(α), then

D(h) ∈ dL/K .

To prove this, we use an argument of Birch and Merriman [3]. Let h(X) =

b0X
m + b1x

m−1 + · · ·+ bm ∈ OK [X] with h(α) = 0. Put

ωi := b0α
i + b1α

i−1 + · · ·+ bi (i = 0, 1, . . . , n).

We show by induction on i that ωi ∈ OL. For i = 0 this is clear. Assume

that we have proved that ωi ∈ OL for some i ≥ 0. By h(α) = 0 we clearly

have

ωiα
n−i + bi+1α

n−i−1 + · · ·+ bn = 0.

By multiplying this expression with ωn−i−1i , we see that ωiα is a zero of

a monic polynomial from OL[X], hence belongs to OL. Therefore, ωi+1 =

ωiα + bi+1 ∈ OL.

Now on the one hand, DL/K(1, ω1, . . . , ωn−1) ∈ dL/K , on the other hand,

DL/K(1, ω1, . . . , ωn−1) = b2n−20 DL/K(1, α, . . . , αn−1)

= b2n−20

∏
1≤i<j≤0

(α(i) − α(j))2 = D(h).

Hence D(h) ∈ dL/K . �

Put u(n) := lcm(1, 2, . . . , n). For the possible prime factors of the dis-

criminant dL/K we have:

Lemma 3.2. Let [L : K] = n. Then for every prime ideal p ∈ P(K) with

ordp(dL/K) > 0 we have

ordp(dL/K) ≤ n · (1 + ordp(u(n))).
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Proof. Let DL/K denote the different of L/K. According to J. Neukirch [19,

p. 210, Theorem 2.6], we have for every prime ideal P of L lying above p

ordP(DL/K) ≤ e(P|p)− 1 + ordP(e(P|p))

≤ e(P|p)− 1 + e(P|p) ordp(e(P|p)),

where e(P|p), f(P|p) denote the ramification index and residue class degree

of P over p. Using dL/K = NL/KDL/K , NL/KP = pf(P|p),∑
P|p e(P|p)f(P|p) = [L : K] ≤ n, we infer

ordp(dL/K) = ordp(NL/KDL/K) =
∑
P|p

f(P|p) ordP(DL/K)

≤
∑
P|p

f(P|p)e(P|p)(1 + ordp(e(P|p))

≤ n(1 + ordp(u(n))).

�

Lemma 3.3. (i) Let M ⊃ L ⊃ K be a tower of finite extensions. Then we

have

dM/K = NL/K(dM/L)d
[M :L]
L/K .

(ii) Let L1, L2 be finite extensions of K. Then for their compositum L1 · L2

we have

dL1L2/K ⊇ d
[L1L2:L1]
L1/K

d
[L1L2:L2]
L2/K

.

Proof. For (i) see Neukirch [19, p. 213, Korollar 2.10]. For (ii) apply Stark

[26, Lemma 6] and take norms. �

Lemma 3.4. Let m ∈ Z≥0, γ ∈ K∗ and L := K( m
√
γ). Further, let p ∈

P(K) be a prime ideal with

ordp(m) = 0, ordp(γ) ≡ 0 (mod m).

Then L/K is unramified at p, i.e.

ordp(dL/K) = 0.

Proof. Choose τ ∈ K∗ such that ordp(τ) = 1. Then γ = τmtε with t ∈ Z
and ordp(ε) = 0. We clearly have L = K( m

√
ε), hence

dL/K ⊇
[D(Xm − ε)]

[1, ε]2m−2
=

[mmεm−1]

[1, ε]2m−2
.

This implies ordp(dL/K) = 0. �



8 A. BÉRCZES, J.-H. EVERTSE, AND K. GYŐRY

3.2. S-integers. Let K be an algebraic number field and denote by MK

its set of places. We keep using throughout the absolute values defined by

(2.1). Recall that these absolute values satisfy the product formula∏
v∈MK

|α|v = 1 for α ∈ K∗.

If L is a finite extension of K, and v, w places of K,L, respectively, we say

that w lies above v, notation w|v, if the restriction of | · |w to K is a power

of | · |v, and in that case we have

|α|w = |α|[Lw:Kv ]
v for α ∈ K,

where Kv, Lw denote the completions of K at v, L at w, respectively. In

case that v = p, w = P are prime ideals of OK , OL, respectively, we have

w|v if and only if p ⊂ P.

Let S be a finite set of places of K containing all infinite places. The

non-zero fractional ideals of the ring of S-integers OS (i.e., finitely generated

OS-submodules of K) form a group under multiplication, and there is an

isomorphism from the multiplicative group of non-zero fractional ideals of

OS to the group of fractional ideals of OK composed of prime ideals outside

S given by a 7→ a∗, where a = a∗OS. We define the S-norm of a fractional

ideal of OS by

NS(a) := NKa
∗ = absolute norm of a∗.

Given α1, . . . , αr ∈ K we denote by [α1, . . . , αr]S the fractional ideal of OS

generated by α1, . . . , αr. We have

(3.2) NS([α1, . . . , αr]S) =
∏

v∈MK\S

max(|α1|v, . . . , |αr|v)−1.

Further, for α ∈ K we define NS(α) := NS([α]S). By the product formula,

(3.3) NS(α) =
∏
v∈S

|α|v for α ∈ K.

Let L be a finite extension of K, and T the set of places of L lying above

the places in S. Then the ring of T -integers OT is the integral closure in L of

OS. Every fractional ideal A of OT can be expressed uniquely as A = A∗OT

where A∗ is a fractional ideal of OL composed of prime ideals outside T .

We put

NTA := NLA
∗, NT/SA := (NL/KA

∗)OS.
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Then

(3.4)

{
NTA = NS(NT/SA),

NT (aOT ) = NSa
[L:K] for a fractional ideal a of OS.

Let p1, . . . , pt be the prime ideals in S and put QS :=
∏t

i=1NKpi. Let

P1, . . . ,Pt′ be the prime ideals in T and put QT :=
∏t′

i=1NKPi. Then for

every prime ideal p of OK we have∏
P|p

NLP =
∏
P|p

(NKp)fP|p ≤
∏
P|p

(NKp)eP|p·fP|p ≤ (NKp)[L:K],

where the product is over all prime ideals P of OL dividing p and where

e(P|p), f(P|p) denote the ramification index and residue class degree of P

over p. Hence

(3.5) QT ≤ Q
[L:K]
S .

3.3. Class number and regulator. Let again K be a number field.

Lemma 3.5. For the regulator RK and class number hK of K we have the

following estimates:

RK ≥ 0.2,(3.6)

hKRK ≤ |DK |
1
2 (log∗ |DK |)d−1.(3.7)

Proof. Statement (3.6) is a result of Friedman [10]. Inequality (3.7) follows

from Louboutin [17], see also (59) in Győry and Yu [14]. �

Let S be a finite set of places of K consisting of the infinite places and of

the prime ideals p1, . . . , pt. Then the S-regulator RS is given by

(3.8) RS = hSRK

t∏
i=1

logNKpi,

where hS is the order of the group generated by the ideal classes of p1, . . . , pt
and where hS and the product are 1 if S consists only of the infinite places.

Together with Lemma 3.5 this implies

(3.9) 1
5

ln 2 ≤ RS ≤ |DK |
1
2 (log∗ |DK |)d−1 · (logPS)t,

where the last factor has to be interpreted as 1 if t = 0.
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3.4. Heights. We define the absolute logarithmic height of α ∈ Q by

h(α) =
1

[K : Q]

∑
v∈MK

max(0, log |α|v),

where K is any number field with K 3 α. More generally, we define the

logarithmic height of a polynomial f(X) = a0x
n + · · ·+ an ∈ Q[X] by

h(f) :=
1

[K : Q]

∑
v∈MK

log max(1, |a0|v, . . . , |an|v)

where K is any number field with f ∈ K[X]. These heights do not depend

on the choice of K.

We will frequently use the inequalities

h(α1 · · ·αn) ≤
n∑
i=1

h(αi), h(α1 + · · ·+ αn) ≤
n∑
i=1

h(αi) + log n

for α1, . . . , αn ∈ Q and the equality

h(αm) = |m|h(α) for α ∈ Q∗, m ∈ Z.

(see Waldschmidt [29, Chapter 3]). Further we frequently use the trivial

fact that if α belongs to a number field K and S is a finite set of places of

K containing the infinite places, then

h(α) ≥ 1

[K : Q]
logNS(α).

We have collected some further facts.

Lemma 3.6. Let α1, . . . , αn ∈ Q and f = (X − α1) · · · (X − αn). Then

|h(f)−
n∑
i=1

h(αi)| ≤ n log 2.

Proof. See Bombieri and Gubler [4, p.28, Thm.1.6.13]. �

Lemma 3.7. Let K be a number field and f = a0X
n +a1X

n−1 + · · ·+an ∈
K[X] a polynomial of degree n with discriminant D(f) 6= 0. Then

(i) |D(f)|v ≤ n(2n−1)s(v) max(|a0|v, . . . , |an|v)2n−2 for v ∈MK ,

(ii) h(D(f)) ≤ (2n− 1) log n+ (2n− 2)h(f),

where s(v) = 1 if v is real, s(v) = 2 if v is complex, s(v) = 0 if v is finite.
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Proof. Inequality (ii) is an immediate consequence of (i). For finite v, in-

equality (i) follows from the ultrametric inequality, noting that D(f) is a

homogeneous polynomial of degree 2n− 2 in the coefficients of f with inte-

ger coefficients. For infinite v, inequality (i) follows from a a result of Lewis

and Mahler [16, p. 335]). �

Lemma 3.8. Let K be an algebraic number field and S a finite set of places

of K, which consists of the infinite places and of the prime ideals p1, . . . , pt.

Then for every α ∈ OS \ {0} and m ∈ N there exists an S-unit η ∈ O∗S with

h(αηm) ≤ 1

d
logNS(α) +m ·

(
cRK +

hK
d

logQS

)
,

where c := 39dd+2 and QS :=
∏t

i=1NKpi.

Proof. This is a slightly weaker version of Lemma 3 of Győry and Yu [14].

The result was essentially proved (with a larger constant) in [9] and [12]. �

Lemma 3.9. Let α be a non-zero algebraic number of degree d which is not

a root of unity. Then

h(α) ≥ m(d) :=

{
log 2 if d = 1,

2/d(log 3d)3 if d ≥ 2.

Proof. See Voutier [28]. �

3.5. Baker’s method. Let K be an algebraic number field, and denote by

MK the set of places of K. Let α1, . . . , αn be n ≥ 2 non-zero elements of

K, and b1, . . . , bn are rational integers, not all zero. Put

Λ := αb11 . . . α
bn
n − 1,

Θ :=
n∏
i=1

max
(
h(αi),m(d)

)
,

B := max(3, |b1|, , . . . , |bn|),

where m(d) is the lower bound from Lemma 3.9 (i.e., the maximum is h(αi)

unless αi is a root of unity). For a place v ∈MK , we write

N(v) =

{
2 if v is infinite

NKp if v = p is finite.
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Proposition 3.10. Suppose that Λ 6= 0. Then for v ∈MK we have

(3.10) log |Λ|v > − c1(n, d)
N(v)

logN(v)
Θ logB,

where c1(n, d) = 12(16ed)3n+2(log∗ d)2.

Proof. First assume that v is infinite. Without loss of generality, we assume

that K ⊂ C and | · |v = | · |s(v) where s(v) = 1 if K ⊂ R and s(v) =

2 otherwise. Denote by log the principal natural logarithm on C (with

|Im log z| ≤ π for z ∈ C∗. Let b0 be the rational integer such that |Im Ξ| ≤
π, where

Ξ := b1 logα1 + · · ·+ bn logαn + 2b0 log(−1), log(−1) = πi.

Thus,

B′ := max(|2b0|, |b1|, . . . , |bn|) ≤ 1 + nB.

A result of Matveev [18, Corollary 2.3] implies that

log |Ξ| ≥ − s(v)−1
(
1
2
e(n+ 1)

)s(v)
(n+ 1)3/230n+4d2(log ed)Ω log(eB′),

where

Ω := π
n∏
i=1

max(h(αi), π).

Assuming, as we may, that |Λ| ≤ 1
2
, we get |Ξ| = | log(1 + Λ)| ≤ 2|Λ| ≤ 1.

Further, Ω ≤ πn+1m(d)−nΘ. By combining this with Matveev’s lower bound

we obtain a lower bound for |Λ|v which is better than (3.10).

Now assume that v is finite, say v = p, where p is a prime ideal of OK .

By a result of K. Yu [30] (consequence of Main Theorem on p. 190) we have

ordp(Λ) ≤ (16ed)2n+2n3/2 log(2nd) log(2d)enp ·
NKp

(logNKp)2
·Θ logB,

where ep is the ramification index of p. Using that log |Λ|p = − ordp(Λ) logNKp

and ep ≤ d, we obtain a lower bound for log |Λ|p which is better than

(3.10). �
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3.6. Thue equations and Pell equations. Let K be an algebraic number

field of degree d, discriminant DK , regulator RK and class number hK , and

denote by OK its ring of integers. Let S be a finite set of places of K

containing all infinite places. Denote by s the cardinality of S and by OS

the ring of S integers in K. Further denote by RS the S-regulator, let

p1, . . . , pt be the prime ideals in S, and put

PS := max{NKp1, . . . , NKpt}, QS := NK(p1 · · · pt),

with the convention that PS = QS = 1 if S contains no finite places.

We state effective results on Thue equations and on systems of Pell equa-

tions which are easy consequences of a general effective result on decom-

posable form equations by Győry and Yu [14]. In both results we use the

constant

c1(s, d) := s2s+427s+60d2s+d+2.

Proposition 3.11. Let β ∈ K∗ and let F (X, Y ) =
∑n

i=0 aiX
n−iY i ∈

K[X, Y ] be a binary form of degree n ≥ 3 with non-zero discriminant which

splits into linear factors over K. Suppose that

max
0≤i≤n

h(ai) ≤ A, h(β) ≤ B.

Then for the solutions of

(3.11) F (x, y) = β in x, y ∈ OS

we have

max(h(x), h(y))(3.12)

≤ c1(s, d)n6PSRS

(
1 +

log∗RS

log∗ PS

)
·
(
RK +

hK
d

logQS + ndA+B
)
.

Proof. Győry and Yu [14, p. 16, Corollary 3] proved this with instead of

our c1(s, d) a smaller bound 5d2n5 · 50(n − 1)c1c3, where c1, c3 are given

respectively in [14, Theorem 1], and in [14, bottom of page 11]. �

Proposition 3.12. Let γ1, γ2, γ3, β12, β13 be non-zero elements of K such

that

β12 6= β13,
√
γ1/γ2,

√
γ1/γ3 ∈ K,

h(γi) ≤ A for i = 1, 2, 3, h(β12), h(β13) ≤ B.
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Then for the solutions of the system

(3.13) γ1x
2
1 − γ2x22 = β12, γ1x

2
1 − γ3x23 = β13 in x1, x2, x3 ∈ OS

we have

max(h(x1), h(x2), h(x3))(3.14)

≤ c1(s, d)PSRS

(
1 +

log∗RS

log∗ PS

)
·
(
RK +

hK
d

logQS + dA+B
)
.

Proof. Put β23 := β13 − β12, β := β12β13β23 and define

F := (γ1X
2
1 − γ2X2

2 )(γ1X
2
1 − γ3X2

3 )(γ2X
2
2 − γ3X2

3 ).

Thus, every solution of (3.13) satisfies also

(3.15) F (x1, x2, x3) = β in x1, x2, x3 ∈ OS.

By assumption, β 6= 0. Further, F is a decomposable form of degree 6

with splitting field K, i.e., F = l1 · · · l6 where l1, . . . , l6 are linear forms

with coefficients in K. We make a graph on {l1, . . . , l6} by connecting two

linear forms li, lj if there is a third linear form lk such that lk = λli + µlj
for certain non-zero λ, µ ∈ K. Then this graph is connected. Further,

rank{l1, . . . , l6} = 3. Hence F satisfies all the conditions of Theorem 3 of

Győry and Yu [14]. According to this Theorem, the solutions x1, x2, x3 of

(3.15), and so also the solutions of (3.13), satisfy (3.14) but with instead

of c1(s, d) the smaller number 375c1c3, where c1, c3 are given respectively in

[14, Theorem 1], and on [14, bottom of page 11]. �

4. Proof of the results in the case of fixed exponent

Let K be an algebraic number field, put d := [K : Q], and let DK denote

the discriminant of K. Further, let S be a finite set of places of K containing

all infinite places.

Lemma 4.1. Let f(X) ∈ K[X] be a polynomial of degree n and discrim-

inant D(f) 6= 0. Suppose that f factorizes over an extension of K as

a0(X − α1) . . . (X − αn) and let L := K(α1, . . . , αk). Then for the discrim-

inant of L we have

|DL| ≤
(
n · eh(f)

)2knkd · |DK |n
k

.
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For the case k = 1 we have the sharper estimate

|DL| ≤ n(2n−1)d · e(2n−2)d·h(f) · |DK |[L:K].

Proof. By Lemma 3.3 (i), we have

(4.1) |DL| = NKdL/K · |DK |[L:K] ≤ NKdL/K · |DK |n
k

.

Applying Lemma 3.3 (ii) to L = K(α1) · · ·K(αk) yields

(4.2) dL/K ⊇
k∏
i=1

(
dK(αi)/K

)[L:K(αi)] .

Further, since αi is a root of f we have by Lemma 3.1,

dK(αi)/K ⊇
[D(f)]

[f ]2n−2
,

and so

(4.3) NKdK(αi)/K ≤ NK

(
[D(f)]

[f ]2n−2

)
.

By Lemma 3.7 we have

|NK(D(f))| =
∏

v∈M∞K

|D(f)|v ≤
∏

v∈M∞K

(
n2n−1)s(v) |f |2n−2v

≤ n(2n−1)d
∏

v∈M∞K

|f |2n−2v

where |f |v is the maximum of the v-adic absolute values of the coefficients

of f ; moreover,

NK([f ]−2n+2) =
∏

v∈MK\M∞K

|f |2n−2v .

Thus, we obtain

(4.4) NK

(
[D(f)]

[f ]2n−2

)
≤
(
n2n−1 · e(2n−2)h(f)

)d
.

Together with (4.1), (4.3) this implies the sharper upper bound for |DL|
in the case k = 1. For arbitrary k, combining (4.2), (4.3), (4.4) and the

estimate [L : K(αi)] ≤ (n− 1)(n− 2) · · · (n− k + 1) gives

NKdL/K ≤
(
n2n−1 · e(2n−2)h(f)

)k(n−1)(n−2)···(n−k+1)d

≤ nk(2n−1)n
k−1d · ek(2n−2)nk−1d·h(f) ≤

(
n · eh(f)

)2knkd
.

This in turn, together with (4.1) proves Lemma 4.1. �
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Let

f = a0X
n + a1X

n−1 + · · ·+ an ∈ OS[X]

be a polynomial of degree n ≥ 2 with discriminant D(f) 6= 0. Let b be a

non-zero element of OS, m an integer ≥ 2 and consider the equation

(4.5) f(x) = bym in x, y ∈ OS.

Put

(4.6) ĥ :=
1

d

∑
v∈MK

log max(1, |b|v, |a0|v, . . . , |an|v).

Let G be the splitting field of f over K. Then

f = a0(X − α1) · · · (X − αn) with α1, . . . , αn ∈ G.

For i = 1, . . . , n, let Li = K(αi) and denote by Ti the set of places of Li
lying above the places of S. We denote by [β1, . . . , βr]Ti the fractional of

OTi generated by β1, . . . , βr. Then we have the following Lemma:

Lemma 4.2. Let x, y ∈ OS be a solution of equation (4.5) with y 6= 0.

Then for i = 1, . . . , n we have the following:

(i) There are ideals Ci, Ai of OTi such that

(4.7) [a0(x− αi)]Ti = CiA
m
i , Ci ⊇ [a0bD(f)]m−1Ti

.

(ii) There are γi, ξi with

(4.8)

 x− αi = γiξ
m
i , γi ∈ L∗i , ξ ∈ OTi ,

h(γi) ≤ m(n3d)nde2ndĥ|DK |n ·
(

80(dn)dn+2 + 1
d

logQS

)
.

Proof. It suffices to prove the Lemma for i = 1. We suppress the index 1

and write α, T, L, γ, ξ for α1, T1, L1, γ1, ξ1. Let g := (X − α2) . . . (X − αn).

By [·] we denote fractional ideals in G with respect to the integral closure

of OT in G. Clearly,

[x− α]

[1, α]
+

[x− αi]
[1, αi]

⊇ [α− αi]
[1, α][1, αi]

for i = 2, . . . , n. This implies

[x− α]

[1, α]
+

n∏
i=2

[x− αi]
[1, αi]

⊇
n∏
i=2

[α− αi]
[1, α][1, αi]
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Noting that by Gauss’ Lemma we have [f ] = [a0]
∏n

i=1[1, αi], we see that

the right-hand side contains
n∏
j=1

∏
i 6=j

[αj − αi]
[1, αj][1, αi]

=
[D(f)]

[f ]2n−2
.

Using also [g] =
∏n

i=2[1, αi] we obtain

(4.9)
[x− α]

[1, α]
+

[g(x)]

[g]
⊇ [D(f)]

[f ]2n−2
.

Writing equation (4.5) as equation of ideals, we get

(4.10) [b][f ]−1[y]m =
[x− α]

[1, α]
· [g(x)]

[g]
.

Note that the ideals occurring in (4.9), (4.10) are all defined over L, so we

may view them as ideals of OT . Henceforth, we use [·] to denote ideals of

OT .

Now let P be a prime ideal of OT not dividing a0bD(f). Note that

D(f) ∈ [f ]2n−2, hence P does not divide [f ] either. By (4.9), the prime

ideal P divides at most one of the ideals [x−α1]
[1,α1]

and [g(x)]
[g]

, and we get

ordP
[x− α]

[1, α]
≡ 0 (mod m).

But [a0][1, α] is not divisible by P since it contains a0. Hence

ordP(a0(x− α)) ≡ 0 (mod m).

Applying division with remainder to the exponents of the prime ideals divid-

ing a0bD(f) in the factorization of a0(x−α), we obtain that there are ideals

C, A of OT , with C dividing (ba0D(f))m−1 such that [a0(x − α)] = CAm.

This proves (i).

We prove (ii). The ideal A of OT may be written as A = A∗OT with an

ideal A∗ of OL composed of prime ideals outside T , and further, we may

choose non-zero ξ1 ∈ A∗ with |NL/Q(ξ1)| ≤ |DL|1/2NLA
∗ (see Lang [15,

pp. 119/120]. This implies NT (ξ1) ≤ |DL|1/2NTA, i.e., [ξ1] = BA where

B is an ideal of OT with NTB ≤ |DL|1/2. Similarly, there exists γ1 ∈ L

with [γ1] = DC, where D is an ideal of OT with NTD ≤ |DL|1/2. As a

consequence, we have

a0(x− α) =
γ1
γ2
ξm1 ,
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where γ1, γ2 ∈ OT , and

[γ2] = DBm.

Using (i) and the choice of B, D, we get

(4.11) NT (γ1) ≤ |DL|1/2NT (a0bD(f))m−1, NT (γ2) ≤ |DL|(m+1)/2.

According to Lemma 3.8 we can find T -units η1, η2 ∈ O∗T such that

h(γiη
m
i ) ≤ d−1L logNT (γi) +m ·

(
cRL +

hL
dL

logQT

)
for i = 1, 2

where dL = [L : Q], c := 39ddL+2
L and QT :=

∏
P∈T

P finite

NLP. Putting

γ := a−10 γ1γ
−1
2 (η1η

−1
2 )m, ξ = η2η

−1
1 ξ1,

and invoking (4.11) we obtain x− α = γξm, with ξ ∈ OT , γ ∈ L∗ and

h(γ) ≤ h(a0) + d−1L

(m+ 1

2
log |DL|+m logNT (abD(f))

)
+(4.12)

+2m ·
(
cRL +

hL
dL

logQT

)
.

It remains to estimate from above the right-hand side of (4.12). First, we

have by (3.4) and Lemma 3.7,

d−1L logNT (a0bD(f)) = d−1 logNS(a0bD(f)) ≤ h(a0bD(f))(4.13)

≤ (2n− 1) log n+ 2nĥ.

Together with Lemma 4.1 this implies

h(a0) + d−1L

(m+ 1

2
log |DL|+m logNT (abD(f))

)
(4.14)

≤ m(4n log n+ 4nĥ+ log |DK |).

Next, by Lemma 3.5, Lemma 4.1 and dL ≤ nd we have

max(hL, RL) ≤ 5|DL|1/2(log∗ |DL|)nd−1 ≤ (nd)nd|DL|(4.15)

≤ (n3d)nde(2n−2)dĥ|DK |n.

By inserting the bounds (4.14), (4.15), together with (3.5) and the estimate

c ≤ 39(nd)nd+2 into (4.12), one easily obtains the upper bound for h(γ)

given by (ii). �

Let f , b, m be as above, and let x, y ∈ OS be a solution of (4.5) with

y 6= 0. Let γ1, . . . , γn, ξ1, . . . , ξn be as in Lemma 4.2.
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Lemma 4.3. (i) Let m ≥ 3 and M = K(α1, α2,
m
√
γ1/γ2, ρ), where ρ is a

primitive m-th root of unity. Then

(4.16) |DM | ≤ 10m
3n2dn4m2n3d|DK |m

2n2

Qm2n2

S e4m
2n3dĥ.

(ii) Let m = 2 and M = K(α1, α2, α3,
√
γ1/γ2,

√
γ1/γ3). Then

(4.17) |DM | ≤ n40n4dQ8n3

S |DK |4n
3

e25n
4dĥ.

Proof. We start with (i). Define the fields L = K(α1, α2), M1 = L( m
√
γ1/γ2),

M2 = L(ρ). Then M = M1M2. By Lemma 3.3 (i) we have

(4.18) |DM | = NLdM/L|DL|[M :L].

By Lemma 3.1, we have dM2/L ⊇ [m]m, where [m] = mOL. Together with

Lemma 3.3 (ii), this implies

dM/L ⊇ d
[M :M1]
M1/L

d
[M :M2]
M2/L

⊇ mm2

dmM1/L
.

Inserting this into (4.18), noting that [L : Q] ≤ n2d, [M : L] ≤ m2, we

obtain

(4.19) |DM | ≤ mm2n2d(NLdM1/L)m|DL|m
2

.

We estimate NLdM1/L. Let P be a prime ideal of OL not dividing a prime

ideal from S and not dividing ma0bD(f). Then by Lemma 4.2,

ordP(γ1γ
−1
2 ) ≡ ordP

(
a0(x− α1)

a0(x− α2)

)
≡ 0 (modm),

and so by Lemma 3.4, M1/L is unramified at P. Consequently, dM1/L is

composed of prime ideals from U , where U is the set of prime ideals of OL

that divide the prime ideals from S or ma0bD(f). Using Lemma 3.2, it

follows that

dM1/L ⊇
∏
P∈U

Pm(1+ordP(u(m))(4.20)

⊇
∏
P∈U

Pm
∏
P

Pm ordP(u(m)) ⊇ u(m)m
∏
P∈U

Pm.

First, by prime number theory, u(m) ≤ mπ(m) ≤ 4m (see Rosser and Schoen-

feld [20, Corollary 1]). Hence |NL/Q(u(m)m)| ≤ 4m
2n2d. Second, by an ar-

gument similar to the proof of (3.5), defining V to be the set of prime ideals
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of OL which are contained in S or divide ma0bD(f),

NL(
∏
P∈U

P) ≤ NK(
∏
p∈V

p)[L:K] ≤ NK(
∏
p∈V

p)n
2

≤ (QSNS(ma0bD(f))n
2 ≤ (QSe

d·h(ma0bD(f)))n
2

≤ Qn2

S m
n2de2n

3d(logn+ĥ) ≤ Qn2

S m
n2dn2n3de2n

3dĥ

where in the last estimate we have used Lemma 3.7. By combining this

estimate and that for |NL/Q(u(m)m)| with (4.20), we obtain

(4.21) NLdM1/L ≤ 6m
2n2dn2mn3dQmn2

S e2mn
3dĥ.

Finally, by inserting this estimate and the one arising from Lemma 4.1,

(4.22) |DL| ≤ n4n2d · e4n2dĥ · |DK |n
2

into (4.19), after some computations, we obtain (4.16).

We now prove (ii). Letm = 2. Take L = K(α1, α2, α3), M1 = L(
√
γ1/γ2),

M2 = L(
√
γ1/γ3), so that M = M1M2. Completely similarly to (4.21), but

now using [L : K] ≤ n3 instead of ≤ n2, we get

NLdM1/L ≤ 64n3dn4n4dQ2n3

S e4n
4dĥ.

For NLdM2/L we have the same estimate. So by Lemma 3.3 (ii),

NLdM/L ≤ (NLdM1/L)2(NLdM2/L)2 ≤ 616n3dn16n4dQ8n3

S e16n
4dĥ.

By inserting this inequality and the one arising from Lemma 4.1,

|DL| ≤ n6n3d · e6n3dĥ · |DK |n
3

into |DM | = NLdM/L|DL|[M :K], after some computations we obtain (4.17).

�

Proof of Theorem 2.1. Let m ≥ 3 and let x, y ∈ OS be a solution to bym =

f(x) with y 6= 0. We have x − αi = γiξ
m
i (i = 1, . . . , n) with the γi, ξi

as in Lemma 4.2. Let M := K(α1, α2,
m
√
γ1/γ2, ρ), where ρ is a primitive

m-th root of unity, and let T be the set of places of M lying above the

places from S. Let p1, . . . , pt be the prime ideals (finite places) in S, and

P1, . . . ,Pt′ the prime ideals in T . Then t′ ≤ [M : K]t ≤ m2n2t. Further,

let PT := maxt
′
i=1NMPi, QT :=

∏t′

i=1NMPi.

We clearly have

(4.23) γ1ξ
m
1 − γ2ξm2 = α2 − α1, ξ1, ξ2 ∈ OT ,
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and the left-hand side is a binary form of non-zero discriminant which splits

into linear factors over M . By Proposition 3.11, we have

h(ξ1) ≤ c′1m
6PTRT

(
1 +

log∗RT

log∗ PT

)
×(4.24)

×
(
RM + hM · d−1M logQT +mdMA+B),

where A = max(h(γ1), h(γ2), B = h(α1 − α2), dM = [M : Q] and c′1 is

the constant c1 from Proposition 3.11, but with s, d replaced by the upper

bounds m2n2s, m2n2d for the cardinality of T and [M : Q], respectively,

and RT is the T -regulator.

Using d ≤ 2s we can estimate c′1 by the larger but less complicated bound,

(4.25) c′1 ≤ 250(4m2n2s)7m
2n2s.

Next, by (3.5),

(4.26) PT ≤ QT ≤ Q
[M :K]
S ≤ Qm2n2

S .

Let C be the upper bound for |DM | from (4.16). Thus, by Lemma 3.5 and

(3.9),

max(hM , RM) ≤ 5C(log∗C)m
2n2d−1.

Further, A can be estimated from above by the bound from (4.8), and B by

h(α1) + h(α2) + log 2 ≤ h(f) + (n+ 1) log 2 ≤ ĥ+ (n+ 1) log 2

in view of Lemma 3.6. Together with (4.26), this implies

RM + hM · d−1M logQT +mdMA+B(4.27)

≤ 7C(log∗C)m
2n2d−1 · d−1 logQS ≤ 7C(log∗C)m

2n2d.

Next, by (3.9), the inequality d+ t ≤ 2s, and (4.26), we have

RT ≤ C1/2(log∗C)m
2n2d−1(log∗ PT )t

′

≤ C1/2(log∗C)m
2n2d−1(m2n2 log∗QS)m

2n2t

≤ (m2n2)m
2n2sC1/2(log∗C)2m

2n2s−1

and

1 +
log∗RT

log∗ PT
≤ 4m2n2s log∗C,

hence

(4.28) PTRT

(
1 +

log∗RT

log∗ PT

)
≤ (4m2n2)m

2n2sQm2n2

S C1/2(log∗C)2m
2n2s.
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Combining (4.27), (4.28) with (4.24) gives

h(ξ1) ≤ 7m6c′1(4m
2n2)m

2n2sQm2n2

S C(log∗C)4m
2n2s

≤ 250(4m2n2s)13m
2n2sQm2n2

S C2.

Using

h(x) ≤ log 2 + h(α1) + h(γ1) +mh(ξ1), h(y) ≤ m−1(h(b) + h(f) + nh(x)),

and the upper bound for h(γ1) from (4.8), we get

(4.29) h(x), h(y) ≤ 251mn(4m2n2s)13m
2n2sQm2n2

S C2.

Now substituting C, i.e., the upper bound for |DM | from (4.16), and some

algebra gives the upper bound (2.4) from Theorem 2.1. �

Proof of Theorem 2.2. Let x, y ∈ OS be a solution to by2 = f(x) with y 6= 0.

We have x− αi = γiξ
m
i (i = 1, . . . , n) with the γi, ξi as in Lemma 4.2. Let

M := K(α1, α2, α3,
√
γ1/γ3,

√
γ2/γ3),

and let T be the set of places of M lying above the places from S. Notice

that [M : K] ≤ 4n3. Then

(4.30) γ1ξ
2
1 − γ2ξ22 = α2 − α1, γ1ξ

2
1 − γ3ξ23 = α3 − α1, ξ1, ξ2 ∈ OT .

By applying Proposition 3.12 to (4.30), and doing the same computations

as above, we obtain the same bound as in (4.29), but with m = 2 and m2n2

replaced by 4n3, and with C the upper bound for |DM | from (4.17). After

some computation, we obtain the bound (2.6) from Theorem 2.2. �

5. Proof of Theorem 2.3

We assume that in some finite extension G of K, the polynomial f fac-

torizes as a0(X − α1) · · · (X − αn). For i = 1, . . . , n, let Li = Q(αi), let

dLi
, hLi

, RLi
denote the degree, class number and regulator of Li, and let

Ti be the set of places of Li lying above the places in S. Further, denote

by RTi the Ti-regulator of Li, and denote by ti the cardinality of Ti. Let

QTi :=
∏

P∈Ti NLi
P, where the product is over all prime ideals in Ti. The

group of Ti-units OT ∗i
is finitely generated and by Lemma 2 of [14] (see also
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[8], [9] and [7]) we may choose a fundamental system of Ti-units, i.e., basis

of O∗Ti modulo torsion ηi1, . . . , ηi,ti−1 such that

(5.1)


ti−1∏
j=1

h(ηij) ≤ c1iRTi ,

max
1≤j≤ti−1

h(ηij) ≤ c2iRTi ,

where

c1i =
((ti − 1)!)2

2ti−2dti−1L

, c2i = 29e
√
ti − 2dti−1Li

log∗ dLi
ci1.

We estimate these upper bounds from above. First noting ti ≤ [Li : K]s ≤
ns we have the generous estimate

(5.2) ci1, ci2 ≤ 1200t2tii ≤ 1200(ns)2ns.

For the class number and regulator hLi
, RLi

, we have similarly to (4.15):

max(hLi
, RLi

, hLi
RLi

) ≤ 5|DLi
|1/2(log∗ |DLi

|)nd−1(5.3)

≤ (n3d)nde(2n−2)dĥ|DK |n.

Further, from (3.9), d ≤ 2s, we deduce

RTi ≤ (n3d)nde(2n−2)dĥ|DK |n(log∗ PTi)
ns−1(5.4)

≤ (n3d)nde(2n−2)dĥ|DK |n(n log∗ PS)ns−1

≤ (4n7s2)nse(2n−2)dĥ|DK |n(log∗ PS)ns−1.

By inserting this and (5.2) into (5.1), we obtain

ti−1∏
j=1

h(ηij) ≤ C1 := 1200(4n9s4)nse2ndĥ|DK |n(log∗ PS)ns−1,(5.5)

max
1≤j≤ti−1

h(ηij) ≤ C1.(5.6)

Now let x, y and m satisfy

(5.7) bym = f(x), m ∈ Z≥3, x, y ∈ OS, y 6= 0, y not a root of unity,

Lemma 5.1. For i = 1, 2 there are γi, ξi ∈ L∗i , and integers bi1 · · · bi,ti of

absolute value at most m/2, such that

(5.8)

 (x− αi)hL1
hL2 = ηbi1i1 · · · η

bi,ti−1

i,ti−1 γiξ
m
i ,

h(γi) ≤ C2 := (2n3s)6ns|DK |2ne4ndĥ(ĥ+ log∗ PS).
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Proof. For convenience, we put r := hL1hL2 . By symmetry, it suffices to

prove the lemma for i = 1. For notational convenience, in the proof of this

lemma only, we suppress the index i = 1 (so L = L1, T = T1, t = t1, etc.).

We use the same notation as in the proof of Lemma 4.2. Similar to (4.9),

(4.10), we have

[x− α]

[1, α]
+

[g(x)]

[g]
⊇ [D(f)]

[f ]2n−2
, [b][f ]−1[y]m =

[x− α]

[1, α]
· [g(x)]

[g]
,

where [·] denote fractional ideals with respect to OT . From these relations,

it follows that there are integral ideals B1,B2 of OT and a fractional ideal

A of OT , such that
[x− α]

[1, α]
= B1B

−1
2 Am,

where

B1 ⊇ [b] · [D(f)]

[f ]2n−2
, B2 ⊇ [f ] · [D(f)]

[f ]2n−2
.

Since

[a0][1, α] ⊆ [a0]
n∏
j=1

[1, αj] ⊆ [f ] ⊆ [1],

it follows that [1, α]−1 ⊇ [a0]. Hence

[x− α] = C1C
−1
2 Am,

where C1,C2 are ideals of OT such that

C1,C2 ⊇ [a0bD(f)].

Raising to the power r, we get

(5.9) (x− α)r = γ1γ
−1
2 λm,

for some non-zero γ1, γ2 ∈ OT and λ ∈ L∗ with

[γk] ⊇ [a0bD(f)]r for k = 1, 2.

By Lemma 3.8, there exist ε1, ε2 ∈ O∗T such that for k = 1, 2,

h(εkγk) ≤
r

dL
logNT (a0bD(f)) + cRL +

hL
dL

logQT ,

where c ≤ 39ddL+2
L ≤ 39(2ns)2ns+2. There are ε ∈ O∗T , a root of unity ζ of

L, and integers b1, . . . , bt−1 of absolute value at most m/2, such that

ε2ε
−1
1 = ζεmηb11 · · · η

bt−1

t−1 .
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Writing

γ := ζ−1
ε1γ1
ε2γ2

, ξ := ελ

where η1, . . . , ηt−1 are the fundamental units of O∗T satisfying (5.5), (5.6),

we get

x− α = ηb11 · · · η
bt−1

t−1 γξ
m,

where

(5.10) h(γ) ≤ 2r

dL
logNT (a0bD(f)) + 2cRL + 2

hL
dL

logQT .

By (5.3), d ≤ 2s, (4.13), (3.5) we have

hL, RL ≤ (2n3s)2nse2ndĥ|DK |n, r = hL1hL2 ≤ (2n3s)4nse4ndĥ|DK |2n,
d−1L logNT (a0bD(f)) ≤ (2n− 1) log n+ 2nĥ,

d−1L logQT ≤ d−1 logQS ≤ s log∗ PS.

By inserting these bounds into (5.10) and using n ≥ 2, after some algebra

we obtain the upper bound C2. �

Completion of the proof of Theorem 2.3. In what follows, let L := K(α1, α2),

dL := [L : Q], T the set of places of L lying above the places from S, and

t the cardinality of T . Let again x, y ∈ OS and m an integer ≥ 3 with

bym = f(x), y 6= 0 and y not a root of unity. Put

X := max
i=1,...,n

h(x− αi).

Without loss of generality we assume

(5.11) m ≥ (10n2s)38ns|DK |6nP n2

S e11ndĥ.

Then

X ≥ max(C3,m(4d)−1(log 3d)−3),(5.12)

with C3 := (10n2s)37ns|DK |6nP n2

S e11ndĥ.

Indeed, by Lemma 3.9 we have

m ≤ n ·X + h(a0) + h(b)

h(y)
≤ (2d(log(3d))3(nX + 2ĥ).

If X < C3 this contradicts (5.11). If X ≥ C3 the other lower bound for X

in the maximum easily follows.
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We assume without loss of generality, that

X = h(x− α2).

If |x− α2|v ≤ 1 for v ∈ T , then using x ∈ OS we have

X ≤ 1

dL
log

(∏
v 6∈T

max(1, |x− α2|v)

)

≤ 1

dL
log

(∏
v 6∈T

max(1, |α2|v)

)
≤ h(α2) ≤

log∗(n+ 1)

2
+ h(f),

which is impossible by (5.12). Hence maxv∈T |x− α2|v > 1. Choose v0 ∈ T
such that

(5.13) |x− α2|v0 = max
v∈T
|x− α2|v.

Then we have

X ≤ 1

dL

(
log

(
|x− α2|tv0

∏
v 6∈T

max(1, |x− α2|v)

))

≤ 1

dL

(
log

(
|x− α2|tv0

∏
v 6∈T

max(1, |α2|v)

))
.

which gives

|x− α2|v0 ≥
eXdL/t∏

v 6∈T max(1, |α2|v)1/t
.

Thus we have

(5.14)

∣∣∣∣1− x− α1

x− α2

∣∣∣∣
v0

=
|α2 − α1|v0

|x− α2|v0

≤
|α2 − α1|v0

∏
v 6∈T max(1, |α2|v)1/t

eXdL/t
.

Put s(v0) = 1 if v0 is real, s(v0) = 2 if v is complex, and s(v0) = 0 if v0 is

finite. Since by Lemma 3.6 we have

|α2 − α1|v0

∏
v 6∈T

max(1, |α2|v)1/t

≤ 2s(v0) max(1, |α2|v0) max(1, |α1|v0)
∏
v 6∈T

max(1, |α2|v)

≤ 2s(v0) exp(dL(h(α1) + h(α2)))

≤ 2(n+1)s(v0) exp((dLh(f)),
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(5.14) gives us

(5.15)

∣∣∣∣1− x− α1

x− α2

∣∣∣∣
v0

≤ exp
(

(n+ 1)s(v0) log 2 + dLh(f)−XdL/t
)
.

Notice that by (5.12) we have

(5.16)

∣∣∣∣1− x− α1

x− α2

∣∣∣∣
v0

< 1.

In general, we have for y ∈ L with |1− y|v0 < 1 and any positive integer r,

|1− yr|v0 ≤ 2r·s(v0)|1− y|v0 .

Hence∣∣∣∣∣1−
(
x− α1

x− α2

)hL1
hL2

∣∣∣∣∣
v0

≤ exp
(

(hL1hL2+n+1)s(v0) log 2 +dLh(f)−XdL/t
)
.

Using (5.12) and the estimates (5.3), h(f) ≤ ĥ, dL ≤ nd, s ≤ t ≤ ns, this

can be simplified to

(5.17)

∣∣∣∣∣1−
(
x− α1

x− α2

)hL1
hL2

∣∣∣∣∣
v0

≤ exp(−XdL/2t).

On the other hand using Proposition 3.10 and Lemma 5.1 we get a Baker

type lower bound

(5.18)

∣∣∣∣∣1−
(
x− α1

x− α2

)hL1
hL2

∣∣∣∣∣
v0

=

∣∣∣∣1− γ1
γ2
· ηb11

11 · · · η
b1,t1−1

1,t1−1 · η
−b21
21 · · · η−b2,t2−1

2,t2−1 ·
(
ξ1
ξ2

)m∣∣∣∣
v0

≥ exp
(
− c1(t1 + t2, dL) · N(v0)

logN(v0)
Θ logB

)
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where

Θ := max(h(ξ1/ξ2),m(d)) ·max(h(γ1/γ2),m(d)) ·
t1−1∏
j=1

h(η1j) ·
t2−1∏
j=1

h(η2j),

B := max{3,m, |b11|, . . . , |b1,t1−1|, |b21|, . . . , |b2,t2−1|),

N(v0) :=

{
2 if v0 is infinite

NLP if v0 = P is a prime ideal P,

c1(t1 + t2, dL) := 12(16edL)3t1+3t2+2(log∗ dL)2.

We estimate the above parameters. First, by (5.8), we have h(γi) ≤ C2

for i = 1, 2. Moreover, the exponents bij in (5.8) have absolute values at

most m/2. Together with (5.6) and (5.12), these imply

h(ξ1/ξ2) ≤ maxh(ξ1) + h(ξ2)(5.19)

≤ 2

m
(X + C2) + 1

2
(t1 + t2 − 2)C1 ≤

3

m
·X + 2nsC1

≤ (3 + 4d(log 3d)3 · 2nsC1) ·
X

m
≤ 4ns+2C1 ·

X

m
,

where we have used t1, t2 ≤ ns, d ≤ 2s, n ≥ 2. Further, using (5.5) and

h(γ1/γ2) ≤ 2C2, we get

(5.20) Θ ≤ C2
1 · 4ns+2C1 ·

X

m
· 2C2 ≤ C4 ·

X

m
,

where

C4 := 2× 107
(
410n45s18

)ns|DK |5ne10ndĥ(ĥ+ 1)(log∗ PS)3ns−2.

Next, using dL ≤ n(n− 1)d ≤ 2n(n− 1)s, t1, t2 ≤ ns, we have

(5.21) c1(t1 + t2, dL) ≤ C5 := (32en2s)6ns+3.

Finally, by (3.5), (5.11) we have

N(v0) ≤ PT ≤ P
[L:K]
S ≤ P

n(n−1)
S

and B = m since the exponents bij in (5.8) have absolute values at most

m/2. Inserting these and (5.20), (5.21) into (5.18), we arrive at the lower

bound ∣∣∣∣∣1−
(
x− α1

x− α2

)hL1
hL2

∣∣∣∣∣
v0

≥ exp
(
− C4C5P

n(n−1)
S

X

m
logm

)
.
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A comparison with the upper bound (5.17) gives

exp
(
− C4C5P

n(n−1)
S

X

m
logm

)
≤ exp(−dLX/2t).

By dividing out X and inserting t ≤ n2s, d ≤ 2s, we arrive at

m

logm
≤ 2n2sC4C5P

n(n−1)
S

< (10n2s)35ns|DK |5ne10ndĥ(ĥ+ 1) · P n(n−1)
S (log∗ PS)3ns−1.

Applying the inequalities (logX)B ≤ (B/2ε)BXε for X > 1, B > 0, ε > 0

and X + 1 ≤ (ec−1/c)ecX for X > 0, c ≥ 1, we arrive at our final estimate

m < (10n2s)40ns|DK |6nP n2

S e11ndĥ.

This completes our proof of Theorem 2.3. �
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équations de Thue-Mahler, J. Number Theory , 71 (1998), 227–244.
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