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Abstract. Recall that an order O in an algebraic number field K is

called monogenic if it is generated by one element, i.e., there is an α

with Z[α] = O. By work of Győry [11, 1976] there are, up to a suitable

equivalence, only finitely many α such that Z[α] = O. In this survey,

we give an overview of recent results on estimates for the number of α

up to equivalence.

1. Introduction

Let K be an algebraic number field of degree d and denote by OK its ring

of integers. Let O be an order in K, i.e., a subring of OK with quotient

field K. The order O is called monogenic if it can be expressed as Z[α] with

some α ∈ O. Equivalently, this means that O has a Z-module basis of the

shape {1, α, α2, . . . , αd−1}. Clearly, if O = Z[α] then also O = Z[β] for any

β of the shape ±α + a with a ∈ Z. Such β are said to be equivalent to α.

It is well-known that orders in quadratic number fields are monogenic, but

number fields of degree > 2 may have non-monogenic orders.

We consider the ‘Diophantine equation’

(1.1) Z[α] = O in α ∈ O.

As explained above, the solutions of (1.1) can be divided into equivalence

classes {±α + a : a ∈ Z}. We can rewrite (1.1) as a genuine Diophantine

equation as follows. Fix a Z-module basis {1, ω1, . . . , ωd−1} of O. There

exists a homogeneous polynomial I ∈ Z[X1, . . . , Xd−1] of degree d(d− 1)/2

in d− 1 variables, called the index form associated to this basis, such that

α = x0 +x1ω1 + · · ·+xd−1ωd−1 with xi ∈ Z is a solution of (1.1) if and only
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if (x1, . . . , xd−1) is a solution of the index form equation

(1.2) I(x1, . . . , xd−1) = ±1 in x1, . . . , xd−1 ∈ Z.

Suppose that K has degree d ≥ 3. In 1976, Győry [11] proved that the set

of solutions of (1.1) is a union of at most finitely many equivalence classes

and that a full system of representatives of those can be determined effec-

tively. Equivalently, this means that (1.2) has only finitely many solutions

which can be determined effectively. Today there are practical algorithms

to solve (1.1) or (1.2) for arbitrary number fields of degree ≤ 6 and some

special classes of higher degree number fields, see Gaál [8, 2002] and Bilu,

Gaál and Győry [5, 2004].

In this survey, we do not go into the algorithmic resolution of (1.1),

but rather focus on estimates for the number of solutions of (1.1) up to

equivalence. We call an order O k times monogenic if (1.1) has at least k

equivalence classes of solutions, i.e., if there are α1, . . . , αk such that

O = Z[α1] = · · · = Z[αk], αi ± αj 6∈ Z for i, j = 1, . . . , k with i 6= j.

Analogously, we call O precisely/at most k times monogenic if (1.1) has

precisely/at most k equivalence classes of solutions.

It is easy to see that every order in a quadratic number field is precisely

one time monogenic. In case that K is a cubic number field, the index form

equation (1.2) corresponding to (1.1) is a cubic Thue equation. Bennett [1,

2001] proved that such equations have up to sign not more than 10 solutions.

Thus, any order in a cubic number field is at most 10 times monogenic. Gaál

and Schulte [9, 1989] determined the solutions of (1.1) for several orders in

cubic number fields. A consequence of their result is that Z[ζ7 + ζ−17 ] is

precisely 9 times monogenic, where ζp := e2πi/p. It is believed that all other

orders in a cubic number field are less than 9 times monogenic.

We now consider orders in number fields K of degree d ≥ 4. Győry and

the author [6, 1985] proved that any order O in K is at most (3 × 72g)d−2

times monogenic, where g is the degree of the normal closure of K. Note

that d ≤ g ≤ d!. This was the first uniform bound of this type. In this

survey, we deduce the following improvement.

Theorem 1.1. Let K be a number field of degree d ≥ 4. Then any order

O in K is at most

24(d+5)(d−2)

times monogenic.
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This bound is probably far from best possible. The best lower bound we

could find is due to Miller-Sims and Robertson [15, 2005]. They considered

(1.1) for O = Z[ζp + ζ−1p ] where p is a prime, this is the ring of integers of

the maximal real subfield of the cyclotomic field Q(ζp). They proved that if

p ≥ 7 then (1.1) is satisfied by ζkp +ζ−kp , (ζkp +ζ−kp +b)−1 (b = −1, 0, 1, 2, k =

1, . . . , (p−1)/2). If p = 7 then among these numbers there are precisely nine

pairwise inequivalent ones and by the result of Gaál and Schulte mentioned

above these are up to equivalence the only solutions of (1.1). If p ≥ 11 then

all these numbers are pairwise inequivalent and thus, the ring Z[ζp + ζ−1p ] is

5(p− 1)/2 times monogenic.

We now fix a number field, and consider varying orders in that field. It

can be shown that in a given number field, ‘most’ orders are only few times

monogenic. The following result, which is a refinement of work of Bérczes

[2, 2000], makes this more precise.

Theorem 1.2 (Bérczes, Evertse, Győry [3, to appear]). Let K be a number

field of degree d ≥ 3. Then there are at most finitely many three times

monogenic orders in K.

It is not difficult to show that there are number fields with infinitely many

two times monogenic orders. For instance, let K be a number field of degree

d ≥ 3 and suppose that K is not a CM-field, i.e., it is not a totally complex

quadratic extension of a totally real field. Then the ring of integers OK of

K has infinitely many units ε such that Q(ε) = K. If ε is one of these units,

then from the minimal polynomial of ε one easily deduces that ε−1 = g(ε),

ε = h(ε−1) for certain g, h ∈ Z[X], and thus Z[ε] = Z[ε−1]. Moreover, ε−1

cannot be equivalent to ε since ε has degree ≥ 3. By varying ε we obtain

infinitely many two times monogenic orders in K.

We believe that if K is a number field of degree d ≥ 3, then the collection

of two times monogenic orders in K consists of finitely many infinite classes

of ‘special’ two times monogenic orders, and at most finitely many orders

outside these classes. Bérczes, Győry and the author [3] managed to make

this precise in some special cases. We recall their result.

Let again K be a number field of degree d ≥ 3 and O an order in K.

We call O an order of type I if there are α, β ∈ O, and a matrix
(
a1 a2
a3 a4

)
∈

GL(2,Z) with a3 6= 0 such that

O = Z[α] = Z[β], β =
a1α + a2
a3α + a4

.
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It is easily shown that such α, β are inequivalent. Hence type I orders are

two times monogenic. If K is not a CM-field then it has infinitely many

orders of type I. In [3] it is proved that every two times monogenic order in

a cubic number field is of type I.

Type II orders exist only in quartic number fields. We call O an order

of type II if there are α, β ∈ O, and a0, a1, a2, b0, b1, b2 ∈ Z with a2b2 6= 0

such that

O = Z[α] = Z[β], β = a0α
2 + a1α + a2α

2, α = b0 + b1β + b2β
2.

Again, it is obvious that such α, β are inequivalent and thus, that orders of

type II are two times monogenic. In [3], examples have been given of quartic

number fields with infinitely many orders of type II. The construction of

these orders uses cubic resolvents.

Recall that a number field K is called k times transitive (where 1 ≤ k ≤
[K : Q]) if, for any two ordered k-tuples of distinct embeddings (σ1, . . . , σk),

(τ1, . . . , τk) of K in Q, there is ρ ∈ Gal(Q/Q) such that ρ ◦ σi = τi for

i = 1, . . . , k.

Theorem 1.3 (Bérczes, Evertse, Győry [3, to appear]). (i) Let K be a

number field of degree 4 such that the normal closure of K has Galois group

S4. Then there are at most finitely many two times monogenic orders in K

that are not of type I or II.

(ii) Let K be a four times transitive number field of degree ≥ 5. Then there

are at most finitely many two times monogenic orders in K that are not of

type I.

We mention that in [3], more general versions of Theorems 1.2 and 1.3 are

proved about orders that are monogenic over an arbitrary domain which is

integrally closed and finitely generated over Z. We do not know if Theorem

1.3 remains valid if we drop the conditions on K.

In Section 2 we prove Theorem 1.1. In Sections 3, 4, respectively we

give brief sketches of the proofs of Theorems 1.2 and 1.3. For the full (and

lengthy) proofs of these theorems we refer to [3].

2. Proof of Theorem 1.1

Given a field G, we denote by (G∗)m the group of m-tuples (x1, . . . , xm)

with x1, . . . , xm ∈ G∗, endowed with coordinatewise multiplication

(x1, . . . , xm)(y1, . . . , ym) = (x1y1, . . . , xmym).
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Our main tool is the following result.

Proposition 2.1. Let G be a field of characteristic 0, and Γ a finitely

generated subgroup of (G∗)2 of rank r. Then the equation

x+ y = 1 in (x, y) ∈ Γ

has at most 28(r+1) solutions.

Proof. Beukers, Schlickewei [4, 1996]. �

We deduce the following consequence.

Lemma 2.2. Let G be a field of characteristic 0, n ≥ 1, and Γ a finitely

generated subgroup of (G∗)2n of rank r. Then the system of equations

(2.1) xi + yi = 1 (i = 1, . . . , n) in (x1, y1, . . . , xn, yn) ∈ Γ

has at most 28(r+2n−1) solutions.

Proof. We proceed by induction on n. For n = 1, Lemma 2.2 is pre-

cisely Proposition 2.1. Assume that n ≥ 2, and that the lemma is true

for systems of fewer than n equations. Write x := (x1, y1, . . . , xn, yn),

x′ := (x1, y1, . . . , xn−1, yn−1) and define the homomorphism ϕ : x 7→ x′.

Let Γ′ := ϕ(Γ) and Γ0 := ker(ϕ : Γ → Γ′). Notice that if x is a solution

of (2.1), then ϕ(x) is a solution of the system consisting of the first n − 1

equations of (2.1). By the induction hypothesis, if x runs through the solu-

tions of (2.1), then x′ runs through a set of cardinality at most 28(r′+2n−3),

where r′ := rank Γ′. Pick an element from Γ′ and then an element from

its inverse image under ϕ, say x∗ := (x∗1, y
∗
1, . . . , x

∗
n, y

∗
n) ∈ Γ. To finish the

induction step we have to prove that (2.1) has at most 28(r−r′+2) solutions

x = (x1, . . . , yn) with ϕ(x) = ϕ(x∗), i.e., with x · (x∗)−1 ∈ Γ0.

Let Γ1 be the image of the group generated by Γ0 and x∗ under the

projection (x1, y1, . . . , xn, yn) 7→ (xn, yn). Then Γ1 is a group of rank at

most rank Γ0 + 1 = r − r′ + 1. Notice that if x = (x1, . . . , yn) is a solution

of (2.1) with ϕ(x) = ϕ(x∗), then xi = x∗i , yi = y∗i for i = 1, . . . , n − 1,

xn + yn = 1 and (xn, yn) ∈ Γ1. From Proposition 2.1 it follows that for

(xn, yn), hence x, we have at most 28(r−r′+2) possibilities. This completes

our induction step. �

In what follows, let K be a number field of degree d ≥ 4, say K = Q(θ)

and denote by G its normal closure, i.e., G = Q(θ(1), . . . , θ(d)), where θ(1) =

θ, . . . , θ(d) are the conjugates of θ. Denote by x 7→ x(i) the embedding of K
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in G defined by θ(i). Further, define the fields Lij := Q(θ(i) + θ(j), θ(i)θ(j))

(1 ≤ i, j ≤ d, i 6= j). Denote by Uij the unit group of the ring of integers

of Lij.

Let O be an order in K and define

S(O) := {α ∈ O : Z[α] = O}.

Lemma 2.3. Let α, β ∈ S(O). Then

(2.2) uij(α, β) :=
α(i) − α(j)

β(i) − β(j)
∈ Uij for 1 ≤ i, j ≤ d, i 6= j.

Proof. Let i, j ∈ {1, . . . , d}, i 6= j. The quantity uij(α, β) is a symmetric

function in θ(i), θ(j), hence it belongs to Lij. There are f, g ∈ Z[X] such

that β = f(α) and α = g(β). This shows that both uij(α, β) and its

multiplicative inverse are algebraic integers, hence it is an algebraic unit. �

Lemma 2.4. The multiplicative subgroup of (G∗)d(d−1)/2 generated by the

tuples

(2.3) ρ(α) :=
(
α(i) − α(j) : 1 ≤ i < j ≤ d

)
(α ∈ S(O))

has rank at most 1
2
d(d− 1).

Proof. Denote by U the group under consideration. We fix β ∈ S(O) (if no

such β exists we are done) and let α ∈ S(O) vary. Then for α ∈ S(O) we

have

(2.4) ρ(α) = ρ(β) · u(α) with u(α) := (uij(α, β) : 1 ≤ i < j < d).

We partition the collection of 2-element subsets of {1, . . . , d} into classes

such that {i, j} and {i′, j′} belong to the same class if and only if there exists

σ ∈ Gal(G/Q) such that σ(θ(i) + θ(j)) = θ(i
′) + θ(j

′), σ(θ(i)θ(j)) = θ(i
′)θ(j

′).

Then by Lemma 2.3 and since uij(α, β) is a symmetric function in θ(i), θ(j)

we have

(2.5) ui′,j′(α, β) = σ(uij(α, β)) for α ∈ S(O).

Clearly, the cardinality of the class represented by {i, j} is [Lij : Q].

Denote the different classes by C1, . . . , Ct, and suppose that {ik, jk} ∈ Ck
for k = 1, . . . , t. Property (2.5) and Lemma 2.3 imply that

(xij : 1 ≤ i < j ≤ d) 7→ (xi1,j1 , . . . , xit,jt)

defines an injective homomorphism from the group generated by the tuples

u(α) (α ∈ S(O)) into Ui1,j1 × · · · × Uit,jt . By Dirichlet’s Unit Theorem,
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rankUik,jk ≤ [Lik,jk : Q] − 1 = #Ck − 1 for k = 1, . . . , t. Together with

(2.4), this implies that U has rank at most

1 +
t∑

k=1

(#Ck − 1) ≤ 1
2
d(d− 1).

�

Proof of Theorem 1.1. Let O be an order in K. Notice that we have the

relations

(2.6)
α(i) − α(1)

α(2) − α(1)
+

α(2) − α(i)

α(2) − α(1)
= 1 (i = 3, . . . , d).

The group homomorphism from (G∗)d(d−1)/2 → (G∗)2d−4,

(xij : 1 ≤ i < j ≤ d) 7→ (x31/x21, x23/x21, . . . , xd1/x21, x2d/x21)

maps, for every α ∈ S(O), the tuple ρ(α) as defined in Lemma 2.4 to

τ(α) :=

(
α(3) − α(1)

α(2) − α(1)
,
α(2) − α(3)

α(2) − α(1)
, . . . ,

α(d) − α(1)

α(2) − α(1)
,
α(2) − α(d)

α(2) − α(1)

)
.

Together with Lemma 2.4, this implies that the rank of the multiplicative

group generated by the tuples τ(α) (α ∈ S(O)) is at most 1
2
d(d − 1). By

applying Lemma 2.2 to (2.6), it follows that among the tuples τ(α) (α ∈ O)

there are at most 28(d(d−1)/2+2d−5) = 24(d+5)(d−2) distinct ones.

Theorem 1.1 follows once we have proved that if α1, α2 ∈ S(O) and

τ(α1) = τ(α2), then α1, α2 are equivalent. Take such α1, α2. By simple

linear algebra, there exist unique λ ∈ G∗, µ ∈ G such that α
(i)
2 = λα

(i)
1 + µ

for i = 1, . . . , d. Thus,

λ =
α
(i)
2 − α

(j)
2

α
(i)
1 − α

(j)
1

for 1 ≤ i < j ≤ d.

By Galois symmetry we have λ ∈ Q∗, and by Lemma 2.3, λ is an algebraic

unit. Hence λ = ±1. But then, µ = α
(i)
2 ± α

(i)
1 for i = 1, . . . , d. This shows

that µ ∈ Q and µ is an algebraic integer, hence µ ∈ Z. So α1, α2 are indeed

equivalent. This concludes the proof of Theorem 1.1. �
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3. Sketch of the proof of Theorem 1.2

The next proposition is our main tool. Let G be a field of characteristic

0, and Γ a finitely generated subgroup of (G∗)2. We consider equations

(3.1) ax+ by = 1 in (x, y) ∈ Γ

where a, b ∈ G∗. By Lang [13, 1960] or Proposition 2.1 above, each such

equation has only finitely many solutions. We call the pair (a, b) normalized

if (1, 1) is a solution of (3.1), i.e., if a + b = 1. In general, if (x0, y0) is a

solution of (3.1) then the pair (ax0, by0) is normalized, and the equation

(ax0)x+ (by0)y = 1 in (x, y) ∈ Γ has the same number of solutions as (3.1).

Proposition 3.1. There are at most finitely many normalized pairs (a, b) ∈
(G∗)2 such that (1.1) has more than two solutions, the pair (1, 1) included.

Proof. Evertse, Győry, Stewart, Tijdeman [7, 1988]. �

We keep the notation from the previous section; thus, K is an algebraic

number field of degree d ≥ 3 and G is its normal closure. The next lemma,

which we state without proof, is used in both the proofs of Theorems 1.2

and 1.3. For x with Q(x) = K and distinct i, j, k ∈ {1, . . . , d} we put

x(ijk) := (x(i) − x(j))/(x(i) − x(k)).

Lemma 3.2. Let cijk ∈ G∗ (1 ≤ i < j < k ≤ d) be given. Then the set of

β ∈ OK such that

β(ijk) = cijk for 1 ≤ i < j < k ≤ d, Z[β] is two times monogenic

is contained in finitely many equivalence classes.

Proof. [3], Lemmas 5.3, 6.2. �

To give a flavour, we prove Theorem 1.2 under the assumption that K is

three times transitive. This condition can be dropped, but then the proof

becomes more complicated. Our assumption on K implies the following:

Lemma 3.3. Let O be an order in K and suppose that Z[α1] = Z[α2] = O
and α

(123)
1 = α

(123)
2 . Then α1, α2 are equivalent.

Proof. By taking conjugates, using thatK is three times transitive, it follows

that also α
(ijk)
1 = α

(ijk)
2 for 1 ≤ i < j < k ≤ d. Then, similarly to the last

part of the proof of Theorem 1.1 one shows that α1, α2 are equivalent. �
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Let O be a three times monogenic order in K. Fix β with Z[β] = O. We

claim that the equation

(3.2) β(123)x+ β(321)y = 1 in x, y ∈ O∗G
has at least three distinct solution, including (1, 1). Indeed, let α ∈ S(O).

Then by Lemma 2.3, we have xα := α(123)/β(123) = u12(α, β)/u13(α, β) ∈ O∗G
and likewise, yα := α(321)/β(321) ∈ O∗G. Since α(123) + α(321) = 1 this shows

that (xα, yα) is a solution of (3.2). By our assumption that O is three times

monogenic, and by Lemma 3.3, there are at least three different values

among the numbers α(123), hence among the numbers xα, for α ∈ S(O).

So indeed, (3.2) has at least three distinct solutions, and taking α = β

we get the solution (1, 1). Now by Proposition 3.1, if β runs through the

numbers in OK such that Z[β] is three times monogenic, then β(123) runs

through a finite set. By taking conjugates, using that K is three times

transitive, it follows that also β(ijk) runs through a finite set, for all distinct

i, j, k ∈ {1, . . . , d}. But then by Lemma 3.2, the β under consideration lie in

only finitely many equivalence classes, and so there are only finitely many

possibilities for the order Z[β]. This completes our proof. �

4. Sketch of the proof of Theorem 1.3

Let for the moment G be any field of characteristic 0 and m an integer

≥ 2. An algebraic subset of (G∗)m is the set of common zeros in (G∗)m of

a set of polynomials in G[X1, . . . , Xm]. An algebraic subgroup of (G∗)m is

an algebraic subset which is also a subgroup of (G∗)m under coordinatewise

multiplication. An algebraic coset in (G∗)m is a coset aH = {a ·x : x ∈ H},
where a ∈ (G∗)m and H is an algebraic subgroup of (G∗)m. The proof of

Theorem 1.3 uses the following result.

Proposition 4.1. Let X be an algebraic subset of (G∗)m and Γ a finitely

generated subgroup of (G∗)m. Then X ∩ Γ is contained in a finite union of

algebraic cosets a1H1 ∪ · · · ∪ atHt with aiHi ⊆ X for i = 1, . . . , t.

Proof. Laurent [14, 1984]. �

Like in the statement of Theorem 1.3, let K be number field of degree

d ≥ 4, and assume that either d = 4 and the normal closure of K has Galois

group S4, or d ≥ 5 and K is four times transitive. Denote by G the normal

closure of K. We consider pairs (α, β) such that

(4.1) α, β ∈ OK , Q(α) = Q(β) = K, Z[α] = Z[β], α, β are inequivalent.
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We have to show that there is a finite collection of orders in K, such that

for every pair (α, β) with (4.1), the order Z[α] = Z[β] either belongs to this

collection or is of type I or (if d = 4) of type II.

Let Γ be the multiplicative group generated by the tuples(
α(i) − α(j)

β(i) − β(j)
: 1 ≤ i < j ≤ d

)
,

for all α, β with (4.1). By Lemma 2.3, Γ is a subgroup of (O∗G)d(d−1)/2.

Hence Γ is finitely generated.

Take α, β with (4.1). Put

uij :=
α(i) − α(j)

β(i) − β(j)
(1 ≤ i, j ≤ d, i 6= j).

Write again x(ijk) := (x(i) − x(j))/(x(i) − x(k)) for x with Q(x) = K and

distinct indices i, j, k. Then from

β(jik) + β(kij) = 1,

β(jik) · uij
ujk

+ β(kij) · uik
ujk

= α(jik) + α(kij) = 1,

it follows that

(4.2) β(ijk) ·
(

1− uij
ujk

)
= 1− uik

ujk
for any distinct i, j, k ∈ {1, . . . , d}.

We can eliminate the terms depending on β by applying the above identities

with the triples (i, j, k), (i, k, l) and (i, l, j), and using β(ijk)β(ikl)β(ilj) = 1.

This leads to(
1− uij

ujk

)(
1− uik

ukl

)(
1− uil

ujl

)
=
(

1− uik
ujk

)(
1− uil

ukl

)(
1− uij

ujl

)
(4.3)

for any distinct i, j, k, l ∈ {1, . . . , d}.

It follows that the tuple u = (uij : 1 ≤ i < j ≤ d) lies in X ∩ Γ, where X

is the algebraic subset of (G∗)d(d−1)/2 defined by (4.3).

We apply Proposition 4.1 to X ∩Γ. By a precise analysis of the algebraic

set X and the group Γ (see [3]) it can be shown that there is a finite set S
such that for each u ∈ X ∩Γ, at least one of the following three alternatives

holds:

(i) uij/uik ∈ S for all distinct i, j, k ∈ {1, . . . , d};
(ii) uijukl = uikujl for all distinct i, j, k, l ∈ {1, . . . , d};

(iii) d = 4 and u12 = −u34, u13 = −u24, u14 = −u23.
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In the deduction of this, Bérczes et.al. heavily used the conditions imposed

on K in Theorem 1.3; probably without these conditions there are more

alternatives.

If (α, β) run through the set of pairs with (4.1) for which the correspond-

ing tuple u satisfies (i), then by (4.2), the quantities β(ijk) (1 ≤ i < j <

k ≤ d) run through a finite set. Then Lemma 3.2 implies that the β lie

in at most finitely many equivalence classes, and thus, that there are only

finitely many possibilities for the order Z[β].

If (α, β) is a pair with (4.1) such that the corresponding tuple u satisfies

(ii), then

(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))
=

(β(i) − β(j))(β(k) − β(l))

(β(i) − β(k))(β(j) − β(l))

for all distinct i, j, k, l ∈ {1, . . . , d}, i.e., the cross ratio of any four of the

α(i) is equal to that of the corresponding four β(i). By elementary projective

geometry on P1(G), there is a matrix A =
(
a1 a2
a3 a4

)
∈ GL(2, G) such that

β(i) = (a1α
(i) + a2)/(a3α

(i) + a4) for i = 1, . . . , d. By Galois symmetry, we

can choose A from GL(2,Q), and in [3] it is shown that A can be chosen

from GL(2,Z). Hence Z[α] = Z[β] is an order of type I.

If (α, β) is a pair with (4.1) such that the corresponding u satisfies (iii)

then by elementary algebra it can be shown that β = a0 + a1α + a2α
2

and α = b0 + b1β + b2β
2 for certain ai, bi ∈ Q with a2b2 6= 0. But since

Z[α] = Z[β] it then follows that ai, bi ∈ Z for i = 1, 2, 3. Hence Z[α] = Z[β]

is an order of type II. This completes our sketch of the proof of Theorem

1.3. �
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[5] Yu. Bilu, I. Gaál, K. Győry, Index form equations in sextic fields: a hard

computation, Acta Arith. 115 (2004), 85–96.
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