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Abstract

The combined conjecture of Lang-Bogomolov for tori gives an accurate description of the
set of those points x of a given subvariety X of GN

m(Q) = (Q
∗
)N , that with respect to the

height are “very close” to a given subgroup � of finite rank of GN
m(Q). Thanks to work of

Laurent, Poonen and Bogomolov, this conjecture has been proved in a more precise form.
In this paper we prove, for certain special classes of varieties X, effective versions of the

Lang-Bogomolov conjecture, giving explicit upper bounds for the heights and degrees of the
points x under consideration. The main feature of our results is that the points we consider
do not have to lie in a prescribed number field. Our main tools are Baker-type logarithmic
forms estimates and Bogomolov-type estimates for the number of points on the variety X
with very small height.

1. Introduction

Choose an algebraic closure Q of Q. Recall that the group of Q-rational points of the
N -dimensional torus is

GN
m (Q) = (Q

∗
)N = {x = (x1, . . . , xN ) : xi ∈ Q

∗
for i = 1, . . . , N }
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János Bolyai Research Scholarship (A.B.) and the Eötvös Scholarship (A.B.).
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with coordinatewise multiplication, i.e., if x = (x1, . . . , xN ), y = (y1, . . . , yN ) then xy =
(x1 y1, . . . , xN yN ). Denote by h(x) the absolute logarithmic Weil height of x ∈ Q.
Define the height and degree of x = (x1, . . . , xN ) ∈ (Q

∗
)N by h(x) := ∑N

i=1 h(xi), and
[Q(x1, . . . , xN ) : Q], respectively. Let X be an algebraic subvariety of (Q

∗
)N (i.e., the set

of common zeros in (Q
∗
)N of a set of polynomials in Q[X1, . . . , X N ]), and � a finitely

generated subgroup of (Q
∗
)N . We want to study the intersection of X with any of the sets

� := {x ∈ (Q
∗
)N : ∃m ∈ Z>0 with xm ∈ �} (the division group of �),

�ε := {x ∈ (Q
∗
)N : ∃y, z ∈ (Q

∗
)N with x = yz, y ∈ �, h(z) < ε},

C(�, ε) := {x ∈ (Q
∗
)N : ∃y, z ∈ (Q

∗
)N

with x = yz, y ∈ �, h(z) < ε(1 + h(y))},
where ε > 0.

Recall that by an algebraic subgroup of (Q
∗
)N we mean an algebraic subvariety that is a

subgroup of (Q
∗
)N , and by a translate of an algebraic subgroup a coset xH = {x·y : y ∈ H},

where H is an algebraic subgroup of (Q
∗
)N and x ∈ (Q

∗
)N .

It follows from work of Poonen [12] that there is ε > 0 depending only on N and the
degree of X, such that X � �ε is contained in a finite union of translates

x1H1 � · · · � xTHT (1·1)

where xi ∈ �ε, Hi is an algebraic subgroup of (Q
∗
)N and xiHi ⊂ X for i = 1, . . . , T . This

encompasses earlier work of Liardet [9] and Laurent [8] (who considered X��) and Zhang
[17] (who considered X � {x ∈ (Q

∗
)N : h(x) < ε}).

Bombieri and Zannier [4] and Schmidt [15] proved precise quantitative versions for
Zhang’s result with an explicit positive value for ε and an explicit upper bound for the
number T of translates, both depending only on N and the degree of X and their result
was further improved by various authors. Later, Rémond [13] proved a quantitative version
of Poonen’s result with an explicit positive value for ε depending on N and the degree of
X and an explicit upper bound for T depending only on N , the degree of X and the rank
of �.

Define Xexc to be the set of x ∈ X with the property that there exists an algebraic subgroup
H of (Q

∗
)N of dimension > 0 such that xH ⊂ X, and let X0 := X \ Xexc. The second

author stated in the survey paper [7] that there exists ε > 0 depending on N , X and �

such that X0 � C(�, ε) is finite. This was proved in a more general form by Rémond [13].
In the case that X is a curve, Rémond gave, for some explicit value of ε depending on N ,
the rank of � and the height and degree of X, an explicit upper bound for the cardinality
of X0 � C(�, ε); his result was recently improved by the fourth author [11] for curves in
(Q

∗
)2. For higher dimensional varieties, such a quantitative version has as yet not been

established.
The purpose of this paper is to derive, for certain special classes of varieties X, effective

versions of the results mentioned above. As for the intersection X � �ε, this means that we
give an explicit value for ε and effectively computable upper bounds for the heights and
degrees of the points x1, . . . , xT in (1·1). As for X0 � C(�, ε), this means that we give an
explicit value for ε and effectively computable upper bounds for the heights and degrees of
the points in this intersection. We mention that to obtain fully effective results it is necessary
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to give effective upper bounds for the degrees as well since the points we are considering do
not have their coordinates in a prescribed algebraic number field.

The classes of varieties we consider are such that they allow an application of logar-
ithmic forms estimates. Two cases are worked out in detail. Firstly, we consider curves
C : f (x, y) = 0 in (Q

∗
)2 where f ∈ Q[X, Y ] is not a binomial. Here we generalize a result

of Bombieri and Gubler [3, p. 147, theorem 5·4·5] and the first three authors [1, theorems 2·1,
2·3 and 2·5] by giving explicit bounds for the heights of the points x contained both in C and
in �, �ε or C(�, ε), respectively. Our proofs are based on a new Diophantine approximation
theorem obtained in [1] (see Lemma 4·1 in Section 4 below). Secondly, we consider vari-
eties in (Q

∗
)N given by equations f1(x) = 0, . . . , fm(x) = 0 where each polynomial fi is

a binomial or trinomial. Here we apply effective results on linear equations ax + by = 1
established in [1].

In our proofs, the logarithmic forms estimates provide effective upper bounds for the
heights; to obtain effective upper bounds for the degrees we need estimates for the number
of points of small height in a variety. From these two basic cases one may deduce effective
results for other classes of varieties; at the end of Section 2 we mention some possibilities.
An important ingredient of our arguments (see Section 7 below) is an effective result of the
following shape. Let x0 ∈ (Q

∗
)N , and H a proper algebraic subgroup of (Q

∗
)N . If x0H � �

or x0H � �ε is non-empty, then it contains a point with height and degree below some
effectively computable bounds.

Our theorems are stated in Section 2. In Section 3 we introduce the necessary notation, in
Section 4 we have collected our auxiliary results, and in the remaining sections we give the
proofs.

2. Results

In the statements of our results the following notation is used.
Let K be an algebraic number field. The ring of integers of K is denoted by OK and the

set of places of K by MK .
For every place v ∈ MK we choose an absolute value | · |v in such a way that for x ∈ Q

we have

|x |v = |x |[Kv :R]/[K :Q] if v is infinite, |x |v = |x |[Kv :Qp]/[K :Q]
p if v is finite,

where p is the prime below v. The absolute values |·|v (v ∈ MK ) satisfy the Product formula∏
v∈MK

|x |v = 1 for x ∈ K ∗.
For any finite set of places S of K , containing all infinite places, we define the ring of

S-integers and group of S-units by

OS = {x ∈ K : |x |v � 1 for v ∈ MK \ S},
O∗

S = {x ∈ K : |x |v = 1 for v ∈ MK \ S},
respectively.

The (absolute logarithmic Weil) height of x ∈ Q is defined by picking any number field
K such that x ∈ K and putting

h(x) :=
∑
v∈MK

max(0, log |x |v);
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this does not depend on the choice of K . We then define the height of x = (x1, . . . , xN ) ∈
(Q

∗
)N by

h(x) :=
n∑

i=1

h(xi ).

For a number field L and for x = (x1, . . . , xN ) ∈ (Q
∗
)N we define the extension L(x) :=

L(x1, . . . , xN ). For a polynomial f ∈ Q[X1, . . . , X N ], we define deg f to be its total degree,
and degs f := ∑N

i=1 degXi f , where degXt is the degree of f with respect to Xi . Further, if
a1, . . . , aR are the non-zero coefficients of f and K = Q(a1, . . . , aR), we define h( f ) :=∑

v∈M K
log max1�i�R|ai |v .

We write log∗ x := max(1, log x) for x > 0 and log∗ 0 := 1.
If G is a finitely generated abelian group, we say that ξ1, . . . , ξr generate G modulo G tors

if ξ1, . . . , ξr ∈ G and if the reductions modulo G tors of these elements generate G/G tors. We
call {ξ1, . . . , ξr } a basis of G modulo G tors if ξ1, . . . , ξr ∈ G and the reductions of ξ1, . . . , ξr

modulo G tors form a basis of G/G tors.

Let � be a finitely generated subgroup of (Q
∗
)N , where N � 2. Further, let �, �ε and

C(�, ε) be defined as in Section 1. Choose a basis {w1, . . . , wr } of � modulo �tors and put

h0 := max(1, h(w1), . . . , h(wr )).

Denote by K the smallest number field such that � ⊂ (K ∗)N , and put d := [K : Q]. Let S
be the minimal finite set of places of K containing all the infinite places of K and having
the property that � ⊂ (O∗

S)
N and denote by s the cardinality of S. Define

N (v) := 2 if v is infinite, N (v) := #OK /pv if v is finite, (2·1)

where pv is the prime ideal of OK corresponding to v, and

N := max
v∈S

N (v). (2·2)

For the moment we assume that N = 2 and consider curves in (Q
∗
)2. Thus, � is a finitely

generated subgroup of (Q
∗
)2; w1, . . . , wr , h0, K , d, S, s, N will have the same meaning as

above. Let f (X, Y ) ∈ Q[X, Y ] be an absolutely irreducible polynomial which is not of the
shape aXmY n −b or aXm −bY n for some a, b ∈ Q, m, n ∈ Z�0. Let L be the field extension
of K generated by the coefficients of f . Put δ := degs f, H := max(1, h( f )) and

C1 := (e13δ7d3r)r+3s · N2δ2

log N
hr

0 · log∗(max(δdsN, δh0)).

Let C ⊂ (Q
∗
)2 be the curve defined by f (x, y) = 0. By our assumptions on f , C is not a

translate of a proper algebraic subgroup of (Q
∗
)2.

THEOREM 2·1. For every point x = (x, y) ∈ C � � we have

h(x) = h(x) + h(y) � C1 H.

Notice that in this bound there is no dependence on the field L other than what is implicit
from H .
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The following results are obtained by combining the above theorem with estimates for
the number of points of small height on a curve in (Q

∗
)2. The notation will be the same as

above.

THEOREM 2·2. Let

ε := (248δ(log δ)5)−1. (2·3)

Then for every x ∈ C � �ε we have

h(x) � rh0δC1 + C1 H, [L(x) : L] � 250δ(log δ)6.

THEOREM 2·3. Let

ε := (250δ(log δ)5)−1 · (rh0δC1 + C1 H)−1. (2·4)

Then for every x ∈ C � C(�, ε) we have

h(x) � 2rh0δC1 + 2C1 H, [L(x) : L] � 250δ(log δ)6.

Remark. In the special case when f is linear, (i.e., C is a line), our above theorems have
been proved in [1] with larger ε’s and sharper upper bounds.

Now we turn our attention to varieties of arbitrary dimension N . Let

X := {x ∈ (Q
∗
)N : fi (x) = 0, i = 1, . . . , m}

be a subvariety of (Q
∗
)N , where f1, . . . , fm are non-constant polynomials in Q[X1, . . . , X N ]

each consisting of 2 or 3 monomials. Put

δ := max(deg f1, . . . , deg fm), H := max(1, h( f1), . . . , h( fm)).

Further, let L be the smallest number field containing K and the coefficients of the polyno-
mials fi (i = 1, . . . , m). Again, � is a finitely generated subgroup of (Q

∗
)N and w1, . . . , wr ,

K , d, S, s, h0, N have the same meaning as before. The stabilizer of X is given by

Stab(X) = {x ∈ (Q
∗
)N | xX ⊆ X},

where xX = {xy : y ∈ X}. Stab(X) is clearly an algebraic subgroup of (Q
∗
)N , and it can be

computed effectively in terms of the defining polynomials f1, . . . , fm of X.
Put

C∗ := (e11d3r)r+3(δh0)
r s · N

log N
· log∗ max(dsN, δh0) (2·5)

and {
C2 := C∗N (2δ)N−1,

C3 := C∗ · 2mh0

(
r4r+1 · d(log 3d)3 · mδh0

)r
.

(2·6)

THEOREM 2·4. Let X satisfy the conditions listed above, and put H := Stab(X).
(i) Suppose that H is finite. Then for every x ∈ X � � we have

h(x) � C2 H.

(ii) Suppose that H is not finite. Then X � � is contained in some finite union of translates

x1H � · · · � xTH,
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with

xiH ⊂ X, xi ∈ �, h(xi ) � C3 H for i = 1, . . . , T . (2·7)

Our results for X � �ε and X � C(�, ε) are as follows.

THEOREM 2·5. Put

ε := 0.03

4δ
. (2·8)

(i) Assume that H := Stab(X) is finite. Then for every x ∈ X ��ε we have

h(x) < rh0δC2 + C2 H, [L(x) : L] � 2m+N δN . (2·9)

(ii) Assume that H is not finite. Then X � �ε is contained in a finite union of translates

x1H � · · · � xTH,

where for i = 1, . . . , T , we have xi ∈ X � �ε, xiH ⊂ X, and where h(xi) and [L(xi) : L]
are bounded above by effectively computable numbers depending only on �, f1, . . . , fm.

Remark. It is possible in principle to give explicit expressions for the effectively comput-
able numbers in part (ii) of Theorem 2·5, but these are rather complicated.

THEOREM 2·6. Let

ε := 0.03

4δ(C2δrh0 + 2C2 H)
. (2·10)

Assume that Stab(X) is finite. Then for every x ∈ X � C(�, ε) we have

h(x) � 2rh0δC2 + 2C2 H, [L(x) : L] � 2m+N δN .

Remark. If H := Stab(X) is not finite, then in general X� C(�, ε) need not be contained
in a finite union of translates x1H � . . . � xTH. Indeed, suppose that dimX > dimH, and
that H � � contains points of infinite order. Pick any x0 ∈ X. Choose a point u ∈ H � � of
infinite order. Thus h(u) > 0. Then for any sufficiently large integer n,

h(x0) � ε(1 + nh(u) − h(x0)) � ε(1 + h(x0un)).

Hence x := x0un ∈ x0H � C(�, ε). That is, every translate x0H with x0 ∈ X contains
elements from C(�, ε). If X�C(�, ε) were contained in a finite union of translates �t

i=1xiH,
then so were X, which is impossible.

Possible extensions. We discuss some other cases, where one may get effective results similar
to those discussed above.

(1) First let C be an irreducible curve in (Q
∗
)N where N � 2. Assume that C is not

contained in a translate xH where H is a proper algebraic subgroup of (Q
∗
)N . Viewing

the variables X1, . . . , X N as functions on C, at least one of them, X1 say, is transcendental
over Q, while the others are algebraically dependent on X1. Hence there are polynomials
f2, . . . , fn ∈ Q(X, Y ), which can be determined effectively from the data describing C,
such that for each point (x1, . . . , xN ) ∈ C we have fi(x1, xi) = 0 for i = 2, . . . , N . None
of the polynomials f2, . . . , fN can be a binomial since otherwise C would be contained in
a translate of an algebraic group. Let (x1, . . . , xN ) be in the intersection of C with �, �ε or
C(�, ε). Then we obtain upper bounds for the heights and degrees of x1, . . . , xN by applying
Theorems 2·1, 2·2, 2·3 to fi (x1, xi) = 0 (i = 2, . . . , N ).
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(2) Recall that a homomorphism of algebraic groups from (Q
∗
)N to (Q

∗
)M is given by

(x1, . . . , xN ) −→
( N∏

j=1

x
a1 j

j , . . . ,

N∏
j=1

x
aM j

j

)

where the exponents ai j are integers. Now our Theorems 2·4, 2·5, 2·6 can be extended to
varieties X = ⋂m

i=1 ϕ−1
i (Ci ), where for i = 1, . . . , m, Ci is a curve in (Q

∗
)2 and ϕi a homo-

morphism of algebraic groups from (Q
∗
)N to (Q

∗
)2.

We define the rank of a polynomial f = ∑
i∈I a(i)Xi1

1 · · · XiN
N (where i = (i1, . . . , iN ),

I is a finite set, and a(i) ∈ Q
∗

for i ∈ I ) to be the rank of the Z-module generated by
i − j for all i, j ∈ I . Then a variety X as above can be given by polynomial equations
f1(x) = 0, . . . , fm(x) = 0 where f1, . . . , fm are polynomials in Q[X1, . . . , X N ] of rank
� 2.

3. Heights

By the Product formula we have for any number field K and any x ∈ K ∗ that

h(x) =
∑
v∈MK

max(0, log |x |v) = 1

2

∑
v∈MK

| log |x |v|. (3·1)

Recall that we have defined

h(x) :=
n∑

i=1

h(xi)

for x = (x1, . . . , xN ) ∈ (Q
∗
)N . Further, for ξ ∈ Q we define xξ := (x ξ

1 , . . . , x ξ

N ). The
point xξ is determined only up to multiplication with (Q

∗
tors)

N where Q
∗
tors = {ρ ∈ Q

∗ :
∃m ∈ Z>0 with ρm = 1}. But h(xξ ) is well defined. It now follows easily that

h(xy) � h(x) + h(y), h(xξ ) = |ξ |h(x) for x, y ∈ (Q
∗
)N , ξ ∈ Q,

and h(x) = 0 if and only if x ∈ (Q
∗
tors)

N .
We define several heights for polynomials. Let f be a non-zero polynomial with coeffi-

cients in Q, and let a1, . . . , aR be its non-zero coefficients. Choose a number field K such
that a1, . . . , aR ∈ K . Recall that for every infinite place v of K there is an embedding
σv : K ↪→ C such that | · |v = |σv(·)|εv , where εv := [Kv : R]/[K : Q]. For v ∈ MK we
put ‖ f ‖v := max1�i�R |ai |v. Further, for every infinite place v of K and every l � 1 we put
‖ f ‖v,l := (

∑R
i=1 |σv(ai)|l)εv/ l . We have already defined

h( f ) :=
∑
v∈MK

log ‖ f ‖v.

In addition, we define the heights

hl( f ) :=
∑
v|∞

log ‖ f ‖v,l +
∑
v�∞

log ‖ f ‖v for l � 1,

and the Gauss–Mahler height

hG M( f ) :=
∑
v|∞

εv log M( f σv ) +
∑
v�∞

log ‖ f ‖v,
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where f σ is the polynomial obtained by applying σ to the coefficients of f and M(·) de-
notes the Mahler measure of a polynomial with complex coefficients. None of these heights
depends on the choice of K . We have

hG M( f ) � h1( f ), h( f ) � h1( f ) � h( f ) + log R, (3·2)

where R is the number of non-zero coefficients of f . Further, for any non-zero polynomial
P ∈ Q[X ] and any root ζ of P we have

h(ζ ) � hG M(P) � h1(P). (3·3)

We use also exponential heights H(x) = exp(h(x)) for x ∈ Q, and likewise H( f ), Hl( f ),

HG M( f ) for polynomials f with coefficients in Q.

4. Main tools

In this section we have collected the tools needed in the sequel.
We start with some results from [1] that have been derived from lower bounds for linear

forms in logarithms. Let K be an algebraic number field of degree d, MK the set of places
on K , and G a finitely generated multiplicative subgroup of K ∗ of rank t > 0. We fix a set
of (not necessarily multiplicatively independent) generators {ξ1, . . . , ξr } of G modulo G tors

and put

Q :=
r∏

i=1

max(1, h(ξi)). (4·1)

Let N (v) (v ∈ MK ) be given by (2·1), i.e., N (v) := 2 if v is infinite and N (v) := #OK /pv

if v is finite, where pv is the prime ideal of OK corresponding to v.
Lastly, let

c(r, d) := 20(16ed)3(r+2)
(r

e

)r
.

LEMMA 4·1. Let α ∈ K ∗ with max(h(α), 1) � H, v ∈ MK , and 0 < κ � 1. Then for
every ξ ∈ G with αξ � 1 and

log |1 − αξ |v < −κh(ξ) (4·2)

we have h(ξ) < C4(κ) · H, where

C4(κ) := (c(r, d)/κ)
N (v)

log N (v)
Q ·

· max{log(c(r, d)N (v)/κ), log∗ Q}.

Proof. This is [1, theorem 4·2], with instead of c(r, d) a constant c depending also on the
rank t of G. However, using t � r an easy computation proves the estimate of our lemma.

We keep the notation from above. In addition, let S be a finite set of places of K containing
all infinite places such that G ⊂ O∗

S . Put s := #S and define N by (2·2), that is N :=
maxv∈S N (v). Consider the equation

αx + βy = 1 in x ∈ G, y ∈ O∗
S, (4·3)

where α, β ∈ K ∗ with max(h(α), h(β), 1) � H .
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LEMMA 4·2. For every solution x ∈ G, y ∈ O∗
S of (4·3) we have

max (h(x), h(y)) < C5 H, (4·4)

where

C5 := c(r, d) · sN

log N
Q · max{log(c(r, d)sN), log∗ Q}.

Proof. This is [1, theorem 2·2], again with a constant c depending on the rank t of G
which we bounded above using t � r .

Below we have collected some results on heights of algebraic points.

LEMMA 4·3. Suppose that α is a non-zero algebraic number of degree d, which is not a
root of unity. Then

h(α) � c(d)−1

where

c(1) = 1

log 2
, c(d) = d(log 3d)3

2
if d � 2.

Proof. This is the main result of Voutier [16].

LEMMA 4·4.
(i) Let α, β ∈ Q

∗
. Then there are at most two points x = (x, y) ∈ (Q

∗
)2 such that

αx + βy = 1, h(x) � 0.03.

(ii) Let f (X, Y ) ∈ Q[X, Y ] be an irreducible polynomial which is not a binomial. Then the
number of points x = (x, y) ∈ (Q

∗
)2 with

f (x, y) = 0, h(x) � (247 degs f (log degs f )5)−1

is at most

250 degs f (log degs f )6.

Proof. (i) Beukers and Zagier [2, corollary 2·4] proved that if there are three
points (x1, y1), (x2, y2), (x3, y3) ∈ (Q

∗
)2 satisfying αxi + βyi = 1 for i = 1, 2, 3, then∑3

i=1 h(xi , yi) � log ρ, where ρ denotes the real root of ρ−6 + 1
2ρ

−2 = 1 which is larger
than 1. We have log ρ > 0.09.

(ii) This is proved by the fourth author in [10, proposition 5·1] (see also [11, propo-
sition 3·3]).

Our last height result is an effective version of a special case of Bézout’s Theorem.

LEMMA 4·5. Let f, g ∈ Q[X, Y ] be two coprime polynomials. Then for every common
zero x = (x, y) of f and g we have

h(x) � degs g · hG M( f ) + degs f · h1(g).

Proof. See [11, lemma 3·7].
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5. Proof of Theorem 2·1
We follow the proof of Bombieri and Gubler [3, theorem 5·4·5, pp. 147–148].
We denote the partial degrees of f with respect to X, Y by δX , δY , respectively, and put

δ := degs f = δX + δY . From our assumptions it follows that f is irreducible over Q, that
f has at least three non-zero terms, and hence that δX � 1, δY � 1.

We assume that one of the coefficients of f is 1 which is no loss of generality since the
height of a polynomial is invariant under multiplication by a scalar.

Recall that we allow that f has its coefficients in Q; this will be needed in the proofs of
Theorems 2·2, 2·3. But in fact there is no loss of generality to assume that f ∈ K [X, Y ]. To
see this, suppose that f � K [X, Y ]. Then there is σ ∈ Gal(Q/K ) such that the polynomial
f σ obtained by applying σ to the coefficients of f is distinct from f . Since one of the
coefficients of f is 1, f σ cannot be proportional to f , and since f is irreducible over Q, f σ

has to be coprime to f . Now if x ∈ � is a zero of f then it is also a zero of f σ . Thus, by
Lemma 4·5, (3·2), noting that degs f = degs f σ = δ, it follows that

h(x) � δ(hG M( f σ ) + h1( f )) � 2δ(H + 2 log δ)

and this is much sharper than the bound from Theorem 2·1.
Write

f (X, Y ) =
∑

(i, j)∈F
ai j X i Y j with ai j ∈ K ∗ for (i, j) ∈ F, (5·1)

where F is a subset of {0, . . . , δX } × {0, . . . , δY }. Thus,

#F � (δX + 1)(δY + 1) � δ2.

The height H( f ) remains unaltered under multiplication by a−1
i j for any (i, j) ∈ F, so we

have for any place v ∈ MK and any two pairs (i, j), (p, q) ∈ F,

|apq/ai j |v � max
k,l

|akl/ai j |v � H( f )

and by interchanging the role of apq , ai j ,

H( f )−1 � |apq/a−1
i j |v � H( f ). (5·2)

Put s := #S. Take a point x = (x, y) ∈ C � � with

H(x) � (δ2 H( f ))24sδ4
. (5·3)

Notice that the logarithm of the right-hand side is much smaller than the upper bound C1 H
from our Theorem. By the product formula we have

H(x)2 = (H(x)H(y))2 =
∏
v∈S

max
(|x |v, |x |−1

v

)
max

(|y|v, |y|−1
v

)
�

∏
v∈S

max
(|x |v, |x |−1

v , |y|v, |y|−1
v

)2
.

Thus, there exists v ∈ S such that

max
(|x |v, |x |−1

v , |y|v, |y|−1
v

)
� H(x)1/s � (δ2 H( f ))24δ4

.

Replacing x by x±1, y±1 and correspondingly f by a polynomial f̃ with f̃ (x±1, y±1) = 0
(which has the same partial degrees and height as f ), we see that there is no loss of generality
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to assume that min(|x |v, |y|v) � 1 and moreover,

max(|x |v, |y|v) � H(x)1/s � (δ2 H( f ))24δ4
. (5·4)

Now let us order the pairs in F according to

|x p yq |v � |xr ys |v � · · · .

Recall that f is not a binomial. Hence F contains pairs other than (p, q), (r, s). Further,
δX , δY � 1 so F contains pairs (i, j) with i > 0 and pairs with j > 0. Using also
min(|x |v, |y|v) � 1, it follows that |x p yq |v � max(|x |v, |y|v). Now (5·4) gives

|x p yq |v � H(x)
1
s � (δ2 H( f ))24δ4

. (5·5)

We compare |x p yq |v, |xr ys |v. Using that f (x, y) = 0 and also (5·1), (5·2) and the fact
that #F � δ2, we obtain

|x p yq |v � δ2max
(i, j)∈F

|ai j |v|apq |−1
v |xi y j |v � δ2 H( f )|xr ys |v.

Hence

1 � |x p−r yq−s |v � δ2 H( f ). (5·6)

We claim that (p, q) and (r, s) are linearly independent. Indeed, assume there exists
u ∈ Q \ {1} such that (up, uq) = (r, s). We deduce from (5·6)

|x p yq ||1−u|
v � δ2 H( f ).

We note that from p, q � δ − 1 it follows |u − 1| � 1/(δ − 1), thus

|x p yq |v � (δ2 H( f ))δ−1

which contradicts (5·5).
Hence for all (i, j) ∈ F there are Ai j , Bi j ∈ Q with

i = Ai j p + Bi jr, j = Ai j q + Bi j s.

Let (i, j) ∈ F. Then using

xi y j = (x p yq)Ai j +Bi j (xr−p ys−q)Bi j (5·7)

and (5·6), we get

|x p yq |v � |xi y j |v = |x p yq
∣∣Ai j +Bi j

v

∣∣xr−p ys−q |Bi j
v

� |x p yq |Ai j +Bi j
v · (δ2 H( f ))−|Bi j |.

Put D = |ps − qr |. Then D, D · Ai j = is − jr and D · Bi j = pj − qi ∈ Z and moreover,
|D| � (δ − 1)2, |D Ai j | � (δ − 1)2, |DBi j | � (δ − 1)2. Therefore,

|x p yq |D−D(Ai j +Bi j )
v � (δ2 H( f ))−(δ−1)2

.

Since |x p yq |v > (δ2 H( f ))(δ−1)2
(by (5·5)) the integer D − D(Ai j + Bi j ) is non-negative, in

other words Ai j + Bi j = 1 or Ai j + Bi j � 1 − 1/D. Now define I to be the set of (i, j) ∈ F
such that Ai j + Bi j = 1. The set I contains at least the pairs (p, q) and (r, s). Choose a Dth
root z1/D of z := xr−p ys−q . Then by (5·7) we have

0 = f (x, y) = x p yq R(z1/D) + Q(x, y) (5·8)

with R(Z) :=
∑
(i, j)∈I

ai j Z DBi j , Q(X, Y ) :=
∑
(i, j)∈FI

ai j X i Y j .
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Let m := −min{DBi j : (i, j) ∈ I} and put R∗(Z) := Zm R(Z). Thus R∗(Z) is a polynomial
with R∗(0) � 0. Since I contains at least two pairs, the polynomial R∗ is non-constant.
Choose an extension of | · |v to Q. We proceed to estimate from above |R∗(z1/D)|v.

Let (i, j) ∈ F \ I. Then by (5·7), Ai j + Bi j � 1 − 1
D , |Bi j | � (δ − 1)2/D, (5·6) we have

|xi y j |v = |x p yq |Ai j +Bi j
v · ∣∣xr−p yq−s

∣∣Bi j

v

�
∣∣x p yq

∣∣1− 1
D

v
· (δ2 H( f ))(δ−1)2/D.

Hence

|Q(x, y)|v � |x p yq |1−1/D
v · (δ2 H( f ))1+(δ−1)2/D.

Using this estimate together with (5·6), (5·5), we obtain

|R∗(z1/D)|v = |z|m/D
v |R(z1/D)|v = |z|m/D

v |Q(x, y)|v
� (δ2 H( f ))δ2/D|x p yq |−1/D

v (δ2 H( f ))1+(δ−1)2/D

� (δ2 H( f ))(3δ2)/D H(x)−1/s D.

It is useful to observe here that in the above argument the Dth root z1/D was chosen arbit-
rarily. Thus, we have ∣∣∣∣∣

∏
ρ

R∗(ρz1/D)

∣∣∣∣∣
v

� (δ2 H( f ))3δ2
H(x)−1/s (5·9)

where the product is taken over all Dth roots of unity.
Notice that the constant term of R∗ is a coefficient of f , say ai0, j0 . By dividing f by ai0, j0

as we may since it does not affect the above estimates, we get that the constant term of R∗

is 1. Thus we have

R∗(Z) =
∏

ζ

(1 − ζ−1 Z)

where the product is taken over all zeros of R∗. So∏
ρ

R∗(ρz1/D) =
∏

ζ

(1 − ζ−Dz).

Choose some ζ for which |1 − ζ−Dz|v is minimal. Using (5·9), (5·5) and also that R∗ has
degree at most 2δ2 and that H(z) � H(x)δ we arrive at

|1 − ζ−Dz|v � {(δ2 H( f ))3δ2
H(x)−1/s}1/ deg R∗

�
(
H(x)−2/3s

)1/2δ2

� H(z)−1/3sδ3
.

The number ζ−D may lie outside K . Let K ′ = K (ζ D). Then [K ′ : K ] � 2δ2 and there is

a place v′ of K ′ lying above v such that |γ |v′ = |γ |[K ′
v′ :Kv ]/[K ′ :K ]

v for γ ∈ K ′ where | · |v′ is
normalized with respect to K ′. Thus we finally obtain

log |1 − ζ−Dz|v′ � − 1

6sδ5
· h(z). (5·10)

Now we apply Lemma 4·1 to (5·10) with α = ζ−D , κ = (6sδ5)−1, K ′ instead of K , v′

instead of v and we take for G the group {xr−p ys−q : (x, y) ∈ �}. Notice that by (3·3),
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(3·2),

h(ζ D) � Dh1(R∗) � δ2h1( f ) � δ2(H + 2 log δ),

[K ′ : Q] � 2δ2d, N (v′) � N (v)2δ2
.

So in the bound C4(κ)H from Lemma 4·1 we have to replace H by δ2(H + 2 log δ), κ by
(6δ5s)−1, d by 2δ2d and N (v) by N (v′) � N (v)2δ2 � N2δ2

. Further, if {wi = (w1i , w2i ) :
i = 1, . . . , r} is a basis of � modulo �tors, the group G is generated modulo G tors by the
numbers ξi := w

r−p
1i w

s−q
2i (i = 1, . . . , r) and so for the quantity Q defined by (4·1) we have

Q =
r∏

i=1

max(1, h(ξi)) � (δh0)
r .

A straightforward computation shows that with these replacements for H , κ , N (v) and the
upper bound for Q, the constant c(r, d) becomes c′ := 20(32eδ2d)3r+6(323e2r)r , and C4(κ)

can be estimated from above by

c′ · 6δ5s · N2δ2

2δ2 log N
· (δh0)

r ·
· max(log(c′N2δ2 · 6δ5s), log∗((δh0)

r )).

Using that the maximum is at most 100rδ2 log∗(max(δdsN, δh0)), we obtain for C4(κ) the
upper bound

C := e36(e13r)rδ7r+17d3r+6shr
0 · N2δ2

log N
· r 2 log∗(max(δdsN, δh0)).

Thus, if z � ζ D we get

h(z) < C max(1, h(ζ−D)) � Cδ2(H + 2 log δ),

while if z = ζ D we get h(z) � δ2(H + 2 log δ) which is much smaller.
We proved that x = (x, y) verifies an equation xr−p ys−q = μ for some μ ∈ K with

h(μ) � C · δ2(H + 2 log δ).

Since f is irreducible and not a binomial, we can apply Lemma 4·5 and obtain, using
hG M(Xr Y s − μX pY q) = h(μ), h1( f ) � H + 2 log δ, the upper bound

h(x) � δ(h1( f ) + h(μ)) � δ(δ2C + 1) · (H + 2 log δ)

� 3δ4C H � C1 H.

Our Theorem follows.

6. Proofs of Theorems 2·2 and 2·3
Theorems 2·2 and 2·3 are proved in the same manner. We prove only Theorem 2·3 and

then indicate the necessary modifications to obtain a proof of Theorem 2·2.

Proof of Theorem 2·3. Let x ∈ C � C(�, ε) with the value of ε given by (2·4). We may
write x = yz with y ∈ � and z ∈ (Q

∗
)2 with h(z) < ε(1 + h(y)). We may further split up y

as

y = vw with v ∈ �, w =
r∏

i=1

w
γi

i , (6·1)
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where γi ∈ Q, |γi | � 1/2. Here w is determined only up to a factor from (Q
∗
)2

tors but this
will not cause problems.

Define now a new polynomial f ∗(V) := f (wz · V). Notice that f ∗(v) = 0. First observe
that degs f ∗ = degs f which we write again as δ. Further, h( f ∗) � h( f ) + δh(wz) �
h( f ) + δ(h(w) + h(z)). By applying Theorem 2·1 to f ∗ we obtain

h(v) � C1 H + C1δ(h(w) + h(z))

� C1 H + C1δ · (ε(1 + h(vw)) + h(w))

� C1δεh(v) + C1δ(ε + (1 + ε)h(w)) + C1 H.

(6·2)

Here it is essential that the bound of Theorem 2·1 does not depend on the field generated by
the coefficients of f ∗. Further,

h(x) � h(vw) + ε · (1 + h(vw))

� ε + (1 + ε) · (h(v) + h(w))

� ε + (1 + ε)h(w) + (1 + ε)h(v).

(6·3)

By our choice of ε we have (1 + ε)(1 − C1εδ)
−1 � 2. Further,

h(w) �
r∑

i=1

|γi | · h(wi) � 1

2
rh0.

By inserting this bound as well as the upper bound for h(v) resulting from (6·2) into (6·3),
we obtain

h(x) � (ε + (1 + ε)h(w)) · (1 + 2C1δ) + 2C1 H
� (ε + (1 + ε)rh0/2) · (1 + 2C1δ) + 2C1 H
� 2rh0δC1 + 2C1 H.

(6·4)

This is the upper bound for h(x) in Theorem 2·3.
We now estimate from above [L(x) : L] where L is the number field generated by � and

the coefficients of f . This degree is equal to the number of distinct points among σ(x) where
σ ∈ Gal(Q/L). So we have to estimate from above the latter. y, v, w will be as above.

Pick σ ∈ Gal(Q/L). Define g(X) := f (x · X). Notice that degs g = degs f = δ. Since
some integer power of y belongs to � ⊆ L2 and σ is a L-isomorphism, we infer that σ(y)y−1

is a root of unity. It follows that

h(σ (x)x−1) = h(σ (z)z−1) � 2h(z).

The point σ(x)x−1 belongs to the curve defined by g. So, under the assumption

2h(z) � (247δ(log δ)5)−1 (6·5)

we deduce from Lemma 4·4,(ii) that the number of distinct points σ(x) is at most

250δ2(log δ)6

and this is precisely the upper bound from Theorem 2·3.
It remains to prove (6·5). We have h(z) � ε · (1 + h(w) + h(v)) so as in (6·2) we obtain

h(z) � ε · (1 + h(w) + C1 H + C1δ · (h(w) + h(z)))

implying

(1 − εC1δ)h(z) � ε · ((1 + C1δ) · h(w) + 1 + C1 H).
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Then inserting h(w) � rh0/2 and using (2·4) we get

h(z) � ε · (C1δrh0 + 2C1 H). (6·6)

Now our choice of ε in (2·4) implies indeed (6·5).

Proof of Theorem 2·2. The proof is very similar to that of Theorem 2·3. We indicate only
the necessary changes.

So let x ∈ C(Q)��ε with ε given by (2·3). Then x = yz with y ∈ �ε and h(z) < ε. Write
again y = vw with v ∈ � and w = ∏r

i=1 w
γi

i with γi ∈ Q, |γi | � 1/2.
Now using h(z) < ε we obtain instead of (6·2),

h(v) � C1δ(h(w) + ε) + C1 H.

Further,

h(x) � h(v) + h(w) + h(z) � (1 + δC1)h(w) + ε + C1 H

and by inserting h(w) � rh0/2, we obtain

h(x) � rh0δC1 + C1 H

which is the bound from Theorem 2·2.
We now estimate from above [L(x) : L] and for this we have to estimate the number of

distinct points among σ(x), σ ∈ Gal(Q/L). As above we have

h(σ (x)x−1) = h(σ (z)z−1) < 2ε.

Thanks to our choice of ε in (2·3) we have (6·5), and our upper bound for [L(x) : L] follows
in the same manner as above.

7. Points in translates of algebraic groups

In the present section we prove effective results on the intersection of � or �ε with a
translate x0H, where � is a finitely generated subgroup of (Q

∗
)N , ε > 0, x0 ∈ (Q

∗
)N is fixed

and H is a proper algebraic subgroup of (Q
∗
)N . In fact we show that if x0H contains a point

from � or �ε then it contains such a point with height and degree below some effectively
computable constants. Thus, it can be decided effectively whether or not x0H contains points
from � or �ε.

For x = (x1, . . . , xN ) ∈ (Q
∗
)N and an N ×M-matrix A = (ai j )1�i�M,1� j�N , with ai j ∈ Z

we define xA ∈ (Q
∗
)M by

xA := (
xa11

1 . . . xaN1
N , . . . , xa1M

1 . . . xaN M
N

)
.

Thus, (xA)B = xAB whenever the product of the matrices A, B is defined. It is well-known
that for every (N − M)-dimensional algebraic subgroup H of (Q

∗
)N there is an integer

N × M-matrix A of rank M such that H is the set of points x ∈ (Q
∗
)N with xA = 1 =

(1, . . . , 1) (M times) (see for instance [3, theorem 3·2·19]). Moreover, every translate of
H can be described as the set of solutions of xA = c for some fixed c ∈ (Q

∗
)M . (See for

instance again [3].)
As before, we choose a basis {w1, . . . , wr } of � modulo �tors. Let K be the smallest

number field such that � ⊂ (K ∗)N and let S be the smallest set of places of K that contains
all infinite places and such that � ⊂ (O∗

S)
N . Put

h0 := max{1, h(w1), . . . , h(wr )}, d := [K : Q], s := #S.
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Notice that by the product formula we have for x = (x1, . . . , xN ) ∈ �,

h(x) = 1

2

∑
v∈S

N∑
i=1

| log |xi |v|. (7·1)

Let A = (ai j )1�i�N , 1� j�M be an integer N × M-matrix, where we do not require that A has
rank M . Further, let c be a fixed point of (Q

∗
)M , and δ, H reals such that

max
i, j

|ai j | � δ, max(1, h(c)) � H.

Let c(d) be the constant from Lemma 4·3.
Our first result is as follows.

PROPOSITION 7·1. Assume that

xA = c in x ∈ � (7·2)

is solvable. Then (7·2) has a solution x0 ∈ � such that

h(x0) � h0 · (r4r c(d)Mδh0)
r · H.

In the proof we need some results on lattice points. We start with recalling a result of
Schlickewei [14, proposition 4·2].

LEMMA 7·2. Let � be a discrete subgroup of rank r in Rm and ‖ · ‖ a norm on Rm. Then
there exists a basis a1, . . . , ar of � such that for any x1, . . . , xr ∈ Z we have

‖x1a1 + · · · + xr ar‖ � 4−r max{|x1|‖a1‖, . . . , |xr |‖ar‖}. (7·3)

Proof. Schlickewei proved this only for Zr instead of arbitrary lattices �, but using a
suitable linear transformation the above more general result follows in a straightforward
way.

In the sequel let ‖·‖l denote the usual l-norm defined by ‖x‖l = (
∑

i |xi |l)1/ l if 1 � l < ∞
and ‖x‖∞ = max

i
|xi |.

LEMMA 7·3. Let U be an r × k integer matrix of rank k and m ∈ Zk . Further, let R, V
be reals such that the coordinates of m have absolute values at most R and the entries of U
have absolute values at most V . Suppose that the equation

xU = m in x ∈ Zr (7·4)

has a solution. Then equation (7·4) has a solution x0 ∈ Zr such that

‖x0‖∞ � kk/2V k−1 max(V, R).

Proof. According to a result of Borosh, Flahive, Rubin and Treybig [5], (7·4) has a solu-
tion x0 with ‖x0‖∞ � W , where W is the maximum of the absolute values of the minors of
the augmented matrix with U on the first r rows and m on the last row. Now our Lemma
follows easily by applying Hadamard’s inequality.

Proof of Proposition 7·1. Put s := #S. For any positive integer t , we denote by ϕt the
group homomorphism from (O∗

S)
t to Rst , given by

ϕt : x �−→ (log |xi |v : v ∈ S, i = 1, . . . , t) ,
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where we have written x = (x1, . . . , xt). Further, denote by ‖ · ‖ the 1-norm on RNs and by
‖ · ‖∗ the 1-norm on RMs .

The kernel of ϕ := ϕN |� is �tors, and the image � of ϕ in RNs is a discrete subgroup of
rank r . Equation (7·2) can be written in the form

yB = b in y ∈ �, (7·5)

where b := ϕM(c) and

B :=
⎛
⎜⎝

A
. . .

A

⎞
⎟⎠

is an integer Ns × Ms-matrix. Notice that ϕM(wA) = ϕN (w)B for w ∈ (O∗
S)

N . By assump-
tion, equation (7·5) is solvable, and in view of (7·1), we need to find a solution y0 of (7·5)
such that ‖y0‖ is at most two times the upper bound from Proposition 7·1.

Put B(�) := {yB : y ∈ �}. Clearly, B(�) is a discrete subgroup in RMs . Let v1, . . . , vr

be the images of the chosen basis w1, . . . , wr of � modulo �tors under ϕ. Then v1, . . . , vr

form a basis of �,

‖vi‖ � 2h0 for i = 1, . . . , r, (7·6)

and v1 B, . . . , vr B form a system of generators for B(�). Suppose that the rank of B(�) is
k. By Lemma 7·2 there exists a basis a1, . . . , ak of B(�), such that for every x = n1a1 +
· · · + nkak ∈ B(�) with n1, . . . , nk ∈ Z we have

‖x‖∗ � 4−k max(|n1|‖a1‖∗, . . . , |nk |‖ak‖∗). (7·7)

Since b ∈ B(�), there exist m1, . . . , mk ∈ Z, such that b = m1a1 + · · · + mkak . Using
‖b‖∗ = 2h(c) � 2H (in view of (7·1)), ‖ai‖∗ � 2c(d)−1 (by Lemma 4·3, (7·1) and the fact
that ai ∈ ϕM((O∗

S)
M ) and (7·7) we have

|mi | � 4k ‖b‖∗

‖ai‖∗ � 4kc(d) · H for i = 1, . . . , k. (7·8)

Further, since vi B ∈ B(�) we can write vi B = ∑k
j=1 ui j a j for i = 1, . . . , r . Using

‖vi B‖∗ = 2h(wA
i ) � 2Mδh0 and again ‖a j‖∗ � 2c(d)−1, (7·7) we get

|ui j | � 4kc(d)Mδh0 for i = 1, . . . , r, j = 1, . . . , k. (7·9)

Let y be a solution of (7·5). Then y ∈ � and so we have y = ∑r
i=1 μi vi with μi ∈ Z for

i = 1, . . . , r . Using that on the one hand b = m1a1 + · · · + mkak and on the other hand

b = yB =
r∑

i=1

μi(vi B) =
r∑

i=1

μi

⎛
⎝ k∑

j=1

ui j a j

⎞
⎠ =

k∑
j=1

(
r∑

i=1

ui jμi

)
a j ,

we obtain
r∑

i=1

ui jμi = m j for j = 1, . . . , k. (7·10)

Further we have (7·9) and (7·8) to bound the coefficients and the right-hand side of
the system of linear equations (7·10). On applying Lemma 7·3 with V = 4kc(d)Mδh0,
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R = 4kc(d)H , we see that the system (7·10) has a solution μ ∈ Zr with
r∑

i=1

|μi | � rkk/2V k−1 max(V, R) � (r · 4r c(d)Mδh0)
r · H.

Now in view of (7·6), the vector y0 = ∑r
i=1 μi vi is a solution to (7·5) such that

‖y0‖ � 2h0 · (r4r c(d)Mδh0)
r · H

and this is indeed twice the bound of our Proposition.

As before, � is a finitely generated subgroup of (Q
∗
)N of rank r , A an integer N × M-

matrix and c a point in (Q
∗
)M . The set �ε (ε > 0) is defined as in the Introduction. We

assume that A has rank N − P .

PROPOSITION 7·4. Let ε > 0. There exist effectively computable constants C6, C7 de-
pending only on �, A, c, ε, such that if

xA = c in x ∈ �ε (7·11)

is solvable, then there exists x0 ∈ �ε with

xA
0 = c, h(x0) � C6, [Q(x0) : Q] � C7. (7·12)

We deduce Proposition 7·4 from Proposition 7·5 below.

PROPOSITION 7·5. Let c0 ∈ (Q
∗
)N , B an integer P × N matrix of rank P and ε > 0.

There exist effectively computable constants C8, C9 depending only on �, B, c0, ε, such that
if there is t ∈ (Q

∗
)P with

c0tB ∈ �ε, (7·13)

then there exists t0 ∈ (Q
∗
)P such that

c0tB
0 ∈ �ε, h(t0) � C8, [Q(t0) : Q] � C9. (7·14)

Proposition 7·5 ⇒ Proposition 7·4. Let A, c, ε be as in Proposition 7·4. Let x ∈ �ε with
xA = c. There are matrices U1 ∈ GLN (Z), U2 ∈ GLM(Z) such that

U1 AU2 =
(

D 0
0 0

)

where D is a non-singular integer (N − P) × (N − P)-matrix. Let x∗ := xU−1
1 . Write

x∗ = (s, t) where s ∈ (Q
∗
)N−P , t ∈ (Q

∗
)P . We can decompose x∗ as (s, 1) · (1, t), where

in the first component 1 stands for P ones and in the second component for N − P ones.
Notice that sD = c′, where c′ consists of the first N − P coordinates of cU2 and hence
s� = c′�D−1

, where � = det D. This shows that s belongs to a finite, effectively determinable
set depending only on A, c.

Put c0 := (s, 1)U−1
1 , and let B be the matrix consisting of the last P rows of U1. Then B is

a P × N -matrix of rank P . Notice that cA
0 = c, B A = 0 and c0tB = x ∈ �ε.

By Proposition 7·5, there is t0 ∈ (Q
∗
)P with c0tB

0 ∈ �ε, h(c0) � C8, [Q(c0) : Q] � C9,
where C8, C9 are effectively computable in terms of B, c0, �, ε.

Now put x0 := c0tB
0 . Then x0 ∈ �ε, xA

0 = cA
0 tB A

0 = c and h(x0) � C6, [Q(x0) : Q] � C7

with C6, C7 effectively computable in terms of B, c0, �, ε. Since c0 = (s, 1)U−1
1 belongs to
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a finite set effectively computable in terms of c, A and since B is effectively computable in
terms of A, we may choose C6, C7 to be effectively computable in terms of A, c, �, ε. This
proves Proposition 7·4.

We proceed to prove Proposition 7·5. Let K ′ be the number field generated by the co-
ordinates of c0 and by the coordinates of a system of generators for �.

LEMMA 7·6. Assume there exists t ∈ (Q
∗
)P with (7·13). Then there exists t ∈ (Q

∗
)P such

that

c0tB ∈ �ε, ∃m ∈ Z>0 with tm ∈ (K ′∗)P . (7·15)

Proof. First observe that if u ∈ �ε and σ ∈ Gal(Q/K ′), then σ(u) ∈ �ε. Indeed, write
u = u1u2 with u1 ∈ �, h(u2) < ε. There is k ∈ Z>0 such that σ(u1)

k = uk
1 ∈ �, implying

that σ(u1) ∈ �. Further, h(σ (u2)) < ε. So σ(u) ∈ �ε.
Now let σ1, . . . , σm be the distinct K ′-isomorphic embeddings of K ′(t) into Q. Take

t′ :=
(

m∏
i=1

σi (t)

)1/m

.

This is determined only up to a factor in (Q
∗
tors)

P , but this is not causing any problem. Write
c0tB = u1u2 with u1 ∈ �, h(u2) < ε. Then

c0t′ B =
(

m∏
i=1

σi(u1)

)1/m (
m∏

i=1

σi (u2)

)1/m

,

which belongs to �ε. Clearly, tm ∈ (K ′∗)P . This proves Lemma 7.6.

Let S′ be the smallest set of places of K ′, containing all infinite places and such that
c0 ∈ (O∗

S′)N , � ⊆ (O∗
S′)N . Put s ′ := #S′.

LEMMA 7·7. Assume there exists t ∈ (Q
∗
)P with (7·13). Then there exists t with

c0tB ∈ �ε, t ∈ (O∗
S′)

P , (7·16)

where O∗
S′ = {x ∈ Q

∗ : ∃m ∈ Z>0 with xm ∈ O∗
S′ }.

Proof. Let t ∈ (Q
∗
)P be as in (7·15), i.e., tm ∈ (K ′∗)P for some m ∈ Z>0. Write

c0tB = yz with y ∈ �, h(z) < ε. (7·17)

Let n ∈ Z>0 be such that yn ∈ � and let k be any positive multiple of lcm(m, n). Thus

zk = ck
0(t

k)By−k ∈ (K ′∗)P . (7·18)

Write t = (t1, . . . , tP). By the Dirichlet–Chevalley–Weil S-unit theorem, there are
ε1, . . . , εP ∈ O∗

S′ such that∣∣∣∣∣log |εi |v − log

( ∣∣t k
i

∣∣
v{∏

w∈S

∣∣t k
i

∣∣
w

}1/s

)∣∣∣∣∣ � C for i = 1, . . . , P, v ∈ S′,

where C is an effectively computable constant depending only on K ′, S′, and independent
of k. Now define

t′ := (
ε

1/k
1 , . . . , ε

1/k
P

)
, z′ := c0(t

′ B
)y−1,

η = (η1, . . . , ηN ) := (ε1, . . . , εP)B
(7·19)
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(with a suitable choice of the k-th roots). Write z := (z1, . . . , zP), z′ := (z′
1, . . . , z′

P),
v := (v1, . . . , vN ) = tB , (c0y−1)k := (α1, . . . , αP). Then since α1, . . . , αP ∈ O∗

S′ (by our
choice of k and S′) we have for i = 1, . . . , N , v ∈ S′,∣∣∣∣∣log

∣∣z′
i
k∣∣

v
− log

( ∣∣zk
i

∣∣
v{∏

w∈S′
∣∣zk

i

∣∣
w

}1/s ′

)∣∣∣∣∣
=

∣∣∣∣∣log |αiηi |v − log

( ∣∣αiv
k
i

∣∣
v{∏

w∈S′
∣∣αiv

k
i

∣∣
w

}1/s ′

)∣∣∣∣∣
=

∣∣∣∣∣log |ηi |v − log

( ∣∣vk
i

∣∣
v{∏

w∈S′
∣∣vk

i

∣∣
w

}1/s ′

)∣∣∣∣∣ � C ′,

where C ′ is an effectively computable constant depending only on K ′, S′ and B, but which
is independent of k. Together with the product formula this implies∣∣∣ log

∣∣z′
i
k∣∣

v
− log

∣∣zk
i

∣∣
v
− 1

s ′
∑
w�S′

log
∣∣zk

i

∣∣
w

∣∣∣ � C ′

for v ∈ S′, i = 1, . . . , N . Now we get

h(z′k) =
N∑

i=1

∑
v∈S′

max
(
0, log

∣∣z′
i
k∣∣

v

)

�
N∑

i=1

∑
v∈S′

max

⎛
⎝0, C ′ + log

∣∣zi
k
∣∣
v
+ 1

s ′
∑
w�S′

log
∣∣zk

i

∣∣
w

⎞
⎠

� Ns ′C ′ +
N∑

i=1

∑
v∈S′

max
(
0, log

∣∣zi
k
∣∣
v

) +
N∑

i=1

∑
v�S′

max
(
0, log

∣∣zi
k
∣∣
v

)

= Ns ′C ′ +
N∑

i=1

h
(
zk

i

) = Ns ′C ′ + h(zk).

Consequently,

h(z′) � h(z) + Ns ′C ′

k
.

By assumption, h(z) < ε. We had chosen k to be any positive multiple of lcm(m, n). By
choosing k large enough, we can achieve that h(z′) < ε. Now from our choice of t′ in (7·19)
it follows that t′ ∈ (O∗

S)
P and c0t′ B = yz′ ∈ �ε. This proves Lemma 7·7.

The proof of Proposition 7·5 rests upon linear programming.
Define the group

G := {ytB : y ∈ �, t ∈ (O∗
S′)

P}.
This is a group of finite rank q. Choose a maximal multiplicatively independent subset
t1, . . . , ts of (O∗

S′)P . Then u1 := tB
1 , . . . , us := tB

s are multiplicatively independent since
rank B = P . Choose us+1, . . . , uq ∈ � such that {u1, . . . , uq} form a maximal multiplicat-
ively independent subset of G. After a suitable choice of roots of u1, . . . , uq , we may express
G as

G = {ρu
ξ1
1 . . . u

ξq
q : ρ ∈ (Q

∗
tors)

N , ξ1, . . . , ξq ∈ Q}.
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We are searching for t ∈ (OS′
∗
)P such that

c0tB = yz, y ∈ �, h(z) < ε.

For such t we have z = c0y−1tB ∈ c0G. So we are searching for z ∈ c0G with h(z) < ε.
We give an expression for the height of an element z ∈ c0G. Such an element can be

expressed as

z = c0ρu
ξ1
1 . . . u

ξq
q with ρ ∈ (Q

∗
tors)

N , ξ1, . . . , ξq ∈ Q.

Write ξ := (ξ1, . . . , ξq). Let k be a positive integer such that ρk = 1, kξ ∈ Zq . Further, write
ui = (ui1, . . . , ui N ) (i = 1, . . . , r), c0 = (c01, . . . , c0N ). Then

h(z) = 1

k
h(zk) = 1

k

N∑
i=1

∑
v∈S′

max

⎛
⎝0, k log |c0i |v +

q∑
j=1

kξ j log |ui j |v
⎞
⎠

=
N∑

i=1

∑
v∈S′

max

⎛
⎝0, log |c0i |v +

q∑
j=1

ξ j log |ui j |v
⎞
⎠

= 1

2

N∑
i=1

∑
v∈S′

∣∣∣ log |c0i |v +
q∑

j=1

ξ j log |ui j |v
∣∣∣ =: f (ξ),

(7·20)

where we have used
∑

v∈S′ log |c0i |v = 0,
∑

v∈S′ log |ui j |v = 0 for all i, j . The function f
can be extended to Rq . We prove some properties of this function.

LEMMA 7·8. (i) For every R � 0, the set {ξ ∈ Rq : f (ξ) � R} is compact with respect
to the topology in Rq .
(ii) There is an effectively computable constant C > 0 such that | f (ξ 1) − f (ξ 2)| �
C‖ξ 1 − ξ 2‖∞ for all ξ 1, ξ 2 ∈ Rq .

Proof. (i) We can express f (ξ) as ‖α(ξ)‖ where ‖ · ‖ is a norm on RNs and α an injective
affine map from Rq to RNs . So our set under consideration is homeomorphic to a closed
subset of a compact set, hence compact.

(ii) Obvious.

LEMMA 7·9. The function f assumes a minimum on Rr and it is possible to determine
effectively

ε0 := min{ f (ξ) : ξ ∈ Rq}
and ξ 0 with f (ξ 0) = ε0.

Proof. It clearly suffices to prove that f assumes a minimum on

D := {ξ ∈ Rq : f (ξ) � f (0)}
and to determine the minimum of f on D and a point in D where this minimum is assumed.
By Lemma 7·8(i) the set D is compact, so f does indeed assume its minimum on D.

We can rewrite f as

f (ξ) = max (L1(ξ) + β1, . . . , L A(ξ) + βA) ,

where L1, . . . , L A are linear forms with real coefficients and β1, . . . , βA ∈ R. For i =
1, . . . , A, let

Di := {ξ ∈ D : Li (ξ) + βi � L j (ξ) + β j for j = 1, . . . , A, j � i}.
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The set Di is a closed subset of D, hence compact. Thus Di is a compact polytope. Notice
that f (ξ) = Li (ξ) + βi for ξ ∈ Di . From the theory of linear programming it follows
that f assumes its minimum on Di in a vertex of Di . The vertices of Di can be determined
effectively. So we can effectively determine εi := min{Li (ξ) + βi : ξ ∈ Di } and ξ i ∈ Di

with f (ξ i) = εi .
Now ε0 = min(ε1, . . . , εA), and f (ξ 0) = ε0, where ξ 0 is a point ξ i among ξ 1, . . . , ξ A

such that εi = ε0.

Proof of Proposition 7·5. Assume that there exists t ∈ (O∗
S′)P such that c0tB ∈ �ε. Write

c0tB = yz with y ∈ �, h(z) < ε. Then z = c0y−1tB = c0ρu
ξ1
1 · · · u

ξq
q with ρ ∈ (Q

∗
tors)

N and
ξ1, . . . , ξq ∈ Q. So h(z) = f (ξ) < ε and therefore, ε > ε0. Let C be the constant from
Lemma 7·8,(ii) and define the integer k by

k :=
[

2C

ε − ε0

]
+ 1. (7·21)

Let ξ 0 be as in Lemma 7·9 and write ξ 0 = (ξ01, . . . , ξ0q). Define integers n1, . . . , nq by

|kξ0i − ni | < 1 (i = 1, . . . , q)

and let

t0 = t
n1/k
1 . . . tns/k

s , z0 = c0u
n1/k
1 . . . u

nq/k
q .

By Lemma 7·8 (ii) and (7·21),

h(z0) = f
(n1

k
, . . . ,

nq

k

)
� f (ξ 0) + C max

1�i�q

∣∣∣ξ0i − ni

k

∣∣∣
� ε0 + C

k
< ε0 + C(ε − ε0)

2C
< ε.

Further,

c0tB
0 = u

−ns+1/k
s+1 · · · u

−nq/k
q z0 ∈ �ε,

h(t0) �
s∑

i=1

∣∣∣ni

k

∣∣∣ h(ti) �
q∑

i=1

(|ξ0i | + 1

k

)
h(ti ) � C8

and tk
0 ∈ (K ′∗)P , implying [Q(t0) : Q] � C9. The quantities C, ε0, as well as t1, . . . , ts are

effectively computable in terms of �, B, c0, while k is effectively computable in terms of
these parameters and also ε. Hence the constants C8, C9 are indeed effectively computable
in terms of �, B, c0, ε, but they have been defined only for ε > ε0. For completeness, we
define C8 := 1, C9 := 1 if ε � ε0. Then clearly, Proposition 7·5 holds with these C8, C9.

8. Proof of Theorem 2·4
We write xa := xa1

1 · · · xaN
N for x = (x1, . . . , xN ) ∈ (Q

∗
)N , a = (a1, . . . , aN ) ∈ ZN .

By assumption

X = {x ∈ (Q
∗
)N : f1(x) = 0, . . . , fm(x) = 0},

where each polynomial fi belongs to Q[X1, . . . , X N ] and has at most three non-zero terms.
Further, deg fi � δ and max(1, h( fi)) � H for i = 1, . . . , m. Without loss of generality
we assume that fi (i = 1, . . . , n) are trinomials and fi (i = n + 1, . . . , m) are binomials,
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where 0 � n � m. Thus, by dividing each fi by one of its terms we see that X is given by
equations

αi1xai1 + αi2xai2 = 1 (i = 1, . . . , n), αi1xai1 = 1 (i = n + 1, . . . , m), (8·1)

where αi j ∈ Q
∗
, ai j ∈ ZN for (i, j) ∈ I := {(1, 1), . . . , (m, 1), (1, 2), . . . , (n, 2)}. We

observe here that since each polynomial fi has total degree at most δ, we have estimates for
the maximum norm and the sum norm,

‖ai j‖∞ � δ, ‖ai j‖1 � 2δ for (i, j) ∈ I . (8·2)

Clearly the stabilizer of X is given by

H := Stab(X) = {x ∈ (Q
∗
)N | xai j = 1 for i = 1, . . . , m, j = 1, 2}

= {x ∈ (Q
∗
)N | xA = 1}, (8·3)

where A is the N × (2m − n) matrix with columns ai j ((i, j) ∈ I ).
Let i ∈ {1, . . . , n}. Let x ∈ X � �. Denote by G be the subgroup of K ∗ generated by

ξ1 := w
ai1
1 , . . . , ξr := wai1

r . Then for the quantity Q defined by (4·1), we have

Q :=
r∏

j=1

max
(
1, h(w

ai j

j )
)

� (δh0)
r .

We apply Lemma 4·2 to the equation αi1x + αi2 y = 1 in x ∈ G, y ∈ O∗
S . Notice that

max(1, h(αi1), h(αi2)) � H . Replacing Q by (δh0)
r in the expression for C5, we obtain a

constant bounded above by C∗. In fact, this can be shown by a straightforward computation,
using that the term with the maximum in C5 is bounded above by 46r 2 log∗ max(dsN, δh0).
It follows that

h(xai, j ) < C∗ H for i = 1, . . . , n, j = 1, 2. (8·4)

We clearly also have h(xai1) = h(α−1
i1 ) � H for i = n + 1, . . . , m. So we have (8·4) for

(i, j) ∈ I . This implies

xA = c, (8·5)

where A is the N × (2m − n)-matrix from above and where c ∈ (K ∗)2m−n with

h(c) � (2m − n)C∗ H � 2mC∗ H. (8·6)

Further, the entries of A have absolute values at most δ, and of each column of A the sum of
its absolute values is at most 2δ.

We first assume that the stabilizer H is finite. Then A has rank N . Suppose for convenience
that the first N columns, a1, . . . , aN , say, of A form an invertible matrix D, with determinant
�. Let c′ consist of the first N coordinates of c. Then x� = c′�D−1

. By Hadamard’s inequality
and (8·2), the entries of �D−1 have absolute value at most

max
1�i�N

∏
j�i

‖a j‖2 � (2δ)N−1. (8·7)

Further, h(c′) � NC∗ H . So h(x) � N (2δ)N−1C∗ H = C2 H . This proves part (i).
We now assume that H is infinite. Notice that we have to consider finitely many systems

(8·5) as c runs through a finite set. If such a system has a solution x with x ∈ X, then each
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element of the translate xH is also a solution of this system. On the other hand xH ⊂ X.
Thus we have proved that X � � is contained in some finite union of translates

x1H � · · · � xTH

with xiH ⊂ X for i = 1, . . . , T .
Fix any of these translates, which means that we have fixed one of the systems from

(8·5). By assumption this system has a solution in x ∈ �. Now by Proposition 7·1 (with
M = 2m − n � 2m) and (8·6), this fixed system of type (8·5) has a solution x ∈ � such that

h(x) � h0(2r4r c(d)mδh0)
r · 2mC∗ H � C3 H.

This proves Theorem 2·4.

9. Proofs of Theorems 2·5 and 2·6
Proof of Theorem 2·6. Let x ∈ X(Q) � C(�, ε), with the value of ε given in (2·10).
As before, we write x = yz with y ∈ � and z ∈ (Q

∗
)2 with h(z) < ε(1 + h(y)) and we

may further split up y as y = vw with v ∈ �, w = ∏r
i=1 w

γi

i , where γi ∈ Q, |γi | � 1/2.
Define new polynomials f ∗

i (V) := fi(wz ·V) (i = 1, . . . , m) and let X∗ be the variety given
by f ∗

i = 0 for i = 1, . . . , m, i.e., X∗ := (wz)−1X. Then v ∈ X∗ ��. Notice that deg f ∗
i � δ,

and max(1, h( f ∗
i )) � H + δh(wz) � H + δ(h(w) + h(z)) for i = 1, . . . , m.

We observe that X and X∗ have the same stabilizer H, and this stabilizer is assumed to be
finite.

We obtain the upper bound for h(x) by applying Theorem 2·4 to X∗ and then following
the proof of Theorem 2·3, replacing everywhere C1 by C2.

Now we estimate [L(x) : L]. To this end, it suffices to estimate the number of distinct
points among σ(x), σ ∈ Gal(Q/L).

Let σ ∈ Gal(Q/L). Write again x = yz such that y ∈ �, h(z) < ε(1 + h(y)). Put
uσ := σ(x)x−1. Since σ(y)y−1 is a torsion point, we have

h(uσ ) = h(σ (x)x−1) = h(σ (z)z−1) � 2h(z).

Completely similarly as (6·6) we obtain

h(z) � ε · (C2δrh0 + 2C2 H). (9·1)

Hence

h(uσ ) � 2ε · (C2δrh0 + 2C2 H) =: η.

We assume again that fi is a trinomial for i = 1, . . . , n and a binomial for i =
n + 1, . . . , m. Then (8·1) holds for certain integer vectors ai j and we obtain

α̃i1uai1
σ + α̃i2uai2

σ = 1 for i = 1, . . . , n,

α̃i1uai1
σ = 1 for i = n + 1, . . . , m.

Let i ∈ {1, . . . , n}. By our choice of ε in (2·10) we have

h
(
uai1

σ , uai2
σ

)
� 2δη = 0.03.

Thus by Lemma 4·4 (i) we see that there are at most 2 possibilities for each pair (uai1
σ , uai2

σ ).
These facts imply that uA

σ = cσ where cσ runs through a set of cardinality at most 2m if σ

runs through Gal(Q/L). Fix c0 and then σ0 with uA
σ0

= c0. Then for every σ ∈ Gal(Q/L)

with uA
σ = c0 we have (uσ /uσ0)

A = 1. This shows that for fixed c0 we have at most t := #H
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possibilities for uσ , where H := Stab(X) = {x ∈ (Q
∗
)N | xA = 1}. Hence for uσ we have

altogether at most 2mt possibilities, implying [L(x) : L] � 2mt .
It remains to estimate t = #H. By assumption, H is finite hence is zero-dimensional,

therefore the matrix A has rank N . Suppose for instance that the first N columns of A form
an invertible matrix D. Then H is contained in H′ = {x ∈ (Q

∗
)N : xD = 1}. There are

matrices U1 ∈ GLN (Z), U2 ∈ GLM(Z) such that U1 DU2 = D0 is a diagonal matrix with
positive integers d1, . . . , dN on the diagonal. Now x �→ xU−1

1 maps H′ isomorphically to
the algebraic group given by xd1

1 = 1, . . . , xdN
N = 1 and the latter clearly has cardinality

d1 · · · dN .
By an estimate similar to (8·7), using (8·2), we have d1 · · · dN = | det D| � (2δ)N . Hence

t � (2δ)N . This leads to [L(x) : L] � 2mt � 2m+NδN .

Proof of Theorem 2·5. First suppose that Stab(X) is finite. Let x ∈ X � �ε. We write
x = yz with y ∈ �, h(z) < ε and then as usual y = vw with v ∈ � and w = ∏r

i=1 w
γi

i ,
where γi ∈ Q, |γi | � 1/2. Like in the proof of Theorem 2·6, we define the polynomials
f ∗
i (V) = fi(wz·V) (i = 1, . . . , m) and let X∗ be the variety given by f ∗

i = 0 (i = 1, . . . , m).
Then again, v ∈ X∗ � �. Recall that deg f ∗

i � δ, and that

max(1, h( f ∗
i )) � H + δh(wz) � H + δ(h(w) + h(z)) � H + δ

(
rh0

2
+ ε

)

for i = 1, . . . , m. Now applying part (i) of Theorem 2·4 to X∗ = (wz)−1X, we obtain

h(v) � C2

(
H + δ

rh0

2
+ ε

)

and together with h(x) � h(v) + h(w) + h(z) � h(v) + rh0/2 + ε this leads to the upper
bound for h(x) in (2·9).

As for the estimation of [L(x) : L], instead of (9·1) we have h(z) < ε, then our assump-
tion ε = 0.03/4δ leads to the same conclusion h(uai1

σ , uai2
σ ) � 0.03 for i = 1, . . . , n, and the

proof is concluded in the same way as that of Theorem 2·6.
We now assume that H := Stab(X) is infinite. We define z, v, w as above and keep

the notation from the proof of Theorem 2·4. Thus we obtain, completely similarly as
in (8·4),

h(vai, j ) < C∗
(

H + δ
rh0

2
+ δε

)
for (i, j) ∈ I,

and together with h(w) � rh0/2, h(z) < ε, this leads to

h(xai, j ) < C∗(H + δrh0) for (i, j) ∈ I.

Then, similarly as (8·6) we obtain,

xA = c with h(c) � 2mC∗(H + δrh0). (9·2)

Let σ ∈ Gal(Q/L), and put uσ := σ(x) · x−1, cσ := σ(c) · c−1. Thus, uA
σ = cσ . Following

the argument in the proof of Theorem 2·6, using our choice ε = 0.03/4δ for ε, we infer
again that h(uai1

σ , uai2
σ ) � 0.03 for i = 1, . . . , n, and subsequently, that cσ runs through a set

of cardinality at most 2m if σ runs through Gal(Q/L). This implies that we have at most 2m

possibilities for σ(c). Hence

[L(c) : L] � 2m . (9·3)
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Now from (9·2), (9·3) we infer that for every x ∈ X��ε there is c from a finite, effectively
determinable set depending only on � and f1, . . . , fm , such that xA = c. We conclude by
applying Proposition 7·4 to each of the equations xA = c.
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[13] G. RÉMOND. Sur les sous-variétés des tores. Compositio Math. 134 (2002), 337–366.
[14] H. P. SCHLICKEWEI. Lower bounds for heights on finitely generated groups. Monatsh. Math. 123

(1997), 171–178.
[15] W. M. SCHMIDT. Heights of points on subvarieties of Gn

m . In Number Theory (Paris, 1993–1994),
London Math. Soc. Lecture Note Ser. 235 (Cambridge University Press, 1996), 157–187.

[16] P. VOUTIER. An effective lower bound for the height of algebraic numbers. Acta Arith. 74 (1996),
81–95.

[17] S. ZHANG. Positive line bundles on arithmetic varieties. J. Amer. Math. Soc. 8 (1995), 187–221.


