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1. Introduction

In the literature there are various effective results on S-unit equations in

two unknowns. In our paper we work out effective results in a quantitative

form for the more general equation

(1.1) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γ,

where a1, a2 ∈ Q∗
and Γ is an arbitrary finitely generated subgroup of

rank > 0 of the multiplicative group (Q∗
)2 = Q∗ × Q∗

endowed with co-

ordinatewise multiplication (see Theorems 2.1 and 2.2 in Section 2). Such

more general results can be used to improve upon existing effective bounds

on the solutions of discriminant equations and certain decomposable form

equations. These will be worked out in a forthcoming work.

In fact, in the present paper we prove even more general effective results

for equations of the shape (1.1) with solutions (x1, x2) from a larger group,

from the division group Γ = {(x1, x2) ∈ (Q∗
)2 | ∃k ∈ Z>0 : (xk

1, x
k
2) ∈ Γ},

and even with solutions (x1, x2) ‘very close’ to Γ. These results give an

effective upper bound for both the height of a solution (x1, x2) and the

degree of the field Q(x1, x2); see Theorems 2.3 and 2.5 and Corollary 2.4 in

Section 2. In the proofs of these Theorems we utilize Theorem 2.1 (on (1.1)

with solutions from Γ), as well as a result of Beukers and Zagier [2], which
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asserts that (1.1) has at most two solutions (x1, x2) ∈ (Q∗
)2 with very small

height.

The hard core of the proofs of our results mentioned above is a new

effective lower bound for |1− αξ|v, where α is a fixed element from a given

algebraic number field K, v is a place of K, and the unknown ξ is taken

from a given finitely generated subgroup of K∗ (see Theorem 4.1 in Section

4). This result is proved using linear forms in logarithms estimates. Our

Theorem 4.1 has a consequence (cf. Theorem 4.2 in Section 4) which is of

a similar flavour as earlier results by Bombieri [3], Bombieri and Cohen [4],

[5], and Bugeaud [7] (see also Bombieri and Gubler [6, Chap. 5.4]) but it

gives in many cases a better estimate. Consequently, Theorem 4.1 leads to

an explicit upper bound for the heights of the solutions of (1.1) which is in

many cases sharper than what is obtainable from the work of Bombieri et

al.

In Section 2 we state our results concerning (1.1), in Section 3 we intro-

duce some notation, in Section 4 we state our results concerning |1− αξ|v,
and in Sections 5, 6 we prove our Theorems.

2. Results

To state our results we need the following notation. If G is a finitely

generated abelian group, then {ξ1, . . . , ξr} is called a system of generators of

G/Gtors if ξ1, . . . , ξr ∈ G, ξ1, . . . , ξr /∈ Gtors, and the reductions of ξ1, . . . , ξr

modulo Gtors generate G/Gtors. Such a system is called a basis of G/Gtors

if its reduction modulo Gtors forms a basis of G/Gtors.

We fix an algebraic closure Q of Q and assume that all algebraic number

fields occurring henceforth are contained in Q. We denote by (Q∗
)2 the

group {(x1, x2) |x1, x2 ∈ Q∗} with coordinatewise multiplication

(x1, x2)(y1, y2) = (x1y1, x2y2). Further, we denote by h(x) the absolute

logarithmic height of x ∈ Q∗
and define the height of x = (x1, x2) ∈ (Q∗

)2

by h(x) = h(x1, x2) := h(x1) + h(x2).

The ring of integers of an algebraic number field K is denoted by OK and

the set of places of K by MK . For v ∈ MK we define

(2.1) N(v) := 2 if v is infinite, N(v) := N(℘v) if v is finite,
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where ℘v is the prime ideal ofOK corresponding to v and N(℘v) = #
(
OK/℘v

)
is the norm of ℘v.

Finally, we define log∗ a := max(1, log a) for a > 0 and log∗ 0 := 1.

We consider again the equation

(1.1) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γ

where a1, a2 ∈ Q∗
and where Γ is a finitely generated subgroup of (Q∗

)2 of

rank > 0. Let w1 = (ξ1, η1), . . . ,wr = (ξr, ηr) be a system of generators of

Γ/Γtors which is not necessarily a basis. Notice that every element of Γ can

be expressed as ζwx1
1 · · ·wxr

r where x1, . . . , xr ∈ Z and ζ ∈ Γtors, i.e., the

coordinates of ζ are roots of unity.

Define K := Q(Γ), i.e. the field generated by Γ over Q. We do not

require that a1, a2 ∈ K. Let S be the smallest set of places of K containing

all infinite places such that w1, . . . ,wr ∈ (O∗
S)2, whereO∗

S denotes the group

of S-units in K. Put

QΓ := h(w1) · · ·h(wr),

d := [K : Q], s := #S, N := max
v∈S

N(v).

Denote by t the maximum of the rank of the subgroup of Q∗
generated by

ξ1, . . . , ξr and the rank of the subgroup generated by η1, . . . , ηr. In view of

rank Γ > 0 we have t > 0. We define

(2.2)

c1(r, d, t) := 3(16ed)3(t+2)
(
d(log 3d)3

)r−t
(t/e)t,

A := 26c1(r, d, t)s
N

log N
QΓ max{log(c1(r, d, t)sN), log∗ QΓ},

H := max(h(a1), h(a2), 1).

Then our first result reads as follows:

Theorem 2.1. For every solution (x1, x2) ∈ Γ of (1.1) we have

(2.3) h(x1, x2) < AH.

We shall deduce Theorem 2.1 from Theorem 2.2 below. Let G be a finitely

generated multiplicative subgroup of Q∗
of rank t > 0, and ξ1, . . . , ξr a

system of generators of G/Gtors. Let K be a number field containing G,
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and S a finite set of places of K containing the infinite places such that

G ⊆ O∗
S. We consider the equation

(2.4) a1x1 + a2x2 = 1 in x1 ∈ G, x2 ∈ O∗
S,

where a1, a2 ∈ Q∗
. Let d := [K : Q]. Let s be the cardinality of S,

N := maxv∈S N(v) and put

QG := h(ξ1) · · ·h(ξr).

Theorem 2.2. Under the above assumptions and notation, every solution

of (2.4) satisfies

(2.5) h(x1) < c1(r, d, t)s
N

log N
QGH log∗

(
Nh(x1)

H

)
and

(2.6)
max(h(x1), h(x2)) < 6.5c1(r, d, t)s

N

log N
QGH·

·max{log(c1(r, d, t)sN), log∗ QG},

where as before H := max(h(a1), h(a2), 1) and c1(r, d, t) is the constant

defined in (2.2).

If in particular r = t and {ξ1, . . . , ξt} is a basis of G/Gtors, then, in (2.5)

and (2.6) we can replace c1(r, d, t) by c1(d, t) = 73(16ed)3t+5.

An important special case of equation (2.4) is when G = O∗
S. Then (2.4)

is called an S-unit equation. The first explicit upper bound for the height

of the solutions of S-unit equations was given by Győry [12] by means of

the theory of logarithmic forms. This bound was later improved by several

authors. In this special case we have t = s − 1 and we may choose a basis

{ξ1, . . . , ξs−1} for O∗
S/(O∗

S)tors such that

(2.7) h(ξ1) · · ·h(ξs−1) ≤
((s− 1)!)2

2s−2ds−1
RS,

where RS denotes the S-regulator in K (see e.g. Bugeaud and Győry [8]).

The best known bounds for the solutions of S-unit equations are due to

Bugeaud [7] and Győry and Yu [13]. As an immediate consequence, one can

derive from our Theorem 2.2 and (2.7) an explicit bound for the solutions

of S-unit equations which is comparable with the best known ones.
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We now consider equations such as (1.1) but with solutions (x1, x2) from

a larger set. We keep the notation introduced before Theorem 2.1.

The division group of Γ is given by

Γ :=
{
x ∈ (Q∗

)2 | ∃k ∈ Z>0 with xk ∈ Γ
}

.

For any ε > 0 define the “cylinder” and “truncated cone” around Γ by

(2.8) Γε :=
{
x ∈ (Q∗

)2 | ∃y, z with x = yz, y ∈ Γ, z ∈ (Q∗
)2, h(z) < ε

}
and

(2.9)
C(Γ, ε) :=

{
x ∈ (Q∗

)2 | ∃y, z with x = yz, y ∈ Γ,

z ∈ (Q∗
)2, h(z) < ε(1 + h(y))

}
,

respectively. The set Γε was introduced by Poonen [15] and the set C(Γ, ε)

by the second author [10] (both in a much more general context).

We emphasize that points from Γ, Γε or C(Γ, ε) do not have their coordi-

nates in a prescribed number field. So for effective results on Diophantine

equations with solutions from Γ, Γε or C(Γ, ε), we need an effective upper

bound not only for the height of each solution, but also for the degree of

the field which it generates. We fix a1, a2 ∈ Q∗
and define

K := Q(Γ), K0 := Q(a1, a2, Γ).

The quantities d, s,N,H and QΓ will have the same meaning as in Theorem

2.1 and A will be the constant defined in (2.2). Further, we put

h0 := max{h(ξ1), . . . , h(ξr), h(η1), . . . , h(ηr)},

where wi = (ξi, ηi) for i = 1, . . . , r is the chosen system of generators for

Γ/Γtors.

Consider now the equation

(2.10) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γε.

Theorem 2.3. Suppose that (x1, x2) is a solution of (2.10) and that

(2.11) ε < 0.0225.

Then we have

(2.12) h(x1, x2) ≤ Ah(a1, a2) + 3rh0A
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and

(2.13) [K0(x1, x2) : K0] ≤ 2.

The following consequence is immediate:

Corollary 2.4. With the notation and assumptions from above, let (x1, x2)

be a solution of

(2.14) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γ.

Then h(x1, x2) ≤ Ah(a1, a2) + 3rh0A and [K0(x1, x2) : K0] ≤ 2.

Finally we consider the equation

(2.15) a1x1 + a2x2 = 1 in (x1, x2) ∈ C(Γ, ε).

Theorem 2.5. Suppose that (x1, x2) is a solution of (2.15) and that

(2.16) ε <
0.09

8Ah(a1, a2) + 20rh0A
.

Then we have

(2.17) h(x1, x2) ≤ 3Ah(a1, a2) + 5rh0A

and

(2.18) [K0(x1, x2) : K0] ≤ 2.

The paper [1] gives explicit upper bounds for the number of solutions of

(2.14), while from [11] one can deduce explicit upper bounds for multivariate

generalizations of (2.14), (2.10), (2.15). The sets Γε and C(Γ, ε) have been

defined in the much more general context of semi-abelian varieties (see [15],

[18]), and in [16], [17], Rémond proved quantitative analogues of the work of

[11] for subvarieties of abelian varieties and subvarieties of tori. We mention

that the results of [1], [11] and [15]–[18] are ineffective.

In a forthcoming work, to be written with Pontreau, we extend our ef-

fective results concerning (2.10) and (2.15) to equations f(x1, x2) = 0 in

(x1, x2) from Γε or C(Γ, ε), where f ∈ Q[X1, X2] is an arbitrary polyno-

mial. Further, we apply the results from the present paper to obtain, in

certain special cases, effective and quantitative results for points lying in

subvarieties of tori.
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3. Notation

In this section we collect the notation used in our paper. Let K be an

algebraic number field of degree d. Denote by OK its ring of integers and by

MK its set of places. For v ∈ MK , we define an absolute value |·|v as follows.

If v is infinite and corresponds to σ : K → C, then we put |x|v = |σ(x)|dv/d

for x ∈ K, where dv = 1 or 2 according as σ(K) is contained in R or not;

if v is a finite place corresponding to a prime ideal ℘ of OK , then we put

|x|v = N(℘)− ord℘ x/d for x ∈ K \ {0}, and |0|v = 0. Here N(℘) denotes the

norm of ℘, and ord℘ x the exponent of ℘ in the prime ideal factorization of

the principal fractional ideal (x). The absolute logarithmic height h(x) of

x ∈ K is defined by

(3.1) h(x) =
∑

v∈MK

max(0, log |x|v).

More generally, if x ∈ Q then choose an algebraic number field K such that

x ∈ K and define h(x) by (3.1). This definition does not depend on the

choice of K. Notice that h(x) = 0 if and only if x ∈ Q∗
tors, where Q∗

tors is

the group of roots of unity in Q∗
.

Let S denote a finite subset of MK containing all infinite places. Then

x ∈ K is called an S-integer if |x|v ≤ 1 for all v ∈ MK \ S. The S-integers

form a ring in K, denoted by OS. Its unit group, denoted by O∗
S, is called

the group of S-units. It follows from (3.1) and the product formula that

(3.2) h(x) =
1

2

∑
v∈S

|log |x|v| if x ∈ O∗
S.

For x = (x1, x2) ∈ (Q∗
)2 define

h(x) := h(x1) + h(x2).

Notice that for x = (x1, x2),y = (y1, y2) ∈ (Q∗
)2

h(xy) ≤ h(x) + h(y),

h(x) = 0 ⇐⇒ x ∈ (Q∗
tors)

2 ,

h(xξ) = |ξ|h(x) for ξ ∈ Q,

where for ξ ∈ Q we define xξ := (xξ
1, x

ξ
2). The point xξ is determined only

up to multiplication with elements from (Q∗
tors)

2, but h(xξ) is well defined.
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4. Diophantine approximation by elements of a finitely

generated multiplicative group

Let again K be an algebraic number field of degree d, MK the set of places

on K, and G a finitely generated multiplicative subgroup of K∗ of rank t >

0. Further, let {ξ1, . . . , ξr} be a system of (not necessarily multiplicatively

independent) generators of G such that ξ1, . . . , ξr are not roots of unity. Put

QG := h(ξ1) · · ·h(ξr).

Further, for any v ∈ MK let N(v) be as in (2.1).

Theorem 2.2 and then subsequently Theorem 2.1 will be deduced from

the following theorem.

Theorem 4.1. Let α ∈ K∗ with max(h(α), 1) ≤ H and let v ∈ MK. Then

for every ξ ∈ G for which αξ 6= 1, we have

(4.1) log |1− αξ|v > −c2(r, d, t)
N(v)

log N(v)
QGH log∗

(
N(v)h(ξ)

H

)
,

where

c2(r, d, t) = (16ed)3(t+2)
(
d(log 3d)3

)r−t
(t/e)t.

If in particular r = t and {ξ1, . . . , ξt} is a basis of G/Gtors, then (4.1) holds

with c2(d, t) = 36(16ed)3t+5(log∗ d)2 instead of c2(r, d, t).

It should be observed that c2(d, t) does not contain a tt factor.

The following theorem is in fact an immediate consequence of Theorem

4.1.

Theorem 4.2. Let α ∈ K∗ with max(h(α), 1) ≤ H, let v ∈ MK, and let

0 < κ ≤ 1. Then for every ξ ∈ G with αξ 6= 1 and

(4.2) log |1− αξ|v < −κh(ξ)

we have

(4.3) h(ξ) < (c2(r, d, t)/κ)
N(v)

log N(v)
QGH log∗

(
N(v)h(ξ)

H

)
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and

(4.4)
h(ξ) < 6.4(c2(r, d, t)/κ)

N(v)

log N(v)
QGH·

·max
(

log
(
(c2(r, d, t)/κ)N(v)

)
, log∗ QG

)
with the constant c2(r, d, t) specified in Theorem 4.1.

If in particular r = t and {ξ1, . . . , ξt} is a basis of G/Gtors, (4.3) and

(4.4) hold with c2(d, t) instead of c2(r, d, t).

We note that when applying Theorem 4.2 to equation (2.4), inequality

(4.3) yields better bounds in Theorem 2.2 than (4.4).

The main tool in the proofs of Theorems 4.1 and 4.2 is the theory of

logarithmic forms, more precisely Theorem C in Section 5. Bombieri [3]

and Bombieri and Cohen [4], [5] have developed another effective method

in Diophantine approximation, based on an extended version of the Thue-

Siegel principle, the Dyson lemma and some geometry of numbers. Bugeaud

[7], following their approach and combining it with estimates for linear

forms in two and three logarithms, obtained sharper results than Bombieri

and Cohen. Bugeaud deduced an explicit upper bound for h(ξ) from the

inequality

(4.5) log |1− αξ|v < −κh(αξ).

It is easy to check that apart from the trivial case min(h(ξ), h(αξ)) ≤ h(α)

when h(ξ) ≤ 2H follows, we have

h(ξ)/2 ≤ h(αξ) ≤ 2h(ξ).

Hence, if ξ and αξ are not roots of unity, (4.5) and (4.2) can be deduced

from each other with κ replaced by κ/2. It follows from Bugeaud’s theorem

that if (4.2) holds with 0 < κ ≤ 1, then

(4.6) h(ξ) ≤

10T max(H, T ) if v is infinite,

8c3(d, κ)T max(H, 40T ) if v is finite,

where

c3(d, κ) =

8 · 1019 (d4(log 3d)7/κ) log∗(2d/κ) if v is infinite,

8 · 106 (d5/κ) (log∗(2d/κ))2 if v is finite,



10 A. BÉRCZES, J.-H. EVERTSE, AND K. GYŐRY

and

T = (2rc3(d, κ))rN(v)(log N(v))QG.

It is easily seen that the bound in (4.4) has a better dependence on each

parameter than the bound in (4.6), except possibly QG and H. In fact, the

bound in (4.6) is smaller than that in (4.4) precisely when both QG and

H · log QG/QG are large relative to N(v), d, r, t and κ, and in that case,

the bound (4.6) is at most a factor log QG better than (4.4).

Finally it should be observed, that in contrast with (4.6), our bound in

(4.4) contains only the factor tt, but not rr. Furthermore, if in particular

r = t and {ξ1, . . . , ξt} is a basis of G/Gtors, there is no factor tt at all in

our bound in (4.4). We note that in the general case, even the factor tt has

been removed from (4.4) by the second and third authors in a forthcoming

work.

5. Proofs of Theorems 4.1 and 4.2

We need several auxiliary results.

Keeping the notation of Section 4, let K be an algebraic number field of

degree d and assume that it is embedded in C. Let

(5.1) Λ = αb1
1 · · ·αbn

n − 1,

where α1, . . . , αn are n (≥ 2) non-zero elements of K, and b1, . . . , bn are

rational integers, not all zero. Put

B∗ = max{|b1|, . . . , |bn|}.

Let A1, . . . , An be reals with

(5.2) Ai ≥ max{dh(αi), π} (i = 1, . . . , n).

Theorem A. (Matveev [14]) Let n ≥ 2. Suppose that Λ 6= 0, bn = ±1, and

let B be a real number with

(5.3) B ≥ max

{
B∗, 2e max

(
nπ√

2
, A1, . . . , An−1

)
An

}
.

Then we have

(5.4) log |Λ| > −c1(n, d)A1 · · ·An log(B/(
√

2An)),
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where

c1(n, d) = min
{

1.451(30
√

2)n+4(n + 1)5.5, π26.5n+27
}

d2 log(ed).

Proof. This is a consequence of Corollary 2.3 of Matveev [14]; see Proposi-

tion 4 in Győry and Yu [13]. �

Let B and Bn be real numbers satisfying

(5.5) B ≥ max{|b1|, . . . , |bn|}, B ≥ Bn ≥ |bn|.

Denote by ℘ a prime ideal of the ring of integers OK and let e℘ and f℘ be

the ramification index and the residue class degree of ℘, respectively. Thus

N(℘) = pf℘ , where p is the prime number below ℘.

Theorem B. (Yu [22]) Let n ≥ 2. Assume that ordp bn ≤ ordp bi for

i = 1, . . . , n, and set

h′i = max{h(αi), 1/(16e
2d2)}, i = 1, . . . , n.

If Λ 6= 0, then for any real δ with 0 < δ ≤ 1/2 we have

(5.6)

ord℘ Λ ≤ c2(n, d)en
℘

N(℘)

(log N(℘))2
·

·max

{
h′1 · · ·h′n log(Mδ−1),

δB

Bnc3(n, d)

}
,

where

c2(n, d) =(16ed)2(n+1)n3/2 log(2nd) log(2d),

c3(n, d) =(2d)2n+1 log(2d) log3(3d),

and

M = Bnc4(n, d)N(℘)n+1h′1 . . . h′n−1,

with

c4(n, d) = 2e(n+1)(6n+5)d3n log(2d).

Proof. This is the second consequence of the Main Theorem in Yu [22]. �

The following theorem is a consequence of Theorems A and B.
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Theorem C. Let n ≥ 2 and v ∈ MK. Suppose that in (5.1) we have Λ 6= 0,

bn = ±1 and that α1, . . . , αn−1 are not roots of unity. Let

Qα := h(α1) · · ·h(αn−1), H := max(h(αn), 1).

If

(5.7) B ≥ max(|b1|, . . . , |bn−1|, 2e(3d)2nQαH),

then

(5.8) log |Λ|v > −c5(n, d)
N(v)

log N(v)
QαH log∗

(
BN(v)

H

)
,

where

c5(n, d) = λ(16ed)3n+2(log∗ d)2,

where λ = 1 or 12 according as n ≥ 3 or n = 2.

To deduce Theorem C from Theorems A and B, we need the following.

Lemma 5.1. (Voutier [21]). Suppose that α is a non-zero algebraic number

of degree d which is not a root of unity. Then

(5.9) dh(α) ≥

log 2 if d = 1,

2/(log 3d)3 if d ≥ 2.

Proof. For d ≥ 2 this is due to Voutier [21]. He showed also that for d ≥ 2

this lower bound may be replaced by (1/4)(log log d/ log d)3. �

Proof of Theorem C. First assume that v is infinite. We apply Theorem A

with Ai = max{dh(αi), π} for i = 1, . . . , n. Then using (5.9), it is easy to

see that

A1 · · ·An ≤ (2.52d)2nQαH.

Further, we have
√

2An > H/N(v) and

2e max

{
nπ√

2
, A1, . . . , An−1

}
An ≤ 2e(3d)2nQαH.

Now (5.7) implies (5.3), and (5.8) follows from the inequality (5.4) of The-

orem A.
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Next assume that v is finite. Keeping the notation of Theorem B and

using again (5.9), we infer that

h′i = h(αi) for i = 1, . . . , n− 1 h′n = h(αn).

Hence h′n = H if h(αn) ≥ 1 and H = 1 otherwise. Choosing δ = h′1 · · ·h′n/B
and Bn = 1 in Theorem B, (5.7) implies that δ ≤ 1

2
. Using the fact that

|Λ|v = N(℘)− ord℘ Λ, after some computation (5.8) follows from (5.6) of The-

orem B. �

Theorem 4.1 will be proved by combining Theorem C with the following

result from the geometry of numbers. Let t be a positive integer. A convex

distance function on Rt is a function f := Rt → R≥0 such that

f(x + y) ≤ f(x) + f(y) for x,y ∈ Rt,

f(λx) = |λ|f(x) for x ∈ Rt, λ ∈ R,

f(x) = 0 ⇐⇒ x = 0.

Lemma 5.2. Let f be a convex distance function on Rt. Let {a1, . . . ,at} be

any basis of Zt for which the product f(a1) · · · f(at) is minimal. Let x ∈ Zt

and suppose that x = b1a1 + · · ·+ btat with b1, . . . , bt ∈ Z. Then

(5.10) max(|b1|f(a1), . . . , |bt|f(at)) ≤ c6(t)f(x),

where c6(t) = t2t.

Remark. Schlickewei [19] proved that there exists a basis {a1, . . . , at} of Zt

satisfying (5.10) with 4t instead of c6(t), but it is not clear whether for this

basis, the product f(a1) · · · f(at) is minimal. In our proof of Theorem 4.1,

the minimality of f(a1) · · · f(at) is crucial, while an improvement of c6(t)

would have only little influence on the final result.

Proof. Let C = {x ∈ Rt : f(x) ≤ 1}. This is a compact, convex body

which is symmetric around 0. Let λ1, . . . , λt denote the successive minima

of C with respect to the lattice Zt. Since λ1 ≤ · · · ≤ λt, it follows from

a result of Mahler (see e.g. Cassels [9], pp. 135-136, Lemma 8) that there

exists a basis y1, . . . ,yt of Zt such that f(yi) ≤ max(1, i/2)λi. Together

with Minkowski’s theorem on successive minima, this gives

(5.11) f(a1) · · · f(at) ≤ f(y1) · · · f(yt) ≤ 2t! · Vol(C)−1,
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where Vol(C) denotes the volume of C.

By Jordan’s theorem or John’s Lemma (see e.g. Schmidt [20], pp. 87–

89) there is a t-dimensional ellipsoid E in Rt such that E ⊆ C ⊆ (
√

t)E.

Further, there is a t× t real non-singular matrix A such that E = {x ∈ Rt :

‖Ax‖ ≤ 1}, where ‖ · ‖ denotes the Euclidean norm. Thus

(5.12)
1√
t
‖Ax‖ ≤ f(x) ≤ ‖Ax‖ for x ∈ Rt.

Consequently,

(5.13) V (t)| det(A)|−1 ≤ Vol(C) ≤ tt/2V (t)| det(A)|−1,

where V (t) denotes the volume of the t-dimensional unit ball.

Now let x = b1a1 + · · · + btat with b1, . . . , bt ∈ Z. Then Ax = b1(Aa1) +

· · · + bt(Aat). Let B be the matrix with columns Aa1, . . . , Aat. Since

| det(a1, . . . , at)| = 1, we have | det(B)| = | det(A)|. By this fact, Cramer’s

rule and Hadamard’s inequality, we have for i = 1, . . . , t,

|bi| = |det(Aa1, . . . , Aai−1, Ax, Aai+1, . . . Aat)|
/
| det(B)|

≤ ‖Aa1‖ · · · ‖Aai−1‖ · ‖Ax‖ · ‖Aai+1‖ · · · ‖Aat‖
/
| det(A)|.

Together with (5.12), (5.11) and (5.13), this implies

|bi|f(ai) ≤ t(t−1)/2
(
f(a1) · · · f(at)/| det(A)|

)
f(x)

≤ t(t−1)/2 · 2t!V (t)−1f(x) for i = 1, . . . , t.

By inserting V (t) = πt/2/(t/2)! if t is even and V (t) = π(t−1)/2
/(

1
2
· 3

2
· · · t

2

)
if t is odd, we get the bound in (5.10). �

Lemma 5.3. Let G be a finitely generated multiplicative subgroup of K∗

of rank t > 0. Let δ1, . . . , δt ∈ G be multiplicatively independent such that

h(δ1) ≤ · · · ≤ h(δt). Then G/Gtors has a basis {γ1, . . . , γt} such that

(5.14) h(γi) ≤ max(1, i/2)h(δi) for i = 1, . . . , t.

Proof. Let {ρ1, . . . , ρt} be a basis for G/Gtors. Then we can write

δi = ζiρ
bi1
1 · · · ρbit

t , i = 1, . . . , t,

where ζi ∈ Gtors, and

b1 = (b11, . . . , b1t), . . . ,bt = (bt1, . . . , btt)
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are linearly independent vectors in Zt.

Let S ⊂ MK be minimal such that S contains all infinite places and

G ⊆ O∗
S. We define

f(x) :=
1

2

∑
v∈S

|x1 log |ρ1|v + · · ·+ xt log |ρt|v| ,

where x = (x1, . . . , xt) ∈ Rt. This is a convex distance function. Further,

by (3.2) we have

(5.15) f(bi) = h(δi) for i = 1, . . . , t.

Using again Mahler’s result mentioned above, we infer that there is a basis

ai = (ai1, . . . , ait) (i = 1, . . . , t) of Zt for which

(5.16) f(ai) ≤ max(1, i/2)f(bi) for i = 1, . . . , t.

Putting γi = ρai1
1 · · · ρait

t for i = 1, . . . , t, we infer that {γ1, . . . , γt} is a basis

for G/Gtors , which in view of (5.15), (5.16) satisfies (5.14). �

We first prove Theorem 4.1 and then Theorem 4.2.

Proof of Theorem 4.1. Since G has rank t > 0, there are t multiplicatively

independent elements among the generators ξ1, . . . , ξr, say ξ1, . . . , ξt. Then

by Lemma 5.1

(5.17) h(ξ1) · · ·h(ξt) ≤ c7(d)r−tQG,

where c7(d) = d
2
(log 3d)3 if d ≥ 2 and c7(d) = (log 2)−1 if d = 1. Let

δ1, . . . , δt be multiplicatively independent elements of G such that h(δ1) · · ·h(δt)

is minimal. Then

(5.18) h(δ1) · · ·h(δt) ≤ h(ξ1) · · ·h(ξt).

Further, by Lemma 5.3, G/Gtors has a basis {γ1, . . . , γt} such that

(5.19) h(γ1) · · ·h(γt) ≤ c8(t)h(δ1) · · ·h(δt),

with c8(t) := t!/2t−1. We may assume that {γ1, . . . , γt} is such a basis for

which h(γ1) · · ·h(γt) is minimal.

For ξ ∈ G, we can write

(5.20) ξ = ζγb1
1 · · · γbt

t ,
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where ζ ∈ Gtors and b = (b1, . . . , bt) ∈ Zt. As in the proof of Lemma 5.3,

consider the following convex distance function on Rt:

f(x) :=
1

2

∑
v∈S

|x1 log |γ1|v + · · ·+ xt log |γt|v| ,

where x = (x1, . . . , xt) ∈ Rt and S is the same as in the proof of Lemma

5.3. Then f(b) = h(ξ). Consider the standard basis a1 = (1, 0, . . . , 0),

a2 = (0, 1, 0, . . . , 0), . . ., at = (0, . . . , 0, 1) in Zt. Then

f(ai) = h(ξi) for i = 1, . . . , t,

and f(a1) · · · f(at) is minimal among the bases of Zt.

We can now apply Lemma 5.2 to this basis a1, . . . , at, and infer that

|bi|h(γi) = |bi|f(ai) ≤ c6(t)f(b) = c6(t)h(ξ), i = 1, . . . , t.

Together with Lemma 5.1 this gives

(5.21) max(|b1|, . . . , |bt|) ≤ c6(t)c7(d)h(ξ).

We apply now Theorem C with v ∈ S and with

Λ = 1− αξ = 1− α′γb1
1 · · · γbt

t ,

where α′ = ζα. Let Qγ := h(γ1) · · ·h(γt). First assume that

(5.22) c6(t)c7(d)h(ξ) ≥ 2e(3d)2(t+1)QγH.

Further suppose that

(5.23) h(ξ) ≥ (c6(t)c7(d))1/2 H.

Then putting B = c6(t)c7(d)h(ξ), it follows that

(5.24) log∗
(

BN(v)

H

)
≤ 3 log

(
h(ξ)N(v)

H

)
.

Together with (5.17), (5.18), (5.19) and (5.24), Theorem C gives (4.1) after

some computation.

Consider now the case when at least one of (5.22) and (5.23) does not

hold. We cover this remaining case by assuming that

h(ξ) <
1

2
c2(r, d, t)QGH
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with the c2(r, d, t) occurring in Theorem 4.1. By the product formula and

Liouville’s inequality we get

|1− αξ|v =
∏

w∈MK
w 6=v

|1− αξ|−1
w ≥ 1

2

∏
w∈MK

w 6=v

max(1, |αξ|w)−1

≥ 1

2
exp(−h(αξ)) ≥ 1

2
exp

(
−

(
H +

1

2
c2(r, d, t)QGH

))
,

whence (4.1) follows again.

Finally, assume that r = t and that {ξ1, . . . , ξt} is a basis of G/Gtors. We

may assume without loss of generality that QG = h(ξ1) · · ·h(ξt) is minimal

among all bases of G/Gtors. Then in our above proof we can choose γi = ξi

for i = 1, . . . , t and we do not need δ1, . . . , δt. This simplification in the

proof gives (4.1) with c2(d, t) in place of c2(r, d, t). �

Proof of Theorem 4.2. Together with the estimate (4.1) of Theorem 4.1,

(4.2) gives (4.3), and then (4.4) easily follows. �

6. Proof of Theorems 2.1, 2.2, 2.3 and 2.5

Taking as a starting point Theorem 4.2, we first deduce Theorem 2.2,

then Theorem 2.1, and from the latter Theorems 2.3 and 2.5.

Proof of Theorem 2.2. First suppose that a1, a2 ∈ K. Let (x1, x2) be a

solution of (2.4). Then (2.4) gives

(6.1) h(x1) ≤ 3H + h(x2) + log 2.

First assume that h(x2) < 4 · 102sH. Then (6.1) gives h(x1) ≤ 404sH,

whence h(x1)N/H ≤ 404sN . Using now the fact that the function X/ log X

is monotone increasing for X > e, (2.5) and (2.6) easily follow.

Now assume that

(6.2) h(x2) ≥ 4 · 102sH.

Choose v ∈ S for which |x2|v is minimal. Then we infer from (2.4) that

(6.3) log |1− a1x1|v = log |a2x2|v ≤ −1

s
h(x2) + H.
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Further, it follows from (6.1) and (6.2) that h(x1) ≤ 1.01h(x2). Hence we

get from (6.2) and (6.3) that

log |1− a1x1|v < −κh(x1)

with the choice κ = 1/(2.02s). By applying the estimate (4.3) of Theorem

4.2 we deduce (2.5) and subsequently we get for h(x1) the upper bound in

(2.6) with 6.5 replaced by 6.4. Finally, it follows from (2.4) that h(x2) ≤
3H + h(x1) + log 2, so we obtain (2.6) for h(x2) as well.

Now suppose that (a1, a2) 6∈ (K∗)2. Then we choose a nontrivial embed-

ding σ of the extension K0/K into C, where K0 = K(a1, a2). Then equation

(2.4) leads to

(6.4) σ(a1)x1 + σ(a2)x2 = 1.

Now expressing x1 and x2 by Cramer’s rule from the system consisting of

(2.4) and (6.4) we get an estimate for h(x1) and h(x2) which is much sharper

than (2.5) and (2.6). �

Proof of Theorem 2.1. Suppose that ξ1, . . . , ξr generate a multiplicative sub-

group, say G, of Q∗
of rank t > 0. Clearly G is contained in K∗. We may

assume that ξ1, . . . , ξr′ are not roots of unity. Then t ≤ r′ ≤ r and ξ1, . . . , ξr′

is a system of generators of G/Gtors. By the assumption made on w1, . . . ,wr,

ηr′+1, . . . , ηr are not roots of unity. Put

QG := h(ξ1) · · ·h(ξr′).

Using Lemma 5.1 we infer that

(6.5) QG ≤ c7(d)r−r′QΓ,

where c7(d) = (1/2)d(log 3d)3 if d ≥ 2 and c7(d) = (log 2)−1 if d = 1.

Let (x1, x2) be a solution of (1.1). Then x1 ∈ G and x2 ∈ O∗
S. We can

now apply Theorem 2.2 to this solution and we obtain (2.6) with r replaced

by r′. Using r′ ≤ r, (6.5) and

h(x1, x2) ≤ h(x1) + h(x2),

(2.3) easily follows from (2.6). �

In the proofs of Theorems 2.3 and 2.5 we need the following lemma.



LINEAR EQUATIONS OVER MULTIPLICATIVE DIVISION GROUPS 19

Lemma 6.1. (Beukers and Zagier). Let (b1, b2) ∈ (Q∗
)2, and let (xi1, xi2)

(i = 1, 2, 3) be points in (Q∗
)2 with b1xi1 + b2xi2 = 1 for i = 1, 2, 3. Then

we have

(6.6)
3∑

i=1

h(xi1, xi2) ≥ 0.09.

Proof. By Corollary 2.4 in [2] we have
∑3

i=1 h(xi1, xi2) ≥ log ρ, where ρ

denotes the real root of ρ−6 + 1
2
ρ−2 = 1 which is larger than 1. We have

log ρ ≥ 0.09. �

The proofs of Theorems 2.3 and 2.5 are very similar. We work out the

proof of Theorem 2.5 in detail, and then indicate which changes have to be

made to obtain Theorem 2.3.

Proof of Theorem 2.5. Fix a solution (x1, x2) of equation (2.15). Since

(x1, x2) ∈ C(Γ, ε) we can write

(x1, x2) = (y1, y2)(z1, z2) with(6.7)

(y1, y2) ∈ Γ, h(z1, z2) < ε(1 + h(y1, y2)).

Further, we can write

(y1, y2) = (y′1, y
′
2)(w1, w2) with(6.8)

(y′1, y
′
2) ∈ Γ,

(w1, w2) =
r∏

i=1

(ξi, ηi)
γi with γi ∈ Q, |γi| ≤

1

2
(i = 1, . . . , r).

(Note that w1, w2 are defined up to roots of unity.) Thus we have

(6.9) h(w1, w2) ≤
r∑

i=1

|γi|h(ξi, ηi) ≤ rh0.

Write

(6.10) (a′1, a
′
2) := (a1, a2)(w1, w2)(z1, z2).

Then by (6.9), (6.7),

h(a′1, a
′
2) ≤ h(a1, a2) + rh0 + ε(1 + h(y1, y2))
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which leads to

(6.11) h(a′1, a
′
2) ≤ h(a1, a2) + rh0 + ε(1 + h(y′1, y

′
2) + rh0).

Further, equation (2.15) can be written in the form

(6.12) a′1y
′
1 + a′2y

′
2 = 1 in (y′1, y

′
2) ∈ Γ.

Using Theorem 2.1 we get

(6.13) h(y′1, y
′
2) ≤ A max{h(a′1, a

′
2), 1}

where A is the constant defined in (2.2). Notice that this constant does not

depend on the field generated by a′1, a
′
2. Further, using (6.11) we get

h(y′1, y
′
2) ≤ Ah(a1, a2) + rh0A + εA + εAh(y′1, y

′
2) + rh0εA.

Since in view of (2.16) we have ε < 1
2A

we obtain

(6.14) h(y′1, y
′
2) ≤ 2Ah(a1, a2) + (1 + 2Arh0 + rh0).

Now by

(6.15) h(y1, y2) ≤ h(y′1, y
′
2)+h(w1, w2) ≤ 2Ah(a1, a2)+ (1+2Arh0 +2rh0)

and

h(x1, x2) ≤ h(y1, y2) + ε(1 + h(y1, y2)) ≤ (ε + 1)h(y1, y2) + ε

we get

(6.16) h(x1, x2) ≤ 3Ah(a1, a2) + 5Arh0

which proves assertion (2.17) of our Theorem 2.5.

Now we have to prove the explicit upper bound on [K0(x1, x2) : K0],

where (x1, x2) is any solution of (2.15). and K0 is the field generated by Γ,

a1, a2. Let us fix such a solution. Choose (y1, y2), (z1, z2) as in (6.7) and

then (y′1, y
′
2), (w1, w2) as in (6.8). Finally, define (a′1, a

′
2) by (6.10). Define

the field L := K0(a
′
1, a

′
2). We first prove that [L : K0] ≤ 2.

Assume that this is false, that is, [L : K0] ≥ 3. Then there are at least

3 distinct embeddings of L to C which leave fixed the field K0, call them

σ1, σ2, σ3. We consider again equation (6.12). Since (y′1, y
′
2) ∈ Γ ⊂ (K∗

0)2

we have

σi(a
′
1)y

′
1 + σi(a

′
2)y

′
2 = 1 for i = 1, 2, 3.
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This means that the equation

(a′1y
′
1)X + (a′2y

′
2)Y = 1 in (X, Y ) ∈ (Q∗

)2

has at least 3 distinct solutions, namely
(

σi(a
′
1)

a′1
,

σi(a
′
2)

a′2

)
(i = 1, 2, 3). Now

using Lemma 6.1 we know that

(6.17)
3∑

i=1

h

(
σi(a

′
1)

a′1
,
σi(a

′
2)

a′2

)
≥ 0.09.

On the other hand by (6.10) we have for any embedding σ : L → C,(
σ(a′1)

a′1
,
σ(a′2)

a′2

)
=

(
σ(a1)

a1

,
σ(a2)

a2

) (
σ(w1)

w1

,
σ(w2)

w2

) (
σ(z1)

z1

,
σ(z2)

z2

)
.

However, a1, a2 ∈ K0. Further, (w1, w2) ∈ Γ, hence there exists a positive

integer m such that (w1, w2)
m ∈ Γ. This means that

(
σ(w1)

w1

)m

= 1 and(
σ(w2)

w2

)m

= 1. Thus we see that there exist roots of unity ζ1, ζ2 such that

σ(w1) = ζ1w1 and σ(w2) = ζ2w2. So(
σ(a′1)

a′1
,
σ(a′2)

a′2

)
= (ζ1, ζ2)

(
σ(z1)

z1

,
σ(z2)

z2

)
and together with (x1, x2) ∈ C(Γ, ε) and (6.15),

(6.18)

h

(
σ(a′1)

a′1
,
σ(a′2)

a′2

)
≤ 2h(z1, z2) ≤ 2ε(1 + h(y1, y2)))

≤ 2ε(2Ah(a1, a2) + (1 + 2Arh0 + 2rh0))

≤ 2ε(2Ah(a1, a2) + 5Arh0).

This shows that

(6.19)
3∑

i=1

h

(
σi(a

′
1)

a′1
,
σi(a

′
2)

a′2

)
< 4ε(2Ah(a1, a2) + 5Arh0) < 0.09,

and this contradicts (6.17). Thus, we have proved that [L : K0] ≤ 2.

In view of y′1, y
′
2 ∈ K0 this shows that [K0(a

′
1y

′
1, a

′
2y

′
2) : K0] ≤ 2, conse-

quently, [K0(a1x1, a2x2) : K0] ≤ 2 and finally, using that a1, a2 ∈ K0 we get

[K0(x1, x2) : K0] ≤ 2.

�
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Proof of Theorem 2.3. The proof of Theorem 2.3 is completely similar to

the proof of Theorem 2.5. The only difference is that the estimate (6.7)

for h(z1, z2) has to be replaced by h(z1, z2) < ε. This slightly modifies the

estimates in the proof of Theorem 2.5 and instead of (6.14) we get

h(y′1, y
′
2) ≤ Ah(a1, a2) + A(ε + rh0).

This in turn (instead of (6.16)) leads to the estimate

h(x1, x2) ≤ Ah(a1, a2) + 3Arh0,

and this proves the assertion (2.12). In order to prove (2.13) we proceed in

precisely the same way as we did it for proving (2.18) in Theorem 2.5. The

only difference is that instead of (6.18) we have

h

(
σ(a′1)

a′1
,
σ(a′2)

a′2

)
≤ 2h(z1, z2) ≤ 2ε

which using now (2.11) leads to the same contradiction (6.19). Thus, (2.13)

follows. �
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