LINEAR EQUATIONS WITH UNKNOWNS FROM A MULTIPLICATIVE GROUP WHOSE SOLUTIONS LIE IN A SMALL NUMBER OF SUBSPACES

JAN-HENDRIK EVERTSE

Abstract

Let K be a field of characteristic 0 and let $\left(K^{*}\right)^{n}$ denote the n-fold cartesian product of K^{*}, endowed with coordinatewise multiplication. Let Γ be a subgroup of $\left(K^{*}\right)^{n}$ of finite rank. We consider equations $\left(^{*}\right) a_{1} x_{1}+\cdots+a_{n} x_{n}=1$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Gamma$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$. Two tuples $\mathbf{a}, \mathbf{b} \in\left(K^{*}\right)^{n}$ are called Γ-equivalent if there is a $\mathbf{u} \in \Gamma$ such that $\mathbf{b}=\mathbf{u} \cdot \mathbf{a}$. Györy and the author [4] showed that for all but finitely many Γ-equivalence classes of tuples $\mathbf{a} \in\left(K^{*}\right)^{n}$, the set of solutions of $\left(^{*}\right)$ is contained in the union of not more than $2^{(n+1)!}$ proper linear subspaces of K^{n}. Later, this was improved by the author [3] to $(n!)^{2 n+2}$. In the present paper we will show that for all but finitely many Γ-equivalence classes of tuples of coefficients, the set of non-degenerate solutions of $\left({ }^{*}\right)$ (i.e., with non-vanishing subsums) is contained in the union of not more than 2^{n} proper linear subspaces of K^{n}. Further we give an example showing that 2^{n} cannot be replaced by a quantity smaller than n.

2000 Mathematics Subject Classification: 11D61.
Key words and phrases: Exponential equations, linear equations with unknowns from a multiplicative group.

1. Introduction

Let K be a field of characteristic 0 . Denote by $\left(K^{*}\right)^{n}$ the n-fold direct product of the multiplicative group K^{*}. The group operation of $\left(K^{*}\right)^{n}$ is coordinatewise multiplication, i.e., if $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in\left(K^{*}\right)^{n}$, then $\mathbf{x} \cdot \mathbf{y}=$ $\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$. A subgroup Γ of $\left(K^{*}\right)^{n}$ is said to be of finite rank if there are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r} \in \Gamma$ with the property that for every $\mathbf{x} \in \Gamma$ there are $z \in \mathbb{Z}_{>0}$ and $z_{1}, \ldots, z_{r} \in \mathbb{Z}$ such that $\mathbf{x}^{z}=\mathbf{u}_{1}^{z_{1}} \cdots \mathbf{u}_{r}^{z_{r}}$. The smallest r for which such $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$
exist is called the rank of Γ; the rank of Γ is equal to 0 if all elements of Γ have finite order.

For the moment, let $n=2$. We consider the equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}=1 \quad \text { in } \mathbf{x}=\left(x_{1}, x_{2}\right) \in \Gamma, \tag{1.1}
\end{equation*}
$$

where $\mathbf{a}=\left(a_{1}, a_{2}\right) \in\left(K^{*}\right)^{2}$ and where Γ is a subgroup of $\left(K^{*}\right)^{2}$ of finite rank r. In 1996, Beukers and Schlickewei [2] showed that (1.1) has at most $2^{8(r+2)}$ solutions.

Two pairs $\mathbf{a}=\left(a_{1}, a_{2}\right), \mathbf{b}=\left(b_{1}, b_{2}\right)$ are called Γ-equivalent if there is an $\mathbf{u} \in \Gamma$ such that $\mathbf{b}=\mathbf{u} \cdot \mathbf{a}$. Clearly, two equations (1.1) with Γ-equivalent pairs of coefficients a have the same number of solutions. In 1988, Győry, Stewart, Tijdeman and the author [5] showed that there is a finite number of Γ-equivalence classes, such that for all tuples $\mathbf{a}=\left(a_{1}, a_{2}\right)$ outside the union of these classes, equation (1.1) has at most two solutions. (In fact they considered only groups $\Gamma=U_{S} \times U_{S}$ where U_{S} is the group of S-units in a number field, but their argument works in precisely the same way for the general case.) The upper bound 2 is best possible. We mention that this result is ineffective in that the method of proof does not allow to determine the exceptional equivalence classes. Bérczes [1, Lemma 3] calculated the upper bound $2 e^{30^{20}(r+2)}$ for the number of exceptional equivalence classes.

Now let $n \geqslant 3$. We deal with equations

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Gamma \tag{1.2}
\end{equation*}
$$

where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ and where Γ is a subgroup of $\left(K^{*}\right)^{n}$ of finite rank r. A solution \mathbf{x} of (1.2) is called non-degenerate if

$$
\begin{equation*}
\sum_{i \in I} a_{i} x_{i} \neq 0 \quad \text { for each non-empty subset } I \text { of }\{1, \ldots, r\} \tag{1.3}
\end{equation*}
$$

It is easy to show that there are groups Γ such that any degenerate solution of (1.2) gives rise to an infinite set of solutions. Schlickewei, Schmidt and the author [6] showed that equation (1.2) has at most $e^{(6 n)^{3 n}(r+1)}$ non-degenerate solutions. Their proof was based on a version of the quantitative Subspace Theorem, i.e., on the Thue-Siegel-Roth-Schmidt method. Recently, by a very different approach based on a method of Vojta and Faltings, Rémond [8] proved a general quantitative result for subvarieties of tori, which includes as a special case that for $n \geqslant 3$ equation (1.2) has at most $2^{n^{4 n^{2}}(r+1)}$ non-degenerate solutions.

Two tuples $\mathbf{a}, \mathbf{b} \in\left(K^{*}\right)^{n}$ are called Γ-equivalent if $\mathbf{b}=\mathbf{u} \cdot \mathbf{a}$ for some $\mathbf{u} \in \Gamma$. Győry, Stewart, Tijdeman and the author [5] showed that for every sufficiently large r, there are a subgroup Γ of $\left(\mathbb{Q}^{*}\right)^{n}$ of rank r, and infinitely many Γ-equivalence classes of tuples $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{Q}^{*}\right)^{n}$, such that equation (1.2) has at least $e^{2 r^{1 / 2}(\log r)^{-1 / 2}}$ non-degenerate solutions. This shows that in contrast to the case $n=2$, for $n \geqslant 3$ there is no uniform bound C independent of Γ such that for all tuples a outside finitely many Γ-equivalence classes the number of non-degenerate solutions of (1.2) is at most C.

It turned out to be more natural to consider the minimal number m such that the set of solutions of (1.2) can be contained in the union of m proper linear subspaces of K^{n}. Notice that this minimal number m does not change if \mathbf{a} is replaced by a「-equivalent tuple. In 1988 Győry and the author [4] showed that if K is a number field and $\Gamma=U_{S}^{n}$, i.e., the n-fold direct product of the group of S-units in K, then there are finitely many Γ-equivalence classes C_{1}, \ldots, C_{t} such that for every tuple $\mathbf{a} \in\left(K^{*}\right)^{n} \backslash\left(C_{1} \cup \cdots \cup C_{t}\right)$ the set of solutions of (1.2) is contained in the union of not more than $2^{(n+1)!}$ proper linear subspaces of K^{n}. This was improved by the author [3, Thm. 8] to $(n!)^{2 n+2}$. Both the proofs of Győry and the author and that of the author can be extended easily to arbitrary fields K of characteristic 0 and arbitrary subgroups Γ of $\left(K^{*}\right)^{n}$ of finite rank.

For certain special groups Γ, Schlickewei and Viola [9, Corollary 2] improved the author's bound to $\binom{2 n+1}{n}-n^{2}-n-2$. In fact, their result is valid for rank one groups $\Gamma=\left\{\left(\alpha_{1}^{z}, \ldots, \alpha_{n}^{z}\right): z \in \mathbb{Z}\right\}$, where $\alpha_{1}, \ldots, \alpha_{n}$ are non-zero elements of a field K of characteristic 0 such that neither $\alpha_{1}, \ldots, \alpha_{n}$, nor any of the quotients α_{i} / α_{j} $(0 \leqslant i<j \leqslant n)$ is a root of unity.

In the present paper we deduce a further improvement for the general equation (1.2).

Theorem. Let K be a field of characteristic 0 , let $n \geqslant 3$, and let Γ be a subgroup of $\left(K^{*}\right)^{n}$ of finite rank. Then there are finitely many Γ-equivalence classes C_{1}, \ldots, C_{t} of tuples in $\left(K^{*}\right)^{n}$, such that for every $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n} \backslash\left(C_{1} \cup \cdots \cup C_{t}\right)$, the set of non-degenerate solutions of

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Gamma \tag{1.2}
\end{equation*}
$$

is contained in the union of not more than 2^{n} proper linear subspaces of K^{n}.

We mention that the set of degenerate solutions of (1.2) is contained in the union of at most $2^{n}-n-2$ proper linear subspaces of K^{n}, each defined by a vanishing subsum $\sum_{i \in I} a_{i} x_{i}=0$ where I is a subset of $\{1, \ldots, n\}$ of cardinality $\neq 0,1, n$. So for $\mathbf{a} \notin C_{1} \cup \cdots \cup C_{t}$, the set of (either degenerate or non-degenerate) solutions of (1.2) is contained in the union of at most $2^{n+1}-n-2$ proper linear subspaces of K^{n}.

Our main tool is a qualitative finiteness result due to Laurent [7] for the number of non-degenerate solutions in Γ of a system of polynomial equations (or rather for the number of non-degenerate points in $X \cap \Gamma$ where X is an algebraic subvariety of the n-dimensional linear torus). Recently, Rémond [8] established for $K=\overline{\mathbb{Q}}$ an explicit upper bound for the number of these non-degenerate solutions. Using the latter, it is possible to compute a (very large) explicit upper bound for the number t of exceptional equivalence classes, depending on n and the rank r of Γ. We have not worked this out.

In Section 2 we recall Laurent's result. In Section 3 we prove our Theorem. In Section 4 we give an example showing that our bound 2^{n} cannot be improved to a quantity smaller than n.

2. Polynomial equations

Let as before K be a field of characteristic 0 , let $n \geqslant 2$, and let $f_{1}, \ldots, f_{R} \in$ $K\left[X_{1}, \ldots, X_{n}\right]$ be non-zero polynomials. Further, let Γ be a subgroup of $\left(K^{*}\right)^{n}$ of finite rank. We consider the system of equations

$$
\begin{equation*}
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0 \quad(i=1, \ldots, R) \quad \text { in } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Gamma \tag{2.1}
\end{equation*}
$$

Let λ be an auxiliary variable. A solution $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of system (2.1) is called degenerate if there are integers c_{1}, \ldots, c_{n} with $\operatorname{gcd}\left(c_{1}, \ldots, c_{n}\right)=1$ such that

$$
\begin{equation*}
f_{i}\left(\lambda^{c_{1}} x_{1}, \ldots, \lambda^{c_{n}} x_{n}\right)=0 \text { identically in } \lambda \text { for } i=1, \ldots, R \tag{2.2}
\end{equation*}
$$

(meaning that by expanding the expressions, we get linear combinations of different powers of λ, all of whose coefficients are 0). Otherwise, the solution \mathbf{x} is called non-degenerate.

Proposition 2.1. System (2.1) has only finitely many non-degenerate solutions.

Proof. Without loss of generality we may assume that K is algebraically closed. Let X denote the set of points $\mathbf{x} \in\left(K^{*}\right)^{n}$ with $f_{i}(\mathbf{x})=0$ for $i=1, \ldots, R$. By a result of Laurent [7, Théorème 2], the set of solutions $\mathbf{x} \in \Gamma$ of (2.1) is contained in the union of finitely many "families" $\mathbf{x} H=\{\mathbf{x} \cdot \mathbf{y}: \mathbf{y} \in H\}$, where $\mathbf{x} \in \Gamma$ and where H is an irreducible algebraic subgroup of $\left(K^{*}\right)^{n}$ such that $\mathbf{x} H \subset X .{ }^{1}$

Consider a family $\mathbf{x} H$ with $\mathbf{x} \in \Gamma, \mathbf{x} H \subset X, \operatorname{dim} H>0$. Pick a one-dimensional irreducible algebraic group $H_{0} \subset H$. There are integers c_{1}, \ldots, c_{n} with $\operatorname{gcd}\left(c_{1}, \ldots, c_{n}\right)$ $=1$ such that $H_{0}=\left\{\left(\lambda^{c_{1}}, \ldots, \lambda^{c_{n}}\right): \lambda \in K^{*}\right\}$. Then $\mathbf{x} H_{0}=\left\{\left(x_{0} \lambda^{c_{0}}, \ldots, x_{n} \lambda^{c_{n}}\right)\right.$: $\left.\lambda \in K^{*}\right\} \subset \mathbf{x} H \subset X$, and the latter implies (2.2). Conversely, if \mathbf{x} satisfies (2.2) then $\mathbf{x} H_{0} \subset X$. Therefore, the solutions of (2.1) contained in families $\mathbf{x} H$ with $\operatorname{dim} H>0$ are precisely the degenerate solutions of (2.1). Each of the remaining families $\mathbf{x} H$, i.e., with $\operatorname{dim} H=0$ consists of a single solution \mathbf{x} since $H=\{(1, \ldots, 1)\}$. It follows that system (2.1) has at most finitely many non-degenerate solutions.

3. Proof of the Theorem

Let again K be a field of characteristic 0 , let $n \geqslant 3$, and let Γ a subgroup of $\left(K^{*}\right)^{n}$ of finite rank. Further, let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$. We deal with

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Gamma \tag{1.2}
\end{equation*}
$$

Assume that (1.2) has a non-degenerate solution. By replacing a by a Γ-equivalent tuple we may assume that $\mathbf{1}=(1, \ldots, 1)$ is a non-degenerate solution of (1.2). This means that

$$
\left\{\begin{array}{l}
a_{1}+\cdots+a_{n}=1 \tag{3.1}\\
\sum_{i \in I} a_{i} \neq 0 \text { for each non-empty subset } I \text { of }\{1, \ldots, n\}
\end{array}\right.
$$

We will show that there is a finite set of tuples a with (3.1) such that for each $\mathbf{a} \in\left(K^{*}\right)^{n}$ outside this set, the set of non-degenerate solutions of (1.2) is contained in the union of not more than 2^{n} proper linear subspaces of K^{n}. This clearly suffices to prove our Theorem.

[^0]By the result of Schlickewei, Schmidt and the author or that of Rémond mentioned in Section 1, there is a finite bound N independent of a such that equation (1.2) has at most N non-degenerate solutions. (In fact, already Győry and the author [4] proved the existence of such a bound but their method did not allow to compute it explicitly).

For every tuple a with (3.1), we make a sequence $\mathbf{x}_{1}=\mathbf{1}, \mathbf{x}_{2}=\left(x_{21}, \ldots, x_{2 n}\right), \ldots$, $\mathbf{x}_{N}=\left(x_{N 1}, \ldots, x_{N n}\right)$ such that each term \mathbf{x}_{i} is a non-degenerate solution of (1.2) and such that each non-degenerate solution of (1.2) occurs at least once in the sequence. Then

$$
\operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \tag{3.2}\\
x_{21} & \cdots & x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
\vdots & & \vdots & \vdots \\
x_{N, 1} & \cdots & x_{N, n} & 1
\end{array}\right) \leqslant n
$$

since the matrix has $n+1$ linearly dependent columns. Relation (3.2) means that the determinants of all $(n+1) \times(n+1)$-submatrices of the matrix on the left-hand side are 0 . Thus, we may view (3.2) as a system of polynomial equations of the shape (2.1), to be solved in $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \in \Gamma^{N-1}$. It is important to notice that this system is independent of a.

The tuples a with (3.1) are now divided into three classes:
Class I consists of those tuples a such that $\operatorname{rank}\left\{\mathbf{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\}=n$ and such that $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$ is a non-degenerate solution in Γ^{N-1} of system (3.2).

Class II consists of those tuples a such that rank $\left\{\mathbf{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\}<n$.
Class III consists of those tuples a such that $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$ is a degenerate solution in Γ^{N-1} of system (3.2).

First let a be a tuple of Class I. By Proposition 2.1, $\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$ belongs to a finite set which is independent of \mathbf{a}. Now $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is a solution of the system of linear equations $a_{1}+\cdots+a_{n}=1, x_{i 1} a_{1}+\cdots+x_{i n} a_{n}=1(i=2, \ldots, N)$. Since by assumption, $\operatorname{rank}\left\{\mathbf{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\}=n$, the tuple \mathbf{a} is uniquely determined by $\mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$. So Class I is finite.

For tuples a from Class II, all non-degenerate solutions of (1.2) lie in a single proper subspace of K^{n}.

Now let a be from Class III. In view of (2.2) this means that there are integers $c_{i j}$ $(i=2, \ldots, N, j=1, \ldots, n)$, with $\operatorname{gcd}\left(c_{i j}: i=2, \ldots, N, j=1, \ldots, n\right)=1$, such that

$$
\operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
\lambda^{c_{21}} x_{21} & \cdots & \lambda^{c_{2 n}} x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
\vdots & & \vdots & \vdots \\
\lambda^{c_{N, 1}} x_{N, 1} & \cdots & \lambda^{c_{N, n}} x_{N, n} & 1
\end{array}\right) \leqslant n
$$

identically in λ, meaning that the determinants of the $(n+1) \times(n+1)$-submatrices of the left-hand side are identically zero in λ.

This implies that there are rational functions $b_{j}(\lambda) \in K(\lambda)(j=0, \ldots, n)$, not all equal to 0 , such that

$$
\begin{equation*}
\sum_{j=1}^{n} b_{j}(\lambda)=b_{0}(\lambda), \quad \sum_{j=1}^{n} b_{j}(\lambda) \lambda^{c_{i j}} x_{i j}=b_{0}(\lambda) \quad(i=2, \ldots, N) \tag{3.3}
\end{equation*}
$$

By clearing denominators, we may assume that $b_{0}(\lambda), \ldots, b_{n}(\lambda)$ are polynomials in $K[\lambda]$ without a common zero.
We substitute $\lambda=-1$. Put $b_{j}:=b_{j}(-1)(j=0, \ldots, n)$ and $\varepsilon_{i j}:=(-1)^{c_{i j}}$ $(i=2, \ldots, N, j=1, \ldots, n)$. Then $\left(b_{0}, \ldots, b_{n}\right) \neq(0, \ldots, 0)$, and the numbers $\varepsilon_{i j}$ are not all equal to 1 since the integers $c_{i j}$ are not all even. Further, by (3.3) we have

$$
\left\{\begin{array}{l}
b_{1}+\cdots+b_{n}=b_{0}, \tag{3.4}\\
b_{1} \varepsilon_{i 1} x_{i 1}+\cdots+b_{n} \varepsilon_{i n} x_{i n}=b_{0} \quad \text { for } i=2, \ldots, N
\end{array}\right.
$$

We claim that for each tuple $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n}$, the tuple $\left(b_{1} \varepsilon_{1}, \ldots, b_{n} \varepsilon_{n}, b_{0}\right)$ is not proportional to $\left(a_{1}, \ldots, a_{n}, 1\right)$. Assuming this to be true, it follows from (3.4) that the set of non-degenerate solutions of (1.2) is contained in the union of at most 2^{n} proper linear subspaces of K^{n}, each given by

$$
b_{0}\left(\sum_{j=1}^{n} a_{j} x_{j}\right)-\sum_{j=1}^{n} b_{j} \varepsilon_{j} x_{j}=0
$$

for certain $\varepsilon_{j} \in\{-1,1\}(j=1, \ldots, n)$.

We prove our claim. First suppose that the tuple $\left(b_{1}, \ldots, b_{n}, b_{0}\right)$ is proportional to $\left(a_{1}, \ldots, a_{n}, 1\right)$. There are $i \in\{2, \ldots, N\}, j \in\{1, \ldots, n\}$ such that $\varepsilon_{i j}=-1$. Now \mathbf{x}_{i} satisfies both $\sum_{j=1}^{n} a_{j} x_{i j}=1$ (since it is a solution of (1.2)) and $\sum_{j=1}^{n} a_{j} \varepsilon_{i j} x_{i j}=1$ (by (3.4)). But then by subtracting we obtain $\sum_{j \in J} a_{j} x_{i j}=0$, where J is the set of indices j with $\varepsilon_{i j}=-1$. This is impossible since \mathbf{x}_{i} is a non-degenerate solution of (1.2).

Now suppose that $\left(b_{1} \varepsilon_{1}, \ldots, b_{n} \varepsilon_{n}, b_{0}\right)$ is proportional to $\left(a_{1}, \ldots, a_{n}, 1\right)$ for certain $\varepsilon_{j} \in\{-1,1\}$, not all equal to 1 . Then by (3.1) and (3.4) we have $\sum_{j=1}^{n} a_{j}=1$, $\sum_{j=1}^{n} a_{j} \varepsilon_{j}=1$. Again by subtracting, we obtain $\sum_{j \in J} a_{j}=0$ where J is the set of indices j with $\varepsilon_{j}=-1$ and this is contradictory to (3.1). This proves our claim.

Summarizing, we have proved that Class I is finite, that for every a in Class II, all solutions of (1.2) lie in a single proper linear subspace of K^{n}, and that for every a in Class III, the solutions of (1.2) lie in the union of 2^{n} proper linear subspaces of K^{n}. Our Theorem follows.

4. Equations whose solutions lie in many subspaces

We give an example of a group Γ with the property that there are infinitely many Γ-equivalence classes of tuples $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ such that the set of non-degenerate solutions of (1.2) cannot be covered by fewer than n proper linear subspaces of K^{n}.

Let K be a field of characteristic 0 , let $n \geqslant 2$, and let Γ_{1} be an infinite subgroup of K^{*} of finite rank. Take $\Gamma:=\Gamma_{1}^{n}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \Gamma_{1}\right.$ for $\left.i=1, \ldots, n\right\}$. Then Γ is a subgroup of $\left(K^{*}\right)^{n}$ of finite rank.

Pick $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \Gamma$ with $b:=u_{1}+\cdots+u_{n} \neq 0$ and with $\sum_{i \in I} u_{i} \neq 0$ for each non-empty subset I of $\{1, \ldots, n\}$. Let S_{n} denote the group of permutations of $\{1, \ldots, n\}$. For $\sigma \in S_{n}$ write $\mathbf{u}_{\sigma}:=\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right)$. Then $\mathbf{u}_{\sigma}\left(\sigma \in S_{n}\right)$ are non-degenerate solutions of

$$
\begin{equation*}
b^{-1} x_{1}+\cdots+b^{-1} x_{n}=1 \quad \text { in } \mathbf{x} \in \Gamma \tag{4.1}
\end{equation*}
$$

For $i=1, \ldots, n$, the points \mathbf{u}_{σ} with $\sigma(n)=i$ lie in the subspace given by

$$
u_{i}\left(x_{1}+\cdots+x_{n-1}\right)-\left(b-u_{i}\right) x_{n}=0 .
$$

Therefore, for fixed \mathbf{u}, the set $\left\{\mathbf{u}_{\sigma}: \sigma \in S_{n}\right\}$ can be covered by n subspaces. We show that for "sufficiently general" \mathbf{u}, this set cannot be covered by fewer than n subspaces.

We need some auxiliary results.
Lemma 4.1. Let $n \geqslant 2$ and let S be a subset of S_{n} of cardinality $>(n-1)$!. Then there are $\sigma_{1}, \ldots, \sigma_{n} \in S$ such that the polynomial

$$
F_{\sigma_{1}, \ldots, \sigma_{n}}\left(X_{1}, \ldots, X_{n}\right):=\left|\begin{array}{ccc}
X_{\sigma_{1}(1)} & \cdots & X_{\sigma_{1}(n)} \tag{4.2}\\
X_{\sigma_{2}(1)} & \cdots & X_{\sigma_{2}(n)} \\
\vdots & & \vdots \\
X_{\sigma_{n}(1)} & \cdots & X_{\sigma_{n}(n)}
\end{array}\right|
$$

is not identically zero.
Proof. We proceed by induction on n. For $n=2$ the lemma is trivial. Assume that $n \geqslant 3$.

First assume there are $i, j \in\{1, \ldots, n\}$ such that the set $S_{i j}=\{\sigma \in S: \sigma(i)=j\}$ has cardinality $>(n-2)!$. Then after a suitable permutation of the columns of the determinant of (4.2) and a permutation of the variables X_{1}, \ldots, X_{n}, we obtain that $S_{n n}$ has cardinality $>(n-2)!$. The elements of $S_{n n}$ permute $1, \ldots, n-1$. Therefore, by the induction hypothesis, there are $\sigma_{1}, \ldots, \sigma_{n-1} \in S_{n n}$ such that the polynomial

$$
G\left(X_{1}, \ldots, X_{n-1}\right):=\left|\begin{array}{ccc}
X_{\sigma_{1}(1)} & \cdots & X_{\sigma_{1}(n-1)} \\
\vdots & & \vdots \\
X_{\sigma_{n-1}(1)} & \cdots & X_{\sigma_{n-1}(n-1)}
\end{array}\right|
$$

is not identically zero. Since $S_{n n}$ has cardinality $\leqslant(n-1)$!, there is a $\sigma_{n} \in S$ with $\sigma_{n}(n)=k \neq n$. Therefore,

$$
F_{\sigma_{1}, \ldots, \sigma_{n}}\left(X_{1}, \ldots, X_{n-1}, 0\right)= \pm X_{k} \cdot G\left(X_{1}, \ldots, X_{n-1}\right) \neq 0
$$

So in particular, $F_{\sigma_{1}, \ldots, \sigma_{n}}$ is not identically zero.
Now suppose that for each pair $i, j \in\{1, \ldots, n\}$ the set $S_{i j}$ has cardinality $\leqslant(n-2)!$. Together with our assumption that S has cardinality $>(n-1)$!, this implies that $S_{i j} \neq \emptyset$ for $i, j \in\{1, \ldots, n\}$. Thus, we may pick $\sigma_{1} \in S$ with $\sigma_{1}(1)=1$, $\sigma_{2} \in S$ with $\sigma_{2}(2)=1, \ldots, \sigma_{n} \in S$ with $\sigma_{n}(n)=1$. Then $F_{\sigma_{1}, \ldots, \sigma_{n}}(1,0, \ldots, 0)=1$, hence $F_{\sigma_{1}, \ldots, \sigma_{n}}$ is not identically zero.

Let T denote the collection of tuples $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ in S_{n} for which $F_{\sigma_{1}, \ldots, \sigma_{n}}$ is not identically 0 . Let B be the set of numbers of the shape $u_{1}+\cdots+u_{n}$ where $\mathbf{u}=$ $\left(u_{1}, \ldots, u_{n}\right)$ runs through all tuples in $\Gamma=\Gamma_{1}^{n}$ with

$$
\left\{\begin{array}{l}
\sum_{i \in I} u_{i} \neq 0 \quad \text { for each } I \subseteq\{1, \ldots, n\} \text { with } I \neq \emptyset \tag{4.3}\\
F_{\sigma_{1}, \ldots, \sigma_{n}}\left(u_{1}, \ldots, u_{n}\right) \neq 0 \text { for each }\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in T
\end{array}\right.
$$

In particular (taking $I=\{1, \ldots, n\}$), each $b \in B$ is non-zero.
Two numbers $b_{1}, b_{2} \in K^{*}$ are called Γ_{1}-equivalent if $b_{1} / b_{2} \in \Gamma_{1}$.

Lemma 4.2. The set B is not contained in the union of finitely many Γ_{1}-equivalence classes.

Proof. First suppose that $B \neq \emptyset$. Assume that B is contained in the union of finitely many Γ_{1}-equivalence classes. Let b_{1}, \ldots, b_{t} be representatives for these classes. Then for every $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \Gamma$ with (4.3) there are $b_{i} \in\left\{b_{1}, \ldots, b_{t}\right\}$ and $u \in \Gamma_{1}$ such that

$$
u_{1}+\cdots+u_{n}=b_{i} u
$$

Hence for given $b_{i},\left(u_{1} / u, \ldots, u_{n} / u\right)$ is a non-degenerate solution of

$$
x_{1}+\cdots+x_{n}=b_{i} \quad \text { in } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Gamma
$$

Each such equation has only finitely many non-degenerate solutions. Therefore, for each b_{i} there are only finitely many possibilities for $\left(u_{1} / u, \ldots, u_{n} / u\right)$, hence only finitely many possibilities for u_{1} / u_{2}. So if $\left(u_{1}, \ldots, u_{n}\right)$ runs through all tuples in Γ with (4.3), then u_{1} / u_{2} runs through a finite set, U, say.

Now let F be the product of the polynomials $F_{\sigma_{1}, \ldots, \sigma_{n}}\left(\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in T\right)$, $\sum_{i \in I} X_{i}(I \subseteq\{1, \ldots, n\}, I \neq \emptyset)$ and $X_{1}-u X_{2}(u \in U)$. Then $F\left(u_{1}, \ldots, u_{n}\right)=0$ for every $u_{1}, \ldots, u_{n} \in \Gamma_{1}$. But since Γ_{1} is infinite, this implies that F is identically zero. Thus, if we assume that $B \neq \emptyset$ and that Lemma 4.2 is false we obtain a contradiction. The assumption $B=\emptyset$ leads to a contradiction in a similar manner, taking for F the product of the polynomials $F_{\sigma_{1}, \ldots, \sigma_{n}}\left(\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in T\right), \sum_{i \in I} X_{i}$ $(I \subseteq\{1, \ldots, n\}, I \neq \emptyset)$.

Lemma 4.2 implies that the collection of tuples $\left(b^{-1}, \ldots, b^{-1}\right)(n$ times) with $b \in B$ is not contained in the union of finitely many Γ-equivalence classes. We show that for every $b \in B$, the set of non-degenerate solutions of (4.1) cannot be covered by fewer than n proper linear subspaces of K^{n}.

Choose $b \in B$, and choose $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \Gamma$ with $u_{1}+\cdots+u_{n}=b$ and with (4.3). Then each vector $\mathbf{u}_{\sigma}\left(\sigma \in S_{n}\right)$ is a non-degenerate solution of (4.1).

We claim that a proper linear subspace of K^{n} cannot contain more than $(n-1)$! vectors $\mathbf{u}_{\sigma}\left(\sigma \in S_{n}\right)$. For suppose some subspace L of K^{n} contains more than $(n-1)$! vectors \mathbf{u}_{σ}. Then by Lemma 4.1, there are $\sigma_{1}, \ldots, \sigma_{n} \in S_{n}$ such that $\mathbf{u}_{\sigma_{i}} \in L$ for $i=1, \ldots, n$ and such that $F_{\sigma_{1}, \ldots, \sigma_{n}}$ is not identically 0 . But since \mathbf{u} satisfies (4.3), we have $F_{\sigma_{1}, \ldots, \sigma_{n}}(\mathbf{u}) \neq 0$. Therefore, the vectors $\mathbf{u}_{\sigma_{1}}, \ldots, \mathbf{u}_{\sigma_{n}}$ are linearly independent. Hence $L=K^{n}$.

Our claim shows that at least n proper linear subspaces of K^{n} are needed to cover the set $\mathbf{u}_{\sigma}\left(\sigma \in S_{n}\right)$. Therefore, the set of non-degenerate solutions of (4.1) cannot lie in the union of fewer than n proper subspaces.

References

[1] A. Bérczes, On the number of solutions of norm form equations, Period. Math. Hungar. 43 (2001), 165-176.
[2] F. Beukers, H.P. Schlickewei, The equation $x+y=1$ in finitely generated groups, Acta Arith. 78 (1996), 189-199.
[3] J.-H. Evertse, Decomposable form equations with a small linear scattering, J. reine angew. Math. 432 (1992), 177-217.
[4] J.-H. Evertse, K. Győry, On the numbers of solutions of weighted unit equations, Compos. Math. 66 (1988), 329-354.
[5] J.-H. Evertse, K. Győry, C.L. Stewart, R. Tijdeman, S-unit equations in two unknowns, Invent. Math. 92 (1988), 461-477.
[6] J.-H. Evertse, H.P. Schlickewei, W.M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. Math. 155 (2002), 807-836.
[7] M. Laurent, Équations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327.
[8] G. Rémond, Sur les sous-variétés des tores, Compos. Math. 134 (2002), 337-366.
[9] H.P. Schlickewei, C. Viola, Generalized Vandermonde determinants, Acta Arith. 95 (2000), 123-137.

Universiteit Leiden, Mathematisch Instituut, Postbus 9512, NL-2300 RA Leiden E-mail address: evertse@math.leidenuniv.nl

[^0]: ${ }^{1}$ For $K=\overline{\mathbb{Q}}$, Rémond [8, Thm. 1] showed that the set of solutions of (2.1) is contained in the
 where each polynomial f_{i} has total degree $\leqslant d$. Probably his result can be extended to arbitrary fields K of characteristic 0 by means of a specialization argument.

