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Abstract. Let K be a field of characteristic 0 and let (K∗)n denote the n-fold
cartesian product of K∗, endowed with coordinatewise multiplication. Let Γ be a
subgroup of (K∗)n of finite rank. We consider equations (*) a1x1 + · · ·+anxn = 1
in x = (x1, . . . , xn) ∈ Γ, where a = (a1, . . . , an) ∈ (K∗)n. Two tuples a,b ∈ (K∗)n

are called Γ-equivalent if there is a u ∈ Γ such that b = u · a. Győry and the
author [4] showed that for all but finitely many Γ-equivalence classes of tuples
a ∈ (K∗)n, the set of solutions of (*) is contained in the union of not more than
2(n+1)! proper linear subspaces of Kn. Later, this was improved by the author
[3] to (n!)2n+2. In the present paper we will show that for all but finitely many
Γ-equivalence classes of tuples of coefficients, the set of non-degenerate solutions
of (*) (i.e., with non-vanishing subsums) is contained in the union of not more
than 2n proper linear subspaces of Kn. Further we give an example showing that
2n cannot be replaced by a quantity smaller than n.
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1. Introduction

Let K be a field of characteristic 0. Denote by (K∗)n the n-fold direct product

of the multiplicative group K∗. The group operation of (K∗)n is coordinatewise

multiplication, i.e., if x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ (K∗)n, then x · y =

(x1y1, . . . , xnyn). A subgroup Γ of (K∗)n is said to be of finite rank if there are

u1, . . . ,ur ∈ Γ with the property that for every x ∈ Γ there are z ∈ Z>0 and

z1, . . . , zr ∈ Z such that xz = uz1
1 · · ·uzr

r . The smallest r for which such u1, . . . ,ur
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exist is called the rank of Γ; the rank of Γ is equal to 0 if all elements of Γ have

finite order.

For the moment, let n = 2. We consider the equation

(1.1) a1x1 + a2x2 = 1 in x = (x1, x2) ∈ Γ,

where a = (a1, a2) ∈ (K∗)2 and where Γ is a subgroup of (K∗)2 of finite rank r. In

1996, Beukers and Schlickewei [2] showed that (1.1) has at most 28(r+2) solutions.

Two pairs a = (a1, a2), b = (b1, b2) are called Γ-equivalent if there is an u ∈ Γ such

that b = u · a. Clearly, two equations (1.1) with Γ-equivalent pairs of coefficients

a have the same number of solutions. In 1988, Győry, Stewart, Tijdeman and the

author [5] showed that there is a finite number of Γ-equivalence classes, such that for

all tuples a = (a1, a2) outside the union of these classes, equation (1.1) has at most

two solutions. (In fact they considered only groups Γ = US × US where US is the

group of S-units in a number field, but their argument works in precisely the same

way for the general case.) The upper bound 2 is best possible. We mention that

this result is ineffective in that the method of proof does not allow to determine the

exceptional equivalence classes. Bérczes [1, Lemma 3] calculated the upper bound

2e3020(r+2) for the number of exceptional equivalence classes.

Now let n > 3. We deal with equations

(1.2) a1x1 + · · ·+ anxn = 1 in x = (x1, . . . , xn) ∈ Γ,

where a = (a1, . . . , an) ∈ (K∗)n and where Γ is a subgroup of (K∗)n of finite rank

r. A solution x of (1.2) is called non-degenerate if

(1.3)
∑
i∈I

aixi 6= 0 for each non-empty subset I of {1, . . . , r}.

It is easy to show that there are groups Γ such that any degenerate solution of (1.2)

gives rise to an infinite set of solutions. Schlickewei, Schmidt and the author [6]

showed that equation (1.2) has at most e(6n)3n(r+1) non-degenerate solutions. Their

proof was based on a version of the quantitative Subspace Theorem, i.e., on the

Thue-Siegel-Roth-Schmidt method. Recently, by a very different approach based on

a method of Vojta and Faltings, Rémond [8] proved a general quantitative result for

subvarieties of tori, which includes as a special case that for n > 3 equation (1.2)

has at most 2n4n2
(r+1) non-degenerate solutions.
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Two tuples a,b ∈ (K∗)n are called Γ-equivalent if b = u·a for some u ∈ Γ. Győry,

Stewart, Tijdeman and the author [5] showed that for every sufficiently large r, there

are a subgroup Γ of (Q∗)n of rank r, and infinitely many Γ-equivalence classes of

tuples a = (a1, . . . , an) ∈ (Q∗)n, such that equation (1.2) has at least e2r1/2(log r)−1/2

non-degenerate solutions. This shows that in contrast to the case n = 2, for n > 3

there is no uniform bound C independent of Γ such that for all tuples a outside

finitely many Γ-equivalence classes the number of non-degenerate solutions of (1.2)

is at most C.

It turned out to be more natural to consider the minimal number m such that the

set of solutions of (1.2) can be contained in the union of m proper linear subspaces

of Kn. Notice that this minimal number m does not change if a is replaced by a

Γ-equivalent tuple. In 1988 Győry and the author [4] showed that if K is a number

field and Γ = Un
S , i.e., the n-fold direct product of the group of S-units in K, then

there are finitely many Γ-equivalence classes C1, . . . , Ct such that for every tuple

a ∈ (K∗)n\(C1 ∪ · · · ∪ Ct) the set of solutions of (1.2) is contained in the union

of not more than 2(n+1)! proper linear subspaces of Kn. This was improved by the

author [3, Thm. 8] to (n!)2n+2. Both the proofs of Győry and the author and that

of the author can be extended easily to arbitrary fields K of characteristic 0 and

arbitrary subgroups Γ of (K∗)n of finite rank.

For certain special groups Γ, Schlickewei and Viola [9, Corollary 2] improved the

author’s bound to
(
2n+1

n

)
− n2 − n − 2. In fact, their result is valid for rank one

groups Γ = {(αz
1, . . . , α

z
n) : z ∈ Z}, where α1, . . . , αn are non-zero elements of a field

K of characteristic 0 such that neither α1, . . . , αn, nor any of the quotients αi/αj

(0 6 i < j 6 n) is a root of unity.

In the present paper we deduce a further improvement for the general equation

(1.2).

Theorem. Let K be a field of characteristic 0, let n > 3, and let Γ be a subgroup of

(K∗)n of finite rank. Then there are finitely many Γ-equivalence classes C1, . . . , Ct

of tuples in (K∗)n, such that for every a = (a1, . . . , an) ∈ (K∗)n\(C1 ∪ · · · ∪Ct), the

set of non-degenerate solutions of

(1.2) a1x1 + · · ·+ anxn = 1 in x = (x1, . . . , xn) ∈ Γ

is contained in the union of not more than 2n proper linear subspaces of Kn.
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We mention that the set of degenerate solutions of (1.2) is contained in the union

of at most 2n − n − 2 proper linear subspaces of Kn, each defined by a vanishing

subsum
∑

i∈I aixi = 0 where I is a subset of {1, . . . , n} of cardinality 6= 0, 1, n. So

for a 6∈ C1 ∪ · · · ∪ Ct, the set of (either degenerate or non-degenerate) solutions of

(1.2) is contained in the union of at most 2n+1 − n − 2 proper linear subspaces of

Kn.

Our main tool is a qualitative finiteness result due to Laurent [7] for the number

of non-degenerate solutions in Γ of a system of polynomial equations (or rather for

the number of non-degenerate points in X ∩ Γ where X is an algebraic subvariety

of the n-dimensional linear torus). Recently, Rémond [8] established for K = Q an

explicit upper bound for the number of these non-degenerate solutions. Using the

latter, it is possible to compute a (very large) explicit upper bound for the number

t of exceptional equivalence classes, depending on n and the rank r of Γ. We have

not worked this out.

In Section 2 we recall Laurent’s result. In Section 3 we prove our Theorem. In

Section 4 we give an example showing that our bound 2n cannot be improved to a

quantity smaller than n.

2. Polynomial equations

Let as before K be a field of characteristic 0, let n > 2, and let f1, . . . , fR ∈
K[X1, . . . , Xn] be non-zero polynomials. Further, let Γ be a subgroup of (K∗)n of

finite rank. We consider the system of equations

(2.1) fi(x1, . . . , xn) = 0 (i = 1, . . . , R) in x = (x1, . . . , xn) ∈ Γ.

Let λ be an auxiliary variable. A solution x = (x1, . . . , xn) of system (2.1) is called

degenerate if there are integers c1, . . . , cn with gcd(c1, . . . , cn) = 1 such that

(2.2) fi(λ
c1x1, . . . , λ

cnxn) = 0 identically in λ for i = 1, . . . , R

(meaning that by expanding the expressions, we get linear combinations of different

powers of λ, all of whose coefficients are 0). Otherwise, the solution x is called

non-degenerate.

Proposition 2.1. System (2.1) has only finitely many non-degenerate solutions.
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Proof. Without loss of generality we may assume that K is algebraically closed.

Let X denote the set of points x ∈ (K∗)n with fi(x) = 0 for i = 1, . . . , R. By a

result of Laurent [7, Théorème 2], the set of solutions x ∈ Γ of (2.1) is contained in

the union of finitely many “families” xH = {x ·y : y ∈ H}, where x ∈ Γ and where

H is an irreducible algebraic subgroup of (K∗)n such that xH ⊂ X. 1

Consider a family xH with x ∈ Γ, xH ⊂ X, dim H > 0. Pick a one-dimensional ir-

reducible algebraic group H0 ⊂ H. There are integers c1, . . . , cn with gcd(c1, . . . , cn)

= 1 such that H0 = {(λc1 , . . . , λcn) : λ ∈ K∗}. Then xH0 = {(x0λ
c0 , . . . , xnλ

cn) :

λ ∈ K∗} ⊂ xH ⊂ X, and the latter implies (2.2). Conversely, if x satisfies (2.2) then

xH0 ⊂ X. Therefore, the solutions of (2.1) contained in families xH with dim H > 0

are precisely the degenerate solutions of (2.1). Each of the remaining families xH,

i.e., with dim H = 0 consists of a single solution x since H = {(1, . . . , 1)}. It follows

that system (2.1) has at most finitely many non-degenerate solutions. �

3. Proof of the Theorem

Let again K be a field of characteristic 0, let n > 3, and let Γ a subgroup of (K∗)n

of finite rank. Further, let a = (a1, . . . , an) ∈ (K∗)n. We deal with

(1.2) a1x1 + · · ·+ anxn = 1 in x = (x1, . . . , xn) ∈ Γ.

Assume that (1.2) has a non-degenerate solution. By replacing a by a Γ-equivalent

tuple we may assume that 1 = (1, . . . , 1) is a non-degenerate solution of (1.2). This

means that

(3.1)

{
a1 + · · ·+ an = 1,∑

i∈I ai 6= 0 for each non-empty subset I of {1, . . . , n}.

We will show that there is a finite set of tuples a with (3.1) such that for each

a ∈ (K∗)n outside this set, the set of non-degenerate solutions of (1.2) is contained

in the union of not more than 2n proper linear subspaces of Kn. This clearly suffices

to prove our Theorem.

1For K = Q, Rémond [8, Thm. 1] showed that the set of solutions of (2.1) is contained in the

union of at most (nd)n3m3m2
(r+1) families xH, where r is the rank of Γ, X has dimension m, and

where each polynomial fi has total degree 6 d. Probably his result can be extended to arbitrary
fields K of characteristic 0 by means of a specialization argument.
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By the result of Schlickewei, Schmidt and the author or that of Rémond mentioned

in Section 1, there is a finite bound N independent of a such that equation (1.2)

has at most N non-degenerate solutions. (In fact, already Győry and the author [4]

proved the existence of such a bound but their method did not allow to compute it

explicitly).

For every tuple a with (3.1), we make a sequence x1 = 1, x2 = (x21, . . . , x2n), . . . ,

xN = (xN1, . . . , xNn) such that each term xi is a non-degenerate solution of (1.2) and

such that each non-degenerate solution of (1.2) occurs at least once in the sequence.

Then

(3.2) rank


1 · · · 1 1

x21 · · · x2n 1
...

...
...

...
...

...

xN,1 · · · xN,n 1

 6 n

since the matrix has n + 1 linearly dependent columns. Relation (3.2) means that

the determinants of all (n + 1)× (n + 1)-submatrices of the matrix on the left-hand

side are 0. Thus, we may view (3.2) as a system of polynomial equations of the

shape (2.1), to be solved in (x2, . . . ,xN) ∈ ΓN−1. It is important to notice that this

system is independent of a.

The tuples a with (3.1) are now divided into three classes:

Class I consists of those tuples a such that rank {1,x2, . . . , ,xN} = n and such

that (x2, . . . ,xN) is a non-degenerate solution in ΓN−1 of system (3.2).

Class II consists of those tuples a such that rank {1,x2, . . . , ,xN} < n.

Class III consists of those tuples a such that (x2, . . . ,xN) is a degenerate solution

in ΓN−1 of system (3.2).

First let a be a tuple of Class I. By Proposition 2.1, (x2, . . . ,xN) belongs to a

finite set which is independent of a. Now a = (a1, . . . , an) is a solution of the system

of linear equations a1 + · · · + an = 1, xi1a1 + · · · + xinan = 1 (i = 2, . . . , N). Since

by assumption, rank {1,x2, . . . ,xN} = n, the tuple a is uniquely determined by

x2, . . . ,xN . So Class I is finite.
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For tuples a from Class II, all non-degenerate solutions of (1.2) lie in a single

proper subspace of Kn.

Now let a be from Class III. In view of (2.2) this means that there are integers cij

(i = 2, . . . , N , j = 1, . . . , n), with gcd(cij : i = 2, . . . , N, j = 1, . . . , n) = 1, such that

rank


1 · · · 1 1

λc21x21 · · · λc2nx2n 1
...

...
...

...
...

...

λcN,1xN,1 · · · λcN,nxN,n 1

 6 n

identically in λ, meaning that the determinants of the (n+1)× (n+1)-submatrices

of the left-hand side are identically zero in λ.

This implies that there are rational functions bj(λ) ∈ K(λ) (j = 0, . . . , n), not all

equal to 0, such that

(3.3)
n∑

j=1

bj(λ) = b0(λ),
n∑

j=1

bj(λ)λcijxij = b0(λ) (i = 2, . . . , N) .

By clearing denominators, we may assume that b0(λ), . . . , bn(λ) are polynomials in

K[λ] without a common zero.

We substitute λ = −1. Put bj := bj(−1) (j = 0, . . . , n) and εij := (−1)cij

(i = 2, . . . , N , j = 1, . . . , n). Then (b0, . . . , bn) 6= (0, . . . , 0), and the numbers εij are

not all equal to 1 since the integers cij are not all even. Further, by (3.3) we have

(3.4)

{
b1 + · · ·+ bn = b0 ,

b1εi1xi1 + · · ·+ bnεinxin = b0 for i = 2, . . . , N .

We claim that for each tuple (ε1, . . . , εn) ∈ {−1, 1}n, the tuple (b1ε1, . . . , bnεn, b0)

is not proportional to (a1, . . . , an, 1). Assuming this to be true, it follows from (3.4)

that the set of non-degenerate solutions of (1.2) is contained in the union of at most

2n proper linear subspaces of Kn, each given by

b0

( n∑
j=1

ajxj

)
−

n∑
j=1

bjεjxj = 0

for certain εj ∈ {−1, 1} (j = 1, . . . , n).
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We prove our claim. First suppose that the tuple (b1, . . . , bn, b0) is proportional to

(a1, . . . , an, 1). There are i ∈ {2, . . . , N}, j ∈ {1, . . . , n} such that εij = −1. Now xi

satisfies both
∑n

j=1 ajxij = 1 (since it is a solution of (1.2)) and
∑n

j=1 ajεijxij = 1

(by (3.4)). But then by subtracting we obtain
∑

j∈J ajxij = 0, where J is the set of

indices j with εij = −1. This is impossible since xi is a non-degenerate solution of

(1.2).

Now suppose that (b1ε1, . . . , bnεn, b0) is proportional to (a1, . . . , an, 1) for certain

εj ∈ {−1, 1}, not all equal to 1. Then by (3.1) and (3.4) we have
∑n

j=1 aj = 1,∑n
j=1 ajεj = 1. Again by subtracting, we obtain

∑
j∈J aj = 0 where J is the set of

indices j with εj = −1 and this is contradictory to (3.1). This proves our claim.

Summarizing, we have proved that Class I is finite, that for every a in Class II,

all solutions of (1.2) lie in a single proper linear subspace of Kn, and that for every

a in Class III, the solutions of (1.2) lie in the union of 2n proper linear subspaces of

Kn. Our Theorem follows. �

4. Equations whose solutions lie in many subspaces

We give an example of a group Γ with the property that there are infinitely

many Γ-equivalence classes of tuples a = (a1, . . . , an) ∈ (K∗)n such that the set of

non-degenerate solutions of (1.2) cannot be covered by fewer than n proper linear

subspaces of Kn.

Let K be a field of characteristic 0, let n > 2, and let Γ1 be an infinite subgroup

of K∗ of finite rank. Take Γ := Γn
1 = {x = (x1, . . . , xn) : xi ∈ Γ1 for i = 1, . . . , n}.

Then Γ is a subgroup of (K∗)n of finite rank.

Pick u = (u1, . . . , un) ∈ Γ with b := u1 + · · · + un 6= 0 and with
∑

i∈I ui 6= 0 for

each non-empty subset I of {1, . . . , n}. Let Sn denote the group of permutations

of {1, . . . , n}. For σ ∈ Sn write uσ := (uσ(1), . . . , uσ(n)). Then uσ (σ ∈ Sn) are

non-degenerate solutions of

(4.1) b−1x1 + · · ·+ b−1xn = 1 in x ∈ Γ.

For i = 1, . . . , n, the points uσ with σ(n) = i lie in the subspace given by

ui(x1 + · · ·+ xn−1)− (b− ui)xn = 0.
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Therefore, for fixed u, the set {uσ : σ ∈ Sn} can be covered by n subspaces. We

show that for “sufficiently general” u, this set cannot be covered by fewer than n

subspaces.

We need some auxiliary results.

Lemma 4.1. Let n > 2 and let S be a subset of Sn of cardinality > (n− 1)!. Then

there are σ1, . . . , σn ∈ S such that the polynomial

(4.2) Fσ1,...,σn(X1, . . . , Xn) :=

∣∣∣∣∣∣∣∣∣∣
Xσ1(1) · · · Xσ1(n)

Xσ2(1) · · · Xσ2(n)

...
...

Xσn(1) · · · Xσn(n)

∣∣∣∣∣∣∣∣∣∣
is not identically zero.

Proof. We proceed by induction on n. For n = 2 the lemma is trivial. Assume

that n > 3.

First assume there are i, j ∈ {1, . . . , n} such that the set Sij = {σ ∈ S : σ(i) = j}
has cardinality > (n− 2)!. Then after a suitable permutation of the columns of the

determinant of (4.2) and a permutation of the variables X1, . . . , Xn, we obtain that

Snn has cardinality > (n−2)!. The elements of Snn permute 1, . . . , n−1. Therefore,

by the induction hypothesis, there are σ1, . . . , σn−1 ∈ Snn such that the polynomial

G(X1, . . . , Xn−1) :=

∣∣∣∣∣∣∣
Xσ1(1) · · · Xσ1(n−1)

...
...

Xσn−1(1) · · · Xσn−1(n−1)

∣∣∣∣∣∣∣
is not identically zero. Since Snn has cardinality 6 (n− 1)!, there is a σn ∈ S with

σn(n) = k 6= n. Therefore,

Fσ1,...,σn(X1, . . . , Xn−1, 0) = ±Xk ·G(X1, . . . , Xn−1) 6= 0.

So in particular, Fσ1,...,σn is not identically zero.

Now suppose that for each pair i, j ∈ {1, . . . , n} the set Sij has cardinality

6 (n − 2)!. Together with our assumption that S has cardinality > (n − 1)!, this

implies that Sij 6= ∅ for i, j ∈ {1, . . . , n}. Thus, we may pick σ1 ∈ S with σ1(1) = 1,

σ2 ∈ S with σ2(2) = 1, . . . , σn ∈ S with σn(n) = 1. Then Fσ1,...,σn(1, 0, . . . , 0) = 1,

hence Fσ1,...,σn is not identically zero. �
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Let T denote the collection of tuples (σ1, . . . , σn) in Sn for which Fσ1,...,σn is not

identically 0. Let B be the set of numbers of the shape u1 + · · · + un where u =

(u1, . . . , un) runs through all tuples in Γ = Γn
1 with

(4.3)


∑
i∈I

ui 6= 0 for each I ⊆ {1, . . . , n} with I 6= ∅;

Fσ1,...,σn(u1, . . . , un) 6= 0 for each (σ1, . . . , σn) ∈ T .

In particular (taking I = {1, . . . , n}), each b ∈ B is non-zero.

Two numbers b1, b2 ∈ K∗ are called Γ1-equivalent if b1/b2 ∈ Γ1.

Lemma 4.2. The set B is not contained in the union of finitely many Γ1-equivalence

classes.

Proof. First suppose that B 6= ∅. Assume that B is contained in the union

of finitely many Γ1-equivalence classes. Let b1, . . . , bt be representatives for these

classes. Then for every u = (u1, . . . , un) ∈ Γ with (4.3) there are bi ∈ {b1, . . . , bt}
and u ∈ Γ1 such that

u1 + · · ·+ un = biu.

Hence for given bi, (u1/u, . . . , un/u) is a non-degenerate solution of

x1 + · · ·+ xn = bi in x = (x1, . . . , xn) ∈ Γ.

Each such equation has only finitely many non-degenerate solutions. Therefore, for

each bi there are only finitely many possibilities for (u1/u, . . . , un/u), hence only

finitely many possibilities for u1/u2. So if (u1, . . . , un) runs through all tuples in Γ

with (4.3), then u1/u2 runs through a finite set, U , say.

Now let F be the product of the polynomials Fσ1,...,σn ((σ1, . . . , σn) ∈ T ),∑
i∈I Xi (I ⊆ {1, . . . , n}, I 6= ∅) and X1 − uX2 (u ∈ U). Then F (u1, . . . , un) = 0

for every u1, . . . , un ∈ Γ1. But since Γ1 is infinite, this implies that F is identically

zero. Thus, if we assume that B 6= ∅ and that Lemma 4.2 is false we obtain a

contradiction. The assumption B = ∅ leads to a contradiction in a similar manner,

taking for F the product of the polynomials Fσ1,...,σn ((σ1, . . . , σn) ∈ T ),
∑

i∈I Xi

(I ⊆ {1, . . . , n}, I 6= ∅). �
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Lemma 4.2 implies that the collection of tuples (b−1, . . . , b−1) (n times) with b ∈ B

is not contained in the union of finitely many Γ-equivalence classes. We show that

for every b ∈ B, the set of non-degenerate solutions of (4.1) cannot be covered by

fewer than n proper linear subspaces of Kn.

Choose b ∈ B, and choose u = (u1, . . . , un) ∈ Γ with u1 + · · · + un = b and with

(4.3). Then each vector uσ (σ ∈ Sn) is a non-degenerate solution of (4.1).

We claim that a proper linear subspace of Kn cannot contain more than (n− 1)!

vectors uσ (σ ∈ Sn). For suppose some subspace L of Kn contains more than (n−1)!

vectors uσ. Then by Lemma 4.1, there are σ1, . . . , σn ∈ Sn such that uσi
∈ L for

i = 1, . . . , n and such that Fσ1,...,σn is not identically 0. But since u satisfies (4.3), we

have Fσ1,...,σn(u) 6= 0. Therefore, the vectors uσ1 , . . . ,uσn are linearly independent.

Hence L = Kn.

Our claim shows that at least n proper linear subspaces of Kn are needed to cover

the set uσ (σ ∈ Sn). Therefore, the set of non-degenerate solutions of (4.1) cannot

lie in the union of fewer than n proper subspaces.
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