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1. Introduction

Let t be a positive integer, κ a positive real and f ∈ Z[X] a polynomial of degree

r > 0 without multiple zeros. We consider the so-called resultant inequality

(1.1) 0 < |R(f, g)| 6M(g)r−κ

to be solved in polynomials g ∈ Z[X] of degree t, where R(f, g) denotes the resultant

of f and g and where M(g) denotes the Mahler measure of g (see formulas (2.1),

(2.2) in Section 2 for definitions). If g = vX − u is a polynomial of degree 1 then

R(f, g) = F (u, v) where F is the binary form defined by F (u, v) = vrf(u/v) and

M(g) = max(|u|, |v|). So for t = 1 we may rewrite (1.1) as a Thue inequality

(1.2) 0 < |F (u, v)| 6 max(|u|, |v|)r−κ in u, v ∈ Z.

By a theorem of Roth [10], (1.2) has only finitely many solutions if κ > 2. Hence

(1.1) has only finitely many solutions if t = 1, κ > 2. From results of Wirsing [17],

Schmidt [14] and Ru and Wong [11] it follows that (1.1) has only finitely many

solutions if t > 2 and κ > 2t.

Our purpose is to compute an explicit upper bound for the number of polynomials

g ∈ Z[X] of degree t satisfying (1.1) for any t > 1, κ > 2t. With the present

state of affairs, it is realistic to estimate only the number of polynomials g which

are irreducible and primitive (i.e., whose coefficients have greatest common divisor

1). Indeed, as was pointed out by Hirata-Kohno and the author [4], any explicit

upper bound for the number of non-primitive or reducible polynomials g of degree t

satisfying (1.1) would yield an effective improvement of Liouville’s inequality which

is much stronger than what has been achieved so far. In other words, getting an
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explicit upper bound for the number of non-primitive or reducible solutions of (1.1)

is at least as difficult as proving such a strong effective result.

In [3] we derived an explicit upper bound for the number of primitive, irreducible

polynomials g ∈ Z[X] of degree t satisfying (1.1) but only for κ > 2t
(∑t

k=1
1

2k−1

)
.

In the present paper we derive a similar such upper bound for κ > 2t. The precise

statement is given in Theorem 2.1 in Section 2. Whereas in [3] we obtained our result

by following Wirsing’s method from [17], in the present paper we use techniques from

the proof of the quantitative Subspace Theorem. These techniques were developed

in their basic form by Schmidt [15] and refined later by Schlickewei and the author,

cf. e.g., [2], [5].

The quantitative Subspace Theorem implies for a general class of inequalities

including (1.1), that the set of solutions is contained in a finite union V1∪ · · ·∪Vs of

proper linear subspaces of the ambient solution space, and moreover it provides an

explicit upper bound for s. In this paper, we specialise the arguments of the proof

of the quantitative Subspace Theorem to (1.1) and show that in this particular

situation, V1, . . . , Vs can be chosen to be one-dimensional. As our argument heavily

uses properties of resultants, it is not likely that it can be extended to inequalities

other than (1.1).

We give two applications. First we give an explicit upper bound for the number

of solutions of Thue inequalities in which the unknowns are algebraic integers x, y

with [Q(x/y) : Q ] = t (cf. Corollary 2.2 in Section 2). Second we derive an explicit

upper bound for the number of solutions of so-called Wirsing systems (these are

systems of inequalities introduced by Wirsing in [17]) (cf. Corollary 2.3 in Section

2). Roughly speaking this means that we give an upper bound for the number of

algebraic numbers ζ of degree t such that for i = 1, . . . , t, the i-th conjugate ζ(i) of

ζ is very close to a given algebraic number αi.

By (2.3) in Section 2 we can express R(f, g) as F (g0, . . . , gt) where g0, . . . , gt are

the coefficients of g and where F is a homogeneous polynomial in Z[X0, . . . , Xt] of

degree r = deg f . More precisely, F is a decomposable form, i.e., F factors into

homogeneous linear forms over the algebraic closure of Q. Thus (using that for

polynomials g, M(g)/max(|g0|, . . . , |gt|) is bounded from above and from below by

constants depending only on t), we may view (1.1) as a special type of a decomposable
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form inequality

(1.3) |F (g0, . . . , gt)| 6
(

max |g0|, . . . , |gt|
)r−κ

in g0, . . . , gt ∈ Z,

where F is any decomposable form in Z[X0, . . . , Xt] of degree r and where κ > 0.

Schmidt [13],[14] and Ru and Wong [11] obtained qualitative finiteness results for

classes of decomposable form inequalities much more general than (1.1). However,

to obtain explicit upper bounds for the number of solutions of decomposable form

inequalities other than (1.1) is a notoriously difficult problem.

2. Results

We start with some notation. The Mahler measure of a polynomial f =

f0(X − α1) · · · (X − αr) ∈ C[X] is given by

(2.1) M(f) := |f0|
r∏
i=1

max(1, |αi|).

The resultant R(f, g) of two polynomials f, g ∈ C[X] is defined as follows: write

f = f0X
r + f1X

r−1 + · · · + fr with f0 6= 0 and g = g0X
t + g1X

t−1 + · · · + gt with

g0 6= 0; then

(2.2) R(f, g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 · · · fr
. . . . . .

f0 f1 · · · fr
g0 · · · gt

. . . . . .
. . . . . .

g0 · · · gt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the right-hand side is a determinant of order r + t of which the first t rows

consist of coefficients of f and the last r rows of coefficients of g. The resultant

R(f, g) is characterized by the fact that R(f, g) = 0 if and only if f , g have a

common zero in C. If

f = f0(X − α1) · · · (X − αr), g = g0(X − ζ1) · · · (X − ζt),
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then

R(f, g) = f t0g
r
0

r∏
i=1

s∏
j=1

(αi − ζj)(2.3)

= gr0f(ζ1) · · · f(ζt) = f t0g(α1) · · · g(αr)

(see [16, §§34,35]). This implies

(2.4) |R(f, g)| 6 2rtM(f)t ·M(g)r .

Now let f ∈ Z[X] be a fixed polynomial of degree r > 0, let t be a positive integer

and let κ > 0. We consider the inequality

(2.5) 0 < |R(f, g)| 6M(g)r−κ in polynomials g ∈ Z[X] of degree t.

It is trivial that for r < κ the number of solutions of (2.5) is finite. So henceforth

we assume that r > κ.

Wirsing [17] proved that (2.5) has only finitely many solutions if f has no multiple

zeros and if κ > 2t ·(1+ 1
3
+ · · ·+ 1

2t−1
). Later, Schmidt [14] proved that (2.5) has only

finitely many solutions if κ > 2t and if f has no multiple zeros and no irreducible

factors in Z[X] of degree 6 t. Finally, Ru and Wong [11, p. 212, Theorem 4.1]

proved a general result on decomposable form inequalities which gives as a special

case that (2.5) has only finitely many solutions if κ > 2t and if f has no multiple

zeros.

On the other hand, Schmidt [14] showed that for every t > 1 there are infinitely

many integers r for which there exists a polynomial f ∈ Z[X] of degree r such that

(2.5) has infinitely many solutions for any κ < 2t. But Schmidt showed also in [14]

that there are polynomials f such that (2.5) has only finitely many solutions already

when κ > t+ 1.

We now discuss quantitative results which give an explicit upper bound for the

number of solutions of (2.5). As we explained in Section 1, we will restrict ourselves

to polynomials g which are primitive and irreducible.

In [3] we proved the following result. Let t be a positive integer, f a polynomial

in Z[X] of degree r > 0 without multiple zeros and

κ = (2t+ δ)
(
1 +

1

3
+ · · ·+ 1

2t− 1

)
with 0 < δ < 1.
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Then there are at most

1015(δ−1)t+3(100r)t log 4r log log 4r

primitive, irreducible polynomials g ∈ Z[X] of degree t which satisfy (2.5) and for

which

M(g) >
(

28r2t ·M(f)4(r−1)t
)δ−1(1+ 1

3
+···+ 1

2t−1
)−1

.

We mention that we proved this result by making explicit Wirsing’s arguments from

[17]. In [3] we suggested the possibility to prove a similar result for κ > 2t, but this

was not possible with Wirsing’s method.

In the present paper we prove the following result by means of another approach,

based on techniques from the proof of the quantitative Subspace Theorem:

Theorem 2.1. Let t > 1, 0 < δ < 1 and let f be a polynomial in Z[X] of degree

r > 2t + 1 without multiple zeros. Then the number of polynomials g ∈ Z[X] of

degree t such that

0 < |R(f, g)| 6M(g)r−2t−δ,(2.6)

g is primitive and irreducible,(2.7)

M(g) >
(

22r2

M(f)4r−4
)t/δ

(2.8)

is at most

(2.9) 27t+60 · t2t+21 · (δ−1)t+5 · rt log 4r log log 4r.

Remark. Put C(f) :=
(

22r2
M(f)4r−4

)t/δ
. The number of polynomials g = g0X

t +

· · ·+gt ∈ Z[X] of degree t with (2.6), (2.7), M(g) < C(f) may be trivially estimated

from above by the number of all polynomials g ∈ Z[X] of degree t withM(g) 6 C(f).

By estimating the latter from above using M(g) � max(|g0|, . . . , |gt|), and then

adding (2.9), it follows that the total number of polynomials g ∈ Z[X] of degree

t with (2.6), (2.7) is � M(f)(4r−4)t(t+1)/δ, where the constants implied by �,�
depend on r, t and δ. We do not know of any better estimate in terms of M(f).
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On the other hand, one may show that for any pair of integers r > t > 0 and for

any λ > 0 there exists an infinite family of polynomials f ∈ Z[X] of degree r, such

that the number of primitive, irreducible polynomials g ∈ Z[X] of degree t with

(2.10) 0 < |R(f, g)| 6M(g)λ

grows polynomially with M(f).

In the construction we use an argument similar to Mueller and Schmidt [9, pp.

331–332]. Fix an irreducible polynomial f0 ∈ Z[X] of degree r. Constants implied

by �, � will depend on r, t and f0. Let b be a sufficiently large integer, and let

0 < θ < 1. Put f(X) := f0(X + b). Take a monic, irreducible polynomial h of

degree t in F2[X]. Let Sb be the set of monic polynomials g0 ∈ Z[X] of degree t

with M(g0) 6 bθ whose reduction modulo 2 is equal to h. Then Sb has cardinality

� btθ and moreover, each g0 ∈ Sb is primitive and irreducible. Let Tb be the set

of polynomials g(X) = g0(X + b) with g0 ∈ Sb. Thus, each g ∈ Tb is a primitive,

irreducible polynomial of degree t. Note that by (2.1) we have

M(f)�� br ,(2.11)

M(g)�� bt for g ∈ Tb.(2.12)

From (2.11) and the lower bound for the cardinality of Sb mentioned above we infer

that Tb has cardinality

(2.13) � btθ �M(f)tθ/r .

Now let g ∈ Tb. Then by (2.3), (2.4), (2.12) and the fact that f0 is irreducible we

have

0 < |R(f, g)| = |R(f0, g0)| �M(g0)r � bθr �M(g)θr/t ,

where g(X) = g0(X + b). By taking θ sufficiently small and then b sufficiently large

this implies that each g ∈ Tb satisfies (2.10). Combining the latter with (2.13),

(2.11) and letting b→∞ our assertion follows.

We now state two corollaries of Theorem 2.1. Our first corollary concerns Thue

inequalities such as (1.2) but whose unknowns are algebraic integers of bounded

degree. To give the correct formulation we have to introduce the absolute norm and

height of an algebraic number.

Denote by Q the algebraic closure of Q in C and by O the integral closure of Z in

Q, i.e., the ring of all algebraic integers. All algebraic numbers occurring in this



ON RESULTANT INEQUALITIES 7

paper are supposed to belong to Q. We define the minimal polynomial of ζ ∈ Q to

be the primitive, irreducible polynomial f in Z[X] with positive leading coefficient

for which f(ζ) = 0. Then the Mahler measure of ζ is defined by M(ζ) := M(f).

Further, we define the absolute norm and absolute height of ζ by

‖ζ‖ := |NQ(ζ)/Q(ζ)|1/[Q(ζ):Q], H(ζ) := M(ζ)1/[Q(ζ):Q] .

For a binary form F ∈ C[X, Y ] we put M(F ) := M(f) where f(X) := F (X, 1). For

a pair (ξ, η) ∈ O2
with ξη 6= 0 we put H(ξ, η) := H(ξ/η). Lastly, two pairs (ξ1, η1),

(ξ2, η2) ∈ O2
are said to be proportional if (ξ2, η2) = (λξ1, λη1) for some λ ∈ Q∗.

Then our result reads as follows:

Corollary 2.2. Let t be an integer > 1, let 0 < δ < 1 and let F ∈ Z[X, Y ] be a

binary form of degree r > 2t+1 without multiple factors. Then up to proportionality,

there are at most

(2.14) 27t+60 · t2t+22 · (δ−1)t+5 · rt log 4r log log 4r

pairs (ξ, η) ∈ (O\{0})2 such that

0 < ‖F (ξ, η)‖ 6 H(ξ, η)r−2t−δ,(2.15)

[Q(ξ/η) : Q ] = t,(2.16)

H(ξ, η) >
(

22r2

M(F )4r−4
)1/δ

.(2.17)

We now turn to Wirsing systems. For each algebraic number ζ ∈ Q of degree t

we choose an ordering of its conjugates ζ(1), . . . , ζ(t). A Wirsing system is a system

of inequalities of the shape

(2.18) |αi − ζ(i)| 6M(ζ)−ϕi (i ∈ I) in algebraic numbers ζ of degree t,

where I is a subset of {1, . . . , t}, αi (i ∈ I) are algebraic numbers, and ϕi (i ∈ I)

non-negative reals. A particular instance of (2.18) is

(2.19) |α− ζ| 6M(ζ)−ϕ in algebraic numbers ζ of degree t,

where α is a fixed algebraic number and ϕ a non-negative real. Wirsing [17] showed

that (2.19) has only finitely many solutions if ϕ > 2t and later Schmidt [12] proved
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the same for ϕ > t+ 1. In his paper [17], Wirsing showed also that (2.18) has only

finitely many solutions if
∑

i∈I ϕi > 2t ·
(∑#I

k=1
1

2k−1

)
. Hirata-Kohno and the author

[4] showed that (2.18) has only finitely many solutions already when
∑

i∈I ϕi > 2t.

Furthermore they gave examples of tuples (αi : i ∈ I) with the property that for

any ε > 0 there is a tuple (ϕi : i ∈ I) with
∑

i∈I ϕi = 2t − ε such that (2.18) has

infinitely many solutions.

In [3] we showed that if

max
i∈I

M(αi) 6M, [Q(αi : i ∈ I) : Q] 6 R,

∑
i∈I

ϕi > (2t+ δ)

#I∑
k=1

1
2k−1

with 0 < δ < 1,

then (2.18) has at most

(2.20) 2× 107 · t7δ−4 log 4R log log 4R

solutions with M(ζ) > max
(
M, 4t(t+1)/(

∑
i∈I ϕi−2t)

)
. We mention that independently

Locher [8] obtained a similar upper bound for the number of solutions of (2.19).

From Theorem 2.1 we deduce the following:

Corollary 2.3. Let t be a positive integer, let f ∈ Z[X] be a polynomial of degree

r > 2t + 1 with only distinct zeros, let I be a subset of {1, . . . , t}, let αi (i ∈ I) be

not necessarily distinct zeros of f and let ϕi (i ∈ I) be non-negative reals with

(2.21)
∑
i∈I

ϕi > 2t+ δ with 0 < δ < 1.

Then there are at most

(2.22) 28t+66 · t2t+22 · (δ−1)t+5 · rt log 4r log log 4r

algebraic numbers ζ of degree t satisfying

|αi − ζ(i)| 6M(ζ)−ϕi for i ∈ I,(2.23)

M(ζ) > max
(
M(f), 4t(t+1)/δ

)
.(2.24)
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It should be noted that the upper bound (2.22) is much worse than (2.20).

Hirata-Kohno discovered another method to estimate from above the number of

algebraic numbers ζ of degree t with (2.23), (2.24), based on ideas of Ru and Wong

[11] and on techniques used in the proof of the quantitative Subspace Theorem. This

is work in preparation; see [6].

We conclude this section with some comments on the proof of Theorem 2.1. With

each primitive, irreducible polynomial g of degree t with (2.6)-(2.8) we associate a

symmetric convex body C(g) ⊂ Rt+1. Let λ1, . . . , λt+1 be the successive minima of

this body. Following the standard method of proof of the Subspace Theorem one

shows first that there is an index k ∈ {1, . . . , t} such that λk/λk+1 is small in terms

of M(g), and next that there is a k-dimensional vector space which contains g and

which belongs to a finite collection which is independent of g. Moreover, by making

all arguments explicit one may compute an explicit upper bound for the cardinality

of this collection of k-dimensional spaces.

We show that in the particular case considered in this paper we can take k = 1.

More precisely, by an argument heavily depending on properties of resultants we

show in an explicit form, that λ1/λ2 is small in terms of M(g). Then using the Sub-

space machinery we prove that each primitive, irreducible polynomial g of degree t

with (2.6)-(2.8) is contained in a one-dimensional vector space belonging to a finite

collection independent of g, and moreover we obtain an explicit upper bound for

the cardinality of this collection. Since each such one-dimensional space contains at

most two primitive polynomials, this gives an explicit upper bound for the number

of primitive, irreducible polynomials of degree t satisfying (2.6)-(2.8).

3. Preliminaries

For a polynomial F ∈ C[X1, . . . , Xn], put

‖F‖1 :=
s∑
i=1

|ci|

where c1, . . . , cs are the non-zero coefficients of F . It is easy to check that

(3.1) ‖F+G‖1 6 ‖F‖1+‖G‖1, ‖F ·G‖1 6 ‖F‖1·‖G‖1 for F,G ∈ C[X1, . . . , Xn].
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Let f = f0(X − α1) · · · (X − αr) ∈ C[X]. The Mahler measure M(f) is defined by

(2.1) and the discriminant of f by

D(f) := f 2r−2
0

∏
16i<j6r

(αi − αj)2.

We will use that

(3.2) |D(f)|1/2M(f)1−r =
∏

16i<j6r

|αi − αj|
max(1, |αi|) max(1, |αj|)

(note that the factors |f0|r−1 in the numerator and denominator cancel each other).

Since

|αi − αj| 6 2 max(1, |αi|) max(1, |αj|)

this implies

(3.3) |D(f)| 6 2r(r−1)M(f)2r−2.

Moreover, for any subset I of {(i, j) : i, j = 1, . . . , r, i < j} we have

(3.4)
∏

(i,j)∈I

|αi − αj|
max(1, |αi|) max(1, |αj|)

> 2(#I)− r(r−1)
2 |D(f)|1/2M(f)1−r .

From the arguments in for instance [7, p. 60] it follows easily that for polynomials

f ∈ C[X] of degree r we have

(3.5) ‖f‖1 6 2rM(f), M(f) 6 ‖f‖1.

Moreover,

(3.6) M(fg) = M(f)M(g) for f, g ∈ C[X].

We now prove some more elaborate results.

Lemma 3.1. Let f ∈ C[X] be a polynomial of degree r without multiple zeros.

Let α1, . . . , αt+1 be distinct zeros of f where t < r. Then there are linear forms
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Ci =
∑t+1

j=1 cijXj (i = 0, . . . , t) with

|cij| 6
(
t

i

)
· 2

r(r−1)
2
−t ·M(f)r−1 · |D(f)|−1/2(3.7)

for i = 0, . . . , t, j = 1 . . . t+ 1,

‖Ci‖1 6 (t+ 1) · 2
r(r−1)

2
−1 ·M(f)r−1 · |D(f)|−1/2 for i = 0, . . . , t,(3.8)

such that for every polynomial g = g0X
t + g1X

t−1 + · · · + gt ∈ C[X] of degree 6 t

we have

(3.9) gi = Ci(g(α1), . . . , g(αt+1)) for i = 0, . . . , t.

Proof. Let g = g0X
t + g1X

t−1 + · · · + gt ∈ C[X] be any polynomial of degree 6 t.

Then Lagrange’s interpolation formula gives

g =
t+1∑
j=1

g(αj)
t+1∏

k=1, k 6=j

(X − αk
αj − αk

)
.

Take Ci =
∑t+1

j=1 cijXj where cij is the coefficient of X i in
∏t+1

k=1,k 6=j(X−αk)/(αj−αk).
Then clearly, (3.9) is satisfied. Furthermore, by (3.4) we have

|cij| 6
(
t

i

) t+1∏
k=1, k 6=j

max(1, |αj|) max(1, |αk|)
|αj − αk|

6

(
t

i

)
2
r(r−1)

2
−tM(f)r−1|D(f)|−1/2

for i = 0, . . . , t and j = 1, . . . , t+ 1. This proves (3.7). Inequality (3.8) is an imme-

diate consequence of (3.7). �

Lemma 3.2. Let f = f0(X − α1) · · · (X − αr) ∈ C[X] where f0 6= 0 and where

α1, . . . , αr are distinct. Further, let t < r and let g = g0X
t+g1X

t−1 +· · ·+gt ∈ C[X]
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be a polynomial of degree t. Suppose that |g(α1)| 6 |g(α2)| 6 · · · 6 |g(αr)|. Then

|g(αi)| 6 M(g) · 2t max(1, |αi|)t for i = 1, . . . , r,(3.10)

|g(αi)| > M(g) · (t+ 1)−1 · 2
−r(r−1)

2 · |D(f)|1/2M(f)1−r(3.11)

for i = t+ 1, . . . , r,∏
i∈I

|g(αi)| > 2−t((#I)−r)|R(f, g)| ·M(f)−t ·M(g)(#I)−r(3.12)

for each subset I of {1, . . . , r}.

Proof. It is obvious that |g(αi)| 6 ‖g‖1 max(1, |αi|)t for i = 1, . . . , t. By combining

this with (3.5) we obtain (3.10).

It clearly suffices to prove (3.11) for i = t+ 1. Let C0, . . . , Ct be the linear forms

from Lemma 3.1. Then by (3.5), (3.9), (3.7) we have

M(g) 6 ‖g‖1 =
t∑
i=0

|gi| 6
( t∑
i=0

t+1∑
j=1

|cij|
)
· |g(αt+1)|

6 (t+ 1)
( t∑
i=0

(
t

i

))
2
r(r−1)

2
−t · M(f)r−1

|D(f)|1/2
· |g(αt+1)|

= (t+ 1) · 2
r(r−1)

2 · M(f)r−1

|D(f)|1/2
· |g(αt+1)|

which implies (3.11).

From (2.3), (3.10) we obtain∏
i∈I

|g(αi)| > |R(f, g)| ·
(
|f0|t

∏
i6∈I

|g(αi)|
)−1

> |R(f, g)| ·
(
|f0|t2t(r−(#I))M(g)r−(#I)

∏
i6∈I

max(1, |αi|)t
)−1

> |R(f, g)| ·
(

2t(r−(#I))M(g)r−(#I)M(f)t
)−1

which implies (3.12). �



ON RESULTANT INEQUALITIES 13

Lemma 3.3. Let r, t be positive integers with r > 2t+1. Let f = f0(X−α1) · · · (X−
αr) ∈ C[X] where f0 6= 0 and α1, . . . , αr are distinct. Further, let g ∈ C[X] be a

polynomial of degree t with leading coefficient g0 and let h ∈ C[X] be a non-zero

polynomial of degree m 6 t. Then

|R(g, h)| 6 2
1
2
r3 · |f0|−t ·M(f)r(r−1) · |D(f)|−r/2 ×(3.13)

×|R(f, g)| · |g0|m−tM(g)2t−r ·
(

max
(

1,
|h(α1)|
|g(α1)|

, . . . ,
|h(αr)|
|g(αr)|

))t
.

Proof. Without loss of generality we may assume that

(3.14) |g(α1)| 6 |g(α2)| 6 · · · 6 |g(αr)|.

Put

(3.15) λ := max
(

1,
|h(α1)|
|g(α1)|

, . . . ,
|h(αr)|
|g(αr)|

)
.

From Lagrange’s interpolation formula we infer

(3.16) g =
t+1∑
i=1

yi

t+1∏
j=1, j 6=i

(X − αj
αi − αj

)
, h =

t+1∑
i=1

zi

t+1∏
j=1, j 6=i

(X − αj
αi − αj

)
with

(3.17) yi = g(αi), zi = h(αi) (i = 1, . . . , t+ 1).

Write

g = g0X
t + g1X

t−1 + · · ·+ gt, h = h0X
t + h1X

t−1 + · · ·+ ht

where g0 6= 0, ht−m 6= 0 and hi = 0 for i > t − m. Thus gi = Ci(y), hi = Ci(z)

for i = 0, . . . , t where C0, . . . , Ct are the linear forms from Lemma 3.1 and where

y = (y1, . . . , yt+1), z = (z1, . . . , zt+1).

If m = t, i.e., h0 6= 0, we can express R(g, h) as a determinant of order 2t of the

shape (2.2), with g0, . . . , gt on the first t rows and h0, . . . , ht on the last t rows. It is
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easy to check that for arbitrary m 6 t we have

gt−m0 R(g, h) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g0 · · · gt
. . . . . .

g0 · · · gt
h0 · · · ht

. . . . . .

h0 · · · ht

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the first t rows consist of coefficients of g and the last t rows of coefficients of

h. Hence

(3.18) gt−m0 R(g, h) = U(y, z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0(y) · · · Ct(y)
. . . . . .

C0(y) · · · Ct(y)

C0(z) · · · Ct(z)
. . . . . .

C0(z) · · · Ct(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By expanding U we get a polynomial expression

(3.19) U(y, z) =
∑

(a,b)∈I

c(a,b)ya1
1 · · · y

at+1

t+1 z
b1
1 · · · z

bt+1

t+1 ,

where the sum is taken over a finite set I of tuples of non-negative integers (a,b) =

(a1, . . . , at+1, b1, . . . , bt+1) with

(3.20) a1 + · · ·+ at+1 = t, b1 + · · ·+ bt+1 = t

and where c(a,b) ∈ C\{0} for (a,b) ∈ I. Moreover, we have

(3.21) ai + bi > 1 for i = 1, . . . , t+ 1, (a,b) ∈ I.

To prove this we view y1, . . . , yt+1, z1, . . . , zt+1 for a while as indeterminates. Pick

i ∈ {1, . . . , t + 1} and substitute yi = 0, zi = 0 in U . Then by (3.17) we have

g(αi) = 0, h(αi) = 0 which implies U(y, z) = gt−m0 R(g, h) = 0. So by substituting

yi = 0, zi = 0 in U we obtain a polynomial which is identically 0. Therefore, each

monomial of U must contain at least one of the variables yi, zi. This implies (3.21).
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We first estimate from above |ya1
1 · · · y

at+1

t+1 z
b1
1 · · · z

bt+1

t+1 | for (a,b) ∈ I. We have

|ya1
1 · · · y

at+1

t+1 z
b1
1 · · · z

bt+1

t+1 |

6 λb1+···+bt+1|g(α1)|a1+b1 · · · |g(αt+1)|at+1+bt+1 by (3.17),(3.15)

6 λt|g(α1) · · · g(αt+1)| · |g(αt+1)|(a1+b1)+···+(at+bt)−t−1 by (3.20),(3.21),(3.14)

= λt|g(α1) · · · g(αt+1)| · |g(αt+1)|t−1 by (3.20)

6 λt|g(α1) · · · g(α2t)| by (3.14)

6 λt
(

(t+ 1) · 2
r(r−1)

2 · M(f)r−1

|D(f)|1/2

)r−2t

|g(α1) · · · g(αr)| ·M(g)2t−r

by (3.14), (3.11), and finally

|ya1
1 · · · y

at+1

t+1 z
b1
1 · · · z

bt+1

t+1 |(3.22)

6

(
(t+ 1) · 2

r(r−1)
2 · M(f)r−1

|D(f)|1/2

)r−2t

|f0|−t|R(f, g)| ·M(g)2t−r · λt

by (2.3).

It remains to estimate the coefficients of U . By repeatedly applying (3.1), using

that the determinantal expression (3.18) for U is the sum of (t+ 1)2t products each

consisting of t terms Ci(y) and t terms Ci(z) and then inserting (3.8) we obtain

‖U‖1 6 (t+ 1)2t
(

max
06k6t

‖Ck‖1

)2t

6
(

(t+ 1)2 · 2
r(r−1)

2
−1 ·M(f)r−1 · |D(f)|−1/2

)2t

.

Together with (3.18), (3.19), (3.22), r > 2t+ 1 > 3 this implies

|g0|t−m|R(g, h)| = |U(y, z)| 6 ‖U‖1 · max
(a,b)∈I

|ya1
1 · · · y

at+1

t+1 z
b1
1 · · · z

bt+1

t+1 |

6
(

(t+ 1)22
r(r−1)

2
−1M(f)r−1 · |D(f)|−1/2

)r
· |f0|−t|R(f, g)| ·M(g)2t−r · λt

< 2
1
2
r3 (

M(f)r−1 · |D(f)|−1/2
)r |f0|−t|R(f, g)| ·M(g)2t−r · λt .

This proves Lemma 3.3. �
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4. Geometry of numbers

In what follows, t, r are positive integers with r > 2t+ 1, δ is a real with 0 < δ < 1

and

f = f0X
r + f1X

r−1 + · · ·+ fr = f0(X − α1) · · · (X − αr) ∈ Z[X]

is a polynomial for which f0 6= 0 and α1, . . . , αr are distinct.

In what follows we fix a polynomial g = g0X
t+g1X

t−1 + · · ·+gt ∈ Z[X] of degree

t satisfying (2.6), (2.7) and, instead of (2.8), the stronger condition

(4.1) M(g) > 216r5/δM(f)16r4/δ.

Define the quantity ξ = ξ(g) by

(4.2) |R(f, g)| = M(g)r−2t−ξ.

Then (2.6) implies

(4.3) ξ > δ .

We associate with g a set of indices {i1, . . . , it+1} ⊂ {1, . . . , r} such that

(4.4)


|g(αi1)|, . . . , |g(αit)| are the t smallest values among |g(α1)|, . . . , |g(αr)|,
i1 < i2 < . . . < it,

it+1 is the smallest index from {1, . . . , r}\{i1, . . . , it}.

Notice that it+1 is determined by i1, . . . , it. Thus, when g varies then {i1, . . . , it+1}
runs through a collection of subsets of {1, . . . , r} of cardinality at most

(
r
t

)
.

Further we define linear forms

(4.5) Li = αtiX0 + αt−1
i X1 + · · ·+Xt (i = 1, . . . , r).

Thus if h = (h0, . . . , ht) is the coefficient vector of a polynomial h = h0X
t + · · ·+ht

of degree 6 t we have

(4.6) Li(h) = h(αi) for i = 1, . . . , r.

With the polynomial g chosen above we associate the set

(4.7) C(g) := {x ∈ Rt+1 : |Li(x)| 6 |g(αi)| for i = 1, . . . , r} .
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It is easy to show that C(g) is a compact, convex subset of Rt+1 which is symmetric

about 0. We shall prove below that C(g) has positive volume. Notice that if g =

(g0, . . . , gt) is the coefficient vector of g then g ∈ C(g).

We denote by

λ1 = λ1(g), . . . , λt+1 = λt+1(g)

the successive minima of C(g). Further, let h1 = h1(g), . . . ,ht+1 = ht+1(g) be

linearly independent vectors in Zt+1 with hi ∈ λiC(g) for i = 1, . . . , t+ 1. Thus

(4.8) |Li(hj)| 6 λj · |g(αi)| for i = 1, . . . , r; j = 1, . . . , t+ 1.

One may show that vol(C(g)) �� |g(αi1) · · · g(αit+1)| where vol(C(g)) denotes

the volume of C(g), {i1, . . . , it+1} is the set of indices defined by (4.4) and where the

constants implied by �, � depend on f . Then Minkowski’s theorem on successive

minima of convex bodies implies that |g(αi1) · · · g(αit+1)| ·λ1 · · ·λt+1 �� 1. We will

prove a more precise version of this estimate below. As a preparation we need the

following:

Lemma 4.1. Let {Lj1 , . . . , Ljt+1} be a linearly independent subset of {L1, . . . , Lr}.
Then

(4.9) 2(t(t+1)−r(r−1))/2M(f)1−r 6 | det(Lj1 , . . . , Ljt+1)| 6 2t(t+1)/2M(f)t .

Proof. Put D := | det(Lj1 , . . . , Ljt+1)|. By Vandermonde’s indentity we have D =∏
16k<l6t+1 |αjk −αjl|. This implies on the one hand, noting that the leading coeffi-

cient f0 of f is a non-zero integer,

D 6
∏

16k<l6t+1

(
2 max(1, |αjk |) max(1, |αjl|)

)

= 2t(t+1)/2
( t+1∏
k=1

max(1, |αjk |)
)t
6 2t(t+1)/2M(f)t

and on the other hand, by (3.4),

D >
∏

16k<l6t+1

|αjk − αjl|
max(1, |αjk |) max(1, |αjl|

> 2(t(t+1)−r(r−1))/2|D(f)|1/2M(f)1−r

> 2(t(t+1)−r(r−1))/2M(f)1−r
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where we have used that D(f) is a non-zero integer. �

Lemma 4.2. Let {i1, . . . , it+1} be the set of indices defined by (4.4). Then

(4.10) 2−r
2/2M(f)1−r 6 |g(αi1) · · · g(αit+1)| · λ1 · · ·λt+1 6 22r2

M(f)2r.

Proof. Put Λ := |g(αi1) · · · g(αit+1)| ·λ1 · · ·λt+1. We first deduce the lower bound for

Λ. Notice that the determinant det(Lij(hk))j,k=1,...,t+1 is the sum of (t + 1)! terms

of the shape ±
∏t+1

j=1 Lij(hσ(j)) where σ is a permutation of 1, . . . , t + 1. By (4.8),

each such term has absolute value at most
∏t+1

j=1

(
|g(αij)|λσ(j)

)
= Λ. Together with

Lemma 4.1 this implies

1 6 | det(h1, . . . ,ht+1)| = | det(Li1 , . . . , Lit+1)|−1 · | det(Lij(hk))j,k=1,...,t+1|

6 2(r(r−1)−t(t+1))/2)M(f)r−1 · (t+ 1)! · Λ

6 2r
2/2M(f)r−1Λ

from which the lower bound for Λ immediately follows.

We now prove the upper bound for Λ. Assume, as we may, that α1, . . . , αr1 are

real numbers and that αr1+1, . . . , αr are non-real, where r = r1 + 2r2 and αi+r2 = αi
for i = r1 + 1, . . . , r1 + r2. Let L̃i := |g(αi)|−1Li for i = 1, . . . , r. Then there are

linear forms M1, . . . ,Mr in t+ 1 variables with real coefficients such that

(4.11)


L̃i = Mi (i = 1, . . . , r1)

L̃i = Mi +
√
−1 ·Mi+r2 (i = r1 + 1, . . . , r1 + r2),

L̃i+r2 = Mi −
√
−1 ·Mi+r2 (i = r1 + 1, . . . , r1 + r2).

Clearly, if for some x ∈ Rt+1 we have |Mi(x)| 6 2−1/2 for i = 1, . . . , r then |L̃i(x)| 6
1, whence |Li(x)| 6 |g(αi)| for i = 1, . . . , r. Therefore,

(4.12) C(g) ⊇ D0 := {x ∈ Rt+1 : |Mi(x)| 6 2−1/2 for i = 1, . . . , r} .

By rank{L1, . . . , Lr} = t + 1 and (4.11) we have rank{M1, . . . ,Mr} = t + 1. Let

j1, . . . , jt+1 be indices for which ∆ := | det(Mj1 , . . . ,Mjt+1)| is maximal. Then ∆ > 0

and therefore M1, . . . ,Mr are linear combinations of Mj1 , . . . ,Mjt+1 . Write

Mi =
t+1∑
k=1

cikMjk for i = 1, . . . , r.
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For k = 1, . . . , t + 1 and for any linear form L in t + 1 variables, let ∆k(L) be the

absolute value of the determinant obtained by replacing Mik by L in the determinant

det(Mi1 , . . . ,Mit+1). By Cramer’s rule, (4.11), and the choice of j1, . . . , jt+1, we have

|cik| = ∆k(Mi)/∆ 6 1 for i = 1, . . . , r.

Hence if for some x ∈ Rt+1 we have |Mjk(x)| 6 2−1/2(t + 1)−1 for k = 1, . . . , t + 1,

then |Mi(x)| 6 2−1/2 for i = 1, . . . , r. Together with (4.12) this implies

C(g) ⊇ D0 ⊇ D := {x ∈ Rt+1 : |Mjk(x)| 6 2−1/2(t+ 1)−1 for k = 1, . . . , t+ 1}

and therefore, the volume of C(g) is bounded from below by

vol (C(g)) > vol (D) = 2(t+1)/2(t+ 1)−t−1∆−1.

Now Minkowski’s theorem on successive minima implies that

(4.13) λ1 · · ·λt+1 6 2t+1(vol (C(g)))−1 6
(√

2(t+ 1)
)t+1

∆ .

We estimate ∆ from above. Assume that among {j1, . . . , jt+1} there are precisely

s indices > r1. By (4.11) we have Mi = L̃i for i = 1, . . . , r1, Mi = 1
2
(L̃i + L̃i+r2) for

i = r1 + 1, . . . , r2, Mi = 1
2
√
−1

(L̃i−r2 − L̃i) for i = r1 + r2 + 1, . . . , r, therefore,

det(Mj1 , . . . ,Mjt+1) =
∑

K=(k1,...,kt+1)

εK det(L̃k1 , . . . , L̃kt+1)

where the sum is taken over all 2s tuples K = (k1, . . . , kt+1) such that kh = jh if

1 6 jh 6 r1, kh ∈ {jh, jh + r2} if r1 + 1 6 jh 6 r1 + r2 and kh ∈ {jh − r2, jh} if

r1 + r2 + 1 6 jh 6 r, and where |εK | = 2−s for each of these tuples K. Therefore,

there is a tuple K = (k1, . . . , kt+1) such that ∆ 6 | det(L̃k1 , . . . , L̃kt+1)|. By (3.10),

(3.11) (with {i1, . . . , it} in place of {1, . . . , t}) we have for any two indices j, k ∈
{1, . . . , r}\{i1, . . . , it},

|g(αj)| 6 2t · (t+ 1) · 2r(r−1)/2M(f)r · |g(αk)|

and so by (4.4),

|g(αi1) · · · g(αit+1)| 6 2t · (t+ 1) · 2r(r−1)/2M(f)r · |g(αk1) · · · g(αkt+1)| .
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Together with Lemma 4.1 this implies

∆ 6 | det(L̃k1 , . . . , L̃kt+1)| = | det(Lk1 , . . . , Lkt+1)| · |g(αk1) · · · g(αkt+1)|−1

6 2(t(t+1)/2M(f)t · 2t · (t+ 1) · 2r(r−1)/2M(f)r · |g(αi1) · · · g(αit+1)|−1

= (t+ 1) · 2(r(r−1)+(t+1)(t+2))/2M(f)r+t · |g(αi1) · · · g(αit+1)|−1 .

By combining this with (4.13) and using r > 2t+ 1 we obtain the upper bound for

Λ in (4.10). �

The following lemma is our key observation. Its proof is the only place where we

use our assumption that g is irreducible.

Lemma 4.3. (i) λ1 = 1, h1 = ±g where g is the coefficient vector of g;

(ii) λ2 >M(g)15ξ/16t, where ξ is the number defined by (4.2).

Proof. Let h = (h0, . . . , ht+1) ∈ Zt+1\{0}. Define λ(h) to be the smallest positive

real λ such that h ∈ λC(g), i.e., the smallest real λ such that |Li(h)| 6 λ|g(αi)| for

i = 1, . . . , r. Then in view of (4.6) we have

(4.14) λ(h) = max
i=1,...,r

|h(αi)|
|g(αi)|

where h = h0X
t + · · · + ht. Suppose h is linearly independent of g. Then the

corresponding polynomials g, h are linearly independent. But g is irreducible, hence

the polynomials g, h do not have a common zero, that is, R(g, h) 6= 0. Since g, h

have integer coefficients this implies |R(g, h)| > 1. By combining this with the upper

bound for |R(g, h)| from Lemma 3.3, observing that |f0| > 1, |D(f)| > 1, |g0| > 1

since f, g ∈ Z[X], we obtain

1 6 2
1
2
r3

M(f)r(r−1) · |R(f, g)| ·M(g)2t−r ·max(1, λ(h))t

6 2
1
2
r3

M(f)r(r−1)M(g)−ξ max(1, λ(h))t by (4.2)

6 M(g)−15ξ/16 max(1, λ(h))t by (4.3), (4.1).

Therefore,

(4.15) λ(h) >M(g)15ξ/16t > 1.
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Since g ∈ C(g) we have λ(h1) = λ1 6 1. So by (4.15), h1 is linearly depen-

dent on g. Since g is primitive, this implies h1 = ±g and λ1 = λ(g) = 1. Fur-

ther, h2 is linearly independent of h1, hence of g, and therefore (4.15) gives that

λ2 = λ(h2) >M(g)15ξ/16t. �

5. Reciprocal vectors and linear forms

We keep the notation and assumptions from the previous sections. In particular, g

is a polynomial in Z[X] of degree t satisfying (2.6), (2.7), (4.1). Let h1, . . . ,ht+1 be

the linearly independent vectors in Zt+1 associated with the successive minima of

C(g), i.e., the vectors satisfying (4.8). Write hi = (hi0, . . . , hit) (i = 1, . . . , t+ 1),

H =

 h10 · · · h1t

...
...

ht+1,0 · · · ht+1,t

 , (detH) · (H−1)T =

 h∗10 · · · h∗1t
...

...

h∗t+1,0 · · · h∗t+1,t


where AT denotes the transpose of a matrix A, and put

(5.1) h∗i := (h∗i0, . . . , h
∗
it) (i = 1, . . . , t+ 1).

Recall that up to sign, h∗ij is the determinant of the t×t-matrix obtained by removing

the i-th row and j-th column from H. Therefore h∗i ∈ Zt+1 for i = 0, . . . , t. Define

the scalar product of two vectors x = (x0, . . . , xt+1), y = (y0, . . . , yt+1) by x · y =

x0y0 + · · ·+ xtyt. Then we have

hi · h∗j = δij detH for i, j = 1, . . . , t+ 1,

where δij = 1 if i = j and 0 otherwise. Therefore, hi is perpendicular to the

span of the vectors h∗j (j 6= i). In particular, by Lemma 4.3, (i) we have that g

is perpendicular to the span of h∗2, . . . ,h
∗
t+1, i.e. the one-dimensional vector space

generated by g is determined by this span. Since g is primitive, this implies that

(5.2) up to sign, g is uniquely determined by the span of h∗2, . . . ,h
∗
t+1.

Let {i1, . . . , it+1} be the set of indices defined by (4.4) and let L1, . . . , Lr be the

linear forms given by (4.5) so that in particular Lij = αtijX0 +αt−1
ij
X1 + · · ·+Xt for
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j = 1, . . . , t+ 1. Write

L =

 αti1 αt−1
i1

· · · 1
...

...
...

αtit+1
αt−1
it+1

· · · 1

 , (detL) · (L−1)T =

 b10 · · · b1t

...
...

bt+1,0 · · · bt+1,t


and define the linear forms

(5.3) L∗j =
t∑

k=0

bjkXk (j = 1, . . . , t+ 1).

Lemma 5.1. We have

(5.4) |L∗j(h∗k)| 6 t! · 22r2

M(f)2r ·
(
|g(αij)| · λk

)−1
for j, k = 1, . . . , t+ 1.

Proof. Let A = LHT . Then(
Lim(hn)

)
16m,n6t+1

= A ,(
L∗m(h∗n)

)
16m,n6t+1

= (detL)(LT )−1 · (detH)H−1 = (detA)(A−1)T

where in both cases m is the row index and n the column index. It follows that for

j, k ∈ {1, . . . , t+ 1} we have

L∗j(h
∗
k) = ± det(Lim(hn))m,n

where the indices m, n run over {1, . . . , t+ 1}\{j}, {1, . . . , t+ 1}\{k}, respectively.

The determinant is the sum of t! terms of the shape ±
∏t+1

m=1,m 6=j Lim(hσ(m)) where

σ is a bijection from {1, . . . , t+1}\{j} to {1, . . . , t+1}\{k}. In view of (4.8), (4.10),

each such term has absolute value at most

t+1∏
m=1,m 6=j

(
|g(αim)| · λσ(m)

)
=

( t+1∏
m=1

|g(αim)| · λm
)
·
(
|g(αij)| · λk

)−1

6 22r2

M(f)2r
(
|g(αij)| · λk

)−1
.

Now (5.4) easily follows. �
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6. Estimates for certain linear forms

For a linear form L = c0X0 + · · · + ctXt with coefficients in Q we define the field

Q(L) := Q(c0/ci, . . . , ct/ci) where ci is any non-zero coefficient of L. Thus Q(cL) =

Q(L) for any c ∈ Q∗. Further, we define the linear form σ(L) := σ(c0)X0 + · · · +
σ(ct)Xt for any isomorphism σ defined on Q(c0, . . . , ct).

For a prime number p, we denote by | · |p the standard p-adic absolute value,

normalised such that |p|p = p−1 and we choose an extension of | · |p to Q which we

denote also by | · |p. Then for a linear form L = c0X0 + · · · + ctXt ∈ Q[X0, . . . , Xt]

we put

‖L‖ :=
(
|c0|2 + · · ·+ |ct|2

)1/2

,

‖L‖p := max(|c0|p, . . . , |ct|p) for each prime number p

and subsequently we define the absolute height of L by choosing a number field K

containing the coefficients of L and putting

(6.1) H(L) :=
∏
σ

{
‖σ(L)‖ ·

∏
p

‖σ(L)‖p

}1/[K:Q]

where the products are taken over all primes p and over all isomorphic embeddings

σ of K into Q. This is easily shown to be independent of the choice of K. Further

we have H(cL) = H(L) for every c ∈ Q∗.

Now let L∗1, . . . , L
∗
t+1 be the linear forms defined by (5.3). If the coefficients of L∗j

are not all real we write

L∗j = <(L∗j) +
√
−1 · =(L∗j)

where both <(L∗j) and =(L∗j) are linear forms with real coefficients. We can express

det(L∗1, . . . , L
∗
t+1) as a linear combination of at most 2t+1 determinants

∑
k εk∆k

where each εk is a power of
√
−1 and where each ∆k is a determinant of t+ 1 linear

forms, the j-th of which is L∗j if all coefficients of L∗j are real, and either one of the

linear forms <(L∗j), =(L∗j) if not all coefficients of L∗j are real. Therefore, we may

choose linear forms M∗
1 , . . . ,M

∗
t+1, with M∗

j = L∗j if all coefficients of L∗j are real and

M∗
j ∈ {<(L∗j),=(L∗j)} otherwise, such that

(6.2) | det(M∗
1 , . . . ,M

∗
t+1)| > 2−t−1| det(L∗1, . . . , L

∗
t+1)| .
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Lastly, we define normalised linear forms

(6.3) N∗j := ‖M∗
j ‖−1 ·M∗

j (j = 1, . . . , t+ 1).

Notice that each linear form N∗j has real coeficients. Below we have collected some

other properties of the linear forms M∗
j , N∗j .

Lemma 6.1. We have

| det(M∗
1 , . . . ,M

∗
t+1)| > 2−r

2t/2M(f)−(r−1)t ;(6.4)

‖M∗
j ‖ 6 (t+ 1)(t+1)/2M(f)t for j = 1, . . . , t+ 1;(6.5)

‖M∗
j ‖ > 2−r

2tM(f)−2rt for j = 1, . . . , t+ 1.(6.6)

Proof. We first prove (6.4). From definition (5.3) it follows that det(L∗1, . . . , L
∗
t+1) =

det(Li1 , . . . , Lit+1)t. Together with (6.2), Lemma 4.1, r > 2t+ 1, this implies

| det(M∗
1 , . . . ,M

∗
t+1)| > 2−t−1 · | det(Li1 , . . . , Lit+1)|t

> 2−t−1
(

2(t(t+1)−r(r−1))/2M(f)1−r
)t

> 2−r
2t/2M(f)−(r−1)t.

This proves (6.4).

We prove (6.5). Fix j ∈ {1, . . . , t+ 1}. By (4.5) we have

‖Li‖ 6
(
1 + |αi|2 + · · ·+ |αi|2t)1/2 6

√
t+ 1 ·max(1, |αi|)t for i = 1, . . . , r.

By inserting this into Hadamard’s inequality

‖L∗j‖ 6
t+1∏

k=1, k 6=j

‖Lik‖

(which follows easily from the Gram-Schmidt orthogonalisation procedure) we obtain

‖L∗j‖ 6 (t+ 1)(t+1)/2M(f)t.

Using the obvious inequality ‖M∗
j ‖ 6 ‖L∗j‖, inequality (6.5) follows.
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We prove (6.6). Fix again j ∈ {1, . . . , t+1}. By combining Hadamard’s inequality

| det(M∗
1 , . . . ,M

∗
t+1)| 6 ‖M∗

1‖ · · · ‖M∗
t+1‖ with (6.4), (6.5) we obtain

‖M∗
j ‖ > | det(M∗

1 , . . . ,M
∗
t+1)| ·

( t+1∏
k=1, k 6=j

‖M∗
k‖
)−1

> 2−r
2t/2M(f)−(r−1)t ·

(
(t+ 1)(t+1)/2M(f)t

)−t
> 2−r

2tM(f)−2rt .

This proves (6.6). �

Lemma 6.2. We have

[Q(N∗j ) : Q] 6 r2t for j = 1, . . . , t+ 1;(6.7)

H(N∗j ) 6 2 · (t+ 1)t/2M(f)t for j = 1, . . . , t+ 1;(6.8)

| det(N∗1 , . . . , N
∗
t+1)| > 2−r

2(t+1)M(f)−2r(t+1) .(6.9)

Proof. We prove (6.7). Fix j ∈ {1, . . . , t + 1}. The coefficients of L∗j are t × t-

determinants, whose elements are coefficients of the linear forms Lik (k = 1, . . . , t+1,

k 6= j). Hence the coefficients of L∗j belong to the field generated by the numbers αik
(k 6= j). Now N∗j is a scalar multiple of either L∗j or L∗j±L

∗
j , where the coefficients of

L
∗
j are the complex conjugates of the coefficients of L∗j . The coefficients of L

∗
j belong

to the field generated by the complex conjugates of the numbers αik (k 6= j), which

are also zeros of f . Therefore, N∗j is proportional to a linear form with coefficients

from a field which is generated by at most 2t zeros of f . This implies (6.7).

We prove (6.8). Recall that M(f) = |f0|
∏r

i=1 max(1, |αi|). We will use

(6.10)
r∏
i=1

max(1, |αi|) ·
∏
p

r∏
i=1

max(1, |αi|p) 6M(f) .

Indeed, by Gauss’ lemma and since f ∈ Z[X] we have for every prime number p,

|f0|p
r∏
i=1

max(1, |αi|p) 6 1

and together with the product formula
(∏

p |f0|p
)−1

= |f0| this implies (6.10).
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Fix again j ∈ {1, . . . , t+ 1}. Let K be a finite normal extension of Q containing

α1, . . . , αr,
√
−1 and the coefficients of N∗1 , . . . , N

∗
t+1. Let σ be an automorphism of

K. First notice that

‖Li‖ 6 (t+ 1)1/2 max(1, |αi|)t for i = 1, . . . , r.

Together with Hadamard’s inequality and the fact that σ permutes α1, . . . , αr this

implies

‖σ(L∗j)‖ 6
t+1∏

k=1,k 6=j

‖σ(Lik)‖ 6 (t+ 1)t/2
t+1∏

k=1,k 6=j

max(1, |σ(αik)|)t(6.11)

6 (t+ 1)t/2
r∏
i=1

max(1, |αi|)t.

Recall that N∗j is a scalar multiple of Ñ∗j where Ñ∗j is either L∗j or L∗j ± L
∗
j . Note

that ‖σ(L
∗
j)‖ is bounded above by the right-hand side of (6.11) since σ(L

∗
j) = τ(L∗j)

for some automorphism τ of K. So in either case, by the triangle inequality,

(6.12) ‖σ(Ñ∗j )‖ 6 2 · (t+ 1)t/2
r∏
i=1

max(1, |αi|)t.

Now let p be a prime number. Then for i = 1, . . . , r we have

‖Li‖p 6 max(1, |αi|p)t.

By precisely the same reasoning as above, but using the ultrametric inequality in-

stead of Hadamard’s inequality and the triangle inequality, one obtains

‖σ(L∗j)‖p 6
t+1∏

k=1,k 6=j

‖σ(Lik)‖p 6
t+1∏

k=1,k 6=j

max(1, |σ(αik)|p)t 6
r∏
i=1

max(1, |αi|p)t ,

(6.13) ‖σ(Ñ∗j )‖p 6
r∏
i=1

max(1, |αi|p)t.
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Now by combining (6.12), (6.13), (6.10) we obtain

H(N∗j ) = H(Ñ∗j ) =
∏
σ

{
‖σ(Ñ∗j )‖ ·

∏
p

‖σ(Ñ∗j )‖p

}1/[K:Q]

6 2 · (t+ 1)t/2 ·
r∏
i=1

(
max(1, |αi|)

∏
p

max(1, |αi|p)
)t

6 2 · (t+ 1)t/2M(f)t

where in the products σ runs through the isomorphic embeddings of K into Q and

p through the prime numbers. This proves (6.8).

Lastly, (6.9) is proved by observing that

| det(N∗1 , . . . , N
∗
t+1)| =

| det(M∗
1 , . . . ,M

∗
t+1)|

‖M∗
1‖ · · · ‖M∗

t+1‖

and then proceeding as in the proof of (6.6). �

Lemma 6.3. Let h∗1, . . . ,h
∗
t+1 be the vectors defined by (5.1). Then we have

(6.14) |N∗j (h∗k)| 6 22r3

M(f)2r2 ·
(
|g(αij)| · λk

)−1
for j, k = 1, . . . , t+ 1.

Proof. Fix j, k ∈ {1, . . . , t+ 1}. Since M∗
j (h∗k) is either the real or imaginary part of

L∗j(h
∗
k) we have |M∗

j (h∗k)| 6 |L∗j(h∗k)|. Together with Lemma 5.1, (6.6) this implies

|N∗j (h∗k)| = ‖M∗
j ‖−1 · |M∗

j (h∗k)| 6 ‖M∗
j ‖−1 · |L∗j(h∗k)|

6 2r
2tM(f)2rt · t! · 22r2

M(f)2r ·
(
|g(αij)| · λk

)−1

and since r > 2t+ 1 this implies (6.14). �

7. Davenport’s Lemma

We start with a variation on Davenport’s lemma.
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Lemma 7.1. Let L1, . . . , Ln be linearly independent linear forms in n variables

with coefficients in R, let h1, . . . ,hn be linearly independent vectors from R
n and let

µ1, . . . , µn be reals with 0 < µ1 6 µ2 6 · · · 6 µn. Suppose that

(7.1) |Lj(hk)| 6 µk for j, k = 1, . . . , n.

Then there are a permutation κ of {1, . . . , n} and vectors

(7.2) vj = bi +

j−1∑
k=1

ξjkbk

with ξjk ∈ Z for j = 1, . . . , n and k = 1, . . . , j − 1, such that

(7.3) |Lj(vk)| 6 22n min(µκ(j), µk) for j, k = 1, . . . , n.

Proof. cf. [1, p. 40, Lemma 3.3.5]. �

We keep the notation from the previous sections so that in particular g is a poly-

nomial in Z[X] with (2.6), (2.7), (4.1) and N∗1 , . . . , N
∗
t+1 are the linear forms defined

by (6.3). Then we have:

Lemma 7.2. There are a permutation κ of {1, . . . , t+ 1} and linearly independent

vectors v∗1, . . . ,v
∗
t+1 ∈ Zt+1 with the following properties:

|N∗j (v∗k)| 6 23r3

M(f)2r2|g(αij)|−1 ·min(λ−1
κ(j), λ

−1
k )(7.4)

for j, k = 1, . . . , t+ 1;

up to sign, g is determined by the span of v∗2, . . . ,v
∗
t+1.(7.5)

Proof. We apply Lemma 7.1 with n = t+ 1 and with

Lj = |g(αit+2−j)| ·N∗t+2−j, µj = 22r3

M(f)2r2

λ−1
t+2−j, hj = h∗t+2−j

for j = 1, . . . , t + 1. Lemma 6.3 implies that condition (7.1) is satisfied. It follows

that there are a permutation κ of {1, . . . , t+ 1} and vectors v∗j = h∗j +
∑t+1

k=j+1 ξjkh
∗
k
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with ξjk ∈ Z for j = 1, . . . , t+ 1 and k = j + 1, . . . , t+ 1, such that

|g(αij)| · |N∗j (v∗k)| 6 22r3+2t+2M(f)2r2 ·min(λ−1
κ(j), λ

−1
k )

6 23r3

M(f)2r2 ·min(λ−1
κ(j), λ

−1
k )

for j, k = 1, . . . , t+ 1 where we have used that r > 2t+ 1. This proves (7.4). Using

(5.2) and the fact that the span of v∗2, . . . ,v
∗
t+1 is equal to the span of h∗2, . . . ,h

∗
t+1

we obtain (7.5). Lastly, v∗1, . . . ,v
∗
t+1 are linearly independent since they have the

same span as h∗1, . . . ,h
∗
t+1 and since the latter vectors are linearly independent. �

8. Construction of a parallelepiped

We keep the notation from the previous sections. In particular, g is a polynomial in

Z[X] of degree t satisfying (2.6), (2.7), (4.1).

We wish to construct a parallelepiped Π ⊂ Rt+1 which contains the vectors v∗2, . . . ,

v∗t+1 from Lemma 7.2 but which does not contain any vector from Z
t+1 which is

linearly independent of v∗2, . . . ,v
∗
t+1. Thus the vector space V generated by Π∩Zt+1 is

equal to the span of v∗2, . . . ,v
∗
t+1 and by (7.5) this means that V uniquely determines

±g. A possible candidate is

Π := {x ∈ Rt+1 : |N∗j (x)| 6 Aj for j = 1, . . . , t+ 1}

where

(8.1)


Aj := 23r3

M(f)2r2(|g(αij)| · λκ(j)

)−1
(j = 1, . . . , t+ 1; j 6= j0),

Aj0 := 23r3
M(f)2r2(|g(αij0 )| · λ2

)−1

= 23r3
M(f)2r2(|g(αij0 )| · λ1

)−1 · (λ1/λ2)

with κ(j0) = 1.

Indeed, from (7.4) it follows at once that Π contains v∗2, . . . ,v
∗
t+1. Suppose Π contains

also a vector v∗1 ∈ Zt+1 (not necessarily the same vector as in Lemma 7.2) which is
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linearly independent of v∗2, . . . ,v
∗
t+1. Then by Lemma 4.2, Lemma 4.3, (4.3),

1 6 | det(v∗1, . . . ,v
∗
t+1)| � vol(Π)� A1 · · ·At+1

�
t+1∏
j=1

(
|g(αij)| · λκ(j)

)−1 · (λ1/λ2)� λ1/λ2

� M(g)−15ξ/16t �M(g)−15δ/16t

where the constants implied by � depend only on f . For M(g) sufficiently large

this gives a contradiction, i.e., such a vector v∗1 cannot exist.

However, for our method of proof to work, we need instead of Π a parallelepiped

of the shape {x ∈ Rt+1 : |N∗j (x)| 6 M(g)ρjξ for j = 1, . . . , t+ 1} where each ρj is

independent of g. To construct such a parallelepiped we need the following combi-

natorial lemma.

Lemma 8.1. There is a set P ⊂ Rt+1 independent of g of cardinality at most

(8.2) (6t(t+ 1)2δ−1)t+1

with the following property: if A1, . . . , At+1 are the reals given by (8.1), then there

is a tuple (ρ1, . . . , ρt+1) ∈ P such that

M(g)(ρj− 1
2t(t+1)

)ξ < Aj 6M(g)ρjξ (j = 1, . . . , t+ 1),(8.3)

ρj 6 2t+1
δ

(j = 1, . . . , t+ 1),(8.4)

ρ1 + · · ·+ ρt+1 6 − 1
3t
.(8.5)

Proof. First observe that for j = 1, . . . , t+ 1

Aj 6 23r3

M(f)2r2|g(αij)|−1 by Lemma 4.3 (i)

6 23r3

M(f)2r2 · 2t(r−1)|R(f, g)|−1M(f)tM(g)r−1 by (3.12)

= 23r3+t(r−1)M(f)2r2+tM(g)2t−1+ξ by (4.2)

6 (M(g)ξ)
2t−1
δ

+ 37
36 by (4.3), (4.1), r > 2t+ 1 > 3,
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and

Aj > 23r3

M(f)2r2
t+1∏
k=1

(
|g(αik)| · λκ(k)

)−1

·
t+1∏

k=1, k 6=j

|g(αik)|

by Lemma 4.3 (i)

> 23r3

M(f)2r2

22r2

M(f)−2r · 2−t(r−t)|R(f, g)| ·M(f)−tM(g)t−r

by Lemma 4.2, (3.12)

> M(g)−t−ξ > (M(g)ξ)−
t
δ
−1 by (4.2), (4.3),

so altogether,

(8.6) (M(g)ξ)−
t
δ
−1 6 Aj 6 (M(g)ξ)

2t−1
δ

+ 37
36 for j = 1, . . . , t+ 1.

For j = 1, . . . , t+ 1, let fj be the integer given by

(8.7) (M(g)ξ)fj−1 < A
2t(t+1)
j 6 (M(g)ξ)fj

and put

ρj :=
fj

2t(t+ 1)
.

Notice that by (8.6), (8.7) we have for j = 1, . . . , t+ 1,

(8.8) −
(
t
δ

+ 1
)
· 2t(t+ 1) < fj 6 1 +

(
2t−1
δ

+ 37
36

)
· 2t(t+ 1) .

It is clear that (8.3) is satisfied. By (8.8) we have

ρj 6 2t−1
δ

+ 37
36

+ 1
2t(t+1)

6 2t+1
δ
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which implies (8.4). Further,

(M(g)ξ)ρ1+···+ρt+1

6 A1 · · ·At+1 · (M(g)ξ)1/2t by (8.3)

6
(

23r3

M(f)2r2
)t+1

t+1∏
j=1

(
|g(αij)| · λκ(j)

)−1 · (λ1/λ2) · (M(g)ξ)1/2t by (8.1)

6
(

23r3

M(f)2r2
)t+1

· 2r2/2M(f)r−1 · (M(g)ξ)−15/16t · (M(g)ξ)1/2t

by Lemma 4.2, Lemma 4.3

6 24r4

M(f)3r3

(M(g)ξ)−7/16t 6 (M(g)ξ)
1

12t
− 7

16t 6 (M(g)ξ)−1/3t

by r > 2t+ 1 > 3, (4.3), (4.1)

which implies (8.5).

Lastly, from (8.8) we infer that each integer fj can be chosen from a set indepen-

dent of g of cardinality at most

1 +
(

3t−1
δ

+ 73
36

)
· 2t(t+ 1) 6 6t(t+ 1)2δ−1.

Hence, each number ρj can be chosen from a set of cardinality at most 6t(t+ 1)2δ−1

which is independent of g and therefore, the tuple (ρ1, . . . , ρt+1) can be chosen from

a set of cardinality at most
(
6t(t+ 1)2δ−1

)t+1
which is independent of g. This com-

pletes the proof of Lemma 8.1. �

Lemma 8.2. Let (ρ1, . . . , ρt+1) be the tuple from Lemma 8.1 and define the paral-

lelepiped

Π(g) := {x ∈ Rt+1 : |N∗j (x)| 6 (M(g)ξ)ρj for j = 1, . . . , t+ 1}.

Then v∗2, . . . ,v
∗
t+1 ∈ Π(g)∩Zt+1. Moreover, Π(g)∩Zt+1 does not contain any vector

which is linearly independent of v∗2, . . . ,v
∗
t+1.

Proof. By (7.4), (8.1), (8.3) we have for j = 1, . . . , t+ 1 and k = 2, . . . , t+ 1,

|N∗j (v∗k)| 6 Aj 6 (M(g)ξ)ρj .
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Hence v∗k ∈ Π(g) ∩ Zt+1 for k = 2, . . . , t+ 1.

Assume that Π(g) ∩ Zt+1 contains a vector v∗1 which is linearly independent of

v∗2, . . . ,v
∗
t+1. Then

1 6 | det(v∗1, . . . ,v
∗
t+1)| = | det(N∗1 , . . . , N

∗
t+1)|−1 · | det(N∗j (v∗k)j,k=1,...,t+1|

6 2r
2(t+1)M(f)2r(t+1) · (t+ 1)! · (M(g)ξ)ρ1+···+ρt+1 by (6.9)

6 2r
2(t+1)M(f)2r(t+1) · (t+ 1)! ·M(g)−ξ/3t < 1 by (8.5), (4.3), (4.1).

Thus the assumption that Π(g) ∩ Zt+1 contains a vector which is linearly indepen-

dent of v∗2, . . . ,v
∗
t+1 leads to a contradiction. �

In the proposition below we have collected the facts from Sections 4-8 which are

needed in the proof of Theorem 2.1:

Proposition 8.3. For every polynomial g ∈ Z[X] of degree t with (2.6), (2.7), (4.1)

there exists a parallelepiped

(8.9) Π(g) = {x ∈ Rt+1 : |N∗j (x)| 6 (M(g)ξ)ρj (j = 1, . . . , t+ 1)}

with the following properties:

(i) N∗1 , . . . , N
∗
t+1 are linearly independent linear forms with algebraic coefficients sat-

isfying

(8.10) [Q(N∗j ) : Q] 6 r2t, H(Nj) 6 2 · (t+ 1)t/2M(f)t, ‖Nj‖ = 1

for j = 1, . . . , t+ 1.

(ii) ρ1, . . . , ρt+1 are real numbers satisfying

(8.11) ρj 6
2t+ 1

δ
(j = 1, . . . , 2t+ 1), ρ1 + · · ·+ ρt+1 6 −1/3t .

(iii) The tuple (N∗1 , . . . , N
∗
t+1; ρ1, . . . , ρt+1) belongs to a set independent of g of car-

dinality at most

(8.12)

(
r

t

)
·
(
6t(t+ 1)2δ−1

)t+1
.
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(iv) Let V (g) be the R-vector space generated by Π(g) ∩ Zt+1. Then

dimV (g) = t;(8.13)

up to sign, g is uniquely determined by V (g).(8.14)

Proof. (8.10) follows immediately from (6.7), (6.8), (6.3) and (8.11) from (8.4), (8.5).

This proves (i) and (ii).

In Section 6 we constructed N∗1 , . . . , N
∗
t+1 from the linear forms Li1 , . . . , Lit+1 .

Therefore, N∗1 , . . . , N
∗
t+1 depend only on the set of indices {i1, . . . , it+1} defined by

(4.4). Hence for the tuple of linear forms (N∗1 , . . . , N
∗
t+1) we have at most

(
r
t

)
possi-

bilities. By multiplying this with the upper bound (8.2) for the number of posibilities

of (ρ1, . . . , ρt+1) we obtain (iii).

Lastly, Lemma 8.2 implies that V (g) is the span of v∗2, . . . ,v
∗
t+1. Since these

vectors are linearly independent this implies (8.13). Statement (8.14) follows from

(7.5). This proves (iv). �

9. The large solutions

We will estimate the number of polynomials g of degree t with (2.6), (2.7) having

large Mahler measure. Apart from Proposition 8.3 we need a result from [2] which

we recall below.

Let 0 < ε < 1, t > 1, let N1, . . . , Nt+1 be linearly independent linear forms in

Q[X0, . . . , Xt] and let c1, . . . , ct+1 be reals such that

(9.1) [Q(Nj) : Q ] 6 D, H(Nj) 6 H, ||Nj|| = 1 for j = 1, . . . , t+ 1,

(9.2) cj 6 1 (j = 1, . . . , t+ 1), c1 + · · ·+ ct+1 6 −ε.

Then for every real Q > 1 we define the parallelepiped

(9.3) Π(Q) = Π({Nj}, {cj}, Q) = {x ∈ Rt+1 : |Nj(x)| 6 Qcj (j = 1, . . . , t+ 1)}

and we denote by V (Q) the real vector space generated by Π(Q) ∩ Zt+1.
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Lemma 9.1. There is a collection {V1, . . . , Vm} of t-dimensional linear subspaces

of Rt+1 of cardinality

(9.4) m 6 C := 230(t+ 1)8ε−4 log 4D log log 4D

such that for every Q with

dimV (Q) = t ,(9.5)

Q > (2H)e
C

(9.6)

we have V (Q) ∈ {V1, . . . , Vm}.

Proof. This is a special case of Theorem C of [2], cf. pp. 260-261. �

We now show:

Proposition 9.2. The number of polynomials g ∈ Z[X] of degree t satisfying (2.6),

(2.7) and

(9.7) logM(g) > exp(255t18δ−4 log 4r log log 4r) log(2M(f))

is at most

(9.8) 27t+59t2t+21δ−t−5 · rt log 4r log log 4r .

Proof. Inequality (9.7) implies (4.1). Therefore, for each polynomial g ∈ Z[X] of

degree t with (2.6), (2.7), (9.7) there is a parallelepiped Π(g) with the properties

specified in Proposition 8.3. For the moment we consider only polynomials g ∈
Z[X] of degree t satisfying (2.6), (2.7), (9.7) which correspond to a fixed tuple

(N∗1 , . . . , N
∗
t+1; ρ1, . . . , ρt+1). Thus let g be such a polynomial and put

Q := (M(g)ξ)(2t+1)/δ ,(9.9)

c∗j :=
δ

2t+ 1
ρj (j = 1, . . . , t+ 1).(9.10)

Then the parallelepiped Π(g) defined by (8.9) is equal to

Π(Q) := {x ∈ Rt+1 : |N∗j (x)| 6 Qc∗j (j = 1, . . . , t+ 1)}
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while V (g) is equal to the space V (Q) spanned by Π(Q) ∩ Zt+1. So by (8.13),

dimV (Q) = t. Further, by (8.11) we have

(9.11) c∗j 6 1 (j = 1, . . . , t+ 1), c∗1 + · · ·+ c∗t+1 6 −
δ

3t(2t+ 1)
.

We apply Lemma 9.1 with Nj = N∗j , cj = c∗j (j = 1, . . . , t+ 1). Thus (8.10) implies

(9.1) with

D = r2t, H = 2(t+ 1)t/2M(f)t .

Further, (9.11) implies (9.2) with

ε =
δ

3t(2t+ 1)
.

By substituting these values for D, ε into the quantity C defined by (9.4) we get

C = 230(t+ 1)8
(
3t(2t+ 1)δ−1

)4
log(4r2t) log log(4r2t)(9.12)

< 254t18δ−4 log 4r log log 4r ,

where in the last inequality we have used t+ 1 6 2t, 2t+ 1 6 3t and

log(4r2t) log log(4r2t) 6 6t2 log 4r log log 4r for t > 1, r > 2t + 1. Further, by (9.9),

(4.3), (9.7) we have

Q > M(g)2t+1 > (2M(f))(2t+1) exp(255t18δ−4 log 4r log log 4r)

> (4(t+ 1)t/2M(f)t)exp(254t18δ−4 log 4r log log 4r)

> (2H)e
C

with the value of H chosen above. Thus, Q satisfies (9.5), (9.6).

Now Lemma 9.1 implies that the space V (Q) belongs to a collection of cardinality

at most C which is independent of g. Hence the space V (g) belongs to this collection.

But by (8.14), the space V (g) uniquely determines g up to sign. It follows that there

are at most 2C polynomials g ∈ Z[X] of degree t satisfying (2.6), (2.7), (9.7) which

correspond to a fixed tuple (N∗1 , . . . , N
∗
t+1; ρ1, . . . , ρt+1), where C is given by (9.12).

Thus, the total number of polynomials g ∈ Z[X] of degree t with (2.6), (2.7),

(9.7) is at most 2C times the upper bound (8.12) for the number of possibilities for



ON RESULTANT INEQUALITIES 37

(N∗1 , . . . , N
∗
t+1; ρ1, . . . , ρt+1), that is,

2C ·
(
r

t

)
·
(
6t(t+ 1)2δ−1

)t+1

6 255t18δ−4 log 4r log log 4r · (er/t)t ·
(
24t3δ−1

)t+1

6 27t+59t2t+21δ−t−5 · rt log 4r log log 4r

where we have used that et ·24t+1 < 27t+4 for t > 1. This proves Proposition 9.2. �

10. A gap principle

We derive a gap principle to estimate the number of polynomials g with (2.6)-(2.8)

which do not satisfy (9.7). We need the following combinatorial lemma.

Lemma 10.1. Let θ be a real with 0 < θ < 1 and let t be an integer > 1. There

exists a set P ⊂ Rt of cardinality at most

(10.1) 4
(
e2
(

1
2

+ 1+θ−1

t

))t−1

,

consisting of tuples (ρ1, . . . , ρt) with

(10.2) ρ1 > ρ2 > · · · > ρt > 0, 1− θ 6
t∑
i=1

ρi 6 1,

such that for every tuple of reals (F1, . . . , Ft,Λ) with

(10.3) 0 < F1 6 F2 6 · · · 6 Ft 6 1, F1 · · ·Ft 6 Λ

there is a tuple (ρ1, . . . , ρ1) ∈ P such that Fi 6 Λρi for i = 1, . . . , t.

Proof. cf. [3, p. 79, Lemma 14]. �

Let f be the polynomial and δ the real number from Theorem 2.1. Thus, f =

f0

∏r
i=1(X−αi) with f0 6= 0 and with α1, . . . , αr distinct. If ζ is an algebraic number
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of degree t then we order the conjugates ζ(1), . . . , ζ(t) of ζ in such a way that

(10.4) min
i=1,...,r

|αi − ζ(1)|
max(1, |αi|)

6 min
i=1,...,r

|αi − ζ(2)|
max(1, |αi|)

6 · · · 6 min
i=1,...,r

|αi − ζ(t)|
max(1, |αi|)

.

If g ∈ Z[X] is an irreducible polynomial of degree t, let ζ(1), . . . , ζ(t) be the zeros of

g, ordered according to (10.4). We first prove the following result.

Lemma 10.2. There exists a set S of cardinality at most

(10.5) 7rt(63δ−1)t−1

consisting of tuples (i1, . . . , it;ϕ1, . . . , ϕt) where i1, . . . , it ∈ {1, . . . , r} and where

ϕ1, . . . , ϕt are non-negative reals satisfying

(10.6) ϕ1 + · · ·+ ϕt > 2t+ δ/2 ,

such that for every polynomial g ∈ Z[X] with (2.6)-(2.8) there is a tuple

(i1, . . . , it;ϕ1, . . . , ϕt) ∈ S for which

(10.7)
|αij − ζ(j)|

2 max(1, |αij |) max(1, |ζ(j)|)
6M(g)−ϕj for j = 1, . . . , t.

Proof. Let g ∈ Z[X] be a polynomial of degree t with (2.6)-(2.8). Choose indices

i1, . . . , it ∈ {1, . . . , r} such that

(10.8)
|αij − ζ(j)|

max(1, |αij |)
= min

i=1,...,r

|αi − ζ(j)|
max(1, |αi|)

for j = 1, . . . , t.

By formula (7.3) on [3, p. 81] we have

|R(f, g)|
M(f)tM(g)r

> C−1

t∏
i=1

|αij − ζ(j)|
2 max(1, |αij |) max(1, |ζ(j))|

with C =
(

21+r(r−1)/2M(f)r−1
)t

.

Together with (2.6), (2.8) this implies

(10.9)
t∏
i=1

|αij − ζ(j)|
2 max(1, |αij |) max(1, |ζ(j))|

6M(g)−2t−3δ/4.
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We apply Lemma 10.1 with

Fj =
|αij − ζ(j)|

2 max(1, |αij |) max(1, |ζ(j))|
(j = 1, . . . , t), Λ = M(g)−2t−3δ/4,

θ = 1− 2t+ δ/2

2t+ 3δ/4
=

δ

8t+ 3δ
.

Then clearly, 0 < θ < 1. Further, (10.4), (10.8), (10.9) imply (10.3). Hence the

conditions of Lemma 10.1 are satisfied. Let P be the set from Lemma 10.1, let

(ρ1, . . . , ρt) ∈ P be the tuple for which Fj 6 Λρj for j = 1, . . . , t and put ϕj =

ρj(2t + 3δ/4). Then clearly, (10.7) holds. Further, (10.2) and our choices of θ, Λ

and ϕj (j = 1, . . . , t) imply (10.6).

Lastly, with our choice of θ the set P of Lemma 10.1 has cardinality at most

4
(
e2
(

1
2

+ 1
t

(
1 + 8t+3δ

δ

)))t−1

6 4
(
e2
(

1
2

+ 4
t

+ 8
δ

))t−1

6 4
(
e2
(

1
2

+ 8
δ

))t−1

·
(

1 + 1
2t

)t−1

6 7
(
63δ−1

)t−1
.

Since for each index ij we have r possibilities and since ϕj is determined by ρj, we

have at most 7rt(63δ−1)t−1 possibilities for the tuple (i1, . . . , it; ϕ1, . . . , ϕt). This

proves Lemma 10.2. �

We recall the following gap principle for Wirsing systems.

Lemma 10.3. Let t > 0, 0 < ε < 1, let α1, . . . , αt be algebraic numbers and let

ϕ1, . . . , ϕt be non-negative reals with
∑t

j=1 ϕj > 2t + ε. Further, let A,B be reals

with

(10.10) B > A > 4t(t+1)/ε .

Choose for every algebraic number ζ of degree t an ordering of its conjugates

ζ(1), . . . , ζ(t).

Then the number of algebraic numbers ζ of degree t satisfying

(10.11)
|αj − ζ(j)|

2 max(1, |αj|) max(1, |ζ(j)|)
6M(ζ)−ϕj for j = 1, . . . , t,
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(10.12) A 6M(ζ) < B

is at most

(10.13) t ·
(

1 +
log(2 logB/ logA)

log(1 + ε/t)

)
.

Proof. cf. [3, p. 60, Lemma 2 (i)]. �

We finally arrive at the following gap principle for the resultant inequality:

Proposition 10.4. Let A,B be reals with

(10.14) B > A >
(

22r2

M(f)4r−4
)t/δ

.

Then the number of polynomials g ∈ Z[X] of degree t with (2.6)-(2.8) and with

A 6M(g) < B

is at most

(10.15) 14t(63δ−1)t−1rt ·
(

1 +
log(2 logB/ logA)

log(1 + δ/2t)

)
.

Proof. Instead of primitive, irreducible polynomials g ∈ Z[X] of degree t we may

count algebraic numbers ζ of degree t. For each algebraic number ζ of degree t there

are precisely two primitive irreducible polynomials g ∈ Z[X] with g(ζ) = 0 (taking

into consideration the sign) and for these we have M(g) = M(ζ).

By Lemma 10.2, each polynomial g ∈ Z[X] of degree t with (2.6)-(2.8) satisfies

one of at most N1 := 7rt(63δ−1)t−1 systems of inequalities of the shape (10.7). To

each of these systems we can apply Lemma 10.3 with ε = δ/2. For this choice of

ε, (10.14) implies (10.10). It follows that the number of polynomials g ∈ Z[X] of

degree t with (2.6)-(2.8) and with A 6 M(g) < B is at most 2N1N2, where N2 is

the quantity from (10.13) with δ/2 in place of ε. This proves Proposition 10.4. �
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11. Proof of Theorem 2.1

Put

C∗ := 255t18δ−4 log 4r log log 4r .

Let R1 denote the set of polynomials g ∈ Z[X] of degree t with (2.6),(2.7) and(
22r2

M(f)4r−4
)t/δ
6M(g) < (2M(f))e

C∗

and let R2 denote the set of polynomials g ∈ Z[X] of degree t with (2.6),(2.7) and

M(g) > (2M(f)e
C∗

.

Thus, R1 ∪ R2 is the set of all polynomials g ∈ Z[X] of degree t with (2.6), (2.7),

(2.8).

We estimate the cardinality of R1. We apply Proposition 10.4 with

A =
(

22r2

M(f)4r−4
)t/δ

, B = (2M(f))e
C∗

.

Note that with this choice of A and B we have B2 6 Ae
C∗

. Further, log(1 + δ/2t) >

δ/4t. By inserting this into (10.15) we obtain that R1 has cardinality at most

14t · rt(63δ−1)t−1 · (1 + 4tδ−1C∗)

6 26t+55t20δ−t−4 · rt log 4r log log 4r .

By Proposition 9.2, the cardinality of R2 is bounded above by the quantity in

(9.8). Thus we obtain that the total number of polynomials g ∈ Z[X] of degree t

with (2.6)-(2.8) is at most

26t+55t20δ−t−4 · rt log 4r log log 4r + 27t+59t2t+21δ−t−5 · rt log 4r log log 4r

6 27t+60t2t+21δ−t−5 · rt log 4r log log 4r .

This completes the proof of Theorem 2.1. �
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12. Proof of Corollary 2.2

Let (ξ, η) ∈ (O\{0})2 be a pair satisfying (2.15)-(2.17). Let g be the minimal

polynomial of ζ := ξ/η. Thus,

(12.1) H(ξ, η) = M(ζ)1/t = M(g)1/t .

Put f := F (X, 1). Let s := [Q(ξ, η) : Q ]. Denote by (ξ(i), η(i)) (i = 1, . . . , s)

the images of (ξ, η) under the isomorphic embeddings of Q(ξ, η) into Q. Write

g = g0

∏t
j=1(X − ζ(j)) where ζ(1), . . . , ζ(t) are the conjugates of ζ. Then for each

conjugate ζ(j) of ζ there are precisely s/t indices i such that ξ(i)/η(i) = ζ(j). Thus,

s∏
i=1

(η(i)X − ξ(i)) =
( s∏
i=1

η(i)
)
·
( t∏
j=1

(X − ζ(j))
)s/t

= d0g(X)s/t,

where

d0 :=
( s∏
i=1

η(i)
)
g
−s/t
0

is an integer since the polynomial on the left-hand side has its coefficients in Z and

since g is primitive. Now (2.3) implies

‖F (ξ, η)‖ =

(
s∏
i=1

|F (ξ(i), η(i))|

)1/s

= |
s∏
i=1

η(i)|r/s · |
t∏

j=1

f(ζ(j))|1/t(12.2)

= |d0|r/s · |g0|r/t · |
t∏

j=1

f(ζ(j))|1/t = |d0|r/s|R(f, g)|1/t

> |R(f, g)|1/t .

From (12.1), (12.2) we infer that if (ξ, η) ∈ (O\{0})2 is a pair with (2.15)-(2.17),

then the minimal polynomial g of ξ/η has degree t and satisfies (2.6)-(2.8). Further,

since each such polynomial g has t zeros, there are up to proportionality at most

t pairs (ξ, η) giving rise to the same polynomial g. It follows that the number of

pairs (ξ, η) ∈ (O\{0})2 with (2.15)-(2.17) is up to proportionality at most t times

the upper bound (2.9) in Theorem 2.1, which in turn is equal to the upper bound

(2.14) in Corollary 2.2. This completes our proof. �



ON RESULTANT INEQUALITIES 43

13. Proof of Corollary 2.3

Let f ∈ Z[X] be the polynomial of degree r > 2t + 1 from Corollary 2.3 such

that the numbers αi (i ∈ I) are zeros of f . Write f = f0

∏r
i=1(X − βj) where

β1, . . . , βr are distinct. Thus αj = βij ∈ {β1, . . . , βr} for i ∈ I. Let ζ be an algebraic

number of degree t satisfying (2.23) and let g ∈ Z[X] be the minimal polynomial

of ζ. Write g = g0

∏t
j=1(X − ζ(j)). Then using (2.3), (2.21) and |βi − ζ(j)| 6

2 max(1, |βi|) ·max(1, |ζ(j)|) we obtain

|R(f, g)| = |f t0gr0|
r∏
i=1

s∏
j=1

|βi − ζ(j)|(13.1)

6 |f t0gr0|
∏
j∈I

|βij − ζ(j)| ·
r∏
i=1

t∏
j=1

(
2 max(1, |βi|) ·max(1, |ζ(j)|)

)
6 M(g)−

∑
j∈I ϕj · 2rtM(f)tM(g)r

6 2rtM(f)tM(g)r−2t−δ .

Now let W1 be the set of algebraic numbers ζ of degree t satisfying (2.23) and

(13.2) max
(
M(f), 4t(t+1)/δ

)
6M(ζ) <

(
24r2

M(f)8r−8
)t/δ

and let W2 be the set of algebraic numbers ζ of degree t satisfying (2.23) and

(13.3) M(ζ) >
(

24r2

M(f)8r−8
)t/δ

.

Thus W1 ∪W2 is the set of algebraic numbers of degree t with (2.23), (2.24).

To estimate the cardinality of W1 we apply Lemma 10.3 with

A = max
(
M(f), 4t(t+1)/δ

)
, B =

(
24r2

M(f)8r−8
)t/δ

, ε = δ

(observe that if ζ satisfies (2.23) then ζ also satisfies (10.11) with αj, ϕj the same

as in (2.23) for j ∈ I, and αj = 0, ϕj = 0 for j ∈ {1, . . . , t}\I).
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Thus, using that B2 6 A32r2tδ, r > 2t+ 1 > 3 we infer that W1 has cardinality at

most

t

(
1 +

log(32r2tδ−1)

log(1 + δ/t)

)
6 t
(
1 + 4tδ−1 · log(32r2tδ−1)

)
(13.4)

6 t+ 4t3δ−1 · 3δ−1 log 4r 6 13t3δ−2 log 4r .

To estimate the cardinality of W2 we will apply Theorem 2.1 with δ/2 in place of

δ.

Let ζ ∈ W2 and let g be the minimal polynomial of ζ. We first observe that f

and g do not have a common zero. For assume the contrary. Then g is a divisor of

f since g is irreducible. But then M(ζ) = M(g) 6M(f) by (3.6) which contradicts

(13.3). Now from our observation, (13.3), (13.1) and M(ζ) = M(g) it follows that

0 < |R(f, g)| 6M(g)r−2t−δ/2

which is (2.6) with δ/2 replacing δ. It is clear that g satisfies (2.7). Further, from

(13.3) and M(g) = M(ζ) it follows that g satisfies (2.8) with δ/2 replacing δ.

So by applying Theorem 2.1 (with δ/2 in place of δ) we infer that if ζ runs through

W2 then its minimal polynomial g runs through a set of cardinality at most

27t+60t2t+21(2δ−1)t+5 log 4r log log 4r = 28t+65t2t+21δ−t−5 log 4r log log 4r .

Since each such polynomial g has t zeros we must multiply this with t to obtain an

upper bound for the cardinality of W2, i.e. we must replace t2t+21 by t2t+22.

By combining this with the upper bound for the cardinality of W1 obtained in

(13.4) we infer that the total number of algebraic numbers ζ of degree t with (2.23),

(2.24) is at most

28t+66t2t+22δ−t−5 log 4r log log 4r .

Since this is the upper bound (2.22) in Corollary 2.3 we are done. �
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