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Abstract. We will deduce a quantitative version of a Diophantine approximation
result of Faltings and Wüstholz [7] dealing with systems of Diophantine inequali-
ties to be solved in algebraic points of a projective variety X. Our method consists
of embedding X into a linear variety by means of a suitable Veronese map and
then applying a recent quantitative version of the Subspace Theorem due to
Evertse and Schlickewei [5]. To construct the Veronese map, we prove a result of
independent interest, which gives a lower bound for the m-th normalized Hilbert
weight of X in terms of the normalized Chow weight of X.
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1. Introduction

1.1. Let Y be an n-dimensional projective subvariety (i.e., a geometrically irre-

ducible Zariski-closed subset) of PM which is defined over a number field K. Let S

be a finite set of places of K. For v ∈ S, i = 0, . . . , nv, let fiv be a homogeneous

polynomial of degree k > 1 in M + 1 variables with coefficients in K and let div a

real > 0. We are interested in systems of inequalities

(1.1) log
( |fiv(y)|v
‖y‖kv

)
6 −divh(y) (v ∈ S, i = 0, . . . , nv) in y ∈ Y (K),

where | |v, ‖ ‖v (v ∈ S) are normalized absolute values and norms and h(y) is the

absolute logarithmic height (cf. §2.1 below).

Assume that for v ∈ S, the map y 7→ (f0v(y) : · · · : fnv ,v(y)) is a finite mor-

phism from Y to Pnv . Then we may reduce (1.1) to a system in which all poly-

nomials involved are coordinates. Indeed, let {f0, . . . , fN} be the union of the sets

{f0v, . . . , fnv ,v} (v ∈ S). Then ϕ : y 7→ (f0(y) : · · · : fN(y)) is a finite morphism

from Y to PN . Let X = ϕ(Y ). Then X is a projective subvariety of PN defined over
1
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K. Write xi = fi(y), x = (x0 : · · · : xN) = ϕ(y). Then if we ignore the necessary

modifications in the norms and the height, we see that x satisfies the system of

inequalities

log

(
|xi|v
‖x‖v

)
6 −civh(x) (v ∈ S, i = 0, . . . , N)(1.2)

in x = (x0 : · · · : xN) ∈ X(K),

where civ = djv/k if fi = fjv and civ = 0 if fi 6∈ {f0v, . . . , fnv ,v}. Clearly, ϕ establishes

a finite-to-one map from solutions y of (1.1) to solutions x of (1.2). In the sequel

we will focus our attention on systems (1.2).

1.2. Let X be a projective subvariety of PN of dimension n and degree d which

is defined over a number field K. Assume that 1 6 n < N . Further, let civ

(v ∈ S, i = 0, . . . , N) be non-negative reals. Faltings and Wüstholz [7] proved

that the set of solutions of (1.2) is contained in the union of finitely many proper

subvarieties of X if the expectation of a particular probability distribution is larger

than 1. Ferretti [9] showed that this latter condition is equivalent to

(1.3)
1

(n+ 1)d

∑
v∈S

eX(cv) > 1,

where cv = (c0v, . . . , cNv) and where eX(cv) is the Chow weight of X with respect

to cv (cf. §3.3). If X is a linear variety, then the result of Faltings and Wüstholz

is equivalent to Schmidt’s Subspace Theorem. Whereas Schmidt’s proof of his Sub-

space Theorem is based on techniques from Diophantine approximation and geome-

try of numbers, Faltings and Wüstholz developed a totally different method, based

on Faltings’ Product Theorem (cf. [6], Theorem 3.1, 3.3).

1.3. Starting with Schmidt [18], much work has been done to obtain good quan-

titative versions of the Subspace Theorem. The sharpest such version to date is

due to Evertse and Schlickewei ([5], Theorem 2.1). From their result we will deduce

the following for (1.2) in the case that X is a linear variety. Let X ⊆ PN be an

n−dimensional linear subvariety defined over a number field K and denote by h(X)

the logarithmic height of X (cf. §2.2). Assume that

1

n+ 1

∑
v∈S

eX(cv) > 1 + δ with δ > 0.(1.4)
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Then there are explicitly computable constants c1, c2, depending only onN, n, δ, such

that the set of solutions x ∈ X(K) of (1.2) with h(x) > c1(1 + h(X)) is contained

in the union of at most c2 proper linear subspaces of X. It has turned out to be

crucial for applications that c1, c2 are independent of K and S. More generally, the

result of Evertse and Schlickewei allows to deduce a similar result for an “absolute”

generalization of (1.2) dealing with points in X(Q) rather than in X(K). For the

precise statement we refer to Theorem 3.2 in Section 3.

1.4. Using the method of Faltings and Wüstholz, Ferretti [8] obtained a quantitative

version of their result, an equivalent version of which reads as follows. Let X be a

projective subvariety of PN of dimension n and degree d which is defined over K,

where 1 6 n < N . Assume that

1

(n+ 1)d

∑
v∈S

eX(cv) > 1 + δ with δ > 0.(1.5)

Then there are explicitly computable constants c1, c2, c3, depending on N, n, δ,K, S

and some geometric invariants of X, such that the set of solutions of (1.2) with

h(x) > c1(1 + h(X)) lies in the union of at most c2 proper subvarieties of X, each

of degree 6 c3.

1.5. In the present paper we prove another quantitative version of the result of

Faltings and Wüstholz, in which the constants c1, c2, c3 depend only on N, n, δ and

the degree of X. Further, just as for linear varieties, we prove a similar quantitative

version for an absolute generalization of (1.2), dealing with points in X(Q). For the

precise statement see Theorem 3.4 in Section 3.

We sketch our method which is very different from that of Faltings and Wüstholz.

Let ϕm : PN ↪→ P
R with R =

(
N+m
m

)
− 1 denote the Veronese embedding, which

maps x ∈ PN to the point whose coordinates are the monomials in x of degree m.

Let Xm denote the smallest linear subvariety of PR containing ϕm(X). We construct

from (1.2) a new system of a similar shape, with solutions taken from Xm, which is

such that if x is a solution of (1.2) then ϕm(x) is a solution of the new system. The

hard core of our paper is to find an explicit value for m such that the analogue of

condition (1.4) for the new system is satisfied. Having achieved this, we obtain our

quantitative result for the original system (1.2) by applying our previously obtained

quantitative result for linear varieties to the new system.
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In order to find a suitable value for m, we prove a result which gives, in some

well-defined sense, an explicit lower bound of the m-th normalized Hilbert weight of

X with respect to a tuple of reals c in terms of the normalized Chow weight of X

with respect to c (cf. Section 4 for the definitions and the statement of the result).

Our result may be viewed as a one-sided explicit version of a result of Mumford

([16], p. 61, Proposition 2.11) which states that the normalized Chow weight of X

with respect to c is the limit of the sequence of its normalized Hilbert weights.

As a by-product of our investigations we obtain that the theorem of Faltings

and Wüstholz, which at a first glance seems to be a generalization of the Subspace

Theorem, is in fact equivalent to the Subspace Theorem.

1.6. In Section 2 we introduce some notation. In Section 3 we give the precise

statements of the results mentioned above related to (1.2) (Theorem 3.2 and Theo-

rem 3.4). In Section 4 we give the definition of the Hilbert weights and Chow weight

of X, and state our result concerning these (Theorem 4.6). In Sections 5,6 we prove

Theorem 4.6. In Section 7 we prove Theorem 3.2 (the result for linear varieties). In

Section 8 we prove an auxiliary result about heights. Finally, in Section 9 we prove

Theorem 3.4 (the result for arbitrary varieties).

2. Notation

2.1. We introduce the notation needed in the statements of our results. We first

define absolute values and heights. Let K be a number field. Denote by MK its set

of places. For v ∈MK we define a normalized absolute value |.|v on K by requiring

that for x ∈ Q :

|x|v = |x|[Kv :R]/[K:Q] if v is archimedean,

|x|v = |x|[Kv :Qp]/[K:Q]
p if v lies above a prime number p,

where Qp, Kv denote the respective completions. These absolute values satisfy the

product formula
∏

v∈MK
|x|v = 1 for x ∈ K∗.

Given a finite extension L of K we write w|v to indicate that a place w of ML

lies above v ∈MK . Further, we denote the completion of L at w by Lw. Then if we

define normalized absolute values in the same manner for L, we get the extension
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formulas

|x|w = |x|[Lw:Kv ]/[L:K]
v for x ∈ K, w ∈ML, v ∈MK with w|v.(2.1)

For x = (x0, . . . , xN) ∈ KN+1, v ∈MK we put

‖x‖v := max{|x0|v, . . . , |xN |v}.

We then define the absolute logarithmic height of x ∈ QN+1
by taking a number field

K with x ∈ KN+1 and putting

h(x) :=
∑
v∈MK

log ‖x‖v.

By the product formula we have h(λx) = h(x) for λ ∈ K∗ and by the extension

formulas, this height is independent of the choice of K. Therefore, h defines a height

on PN(Q). For a polynomial P with coefficients in Q, we denote by h(P ) the absolute

logarithmic height of the vector of coefficients of P.

2.2. We define the height of a projective variety. Given any field K, we define

the usual scalar product of x = (x0, . . . , xr), y = (y0, . . . , yr) ∈ Kr+1 by x · y =

x0y0 + · · ·+ xryr. Further, if 0 6 s 6 r we define the exterior product x0 ∧ · · · ∧ xs
of x0 = (x00, . . . , x0r),. . ., xs = (xs0, . . . , xsr) ∈ Kr+1 as follows: let I0, . . . , IR with

R =
(
r+1
s+1

)
−1 be the subsets of {0, . . . , r} of cardinality s+1 in lexicographical order

and for k = 0, . . . , R, let Ak = det
(
xij
)

06i6s, j∈Ik
; then x0 ∧ · · · ∧ xs = (A0, . . . , AR).

Let X ⊆ PN be a projective variety of dimension n and degree d, defined over

Q, where 1 6 n < N . To X we can associate an up to a constant factor unique

polynomial

FX = FX(h0, . . . ,hn) = FX(h00, . . . , h0N ; . . . ;hn0, . . . , hnN)

in n + 1 blocks of variables hi = (hi0, . . . , hiN) (i = 0, . . . , n) which is irreducible

in Q[h00, . . . , hnN ] and which is homogeneous of degree d in each block hi, with the

property that FX(h0, . . . ,hn) = 0 if and only if X(Q) and the hyperplanes given by

hi ·x = hi0x0 + · · ·+hiNxN = 0 (i = 0, . . . , n) have a point in common. FX is called

the (Cayley-Bertini-van der Waerden-)Chow form of X. We then define the height

of X by

h(X) := h(FX).(2.2)
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For instance, suppose that X is an n-dimensional linear subvariety of PN over Q.

Let {a0, . . . , an} be any basis of X(Q) considered as a vector space. Then

FX(h0, . . . ,hn) = (a0 ∧ · · · ∧ an) · (h0 ∧ · · · ∧ hn),(2.3)

and so

h(X) = h(a0 ∧ · · · ∧ an).(2.4)

Faltings ([6], pp. 552, 553) defined another height for projective varieties by

means of arithmetic intersection theory. Let hFalt(X) denote 1
[K:Q]

times the height

introduced by Faltings where K is any number field over which X is defined. The

quantity hFalt(X) is independent of K and by [1], Theorem 4.3.8, there is an explic-

itly computable constant c(N) such that |h(X)− hFalt(X)| 6 c(N) · degX.

3. Statements of the results

3.1. We first state our quantitative result for (1.2) if X is a linear subvariety of PN .

Let X ⊂ PN be a linear subvariety of dimension n defined over a number field K,

where 1 6 n < N . A set of indices {i0, . . . , in} ⊂ {0, . . . , N} is called independent

with respect to X if there is no tuple (ai0 , . . . , ain) ∈ Qn+1\{0} such that ai0xi0 +

· · ·+ ainxin vanishes identically on X. Denote by IX the collection of all subsets of

{0, . . . , N} of cardinality n+ 1 which are independent with respect to X.

We consider the system of inequalities

(3.1) log

(
|xi|v
‖x‖v

)
6 −civh(x) (v ∈ S, i = 0, . . . , N) in x ∈ X(K)

with reals civ > 0, where as before, (x0 : · · · : xN) are the homogeneous coordinates

of x. More generally, for every finite extension L of K we consider

log

(
|xi|w
‖x‖w

)
6 −ciwh(x) (w ∈ SL, i = 0, . . . , N) in x ∈ X(L)(3.2)

where SL is the set of places of L lying above the places in S and where

ciw = civ · [Lw:Kv ]
[L:K]

for i = 0, . . . , N , w ∈ SL, v ∈ S with w|v.(3.3)

For a given finite extension L of K denote by SX(L) the set of solutions of (3.2).

Extension formula (2.1) implies that if K ⊂ L1 ⊂ L2 are number fields, then
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SX(L2) ∩X(L1) = SX(L1). We put

SX(Q) =
⋃
L⊇K

SX(L),

where the union is taken over all finite extensions L of K.

Theorem 3.2. Let X ⊂ PN be a linear subvariety of dimension n defined over K,

where 1 6 n < N . Let S be a finite set of places of K. Further, let δ > 0 and let civ
(v ∈ S, i = 0, . . . , N) be reals > 0 such that

1

n+ 1

∑
v∈S

max
{i0,...,in}∈IX

(ci0,v + · · ·+ cin,v) > 1 + δ.(3.4)

Then there are proper linear subspaces Y1, . . . , Yt of X, all defined over K, with

t 6 4(n+10)2

(1 + δ−1)n+5 log(3N) log log(3N),(3.5)

such that the set of x ∈ SX(Q) with

h(x) > (1 + δ−1)(N + 1)n+1 ·
(
1 + h(X)

)
(3.6)

is contained in Y1 ∪ · · · ∪ Yt.

We explain the relation with Schmidt’s Subspace Theorem, which reads as follows:

let κ > n+1 and let {l0v, . . . , lnv} (v ∈ S) be linearly independent set of linear forms

in n+ 1 variables with coefficients in K; then the set of solutions of

(3.7) log
(∏
v∈S

n∏
j=0

|ljv(y)|v
‖y‖v

)
6 −κh(y) in y ∈ Pn(K)

is contained in the union of finitely many proper linear subspaces of Pn.

Let x = (x0 : · · · : xN) ∈ X(K) be a solution of (3.1) and assume that (3.4) holds.

For v ∈ S, let Iv be an independent subset of {0, . . . , N} of cardinality n + 1 for

which
∑

j∈Iv cjv is maximal. Thus for each v ∈ S the set of linear forms {xj : j ∈ Iv}
is linearly independent on X. Then

log

(∏
v∈S

∏
j∈Iv

|xj|v
‖x‖v

)
6 −

(∑
v∈S

∑
j∈Iv

cjv

)
· h(x) 6 −(n+ 1)(1 + δ) · h(x),
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and this can be transformed into an inequality of the shape (3.7) by means of a

linear isomorphism from X to Pn.

Thus, the Subspace Theorem implies that under hypothesis (3.4), the set of so-

lutions of (3.1) is contained in the union of finitely many proper linear subvarieties

of X. Using a standard combinatorial argument originating from Mahler (cf. [5,

Section 21]) one may show that conversely the latter statement implies the Subspace

Theorem.

3.3. We now state our quantitative result for arbitrary projective subvarieties of

P
N .

Let X ⊂ P
N be an arbitrary projective variety of dimension n and degree d

which is defined over a number field K. We assume again 1 6 n < N . Let c =

(c0, . . . , cN) ∈ RN and let t be an auxiliary variable. Write

FX(tc0h00, . . . , t
cNh0N ; . . . ; tc0hn0, . . . , t

cNhnN) = te0F0 + te1F1 + · · ·+ teTFT(3.8)

with F0, . . . , FT ∈ K[h00, . . . , hnN ], e0 > e1 > · · · > eT ,

where FX = FX(h00, . . . , h0N ; . . . ;hn0, . . . , hnN) is the Chow form of X. Then we

define the Chow weight of X with respect to c by

(3.9) eX(c) := e0

(cf. (6.4) below for an alternative expression).

Let again S be a finite set of places of K, and civ (v ∈ S, i = 0, . . . , N) non-

negative reals. For a finite extension L of K, let SL be the set of places of L lying

above those in S, and let ciw (w ∈ SL, i = 0, . . . , N) be defined by (3.3). Denote by

SX(L) the set of solutions of

log

(
|xi|w
‖x‖w

)
6 −ciwh(x) (w ∈ SL, i = 0, . . . , N) in x ∈ X(L)

and let

SX(Q) =
⋃
L⊇K

SX(L),

where the union is taken over all finite extensions L of K.

By a proper K-subvariety of X we mean a proper Zariski closed subset of X de-

fined over K which is not the union of two strictly smaller Zariski closed subsets

defined over K. Then we have:
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Theorem 3.4. Let X ⊂ PN be a projective subvariety of dimension n and degree d

defined over a number field K, where 1 6 n < N . Let S be a finite set of places of

K. Further, let δ > 0 and let cv = (c0v, . . . , cNv) (v ∈ S) be tuples of non-negative

reals with

1

(n+ 1)d

∑
v∈S

eX(cv) > 1 + δ.(3.10)

Put

(3.11)


c1(N, n, d, δ) := exp

(
(10n)4nd4n+2(1 + δ−1)2n

)
· log(3N) log log(3N),

c2(N, n, d, δ) := (8n+ 5)(1 + δ−1)d2 min
(
(n+ 1)d,N + 1

)
,

c3(N, n, d, δ) := exp
(

(10n)2n+2d2n+3(1 + δ−1)n+1 · log(3N)
)
.

Then there are proper K-subvarieties Y1, . . . , Yt of X with

t 6 c1(N, n, d, δ),(3.12)

deg Yi 6 c2(N, n, d, δ) for i = 1, . . . , t,(3.13)

such that the set of x ∈ SX(Q) with

h(x) > c3(N, n, d, δ) ·
(
1 + h(X)

)
(3.14)

is contained in Y1 ∪ · · · ∪ Yt.

3.5. Let again hi = (hi0, . . . , hiN) (i = 0, . . . , n) be blocks of N + 1 variables. For

each subset I = {j0, . . . , jn} of {0, . . . , N} with j0 < . . . < jn we define the bracket

[I] = [j0 · · · jn] = det(hi,jk)i,k=0,...,n. From [13], p. 41, Thm. IV it follows that

the Chow form FX of an n-dimensional subvariety X of PN can be expressed as a

polynomial in terms of these brackets. It is easy to show that for c = (c0, . . . , cN) ∈
R
N+1, the substitution

(h00, . . . , h0N ; . . . ;hn0, . . . , hnN)← (tc0h00, . . . , t
cNh0N ; . . . ; tc0hn0, . . . , t

cNhnN)

transforms [I] into t
∑
j∈I cj [I].

In particular, let X ⊂ PN be a linear subvariety of dimension n. Then from (2.3)

it follows that FX =
∑

I∈IX γI [I] with γI 6= 0 for I ∈ IX where as before IX is the
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collection of subsets of {0, . . . , N} of cardinality n + 1 which are independent with

respect to X. Hence

eX(c) = max
{i0,...,in}∈IX

ci0 + · · ·+ cin .

So for linear varieties X, (3.10) is equivalent to (3.4).

3.6. Now let X ⊂ PN be the hypersurface given by f = 0, where

f =
∑
a∈A

β(a)xa0
0 . . . xaNN ∈ K[x0, . . . , xN ](3.15)

is a homogeneous polynomial of degree d which is irreducible over Q. Here A is a

finite set of tuples of non-negative integers a = (a0, . . . , aN) with a0 + · · ·+ aN = d,

and β(a) 6= 0 for a ∈ A.

The variety X has dimension n = N −1 and degree d, and its Chow form is equal

to

FX = f([1 2 · · ·N ],−[0 2 · · ·N ], . . . , (−1)N−1[0 1 · · ·N − 1])(3.16)

=
∑
a∈A

±β(a)[1 2 · · ·N ]a0 · · · [0 1 · · ·N − 1]aN .

This implies that for c = (c0, . . . , cN) ∈ RN+1 we have

eX(c) = max
a∈A

N∑
j=0

aj

( N∑
k=0, k 6=j

ck

)
(3.17)

= d(c0 + · · ·+ cN)−min
a∈A

(a0c0 + · · ·+ aNcN).

Now we have:

Corollary 3.7. Let X ⊂ PN be the irreducible hypersurface defined by f = 0, where

f is given by (3.15). Let S, δ be as in Theorem 3.4, and let cv = (c0v, . . . , cNv)

(v ∈ S) be tuples of non-negative reals with

(3.18)
1

N

∑
v∈S

N∑
i=0

civ −
1

Nd

∑
v∈S

min
a∈A

(a0c0v + · · ·+ aNcNv) > 1 + δ.
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Further, let

c∗1(N, d, δ) := exp
(
(10N)4Nd4N−2(1 + δ−1)2N−2

)
,

c∗2(N, d, δ) := (8N − 3)(N + 1)d2(1 + δ−1),

c∗3(N, d, δ) := exp
(
(10N)2N+1d2N+1(1 + δ−1)N

)
.

Then there are proper K-subvarieties Y1, . . . , Yt of X with

t 6 c∗1(N, d, δ), deg Yi 6 c∗2(N, d, δ) for i = 1, . . . , t

such that the set of x ∈ SX(Q) with

h(x) > c∗3(N, d, δ) · (1 + h(X))

is contained in Y1 ∪ · · · ∪ Yt.

Proof. We apply Theorem 3.4 with n = N − 1 to X. In view of (3.17), condition

(3.18) is equivalent to (3.10). Further we have ci(N,N − 1, d, δ) 6 c∗i (N, d, δ) for

i = 1, 2, 3. �

Lastly, we give a consequence of Theorem 3.4 for curves. For x ∈ PN(Q), denote

by K(x) the smallest extension of K containing a set of homogeneous coordinates

for x.

Corollary 3.8. Let X ⊂ PN be an irreducible projective curve of degree d defined

over K. Further, S, δ be as in Theorem 3.4 and let cv = (c0v, . . . , cNv) (v ∈ S) be

tuples of non-negative reals satisfying

(3.19)
1

2d

∑
v∈S

eX(cv) > 1 + δ .

Put

c∗∗1 (N, d, δ) := exp
(

105d7(1 + δ−1)3
)
· log(3N) log log(3N),

c∗∗2 (N, d, δ) := 13(1 + δ−1)d2 min(2d,N + 1),

c∗∗3 (N, d, δ) := exp
(

104d5(1 + δ−1)2 log(3N)
)
.

Then there are at most c∗∗1 (N, d, δ) points x ∈ SX(Q) with

h(x) > c∗∗3 (N, d, δ) · (1 + h(X)) .
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Moreover, for each of these points we have

[K(x) : K] 6 c∗∗2 (N, d, δ).

Proof. Notice that if Y is a proper K-subvariety of X of degree D then Y consists

of D points which are conjugate to one another over K and have degree D over

K. By applying Theorem 3.4 with n = 1 to X, we obtain that SX(Q) contains at

most c1(N, 1, d, δ) · c2(N, 1, d, δ) points x with h(x) > c3(N, 1, d, δ) · (1 + h(X)) and

moreover, that for each of these points we have [K(x) : K] 6 c2(N, 1, d, δ). Now

Corollary 3.8 follows on observing that c1(N, 1, d, δ) · c2(N, 1, d, δ) 6 c∗∗1 (N, d, δ) and

ci(N, 1, d, δ) 6 c∗∗i (N, d, δ) for i = 2, 3. �

We mention that computing the Chow weights eX(c) for arbitrary projective vari-

eties X is in general quite difficult. In [9], [10] Ferretti discussed various methods to

compute Chow weights, and computed them for certain varieties other than linear

varieties or hypersurfaces.

4. Hilbert weights and Chow weights

4.1. Denote by ZN+1
>0 , RN+1

>0 the sets of (N + 1)-tuples consisting of non-negative

integers, non-negative reals, respectively. For a = (a0, . . . , aN) ∈ ZN+1
>0 we write xa

for the monomial xa0
0 · · ·x

aN
N . In this section, K is an algebraically closed field of

characteristic 0. A homogeneous ideal I of K[x0, . . . , xN ] is said to be relevant if

I 6= (0) and if there is no integer k > 0 such that xk0, . . . , x
k
N ∈ I.

4.2. For a positive integer m, let K[x0, . . . , xN ]m denote the vector space of homo-

geneous polynomials in K[x0, . . . , xN ] of degree m (including 0). Let I be a relevant

homogeneous ideal of K[x0, . . . , xN ]. Put Im := K[x0, . . . , xN ]m ∩ I and define the

Hilbert function HI of I by

HI(m) := dimK

(
K[x0, . . . , xN ]m/Im

)
for m = 1, 2, . . . .(4.1)

Then there are integers n > 0, d > 0 such that

HI(m) = d · m
n

n!
+O(mn−1) as m→∞.(4.2)

We call n the dimension of I, notation dim I, and d the degree of I, notation deg I.
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Let P1, . . . , Pg be the prime ideals of maximal dimension associated to I. For

i = 1, . . . , g, let OPi,I be the localization of K[x0, . . . , xN ]/I at Pi and let µPi,I :=

lOPi,I (OPi,I) be the length of OPi,I as a OPi,I-module. This quantity is known to be

finite. We call µPi,I the multiplicity of I with respect to Pi. Then

dim I = dimP1 = · · · = dimPg , deg I =

g∑
i=1

µPi,I degPi.(4.3)

4.3. We define the m-th Hilbert weight sI(m, c) of I with respect to a tuple c =

(c0, . . . , cN) ∈ RN+1 by

sI(m, c) = max(a1 + · · ·+ aHI(m)) · c,(4.4)

where the maximum is taken over all sets of monomials xa1 ,. . . ,xaHI (m) whose residue

classes modulo I form a basis of the K-vector space K[x0, . . . , xN ]m/Im.

4.4. We define the Chow form of a homogeneous prime ideal P of K[x0, . . . , xN ]

by FP := FX , where X is the variety defined by P and FX is the Chow form of X

as defined in §2.2 (with K in place of Q). Further, we define the Chow form of an

arbitrary relevant homogeneous ideal I of K[x0, . . . , xN ] by

FI :=

g∏
i=1

F
µPi,I
Pi

,(4.5)

where P1, . . . , Pg are the prime ideals of maximal dimension associated to I and

where µPi,I is the multiplicity of I with respect to Pi.

Let dim I = n, deg I = d. Then it follows from §2.2 and (4.2) that FI =

FI(h00, . . . , h0N ; . . . ;hn0, . . . , hnN) is a polynomial in n + 1 blocks of N + 1 vari-

ables hi = (hi0, . . . , hiN) (i = 0, . . . , n) such that FI is homogeneous of degree d in

each block hi. Given c = (c0, . . . , cN) ∈ RN+1, we write similarly as in (3.8), (3.9)

FI(t
c0h00, . . . , t

cNh0N ; . . . ; tc0hn0, . . . , t
cNhnN) =

T∑
k=0

tejFj

with F0, . . . , FT ∈ K[h00, . . . , hnN ], e0 > e1 > · · · > eT and define the Chow weight

of I with respect to c by

eI(c) = e0.(4.6)
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4.5. According to Mumford [16], p.61, Proposition 2.11 we have

sI(m, c) = eI(c) · mn+1

(n+ 1)!
+O(mn) as m→∞.

Together with (4.2) this implies

lim
m→∞

1

mHI(m)
· sI(m, c) =

1

(n+ 1)d
· eI(c).

We call 1
mHI(m)

· sI(m, c) the m-th normalized Hilbert weight and 1
(n+1)d

· eI(c) the

normalized Chow weight of I.

For a projective subvariety X of PN defined over K, denote by PX the prime ideal

of K[x0, . . . , xN ] consisting of all polynomials vanishing identically on X. Then we

put dimX := dimPX , degX := degPX , HX(m) := HPX (m), sX(m, c) := sPX (m, c),

eX(c) := ePX (c). This coincides with earlier given definitions. We deduce an explicit

lower bound for the m-th normalized Hilbert weight of X in terms of the normalized

Chow weight of X.

Theorem 4.6. Let X be a subvariety of PN of dimension n and degree d, defined

over an algebraically closed field K of characteristic 0. Let m > d be an integer.

Further, let c = (c0, . . . , cN) ∈ RN+1
>0 . Then

1

mHX(m)
sX(m, c) >

1

(n+ 1)d
eX(c)− (2n+ 1)d

m
·
(

max
i=0,...,N

ci

)
.(4.7)

Inequality (4.7) is sufficient for our purposes. It is probably more difficult to prove

an inequality in the other direction. In the proof of Theorem 4.6 we use some ideas

of Kapranov, Sturmfels and Zelevinsky [14] which were also implicit in Mumford’s

paper [16]: in Section 5 we deduce an auxiliary result for monomial ideals (i.e., ideals

generated by monomials) and in Section 6 we deduce from this Theorem 4.6.

5. Monomial ideals

5.1. We keep the notation introduced in the previous section, so in particular K is

an algebraically closed field of characteristic 0. In addition, for a = (a0, . . . , aN),
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b = (b0, . . . , bN) ∈ RN+1 we write a 6 b or b > a if ai 6 bi for all i = 0, . . . , N .

For a = (a0, . . . , aN) ∈ RN+1 we define the norm ‖a‖ :=
∑N

i=0 |ai| and the support

supp a = {i : 0 6 i 6 N, ai 6= 0}; further, for W ⊂ {0, . . . , N} let aW be the vector

obtained by setting the coordinates of a with indices outside W to 0, i.e., aW :=

(b0, . . . , bN) with bi = ai for i ∈ W , bi = 0 for i 6∈ W . For f1, . . . , fT ∈ K[x0, . . . , xN ]

let (f1, . . . , fT ) denote the ideal in K[x0, . . . , xN ] generated by f1, . . . , fT and for

W ⊂ {0, . . . , N}, let PW := (xi : i ∈ W ) denote the ideal in K[x0, . . . , xN ] generated

by xi (i ∈ W ).

5.2. Throughout this section, let

I = (xa1 , . . . ,xaT )(5.1)

be the ideal generated by the monomials xai (i = 1, . . . , T ), where ai = (ai0, . . . , aiN)

∈ ZN+1
>0 . We assume that I is relevant. Note that xa ∈ I if and only if a > ai for

some i ∈ {1, . . . , T}. Let S(I) be the collection of sets W ⊆ {0, . . . , N} with the

property that for every i ∈ {1, . . . , T} there is a j ∈ W with aij > 0. Given

W ∈ S(I), let

AW (I) := {a ∈ ZN+1
>0 : supp a ⊆ W, a 6> ai,W for all i = 1, . . . , T}.(5.2)

We have included a proof of the following simple lemma (see also [19], Proposition

3.4).

Lemma 5.3. Let W1, . . . ,Wg be the non-empty sets in S(I) of minimal cardinality.

Then PW1 , . . . , PWg are the prime ideals of maximal dimension associated to I.

Further, for i = 1, . . . , g, the multiplicity µPWi ,I of I with respect to PWi
is equal to

the cardinality of AWi
(I).

Proof. For x = (x0 : · · · : xN) ∈ PN(K) we have that xai = 0 for i = 1, . . . , T if and

only if there is a set W ∈ S(I) such that xj = 0 for j ∈ W . Hence the radical of I is

∩W∈S(I)PW . Since dimPW = N −#W , it follows that the prime ideals of maximal

dimension associated to I are precisely PW1 , . . . , PWg . Let W ∈ {W1, . . . ,Wg} and

suppose that W = {0, . . . , r}. Let K ′ = K(xr+1, . . . , xN), R = K ′[x0, . . . , xr],

I ′ = (xa1,W , . . . ,xaT,W ). Then OPW ,I = R/I ′. The latter is a K ′-vector space with

basis {xa : a ∈ AW (I)}. Therefore, µPW ,I = lOPW ,I
(OPW ,I) = dimK′ R/I

′ is equal to

the cardinality of AW (I). �
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We make some further observations. Let I be as in (5.1) and let W1, . . . ,Wg be the

sets from Lemma 5.3. Let n = dim I, d = deg I, µi = µPWi ,I (i = 1, . . . , g). Then

#Wi = N − n (i = 1, . . . , g).(5.3)

Further, by (4.3) we have

g∑
i=1

µi = d.(5.4)

Lastly,

‖a‖ 6 µi for a ∈ AWi
(I), i = 1, . . . , g.(5.5)

Indeed, let a ∈ AWi
(I). Then every b ∈ ZN+1

>0 with b 6 a belongs to AWi
(I). The

number of b ∈ ZN+1
>0 with b 6 a is at least ‖a‖, and so ‖a‖ is at most the cardinality

of AWi
(I).

5.4. Let c = (c0, . . . , cN) ∈ RN+1
>0 . Note that K[x0, . . . , xn]m/Im has a unique

monomial basis consisting of those monomials xa such that a 6> ai for i = 1, . . . , T

and ‖a‖ = m. This implies

sI(m, c) =
∑

a∈ZN+1
>0 , ‖a‖=m,

a 6>ai for i=1,...,T

a · c.(5.6)

Let W c
k = {0, . . . , N}\Wk for k = 1, . . . , g. Then by (4.5) we have, with the bracket

notation from §3.5,

FI =

g∏
k=1

F µk
PWk

=

g∏
k=1

[W c
k ]µk .

Hence

eI(c) =

g∑
k=1

µk

( ∑
j∈W c

k

cj

)
.(5.7)

We prove:

Lemma 5.5. Let m be an integer > d and c = (c0, . . . , cN) ∈ RN+1
>0 . Then

sI(m, c) > m−d
n+1

(
m−d+n

n

)
· eI(c)− d2m

(
m+n−1
n−1

)
·
(

max06i6N ci

)
.(5.8)



DIOPHANTINE INEQUALITIES ON PROJECTIVE VARIETIES 17

Proof. For a finite subset S of ZN+1
>0 put Σc(S) :=

∑
a∈S a · c. Write Ak for the set

AWk
(I) given by (5.2). For k = 1, . . . , g, a ∈ Ak, let Sk(a) be the set of vectors r

such that {
r = a + b for some b ∈ ZN+1

>0 with supp b ⊆ W c
k ,

‖r‖ = m.

We estimate from below sI(m, c) using (5.6). Using that for r ∈ Sk(a) we have

r 6> ai for i = 1, . . . , T , and applying the principle of inclusion and exclusion we

obtain

sI(m, c) > Σc

( g⋃
k=1

⋃
a∈Ak

Sk(a)
)

(5.9)

>
g∑

k=1

∑
a∈Ak

Σc(Sk(a)) −
∑

(k,a′) 6=(l,a′′)

Σc(Sk(a
′) ∩ Sl(a′′)),

where the last summation is over all quadruples (k, l, a′, a′′) with k, l = 1, . . . , g,

a′ ∈ Ak, a′′ ∈ Al and (k, a′) 6= (l, a′′).

Let k ∈ {1, . . . , g}, a ∈ Ak. By (5.3) we have #W c
k = n + 1 and by (5.4), (5.5)

we have ‖a‖ 6 d. Hence

Σc(Sk(a)) > Σc({b ∈ ZN+1
>0 : supp b ⊆ W c

k , ‖b‖ = m− ‖a‖})

=

(
m− ‖a‖+ #W c

k − 1

#W c
k − 1

)
· m− ‖a‖

#W c
k

∑
j∈W c

k

cj

>

(
m− d+ n

n

)
· m− d
n+ 1

∑
j∈W c

k

cj.

Summing over k = 1, . . . , g, a ∈ Ak we obtain, using that #Ak = µk by Lemma 5.3

and using (5.7),

g∑
k=1

∑
a∈Ak

Σc(Sk(a)) >
m− d
n+ 1

(
m− d+ n

n

) g∑
k=1

µk
( ∑
j∈W c

k

cj
)

(5.10)

=
m− d
n+ 1

(
m− d+ n

n

)
· eI(c).

Let (k, l, a′, a′′) be a quadruple with k, l ∈ {1, . . . , g}, a′ ∈ Ak, a′′ ∈ Al and (k, a′) 6=
(l, a′′). If k = l then Sk(a

′) ∩ Sl(a′′) = ∅. Assume k 6= l. Write a′ = (a′0, . . . , a
′
N),
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a′′ = (a′′0, . . . , a
′′
N) and put max(a′, a′′) := (max(a′0, a

′′
0), . . . ,max(a′0, a

′′
0)). Then

Sk(a
′) ∩ Sl(a′′) consists of all vectors r such that{

r = max(a′, a′′) + b for some b ∈ ZN+1
>0 with supp b ⊆ W c

k ∩W c
l ,

‖r‖ = m.

By (5.3) we have #(W c
k ∩W c

l ) 6 n, hence

#(Sk(a
′) ∩ Sl(a′′)) 6

(
m− ‖max(a′, a′′)‖+ n− 1

n− 1

)
6

(
m+ n− 1

n− 1

)
.

Further, for each r ∈ Sk(a′) ∩ Sl(a′′) we have r · c 6 m ·
(

max06i6N ci
)
. Therefore,

‖Σc(Sk(a
′) ∩ Sl(a′′))‖ 6 m

(
m+ n− 1

n− 1

)
·
(

max
06i6N

ci

)
.

By Lemma 5.3 and (5.4), the number of pairs (k, a) with k = 1, . . . , g, a ∈ Ak is

equal to µ1 + · · ·+ µg = d. Therefore,

‖
∑

(k,a′) 6=(l,a′′)

Σc(Sk(a
′) ∩ Sl(a′′))‖ 6 d2m

(
m+ n− 1

n− 1

)
·
(

max
06i6N

ci

)
.

By inserting this and (5.10) into (5.9) we arrive at (5.8). �

6. Proof of Theorem 4.6

6.1. Much of the material in this section can be found in bits and pieces in the

literature, in particular in [14], [3, Chapter 15], [17]. For convenience of the unspe-

cialized reader we have worked out more details. We keep the previously introduced

notation; in particular K is an algebraically closed field of characteristic 0. Further,

in what follows I is a relevant homogeneous ideal of K[x0, . . . , xN ] of dimension n

and degree d and c = (c0, . . . , cN) ∈ RN+1.

Let t be a parameter. For f ∈ K[x0, . . . , xN ], f 6= 0, define the number wc(f) and

the polynomial inc(f) ∈ K[x0, . . . , xN ] (the initial part of f with respect to c) by

(6.1) f(tc0x0, . . . , t
cNxN) = twc(f) · inc(f) + (terms with higher powers of t).
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Alternatively, if we write f =
∑

a∈A β(a)xa with β(a) 6= 0 for a ∈ A, then wc(f) =

min{a · c : a ∈ A} and

(6.2) inc(f) =
∑
a∈A

a·c=wc(f)

β(a)xa.

We denote by inc(I) the ideal generated by inc(f) (f ∈ I). The following lemma is

implicit in [3], Chapter 15.

Lemma 6.2. Let m > 1 be an integer. Further, let {xa1 , . . . ,xaHI (m)} be a basis of

K[x0, . . . , xN ]m/Im for which (a1+· · ·+aHI(m))·c is maximal. Then {xa1 , . . . ,xaHI (m)}
is a basis of K[x0, . . . , xN ]m/inc(I)m.

Consequently, inc(I) has the same Hilbert function as I.

Proof. Write H := HI(m), R =
(
N+m
N

)
. Let xa1 , . . . ,xaR be all monomials of de-

gree m in x0, . . . , xN , ordered such that xa1 , . . . ,xaH are the monomials from the

statement of the lemma. Then Im is generated by

fi = xai −
∑
j∈Bi

βijx
aj (i = H + 1, . . . , R),

where Bi ⊆ {1, . . . , H} and βij 6= 0 for j ∈ Bi. For i ∈ {H+1, . . . , R}, j ∈ Bi we can

make a new basis of K[x0, . . . , xN ]m/Im by replacing xaj by xai in {xa1 , . . . ,xaH},
therefore ai · c 6 aj · c. By (6.2) we have inc(fi) = xai −

∑
j∈B′i

βijx
aj where B′i is

the set of indices j ∈ Bi for which aj · c = ai · c for i = H + 1, . . . , R.

We claim that inc(I)m is generated by the polynomials inc(fi) (i = H+1, . . . , R).

Let f ∈ inc(I)m. We may write f as a linear combination of terms xainc(g) with

g ∈ I. We have xainc(g) = inc(h) with h = xag ∈ Im. Now h is a linear combination

of the polynomials fi, therefore inc(h) is a linear combination of the polynomials

inc(fi), and so f is a linear combination of these polynomials. This proves our claim.

Now Lemma 6.2 follows by observing that xa1 , . . . ,xaH , inc(fH+1), . . . , inc(fR)

form a basis of K[x0, . . . , xN ]. �

Let as before FI be the Chow form of I. From the definition of the Chow weight

it follows that there is a polynomial finc(FI) ∈ K[h00, . . . , hnN ] (the final part of FI
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with respect to c) such that

FI(t
c0h00, . . . , t

cNh0N ; . . . ; tc0hn0, . . . , t
cNhnN)(6.3)

= teI(c)finc(FI) + (terms with smaller powers of t).

Alternatively, for ai = (ai0, . . . , aiN) ∈ Z
N+1
>0 (i = 0, . . . , n) put ha0

0 · · ·han
n :=∏n

i=0

∏N
j=0 h

aij
ij . Then if we write FI =

∑
(a0,...,an)∈B γ(a0, . . . , an)ha0

0 · · ·han
n with

γ(a0, . . . , an) 6= 0 for (a0, . . . , an) ∈ B, we have

eI(c) = max{(a0 + · · ·+ an) · c : (a0, . . . , an) ∈ B},(6.4)

finc(FI) =
∑

(a0,...,an)∈B
(a0+···+an)·c=eI(c)

γ(a0, . . . , an)ha0
0 · · ·han

n .(6.5)

Lemma 6.3. Apart from a constant factor, Finc(I) = finc(FI).

Proof. We first reduce the lemma to the case that c ∈ ZN+1. Let c ∈ RN+1 be

arbitrary. LetM be a sufficiently large integer. Let b1, . . . ,bR be the vectors in ZN+1
>0

with sum of coordinates at most M , ordered such that b1 · c 6 b2 · c 6 · · · 6 bR · c.

Then there is a vector c′ ∈ ZN+1 such that for i = 1, . . . , R−1 we have the following:

if bi ·c < bi+1 ·c then bi ·c′ < bi+1 ·c′, while if bi ·c = bi+1 ·c then bi ·c′ = bi+1 ·c′. (To

obtain such c′, let V ⊆ RN+1 be the smallest linear subspace defined over Q which

contains c, choose c′′ ∈ V ∩ QN+1 very close to c, and clear the denominators of

c′′). Now choose polynomials f1, . . . , fs ∈ K[x0, . . . , xN ] such that I = (f1, . . . , fs),

inc(I) = (inc(f1), . . . , inc(fs)). Taking M sufficiently large, it follows from (6.5)

that finc(FI) = finc′(FI) and from (6.2) that inc(fi) = inc′(fi) for i = 1, . . . , s. The

latter implies that inc(I) ⊆ inc′(I). But by Lemma 6.2 these two ideals have the

same Hilbert function, and so they must be equal. Therefore, it suffices to prove

Lemma 6.3 for c′ instead of c.

So assume c ∈ ZN+1. For f ∈ K[x0, . . . , xN ], t ∈ K define

ft = t−wc(f)f(tc0x0, . . . , t
cNxN). Let It be the ideal in K[x0, . . . , xN ] generated by

the polynomials ft (f ∈ I). Further, let Zt = Proj(K[x0, . . . , xN ]/It) be the cor-

responding closed subscheme of PN . Then I0 = inc(I) by (6.1). From e.g., [3], p.

343, Theorem 15.17 it follows that the schemes Zt form a family which is flat over
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A
1
K = Spec(K[t]). Further, for t ∈ K define

FI,t = teI(c)FI(t
−c0h00, . . . , t

−cNh0N ; . . . ; t−c0hn0, . . . , t
−cNhnN).

Then FI,0 = finc(FI) by (6.3). Let Ct be the subscheme of PN× · · · ×PN (n + 1

times) defined by FI,t. Then, again [3], p. 343, Theorem 15.17 implies that the

schemes Ct form a flat family over A1
K . For t ∈ K, let Dt be the subscheme of

P
N× · · · ×PN (n + 1 times) defined by the Chow form FIt of It. For instance by

[17], sections 5.2, 5.4, the Chow forms of the closed subschemes of PN from a family

which is flat over some Noetherian scheme S form themselves a flat family over S.

So in particular, the schemes Dt form a flat family over A1
K . From the definition

of Chow form, i.e., §2.2 and (4.5), it follows that if A ∈ GLN+1(K) and if IA is

the ideal generated by the polynomials f(Ax), (f ∈ A), then IA has Chow form

FIA = FI((A
−1)Th0, . . . , (A

−1)Thn), where (A−1)T is the transpose of the inverse of

A. In particular, for t 6= 0 we have (up to a constant), FI,t = FIt , i.e., Ct = Dt.

Using [12], p. 258, Prop. 9.8 and the flatness of the families Ct, Dt, it follows that

then also C0 = D0, which means that FI,0 = FI0 apart from a constant factor. This

proves Lemma 6.3. �

Lemma 6.4. We have (i) dim inc(I) = dim I, (ii) deg inc(I) = deg I,

(iii) sinc(I)(m, c) = sI(m, c), (iv) einc(I)(c) = eI(c).

Proof. (i) and (ii) follow at once from Lemma 6.2. To prove (iii), choose a basis

{xa1 , . . . ,xaH} of K[x0, . . . , xN ]m/Im such that (a1 + · · · + am) · c is maximal. By

Lemma 6.2, {xa1 , . . . ,xaH} is then also a basis of K[x0, . . . , xN ]m/inc(I)m. So by

definition (4.4), sinc(I)(m, c
′) > sI(m, c). On the other hand, if {xb1 , . . . ,xbH} is

a monomial basis of K[x0, . . . , xN ]m/inc(I)m, then it is also a monomial basis of

K[x0, . . . , xN ]m/Im. For otherwise, there are γi (i = 1, . . . , H), not all zero, such

that f :=
∑H

i=1 γix
bi ∈ I. But then, inc(f) =

∑
i∈B γix

bi ∈ inc(I) for some non-

empty set B with γi 6= 0 for i ∈ B, which is impossible. Therefore, again by (4.4),

sinc(I)(m, c
′) 6 sI(m, c). This proves (iii). By (6.3), eI(c) is equal to the single

exponent on t occurring in the expression obtained by substituting tcjhij for hij
in finc(FI) for i = 0, . . . , n, j = 0, . . . , N . Together with Lemma 6.3 this implies

(iv). �
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We are now ready to prove the following result:

Lemma 6.5. Let m > d be an integer, and let c ∈ RN+1
>0 . Then

(6.6) sI(m, c) > m−d
n+1

(
m+n−d

n

)
· eI(c)− d2m

(
m+n−1
n−1

)
·
(

max06i6N ci

)
.

Proof. We first assume that c = (c0, . . . , cN) with c0, . . . , cN linearly independent

over Q. Thus b1 · c 6= b2 · c for any pair b1 6= b2 ∈ ZN+1. So by (6.2), for each non-

zero f ∈ K[x0, . . . , xN ], inc(f) is a monomial, therefore, inc(I) is a monomial ideal.

In this case, Lemma 6.5 is an immediate consequence of Lemma 5.5 and Lemma 6.4.

The lemma for arbitrary c ∈ RN+1 now follows by approximating c by a tuple with

Q-linearly independent coordinates and using continuity arguments. �

Our last auxiliary result is an upper bound for the Hilbert function of a projective

variety, due to Chardin [2], Théorème 1. In what follows, X is a projective subvari-

ety of PN of dimension n and degree d defined over K.

Lemma 6.6. HX(m) 6 d
(
m+n
n

)
for m > 1.

6.7. Proof of Theorem 4.6.

Let m > d. Put C := max06i6N ci. By Lemma 6.5, Lemma 6.6 we have

1
mHX(m)

· sX(m, c) > max
{

0, 1
mHX(m)

·
(
m−d
n+1

(
m+n−d

n

)
· eX(c)− d2m

(
m+n−1
n−1

)
· C
)}

>
(m−d)(m+n−d

n )
m(m+n

n )
· 1

(n+1)d
eX(c) − d · n

m+n
· C.

Together with

(m− d)
(
m+n−d

n

)
m
(
m+n
n

) =
n∏
i=0

m+ i− d
m+ i

>
(

1− d

m

)n+1

> 1− (n+ 1)d

m

and 1
(n+1)d

eX(c) 6 C (which follows from (6.4)) this implies

1
mHX(m)

· sX(m, c) > 1
(n+1)d

· eX(c)−
(

(n+1)d
m

+ nd
m+n

)
· C

> 1
(n+1)d

· eX(c)− (2n+1)d
m
· C.
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This completes the proof of Theorem 4.6. �

7. Proof of Theorem 3.2 (linear case)

7.1. We recall Theorem 2.1 of Evertse and Schlickewei [5] which is the main tool in

the proof of our Theorem 3.2.

Let K be an algebraic number field. Let N > n > 1 be integers. Let L =

{l0, . . . , lN} be a family (i.e., an unordered tuple with possibly repetitions) of linear

forms in K[x0, . . . , xn]. Suppose that L has rank n + 1. For every place v ∈ MK ,

let Iv be a subset of {0, . . . , N} of cardinality n+ 1 such that {li : i ∈ Iv} is linearly

independent. Let div (v ∈MK , i ∈ Iv) be reals such that for some finite subset T of

MK we have

div = 0 for v ∈MK\T , i ∈ Iv.(7.1)

For Q > 1 and for y ∈ Kn+1 we define

HQ(y) =
∏
v∈MK

max
i∈Iv

(
|li(y)|v ·Q−div

)
.(7.2)

We will refer to HQ as a twisted (exponential) height. By the product formula we

have HQ(λy) = HQ(y) for λ ∈ K∗, therefore, HQ may be viewed as a twisted height

on Pn(K).

We extend HQ to Pn(Q) as follows. Let y ∈ Pn(Q). Pick a finite extension L of

K such that y ∈ Pn(L). For a place w ∈ML put

Iw = Iv, diw = [Lw:Kv ]
[L:K]

div,(7.3)

where v ∈MK is the place lying below w. Then we put

HQ(y) =
∏
w∈ML

max
i∈Iw

(
|li(y)|w ·Q−diw

)
.(7.4)

By (2.1) this is well-defined, i.e., independent of the choice of L.

7.2. Define

∆ :=
∏
v∈MK

| det(li : i ∈ Iv)|v,(7.5)
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where for any subset I of {0, . . . , N} of cardinality n+ 1, det(li : i ∈ I) denotes the

coefficient determinant of the linear forms li (i ∈ I). Further, let

HL :=
∏
v∈MK

(
max
I
| det(li : i ∈ I)|v

)
,(7.6)

where the maxima are taken over all subsets I of {0, . . . , N} of cardinality n + 1.

We may view HL as a height of the family L = {l0, . . . , lN}. We assume that the

reals div satisfy, apart from (7.1), ∑
v∈MK

∑
i∈Iv

div = 0,(7.7)

∑
v∈MK

max
i∈Iv

div 6 1.(7.8)

Then Theorem 2.1 of [5] can be stated as follows:

Proposition 7.3. Let 0 < ε < 1. Let HQ be defined by (7.2)–(7.4). Then there are

proper linear subspaces T1, . . . , Tt of Pn, defined over K, with

t 6 4(n+9)2

ε−n−5 log(3N) log log(3N)(7.9)

for which the following holds:

For every real Q with

Q > max
(
H1/(N+1

n+1)
L , (n+ 1)2/ε

)
(7.10)

there is a space Ti ∈ {T1, . . . , Tt} such that{
y ∈ Pn(Q) : HQ(y) 6 ∆1/(n+1) ·Q−ε

}
⊂ Ti.(7.11)

In addition, we need the following estimate for ∆:

Lemma 7.4. ∆ > H1−(N+1
n+1)

L .
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Proof. Let I1, . . . , IR be the subsets I of cardinality n + 1 of {0, . . . , N} such that

{li : i ∈ I} is linearly independent and put ak := det(li : i ∈ Ik) for k = 1, . . . , R.

Then ∆ =
∏

v∈MK
|aiv |v, where iv ∈ {1, . . . , R} for v ∈ MK . With the product

formula and R 6
(
N+1
n+1

)
this gives

∆ =
∏
v∈MK

|
∏R

k=1 ak|v∏
k 6=iv |ak|v

>
∏
v∈MK

(
max

16k6R
|ai|v

)1−R
= H1−R

L > H1−(N+1
n+1)

L .

7.5. Proof of Theorem 3.2. Let X ⊂ PN be the linear variety from Theorem 3.2,

defined over a number field K. Choose a basis a0 = (a00, . . . , a0N), . . . , an =

(an0, . . . , anN) of X(Q) (considered as a vector space) with a0, . . . , an ∈ KN+1.

Define the family of linear forms

L = {l0, . . . , lN} with lj = a0jx0 + · · ·+ aNjxN (j = 0, . . . , N).(7.12)

For v ∈ S, let Iv be a subset of cardinality n+ 1 of {0, . . . , N} which is independent

with respect to X such that
∑

i∈Iv civ is maximal. For v ∈ MK\S, let Iv be any

independent subset of cardinality n+1 of {0, . . . , N}. Thus, for v ∈MK , {li : i ∈ Iv}
is a set of n + 1 linearly independent linear forms. Notice that the quantity HL
defined by (7.6) satisfies

HL = exp(h(X)),(7.13)

where h(X) is the logarithmic height of X. Further, by (7.13) and Lemma 7.4 we

have for the quantity ∆ defined by (7.5):

∆ > exp
(
−
{(

N+1
n+1

)
− 1
}
h(X)

)
.(7.14)

Put 
div := E−1 ·

(
Ev − civ) (v ∈ S, i ∈ Iv),

div := 0 (v ∈MK\S, i ∈ Iv),
(7.15)

where

Ev :=
1

n+ 1

∑
i∈Iv

civ (v ∈ S), E :=
∑
v∈S

Ev.(7.16)
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It is clear that the numbers div satisfy (7.1), (7.7). Further, using that the numbers

civ are > 0, it follows easily that the numbers div satisfy (7.8).

Let ϕ : Pn → X be the bijective linear map given by y = (y0 : · · · : yn) 7→∑n
i=0 yiai. Let x = (x0 : · · · : xN) ∈ SX(Q) be a point with (3.6). This means that

x ∈ X(L) and x satisfies (3.2) for some finite extension L of K. Let y = ϕ−1(x).

Then y ∈ Pn(L) and by (7.12),

xi = li(y) for i = 0, . . . , N .(7.17)

Put

Q := exp
(
E · h(x)

)
.(7.18)

We estimate from above HQ(y), where HQ is defined by (7.2)–(7.4).

Put Iw = Iv, diw := div · [Lw:Kv ]
[L:K]

for w ∈ ML, i ∈ Iw. Further, let SL be the set of

places of L lying above the places in S, and put Ew := 1
n+1

∑
i∈Iw ciw for w ∈ SL.

Then by (3.3) and (7.15) we have
diw := E−1 ·

(
Ew − ciw) (w ∈ SL, i ∈ Iw),

diw := 0 (w ∈ML\SL, i ∈ Iw),

(7.19)

Further, by (3.3), (7.16), (3.4) and the choices of the sets Iv we have

(7.20)
∑
w∈SL

Ew = E > 1 + δ.

For w ∈ SL we have by (7.17), (7.18), (7.19), (3.2),

max
i∈Iw

(
|li(y)|wQ−diw

)
= max

i∈Iw

(
|xi|w exp((ciw − Ew)h(x))

)
6 ‖x‖w exp(−Ewh(x)),

while for w ∈ML\SL we have by (7.17), (7.19),

max
i∈Iw

(
|li(y)|wQ−diw

)
= max

i∈Iw
|xi|w 6 ‖x‖w.

By taking the product over w ∈ML, invoking (7.18), (7.20), we obtain

HQ(y) 6 exp
(
− (E − 1)h(x)

)
= Q−(E−1)/E 6 Q−(1+δ−1)−1

.
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From (7.18) and (7.20), our assumption (3.6) and (7.14) it follows

logQ > h(x) > (1 + δ−1)(N + 1)n+1(1 + h(X))

> 2(1 + δ−1)

(
N + 1

n+ 1

)
h(X) > 2(1 + δ−1) log ∆−1/(n+1),

and so

HQ(y) 6 ∆1/(n+1)Q−(2(1+δ−1))−1

.

Thus we are in a position to apply Proposition 7.3 with ε = (2(1 + δ−1))−1. Our

assumption (3.6), in combination with (7.18), (7.20), (7.13), implies that

logQ > log max
(
H1/(N+1

n+1)
L , (n+ 1)4(1+δ−1)

)
,

i.e., that condition (7.10) of Proposition 7.3 is satisfied with our choice of ε. It

follows that there are proper linear subspaces T1, . . . , Tt of Pn defined over K, with

t 6 4(n+9)2(
2(1 + δ−1)

)n+5
log(3N) log log(3N)

6 4(n+10)2

(1 + δ−1)n+5 log(3N) log log(3N),

such that y ∈ T1 ∪ · · · ∪ Tt. Then x ∈ Y1 ∪ · · · ∪ Yt, where Yi = ϕ(Ti) (i = 1, . . . , t)

are proper linear subspaces of X defined over K which do not depend on x. This

completes the proof of Theorem 3.2. �

8. Heights

8.1. Let K be a number field. Denote by M∞
K the set of archimedean places and

by M0
K the set of non-archimedean places of K. For each v ∈ M∞

K , there is an

isomorphic embedding σv : K ↪→ C such that |x|v = |σv(x)|[Kv :R]/[K:Q] for x ∈ K.

For x = (x0, . . . , xN) ∈ KN+1, v ∈M∞
K we put

‖x‖v,1 =
( N∑
i=0

|σv(xi)|
)[Kv :R]/[K:Q]

, ‖x‖v,2 =
( N∑
i=0

|σv(xi)|2
)[Kv :R]/2[K:Q]

.
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We then define heights h1(x), h2(x) for x ∈ QN+1\{0} by choosing a number field

K with x ∈ KN+1 and putting

h1(x) =
∑
v∈M∞K

log ‖x‖v,1 +
∑
v∈M0

K

log ‖x‖v,

h2(x) =
∑
v∈M∞K

log ‖x‖v,2 +
∑
v∈M0

K

log ‖x‖v;

these quantities are independent of the choice of K. By the product formula, h1, h2

define heights on PN(Q). We have{
h(x) 6 h2(x) 6 h1(x),

h1(x) 6 h(x) + log(N + 1), h2(x) 6 h(x) + 1
2

log(N + 1)
(8.1)

for x ∈ QN+1
(or x ∈ PN(Q)) and

(8.2) h2(x0 ∧ · · · ∧ xn) 6
n∑
i=0

h2(xi) (Hadamard’s inequality)

for x0, . . . ,xn ∈ Q
N+1

. Given a polynomial P with coefficients in Q, we define

h1(P ), h2(P ) to be the respective heights of the coefficient vector of P .

In what follows, X is a projective subvariety of PN of dimension n and degree d,

defined over Q. Let PX ⊂ Q[x0, . . . , xN ] denote the prime ideal of X. Given any

number field K such that X is defined over K, denote by X its Zariski closure over

Spec(OK), i.e. X = Proj(R/PX ∩ R) where R = OK [x0, . . . , xN ]. Let h̃(X ) be the

logarithmic height of X as defined by Faltings [6], pp. 552, 553. We then define

the absolute Faltings height of X by hFalt(X) := 1
[K:Q]

h̃(X ). By [1], p. 948 this is

independent of the choice of K.

Lemma 8.2. hFalt(X) 6 h(X) + d(n+ 1)(1 + 2 log(N + 1)).

Proof. From [1], Theorem 4.3.8, pp. 989, 990, formulas (4.3.31), (4.3.32), it follows

that

(8.3) hFalt(X) 6 h1(FX) + d(n+ 1) log(N + 1).

Since the Chow form FX is homogeneous of degree d in each of the n + 1 blocks of

N + 1 variables, its number of coefficients is at most
(
N+d
N

)n+1
6 (e(N + 1))d(n+1)
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with e = 2.71 . . ., where the latter inequality follows from

(8.4)

(
x+ y

x

)
6

(x+ y)x+y

xxyy
= (1 + x/y)y(1 + y/x)x 6 (e(1 + y/x))x

for positive integers x, y. So by (8.1) we have

h1(FX) 6 h(FX) + log
(
(e(N + 1))d(n+1)

)
= h(X) + d(n+ 1)(1 + log(N + 1)).

By combining this with (8.3) we obtain the lemma. �

Lemma 8.3. For every ε > 0, the set

X(ε) := {x ∈ X(Q) : h2(x) 6 d−1hFalt(X) + ε}

is Zariski dense in X.

Proof. This follows from Zhang [20], p. 208, Theorem 5.2. �

Let m be a positive integer and put R :=
(
N+m
N

)
− 1. Choose homogeneous coordi-

nates (y0 : . . . : yR) on PR. Let xa0 , . . . ,xaR be the monomials of degree m. Consider

the Veronese embedding

(8.5) ϕm : PN ↪→ P
R : x 7→ (xa0 : · · · : xaR).

Denote by Xm the smallest linear subvariety of PR containing ϕm(X). Then clearly,

a linear form
∑R

i=0 γiyi vanishes identically on Xm if and only if the polynomial

of degree m
∑R

i=0 γix
ai vanishes identically on X. In other words, there is an

isomorphism

(8.6) Q[x0, . . . , xN ]m/(PX)m
∼→ X∨m : xai 7→ yi (i = 0, . . . , R),

where (PX)m is the vector space of homogeneous polynomials of degree m in PX

and X∨m is the vector space of linear forms in Q[y0, . . . , yR] modulo the linear forms

vanishing identically on Xm.

Lemma 8.4. (i) If X is defined over a number field K then Xm is defined over K.

(ii) dimXm = HX(m)− 1 6 d
(
m+n
n

)
− 1.

(iii) h(Xm) 6 dm
(
m+n
n

)
·
(
d−1h(X) + (3n+ 4) log(N + 1)

)
.
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Proof. If X is defined over K then (PX)m is generated by polynomials with coeffi-

cients in K, therefore, Xm is defined by linear forms with coefficients in K. This

implies (i). By (8.6), we have dimXm = dimX∨m − 1 = HX(m) − 1 and together

with Lemma 6.6 this implies (ii).

In order to prove (iii), let ε > 0 and let X ′m be the smallest linear subspace of

P
R containing ϕm(X(ε)). We claim that X ′m = Xm. For assume the contrary: then

there is a non-zero linear form vanishing identically on X ′m but not on Xm. Hence

there is a non-zero polynomial of degree m vanishing identically on X(ε) but not on

X, which contradicts Lemma 8.3.

Therefore, Xm(Q) (considered as a vector space) has a basis of the shape

{ϕm(xi) : i = 1, . . . , H}, with H = dimXm + 1 = HX(m) and xi ∈ X(ε) for

i = 1, . . . , H. By (2.4), (8.1), (8.2) we have

h(Xm) 6 h2(ϕm(x1) ∧ · · · ∧ ϕm(xH)) 6
H∑
i=1

h2(ϕm(xi)).

Further, by (8.1), (8.4) we have for i = 1, . . . , H,

h2(ϕm(xi)) 6 1
2

log
(
m+N
N

)
+ h(ϕm(xi))

6 1
2
m(1 + log(N + 1)) +mh(xi) 6 m

(
1
2
(1 + log(N + 1)) + h2(xi)

)
6 m

(
1
2
(1 + log(N + 1)) + d−1hFalt(X) + ε

)
.

Hence

h(Xm) 6 mH ·
(

1
2
(1 + log(N + 1)) + d−1hFalt(X) + ε

)
.

By inserting Lemma 6.6, Lemma 8.2 and using N > 2, we obtain

h(Xm) 6 dm

(
m+ n

n

)
·
(

1
2
(1 + log(N + 1)) +

+d−1h(X) + (n+ 1)(1 + 2 log(N + 1)) + ε
)

6 dm

(
m+ n

n

)
·
(
d−1h(X) + (3n+ 4) log(N + 1) + ε

)
.

Since we may choose ε arbitrarily small, this implies (iii). �
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9. Proof of Theorem 3.4 (the general case)

9.1. We keep the notation from Sections 2,3. In particular, X is a projective sub-

variety of PN of dimension n and degree d defined over a number field K, where

1 6 n < N . We assume that none of the coordinates xj (j = 0, . . . , N) vanishes

identically on X which is no loss of generality. Indeed, suppose for instance that

xM+1, . . . , xN vanish identically on X whereas x0, . . . , xM do not vanish identically

on X. Let X ′ = π(X) where π is the projection (x0 : · · · : xN) 7→ (x0 : · · · : xM). We

construct from (3.2) a new system of inequalities with solutions in X ′ by removing

all inequalities involving xi (i = M + 1, . . . , N). For the Chow forms of X, X ′ we

have that FX = FX′ ∈ Q[h00, . . . , h0M ; . . . ;hn0, . . . , hnM ] and this implies that for

the Chow weights we have eX(cv) = eX′(c
′
v) for v ∈ S, where c′v = (c0v, . . . , cMv).

Therefore, the new system satisfies (3.10) with c′v in place of cv for v ∈ S. So it

suffices to prove Theorem 3.4 for the new system in place of (3.2).

In the remainder of the proof we distinguish two cases.

9.2. First assume that

(9.1)
∑
v∈S

max
06j6N

cjv > 2 min
(
(n+ 1)d,N + 1

)
.

For v ∈ S, choose jv ∈ {0, . . . , N} such that cjv ,v = max06j6N cjv and put

(9.2) djv ,v = cjv ,v, djv = 0 for j = 0, . . . , N , j 6= jv.

Let X1 be the smallest linear subspace of PN which contains X. Put H := dimX1.

By Lemma 8.4, (i) with m = 1, X1 is defined over K. For v ∈ S, let Iv be a subset

of {0, . . . , N} of cardinality H + 1 containing jv which is independent with respect

to X1, i.e., no non-trivial linear combination of the variables xj (j ∈ Iv) vanishes

identically on X1; such a set exists since xjv does not vanish identically on X, hence

not on X1. By Lemma 8.4, (ii) with m = 1, we have H 6 min((n + 1)d − 1, N).

Together with (9.2), (9.1) this implies

(9.3)
1

H + 1

∑
v∈S

∑
j∈Iv

djv > 2.

For any finite extension L of K we put jw = jv, djw = [Lw:Kv ]
[L:K]

djv for w ∈ SL,

j = 0, . . . , N , where v ∈ S is the place lying below w. Then by (9.2), (3.3) we have

djw,w = cjw,w, djw = 0 if j 6= jw.
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Let x ∈ SX(Q). Then for some finite extension L of K, x ∈ X(L), x satisfies

(3.2) for some finite extension L of K and, by what we just observed,

(9.4) log
( |xj|w
‖x‖w

)
6 −djwh(x) for w ∈ SL, j = 0, . . . , N .

We apply Theorem 3.2 with X1, H, 1, {djv} in place of X,n, δ, {cjv}. Notice that

condition (3.4) is satisfied in view of (9.3). It follows that the set of x ∈ SX(Q) with

(9.5) h(x) > 2(N + 1)H+1(1 + h(X1))

is contained in the union of at most

(9.6) t0 = 4(H+10)2

2H+5 log(3N) log log(3N)

proper linear subspaces of X1 which are all defined over K.

Note that by Lemma 8.4,(ii),(iii) with m = 1 the right-hand side of (9.5) is at most

2(N + 1)d(n+1)
(

1 + (n+ 1)h(X) + d(3n+ 4) log(N + 1)
)

6 c3(N, n, d, δ)(1 + h(X)),

hence (9.5) is implied by (3.14). The intersection of X with a proper linear subspace

of X1 defined over K is a proper Zariski closed subset of X, and by Bézout’s theorem,

it is the union of at most d proper K-subvarieties of X, each of degree 6 d. Hence

the set of x ∈ SX(Q) with (3.14) is contained in the union of at most t = dt0 proper

K-subvarieties of X of degree at most d. Inserting Lemma 8.4, (ii) with m = 1 into

(9.6) we obtain

t 6 d · 4((n+1)d+9)2

2(n+1)d+4 log 3N log log 3N 6 c1(N, n, d, δ).

Further, d 6 c2(N, n, d, δ). This shows (3.12) and (3.13). Thus under assumption

(9.1), Theorem 3.4 follows.

9.3. Now assume that

(9.7)
∑
v∈S

max
06j6N

cjv < 2 min
(
(n+ 1)d,N + 1

)
.

Choose

(9.8) m = 1 +
[
(8n+ 4)(1 + δ−1)dmin

(
(n+ 1)d,N + 1

)]
.
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Put R :=
(
N+m
N

)
− 1. Let ϕm : PN ↪→ P

R be the Veronese embedding defined by

(8.5), and let Xm be the smallest linear subvariety of PR containing ϕm(X). Recall

that by Lemma 8.4, Xm is defined over K and dimXm = HX(m)− 1.

Let x ∈ SX(Q). Then x ∈ X(L) and x satisfies (3.2) for some finite extension L

of K. Put yi = xai (i = 0, . . . , R), y = (y0 : · · · : yR) = ϕm(x). Further, put

(9.9) div :=
1

m
ai · cv (v ∈ S, i = 0, . . . , R)

and diw := [Lw:Kv ]
[L:K]

div (w ∈ SL, i = 0, . . . , R) where v ∈ S is the place below w.

Write ai = (ai0, . . . , aiN) for i = 0, . . . , R. Then using ‖y‖w = ‖x‖mw , h(y) = mh(x),

(3.3), we obtain

log
( |yi|w
‖y‖w

)
=

N∑
k=0

aik log
( |xk|w
‖x‖w

)
6 −

( N∑
k=0

aikckw
)
h(x)(9.10)

6 −diwh(y) for w ∈ SL, j = 0, . . . , R,

We consider system (9.10) with solutions y ∈ Xm. We show that the analogue of

(3.4) for this system is satisfied.

Denote by IXm the collection of subsets of {0, . . . , R} of cardinality dimXm +

1 = HX(m) which are independent with respect to Xm. Recall that a subset I of

{0, . . . , R} is independent with respect to Xm if no non-trivial linear combination of

the variables yi (i ∈ I) vanishes identically on Xm. According to (8.6), this means

precisely that {xai : i ∈ I} is linearly independent in Q[x0, . . . , xN ]m/(PX)m. Hence

I ∈ IXm ⇐⇒ {xai : i ∈ I} is a basis of Q[x0, . . . , xN ]m/(PX)m.

In combination with (9.9) this implies

1
dimXm+1

· max
I∈IXm

∑
i∈I

div = 1
mHX(m)

· sX(m, cv),

where sX(m, cv) is given by (4.4). Further, from Theorem 4.6, (3.10), (9.7), (9.8),

we infer

1
mHX(m)

·
∑
v∈S

sX(m, cv) > 1
(n+1)d

·
∑
v∈S

eX(cv)− (2n+1)d
m
·
∑
v∈S

max
06j6N

cjv

> 1 + δ − (2n+1)d·2 min((n+1)d,N+1))
m

> 1 + δ/2 .
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Thus we arrive at

(9.11) 1
dimXm+1

∑
v∈S

(
max
I∈IXm

(∑
i∈I

div
))
> 1 + δ/2,

which is the analogue of (3.4) for system (9.10) with δ/2 replacing δ.

Thus the conditions of Theorem 3.2 are satisfied with Xm, R =
(
N+m
N

)
− 1,

HX(m)− 1, δ/2, {djv} in place of X, N , n, δ, {cjv}. It follows that there are proper

linear subspaces Z1, . . . , Zt0 of Xm, all defined over K, with

t0 = 4(HX(m)+9)2

(1 + 2δ−1)HX(m)+4 log
(
3
(
N+m
N

))
log log

(
3
(
N+m
N

))
such that for every finite extension L of K the set of solutions y ∈ Xm(L) of (9.10)

with

h(y) > h0 =

(
N +m

N

)HX(m)

(1 + 2δ−1)(1 + h(Xm))

is contained in Z1 ∪ · · · ∪ Zt0 .

For i = 1, . . . , t0, the intersection X ∩ ϕ−1
m (Zi) is contained in X ∩ Z(fi), where

Z(fi) is the zero locus of a homogeneous polynomial fi ∈ K[x0, . . . , xN ] of degree m

not vanishing identically on X. By Bézout’s Theorem, X∩Z(fi) is equal to the union

of at most dm K-subvarieties, each of degree 6 dm. Using that h(ϕm(x)) = mh(x),

it follows that the set of x ∈ SX(Q) with

(9.12) h(x) > m−1h0 = m−1

(
N +m

N

)HX(m)

(1 + 2δ−1)(1 + h(Xm))

is contained in the union of at most

(9.13) t = dmt0 = dm ·4(HX(m)+9)2

(1+2δ−1)HX(m)+4 log
(
3
(
N+m
N

))
log log

(
3
(
N+m
N

))
proper K-subvarieties of X, each of degree 6 dm.

Using Lemma 6.6, (8.4), (9.8), n > 1, N > 2, we obtain

HX(m) 6 d
(
m+n
n

)
6 d
(
e(m+ 1)

)n
6 d

(
e(8n+ 5)(n+ 1)d2(1 + δ−1)

)n
6 d
(

71n2d2(1 + δ−1)
)n
,(

N +m

N

)
6

(
e(N + 1)

)m
6
(
e(N + 1)

)26n2d2(1+δ−1)
.

Together with Lemma 8.4, (iii), this implies that the right-hand side of (9.12) is at

most
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m−1
(
e(N + 1)

)dm(e(m+1))n(
1 + 2δ−1

)
·

·
(

1 +m
(
n+m
n

)(
h(X) + d(3n+ 4) log(N + 1)

))
6
(
e(N + 1)

)dm(e(m+1))n(
1 + 2δ−1

)
·

·m
(
n+m
n

)
·
(
1 + d(3n+ 4) log(N + 1)

)
·
(
1 + h(X)

)
6
(
e(N + 1)

)d(e(m+1))n+1

· (1 + h(X))

6
(
e(N + 1)

)d(71n2d2(1+δ−1))n+1

· (1 + h(X))

6 (3N)(10n)2n+2d2n+3(1+δ−1)n+1 · (1 + h(X)) = c3(N, n, d, δ) · (1 + h(X)),

hence (9.12) is implied by (3.14).

In order to estimate from above the upper bound t for the number of subvarieties

from (9.13), we first observe that

log
(
3
(
N+m
N

))
log log

(
3
(
N+m
N

))
6 log

(
3(e(N + 1))m

)
log log

(
3(e(N + 1))m

)
6 log

(
(3N)2m

)
log log

(
(3N)2m

)
6 2m2 log(3N) log log(3N).

Therefore,

t 6 dm · 4(d(m+n
n )+9)2 · (1 + 2δ−1)d(

m+n
n )+4 · 2m2 log(3N) log log(3N)

6
(
4e1/71

)((71n2)nd2n+1(1+δ−1)n+10
)2

log(3N) log log(3N)

6 exp
(

(10n)4nd4n+2(1 + δ−1)2n
)
· log(3N) log log(3N) = c1(N, n, d, δ).

Finally, by (9.8), we have md 6 (8n + 5)(1 + δ−1)d2 min((n + 1)d,N + 1) =

c2(N, n, d, δ). Hence (3.12), (3.13) hold true. This completes the proof of Theo-

rem 3.4. �
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