DIOPHANTINE INEQUALITIES ON PROJECTIVE VARIETIES

JAN-HENDRIK EVERTSE AND ROBERTO G. FERRETTI

Abstract

We will deduce a quantitative version of a Diophantine approximation result of Faltings and Wüstholz [7] dealing with systems of Diophantine inequalities to be solved in algebraic points of a projective variety X. Our method consists of embedding X into a linear variety by means of a suitable Veronese map and then applying a recent quantitative version of the Subspace Theorem due to Evertse and Schlickewei [5]. To construct the Veronese map, we prove a result of independent interest, which gives a lower bound for the m-th normalized Hilbert weight of X in terms of the normalized Chow weight of X.

2000 Mathematics Subject Classification: 11J68, 11J25, 11G99.
Key words and phrases: Diophantine Approximation, Subspace Theorem, Chow form.

1. Introduction

1.1. Let Y be an n-dimensional projective subvariety (i.e., a geometrically irreducible Zariski-closed subset) of \mathbb{P}^{M} which is defined over a number field K. Let S be a finite set of places of K. For $v \in S, i=0, \ldots, n_{v}$, let $f_{i v}$ be a homogeneous polynomial of degree $k \geqslant 1$ in $M+1$ variables with coefficients in K and let $d_{i v}$ a real $\geqslant 0$. We are interested in systems of inequalities

$$
\begin{equation*}
\log \left(\frac{\left|f_{i v}(\mathbf{y})\right|_{v}}{\|\mathbf{y}\|_{v}^{k}}\right) \leqslant-d_{i v} h(\mathbf{y}) \quad\left(v \in S, i=0, \ldots, n_{v}\right) \quad \text { in } \mathbf{y} \in Y(K) \tag{1.1}
\end{equation*}
$$

where $\left|\left.\right|_{v},\| \|_{v}(v \in S)\right.$ are normalized absolute values and norms and $h(\mathbf{y})$ is the absolute logarithmic height (cf. §2.1 below).

Assume that for $v \in S$, the map $\mathbf{y} \mapsto\left(f_{0 v}(\mathbf{y}): \cdots: f_{n_{v}, v}(\mathbf{y})\right)$ is a finite morphism from Y to $\mathbb{P}^{n_{v}}$. Then we may reduce (1.1) to a system in which all polynomials involved are coordinates. Indeed, let $\left\{f_{0}, \ldots, f_{N}\right\}$ be the union of the sets $\left\{f_{0 v}, \ldots, f_{n_{v}, v}\right\}(v \in S)$. Then $\varphi: \mathbf{y} \mapsto\left(f_{0}(\mathbf{y}): \cdots: f_{N}(\mathbf{y})\right)$ is a finite morphism from Y to \mathbb{P}^{N}. Let $X=\varphi(Y)$. Then X is a projective subvariety of \mathbb{P}^{N} defined over
K. Write $x_{i}=f_{i}(\mathbf{y}), \mathbf{x}=\left(x_{0}: \cdots: x_{N}\right)=\varphi(\mathbf{y})$. Then if we ignore the necessary modifications in the norms and the height, we see that \mathbf{x} satisfies the system of inequalities

$$
\begin{align*}
\log \left(\frac{\left|x_{i}\right|_{v}}{\|\mathbf{x}\|_{v}}\right) \leqslant-c_{i v} h(\mathbf{x}) \quad(v \in S, i & =0, \ldots, N) \tag{1.2}\\
& \text { in } \mathbf{x}
\end{align*}=\left(x_{0}: \cdots: x_{N}\right) \in X(K), ~ 又
$$

where $c_{i v}=d_{j v} / k$ if $f_{i}=f_{j v}$ and $c_{i v}=0$ if $f_{i} \notin\left\{f_{0 v}, \ldots, f_{n_{v}, v}\right\}$. Clearly, φ establishes a finite-to-one map from solutions \mathbf{y} of (1.1) to solutions \mathbf{x} of (1.2). In the sequel we will focus our attention on systems (1.2).
1.2. Let X be a projective subvariety of \mathbb{P}^{N} of dimension n and degree d which is defined over a number field K. Assume that $1 \leqslant n<N$. Further, let $c_{i v}$ $(v \in S, i=0, \ldots, N)$ be non-negative reals. Faltings and Wüstholz [7] proved that the set of solutions of (1.2) is contained in the union of finitely many proper subvarieties of X if the expectation of a particular probability distribution is larger than 1. Ferretti [9] showed that this latter condition is equivalent to

$$
\begin{equation*}
\frac{1}{(n+1) d} \sum_{v \in S} e_{X}\left(\mathbf{c}_{v}\right)>1, \tag{1.3}
\end{equation*}
$$

where $\mathbf{c}_{v}=\left(c_{0 v}, \ldots, c_{N v}\right)$ and where $e_{X}\left(\mathbf{c}_{v}\right)$ is the Chow weight of X with respect to \mathbf{c}_{v} (cf. §3.3). If X is a linear variety, then the result of Faltings and Wüstholz is equivalent to Schmidt's Subspace Theorem. Whereas Schmidt's proof of his Subspace Theorem is based on techniques from Diophantine approximation and geometry of numbers, Faltings and Wüstholz developed a totally different method, based on Faltings' Product Theorem (cf. [6], Theorem 3.1, 3.3).
1.3. Starting with Schmidt [18], much work has been done to obtain good quantitative versions of the Subspace Theorem. The sharpest such version to date is due to Evertse and Schlickewei ([5], Theorem 2.1). From their result we will deduce the following for (1.2) in the case that X is a linear variety. Let $X \subseteq \mathbb{P}^{N}$ be an n-dimensional linear subvariety defined over a number field K and denote by $h(X)$ the logarithmic height of X (cf. §2.2). Assume that

$$
\begin{equation*}
\frac{1}{n+1} \sum_{v \in S} e_{X}\left(\mathbf{c}_{v}\right)>1+\delta \quad \text { with } \delta>0 . \tag{1.4}
\end{equation*}
$$

Then there are explicitly computable constants c_{1}, c_{2}, depending only on N, n, δ, such that the set of solutions $\mathbf{x} \in X(K)$ of (1.2) with $h(\mathbf{x}) \geqslant c_{1}(1+h(X))$ is contained in the union of at most c_{2} proper linear subspaces of X. It has turned out to be crucial for applications that c_{1}, c_{2} are independent of K and S. More generally, the result of Evertse and Schlickewei allows to deduce a similar result for an "absolute" generalization of (1.2) dealing with points in $X(\overline{\mathbb{Q}})$ rather than in $X(K)$. For the precise statement we refer to Theorem 3.2 in Section 3.
1.4. Using the method of Faltings and Wüstholz, Ferretti [8] obtained a quantitative version of their result, an equivalent version of which reads as follows. Let X be a projective subvariety of \mathbb{P}^{N} of dimension n and degree d which is defined over K, where $1 \leqslant n<N$. Assume that

$$
\begin{equation*}
\frac{1}{(n+1) d} \sum_{v \in S} e_{X}\left(\mathbf{c}_{v}\right)>1+\delta \quad \text { with } \delta>0 . \tag{1.5}
\end{equation*}
$$

Then there are explicitly computable constants c_{1}, c_{2}, c_{3}, depending on N, n, δ, K, S and some geometric invariants of X, such that the set of solutions of (1.2) with $h(\mathbf{x}) \geqslant c_{1}(1+h(X))$ lies in the union of at most c_{2} proper subvarieties of X, each of degree $\leqslant c_{3}$.
1.5. In the present paper we prove another quantitative version of the result of Faltings and Wüstholz, in which the constants c_{1}, c_{2}, c_{3} depend only on N, n, δ and the degree of X. Further, just as for linear varieties, we prove a similar quantitative version for an absolute generalization of (1.2), dealing with points in $X(\overline{\mathbb{Q}})$. For the precise statement see Theorem 3.4 in Section 3.

We sketch our method which is very different from that of Faltings and Wüstholz. Let $\varphi_{m}: \mathbb{P}^{N} \hookrightarrow \mathbb{P}^{R}$ with $R=\binom{N+m}{m}-1$ denote the Veronese embedding, which maps $\mathbf{x} \in \mathbb{P}^{N}$ to the point whose coordinates are the monomials in \mathbf{x} of degree m. Let X_{m} denote the smallest linear subvariety of \mathbb{P}^{R} containing $\varphi_{m}(X)$. We construct from (1.2) a new system of a similar shape, with solutions taken from X_{m}, which is such that if \mathbf{x} is a solution of (1.2) then $\varphi_{m}(\mathbf{x})$ is a solution of the new system. The hard core of our paper is to find an explicit value for m such that the analogue of condition (1.4) for the new system is satisfied. Having achieved this, we obtain our quantitative result for the original system (1.2) by applying our previously obtained quantitative result for linear varieties to the new system.

In order to find a suitable value for m, we prove a result which gives, in some well-defined sense, an explicit lower bound of the m-th normalized Hilbert weight of X with respect to a tuple of reals \mathbf{c} in terms of the normalized Chow weight of X with respect to \mathbf{c} (cf. Section 4 for the definitions and the statement of the result). Our result may be viewed as a one-sided explicit version of a result of Mumford ([16], p. 61, Proposition 2.11) which states that the normalized Chow weight of X with respect to \mathbf{c} is the limit of the sequence of its normalized Hilbert weights.

As a by-product of our investigations we obtain that the theorem of Faltings and Wüstholz, which at a first glance seems to be a generalization of the Subspace Theorem, is in fact equivalent to the Subspace Theorem.
1.6. In Section 2 we introduce some notation. In Section 3 we give the precise statements of the results mentioned above related to (1.2) (Theorem 3.2 and Theorem 3.4). In Section 4 we give the definition of the Hilbert weights and Chow weight of X, and state our result concerning these (Theorem 4.6). In Sections 5,6 we prove Theorem 4.6. In Section 7 we prove Theorem 3.2 (the result for linear varieties). In Section 8 we prove an auxiliary result about heights. Finally, in Section 9 we prove Theorem 3.4 (the result for arbitrary varieties).

2. Notation

2.1. We introduce the notation needed in the statements of our results. We first define absolute values and heights. Let K be a number field. Denote by M_{K} its set of places. For $v \in M_{K}$ we define a normalized absolute value $|\cdot|_{v}$ on K by requiring that for $x \in \mathbb{Q}$:

$$
\begin{array}{ll}
|x|_{v}=|x|^{\left[K_{v}: \mathbb{R}\right] /[K: \mathbb{Q}]} & \text { if } v \text { is archimedean, } \\
|x|_{v}=|x|_{p}^{\left[K_{v}: \mathbb{Q}_{p}\right] /[K: \mathbb{Q}]} & \text { if } v \text { lies above a prime number } p,
\end{array}
$$

where \mathbb{Q}_{p}, K_{v} denote the respective completions. These absolute values satisfy the product formula $\prod_{v \in M_{K}}|x|_{v}=1$ for $x \in K^{*}$.

Given a finite extension L of K we write $w \mid v$ to indicate that a place w of M_{L} lies above $v \in M_{K}$. Further, we denote the completion of L at w by L_{w}. Then if we define normalized absolute values in the same manner for L, we get the extension
formulas

$$
\begin{equation*}
|x|_{w}=|x|_{v}^{\left[L_{w}: K_{v}\right] /[L: K]} \quad \text { for } x \in K, w \in M_{L}, v \in M_{K} \text { with } w \mid v . \tag{2.1}
\end{equation*}
$$

For $\mathbf{x}=\left(x_{0}, \ldots, x_{N}\right) \in K^{N+1}, v \in M_{K}$ we put

$$
\|\mathbf{x}\|_{v}:=\max \left\{\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right\} .
$$

We then define the absolute logarithmic height of $\mathbf{x} \in \overline{\mathbb{Q}}^{N+1}$ by taking a number field K with $\mathbf{x} \in K^{N+1}$ and putting

$$
h(\mathbf{x}):=\sum_{v \in M_{K}} \log \|\mathbf{x}\|_{v} .
$$

By the product formula we have $h(\lambda \mathbf{x})=h(\mathbf{x})$ for $\lambda \in K^{*}$ and by the extension formulas, this height is independent of the choice of K. Therefore, h defines a height on $\mathbb{P}^{N}(\overline{\mathbb{Q}})$. For a polynomial P with coefficients in $\overline{\mathbb{Q}}$, we denote by $h(P)$ the absolute logarithmic height of the vector of coefficients of P.
2.2. We define the height of a projective variety. Given any field K, we define the usual scalar product of $\mathbf{x}=\left(x_{0}, \ldots, x_{r}\right), \mathbf{y}=\left(y_{0}, \ldots, y_{r}\right) \in K^{r+1}$ by $\mathbf{x} \cdot \mathbf{y}=$ $x_{0} y_{0}+\cdots+x_{r} y_{r}$. Further, if $0 \leqslant s \leqslant r$ we define the exterior product $\mathbf{x}_{0} \wedge \cdots \wedge \mathbf{x}_{s}$ of $\mathbf{x}_{0}=\left(x_{00}, \ldots, x_{0 r}\right), \ldots, \mathbf{x}_{s}=\left(x_{s 0}, \ldots, x_{s r}\right) \in K^{r+1}$ as follows: let I_{0}, \ldots, I_{R} with $R=\binom{r+1}{s+1}-1$ be the subsets of $\{0, \ldots, r\}$ of cardinality $s+1$ in lexicographical order and for $k=0, \ldots, R$, let $A_{k}=\operatorname{det}\left(x_{i j}\right)_{0 \leqslant i \leqslant s, j \in I_{k}}$; then $\mathbf{x}_{0} \wedge \cdots \wedge \mathbf{x}_{s}=\left(A_{0}, \ldots, A_{R}\right)$.

Let $X \subseteq \mathbb{P}^{N}$ be a projective variety of dimension n and degree d, defined over $\overline{\mathbb{Q}}$, where $1 \leqslant n<N$. To X we can associate an up to a constant factor unique polynomial

$$
F_{X}=F_{X}\left(\mathbf{h}_{0}, \ldots, \mathbf{h}_{n}\right)=F_{X}\left(h_{00}, \ldots, h_{0 N} ; \ldots ; h_{n 0}, \ldots, h_{n N}\right)
$$

in $n+1$ blocks of variables $\mathbf{h}_{i}=\left(h_{i 0}, \ldots, h_{i N}\right)(i=0, \ldots, n)$ which is irreducible in $\overline{\mathbb{Q}}\left[h_{00}, \ldots, h_{n N}\right]$ and which is homogeneous of degree d in each block \mathbf{h}_{i}, with the property that $F_{X}\left(\mathbf{h}_{0}, \ldots, \mathbf{h}_{n}\right)=0$ if and only if $X(\overline{\mathbb{Q}})$ and the hyperplanes given by $\mathbf{h}_{i} \cdot \mathbf{x}=h_{i 0} x_{0}+\cdots+h_{i N} x_{N}=0(i=0, \ldots, n)$ have a point in common. F_{X} is called the (Cayley-Bertini-van der Waerden-) Chow form of X. We then define the height of X by

$$
\begin{equation*}
h(X):=h\left(F_{X}\right) . \tag{2.2}
\end{equation*}
$$

For instance, suppose that X is an n-dimensional linear subvariety of \mathbb{P}^{N} over $\overline{\mathbb{Q}}$. Let $\left\{\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right\}$ be any basis of $X(\overline{\mathbb{Q}})$ considered as a vector space. Then

$$
\begin{equation*}
F_{X}\left(\mathbf{h}_{0}, \ldots, \mathbf{h}_{n}\right)=\left(\mathbf{a}_{0} \wedge \cdots \wedge \mathbf{a}_{n}\right) \cdot\left(\mathbf{h}_{0} \wedge \cdots \wedge \mathbf{h}_{n}\right) \tag{2.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
h(X)=h\left(\mathbf{a}_{0} \wedge \cdots \wedge \mathbf{a}_{n}\right) . \tag{2.4}
\end{equation*}
$$

Faltings ([6], pp. 552, 553) defined another height for projective varieties by means of arithmetic intersection theory. Let $h_{\text {Falt }}(X)$ denote $\frac{1}{[K: Q]}$ times the height introduced by Faltings where K is any number field over which X is defined. The quantity $h_{\text {Falt }}(X)$ is independent of K and by [1], Theorem 4.3.8, there is an explicitly computable constant $c(N)$ such that $\left|h(X)-h_{\text {Falt }}(X)\right| \leqslant c(N) \cdot \operatorname{deg} X$.

3. Statements of the results

3.1. We first state our quantitative result for (1.2) if X is a linear subvariety of \mathbb{P}^{N}.

Let $X \subset \mathbb{P}^{N}$ be a linear subvariety of dimension n defined over a number field K, where $1 \leqslant n<N$. A set of indices $\left\{i_{0}, \ldots, i_{n}\right\} \subset\{0, \ldots, N\}$ is called independent with respect to X if there is no tuple $\left(a_{i_{0}}, \ldots, a_{i_{n}}\right) \in \overline{\mathbb{Q}}^{n+1} \backslash\{\mathbf{0}\}$ such that $a_{i_{0}} x_{i_{0}}+$ $\cdots+a_{i_{n}} x_{i_{n}}$ vanishes identically on X. Denote by \mathcal{I}_{X} the collection of all subsets of $\{0, \ldots, N\}$ of cardinality $n+1$ which are independent with respect to X.

We consider the system of inequalities

$$
\begin{equation*}
\log \left(\frac{\left|x_{i}\right|_{v}}{\|\mathbf{x}\|_{v}}\right) \leqslant-c_{i v} h(\mathbf{x}) \quad(v \in S, i=0, \ldots, N) \quad \text { in } \mathbf{x} \in X(K) \tag{3.1}
\end{equation*}
$$

with reals $c_{i v} \geqslant 0$, where as before, $\left(x_{0}: \cdots: x_{N}\right)$ are the homogeneous coordinates of \mathbf{x}. More generally, for every finite extension L of K we consider

$$
\begin{equation*}
\log \left(\frac{\left|x_{i}\right|_{w}}{\|\mathbf{x}\|_{w}}\right) \leqslant-c_{i w} h(\mathbf{x}) \quad\left(w \in S_{L}, i=0, \ldots, N\right) \quad \text { in } \mathbf{x} \in X(L) \tag{3.2}
\end{equation*}
$$

where S_{L} is the set of places of L lying above the places in S and where

$$
\begin{equation*}
c_{i w}=c_{i v} \cdot \frac{\left[L_{w}: K_{v}\right]}{[L: K]} \quad \text { for } i=0, \ldots, N, w \in S_{L}, v \in S \text { with } w \mid v . \tag{3.3}
\end{equation*}
$$

For a given finite extension L of K denote by $\mathcal{S}_{X}(L)$ the set of solutions of (3.2). Extension formula (2.1) implies that if $K \subset L_{1} \subset L_{2}$ are number fields, then
$\mathcal{S}_{X}\left(L_{2}\right) \cap X\left(L_{1}\right)=\mathcal{S}_{X}\left(L_{1}\right)$. We put

$$
\mathcal{S}_{X}(\overline{\mathbb{Q}})=\bigcup_{L \supseteq K} \mathcal{S}_{X}(L)
$$

where the union is taken over all finite extensions L of K.

Theorem 3.2. Let $X \subset \mathbb{P}^{N}$ be a linear subvariety of dimension n defined over K, where $1 \leqslant n<N$. Let S be a finite set of places of K. Further, let $\delta>0$ and let $c_{i v}$ $(v \in S, i=0, \ldots, N)$ be reals $\geqslant 0$ such that

$$
\begin{equation*}
\frac{1}{n+1} \sum_{v \in S} \max _{\left\{i_{0}, \ldots, i_{n}\right\} \in \mathcal{I}_{X}}\left(c_{i_{0}, v}+\cdots+c_{i_{n}, v}\right) \geqslant 1+\delta . \tag{3.4}
\end{equation*}
$$

Then there are proper linear subspaces Y_{1}, \ldots, Y_{t} of X, all defined over K, with

$$
\begin{equation*}
t \leqslant 4^{(n+10)^{2}}\left(1+\delta^{-1}\right)^{n+5} \log (3 N) \log \log (3 N) \tag{3.5}
\end{equation*}
$$

such that the set of $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ with

$$
\begin{equation*}
h(\mathbf{x}) \geqslant\left(1+\delta^{-1}\right)(N+1)^{n+1} \cdot(1+h(X)) \tag{3.6}
\end{equation*}
$$

is contained in $Y_{1} \cup \cdots \cup Y_{t}$.

We explain the relation with Schmidt's Subspace Theorem, which reads as follows: let $\kappa>n+1$ and let $\left\{l_{0 v}, \ldots, l_{n v}\right\}(v \in S)$ be linearly independent set of linear forms in $n+1$ variables with coefficients in K; then the set of solutions of

$$
\begin{equation*}
\log \left(\prod_{v \in S} \prod_{j=0}^{n} \frac{\left|l_{j v}(\mathbf{y})\right|_{v}}{\|\mathbf{y}\|_{v}}\right) \leqslant-\kappa h(\mathbf{y}) \quad \text { in } \mathbf{y} \in \mathbb{P}^{n}(K) \tag{3.7}
\end{equation*}
$$

is contained in the union of finitely many proper linear subspaces of \mathbb{P}^{n}.
Let $\mathbf{x}=\left(x_{0}: \cdots: x_{N}\right) \in X(K)$ be a solution of (3.1) and assume that (3.4) holds. For $v \in S$, let I_{v} be an independent subset of $\{0, \ldots, N\}$ of cardinality $n+1$ for which $\sum_{j \in I_{v}} c_{j v}$ is maximal. Thus for each $v \in S$ the set of linear forms $\left\{x_{j}: j \in I_{v}\right\}$ is linearly independent on X. Then

$$
\log \left(\prod_{v \in S} \prod_{j \in I_{v}} \frac{\left|x_{j}\right|_{v}}{\|\mathbf{x}\|_{v}}\right) \leqslant-\left(\sum_{v \in S} \sum_{j \in I_{v}} c_{j v}\right) \cdot h(\mathbf{x}) \leqslant-(n+1)(1+\delta) \cdot h(\mathbf{x})
$$

and this can be transformed into an inequality of the shape (3.7) by means of a linear isomorphism from X to \mathbb{P}^{n}.

Thus, the Subspace Theorem implies that under hypothesis (3.4), the set of solutions of (3.1) is contained in the union of finitely many proper linear subvarieties of X. Using a standard combinatorial argument originating from Mahler (cf. [5, Section 21]) one may show that conversely the latter statement implies the Subspace Theorem.
3.3. We now state our quantitative result for arbitrary projective subvarieties of \mathbb{P}^{N}.

Let $X \subset \mathbb{P}^{N}$ be an arbitrary projective variety of dimension n and degree d which is defined over a number field K. We assume again $1 \leqslant n<N$. Let $\mathbf{c}=$ $\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}^{N}$ and let t be an auxiliary variable. Write

$$
\begin{align*}
& F_{X}\left(t^{c_{0}} h_{00}, \ldots, t^{c_{N}} h_{0 N} ; \ldots ; t^{c_{0}} h_{n 0}, \ldots, t^{c_{N}} h_{n N}\right)=t^{e_{0}} F_{0}+t^{e_{1}} F_{1}+\cdots+t^{e_{T}} F_{T} \tag{3.8}\\
& \quad \text { with } F_{0}, \ldots, F_{T} \in K\left[h_{00}, \ldots, h_{n N}\right], e_{0}>e_{1}>\cdots>e_{T},
\end{align*}
$$

where $F_{X}=F_{X}\left(h_{00}, \ldots, h_{0 N} ; \ldots ; h_{n 0}, \ldots, h_{n N}\right)$ is the Chow form of X. Then we define the Chow weight of X with respect to \mathbf{c} by

$$
\begin{equation*}
e_{X}(\mathbf{c}):=e_{0} \tag{3.9}
\end{equation*}
$$

(cf. (6.4) below for an alternative expression).
Let again S be a finite set of places of K, and $c_{i v}(v \in S, i=0, \ldots, N)$ nonnegative reals. For a finite extension L of K, let S_{L} be the set of places of L lying above those in S, and let $c_{i w}\left(w \in S_{L}, i=0, \ldots, N\right)$ be defined by (3.3). Denote by $\mathcal{S}_{X}(L)$ the set of solutions of

$$
\log \left(\frac{\left|x_{i}\right|_{w}}{\|x\|_{w}}\right) \leqslant-c_{i w} h(\mathbf{x}) \quad\left(w \in S_{L}, i=0, \ldots, N\right) \quad \text { in } \mathbf{x} \in X(L)
$$

and let

$$
\mathcal{S}_{X}(\overline{\mathbb{Q}})=\bigcup_{L \supseteq K} \mathcal{S}_{X}(L)
$$

where the union is taken over all finite extensions L of K.
By a proper K-subvariety of X we mean a proper Zariski closed subset of X defined over K which is not the union of two strictly smaller Zariski closed subsets defined over K. Then we have:

Theorem 3.4. Let $X \subset \mathbb{P}^{N}$ be a projective subvariety of dimension n and degree d defined over a number field K, where $1 \leqslant n<N$. Let S be a finite set of places of K. Further, let $\delta>0$ and let $\mathbf{c}_{v}=\left(c_{0 v}, \ldots, c_{N v}\right)(v \in S)$ be tuples of non-negative reals with

$$
\begin{equation*}
\frac{1}{(n+1) d} \sum_{v \in S} e_{X}\left(\mathbf{c}_{v}\right) \geqslant 1+\delta . \tag{3.10}
\end{equation*}
$$

Put

$$
\left\{\begin{array}{l}
c_{1}(N, n, d, \delta):=\exp \left((10 n)^{4 n} d^{4 n+2}\left(1+\delta^{-1}\right)^{2 n}\right) \cdot \log (3 N) \log \log (3 N) \tag{3.11}\\
c_{2}(N, n, d, \delta):=(8 n+5)\left(1+\delta^{-1}\right) d^{2} \min ((n+1) d, N+1) \\
c_{3}(N, n, d, \delta):=\exp \left((10 n)^{2 n+2} d^{2 n+3}\left(1+\delta^{-1}\right)^{n+1} \cdot \log (3 N)\right)
\end{array}\right.
$$

Then there are proper K-subvarieties Y_{1}, \ldots, Y_{t} of X with

$$
\begin{align*}
t & \leqslant c_{1}(N, n, d, \delta) \tag{3.12}\\
\operatorname{deg} Y_{i} & \leqslant c_{2}(N, n, d, \delta) \quad \text { for } i=1, \ldots, t \tag{3.13}
\end{align*}
$$

such that the set of $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ with

$$
\begin{equation*}
h(\mathbf{x}) \geqslant c_{3}(N, n, d, \delta) \cdot(1+h(X)) \tag{3.14}
\end{equation*}
$$

is contained in $Y_{1} \cup \cdots \cup Y_{t}$.
3.5. Let again $\mathbf{h}_{i}=\left(h_{i 0}, \ldots, h_{i N}\right)(i=0, \ldots, n)$ be blocks of $N+1$ variables. For each subset $I=\left\{j_{0}, \ldots, j_{n}\right\}$ of $\{0, \ldots, N\}$ with $j_{0}<\ldots<j_{n}$ we define the bracket $[I]=\left[j_{0} \cdots j_{n}\right]=\operatorname{det}\left(h_{i, j_{k}}\right)_{i, k=0, \ldots, n}$. From [13], p. 41, Thm. IV it follows that the Chow form F_{X} of an n-dimensional subvariety X of \mathbb{P}^{N} can be expressed as a polynomial in terms of these brackets. It is easy to show that for $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right) \in$ \mathbb{R}^{N+1}, the substitution

$$
\left(h_{00}, \ldots, h_{0 N} ; \ldots ; h_{n 0}, \ldots, h_{n N}\right) \leftarrow\left(t^{c_{0}} h_{00}, \ldots, t^{c_{N}} h_{0 N} ; \ldots ; t^{c_{0}} h_{n 0}, \ldots, t^{c_{N}} h_{n N}\right)
$$

transforms $[I]$ into $t^{\sum_{j \in I} c_{j}}[I]$.
In particular, let $X \subset \mathbb{P}^{N}$ be a linear subvariety of dimension n. Then from (2.3) it follows that $F_{X}=\sum_{I \in \mathcal{I}_{X}} \gamma_{I}[I]$ with $\gamma_{I} \neq 0$ for $I \in \mathcal{I}_{X}$ where as before \mathcal{I}_{X} is the
collection of subsets of $\{0, \ldots, N\}$ of cardinality $n+1$ which are independent with respect to X. Hence

$$
e_{X}(\mathbf{c})=\max _{\left\{i_{0}, \ldots, i_{n}\right\} \in \mathcal{I}_{X}} c_{i_{0}}+\cdots+c_{i_{n}}
$$

So for linear varieties X, (3.10) is equivalent to (3.4).
3.6. Now let $X \subset \mathbb{P}^{N}$ be the hypersurface given by $f=0$, where

$$
\begin{equation*}
f=\sum_{\mathbf{a} \in A} \beta(\mathbf{a}) x_{0}^{a_{0}} \ldots x_{N}^{a_{N}} \in K\left[x_{0}, \ldots, x_{N}\right] \tag{3.15}
\end{equation*}
$$

is a homogeneous polynomial of degree d which is irreducible over $\overline{\mathbb{Q}}$. Here A is a finite set of tuples of non-negative integers $\mathbf{a}=\left(a_{0}, \ldots, a_{N}\right)$ with $a_{0}+\cdots+a_{N}=d$, and $\beta(\mathbf{a}) \neq 0$ for $\mathbf{a} \in A$.

The variety X has dimension $n=N-1$ and degree d, and its Chow form is equal to

$$
\begin{align*}
F_{X} & =f\left([12 \cdots N],-[02 \cdots N], \ldots,(-1)^{N-1}[01 \cdots N-1]\right) \tag{3.16}\\
& =\sum_{\mathbf{a} \in A} \pm \beta(\mathbf{a})[12 \cdots N]^{a_{0}} \cdots[01 \cdots N-1]^{a_{N}}
\end{align*}
$$

This implies that for $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}^{N+1}$ we have

$$
\begin{align*}
e_{X}(\mathbf{c}) & =\max _{\mathbf{a} \in A} \sum_{j=0}^{N} a_{j}\left(\sum_{k=0, k \neq j}^{N} c_{k}\right) \tag{3.17}\\
& =d\left(c_{0}+\cdots+c_{N}\right)-\min _{\mathbf{a} \in A}\left(a_{0} c_{0}+\cdots+a_{N} c_{N}\right)
\end{align*}
$$

Now we have:

Corollary 3.7. Let $X \subset \mathbb{P}^{N}$ be the irreducible hypersurface defined by $f=0$, where f is given by (3.15). Let S, δ be as in Theorem 3.4, and let $\mathbf{c}_{v}=\left(c_{0 v}, \ldots, c_{N v}\right)$ $(v \in S)$ be tuples of non-negative reals with

$$
\begin{equation*}
\frac{1}{N} \sum_{v \in S} \sum_{i=0}^{N} c_{i v}-\frac{1}{N d} \sum_{v \in S} \min _{\mathbf{a} \in A}\left(a_{0} c_{0 v}+\cdots+a_{N} c_{N v}\right) \geqslant 1+\delta \tag{3.18}
\end{equation*}
$$

Further, let

$$
\begin{aligned}
c_{1}^{*}(N, d, \delta) & :=\exp \left((10 N)^{4 N} d^{4 N-2}\left(1+\delta^{-1}\right)^{2 N-2}\right), \\
c_{2}^{*}(N, d, \delta) & :=(8 N-3)(N+1) d^{2}\left(1+\delta^{-1}\right) \\
c_{3}^{*}(N, d, \delta) & :=\exp \left((10 N)^{2 N+1} d^{2 N+1}\left(1+\delta^{-1}\right)^{N}\right)
\end{aligned}
$$

Then there are proper K-subvarieties Y_{1}, \ldots, Y_{t} of X with

$$
t \leqslant c_{1}^{*}(N, d, \delta), \quad \operatorname{deg} Y_{i} \leqslant c_{2}^{*}(N, d, \delta) \text { for } i=1, \ldots, t
$$

such that the set of $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ with

$$
h(\mathbf{x}) \geqslant c_{3}^{*}(N, d, \delta) \cdot(1+h(X))
$$

is contained in $Y_{1} \cup \cdots \cup Y_{t}$.
Proof. We apply Theorem 3.4 with $n=N-1$ to X. In view of (3.17), condition (3.18) is equivalent to (3.10). Further we have $c_{i}(N, N-1, d, \delta) \leqslant c_{i}^{*}(N, d, \delta)$ for $i=1,2,3$.

Lastly, we give a consequence of Theorem 3.4 for curves. For $\mathbf{x} \in \mathbb{P}^{N}(\overline{\mathbb{Q}})$, denote by $K(\mathbf{x})$ the smallest extension of K containing a set of homogeneous coordinates for \mathbf{x}.

Corollary 3.8. Let $X \subset \mathbb{P}^{N}$ be an irreducible projective curve of degree d defined over K. Further, S, δ be as in Theorem 3.4 and let $\mathbf{c}_{v}=\left(c_{0 v}, \ldots, c_{N v}\right)(v \in S)$ be tuples of non-negative reals satisfying

$$
\begin{equation*}
\frac{1}{2 d} \sum_{v \in S} e_{X}\left(\mathbf{c}_{v}\right) \geqslant 1+\delta \tag{3.19}
\end{equation*}
$$

Put

$$
\begin{aligned}
& c_{1}^{* *}(N, d, \delta):=\exp \left(10^{5} d^{7}\left(1+\delta^{-1}\right)^{3}\right) \cdot \log (3 N) \log \log (3 N), \\
& c_{2}^{* *}(N, d, \delta):=13\left(1+\delta^{-1}\right) d^{2} \min (2 d, N+1), \\
& c_{3}^{* *}(N, d, \delta):=\exp \left(10^{4} d^{5}\left(1+\delta^{-1}\right)^{2} \log (3 N)\right) .
\end{aligned}
$$

Then there are at most $c_{1}^{* *}(N, d, \delta)$ points $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ with

$$
h(\mathbf{x}) \geqslant c_{3}^{* *}(N, d, \delta) \cdot(1+h(X)) .
$$

Moreover, for each of these points we have

$$
[K(\mathbf{x}): K] \leqslant c_{2}^{* *}(N, d, \delta) .
$$

Proof. Notice that if Y is a proper K-subvariety of X of degree D then Y consists of D points which are conjugate to one another over K and have degree D over K. By applying Theorem 3.4 with $n=1$ to X, we obtain that $\mathcal{S}_{X}(\overline{\mathbb{Q}})$ contains at most $c_{1}(N, 1, d, \delta) \cdot c_{2}(N, 1, d, \delta)$ points \mathbf{x} with $h(\mathbf{x}) \geqslant c_{3}(N, 1, d, \delta) \cdot(1+h(X))$ and moreover, that for each of these points we have $[K(\mathbf{x}): K] \leqslant c_{2}(N, 1, d, \delta)$. Now Corollary 3.8 follows on observing that $c_{1}(N, 1, d, \delta) \cdot c_{2}(N, 1, d, \delta) \leqslant c_{1}^{* *}(N, d, \delta)$ and $c_{i}(N, 1, d, \delta) \leqslant c_{i}^{* *}(N, d, \delta)$ for $i=2,3$.

We mention that computing the Chow weights $e_{X}(\mathbf{c})$ for arbitrary projective varieties X is in general quite difficult. In [9], [10] Ferretti discussed various methods to compute Chow weights, and computed them for certain varieties other than linear varieties or hypersurfaces.

4. Hilbert weights and Chow weights

4.1. Denote by $\mathbb{Z}_{\geqslant 0}^{N+1}, \mathbb{R}_{\geqslant 0}^{N+1}$ the sets of $(N+1)$-tuples consisting of non-negative integers, non-negative reals, respectively. For $\mathbf{a}=\left(a_{0}, \ldots, a_{N}\right) \in \mathbb{Z}_{\geqslant 0}^{N+1}$ we write $\mathbf{x}^{\mathbf{a}}$ for the monomial $x_{0}^{a_{0}} \cdots x_{N}^{a_{N}}$. In this section, K is an algebraically closed field of characteristic 0 . A homogeneous ideal I of $K\left[x_{0}, \ldots, x_{N}\right]$ is said to be relevant if $I \neq(0)$ and if there is no integer $k \geqslant 0$ such that $x_{0}^{k}, \ldots, x_{N}^{k} \in I$.
4.2. For a positive integer m, let $K\left[x_{0}, \ldots, x_{N}\right]_{m}$ denote the vector space of homogeneous polynomials in $K\left[x_{0}, \ldots, x_{N}\right]$ of degree m (including 0). Let I be a relevant homogeneous ideal of $K\left[x_{0}, \ldots, x_{N}\right]$. Put $I_{m}:=K\left[x_{0}, \ldots, x_{N}\right]_{m} \cap I$ and define the Hilbert function H_{I} of I by

$$
\begin{equation*}
H_{I}(m):=\operatorname{dim}_{K}\left(K\left[x_{0}, \ldots, x_{N}\right]_{m} / I_{m}\right) \quad \text { for } m=1,2, \ldots \tag{4.1}
\end{equation*}
$$

Then there are integers $n \geqslant 0, d>0$ such that

$$
\begin{equation*}
H_{I}(m)=d \cdot \frac{m^{n}}{n!}+O\left(m^{n-1}\right) \quad \text { as } m \rightarrow \infty \tag{4.2}
\end{equation*}
$$

We call n the dimension of I, notation $\operatorname{dim} I$, and d the degree of I, notation $\operatorname{deg} I$.

Let P_{1}, \ldots, P_{g} be the prime ideals of maximal dimension associated to I. For $i=1, \ldots, g$, let $O_{P_{i}, I}$ be the localization of $K\left[x_{0}, \ldots, x_{N}\right] / I$ at P_{i} and let $\mu_{P_{i}, I}:=$ $l_{O_{P_{i}, I}}\left(O_{P_{i}, I}\right)$ be the length of $O_{P_{i}, I}$ as a $O_{P_{i}, I}$-module. This quantity is known to be finite. We call $\mu_{P_{i}, I}$ the multiplicity of I with respect to P_{i}. Then

$$
\begin{equation*}
\operatorname{dim} I=\operatorname{dim} P_{1}=\cdots=\operatorname{dim} P_{g}, \quad \operatorname{deg} I=\sum_{i=1}^{g} \mu_{P_{i}, I} \operatorname{deg} P_{i} . \tag{4.3}
\end{equation*}
$$

4.3. We define the m-th Hilbert weight $s_{I}(m, \mathbf{c})$ of I with respect to a tuple $\mathbf{c}=$ $\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}^{N+1}$ by

$$
\begin{equation*}
s_{I}(m, \mathbf{c})=\max \left(\mathbf{a}_{1}+\cdots+\mathbf{a}_{H_{I}(m)}\right) \cdot \mathbf{c} \tag{4.4}
\end{equation*}
$$

where the maximum is taken over all sets of monomials $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H_{I}(m)}}$ whose residue classes modulo I form a basis of the K-vector space $K\left[x_{0}, \ldots, x_{N}\right]_{m} / I_{m}$.
4.4. We define the Chow form of a homogeneous prime ideal P of $K\left[x_{0}, \ldots, x_{N}\right]$ by $F_{P}:=F_{X}$, where X is the variety defined by P and F_{X} is the Chow form of X as defined in $\S 2.2$ (with K in place of $\overline{\mathbb{Q}}$). Further, we define the Chow form of an arbitrary relevant homogeneous ideal I of $K\left[x_{0}, \ldots, x_{N}\right]$ by

$$
\begin{equation*}
F_{I}:=\prod_{i=1}^{g} F_{P_{i}}^{\mu P_{i}, I} \tag{4.5}
\end{equation*}
$$

where P_{1}, \ldots, P_{g} are the prime ideals of maximal dimension associated to I and where $\mu_{P_{i}, I}$ is the multiplicity of I with respect to P_{i}.

Let $\operatorname{dim} I=n, \operatorname{deg} I=d$. Then it follows from $\S 2.2$ and (4.2) that $F_{I}=$ $F_{I}\left(h_{00}, \ldots, h_{0 N} ; \ldots ; h_{n 0}, \ldots, h_{n N}\right)$ is a polynomial in $n+1$ blocks of $N+1$ variables $\mathbf{h}_{i}=\left(h_{i 0}, \ldots, h_{i N}\right)(i=0, \ldots, n)$ such that F_{I} is homogeneous of degree d in each block \mathbf{h}_{i}. Given $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}^{N+1}$, we write similarly as in (3.8), (3.9)

$$
F_{I}\left(t^{c_{0}} h_{00}, \ldots, t^{c_{N}} h_{0 N} ; \ldots ; t^{c_{0}} h_{n 0}, \ldots, t^{c_{N}} h_{n N}\right)=\sum_{k=0}^{T} t^{e_{j}} F_{j}
$$

with $F_{0}, \ldots, F_{T} \in K\left[h_{00}, \ldots, h_{n N}\right], e_{0}>e_{1}>\cdots>e_{T}$ and define the Chow weight of I with respect to \mathbf{c} by

$$
\begin{equation*}
e_{I}(\mathbf{c})=e_{0} . \tag{4.6}
\end{equation*}
$$

4.5. According to Mumford [16], p.61, Proposition 2.11 we have

$$
s_{I}(m, \mathbf{c})=e_{I}(\mathbf{c}) \cdot \frac{m^{n+1}}{(n+1)!}+O\left(m^{n}\right) \quad \text { as } m \rightarrow \infty
$$

Together with (4.2) this implies

$$
\lim _{m \rightarrow \infty} \frac{1}{m H_{I}(m)} \cdot s_{I}(m, \mathbf{c})=\frac{1}{(n+1) d} \cdot e_{I}(\mathbf{c}) .
$$

We call $\frac{1}{m H_{I}(m)} \cdot s_{I}(m, \mathbf{c})$ the m-th normalized Hilbert weight and $\frac{1}{(n+1) d} \cdot e_{I}(\mathbf{c})$ the normalized Chow weight of I.

For a projective subvariety X of \mathbb{P}^{N} defined over K, denote by P_{X} the prime ideal of $K\left[x_{0}, \ldots, x_{N}\right]$ consisting of all polynomials vanishing identically on X. Then we put $\operatorname{dim} X:=\operatorname{dim} P_{X}, \operatorname{deg} X:=\operatorname{deg} P_{X}, H_{X}(m):=H_{P_{X}}(m), s_{X}(m, \mathbf{c}):=s_{P_{X}}(m, \mathbf{c})$, $e_{X}(\mathbf{c}):=e_{P_{X}}(\mathbf{c})$. This coincides with earlier given definitions. We deduce an explicit lower bound for the m-th normalized Hilbert weight of X in terms of the normalized Chow weight of X.

Theorem 4.6. Let X be a subvariety of \mathbb{P}^{N} of dimension n and degree d, defined over an algebraically closed field K of characteristic 0 . Let $m>d$ be an integer. Further, let $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}_{\geqslant 0}^{N+1}$. Then

$$
\begin{equation*}
\frac{1}{m H_{X}(m)} s_{X}(m, \mathbf{c}) \geqslant \frac{1}{(n+1) d} e_{X}(\mathbf{c})-\frac{(2 n+1) d}{m} \cdot\left(\max _{i=0, \ldots, N} c_{i}\right) . \tag{4.7}
\end{equation*}
$$

Inequality (4.7) is sufficient for our purposes. It is probably more difficult to prove an inequality in the other direction. In the proof of Theorem 4.6 we use some ideas of Kapranov, Sturmfels and Zelevinsky [14] which were also implicit in Mumford's paper [16]: in Section 5 we deduce an auxiliary result for monomial ideals (i.e., ideals generated by monomials) and in Section 6 we deduce from this Theorem 4.6.

5. Monomial ideals

5.1. We keep the notation introduced in the previous section, so in particular K is an algebraically closed field of characteristic 0 . In addition, for $\mathbf{a}=\left(a_{0}, \ldots, a_{N}\right)$,
$\mathbf{b}=\left(b_{0}, \ldots, b_{N}\right) \in \mathbb{R}^{N+1}$ we write $\mathbf{a} \leqslant \mathbf{b}$ or $\mathbf{b} \geqslant \mathbf{a}$ if $a_{i} \leqslant b_{i}$ for all $i=0, \ldots, N$. For $\mathbf{a}=\left(a_{0}, \ldots, a_{N}\right) \in \mathbb{R}^{N+1}$ we define the norm $\|\mathbf{a}\|:=\sum_{i=0}^{N}\left|a_{i}\right|$ and the support supp $\mathbf{a}=\left\{i: 0 \leqslant i \leqslant N, a_{i} \neq 0\right\}$; further, for $W \subset\{0, \ldots, N\}$ let \mathbf{a}_{W} be the vector obtained by setting the coordinates of a with indices outside W to 0 , i.e., $\mathbf{a}_{W}:=$ $\left(b_{0}, \ldots, b_{N}\right)$ with $b_{i}=a_{i}$ for $i \in W, b_{i}=0$ for $i \notin W$. For $f_{1}, \ldots, f_{T} \in K\left[x_{0}, \ldots, x_{N}\right]$ let $\left(f_{1}, \ldots, f_{T}\right)$ denote the ideal in $K\left[x_{0}, \ldots, x_{N}\right]$ generated by f_{1}, \ldots, f_{T} and for $W \subset\{0, \ldots, N\}$, let $P_{W}:=\left(x_{i}: i \in W\right)$ denote the ideal in $K\left[x_{0}, \ldots, x_{N}\right]$ generated by $x_{i}(i \in W)$.
5.2. Throughout this section, let

$$
\begin{equation*}
I=\left(\mathrm{x}^{\mathbf{a}_{1}}, \ldots, \mathrm{x}^{\mathbf{a}_{T}}\right) \tag{5.1}
\end{equation*}
$$

be the ideal generated by the monomials $\mathbf{x}^{\mathbf{a}_{i}}(i=1, \ldots, T)$, where $\mathbf{a}_{i}=\left(a_{i 0}, \ldots, a_{i N}\right)$ $\in \mathbb{Z}_{\geqslant 0}^{N+1}$. We assume that I is relevant. Note that $\mathbf{x}^{\mathbf{a}} \in I$ if and only if $\mathbf{a} \geqslant \mathbf{a}_{i}$ for some $i \in\{1, \ldots, T\}$. Let $S(I)$ be the collection of sets $W \subseteq\{0, \ldots, N\}$ with the property that for every $i \in\{1, \ldots, T\}$ there is a $j \in W$ with $a_{i j}>0$. Given $W \in S(I)$, let
(5.2) $\quad A_{W}(I):=\left\{\mathbf{a} \in \mathbb{Z}_{\geqslant 0}^{N+1}: \operatorname{supp} \mathbf{a} \subseteq W, \mathbf{a} \nexists \mathbf{a}_{i, W}\right.$ for all $\left.i=1, \ldots, T\right\}$.

We have included a proof of the following simple lemma (see also [19], Proposition 3.4).

Lemma 5.3. Let W_{1}, \ldots, W_{g} be the non-empty sets in $S(I)$ of minimal cardinality. Then $P_{W_{1}}, \ldots, P_{W_{g}}$ are the prime ideals of maximal dimension associated to I. Further, for $i=1, \ldots, g$, the multiplicity $\mu_{P_{W_{i}}, I}$ of I with respect to $P_{W_{i}}$ is equal to the cardinality of $A_{W_{i}}(I)$.

Proof. For $\mathbf{x}=\left(x_{0}: \cdots: x_{N}\right) \in \mathbb{P}^{N}(K)$ we have that $\mathbf{x}^{\mathbf{a}_{i}}=0$ for $i=1, \ldots, T$ if and only if there is a set $W \in S(I)$ such that $x_{j}=0$ for $j \in W$. Hence the radical of I is $\cap_{W \in S(I)} P_{W}$. Since $\operatorname{dim} P_{W}=N-\# W$, it follows that the prime ideals of maximal dimension associated to I are precisely $P_{W_{1}}, \ldots, P_{W_{g}}$. Let $W \in\left\{W_{1}, \ldots, W_{g}\right\}$ and suppose that $W=\{0, \ldots, r\}$. Let $K^{\prime}=K\left(x_{r+1}, \ldots, x_{N}\right), R=K^{\prime}\left[x_{0}, \ldots, x_{r}\right]$, $I^{\prime}=\left(\mathbf{x}^{\mathbf{a}_{1, W}}, \ldots, \mathbf{x}^{\mathbf{a}_{T, W}}\right)$. Then $O_{P_{W}, I}=R / I^{\prime}$. The latter is a K^{\prime}-vector space with basis $\left\{\mathbf{x}^{\mathbf{a}}: \mathbf{a} \in A_{W}(I)\right\}$. Therefore, $\mu_{P_{W}, I}=l_{O_{P_{W}, I}}\left(O_{P_{W}, I}\right)=\operatorname{dim}_{K^{\prime}} R / I^{\prime}$ is equal to the cardinality of $A_{W}(I)$.

We make some further observations. Let I be as in (5.1) and let W_{1}, \ldots, W_{g} be the sets from Lemma 5.3. Let $n=\operatorname{dim} I, d=\operatorname{deg} I, \mu_{i}=\mu_{P_{W_{i}}, I}(i=1, \ldots, g)$. Then

$$
\begin{equation*}
\# W_{i}=N-n \quad(i=1, \ldots, g) \tag{5.3}
\end{equation*}
$$

Further, by (4.3) we have

$$
\begin{equation*}
\sum_{i=1}^{g} \mu_{i}=d \tag{5.4}
\end{equation*}
$$

Lastly,

$$
\begin{equation*}
\|\mathbf{a}\| \leqslant \mu_{i} \quad \text { for } \mathbf{a} \in A_{W_{i}}(I), i=1, \ldots, g . \tag{5.5}
\end{equation*}
$$

Indeed, let $\mathbf{a} \in A_{W_{i}}(I)$. Then every $\mathbf{b} \in \mathbb{Z}_{\geqslant 0}^{N+1}$ with $\mathbf{b} \leqslant \mathbf{a}$ belongs to $A_{W_{i}}(I)$. The number of $\mathbf{b} \in \mathbb{Z}_{\geqslant 0}^{N+1}$ with $\mathbf{b} \leqslant \mathbf{a}$ is at least $\|\mathbf{a}\|$, and so $\|\mathbf{a}\|$ is at most the cardinality of $A_{W_{i}}(I)$.
5.4. Let $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}_{\geqslant 0}^{N+1}$. Note that $K\left[x_{0}, \ldots, x_{n}\right]_{m} / I_{m}$ has a unique monomial basis consisting of those monomials $\mathbf{x}^{\mathbf{a}}$ such that $\mathbf{a} \nsupseteq \mathbf{a}_{i}$ for $i=1, \ldots, T$ and $\|\mathbf{a}\|=m$. This implies

$$
\begin{equation*}
s_{I}(m, \mathbf{c})=\sum_{\substack{\mathbf{a} \in \mathbb{Z}_{\geq 0}^{N+1},\|\mathbf{a}\|=m, \mathbf{a} \not \mathbf{a}_{i} \text { for } i=1, \ldots, T}} \mathbf{a} \cdot \mathbf{c} . \tag{5.6}
\end{equation*}
$$

Let $W_{k}^{c}=\{0, \ldots, N\} \backslash W_{k}$ for $k=1, \ldots, g$. Then by (4.5) we have, with the bracket notation from $\S 3.5$,

$$
F_{I}=\prod_{k=1}^{g} F_{P_{W_{k}}}^{\mu_{k}}=\prod_{k=1}^{g}\left[W_{k}^{c}\right]^{\mu_{k}} .
$$

Hence

$$
\begin{equation*}
e_{I}(\mathbf{c})=\sum_{k=1}^{g} \mu_{k}\left(\sum_{j \in W_{k}^{c}} c_{j}\right) . \tag{5.7}
\end{equation*}
$$

We prove:

Lemma 5.5. Let m be an integer $>d$ and $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}_{\geqslant 0}^{N+1}$. Then

$$
\begin{equation*}
s_{I}(m, \mathbf{c}) \geqslant \frac{m-d}{n+1}\binom{m-d+n}{n} \cdot e_{I}(\mathbf{c})-d^{2} m\binom{m+n-1}{n-1} \cdot\left(\max _{0 \leqslant i \leqslant N} c_{i}\right) . \tag{5.8}
\end{equation*}
$$

Proof. For a finite subset S of $\mathbb{Z}_{\geqslant 0}^{N+1}$ put $\Sigma_{\mathbf{c}}(S):=\sum_{\mathbf{a} \in S} \mathbf{a} \cdot \mathbf{c}$. Write A_{k} for the set $A_{W_{k}}(I)$ given by (5.2). For $k=1, \ldots, g, \mathbf{a} \in A_{k}$, let $S_{k}(\mathbf{a})$ be the set of vectors \mathbf{r} such that

$$
\left\{\begin{array}{l}
\mathbf{r}=\mathbf{a}+\mathbf{b} \quad \text { for some } \mathbf{b} \in \mathbb{Z}_{\geqslant 0}^{N+1} \text { with supp } \mathbf{b} \subseteq W_{k}^{c}, \\
\|\mathbf{r}\|=m
\end{array}\right.
$$

We estimate from below $s_{I}(m, \mathbf{c})$ using (5.6). Using that for $\mathbf{r} \in S_{k}(\mathbf{a})$ we have $\mathbf{r} \nRightarrow \mathbf{a}_{i}$ for $i=1, \ldots, T$, and applying the principle of inclusion and exclusion we obtain

$$
\begin{align*}
s_{I}(m, \mathbf{c}) & \geqslant \Sigma_{\mathbf{c}}\left(\bigcup_{k=1}^{g} \bigcup_{\mathbf{a} \in A_{k}} S_{k}(\mathbf{a})\right) \tag{5.9}\\
& \geqslant \sum_{k=1}^{g} \sum_{\mathbf{a} \in A_{k}} \Sigma_{\mathbf{c}}\left(S_{k}(\mathbf{a})\right)-\sum_{\left(k, \mathbf{a}^{\prime}\right) \neq\left(l, \mathbf{a}^{\prime \prime}\right)} \Sigma_{\mathbf{c}}\left(S_{k}\left(\mathbf{a}^{\prime}\right) \cap S_{l}\left(\mathbf{a}^{\prime \prime}\right)\right),
\end{align*}
$$

where the last summation is over all quadruples $\left(k, l, \mathbf{a}^{\prime}, \mathbf{a}^{\prime \prime}\right)$ with $k, l=1, \ldots, g$, $\mathbf{a}^{\prime} \in A_{k}, \mathbf{a}^{\prime \prime} \in A_{l}$ and $\left(k, \mathbf{a}^{\prime}\right) \neq\left(l, \mathbf{a}^{\prime \prime}\right)$.

Let $k \in\{1, \ldots, g\}, \mathbf{a} \in A_{k}$. By (5.3) we have $\# W_{k}^{c}=n+1$ and by (5.4), (5.5) we have $\|\mathbf{a}\| \leqslant d$. Hence

$$
\begin{aligned}
\Sigma_{\mathbf{c}}\left(S_{k}(\mathbf{a})\right) & \geqslant \Sigma_{\mathbf{c}}\left(\left\{\mathbf{b} \in \mathbb{Z}_{\geqslant 0}^{N+1}: \operatorname{supp} \mathbf{b} \subseteq W_{k}^{c},\|\mathbf{b}\|=m-\|\mathbf{a}\|\right\}\right) \\
& =\binom{m-\|\mathbf{a}\|+\# W_{k}^{c}-1}{\# W_{k}^{c}-1} \cdot \frac{m-\|\mathbf{a}\|}{\# W_{k}^{c}} \sum_{j \in W_{k}^{c}} c_{j} \\
& \geqslant\binom{ m-d+n}{n} \cdot \frac{m-d}{n+1} \sum_{j \in W_{k}^{c}} c_{j} .
\end{aligned}
$$

Summing over $k=1, \ldots, g, \mathbf{a} \in A_{k}$ we obtain, using that $\# A_{k}=\mu_{k}$ by Lemma 5.3 and using (5.7),

$$
\begin{align*}
\sum_{k=1}^{g} \sum_{\mathbf{a} \in A_{k}} \Sigma_{\mathbf{c}}\left(S_{k}(\mathbf{a})\right) & \geqslant \frac{m-d}{n+1}\binom{m-d+n}{n} \sum_{k=1}^{g} \mu_{k}\left(\sum_{j \in W_{k}^{c}} c_{j}\right) \tag{5.10}\\
& =\frac{m-d}{n+1}\binom{m-d+n}{n} \cdot e_{I}(\mathbf{c}) .
\end{align*}
$$

Let $\left(k, l, \mathbf{a}^{\prime}, \mathbf{a}^{\prime \prime}\right)$ be a quadruple with $k, l \in\{1, \ldots, g\}, \mathbf{a}^{\prime} \in A_{k}, \mathbf{a}^{\prime \prime} \in A_{l}$ and $\left(k, \mathbf{a}^{\prime}\right) \neq$ $\left(l, \mathbf{a}^{\prime \prime}\right)$. If $k=l$ then $S_{k}\left(\mathbf{a}^{\prime}\right) \cap S_{l}\left(\mathbf{a}^{\prime \prime}\right)=\emptyset$. Assume $k \neq l$. Write $\mathbf{a}^{\prime}=\left(a_{0}^{\prime}, \ldots, a_{N}^{\prime}\right)$,
$\mathbf{a}^{\prime \prime}=\left(a_{0}^{\prime \prime}, \ldots, a_{N}^{\prime \prime}\right)$ and put $\max \left(\mathbf{a}^{\prime}, \mathbf{a}^{\prime \prime}\right):=\left(\max \left(a_{0}^{\prime}, a_{0}^{\prime \prime}\right), \ldots, \max \left(a_{0}^{\prime}, a_{0}^{\prime \prime}\right)\right)$. Then $S_{k}\left(\mathbf{a}^{\prime}\right) \cap S_{l}\left(\mathbf{a}^{\prime \prime}\right)$ consists of all vectors \mathbf{r} such that

$$
\left\{\begin{array}{l}
\mathbf{r}=\max \left(\mathbf{a}^{\prime}, \mathbf{a}^{\prime \prime}\right)+\mathbf{b} \quad \text { for some } \mathbf{b} \in \mathbb{Z}_{\geqslant 0}^{N+1} \text { with } \operatorname{supp} \mathbf{b} \subseteq W_{k}^{c} \cap W_{l}^{c}, \\
\|\mathbf{r}\|=m .
\end{array}\right.
$$

By (5.3) we have $\#\left(W_{k}^{c} \cap W_{l}^{c}\right) \leqslant n$, hence

$$
\#\left(S_{k}\left(\mathbf{a}^{\prime}\right) \cap S_{l}\left(\mathbf{a}^{\prime \prime}\right)\right) \leqslant\binom{ m-\left\|\max \left(\mathbf{a}^{\prime}, \mathbf{a}^{\prime \prime}\right)\right\|+n-1}{n-1} \leqslant\binom{ m+n-1}{n-1}
$$

Further, for each $\mathbf{r} \in S_{k}\left(\mathbf{a}^{\prime}\right) \cap S_{l}\left(\mathbf{a}^{\prime \prime}\right)$ we have $\mathbf{r} \cdot \mathbf{c} \leqslant m \cdot\left(\max _{0 \leqslant i \leqslant N} c_{i}\right)$. Therefore,

$$
\left\|\Sigma_{\mathbf{c}}\left(S_{k}\left(\mathbf{a}^{\prime}\right) \cap S_{l}\left(\mathbf{a}^{\prime \prime}\right)\right)\right\| \leqslant m\binom{m+n-1}{n-1} \cdot\left(\max _{0 \leqslant i \leqslant N} c_{i}\right) .
$$

By Lemma 5.3 and (5.4), the number of pairs (k, \mathbf{a}) with $k=1, \ldots, g$, $\mathbf{a} \in A_{k}$ is equal to $\mu_{1}+\cdots+\mu_{g}=d$. Therefore,

$$
\left\|\sum_{\left(k, \mathbf{a}^{\prime}\right) \neq\left(l, \mathbf{a}^{\prime \prime}\right)} \Sigma_{\mathbf{c}}\left(S_{k}\left(\mathbf{a}^{\prime}\right) \cap S_{l}\left(\mathbf{a}^{\prime \prime}\right)\right)\right\| \leqslant d^{2} m\binom{m+n-1}{n-1} \cdot\left(\max _{0 \leqslant i \leqslant N} c_{i}\right) .
$$

By inserting this and (5.10) into (5.9) we arrive at (5.8).

6. Proof of Theorem 4.6

6.1. Much of the material in this section can be found in bits and pieces in the literature, in particular in [14], [3, Chapter 15], [17]. For convenience of the unspecialized reader we have worked out more details. We keep the previously introduced notation; in particular K is an algebraically closed field of characteristic 0 . Further, in what follows I is a relevant homogeneous ideal of $K\left[x_{0}, \ldots, x_{N}\right]$ of dimension n and degree d and $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right) \in \mathbb{R}^{N+1}$.

Let t be a parameter. For $f \in K\left[x_{0}, \ldots, x_{N}\right], f \neq 0$, define the number $w_{\mathbf{c}}(f)$ and the polynomial $i_{\mathbf{c}}(f) \in K\left[x_{0}, \ldots, x_{N}\right]$ (the initial part of f with respect to \mathbf{c}) by

$$
\begin{equation*}
f\left(t^{c_{0}} x_{0}, \ldots, t^{c_{N}} x_{N}\right)=t^{w_{\mathbf{c}}(f)} \cdot i n_{\mathbf{c}}(f)+(\text { terms with higher powers of } t) . \tag{6.1}
\end{equation*}
$$

Alternatively, if we write $f=\sum_{\mathbf{a} \in A} \beta(\mathbf{a}) \mathbf{x}^{\mathbf{a}}$ with $\beta(\mathbf{a}) \neq 0$ for $\mathbf{a} \in A$, then $w_{\mathbf{c}}(f)=$ $\min \{\mathbf{a} \cdot \mathbf{c}: \mathbf{a} \in A\}$ and

$$
\begin{equation*}
i n_{\mathbf{c}}(f)=\sum_{\substack{\mathbf{a} \in A \\ \mathbf{a} \cdot \mathbf{c}=w_{\mathbf{c}}(f)}} \beta(\mathbf{a}) \mathbf{x}^{\mathbf{a}} . \tag{6.2}
\end{equation*}
$$

We denote by $i n_{\mathbf{c}}(I)$ the ideal generated by $i n_{\mathbf{c}}(f)(f \in I)$. The following lemma is implicit in [3], Chapter 15.

Lemma 6.2. Let $m \geqslant 1$ be an integer. Further, let $\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H_{I}(m)}}\right\}$ be a basis of $K\left[x_{0}, \ldots, x_{N}\right]_{m} / I_{m}$ for which $\left(\mathbf{a}_{1}+\cdots+\mathbf{a}_{H_{I}(m)}\right) \cdot \mathbf{c}$ is maximal. Then $\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H_{I}(m)}}\right\}$ is a basis of $K\left[x_{0}, \ldots, x_{N}\right]_{m} / i n_{\mathbf{c}}(I)_{m}$.
Consequently, $i n_{\mathbf{c}}(I)$ has the same Hilbert function as I.
Proof. Write $H:=H_{I}(m), R=\binom{N+m}{N}$. Let $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{R}}$ be all monomials of degree m in x_{0}, \ldots, x_{N}, ordered such that $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H}}$ are the monomials from the statement of the lemma. Then I_{m} is generated by

$$
f_{i}=\mathbf{x}^{\mathbf{a}_{i}}-\sum_{j \in B_{i}} \beta_{i j} \mathbf{x}^{\mathbf{a}_{j}} \quad(i=H+1, \ldots, R),
$$

where $B_{i} \subseteq\{1, \ldots, H\}$ and $\beta_{i j} \neq 0$ for $j \in B_{i}$. For $i \in\{H+1, \ldots, R\}, j \in B_{i}$ we can make a new basis of $K\left[x_{0}, \ldots, x_{N}\right]_{m} / I_{m}$ by replacing $\mathbf{x}^{\mathbf{a}_{j}}$ by $\mathbf{x}^{\mathbf{a}_{i}}$ in $\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H}}\right\}$, therefore $\mathbf{a}_{i} \cdot \mathbf{c} \leqslant \mathbf{a}_{j} \cdot \mathbf{c}$. By (6.2) we have $i n_{\mathbf{c}}\left(f_{i}\right)=\mathbf{x}^{\mathbf{a}_{i}}-\sum_{j \in B_{i}^{\prime}} \beta_{i j} \mathbf{x}^{\mathbf{a}_{j}}$ where B_{i}^{\prime} is the set of indices $j \in B_{i}$ for which $\mathbf{a}_{j} \cdot \mathbf{c}=\mathbf{a}_{i} \cdot \mathbf{c}$ for $i=H+1, \ldots, R$.

We claim that $i n_{\mathbf{c}}(I)_{m}$ is generated by the polynomials $i n_{\mathbf{c}}\left(f_{i}\right)(i=H+1, \ldots, R)$. Let $f \in i n_{\mathbf{c}}(I)_{m}$. We may write f as a linear combination of terms $\mathbf{x}^{\mathbf{a}} i n_{\mathbf{c}}(g)$ with $g \in I$. We have $\mathbf{x}^{\mathbf{a}} i n_{\mathbf{c}}(g)=i n_{\mathbf{c}}(h)$ with $h=\mathbf{x}^{\mathbf{a}} g \in I_{m}$. Now h is a linear combination of the polynomials f_{i}, therefore $i n_{\mathbf{c}}(h)$ is a linear combination of the polynomials $i n_{\mathbf{c}}\left(f_{i}\right)$, and so f is a linear combination of these polynomials. This proves our claim.

Now Lemma 6.2 follows by observing that $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H}}, i n_{\mathbf{c}}\left(f_{H+1}\right), \ldots, i n_{\mathbf{c}}\left(f_{R}\right)$ form a basis of $K\left[x_{0}, \ldots, x_{N}\right]$.

Let as before F_{I} be the Chow form of I. From the definition of the Chow weight it follows that there is a polynomial $f n_{\mathbf{c}}\left(F_{I}\right) \in K\left[h_{00}, \ldots, h_{n N}\right]$ (the final part of F_{I}
with respect to \mathbf{c}) such that

$$
\begin{align*}
& F_{I}\left(t^{c_{0}} h_{00}, \ldots, t^{c_{N}} h_{0 N} ; \ldots ; t^{c_{0}} h_{n 0}, \ldots, t^{c_{N}} h_{n N}\right) \tag{6.3}\\
& \quad=t^{e_{I}(\mathbf{c})} \operatorname{fin}_{\mathbf{c}}\left(F_{I}\right)+(\text { terms with smaller powers of } t)
\end{align*}
$$

Alternatively, for $\mathbf{a}_{i}=\left(a_{i 0}, \ldots, a_{i N}\right) \in \mathbb{Z}_{\geqslant 0}^{N+1}(i=0, \ldots, n)$ put $\mathbf{h}_{0}^{\mathbf{a}_{0}} \cdots \mathbf{h}_{n}^{\mathbf{a}_{n}}:=$ $\prod_{i=0}^{n} \prod_{j=0}^{N} h_{i j}^{a_{i j}}$. Then if we write $F_{I}=\sum_{\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right) \in B} \gamma\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right) \mathbf{h}_{0}^{\mathbf{a}_{0}} \cdots \mathbf{h}_{n}^{\mathbf{a}_{n}}$ with $\gamma\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right) \neq 0$ for $\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right) \in B$, we have

$$
\begin{align*}
e_{I}(\mathbf{c}) & =\max \left\{\left(\mathbf{a}_{0}+\cdots+\mathbf{a}_{n}\right) \cdot \mathbf{c}:\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right) \in B\right\}, \tag{6.4}\\
f i n_{\mathbf{c}}\left(F_{I}\right) & =\sum_{\substack{\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right) \in B \\
\left(\mathbf{a}_{0}+\cdots+\mathbf{a}_{n}\right) \cdot \mathbf{c}=e_{I}(\mathbf{c})}} \gamma\left(\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}\right) \mathbf{h}_{0}^{\mathbf{a}_{0}} \cdots \mathbf{h}_{n}^{\mathbf{a}_{n}} \tag{6.5}
\end{align*}
$$

Lemma 6.3. Apart from a constant factor, $F_{i n_{\mathbf{c}}(I)}=f i_{\mathbf{c}}\left(F_{I}\right)$.
Proof. We first reduce the lemma to the case that $\mathbf{c} \in \mathbb{Z}^{N+1}$. Let $\mathbf{c} \in \mathbb{R}^{N+1}$ be arbitrary. Let M be a sufficiently large integer. Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{R}$ be the vectors in $\mathbb{Z}_{\geqslant 0}^{N+1}$ with sum of coordinates at most M, ordered such that $\mathbf{b}_{1} \cdot \mathbf{c} \leqslant \mathbf{b}_{2} \cdot \mathbf{c} \leqslant \cdots \leqslant \mathbf{b}_{R} \cdot \mathbf{c}$. Then there is a vector $\mathbf{c}^{\prime} \in \mathbb{Z}^{N+1}$ such that for $i=1, \ldots, R-1$ we have the following: if $\mathbf{b}_{i} \cdot \mathbf{c}<\mathbf{b}_{i+1} \cdot \mathbf{c}$ then $\mathbf{b}_{i} \cdot \mathbf{c}^{\prime}<\mathbf{b}_{i+1} \cdot \mathbf{c}^{\prime}$, while if $\mathbf{b}_{i} \cdot \mathbf{c}=\mathbf{b}_{i+1} \cdot \mathbf{c}$ then $\mathbf{b}_{i} \cdot \mathbf{c}^{\prime}=\mathbf{b}_{i+1} \cdot \mathbf{c}^{\prime}$. (To obtain such \mathbf{c}^{\prime}, let $V \subseteq \mathbb{R}^{N+1}$ be the smallest linear subspace defined over \mathbb{Q} which contains \mathbf{c}, choose $\mathbf{c}^{\prime \prime} \in V \cap \mathbb{Q}^{N+1}$ very close to \mathbf{c}, and clear the denominators of $\left.\mathbf{c}^{\prime \prime}\right)$. Now choose polynomials $f_{1}, \ldots, f_{s} \in K\left[x_{0}, \ldots, x_{N}\right]$ such that $I=\left(f_{1}, \ldots, f_{s}\right)$, $i n_{\mathbf{c}}(I)=\left(i n_{\mathbf{c}}\left(f_{1}\right), \ldots, i n_{\mathbf{c}}\left(f_{s}\right)\right)$. Taking M sufficiently large, it follows from (6.5) that $f n_{\mathbf{c}}\left(F_{I}\right)=f i n_{\mathbf{c}^{\prime}}\left(F_{I}\right)$ and from (6.2) that $i n_{\mathbf{c}}\left(f_{i}\right)=i n_{\mathbf{c}^{\prime}}\left(f_{i}\right)$ for $i=1, \ldots, s$. The latter implies that $i n_{\mathbf{c}}(I) \subseteq i n_{\mathbf{c}^{\prime}}(I)$. But by Lemma 6.2 these two ideals have the same Hilbert function, and so they must be equal. Therefore, it suffices to prove Lemma 6.3 for \mathbf{c}^{\prime} instead of \mathbf{c}.

So assume $\mathbf{c} \in \mathbb{Z}^{N+1}$. For $f \in K\left[x_{0}, \ldots, x_{N}\right], t \in K$ define $f_{t}=t^{-w_{c}(f)} f\left(t^{c_{0}} x_{0}, \ldots, t^{c_{N}} x_{N}\right)$. Let I_{t} be the ideal in $K\left[x_{0}, \ldots, x_{N}\right]$ generated by the polynomials $f_{t}(f \in I)$. Further, let $Z_{t}=\operatorname{Proj}\left(K\left[x_{0}, \ldots, x_{N}\right] / I_{t}\right)$ be the corresponding closed subscheme of \mathbb{P}^{N}. Then $I_{0}=i n_{\mathbf{c}}(I)$ by (6.1). From e.g., [3], p. 343, Theorem 15.17 it follows that the schemes Z_{t} form a family which is flat over
$\mathbb{A}_{K}^{1}=\operatorname{Spec}(K[t])$. Further, for $t \in K$ define

$$
F_{I, t}=t^{e_{I}(\mathbf{c})} F_{I}\left(t^{-c_{0}} h_{00}, \ldots, t^{-c_{N}} h_{0 N} ; \ldots ; t^{-c_{0}} h_{n 0}, \ldots, t^{-c_{N}} h_{n N}\right)
$$

Then $F_{I, 0}=f i n_{\mathbf{c}}\left(F_{I}\right)$ by (6.3). Let C_{t} be the subscheme of $\mathbb{P}^{N} \times \cdots \times \mathbb{P}^{N}(n+1$ times) defined by $F_{I, t}$. Then, again [3], p. 343, Theorem 15.17 implies that the schemes C_{t} form a flat family over \mathbb{A}_{K}^{1}. For $t \in K$, let D_{t} be the subscheme of $\mathbb{P}^{N} \times \cdots \times \mathbb{P}^{N}(n+1$ times $)$ defined by the Chow form $F_{I_{t}}$ of I_{t}. For instance by [17], sections 5.2, 5.4, the Chow forms of the closed subschemes of \mathbb{P}^{N} from a family which is flat over some Noetherian scheme S form themselves a flat family over S. So in particular, the schemes D_{t} form a flat family over \mathbb{A}_{K}^{1}. From the definition of Chow form, i.e., $\S 2.2$ and (4.5), it follows that if $A \in \mathrm{GL}_{N+1}(K)$ and if I_{A} is the ideal generated by the polynomials $f(A \mathbf{x}),(f \in A)$, then I_{A} has Chow form $F_{I_{A}}=F_{I}\left(\left(A^{-1}\right)^{T} \mathbf{h}_{0}, \ldots,\left(A^{-1}\right)^{T} \mathbf{h}_{n}\right)$, where $\left(A^{-1}\right)^{T}$ is the transpose of the inverse of A. In particular, for $t \neq 0$ we have (up to a constant), $F_{I, t}=F_{I_{t}}$, i.e., $C_{t}=D_{t}$. Using [12], p. 258, Prop. 9.8 and the flatness of the families C_{t}, D_{t}, it follows that then also $C_{0}=D_{0}$, which means that $F_{I, 0}=F_{I_{0}}$ apart from a constant factor. This proves Lemma 6.3.

Lemma 6.4. We have (i) $\operatorname{dim} i n_{\mathbf{c}}(I)=\operatorname{dim} I$, (ii) $\operatorname{deg} i n_{\mathbf{c}}(I)=\operatorname{deg} I$,
(iii) $s_{i n_{\mathbf{c}}(I)}(m, \mathbf{c})=s_{I}(m, \mathbf{c})$, (iv) $e_{i n_{\mathrm{c}}(I)}(\mathbf{c})=e_{I}(\mathbf{c})$.

Proof. (i) and (ii) follow at once from Lemma 6.2. To prove (iii), choose a basis $\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H}}\right\}$ of $K\left[x_{0}, \ldots, x_{N}\right]_{m} / I_{m}$ such that $\left(\mathbf{a}_{1}+\cdots+\mathbf{a}_{m}\right) \cdot \mathbf{c}$ is maximal. By Lemma 6.2, $\left\{\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{H}}\right\}$ is then also a basis of $K\left[x_{0}, \ldots, x_{N}\right]_{m} / i n_{\mathbf{c}}(I)_{m}$. So by definition (4.4), $s_{i n_{\mathbf{c}}(I)}\left(m, \mathbf{c}^{\prime}\right) \geqslant s_{I}(m, \mathbf{c})$. On the other hand, if $\left\{\mathbf{x}^{\mathbf{b}_{1}}, \ldots, \mathbf{x}^{\mathbf{b}_{H}}\right\}$ is a monomial basis of $K\left[x_{0}, \ldots, x_{N}\right]_{m} / i n_{\mathbf{c}}(I)_{m}$, then it is also a monomial basis of $K\left[x_{0}, \ldots, x_{N}\right]_{m} / I_{m}$. For otherwise, there are $\gamma_{i}(i=1, \ldots, H)$, not all zero, such that $f:=\sum_{i=1}^{H} \gamma_{i} \mathbf{x}^{\mathbf{b}_{i}} \in I$. But then, $i n_{\mathbf{c}}(f)=\sum_{i \in B} \gamma_{i} \mathbf{x}^{\mathbf{b}_{i}} \in i n_{\mathbf{c}}(I)$ for some nonempty set B with $\gamma_{i} \neq 0$ for $i \in B$, which is impossible. Therefore, again by (4.4), $s_{i n_{\mathbf{c}}(I)}\left(m, \mathbf{c}^{\prime}\right) \leqslant s_{I}(m, \mathbf{c})$. This proves (iii). By (6.3), $e_{I}(\mathbf{c})$ is equal to the single exponent on t occurring in the expression obtained by substituting $t^{c_{j}} h_{i j}$ for $h_{i j}$ in $f i n_{\mathbf{c}}\left(F_{I}\right)$ for $i=0, \ldots, n, j=0, \ldots, N$. Together with Lemma 6.3 this implies (iv).

We are now ready to prove the following result:

Lemma 6.5. Let $m>d$ be an integer, and let $\mathbf{c} \in \mathbb{R}_{\geqslant 0}^{N+1}$. Then

$$
\begin{equation*}
s_{I}(m, \mathbf{c}) \geqslant \frac{m-d}{n+1}\binom{m+n-d}{n} \cdot e_{I}(\mathbf{c})-d^{2} m\binom{m+n-1}{n-1} \cdot\left(\max _{0 \leqslant i \leqslant N} c_{i}\right) . \tag{6.6}
\end{equation*}
$$

Proof. We first assume that $\mathbf{c}=\left(c_{0}, \ldots, c_{N}\right)$ with c_{0}, \ldots, c_{N} linearly independent over \mathbb{Q}. Thus $\mathbf{b}_{1} \cdot \mathbf{c} \neq \mathbf{b}_{2} \cdot \mathbf{c}$ for any pair $\mathbf{b}_{1} \neq \mathbf{b}_{2} \in \mathbb{Z}^{N+1}$. So by (6.2), for each nonzero $f \in K\left[x_{0}, \ldots, x_{N}\right], i n_{\mathbf{c}}(f)$ is a monomial, therefore, $i n_{\mathbf{c}}(I)$ is a monomial ideal. In this case, Lemma 6.5 is an immediate consequence of Lemma 5.5 and Lemma 6.4. The lemma for arbitrary $\mathbf{c} \in \mathbb{R}^{N+1}$ now follows by approximating \mathbf{c} by a tuple with \mathbb{Q}-linearly independent coordinates and using continuity arguments.

Our last auxiliary result is an upper bound for the Hilbert function of a projective variety, due to Chardin [2], Théorème 1 . In what follows, X is a projective subvariety of \mathbb{P}^{N} of dimension n and degree d defined over K.

Lemma 6.6. $H_{X}(m) \leqslant d\binom{m+n}{n}$ for $m \geqslant 1$.

6.7. Proof of Theorem 4.6.

Let $m>d$. Put $C:=\max _{0 \leqslant i \leqslant N} c_{i}$. By Lemma 6.5, Lemma 6.6 we have

$$
\begin{aligned}
\frac{1}{m H_{X}(m)} \cdot s_{X}(m, \mathbf{c}) & \geqslant \max \left\{0, \frac{1}{m H_{X}(m)} \cdot\left(\frac{m-d}{n+1}\binom{m+n-d}{n} \cdot e_{X}(\mathbf{c})-d^{2} m\binom{m+n-1}{n-1} \cdot C\right)\right\} \\
& \geqslant \frac{(m-d)\left(\begin{array}{c}
m+n-d
\end{array}\right)}{m\binom{m+n}{n}} \cdot \frac{1}{(n+1) d} e_{X}(\mathbf{c})-d \cdot \frac{n}{m+n} \cdot C .
\end{aligned}
$$

Together with

$$
\frac{(m-d)\binom{m+n-d}{n}}{m\binom{m+n}{n}}=\prod_{i=0}^{n} \frac{m+i-d}{m+i} \geqslant\left(1-\frac{d}{m}\right)^{n+1} \geqslant 1-\frac{(n+1) d}{m}
$$

and $\frac{1}{(n+1) d} e_{X}(\mathbf{c}) \leqslant C$ (which follows from (6.4)) this implies

$$
\begin{aligned}
\frac{1}{m H_{X}(m)} \cdot s_{X}(m, \mathbf{c}) & \geqslant \frac{1}{(n+1) d} \cdot e_{X}(\mathbf{c})-\left(\frac{(n+1) d}{m}+\frac{n d}{m+n}\right) \cdot C \\
& \geqslant \frac{1}{(n+1) d} \cdot e_{X}(\mathbf{c})-\frac{(2 n+1) d}{m} \cdot C .
\end{aligned}
$$

This completes the proof of Theorem 4.6.

7. Proof of Theorem 3.2 (Linear case)

7.1. We recall Theorem 2.1 of Evertse and Schlickewei [5] which is the main tool in the proof of our Theorem 3.2.

Let K be an algebraic number field. Let $N>n \geqslant 1$ be integers. Let $\mathcal{L}=$ $\left\{l_{0}, \ldots, l_{N}\right\}$ be a family (i.e., an unordered tuple with possibly repetitions) of linear forms in $K\left[x_{0}, \ldots, x_{n}\right]$. Suppose that \mathcal{L} has rank $n+1$. For every place $v \in M_{K}$, let I_{v} be a subset of $\{0, \ldots, N\}$ of cardinality $n+1$ such that $\left\{l_{i}: i \in I_{v}\right\}$ is linearly independent. Let $d_{i v}\left(v \in M_{K}, i \in I_{v}\right)$ be reals such that for some finite subset T of M_{K} we have

$$
\begin{equation*}
d_{i v}=0 \quad \text { for } v \in M_{K} \backslash T, i \in I_{v} . \tag{7.1}
\end{equation*}
$$

For $Q \geqslant 1$ and for $\mathbf{y} \in K^{n+1}$ we define

$$
\begin{equation*}
H_{Q}(\mathbf{y})=\prod_{v \in M_{K}} \max _{i \in I_{v}}\left(\left|l_{i}(\mathbf{y})\right|_{v} \cdot Q^{-d_{i v}}\right) . \tag{7.2}
\end{equation*}
$$

We will refer to H_{Q} as a twisted (exponential) height. By the product formula we have $H_{Q}(\lambda \mathbf{y})=H_{Q}(\mathbf{y})$ for $\lambda \in K^{*}$, therefore, H_{Q} may be viewed as a twisted height on $\mathbb{P}^{n}(K)$.

We extend H_{Q} to $\mathbb{P}^{n}(\overline{\mathbb{Q}})$ as follows. Let $\mathbf{y} \in \mathbb{P}^{n}(\overline{\mathbb{Q}})$. Pick a finite extension L of K such that $\mathbf{y} \in \mathbb{P}^{n}(L)$. For a place $w \in M_{L}$ put

$$
\begin{equation*}
I_{w}=I_{v}, \quad d_{i w}=\frac{\left[L_{w}: K_{v}\right]}{[L: K]} d_{i v}, \tag{7.3}
\end{equation*}
$$

where $v \in M_{K}$ is the place lying below w. Then we put

$$
\begin{equation*}
H_{Q}(\mathbf{y})=\prod_{w \in M_{L}} \max _{i \in I_{w}}\left(\left|l_{i}(\mathbf{y})\right|_{w} \cdot Q^{-d_{i w}}\right) \tag{7.4}
\end{equation*}
$$

By (2.1) this is well-defined, i.e., independent of the choice of L.
7.2. Define

$$
\begin{equation*}
\Delta:=\prod_{v \in M_{K}}\left|\operatorname{det}\left(l_{i}: i \in I_{v}\right)\right|_{v}, \tag{7.5}
\end{equation*}
$$

where for any subset I of $\{0, \ldots, N\}$ of cardinality $n+1, \operatorname{det}\left(l_{i}: i \in I\right)$ denotes the coefficient determinant of the linear forms $l_{i}(i \in I)$. Further, let

$$
\begin{equation*}
\mathcal{H}_{\mathcal{L}}:=\prod_{v \in M_{K}}\left(\max _{I}\left|\operatorname{det}\left(l_{i}: i \in I\right)\right|_{v}\right), \tag{7.6}
\end{equation*}
$$

where the maxima are taken over all subsets I of $\{0, \ldots, N\}$ of cardinality $n+1$. We may view $\mathcal{H}_{\mathcal{L}}$ as a height of the family $\mathcal{L}=\left\{l_{0}, \ldots, l_{N}\right\}$. We assume that the reals $d_{i v}$ satisfy, apart from (7.1),

$$
\begin{align*}
& \sum_{v \in M_{K}} \sum_{i \in I_{v}} d_{i v}=0 \tag{7.7}\\
& \sum_{v \in M_{K}} \max _{i \in I_{v}} d_{i v} \leqslant 1 . \tag{7.8}
\end{align*}
$$

Then Theorem 2.1 of [5] can be stated as follows:

Proposition 7.3. Let $0<\varepsilon<1$. Let H_{Q} be defined by (7.2)-(7.4). Then there are proper linear subspaces T_{1}, \ldots, T_{t} of \mathbb{P}^{n}, defined over K, with

$$
\begin{equation*}
t \leqslant 4^{(n+9)^{2}} \varepsilon^{-n-5} \log (3 N) \log \log (3 N) \tag{7.9}
\end{equation*}
$$

for which the following holds:
For every real Q with

$$
\begin{equation*}
Q \geqslant \max \left(\mathcal{H}_{\mathcal{L}}^{1 /\binom{N+1}{n+1}},(n+1)^{2 / \varepsilon}\right) \tag{7.10}
\end{equation*}
$$

there is a space $T_{i} \in\left\{T_{1}, \ldots, T_{t}\right\}$ such that

$$
\begin{equation*}
\left\{\mathbf{y} \in \mathbb{P}^{n}(\overline{\mathbb{Q}}): H_{Q}(\mathbf{y}) \leqslant \Delta^{1 /(n+1)} \cdot Q^{-\varepsilon}\right\} \subset T_{i} \tag{7.11}
\end{equation*}
$$

In addition, we need the following estimate for Δ :

Lemma 7.4. $\Delta \geqslant \mathcal{H}_{\mathcal{L}}^{1-\binom{N+1}{n+1}}$.

Proof. Let I_{1}, \ldots, I_{R} be the subsets I of cardinality $n+1$ of $\{0, \ldots, N\}$ such that $\left\{l_{i}: i \in I\right\}$ is linearly independent and put $a_{k}:=\operatorname{det}\left(l_{i}: i \in I_{k}\right)$ for $k=1, \ldots, R$. Then $\Delta=\prod_{v \in M_{K}}\left|a_{i_{v}}\right|_{v}$, where $i_{v} \in\{1, \ldots, R\}$ for $v \in M_{K}$. With the product formula and $R \leqslant\binom{ N+1}{n+1}$ this gives

$$
\Delta=\prod_{v \in M_{K}} \frac{\left|\prod_{k=1}^{R} a_{k}\right|_{v}}{\prod_{k \neq i_{v}}\left|a_{k}\right|_{v}} \geqslant \prod_{v \in M_{K}}\left(\max _{1 \leqslant k \leqslant R}\left|a_{i}\right|_{v}\right)^{1-R}=\mathcal{H}_{\mathcal{L}}^{1-R} \geqslant \mathcal{H}_{\mathcal{L}}^{1-\binom{N+1}{n+1}} .
$$

7.5. Proof of Theorem 3.2. Let $X \subset \mathbb{P}^{N}$ be the linear variety from Theorem 3.2, defined over a number field K. Choose a basis $\mathbf{a}_{0}=\left(a_{00}, \ldots, a_{0 N}\right), \ldots, \mathbf{a}_{n}=$ $\left(a_{n 0}, \ldots, a_{n N}\right)$ of $X(\overline{\mathbb{Q}})$ (considered as a vector space) with $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n} \in K^{N+1}$. Define the family of linear forms
(7.12) $\mathcal{L}=\left\{l_{0}, \ldots, l_{N}\right\} \quad$ with $l_{j}=a_{0 j} x_{0}+\cdots+a_{N j} x_{N} \quad(j=0, \ldots, N)$.

For $v \in S$, let I_{v} be a subset of cardinality $n+1$ of $\{0, \ldots, N\}$ which is independent with respect to X such that $\sum_{i \in I_{v}} c_{i v}$ is maximal. For $v \in M_{K} \backslash S$, let I_{v} be any independent subset of cardinality $n+1$ of $\{0, \ldots, N\}$. Thus, for $v \in M_{K},\left\{l_{i}: i \in I_{v}\right\}$ is a set of $n+1$ linearly independent linear forms. Notice that the quantity $\mathcal{H}_{\mathcal{L}}$ defined by (7.6) satisfies

$$
\begin{equation*}
\mathcal{H}_{\mathcal{L}}=\exp (h(X)) \tag{7.13}
\end{equation*}
$$

where $h(X)$ is the logarithmic height of X. Further, by (7.13) and Lemma 7.4 we have for the quantity Δ defined by (7.5):

$$
\begin{equation*}
\Delta \geqslant \exp \left(-\left\{\binom{N+1}{n+1}-1\right\} h(X)\right) . \tag{7.14}
\end{equation*}
$$

Put

$$
\begin{cases}d_{i v}:=E^{-1} \cdot\left(E_{v}-c_{i v}\right) & \left(v \in S, i \in I_{v}\right), \tag{7.15}\\ d_{i v}:=0 & \left(v \in M_{K} \backslash S, i \in I_{v}\right),\end{cases}
$$

where

$$
\begin{equation*}
E_{v}:=\frac{1}{n+1} \sum_{i \in I_{v}} c_{i v} \quad(v \in S), \quad E:=\sum_{v \in S} E_{v} . \tag{7.16}
\end{equation*}
$$

It is clear that the numbers $d_{i v}$ satisfy (7.1), (7.7). Further, using that the numbers $c_{i v}$ are $\geqslant 0$, it follows easily that the numbers $d_{i v}$ satisfy (7.8).

Let $\varphi: \mathbb{P}^{n} \rightarrow X$ be the bijective linear map given by $\mathbf{y}=\left(y_{0}: \cdots: y_{n}\right) \mapsto$ $\sum_{i=0}^{n} y_{i} \mathbf{a}_{i}$. Let $\mathbf{x}=\left(x_{0}: \cdots: x_{N}\right) \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ be a point with (3.6). This means that $\mathbf{x} \in X(L)$ and \mathbf{x} satisfies (3.2) for some finite extension L of K. Let $\mathbf{y}=\varphi^{-1}(\mathbf{x})$. Then $\mathbf{y} \in \mathbb{P}^{n}(L)$ and by (7.12),

$$
\begin{equation*}
x_{i}=l_{i}(\mathbf{y}) \quad \text { for } i=0, \ldots, N . \tag{7.17}
\end{equation*}
$$

Put

$$
\begin{equation*}
Q:=\exp (E \cdot h(\mathbf{x})) \tag{7.18}
\end{equation*}
$$

We estimate from above $H_{Q}(\mathbf{y})$, where H_{Q} is defined by (7.2)-(7.4).
Put $I_{w}=I_{v}, d_{i w}:=d_{i v} \cdot \frac{\left[L_{w}: K_{v}\right]}{[L: K]}$ for $w \in M_{L}, i \in I_{w}$. Further, let S_{L} be the set of places of L lying above the places in S, and put $E_{w}:=\frac{1}{n+1} \sum_{i \in I_{w}} c_{i w}$ for $w \in S_{L}$. Then by (3.3) and (7.15) we have

$$
\begin{cases}d_{i w}:=E^{-1} \cdot\left(E_{w}-c_{i w}\right) & \left(w \in S_{L}, i \in I_{w}\right), \tag{7.19}\\ d_{i w}:=0 & \left(w \in M_{L} \backslash S_{L}, i \in I_{w}\right),\end{cases}
$$

Further, by (3.3), (7.16), (3.4) and the choices of the sets I_{v} we have

$$
\begin{equation*}
\sum_{w \in S_{L}} E_{w}=E \geqslant 1+\delta . \tag{7.20}
\end{equation*}
$$

For $w \in S_{L}$ we have by (7.17), (7.18), (7.19), (3.2),

$$
\begin{aligned}
\max _{i \in I_{w}}\left(\left|l_{i}(\mathbf{y})\right|_{w} Q^{-d_{i w}}\right) & =\max _{i \in I_{w}}\left(\left|x_{i}\right|_{w} \exp \left(\left(c_{i w}-E_{w}\right) h(\mathbf{x})\right)\right) \\
& \leqslant\|\mathbf{x}\|_{w} \exp \left(-E_{w} h(\mathbf{x})\right)
\end{aligned}
$$

while for $w \in M_{L} \backslash S_{L}$ we have by (7.17), (7.19),

$$
\max _{i \in I_{w}}\left(\left|l_{i}(\mathbf{y})\right|_{w} Q^{-d_{i w}}\right)=\max _{i \in I_{w}}\left|x_{i}\right|_{w} \leqslant\|x\|_{w} .
$$

By taking the product over $w \in M_{L}$, invoking (7.18), (7.20), we obtain

$$
H_{Q}(\mathbf{y}) \leqslant \exp (-(E-1) h(\mathbf{x}))=Q^{-(E-1) / E} \leqslant Q^{-\left(1+\delta^{-1}\right)^{-1}}
$$

From (7.18) and (7.20), our assumption (3.6) and (7.14) it follows

$$
\begin{aligned}
\log Q & \geqslant h(\mathbf{x}) \geqslant\left(1+\delta^{-1}\right)(N+1)^{n+1}(1+h(X)) \\
& \geqslant 2\left(1+\delta^{-1}\right)\binom{N+1}{n+1} h(X) \geqslant 2\left(1+\delta^{-1}\right) \log \Delta^{-1 /(n+1)},
\end{aligned}
$$

and so

$$
H_{Q}(\mathbf{y}) \leqslant \Delta^{1 /(n+1)} Q^{-\left(2\left(1+\delta^{-1}\right)\right)^{-1}} .
$$

Thus we are in a position to apply Proposition 7.3 with $\varepsilon=\left(2\left(1+\delta^{-1}\right)\right)^{-1}$. Our assumption (3.6), in combination with (7.18), (7.20), (7.13), implies that

$$
\log Q \geqslant \log \max \left(\mathcal{H}_{\mathcal{L}}^{1 /\binom{N+1}{n+1}},(n+1)^{4\left(1+\delta^{-1}\right)}\right),
$$

i.e., that condition (7.10) of Proposition 7.3 is satisfied with our choice of ε. It follows that there are proper linear subspaces T_{1}, \ldots, T_{t} of \mathbb{P}^{n} defined over K, with

$$
\begin{aligned}
t & \leqslant 4^{(n+9)^{2}}\left(2\left(1+\delta^{-1}\right)\right)^{n+5} \log (3 N) \log \log (3 N) \\
& \leqslant 4^{(n+10)^{2}}\left(1+\delta^{-1}\right)^{n+5} \log (3 N) \log \log (3 N)
\end{aligned}
$$

such that $\mathbf{y} \in T_{1} \cup \cdots \cup T_{t}$. Then $\mathbf{x} \in Y_{1} \cup \cdots \cup Y_{t}$, where $Y_{i}=\varphi\left(T_{i}\right)(i=1, \ldots, t)$ are proper linear subspaces of X defined over K which do not depend on \mathbf{x}. This completes the proof of Theorem 3.2.

8. Heights

8.1. Let K be a number field. Denote by M_{K}^{∞} the set of archimedean places and by M_{K}^{0} the set of non-archimedean places of K. For each $v \in M_{K}^{\infty}$, there is an isomorphic embedding $\sigma_{v}: K \hookrightarrow \mathbb{C}$ such that $|x|_{v}=\left|\sigma_{v}(x)\right|^{\left[K_{v}: \mathbb{R}\right] /[K: \mathbb{Q}]}$ for $x \in K$. For $\mathbf{x}=\left(x_{0}, \ldots, x_{N}\right) \in K^{N+1}, v \in M_{K}^{\infty}$ we put

$$
\|\mathbf{x}\|_{v, 1}=\left(\sum_{i=0}^{N}\left|\sigma_{v}\left(x_{i}\right)\right|\right)^{\left[K_{v}: \mathbb{R}\right] /[K: \mathbb{Q}]}, \quad\|\mathbf{x}\|_{v, 2}=\left(\sum_{i=0}^{N}\left|\sigma_{v}\left(x_{i}\right)\right|^{2}\right)^{\left[K_{v}: \mathbb{R}\right] / 2[K: \mathbb{Q}]}
$$

We then define heights $h_{1}(\mathbf{x}), h_{2}(\mathbf{x})$ for $\mathbf{x} \in \overline{\mathbb{Q}}^{N+1} \backslash\{\mathbf{0}\}$ by choosing a number field K with $\mathbf{x} \in K^{N+1}$ and putting

$$
\begin{aligned}
& h_{1}(\mathbf{x})=\sum_{v \in M_{K}^{\infty}} \log \|\mathbf{x}\|_{v, 1}+\sum_{v \in M_{K}^{0}} \log \|\mathbf{x}\|_{v}, \\
& h_{2}(\mathbf{x})=\sum_{v \in M_{K}^{\infty}} \log \|\mathbf{x}\|_{v, 2}+\sum_{v \in M_{K}^{0}} \log \|\mathbf{x}\|_{v}
\end{aligned}
$$

these quantities are independent of the choice of K. By the product formula, h_{1}, h_{2} define heights on $\mathbb{P}^{N}(\overline{\mathbb{Q}})$. We have

$$
\left\{\begin{array}{l}
h(\mathbf{x}) \leqslant h_{2}(\mathbf{x}) \leqslant h_{1}(\mathbf{x}) \tag{8.1}\\
h_{1}(\mathbf{x}) \leqslant h(\mathbf{x})+\log (N+1), \quad h_{2}(\mathbf{x}) \leqslant h(\mathbf{x})+\frac{1}{2} \log (N+1)
\end{array}\right.
$$

for $\mathbf{x} \in \overline{\mathbb{Q}}^{N+1}\left(\right.$ or $\left.\mathbf{x} \in \mathbb{P}^{N}(\overline{\mathbb{Q}})\right)$ and

$$
\begin{equation*}
h_{2}\left(\mathbf{x}_{0} \wedge \cdots \wedge \mathbf{x}_{n}\right) \leqslant \sum_{i=0}^{n} h_{2}\left(\mathbf{x}_{i}\right) \quad \text { (Hadamard's inequality) } \tag{8.2}
\end{equation*}
$$

for $\mathbf{x}_{0}, \ldots, \mathbf{x}_{n} \in \overline{\mathbb{Q}}^{N+1}$. Given a polynomial P with coefficients in $\overline{\mathbb{Q}}$, we define $h_{1}(P), h_{2}(P)$ to be the respective heights of the coefficient vector of P.

In what follows, X is a projective subvariety of \mathbb{P}^{N} of dimension n and degree d, defined over $\overline{\mathbb{Q}}$. Let $P_{X} \subset \overline{\mathbb{Q}}\left[x_{0}, \ldots, x_{N}\right]$ denote the prime ideal of X. Given any number field K such that X is defined over K, denote by \mathcal{X} its Zariski closure over $\operatorname{Spec}\left(O_{K}\right)$, i.e. $\mathcal{X}=\operatorname{Proj}\left(R / P_{X} \cap R\right)$ where $R=O_{K}\left[x_{0}, \ldots, x_{N}\right]$. Let $\tilde{h}(\mathcal{X})$ be the logarithmic height of \mathcal{X} as defined by Faltings [6], pp. 552, 553. We then define the absolute Faltings height of X by $h_{\text {Falt }}(X):=\frac{1}{[K: \mathbb{Q}]} \tilde{h}(\mathcal{X})$. By [1], p. 948 this is independent of the choice of K.

Lemma 8.2. $h_{\text {Falt }}(X) \leqslant h(X)+d(n+1)(1+2 \log (N+1))$.
Proof. From [1], Theorem 4.3.8, pp. 989, 990, formulas (4.3.31), (4.3.32), it follows that

$$
\begin{equation*}
h_{\text {Falt }}(X) \leqslant h_{1}\left(F_{X}\right)+d(n+1) \log (N+1) . \tag{8.3}
\end{equation*}
$$

Since the Chow form F_{X} is homogeneous of degree d in each of the $n+1$ blocks of $N+1$ variables, its number of coefficients is at most $\binom{N+d}{N}^{n+1} \leqslant(e(N+1))^{d(n+1)}$
with $e=2.71 \ldots$, where the latter inequality follows from

$$
\begin{equation*}
\binom{x+y}{x} \leqslant \frac{(x+y)^{x+y}}{x^{x} y^{y}}=(1+x / y)^{y}(1+y / x)^{x} \leqslant(e(1+y / x))^{x} \tag{8.4}
\end{equation*}
$$

for positive integers x, y. So by (8.1) we have

$$
h_{1}\left(F_{X}\right) \leqslant h\left(F_{X}\right)+\log \left((e(N+1))^{d(n+1)}\right)=h(X)+d(n+1)(1+\log (N+1)) .
$$

By combining this with (8.3) we obtain the lemma.

Lemma 8.3. For every $\varepsilon>0$, the set

$$
X(\varepsilon):=\left\{\mathbf{x} \in X(\overline{\mathbb{Q}}): h_{2}(\mathbf{x}) \leqslant d^{-1} h_{\text {Falt }}(X)+\varepsilon\right\}
$$

is Zariski dense in X.
Proof. This follows from Zhang [20], p. 208, Theorem 5.2.
Let m be a positive integer and put $R:=\binom{N+m}{N}-1$. Choose homogeneous coordinates $\left(y_{0}: \ldots: y_{R}\right)$ on \mathbb{P}^{R}. Let $\mathbf{x}^{\mathbf{a}_{0}}, \ldots, \mathbf{x}^{\mathbf{a}_{R}}$ be the monomials of degree m. Consider the Veronese embedding

$$
\begin{equation*}
\varphi_{m}: \mathbb{P}^{N} \hookrightarrow \mathbb{P}^{R}: \mathrm{x} \mapsto\left(\mathrm{x}^{\mathrm{a}_{0}}: \cdots: \mathrm{x}^{\mathrm{a}_{R}}\right) \tag{8.5}
\end{equation*}
$$

Denote by X_{m} the smallest linear subvariety of \mathbb{P}^{R} containing $\varphi_{m}(X)$. Then clearly, a linear form $\sum_{i=0}^{R} \gamma_{i} y_{i}$ vanishes identically on X_{m} if and only if the polynomial of degree $m \sum_{i=0}^{R} \gamma_{i} \mathbf{x}^{\mathbf{a}_{i}}$ vanishes identically on X. In other words, there is an isomorphism

$$
\begin{equation*}
\overline{\mathbb{Q}}\left[x_{0}, \ldots, x_{N}\right]_{m} /\left(P_{X}\right)_{m} \xrightarrow{\sim} X_{m}^{\vee}: \quad \mathbf{x}^{\mathbf{a}_{i}} \mapsto y_{i}(i=0, \ldots, R), \tag{8.6}
\end{equation*}
$$

where $\left(P_{X}\right)_{m}$ is the vector space of homogeneous polynomials of degree m in P_{X} and X_{m}^{\vee} is the vector space of linear forms in $\overline{\mathbb{Q}}\left[y_{0}, \ldots, y_{R}\right]$ modulo the linear forms vanishing identically on X_{m}.

Lemma 8.4. (i) If X is defined over a number field K then X_{m} is defined over K. (ii) $\operatorname{dim} X_{m}=H_{X}(m)-1 \leqslant d\binom{m+n}{n}-1$.
(iii) $h\left(X_{m}\right) \leqslant d m\binom{m+n}{n} \cdot\left(d^{-1} h(X)+(3 n+4) \log (N+1)\right)$.

Proof. If X is defined over K then $\left(P_{X}\right)_{m}$ is generated by polynomials with coefficients in K, therefore, X_{m} is defined by linear forms with coefficients in K. This implies (i). By (8.6), we have $\operatorname{dim} X_{m}=\operatorname{dim} X_{m}^{\vee}-1=H_{X}(m)-1$ and together with Lemma 6.6 this implies (ii).

In order to prove (iii), let $\varepsilon>0$ and let X_{m}^{\prime} be the smallest linear subspace of \mathbb{P}^{R} containing $\varphi_{m}(X(\varepsilon))$. We claim that $X_{m}^{\prime}=X_{m}$. For assume the contrary: then there is a non-zero linear form vanishing identically on X_{m}^{\prime} but not on X_{m}. Hence there is a non-zero polynomial of degree m vanishing identically on $X(\varepsilon)$ but not on X, which contradicts Lemma 8.3.

Therefore, $X_{m}(\overline{\mathbb{Q}})$ (considered as a vector space) has a basis of the shape $\left\{\varphi_{m}\left(\mathbf{x}_{i}\right): i=1, \ldots, H\right\}$, with $H=\operatorname{dim} X_{m}+1=H_{X}(m)$ and $\mathbf{x}_{i} \in X(\varepsilon)$ for $i=1, \ldots, H$. By (2.4), (8.1), (8.2) we have

$$
h\left(X_{m}\right) \leqslant h_{2}\left(\varphi_{m}\left(\mathbf{x}_{1}\right) \wedge \cdots \wedge \varphi_{m}\left(\mathbf{x}_{H}\right)\right) \leqslant \sum_{i=1}^{H} h_{2}\left(\varphi_{m}\left(\mathbf{x}_{i}\right)\right) .
$$

Further, by (8.1), (8.4) we have for $i=1, \ldots, H$,

$$
\begin{aligned}
h_{2}\left(\varphi_{m}\left(\mathbf{x}_{i}\right)\right) & \leqslant \frac{1}{2} \log \binom{m+N}{N}+h\left(\varphi_{m}\left(\mathbf{x}_{i}\right)\right) \\
& \leqslant \frac{1}{2} m(1+\log (N+1))+m h\left(\mathbf{x}_{i}\right) \leqslant m\left(\frac{1}{2}(1+\log (N+1))+h_{2}\left(\mathbf{x}_{i}\right)\right) \\
& \leqslant m\left(\frac{1}{2}(1+\log (N+1))+d^{-1} h_{\text {Falt }}(X)+\varepsilon\right)
\end{aligned}
$$

Hence

$$
h\left(X_{m}\right) \leqslant m H \cdot\left(\frac{1}{2}(1+\log (N+1))+d^{-1} h_{\text {Falt }}(X)+\varepsilon\right) .
$$

By inserting Lemma 6.6, Lemma 8.2 and using $N \geqslant 2$, we obtain

$$
\begin{aligned}
h\left(X_{m}\right) \leqslant & d m\binom{m+n}{n} \cdot\left(\frac{1}{2}(1+\log (N+1))+\right. \\
& \left.\quad+d^{-1} h(X)+(n+1)(1+2 \log (N+1))+\varepsilon\right) \\
\leqslant & d m\binom{m+n}{n} \cdot\left(d^{-1} h(X)+(3 n+4) \log (N+1)+\varepsilon\right) .
\end{aligned}
$$

Since we may choose ε arbitrarily small, this implies (iii).

9. Proof of Theorem 3.4 (the general case)

9.1. We keep the notation from Sections 2,3. In particular, X is a projective subvariety of \mathbb{P}^{N} of dimension n and degree d defined over a number field K, where $1 \leqslant n<N$. We assume that none of the coordinates $x_{j}(j=0, \ldots, N)$ vanishes identically on X which is no loss of generality. Indeed, suppose for instance that x_{M+1}, \ldots, x_{N} vanish identically on X whereas x_{0}, \ldots, x_{M} do not vanish identically on X. Let $X^{\prime}=\pi(X)$ where π is the projection $\left(x_{0}: \cdots: x_{N}\right) \mapsto\left(x_{0}: \cdots: x_{M}\right)$. We construct from (3.2) a new system of inequalities with solutions in X^{\prime} by removing all inequalities involving $x_{i}(i=M+1, \ldots, N)$. For the Chow forms of X, X^{\prime} we have that $F_{X}=F_{X^{\prime}} \in \overline{\mathbb{Q}}\left[h_{00}, \ldots, h_{0 M} ; \ldots ; h_{n 0}, \ldots, h_{n M}\right]$ and this implies that for the Chow weights we have $e_{X}\left(\mathbf{c}_{v}\right)=e_{X^{\prime}}\left(\mathbf{c}_{v}^{\prime}\right)$ for $v \in S$, where $\mathbf{c}_{v}^{\prime}=\left(c_{0 v}, \ldots, c_{M v}\right)$. Therefore, the new system satisfies (3.10) with \mathbf{c}_{v}^{\prime} in place of \mathbf{c}_{v} for $v \in S$. So it suffices to prove Theorem 3.4 for the new system in place of (3.2).

In the remainder of the proof we distinguish two cases.
9.2. First assume that

$$
\begin{equation*}
\sum_{v \in S} \max _{0 \leqslant j \leqslant N} c_{j v} \geqslant 2 \min ((n+1) d, N+1) . \tag{9.1}
\end{equation*}
$$

For $v \in S$, choose $j_{v} \in\{0, \ldots, N\}$ such that $c_{j_{v}, v}=\max _{0 \leqslant j \leqslant N} c_{j v}$ and put

$$
\begin{equation*}
d_{j_{v}, v}=c_{j_{v}, v}, \quad d_{j v}=0 \text { for } j=0, \ldots, N, j \neq j_{v} . \tag{9.2}
\end{equation*}
$$

Let X_{1} be the smallest linear subspace of \mathbb{P}^{N} which contains X. Put $H:=\operatorname{dim} X_{1}$. By Lemma 8.4, (i) with $m=1, X_{1}$ is defined over K. For $v \in S$, let I_{v} be a subset of $\{0, \ldots, N\}$ of cardinality $H+1$ containing j_{v} which is independent with respect to X_{1}, i.e., no non-trivial linear combination of the variables $x_{j}\left(j \in I_{v}\right)$ vanishes identically on X_{1}; such a set exists since $x_{j_{v}}$ does not vanish identically on X, hence not on X_{1}. By Lemma 8.4, (ii) with $m=1$, we have $H \leqslant \min ((n+1) d-1, N)$. Together with (9.2), (9.1) this implies

$$
\begin{equation*}
\frac{1}{H+1} \sum_{v \in S} \sum_{j \in I_{v}} d_{j v} \geqslant 2 . \tag{9.3}
\end{equation*}
$$

For any finite extension L of K we put $j_{w}=j_{v}, d_{j w}=\frac{\left[L_{w}: K_{v}\right]}{[L: K]} d_{j v}$ for $w \in S_{L}$, $j=0, \ldots, N$, where $v \in S$ is the place lying below w. Then by (9.2), (3.3) we have $d_{j_{w}, w}=c_{j_{w}, w}, d_{j w}=0$ if $j \neq j_{w}$.

Let $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$. Then for some finite extension L of $K, \mathbf{x} \in X(L)$, \mathbf{x} satisfies (3.2) for some finite extension L of K and, by what we just observed,

$$
\begin{equation*}
\log \left(\frac{\left|x_{j}\right|_{w}}{\|\mathbf{x}\|_{w}}\right) \leqslant-d_{j w} h(\mathbf{x}) \quad \text { for } w \in S_{L}, j=0, \ldots, N \tag{9.4}
\end{equation*}
$$

We apply Theorem 3.2 with $X_{1}, H, 1,\left\{d_{j v}\right\}$ in place of $X, n, \delta,\left\{c_{j v}\right\}$. Notice that condition (3.4) is satisfied in view of (9.3). It follows that the set of $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ with

$$
\begin{equation*}
h(\mathbf{x}) \geqslant 2(N+1)^{H+1}\left(1+h\left(X_{1}\right)\right) \tag{9.5}
\end{equation*}
$$

is contained in the union of at most

$$
\begin{equation*}
t_{0}=4^{(H+10)^{2}} 2^{H+5} \log (3 N) \log \log (3 N) \tag{9.6}
\end{equation*}
$$

proper linear subspaces of X_{1} which are all defined over K.
Note that by Lemma 8.4,(ii),(iii) with $m=1$ the right-hand side of (9.5) is at most

$$
\begin{aligned}
& 2(N+1)^{d(n+1)}(1+(n+1) h(X)+d(3 n+4) \log (N+1)) \\
& \quad \leqslant c_{3}(N, n, d, \delta)(1+h(X)),
\end{aligned}
$$

hence (9.5) is implied by (3.14). The intersection of X with a proper linear subspace of X_{1} defined over K is a proper Zariski closed subset of X, and by Bézout's theorem, it is the union of at most d proper K-subvarieties of X, each of degree $\leqslant d$. Hence the set of $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ with (3.14) is contained in the union of at most $t=d t_{0}$ proper K-subvarieties of X of degree at most d. Inserting Lemma 8.4, (ii) with $m=1$ into (9.6) we obtain

$$
t \leqslant d \cdot 4^{((n+1) d+9)^{2}} 2^{(n+1) d+4} \log 3 N \log \log 3 N \leqslant c_{1}(N, n, d, \delta)
$$

Further, $d \leqslant c_{2}(N, n, d, \delta)$. This shows (3.12) and (3.13). Thus under assumption (9.1), Theorem 3.4 follows.
9.3. Now assume that

$$
\begin{equation*}
\sum_{v \in S} \max _{0 \leqslant j \leqslant N} c_{j v}<2 \min ((n+1) d, N+1) . \tag{9.7}
\end{equation*}
$$

Choose

$$
\begin{equation*}
m=1+\left[(8 n+4)\left(1+\delta^{-1}\right) d \min ((n+1) d, N+1)\right] . \tag{9.8}
\end{equation*}
$$

Put $R:=\binom{N+m}{N}-1$. Let $\varphi_{m}: \mathbb{P}^{N} \hookrightarrow \mathbb{P}^{R}$ be the Veronese embedding defined by (8.5), and let X_{m} be the smallest linear subvariety of \mathbb{P}^{R} containing $\varphi_{m}(X)$. Recall that by Lemma 8.4, X_{m} is defined over K and $\operatorname{dim} X_{m}=H_{X}(m)-1$.

Let $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$. Then $\mathbf{x} \in X(L)$ and \mathbf{x} satisfies (3.2) for some finite extension L of K. Put $y_{i}=\mathbf{x}^{\mathbf{a}_{i}}(i=0, \ldots, R), \mathbf{y}=\left(y_{0}: \cdots: y_{R}\right)=\varphi_{m}(\mathbf{x})$. Further, put

$$
\begin{equation*}
d_{i v}:=\frac{1}{m} \mathbf{a}_{i} \cdot \mathbf{c}_{v} \quad(v \in S, i=0, \ldots, R) \tag{9.9}
\end{equation*}
$$

and $d_{i w}:=\frac{\left[L_{w}: K_{v}\right]}{[L: K]} d_{i v}\left(w \in S_{L}, i=0, \ldots, R\right)$ where $v \in S$ is the place below w. Write $\mathbf{a}_{i}=\left(a_{i 0}, \ldots, a_{i N}\right)$ for $i=0, \ldots, R$. Then using $\|\mathbf{y}\|_{w}=\|\mathbf{x}\|_{w}^{m}, h(\mathbf{y})=m h(\mathbf{x})$, (3.3), we obtain

$$
\begin{align*}
\log \left(\frac{\left|y_{i}\right|_{w}}{\|\mathbf{y}\|_{w}}\right) & =\sum_{k=0}^{N} a_{i k} \log \left(\frac{\left|x_{k}\right|_{w}}{\|\mathbf{x}\|_{w}}\right) \leqslant-\left(\sum_{k=0}^{N} a_{i k} c_{k w}\right) h(\mathbf{x}) \tag{9.10}\\
& \leqslant-d_{i w} h(\mathbf{y}) \quad \text { for } w \in S_{L}, j=0, \ldots, R,
\end{align*}
$$

We consider system (9.10) with solutions $\mathbf{y} \in X_{m}$. We show that the analogue of (3.4) for this system is satisfied.

Denote by $\mathcal{I}_{X_{m}}$ the collection of subsets of $\{0, \ldots, R\}$ of cardinality $\operatorname{dim} X_{m}+$ $1=H_{X}(m)$ which are independent with respect to X_{m}. Recall that a subset I of $\{0, \ldots, R\}$ is independent with respect to X_{m} if no non-trivial linear combination of the variables $y_{i}(i \in I)$ vanishes identically on X_{m}. According to (8.6), this means precisely that $\left\{\mathbf{x}^{\mathbf{a}_{i}}: i \in I\right\}$ is linearly independent in $\overline{\mathbb{Q}}\left[x_{0}, \ldots, x_{N}\right]_{m} /\left(P_{X}\right)_{m}$. Hence

$$
I \in \mathcal{I}_{X_{m}} \Longleftrightarrow\left\{\mathbf{x}^{\mathbf{a}_{i}}: i \in I\right\} \text { is a basis of } \overline{\mathbb{Q}}\left[x_{0}, \ldots, x_{N}\right]_{m} /\left(P_{X}\right)_{m} .
$$

In combination with (9.9) this implies

$$
\frac{1}{\operatorname{dim} X_{m}+1} \cdot \max _{I \in \mathcal{I}_{X_{m}}} \sum_{i \in I} d_{i v}=\frac{1}{m H_{X}(m)} \cdot s_{X}\left(m, \mathbf{c}_{v}\right),
$$

where $s_{X}\left(m, \mathbf{c}_{v}\right)$ is given by (4.4). Further, from Theorem 4.6, (3.10), (9.7), (9.8), we infer

$$
\begin{aligned}
\frac{1}{m H_{X}(m)} \cdot \sum_{v \in S} s_{X}\left(m, \mathbf{c}_{v}\right) & \geqslant \frac{1}{(n+1) d} \cdot \sum_{v \in S} e_{X}\left(\mathbf{c}_{v}\right)-\frac{(2 n+1) d}{m} \cdot \sum_{v \in S} \max _{0 \leqslant j \leqslant N} c_{j v} \\
& \geqslant 1+\delta-\frac{(2 n+1) d \cdot 2 \min ((n+1) d, N+1))}{m} \\
& \geqslant 1+\delta / 2 .
\end{aligned}
$$

Thus we arrive at

$$
\begin{equation*}
\frac{1}{\operatorname{dim} X_{m}+1} \sum_{v \in S}\left(\max _{I \in \mathcal{I}_{X_{m}}}\left(\sum_{i \in I} d_{i v}\right)\right) \geqslant 1+\delta / 2, \tag{9.11}
\end{equation*}
$$

which is the analogue of (3.4) for system (9.10) with $\delta / 2$ replacing δ.
Thus the conditions of Theorem 3.2 are satisfied with $X_{m}, R=\binom{N+m}{N}-1$, $H_{X}(m)-1, \delta / 2,\left\{d_{j v}\right\}$ in place of $X, N, n, \delta,\left\{c_{j v}\right\}$. It follows that there are proper linear subspaces $Z_{1}, \ldots, Z_{t_{0}}$ of X_{m}, all defined over K, with

$$
t_{0}=4^{\left(H_{X}(m)+9\right)^{2}}\left(1+2 \delta^{-1}\right)^{H_{X}(m)+4} \log \left(3\binom{N+m}{N}\right) \log \log \left(3\binom{N+m}{N}\right)
$$

such that for every finite extension L of K the set of solutions $\mathbf{y} \in X_{m}(L)$ of (9.10) with

$$
h(\mathbf{y}) \geqslant h_{0}=\binom{N+m}{N}^{H_{X}(m)}\left(1+2 \delta^{-1}\right)\left(1+h\left(X_{m}\right)\right)
$$

is contained in $Z_{1} \cup \cdots \cup Z_{t_{0}}$.
For $i=1, \ldots, t_{0}$, the intersection $X \cap \varphi_{m}^{-1}\left(Z_{i}\right)$ is contained in $X \cap Z\left(f_{i}\right)$, where $Z\left(f_{i}\right)$ is the zero locus of a homogeneous polynomial $f_{i} \in K\left[x_{0}, \ldots, x_{N}\right]$ of degree m not vanishing identically on X. By Bézout's Theorem, $X \cap Z\left(f_{i}\right)$ is equal to the union of at most $d m K$-subvarieties, each of degree $\leqslant d m$. Using that $h\left(\varphi_{m}(\mathbf{x})\right)=m h(\mathbf{x})$, it follows that the set of $\mathbf{x} \in \mathcal{S}_{X}(\overline{\mathbb{Q}})$ with

$$
\begin{equation*}
h(\mathbf{x}) \geqslant m^{-1} h_{0}=m^{-1}\binom{N+m}{N}^{H_{X}(m)}\left(1+2 \delta^{-1}\right)\left(1+h\left(X_{m}\right)\right) \tag{9.12}
\end{equation*}
$$

is contained in the union of at most
(9.13) $t=d m t_{0}=d m \cdot 4^{\left(H_{X}(m)+9\right)^{2}}\left(1+2 \delta^{-1}\right)^{H_{X}(m)+4} \log \left(3\binom{N+m}{N}\right) \log \log \left(3\binom{N+m}{N}\right)$
proper K-subvarieties of X, each of degree $\leqslant d m$.
Using Lemma 6.6 , (8.4), (9.8), $n \geqslant 1, N \geqslant 2$, we obtain

$$
\begin{aligned}
H_{X}(m) & \leqslant d\binom{m+n}{n} \leqslant d(e(m+1))^{n} \\
& \leqslant d\left(e(8 n+5)(n+1) d^{2}\left(1+\delta^{-1}\right)\right)^{n} \leqslant d\left(71 n^{2} d^{2}\left(1+\delta^{-1}\right)\right)^{n} \\
\binom{N+m}{N} & \leqslant(e(N+1))^{m} \leqslant(e(N+1))^{26 n^{2} d^{2}\left(1+\delta^{-1}\right)} .
\end{aligned}
$$

Together with Lemma 8.4, (iii), this implies that the right-hand side of (9.12) is at most

$$
\begin{aligned}
& m^{-1}(e(N+1))^{d m(e(m+1))^{n}}\left(1+2 \delta^{-1}\right) \cdot \\
& \quad \cdot\left(1+m\binom{n+m}{n}(h(X)+d(3 n+4) \log (N+1))\right) \\
& \leqslant(e(N+1))^{d m(e(m+1))^{n}}\left(1+2 \delta^{-1}\right) \cdot \\
& \quad \cdot m\binom{n+m}{n} \cdot(1+d(3 n+4) \log (N+1)) \cdot(1+h(X)) \\
& \leqslant(e(N+1))^{d(e(m+1))^{n+1}} \cdot(1+h(X)) \\
& \leqslant(e(N+1))^{d\left(71 n^{2} d^{2}\left(1+\delta^{-1}\right)\right)^{n+1}} \cdot(1+h(X)) \\
& \leqslant(3 N)^{(10 n)^{2 n+2} d^{2 n+3}\left(1+\delta^{-1}\right)^{n+1}} \cdot(1+h(X))=c_{3}(N, n, d, \delta) \cdot(1+h(X)),
\end{aligned}
$$

hence (9.12) is implied by (3.14).
In order to estimate from above the upper bound t for the number of subvarieties from (9.13), we first observe that

$$
\begin{aligned}
\log \left(3\binom{N+m}{N}\right) \log \log \left(3\binom{N+m}{N}\right) & \leqslant \log \left(3(e(N+1))^{m}\right) \log \log \left(3(e(N+1))^{m}\right) \\
& \leqslant \log \left((3 N)^{2 m}\right) \log \log \left((3 N)^{2 m}\right) \\
& \leqslant 2 m^{2} \log (3 N) \log \log (3 N) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
t & \leqslant d m \cdot 4^{\left(d\binom{m+n}{n}+9\right)^{2}} \cdot\left(1+2 \delta^{-1}\right)^{d\binom{m+n}{n}+4} \cdot 2 m^{2} \log (3 N) \log \log (3 N) \\
& \leqslant\left(4 e^{1 / 71}\right)\left(\left(71 n^{2}\right)^{n} d^{2 n+1}\left(1+\delta^{-1}\right)^{n}+10\right)^{2} \log (3 N) \log \log (3 N) \\
& \leqslant \exp \left((10 n)^{4 n} d^{4 n+2}\left(1+\delta^{-1}\right)^{2 n}\right) \cdot \log (3 N) \log \log (3 N)=c_{1}(N, n, d, \delta) .
\end{aligned}
$$

Finally, by (9.8), we have $m d \leqslant(8 n+5)\left(1+\delta^{-1}\right) d^{2} \min ((n+1) d, N+1)=$ $c_{2}(N, n, d, \delta)$. Hence (3.12), (3.13) hold true. This completes the proof of Theorem 3.4.

References

[1] J.-B. Bost, H. Gillet, C. Soulé, Heights of Projective Varieties and Positive Green Forms, J. of AMS, 7 (1994) 903-1027.
[2] M. Chardin, Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique, Bull. Soc. Math. France, 117 (1989) 305-318.
[3] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Grad. Texts in Math. 150, Springer Verlag, 1995.
[4] J.-H. Evertse, Points on subvarieties of tori, Proc. conf. in honour of A. Baker, Zurich, August 30-September 4, 1999, to appear.
[5] J.-H. Evertse, H. P. Schlickewei, A Quantitative Version of the Absolute Subspace Theorem, J. reine angew. Math., to appear.
[6] G. Faltings, Diophantine Approximation on Abelian Varieties, Ann. of Math., 133 (1991) 549-576.
[7] G. Faltings, G. Wüstholz, Diophantine Approximations on Projective Spaces, Invent. Math., 116 (1994) 109-138.
[8] R. G. Ferretti, Quantitative Diophantine Approximations on Projective Varieties, to appear.
[9] R. G. Ferretti, Mumford's Degree of Contact and Diophantine Approximations, Compos. Math., 121 (2000) 247-262.
[10] R. G. Ferretti, Diophantine Approximations and Toric Deformations, to appear.
[11] W. Fulton, Intersection Theory, Springer, 1984.
[12] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer Verlag, 1977.
[13] W.V.D. Hodge, D. Pedoe, Methods of algebraic geometry, vol. II, Cambridge Univ. Press, Cambridge, 1952.
[14] M. M. Kapranov, B. Sturmfels, A. V. Zelevinsky, Chow Polytopes and General Resultants, Duke Math. Journ., 67 (1992) 189-218.
[15] I. Morrison, Projective Stability of Ruled Surfaces, Invent. Math., 56 (1980) 269-304.
[16] D. Mumford, Stability of Projective Varieties, Enseign. Math., XXIII (1977) 39-110.
[17] D. Mumford, J. Fogarty, J. Kirwan, Geometric Invariant Theory, Erg. Math. Grenzgeb. (3) 34, Springer Verlag, Berlin 1999.
[18] W.M. Schmidt, The subspace theorem in diophantine approximation, Compos. Math., 69 (1989) 121-173.
[19] B. Sturmfels, Sparse elimination theory, in Computational Algebraic Geometry and Commutative Algebra, ed. D. Eisenbud and L. Robbiano, (1993) 264-298.
[20] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. (1), 8 (1995) 187-221.

Universiteit Leiden, Mathematisch Instituut, Postbus 9512, NL-2300 RA Leiden
Departement Mathematik, ETH Zentrum, CH-8092 Zürich
E-mail address: evertse@math.leidenuniv.nl, ferretti@math.ethz.ch

