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Abstract

Let K be a field of characteristic 0 and let n be a natural number. Let Γ be a
subgroup of the multiplicative group (K∗)n of finite rank r. Given a1, . . . , an ∈ K∗

write A(a1, . . . , an,Γ) for the number of solutions x = (x1, . . . , xn) ∈ Γ of the
equation a1x1 + . . . + anxn = 1, such that no proper subsum of a1x1 + . . . + anxn

vanishes. We derive an explicit upper bound for A(a1, . . . , an,Γ) which depends
only on the dimension n and on the rank r.

1 Introduction

Let K be an algebraically closed field of characteristic 0. Write K∗ for its multiplicative

group of nonzero elements, and let (K∗)n be the direct product consisting of n-tuples

x = (x1, . . . , xn) with xi ∈ K∗ (i = 1, . . . , n). So for x,y ∈ (K∗)n we write x ∗ y =

(x1 y1, . . . , xn yn). Let Γ be a subgroup of (K∗)n and suppose (a1, . . . , an) ∈ (K∗)n. We

will be dealing with equations

a1 x1 + . . .+ an xn = 1(1.1)

with x ∈ Γ.

A solution x of (1.1) is called non-degenerate if no subsum of the left hand side of

(1.1) vanishes, i.e., if
∑
i∈I
ai xi 6= 0 for every nonempty subset I of {1, . . . , n}. Write

A(a1, . . . , an; Γ) for the number of non-degenerate solutions x ∈ Γ of equation (1.1).

Now suppose that Γ has rank r. This means that there exists a finitely generated

subgroup Γ0 of Γ, again of rank r, such that the factor group Γ/Γ0 is a torsion group. In

other words, for any (x1, . . . , xn) ∈ Γ there exists a natural number k such that(
xk1, . . . , x

k
n

)
∈ Γ0.

We prove
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Theorem 1.1 Suppose Γ has finite rank r. Then the number A(a1, . . . , an; Γ) of non-

degenerate solutions x ∈ Γ of equation (1.1) satisfies the estimate

A(a1, . . . , an; Γ) ≤ A(n, r) = exp((6n)3n(r + 1)).(1.2)

The significant feature in our Theorem is its uniformity. Our bound (1.2) depends

only upon the dimension of the variety V defined by equation (1.1) and upon the rank r

of the group Γ. We also remark that once we have an estimate of the type

A(a1, . . . , an; Γ) ≤ f(a1, . . . , an;n, r)

with a function f depending only on a1, . . . , an, n and r, then we get immediately

A(a1, . . . , an; Γ) ≤ g(n, r)

where g is a function of n and r only. To see this, it suffices to consider the equation

y1 + . . .+ yn = 1

and to ask for solutions y in the group generated by (a1, . . . , an) and Γ (which has rank

≤ r + 1).

It is conceivable that the function A(n, r) we have given in (1.2) is far from best

possible. In particular no special care has been taken for the numerical constants in (1.2).

However any function Ã(n, r) which is suitable in (1.2) indeed has to depend on both n

and r.

As for the dependence on n we give the following example. Pick elements α1, . . . , αn ∈
K∗ with αi 6= 1 and αi 6= αj (1 ≤ i, j ≤ n, i 6= j) and consider the equation∣∣∣∣∣∣∣∣∣∣∣∣

1 , . . . , 1 , 1

α1 , . . . , αn , 1
...

...

αn−1
1 , . . . , αn−1

n , 1

x1 , . . . , xn , 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.(1.3)

This yields an equation

b1 x1 + . . .+ bn xn = 1(1.4)

with bi ∈ K∗. But clearly (1.4) has the n solutions xi = (x1i, . . . , xni) = (αi1, . . . , α
i
n)

(i = 0, . . . , n − 1). Moreover, in the generic case, these will be non-degenerate solu-

tions. Therefore Ã(n, 1) ≥ n. Bavencoffe and Bézivin [1] have given a more sophisticated

example which even shows that

Ã(n, 1) ≥ c n2

2



where c is an absolute constant.

On the other hand, suppose n = p − 1 where p is a prime. Let ζ be a primitive p-th

root of unity. Then

−ζ − ζ2 − . . .− ζp−1 = 1,

and the same is true for any permutation of the roots on the left hand side. Therefore, for

n = p − 1 we have Ã(n, 0) ≥ n!. We do not know what should be in general the correct

order of dependence on n in Ã(n, r).

As for the dependence on r, Erdős, Stewart and Tijdeman [7] have constructed an

example which shows that

Ã(2, r) ≥ exp

(
c

(
r

log r

) 1
2

)

where c is an absolute constant. This example may be extended to give

Ã(n, r) ≥ exp

(
c(n)

(
r

log r

)n−1
n

)

where c(n) depends only upon n. It has been conjectured that the correct order of

magnitude in r should be of the shape

exp

(
c(n)

(
r

log r

) n
n+1

)
or even

exp
(
c(n) r

n
n+1

)
.

For n = 2, the assertion of Theorem 1.1 has been proved earlier. Schlickewei [21]

showed that A(a1, a2,Γ) ≤ c(r) and Beukers and Schlickewei [2] proved that we may take

c(r) = 29(r+1),(1.5)

which clearly is much better than our bound A(2, r).

For arbitrary n and for r = 0, i.e., when we are asking for solutions of equation (1.1) in

roots of unity, Schlickewei [20] proved that we do not get more than 24n! non-degenerate

solutions. This has been considerably improved by Evertse [11]. He obtained the bound

(n+ 1)3(n+1)2

,

and this is much better than our bound A(n, 0) in (1.2).
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In all other cases, i.e., when n ≥ 3 and r ≥ 1, Theorem 1.1 is new. Previously, bounds

involving only the dimension n and the rank r of the group Γ had been obtained only in

the case when Γ is the n-fold product of the group of S-units of a number field. We briefly

review what was known in the literature. Before we do so, let us remark that instead of

the group Γ ⊂ (K∗)n we could have considered a group Γ′ ⊂ K∗ of finite rank r′, say, and

we could have asked for solutions of (1.1) with xi ∈ Γ′. The difference is only minor, as

the direct product (Γ′)n then is a subgroup of (K∗)n of rank n r′.

Writing A′(a1, . . . , an; Γ′) and A′(n, r) for the quantities in (1.2) with respect to Γ′ ⊂
K∗ we therefore see that

A′(n, r) ≤ A(n, nr).

The classical instances of equation (1.1) are S-unit equations. Let F be a number field, let

S be a finite set of places of F containing all the archimedean ones and write Γ(S) ⊂ F ∗

for the group of S-units of F . For n = 2 and for F = Q, Mahler [14] has shown that

A′(a1, a2; Γ(S)) <∞.

Lang [13] has extended Mahler’s result to arbitrary number fields and also to the case of

arbitrary fields K of characteristic 0 and groups Γ ⊂ K∗ of finite rank.

For general n ≥ 2, Evertse [9] and van der Poorten and Schlickewei [15] have shown

that

A′(a1, . . . , an; Γ(S)) <∞.

The first quantitive result in our context is due to Evertse [8]. He proved for sets S of

cardinality s

A′(a1, a2; Γ(S)) ≤ 3 · 74s.(1.6)

Notice that the group Γ(S) is finitely generated and has rank s− 1. Therefore (1.6) may

be viewed as a special instance of a result of type (1.2) (cf. also (1.5)).

For arbitrary n ≥ 2, Schlickewei [17] proved that

A′(a1, . . . , an; Γ(S)) ≤ c(n, s)(1.7)

where c is a function depending on n and s only. So (1.7) again is of the same type as

(1.2). The best explicit value for c(n, s) is due to Evertse [10]. He proved

c(n, s) ≤ 235n4s.(1.8)

Now suppose Γ is an arbitrary finitely generated subgroup of rank r of the multiplicative

group F ∗ of a number field F of degree d. Taking for S the places in M∞(F ) and those
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finite places whose associated prime ideal divides some of the generators of Γ, we see that

Γ will be a subgroup of the group Γ(S) of S-units. However the rank s− 1 of Γ(S) may

be much larger than the rank r of the original group Γ. So in general, even for groups

Γ ⊂ F ∗ the bound A′(n, r) we obtain with (1.2) will be much better than the bound of

type (1.6) or (1.8) we get using the group Γ(S). Another disadvantage of Γ(S) is the

fact that s = |S| ≥ d/2, d being the degree of F . Therefore the device of estimating

A′(a1, . . . , an; Γ) by A′(a1, . . . , an; Γ(S)) implicitly always introduces a dependence upon

the degree of F in the bound.

Schlickewei [19] has estimated A′(a1, . . . , an; Γ) in terms of n, r and d. And here

Schlickewei and Schmidt [24] have shown that

A′(an, . . . , an; Γ) ≤ (2d)41n3rrn
2r.(1.9)

The essential difference between (1.9) and (1.2) is the occurrence of the degree d in (1.9).

The problem in the current paper is to estimate a quantity like the one on the left hand

side of (1.9) avoiding any dependence on d. We will come back to this at the end of this

section.

It is well known that results on equations (1.1) are closely related to results on mul-

tiplicities of linear recurrence sequences. A linear recurrence sequence of order n is a

sequence {um}m∈Z of elements in our field K satisfying a relation

um+n = c1 um+n−1 + . . .+ cn um (m ∈ Z).(1.10)

Here c1, . . . , cn are fixed elements from K. We assume that n > 0 and that relation (1.10)

is minimal, i.e., that um does not satisfy a relation of type (1.10) for some n′ < n. Then

we have in particular

cn 6= 0(1.11)

(and {um} is not the zero sequence). Define the companion polynomial by

G(z) = zn − c1 z
n−1 − . . .− cn =

r∏
ρ=1

(z − αρ)σρ(1.12)

with distinct roots αρ of respective multiplicities σρ (ρ = 1, . . . , r). By (1.11), αρ 6= 0 for

ρ = 1, . . . , r. Then we have a representation

um =
r∑

ρ=1

fρ(m)αmρ(1.13)

where the fρ are polynomials. It follows from the minimality of relation (1.10) that fρ(x)

has degree σρ−1 (ρ = 1, . . . , r). The sequence {um} is called non-degenerate if no quotient

αi/αj (1 ≤ i < j ≤ r) is a root of unity.
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We say that the sequence {um} is simple if the companion polynomial G(z) has only

simple zeros. In that case the quantities σρ in (1.12) are all equal to 1, so the polynomials

fρ in (1.13) are constants and we have

um = a1 α
m
1 + . . .+ an α

m
n (m ∈ Z)(1.14)

with non-zero coefficients ai ∈ K and with distinct elements αi ∈ K∗.

Write S(um) for the set of zeros of {um}, i.e., for the set of solutions k ∈ Z of the

equation

uk = 0.(1.15)

When {um} has order 1, then trivially S(um) = ∅. Therefore from now on we will only

consider sequences {um} of order n ≥ 2.

The classical theorem of Skolem–Mahler–Lech says that for arbitrary linear recurrence

sequences {um} of order ≥ 2, S(um) is the union of a finite set of integers and a finite

number of arithmetic progressions. This implies in particular that for non-degenerate

sequences {um} the set S(um) is finite.

An old conjecture says that for non-degenerate sequences {um} of order n ≥ 2 the

cardinality of S(um) is bounded in terms of n only. For n = 2, by non-degeneracy it is

obvious that |S(um)| ≤ 1. Schlickewei [22] proved the conjecture for n = 3. Beukers and

Schlickewei [2] derived for non-degenerate sequences {um} of order 3 the bound

|S(um)| ≤ 61.

For non-degenerate sequences {um} of rational numbers and of arbitrary order n, the

conjecture was proved by Schlickewei [18].

We now study simple recurrence sequences {um} (never mind whether degenerate or

not). For such sequences, in view of (1.14), equation (1.15) becomes

a1 α
k
1 + . . .+ an α

k
n = 0 (k ∈ Z).(1.16)

Applying Theorem 1.1 to groups Γ of rank ≤ 1 we deduce

Theorem 1.2 Let K be an algebraically closed field of characteristic 0. Suppose n ≥ 3

and let {um}m∈Z be a simple linear recurrence sequence in K of order n. Then there are

integers k1, . . . , kq1 and arithmetic progressions T1, . . . , Tq2 of the shape

Ti = {ai + t vi | t ∈ Z}, ai, vi ∈ Z, vi 6= 0 (i = 1, . . . , q2),

where

q1 + q2 ≤ exp((6n)3n),(1.17)
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such that

S(um) = {k ∈ Z | uk = 0} = {k1, . . . , kq1} ∪ T1 ∪ . . . ∪ Tq2 .

In particular, if {um} is non-degenerate, then S(um) has cardinality

|S(um)| ≤ exp((6n)3n).(1.18)

Theorem 1.2 is a uniform quantitative version of the Skolem–Mahler–Lech theorem. In

the meantime, W.M. Schmidt [27] has proved that for any non-degenerate sequence {um}
(even if not simple) the set S(um) has cardinality bounded in terms of the order n only.

The bound obtained by Schmidt in this more general setting is triply exponential in

n. Moreover, in his recent paper [28], Schmidt has also proved that Theorem 1.2 is true

in general and not only for simple sequences. However, again instead of (1.17) he gets a

bound which is triply exponential in n.

The new ingredients in our proof are as follows. On the one hand we apply the absolute

version of the Subspace Theorem due to Evertse and Schlickewei [12]. On the other hand

we use a result of Schmidt [26] on lower bounds for heights of points on varieties.

In proving our Theorems, by a specialization argument we may restrict ourselves to

the situation when in (1.1) (or in (1.16) respectively) all quantities involved are algebraic.

Indeed it suffices to prove a result of type (1.9), but without dependence upon the degree

d of the number field.

An application of the Subspace Theorem then gives an assertion on the “large” so-

lutions of equation (1.1). In fact the bound it gives for the number of “large” solutions

depends only upon the “good” parameters n and r. So for the quantitative result all

depends upon the parameters showing up in the definition of “small”. Usually in this

definition the parameters n and d showed up. Thus in estimating the number of “small”

solutions the parameter d could not be avoided. In a recent paper [12], Evertse and

Schlickewei have proved a new absolute quantitative version of the Subspace Theorem

which in turn makes use of the absolute Minkowski Theorem established by Roy and

Thunder [16]. The definition of “small” in the absolute Subspace Theorem does not

depend upon the degree d at all.

Unfortunately this does not suffice yet. To handle the “small” solutions usually one

applies a gap principle. For this purpose one needs a lower bound for the height of a small

solution. Traditionally, this was achieved via Dobrowolski’s theorem [6]. But here again

the degree d comes in. To overcome this difficulty we apply lower bounds for heights of

points on varieties as given in recent work of Zhang [29], Bombieri and Zannier [3], and

in explicit form for the first time by Schmidt [26].
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Remark In recent work [4], [5], David and Philippon have proved a slight sharpening of

Schmidt’s results [26]. It is easily seen that with this sharpening the bound for A(n, r)

given in (1.2) can be improved to

A(n, r) ≤ exp((r + 1) exp(c1n)).

Similarly, the bound (1.17) can be improved to

q1 + q2 ≤ exp exp(c1n).

Here c1 is an absolute constant.

2 Algebraic Points

In the case when in (1.1) all quantities involved are algebraic we can prove a slightly more

general result.

Let F be a number field. Write M(F ) for the set of its places. For each v ∈M(F ) we

let | |v be the associated absolute value such that for x ∈ Q we have

|x|v =

{
|x| if v|∞
|x|p if v|p ,

(2.1)

where p is a prime number and where |p|p = p−1. We denote the completion of F at the

place v by Fv; similarly for p ∈ M(Q), Qp denotes the completion of Q at p (so that

Q∞ = R, the field of real numbers). The normalized absolute value ‖ ‖v on F then is

defined by

‖x‖v = |x|v [Fv :Qp]/[F :Q] if v|p.(2.2)

We write Q for the algebraic closure of Q. Given x = (x1, . . . , xn) ∈ Qn
, we define the

absolute multiplicative height H(x) as follows: we choose a number field F such that

x ∈ F n and we put

H(x) =
∏

v∈M(F )

max{1, ‖x1‖v, . . . , ‖xn‖v}.(2.3)

Notice that (2.3) does not depend on the choice of F . We define the absolute logarithmic

height h(x) by

h(x) = logH(x).(2.4)

In [23], Schlickewei and Schmidt proved the following result. Let F be a number field of

degree d. Let

Γ ⊂ (F ∗)n be a finitely generated subgroup with rank Γ = r.(2.5)
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Consider the equation

y1 + . . .+ yn = 1,(2.6)

to be solved in vectors y = (y1, . . . , yn) ∈ F n of the shape

y = x ∗ z with x ∈ Γ, z ∈ (Q∗)n, h(z) ≤ 1

4n2
h(x).(2.7)

Then the set of solutions y of (2.6), (2.7) is contained in the union of not more than

230n2

(32n2)rd3r+2n(2.8)

proper linear subspaces of F n.

Instead of (2.5), we now suppose

Γ is a subgroup of (Q
∗
)
n

of rank r.(2.9)

So now Γ is not necessarily finitely generated. (On the other hand, we notice that (2.9)

is more special than the setting studied in Section 1, where we assumed Γ ⊂ (K∗)n for

some algebraically closed field K of characteristic 0, so that in fact implicitly we assumed

that Q ⊂ K.)

Again we consider equation (2.6). However, instead of (2.7) we now ask for solutions

y ∈ (Q
∗
)
n

of the shape

y = x ∗ z with x ∈ Γ, z ∈ (Q
∗
)
n
, h(z) ≤ n−1 exp(−(4n)3n)(1 + h(x)).(2.10)

We prove

Theorem 2.1 Let n ≥ 2. Suppose that Γ is a subgroup of (Q
∗
)
n

of finite rank r. Then

the set of points y ∈ Qn
satisfying (2.6) and (2.10) is contained in the union of not more

than

B(n, r) = exp((5n)3n(r + 1))(2.11)

proper linear subspaces of Q
n
.

It turns out that Theorem 1.1 as well as Theorem 1.2 follow from Theorem 2.1. Indeed

in Section 3 we give a specialization argument which reduces the situation we encounter

in Section 1 to a setting where all quantities are algebraic. In Section 4 we then prove

Theorem 1.1 by means of induction using Theorem 2.1. In Section 5, Theorem 1.2 will

be deduced from Theorem 1.1. The remainder of the paper, starting with Section 6, then

is devoted to the proof of Theorem 2.1.
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3 Specialization

Let K be the field from Section 1. Since K is algebraically closed and has characteristic

equal to zero, we may suppose that Q ⊂ K.

Lemma 3.1 Let U = {u1, . . . , uk} be a finite subset of K. Then there exists a ring

homomorphism

ϕ : Q [U ] −→ Q(3.1)

whose restriction to Q is the identity.

Proof We recall the proof of this well-known fact. Let J be the ideal of polynomials f ∈
Q [X1, . . . , Xk] with f(u1, . . . , uk) = 0. Clearly 1 /∈ J and therefore J 6= Q [X1, . . . , Xk].

Thus by Hilbert’s Nullstellensatz there exists a point c = (c1, . . . , ck) ∈ Q
k

with f(c) = 0

for each f ∈ J . The ring Q [U ] = Q [u1, . . . , uk] consists of all expressions g(u1, . . . , uk)

with g ∈ Q [X1, . . . , Xk]. We consider the diagram

Q [u1, . . . , uk] −→ Q [X1, . . . , Xk]/J −→ Q

where the mappings are given by

g(u1, . . . , uk) 7−→ g mod J 7−→ g(c1, . . . , ck).

These mappings are well-defined ring homomorphisms leaving Q invariant. Their compo-

sition yields the desired homomorphism ϕ in (3.1).

In order to prove Theorem 1.1, it will suffice to show that any finite subset M of the

set of non-degenerate solutions of equation (1.1) has cardinality

≤ A(n, r).(3.2)

Write M = {x1, . . . ,xm} with xi = (xi1, . . . , xin) (i = 1, . . . ,m). We want to map

M injectively to a set of non-degenerate solutions of an equation of type (1.1) where

however a = (a1, . . . , an) ∈ Qn
and Γ ⊂ (Q

∗
)
n
. We will then be in a position to apply

Theorem 2.1.

Let U = {u1, . . . , uk} ⊂ K be the set consisting of the following elements:

a1, . . . , an;(3.3)

xij (i = 1, . . . ,m; j = 1, . . . , n);(3.4)
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∑
j∈I

aj xij (i = 1, . . . ,m; I ⊂ {1, . . . , n}, I 6= ∅);(3.5)

xi1,j − xi2,j (1 ≤ i1 < i2 ≤ m; j = 1, . . . , n);(3.6)

the multiplicative inverses of all non-zero numbers in (3.3)–(3.6).(3.7)

Let ϕ be a ring homomorphism from Q [U ] into Q as in Lemma 3.1. By (3.7), the non-zero

elements in U are units in the ring Q [U ]. Therefore they are mapped by ϕ to non-zero

elements of Q.

Write a′j = ϕ(aj), x
′
ij = ϕ(xij), x

′
i = (x′i1, . . . , x

′
in) (i = 1, . . . ,m; j = 1, . . . , n). Then

by (1.1) we get

a′1 x
′
i1 + . . .+ a′n x

′
in = ϕ

(
n∑
j=1

aj xj

)
= 1 (i = 1, . . . ,m).(3.8)

The numbers in (3.5), by non-degeneracy, are non-zero. Therefore their images under ϕ

are non-zero as well. We may conclude that∑
j∈I

a′j x
′
ij 6= 0 (i = 1, . . . ,m; I ⊂ {1, . . . , n}, I 6= ∅).(3.9)

Moreover, the non-zero numbers in (3.6) have non-zero images. This implies that

x′1, . . . ,x
′
m are distinct.

Let Γ1 be the subgroup of Γ generated by x1, . . . ,xm. Then Γ1 has rank ≤ r. We infer

from (3.7) that Γ1 ⊂ (Q [U ])
n
. Let Γ′1 be the multiplicative subgroup of (Q

∗
)
n

generated

by x′1, . . . ,x
′
n. Then Γ′1 is the image of Γ1 under the group homomorphism

(x1, . . . , xn) 7−→ (ϕ(x1), . . . , ϕ(xn)).

We may conclude that Γ′1 has rank ≤ r.

Altogether we see that x′1, . . . ,x
′
m are distinct, non-degenerate solutions of the equa-

tion

a′1 x
′
1 + . . .+ a′n x

′
n = 1(3.10)

to be solved in vectors

x′ = (x′1, . . . , x
′
n) ∈ Γ′1.(3.11)

Here a′1, . . . , a
′
n ∈ Q

∗
and Γ′1 is a subgroup of (Q

∗
)
n

of rank ≤ r.

Notice that A(n, r) in (1.2) satisfies

A(n, r1) < A(n, r2) for r1 < r2.

Therefore we have shown
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Lemma 3.2 In order to prove Theorem 1.1, we may suppose without loss of generality

that K = Q.

4 Deduction of Theorem 1.1 from Theorem 2.1

In view of Lemma 3.2, we may suppose that K = Q. Under this hypothesis we show that

equation (1.1) does not have more than

A(n, r)

non-degenerate solutions x ∈ Γ, where

A(n, r) = exp((6n)3n(r + 1))(4.1)

as in (1.2).

The case n = 1 is obvious. Now suppose n > 1 and our claim to be shown for n′ < n.

Let B(n, r) be the quantity from (2.11) in Theorem 2.1. Write Γ′ for the group

generated by a = (a1, . . . , an) and Γ. So if x runs through Γ, the point y = a ∗ x runs

through Γ′. Clearly Γ′ has rank ≤ r + 1. Thus the solutions x ∈ Γ of (1.1) give rise to

solutions y ∈ Γ′ of the equation

y1 + . . .+ yn = 1.(4.2)

Applying Theorem 2.1 with z = (1, . . . , 1) to equation (4.2) and the group Γ′, we may

infer that the set of solutions y ∈ Γ′ of (4.2) (never mind whether degenerate or not) is

contained in the union of B(n, r + 1) proper linear subspaces of Q
n
. Consequently, also

the set of solutions x ∈ Γ of equation (1.1) is contained in the union of

≤ B(n, r + 1)(4.3)

proper linear subspaces of Q
n
.

Let V be one of these subspaces, defined by an equation∑
i∈I

bi xi = 0(4.4)

where I is a subset of {1, . . . , n} of cardinality |I| ≥ 2, and where bi 6= 0 for i ∈ I. Let J

be a non-empty subset of I and consider those x ∈ Γ ∩ V for which∑
i∈J

bi xi = 0,(4.5)
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but no proper non-empty subsum of (4.5) vanishes. Thus 2 ≤ |J | ≤ n.

Let us suppose for the moment that J = {1, . . . , `}. Writing ci = −bi/b1 we get with

wi = xi/x1 (i = 2, . . . , `) ∑̀
i=2

ciwi = 1.(4.6)

Now (x1, . . . , x`, x`+1, . . . , xn) ∈ Γ, therefore (w2, . . . , w`) lies in the group Γ1 consisting

of (`− 1)-tuples such that

(u, uw2, . . . , uw`, u`+1, . . . , un) ∈ Γ(4.7)

for some u, u`+1, . . . , un. Let Γ2 be the group of elements

(x, . . . , x, x`+1, . . . , xn) ∈ Γ.(4.8)

The map

(x1, x2, . . . , x`, x`+1, . . . , xn) 7−→
(
x2

x1

, . . . ,
x`
x1

)
is a surjective homomorphism Γ → Γ1 with kernel Γ2. Therefore, when rank Γi = ri we

have r1 + r2 = r.

By induction the equation (4.6) has at most A(` − 1, r1) non-degenerate solutions.

When (w2, . . . , w`) is such a solution, fix u, u`+1, . . . , un with (4.7). The original solution

x of (1.1) is of the form

(x, xw2, . . . , xw`, x`+1, . . . , xn),(4.9)

so that

b x+
n∑

i=`+1

ai xi = 1(4.10)

with b = a1 +
∑̀
i=2

aiwi. If the solution x of (1.1) is non-degenerate, then so is the solution

(x, x`+1, . . . , xn) of (4.10).

Taking the quotient of (4.7), (4.9) we see that (x/u, . . . , x/u, x`+1/u`+1, . . . , xn/un) ∈
Γ2. With the notation x′ = x/u, x′i = xi/ui (i = `+ 1, . . . , n), (4.10) becomes

b′x′ +
n∑

i=`+1

a′i x
′
i = 1(4.11)

where b′ = b u, a′i = ai ui (i = `+ 1, . . . , n). By induction, and since n− `+ 1 < n, (4.11)

has not more than A(n − ` + 1, r2) non-degenerate solutions. Combining this with the

13



bound A(`− 1, r1) for the number of solutions of (4.6), we see that (4.5) gives rise to not

more than

A(`− 1, r1)A(n− `+ 1, r2) ≤ A(n− 1, r)(4.12)

solutions of (1.1); the last inequality is a consequence of

A(a, r1)A(b, r2) ≤ A(a+ b− 1, r1 + r2),

which follows from the definition (4.1) of A(n, r). Taking account of the possible subsets

J of I, we see that each subspace V contains at most 2nA(n − 1, r) solutions. We still

have to multiply this by the number B(n, r + 1) of subspaces. In this way we obtain a

bound

2nA(n− 1, r)B(n, r + 1).

This is

2n exp((6(n− 1))3(n−1)(r + 1)) exp((5n)3n(r + 2)) < exp((6n)3n(r + 1)),

and Theorem 1.1 follows.

5 Proof of Theorem 1.2

Let {um} be a simple linear recurrence sequence of order n ≥ 2 contained in an alge-

braically closed field K of characteristic 0. To simplify our exposition, single elements of

Z will also be called arithmetic progressions (indeed they may be viewed as arithmetic

progressions with difference 0). Thus we have to show that the set

S(um) = {k ∈ Z | uk = 0}

is the union of at most

W (n) = exp((6n)3n)(5.1)

arithmetic progressions.

We proceed by induction on n. For n = 2, our assertion is obvious. Assume n ≥ 3.

Recall that

um = a1 α
m
1 + . . .+ an α

m
n

for certain non-zero elements a1, . . . , an, α1, . . . , αn ∈ K. Hence S(um) is the set of solu-

tions k ∈ Z of

a1 α
k
1 + . . .+ an α

k
n = 0.(5.2)
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First consider those k ∈ Z for which no proper subsum of the left-hand side of (5.2)

vanishes. For each such k, the vector(
(α1/αn)k, . . . , (αn−1/αn)k

)
is a non-degenerate solution of(

−a1

an

)
x1 + . . .+

(
−an−1

an

)
xn−1 = 1 in x = (x1, . . . , xn−1) ∈ Γ,(5.3)

where Γ is the group generated by (α1/αn, . . . , αn−1/αn). Clearly Γ has rank ≤ 1. So by

Theorem 1.1, equation (5.3) has at most

A(n− 1, 1) = exp((6(n− 1))3(n−1)2)(5.4)

non-degenerate solutions. As can be easily verified, for each solution (x1, . . . , xn−1) of

(5.3) the set of k ∈ Z with
(
(α1/αn)k, . . . , (αn−1/αn)k

)
= (x1, . . . , xn−1) is an arithmetic

progression. Consequently, the set of k ∈ Z such that no proper subsum of the left-hand

side of (5.2) vanishes, is the union of at most A(n− 1, 1) arithmetic progressions.

Let I be a proper, non-empty subset of {1, . . . , n} and consider those solutions k ∈ Z
of (5.2) for which ∑

i∈I

ai α
k
i = 0.(5.5)

Each such k also satisfies ∑
i/∈I

ai α
k
i = 0.(5.6)

Suppose I has cardinality `. Since ai 6= 0 (i = 1, . . . , n), we get 2 ≤ ` ≤ n − 2. By

induction, the set of k ∈ Z with (5.5) is the union of at most W (`) arithmetic progressions.

Also by induction, the set of k ∈ Z with (5.6) is the union of at most W (n− `) arithmetic

progressions. The intersection of two arithmetic progressions is either empty, or again an

arithmetic progression. In view of (5.6) and since ` ≤ n − 2, n − ` ≤ n − 2, the set of

k ∈ Z with (5.2), (5.5) is the union of at most

W (`)W (n− `) ≤ exp((6`)3`) exp((6(n− `))3(n−`))

≤ exp((6(n− 1))3(n−1)) = W (n− 1)

arithmetic progressions.

Taking into account all possible subsets I of {1, . . . , n}, we infer that the set of solutions

k ∈ Z of (5.2) for which some subsum of the left-hand side of (5.2) vanishes is contained

in the union of at most 2nW (n − 1) arithmetic progressions. Recall from (5.4) that the
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set of k ∈ Z with (5.2) for which no subsum of (5.2) vanishes is the union of at most

A(n− 1, 1) arithmetic progressions. So altogether, by (5.1), (5.4), the set of solutions of

(5.2) is the union of at most

exp((6(n− 1))3(n−1)2) + 2n exp((6(n− 1))3(n−1)) ≤ exp((6n)3n) = W (n)

arithmetic progressions.

Now suppose that {um} is non-degenerate. Assume that S(um), that is the set of

solutions of (5.2), contains an arithmetic progression {a+ vt | t ∈ Z} with v 6= 0. Then

a1 α
a
1(αv1)t + . . .+ an α

a
n(αvn)t = 0 for every t ∈ Z.(5.7)

Applying (5.7) with t = 0, . . . , n − 1, and observing that ai α
a
i 6= 0 for i = 1, . . . , n, we

infer that the Vandermonde determinant det (αvti )i=1,...,n; t=0,...,n−1 is zero. This is possible

only if there are i 6= j with αvi = αvj . But this contradicts the assumption that {um} is

non-degenerate.

We conclude that S(um) does not contain an infinite arithmetic progression. It fol-

lows that for non-degenerate {um} the set S(um) has cardinality ≤ W (n). This proves

Theorem 1.2.

6 A Reduction

We now turn to the proof of Theorem 2.1. Similarly as in the argument used in Section 3

in the deduction of Theorem 1.1, we claim that in order to prove Theorem 2.1 it will suffice

to show that any finite set M of points y ∈ Qn
satisfying (2.6) and (2.10) is contained in

the union of not more than

exp((5n)3n(r + 1))(6.1)

proper linear subspaces of Q
n
.

To verify this claim we prove

Lemma 6.1 Let n ≥ 2 and w ≥ 1 be integers. Let K be a field. Let N be a subset of Kn

having the following property:

Any finite subset M of N is contained in the union of not more than w proper linear

subspaces of Kn.

Then N itself is contained in the union of not more than w proper linear subspaces of Kn.
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Proof By a subspace we shall mean a proper linear subspace of Kn.

Given a finite subset M of N , we denote by a(M) the minimum of the quantities

w∑
i=1

dimTi,

where {T1, . . . , Tw} runs through the collection of unordered w-tuples of subspaces with

M ⊂ T1 ∪ . . . ∪ Tw.

Let S(M) be the collection of all w-tuples of subspaces {T1, . . . , Tw} with M ⊂ T1∪. . .∪Tw
and

w∑
i=1

dimTi = a(M).

Now suppose {T1, . . . , Tw} ∈ S(M). Then Ti (i = 1, . . . , w) is generated by a subset

of M . Otherwise we could replace Ti by the smaller subspace, generated by Ti ∩M , thus

making
w∑
i=1

dimTi smaller without affecting M ⊂ T1 ∪ . . . ∪ Tw.

We may conclude that for each of the subspaces Ti there are only finitely many pos-

sibilities. Consequently, S(M) is finite. Denote its cardinality by b(M).

For any finite subset M of N we have a(M) ≤ (n− 1)w. Hence there is such a subset

M for which a(M) attains its maximum a0, say. We now choose among all finite subsets

M of N having a(M) = a0 a set M0 such that

b(M0) = min
M
{b(M) | a(M) = a0}.

If M is any finite subset of N with M ⊇ M0 then S(M) = S(M0). Indeed sup-

pose {T1, . . . , Tw} ∈ S(M). So in particular M0 ⊂ T1 ∪ . . . ∪ Tw. On the other hand
w∑
i=1

dimTi = a(M) ≤ a0. The definition of a0 implies that a(M) = a0 and therefore

{T1, . . . , Tw} ∈ S(M0), hence S(M) ⊂ S(M0). The inclusion S(M0) ⊂ S(M) follows

from the minimality of b(M0).

Pick {T1, . . . , Tw} ∈ S(M0). We claim that

N ⊂ T1 ∪ . . . ∪ Tw.

Indeed let y ∈ N and consider the finite set M = M0 ∪ {y}. We have shown that

{T1, . . . , Tw} ∈ S(M). So in particular we have

y ∈ T1 ∪ . . . ∪ Tw.

This proves our claim and the assertion of the lemma follows.
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We now consider a finite set M = {y1, . . . ,ym} of points yi ∈ Q
n

satisfying (2.6) and

(2.10). So we have

yi = xi ∗ zi

with

xi ∈ Γ, zi ∈ (Q
∗
)
n
, h(zi) ≤ n−1 exp(−(4n)3n)(1 + h(xi)) (i = 1, . . . ,m).

Let F be a number field such that

xi, zi ∈ F n (i = 1, . . . ,m).

Write Γ′ for the subgroup of Γ generated by x1, . . . ,xm. Then Γ′ is a finitely generated

subgroup of (F ∗)n of rank ≤ r. Therefore, in order to prove (6.1) for a finite set M (and

therefore also Theorem 2.1) it will suffice to prove

Proposition 6.2 Suppose n ≥ 2. Let F be a number field. Let Γ be a finitely generated

subgroup of (F ∗)n of rank r. Then the set of points y = (y1, . . . , yn) satisfying

y1 + . . .+ yn = 1,(6.2)

y = x ∗ z with x ∈ Γ, z ∈ (F ∗)n, h(z) ≤ n−1 exp(−(4n)3n)(1 + h(x))(6.3)

is contained in the union of not more than

exp((5n)3n(r + 1))(6.4)

proper linear subspaces of F n.

The remainder of the paper deals with the proof of Proposition 6.2.

7 Heights in Multiplicative Groups

For points x = (x1, . . . , xn) ∈ Qn \ {0} and a number field F such that xi ∈ F

(i = 1, . . . , n), we have defined in (2.3) and (2.4) respectively the absolute multiplicative

height

H(x) =
∏

v∈M(F )

max{1, ‖x1‖v, . . . , ‖xn‖v}(7.1)

as well as the absolute logarithmic height h(x) = logH(x). Thus, for x ∈ F n

h(x) =
∑

v∈M(F )

max{0, log ‖x1‖v, . . . , log ‖xn‖v}.(7.2)
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Both, H(x) as well as h(x), do not depend upon the particular number field F such that

x ∈ F n. In the special case when n = 1, (7.2) yields for x ∈ Q ∗ and a number field F

such that x ∈ F

h(x) =
∑

v∈M(F )

max{0, log ‖x‖v} =
1

2

∑
v∈M(F )

| log ‖x‖v|(7.3)

(the last equation is a consequence of the product formula).

Then

h

(
1

x

)
= h(x), h(xy) ≤ h(x) + h(y).

For x = (x1, . . . , xn) ∈ (Q
∗
)
n

we define moreover

hs(x) =
n∑
i=1

h(xi).(7.4)

Using (7.2)–(7.4) we see that

h(x) ≤ hs(x) ≤ nh(x).(7.5)

Denoting as before by ∗ the product operation in (Q
∗
)
n
, so that (x1, . . . , xn)∗(y1, . . . , yn) =

(x1y1, . . . , xnyn), we have

h(x ∗ y) ≤ h(x) + h(y)(7.6)

and similarly for hs. Further hs (but not h) is invariant under replacing x by its inverse

x−1 in (Q
∗
)
n
, so that

hs(x
−1) = hs(x).(7.7)

From now on we fix the number field F . We let Γ ⊆ (F ∗)n be a finitely generated group

of rank r > 0. Let a1, . . . ,ar be a set of generators of Γ, so that the elements of Γ are of

the shape

x = ξ ∗ au1
1 ∗ . . . ∗ aurr(7.8)

where (u1, . . . , ur) runs through Zr, and ξ runs through the torsion group T (Γ) = Γ∩Un

of Γ, where U is the group of roots of unity of F . For u = (u1 . . . , ur) ∈ Zr set

ψ(u) = hs(a
u1
1 ∗ . . . ∗ aurr ).(7.9)

For v ∈M(F ) put

αijv = log ‖aij‖v (1 ≤ i ≤ r, 1 ≤ j ≤ n)

where ai = (ai1, . . . , ain). Then by the product formula
∑

v∈M(F )

αijv = 0 (1 ≤ i ≤ r,

1 ≤ j ≤ n). Let S be the subset of M(F ) consisting of those v’s such that αijv 6= 0 for
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some pair i, j (1 ≤ i ≤ r, 1 ≤ j ≤ n). Then also
∑
v∈S

αijv = 0 (1 ≤ i ≤ r, 1 ≤ j ≤ n).

For ξ ∈ Rr put

gjv(ξ) =
r∑
i=1

αijv ξi (1 ≤ j ≤ n, v ∈M(F ));(7.10)

then again∑
v∈S

gjv(ξ) = 0 (1 ≤ j ≤ n) and gjv(ξ) = 0 for v /∈ S (1 ≤ j ≤ n).(7.11)

Since by (7.8)

log ‖xj‖v = log ‖au1
1j . . . a

ur
rj ‖v =

r∑
i=1

αijv ui = gjv(u),(7.12)

we have from (7.3), (7.9)

ψ(u) =
n∑
j=1

h(au1
1j . . . a

ur
rj ) =

1

2

n∑
j=1

∑
v∈M(F )

|gjv(u)|

=
1

2

n∑
j=1

∑
v∈S

|gjv(u)|.

More generally, for ξ ∈ Rr set

ψ(ξ) =
1

2

∑
v∈M(F )

n∑
j=1

|gjv(ξ)|.(7.13)

Then

(a) ψ(ξ) ≥ 0 for ξ ∈ Rr,

(b) ψ(α ξ) = |α|ψ(ξ) for ξ ∈ Rr, α ∈ R,

(c) ψ(ξ + η) ≤ ψ(ξ) + ψ(η) for ξ,η ∈ Rr.

Since a1, . . . ,ar are multiplicatively independent, the components of au1
1 ∗ . . .∗aurr will all

be roots of unity only if u = 0. Therefore according to Dobrowolski [6], for u ∈ Zr \ {0}
we have

ψ(u) >
c1

d
(log log 3d / log 3d)3

where d = [F : Q ] and where c1 > 0 is an absolute constant. In particular, there is a

constant c > 0 such that

(d) ψ(u) ≥ c > 0 for u ∈ Zr \ {0}.
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In [25], Lemma 3 it is shown that since the function ψ satisfies (a)–(d), the set Ψ ⊂ Rr

given by

Ψ = {ξ ∈ Rr | ψ(ξ) ≤ 1}(7.14)

is a symmetric, convex body.

8 Special Points

Let F , Γ, a1, . . . ,ar be as in Section 7. When x ∈ Γ, set

h = h(x), H = H(x) = eh, hs = hs(x).(8.1)

Express x as in (7.8). So, if x ∈ Γ and u ∈ Zr are related by (7.8), we have (7.9), i.e.,

hs = hs(x) = ψ(u).(8.2)

Let Ψ = {ξ ∈ Rr | ψ(ξ) ≤ 1} be the set (7.14). Put

q = 4n.(8.3)

Given ρ ∈ Rr, an element x ∈ Γ will be called ρ-special if h > 0 (in (8.1)) and if

u ∈ h
q

Ψ + hρ.(8.4)

The right hand side of (8.4) signifies
h

q
Ψ translated by hρ.

We quote Lemma 8.1 of [23].

Lemma 8.1 Let Φ be a symmetric convex body in Rr. Suppose λ > 0. Then λΦ can be

covered by not more than

(2λ+ 4)r(8.5)

translates of Φ.

We apply Lemma 8.1 with Φ replaced by
1

q
Ψ and with λΦ replaced by nΨ. We may

conclude that nΨ may be covered by

≤ (2qn+ 4)r = Z

translates of
1

q
Ψ, say by

1

q
Ψ + ρi (i = 1, . . . , Z).
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Now when x satisfies (8.1), then by (7.5), (7.9), (8.2) the point u ∈ Zr related to x

via (7.8) lies in

hs Ψ ⊂ hnΨ.

Thus x is special for at least one of ρ1, . . . ,ρZ . We have shown

Corollary 8.2 There exist elements ρ1, . . . ,ρZ ∈ Rr with

Z = (2qn+ 4)r(8.6)

such that any x ∈ Γ is special for at least one of ρ1, . . . ,ρZ.

We remark moreover that our construction implies that we may take ρ1, . . . ,ρZ with

ρi ∈
(
n+

1

q

)
Ψ (i = 1, . . . , Z).(8.7)

In the sequel, we will apply the material developed so far to the solutions y = x ∗ z of

(6.2), (6.3).

9 Properties of Large Special Solutions

We now study solutions y of (6.2), (6.3).

A solution y will be called large if it has a representation y = x ∗ z as in (6.3) such that

h(x) > 4n log n.(9.1)

Solutions y of (6.2), (6.3) that are not large will be called small.

If the group Γ has rank 0, then all elements x ∈ Γ have h(x) = 0. So, large solutions

do only exist when rank Γ > 0.

A solution y of (6.2), (6.3) is called ρ-special if, with x, z as in (6.3), the point x is

ρ-special.

In this section we derive properties of large ρ-special solutions y. This will allow us

in Section 10 to deduce an upper bound for the number of subspaces needed to cover the

set of large solutions of (6.2), (6.3).

Suppose that ρ ∈
(
n+

1

q

)
Ψ is fixed. Set

mjv =

{
gjv(ρ) (v ∈M(F ), 1 ≤ j ≤ n)

0 (v ∈M(F ), j = 0).
(9.2)
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In view of (7.11) we have∑
v∈S

mjv = 0 (j = 0, . . . , n), mjv = 0 for v /∈ S, j = 0, . . . , n.(9.3)

Further, since ρ ∈
(
n+

1

q

)
Ψ, by (9.2), (7.13) and the definition of Ψ in (7.14)

∑
v∈M(F )

n∑
j=0

|mjv| = 2ψ(ρ) ≤ 2

(
n+

1

q

)
.(9.4)

Now let x ∈ Γ be ρ-special, so that with u as in (7.8) we have (8.4) with h = h(x). Then

for any v ∈M(F ) and for j = 1, . . . , n

gjv(u) = h(gjv(ρ) + q−1 gjv(ξ)) = hmjv +
h

q
gjv(ξ)(9.5)

with some ξ ∈ Ψ. Writing g0v(ξ) = 0 for v ∈M(F ) and for ξ ∈ Rr, (9.5) will be true for

j = 0 as well.

It follows from (9.2), (9.5) that∑
v∈M(F )

n∑
j=0

|gjv(u)− hmjv| =
h

q

∑
v∈M(F )

n∑
j=0

|gjv(ξ)| ≤ h

q
.(9.6)

For v ∈M(F ) let L
(v)
0 , . . . , L

(v)
n be the linear forms in Y = (Y1, . . . , Yn) given by

L
(v)
0 (Y ) = Y1 + . . .+ Yn

L
(v)
1 (Y ) = Y1(9.7)

...

L(v)
n (Y ) = Yn .

Lemma 9.1 Let ρ be as above. There are n-element subsets I(v) of {0, . . . , n} defined for

v ∈M(F ) and there are numbers `jv (v ∈M(F ), j ∈ I(v)) with the following properties.

I(v) = {1, . . . , n} for v /∈ S,(9.8)

`jv = 0 for v /∈ S, j ∈ I(v),(9.9) ∑
v∈M(F )

∑
j∈I(v)

`jv = 0,
∑

v∈M(F )

∑
j∈I(v)

|`jv| ≤ 1.(9.10)

Moreover, any large ρ-special solution y of (6.2), (6.3) satisfies the inequality∏
v∈M(F )

max
j∈I(v)

{
‖L(v)

j (y)‖v
Q`jv

}
≤ Q−

1
2n(4n+1) ,(9.11)

where Q = H(x)4n+1. Here x ∈ Γ is a point in the representation y = x ∗ z according to

(6.3).
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Proof For v ∈ S let j(v) ∈ {0, . . . , n} be a subscript with

mj(v),v = max {m0v, . . . ,mnv}.(9.12)

We define I(v) = {0, . . . , n}\{j(v)} (v ∈ S). For v /∈ S, I(v) is already defined in (9.8).

By our definition of S in Section 7, any solution y = x∗z as in (6.3) has by (7.11), (7.12)

h = h(x) =
∑
v∈S

max {0, log ‖x1‖v, . . . , log ‖xn‖v}(9.13)

=
∑
v∈S

max {g0v(u), g1v(u), . . . , gnv(u)}.

Given x, pick for each v ∈ S an element i(v) ∈ {0, . . . , n} with gi(v),v(u) =

max {g0v(u), . . . , gnv(u)}. Then by (9.13)∑
v∈S

gi(v),v(u) = h.

Thus in view of (9.6), we may infer that

h
∑
v∈S

mi(v),v ≥
∑
v∈S

gi(v),v(u)− h

q
= h

(
1− 1

q

)
.

In particular, by (9.12) we obtain∑
v∈S

mj(v),v ≥ 1− 1

q
.(9.14)

Let s be the cardinality of S and write

γ =
1

ns

∑
v∈S

mj(v),v.(9.15)

We now define numbers cjv (v ∈M(F ), j ∈ I(v)) by

cjv =

{
mjv + γ for v ∈ S, j ∈ I(v)

0 for v /∈ S, j ∈ I(v).
(9.16)

We infer from (9.3), (9.4), (9.15) that∑
v∈M(F )

∑
j∈I(v)

cjv = 0,
∑

v∈M(F )

∑
j∈I(v)

|cjv| ≤ 4

(
n+

1

q

)
.(9.17)

So far we have only used the fact that our solution y = x ∗ z of (6.2), (6.3) is ρ-special.
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However, y is also supposed to be large. Under this additional hypothesis we now

derive an upper bound for the quantity

A =
∏

v∈M(F )

max
j∈I(v)

{
‖L(v)

j (y)‖v
Hcjv

}
,

where H = H(x).

Write y = (y1, . . . , yn), x = (x1, . . . , xn), z = (z1, . . . , zn). Put y0 = x0 = z0 = 1.

Notice that by (6.2) and (9.7) we then have for each v ∈M(F )

L
(v)
j (y) = yj for j = 0, . . . , n.

Hence by (9.14), (9.15), (9.16)

A =
∏

v∈M(F )

max
j∈I(v)

{
‖yj‖v
Hcjv

}

= H−
1
n

∑
v∈Smj(v),v

∏
v∈M(F )

max
j∈I(v)

{
‖yj‖v
Hmjv

}

≤ H−
1
n

+ 1
nq

∏
v∈M(F )

max
j∈I(v)

{
‖yj‖v
Hmjv

}
(9.18)

≤ H−
1
n

+ 1
nq

 ∏
v∈M(F )

max
0≤j≤n

‖zj‖v

 ∏
v∈M(F )

max
0≤j≤n

{
‖xj‖v
Hmjv

}
= H−

1
n

+ 1
nqH(z)

∏
v∈M(F )

max
0≤j≤n

{
‖xj‖v
Hmjv

}
.

(6.3) and (9.1) entail

H(z) ≤ exp
(
n−1 exp(−(4n)3n)(1 + h(x))

)
(9.19)

≤ exp
(
n−1 exp(−(4n)3n)((4n log n)−1 + 1)h(x)

)
≤ H1/(8n).

On the other hand by (7.12) and (9.2), (9.5), (9.6)∏
v∈M(F )

max
0≤j≤n

{
‖xj‖v
Hmjv

}
≤ H1/q.(9.20)

Combination of (9.18)–(9.20) yields with our value q from (8.3)

∏
v∈M(F )

max
j∈I(v)

{
‖L(v)

j (y)‖v
Hcjv

}
≤ H−

1
n

+ 1
nq

+ 1
8n

+ 1
q ≤ H−

1
2n .(9.21)

25



We now renormalize with our parameter Q = H(x)4n+1 = H4n+1. Writing

`jv =
cjv

4n+ 1
(v ∈M(F ), j ∈ I(v))

we obtain with (9.16), (9.17) and with q as in (8.3) assertions (9.9) and (9.10). Moreover,

(9.21) gives (9.11).

10 Large Solutions

To deal with the large solutions, we use the absolute version of the Subspace Theorem,

due to Evertse and Schlickewei [12]. The following Proposition 10.1 is a very special case

of Theorem 2.1 of [12].

For v ∈ M(F ) let the linear forms L
(v)
0 (Y ), . . . , L

(v)
n (Y ) be as in (9.7). Moreover, let

I(v) and the tuple (`jv) (v ∈M(F ), j ∈ I(v)) be as in Lemma 9.1.

Proposition 10.1 Suppose 0 < δ < 1. There are proper linear subspaces T1, . . . , Tt of

F n with

t ≤ 22(n+9)2

δ−n−4(10.1)

with the following property:

As Q runs through the values satisfying

Q > n2/δ,(10.2)

the set of solutions y ∈ F n of the inequalities

∏
v∈M(F )

max
j∈I(v)

{
‖L(v)

j (y)‖v
Q`jv

}
≤ Q−δ(10.3)

is contained in the union

T1 ∪ . . . ∪ Tt.

We apply Proposition 10.1 with Q = H(x)4n+1 (where y = x∗z with x ∈ Γ according

to (6.3)), and with δ =
1

2n(4n+ 1)
. By Lemma 9.1, given ρ, any large ρ-special solution

y of (6.2), (6.3) satisfies (10.3) with sets I(v) and a tuple (`jv) (v ∈ M(F ), j ∈ I(v))

which depend only on ρ.

With our values of Q and δ, (10.2) becomes H(x)4n+1 > n4n(4n+1), or equivalently

h(x) > 4n log n.
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In view of (9.1) this means that Propositon 10.1 is adequate to deal with the large ρ-special

solutions y of (6.2), (6.3).

By (10.1), a single ρ gives rise to

≤ 22(n+9)2

(8n2 + 2n)n+4

subspaces. Using Corollary 8.2 and the definition of q in (8.3) we obtain

Corollary 10.2 The set of large solutions y of (6.2), (6.3) is contained in the union of

not more than

22(n+9)2

(8n2 + 2n)n+4+r

proper linear subspaces of F n.

11 Small Solutions

We still have to deal with the small solutions y of (6.2), (6.3).

For this purpose we use results on the number of points on varieties which have small

height. The first explicit estimate in that context is due to W. Schmidt [26]. We quote

here a special case of Theorem 4 of [26].

Proposition 11.1 Let b = (b1, . . . , bn) ∈ (Q
∗
)
n
. Put

q0(n) = exp((4n)3n).(11.1)

Then the equation

b1 w1 + . . .+ bnwn = 1(11.2)

has at most q0(n) non-degenerate solutions w = (w1, . . . , wn) ∈ (Q
∗
)
n

with

hs(w) < q0(n)−1.(11.3)

We remark that S. David and P. Philippon [4], [5] recently have proved a sharpening

of Proposition 11.1. They have shown that with

q1(n) = 22c1n ,

where c1 is an explicit absolute constant, equation (11.2) has at most q1(n) non-degenerate

solutions w with

hs(w) < q1(n)−3/4.
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Here, we will give details on the basis of Proposition 11.1.

W. Schmidt, in Theorem 5 of [26], also has derived an upper bound for the number

of non-degenerate solutions w of (11.2) when w lies in a group Γ ⊂ (Q
∗
)
n

of rank r and

has

hs(w) ≤ C.(11.4)

In our context we ask for the number of points y = x ∗ z satisfying (6.2), (6.3). But our

y only “essentially” belongs to Γ (in the sense defined by (6.3)). Moreover, instead of

(11.4), which in our context would be hs(y) ≤ C, we only have a weaker hypothesis of

type

hs(x) ≤ C.(11.5)

To derive a bound in this more general setting, we follow the argument given in [26].

By (6.3), y = x ∗ z with

x ∈ Γ and h(z) ≤ n−1 exp(−(4n)3n)(1 + h(x)).(11.6)

Suppose first that rank Γ = 0.

Then h(x) = 0. Therefore, by (7.5), (7.6),

hs(y) ≤ hs(x) + hs(z) = hs(z)(11.7)

≤ nn−1 exp(−(4n)3n)(1 + h(x)) = exp(−(4n)3n) = q0(n)−1.

We apply Proposition 11.1 with b = (1, . . . , 1) and conclude that (6.2) does not have more

than

q0(n)(11.8)

non-degenerate solutions y satisfying (11.7). We point out that our choice of the function

n−1 exp(−(4n)3n) in (6.3) is motivated uniquely to guarantee (11.7).

We now treat the case when r = rank Γ > 0.

Hypothesis (11.5), in view of (7.5) and (9.1), now reads as

hs(x) ≤ 4n2 log n.(11.9)

Let u ∈ Zr be the point related to x ∈ Γ by (7.8). Combination of (7.9) and (11.9) gives

ψ(u) ≤ 4n2 log n.(11.10)

We quote Lemma 4 of [25].

Lemma 11.2 Let ψ : Rr → R be a function satisfying (a)–(d) in Section 7. Let U be a

set of points in Rr such that

ψ(u− v) ≥ δ0 > 0(11.11)
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for u 6= v in U . Then the number of u ∈ U with

ψ(u) ≤ C(11.12)

is

≤ ((2C/δ0) + 1)r.(11.13)

Let V be the subset of points u ∈ Zr satisfying (11.10). We apply Lemma 11.2 with U

being a maximal subset of V such that

ψ(u− v) ≥ 1

2
q0(n)−1 for u 6= v in U.(11.14)

Here q0(n) is as in Proposition 11.1. So we take C = 4n2 log n and δ0 =
1

2
q0(n)−1. By

(11.13) and (11.1) we may infer that U has cardinality

|U | ≤ (16n2(log n)q0(n) + 1)r ≤ (16n3 q0(n))r.(11.15)

Moreover by the definition of U , for any u ∈ Zr satisfying (11.10), there exists u0 ∈ U
such that

ψ(u− u0) <
1

2
q0(n)−1.(11.16)

Again using (7.8), (7.9) we may infer that there is a subset ∆ of Γ with cardinality

|∆| ≤ (16n3 q0(n))r(11.17)

such that for any x ∈ Γ with (11.9) there is an element b ∈ ∆ having

hs(x ∗ b−1) <
1

2
q0(n)−1.(11.18)

Now let y be a small solution of (6.2), (6.3), i.e., a solution with h(x) ≤ 4n log n.

We choose b ∈ ∆ satisfying (11.18). Combination of (6.3), (7.5), (7.6), (11.1), (11.18)

yields

hs(y ∗ b−1) ≤ hs(z) + hs(x ∗ b−1) ≤ nh(z) + hs(x ∗ b−1)(11.19)

≤ n exp(−(5n)3n)(1 + 4n log n) +
1

2
q0(n)−1 < q0(n)−1.

We conclude that for any small non-degenerate solution y of (6.2), (6.3) there exists b ∈ ∆

with (11.19).

Write w = y ∗ b−1. Then w is a solution of (11.2), (11.3). By Proposition 11.1, given

b, there are at most q0(n) points w with (11.2), (11.3). We may conclude that each b ∈ ∆

gives rise to at most q0(n) non-degenerate small solutions y of (6.2).
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Introducing the factor (16n3 q0(n))r from (11.17) for the number of possible choices of

b, we see that altogether we cannot have more than

q0(n)(16n3 q0(n))r(11.20)

non-degenerate small solutions.

Comparing (11.20) with (11.8) we observe that indeed the bound (11.20) is true for

any value of r = rank Γ.

All other small solutions are degenerate, i.e., some subsum on the left hand side of

(6.2) vanishes. The number of subsums is ≤ 2n. Hence the degenerate solutions may be

covered by the union of ≤ 2n proper linear subspaces.

To summarize, we have proved

Corollary 11.3 The set of small solutions of (6.2), (6.3) is contained in the union of

not more than

2n + q0(n)
(
16n3q0(n)

)r
proper linear subspaces of F n. Here q0(n) is given by (11.1), i.e., q0(n) = exp((4n)3n).

12 Proof of Proposition 6.2

We collect the results of Sections 10 and 11. From Corollary 10.2 we get

≤ 22(n+9)2

(8n2 + 2n)n+4+r

subspaces for the large solutions. From Corollary 11.2 we obtain

≤ 2n + (16n3)r
(
exp((4n)3n)

)r+1

subspaces for the small solutions.

Therefore, to cover the set of all solutions y of (6.2), (6.3)

22(n+9)2

(8n2 + 2n)n+4+r + 2n + (16n3)r
(
exp((4n)3n)

)r+1
< exp((5n)3n(r + 1))

subspaces will suffice. This completes the proof of Proposition 6.2.
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