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1b. Title of research proposal
Arithmetic geometry, motives: computational aspects.

1c. Summary of research proposal(max. 300 words, plus max. 5 keywords)
The research focuses on the problem of efficiently counting the solutions of systems of polynomial

equations over finite fields. An important example is the following. For a prime numberp and integers
a andb one asks for the number of pairs of integers(x, y) with 0 ≤ x < p and0 ≤ y < p such thatp
divides−y2+x3+ax+b. In 1984, Schoof published an algorithm for computing these numbers using
about(log p)9 bit operations. This algorithm has become the basis for elliptic curve cryptography, one
of today’s most promising cryptosystems, with practical applications in e-commerce, smart-cards, and
wherever cryptography is used.

For general systems, counting the solutions is intractable: there is no polynomial time algorithm,
i.e., one that uses only a number of bit operations that is at most a fixed power of the length of the
input. However, if the number of variables and the degrees of the equations are fixed, polynomial time
algorithms might exist.

The goal of this proposal is to find such algorithms, making use of the most advanced techniques
in arithmetic geometry that are currently available. Apart from its applications to cryptography, this
proposal will help make these techniques, which have a reputation of being extremely abstract and
complex, available computationally.

The main tool for counting solutions is cohomology. Schoof uses first degreeétale cohomology.
The goal of this proposal is to open hitherto inaccessible higherétale cohomology for computation. In
December 2000, Edixhoven proposed a novel strategy for the case of motives associated to modular
forms. If successful, an important by-product will be a polynomial algorithm for computingétale
cohomology with its Galois action. This pioneering strategy, using Arakelov theory to estimate the
required precision of the numerical computations, links arithmetic geometry to numerical analysis,
computer algebra and number theory.
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Research proposal

2. Description of the proposed research(max. 8000 words on max. 16 pages (exclusive 2e and 2f);
a description of subprojects (for additional postdocs and PhD students) is required)

2.a. Research topic
The research will take place in the sub-field arithmetic algebraic geometry of mathematics. Its most

innovative part concerns the complexity of the problem of counting the solutions of certain systems
of polynomial equations over finite fields.

The simplest finite fields are the prime fieldsFp, with p a prime number; they are obtained by
performing the usual operations (addition, subtraction, multiplication and division) on integers, mod-
ulo p. For example, the fieldF2 consists of the elements0 and1, and has the property1 + 1 = 0
(familiar from logic). The number of elements of an arbitrary finite field is a power of a prime number,
i.e., of the formpn. For every integerq of this form there exists an essentially unique finite field of
that size, with “essentially” meaning that two finite fields of the same size are isomorphic. We will
denote such a field byFq.

A system of polynomial equations over a finite fieldFq looks as follows:

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...

fr(x1, x2, . . . , xn) = 0.

Thexi are the variables, and eachfj is a polynomial in thexi, with coefficients inFq, i.e., a finite sum
of terms of the formaxd1

1 · · ·xdn
n with a in Fq and thedi integers greater than or equal to zero. The

set of solutions inFq of this system of equations is the set ofntuples(a1, . . . , an), with theai in Fq,
such thatfj(a1, . . . , an) = 0 for all j.

The problem that one wants to solve is that of determining, in areasonableamount of time (or,
equivalently, of bit operations), thenumberof solutions (and not the solutions themselves) for certain
systems of polynomial equations over finite fields. More precisely, one would like to have an algorithm
giving the number of solutions in time at most some fixed power of the length of the input (i.e., a
polynomial time algorithm).

For the class of all systems, even the problem of deciding whether or not a solution exists is known
to be unfeasible: in terms of complexity theory this problem is called NP-complete. To see this, one
notes that forq = 2 the problem becomes that of deciding whether or not a Boolean expression in
the variablesx1, . . . , xn can be satisfied, a problem known under the name SAT, and known to be
NP-complete (Cook’s theorem, see [17]). As a consequence, one really expects that no polynomial
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time algorithm exists for the class of all systems. On the other hand, there are important sub-classes
where polynomial time algorithms do exist.

In the classes to be considered in this proposal, one fixes the number of variables, and possibly the
degrees of the equations, butnot the sizeq of the finite field. The problem is then to find algorithms
giving the number of solutions in time polynomial in the logarithm ofq and in the degrees of the
equations.

Around 1984, Schoof found a polynomial time algorithm for the case of one equation of degree
three in two variablesx andy:

y2 = x3 + ax + b,

the case of elliptic curves (see [21]). More precisely, his algorithm uses about(log q)9 bit operations.
After some substantial improvements by Atkin and Elkies (see [6]) that reduced the number of bit
operations to about(log q)4 when q is a prime number, Schoof’s algorithm has become the basis
of elliptic curve cryptography, one of today’s most promising cryptographic systems, with practical
applications in e-commerce, smart-cards and wherever cryptography is used. For finite fieldsFq with
q = pn andp small the same reduction of the number of bit operations was achieved by Couveignes
(see [2]).

Recently, progress has been made by Satoh [19], Kedlaya [11], Wan and Lauder [14, 15, 12],
Fouquet, Gaudry, G̈urel and Harley [9, 10], and Denef and Vercauteren [5] in the case where one
fixes the characteristicp of the finite fieldFq (the prime numberp of which q is a power). Let us
write q = pm. Using a so-calledp-adic method (more on this will be said later) Satoh obtained an
algorithm for counting points on elliptic curves overFq in aboutm3 bit operations, hence improving
on the work of Schoof, Atkin and Elkies. By a more abstract cohomological approach, Kedlaya
succeeded in treating the case of hyper-elliptic curves forp different from2:

y2 = f(x),

wheref has arbitrary degree, in timem3 deg(f)4. Fouquet, Gaudry, G̈urel, Harley, Denef and Ver-
cauteren have generalized Kedlaya’s approach to more general types of curves:

yd = f(x), yp − y = f(x), etc.,

with similar running times. Wan and Lauder, approaching the problem from the point of view of
p-adic exponential sums and Dwork’s trace formula, have given a polynomial time algorithm for the
class of all systems of polynomial equations in a fixed number of variables. For certain types of
curves they have optimized their arguments, and have obtained algorithms with a running time similar
to those obtained by the authors above.

Summarizing this recent progress, one can say that, at least from a theoretical point of view, the
problem of counting the solutions of systems of polynomial equations over finite fields of a fixed
characteristicp and in a fixed number of variables has been solved. However, ifp is not bounded, then
almost nothing is known about the existence of polynomial algorithms. Thep-adic methods lead to
algorithms of which the running time grows at least linearly inp, hence exponentially inlog p, even
for elliptic curves. Schoof’s original approach has been applied to curves and abelian varieties by Pila
(see [18]), giving a polynomial time algorithm when the dimension of the abelian variety, or the genus
of the curve, is fixed. As Pila makes use of explicit systems of equations for abelian varieties, his
algorithm behaves extremely badly as a function of the dimension of the abelian variety, and hence,
in the case of curves, as a function of the genus of the curve.

This is an appropriate point to state one of the main objectives of this research proposal:
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one main objective is to find polynomial time algorithms for counting the number of
solutions of systems of polynomial equations over finite fields, where the number of
variables is fixed.

The innovative element of this objective is that there is no restriction on the characteristic of the
finite field. The methods that we will use for achieving this objective lead to some other important
applications that will be stated below, when we explain our approach.

The proposed research is important for cryptography, because of its relation to Schoof’s algorithm.
If some day elliptic curve cryptography is broken, or admits a sub-exponential attack, our research
might provide a solution. More generally speaking, making the cohomological machinery that we
will discuss below available algorithmically is a fundamental and important problem. This project
will help researchers from other areas of mathematics and other sciences apply the powerful but
abstract results from algebraic geometry. Moreover, it will provide many occasions for mutually
fruitful collaborations with other mathematicians in the Netherlands (algebraic geometers, the number
theory group in Leiden, EIDMA, . . . ).

2.b. Approach
It seems impossible to avoid a higher level of technicality in this section. In order to give the less

initiated reader at least some idea of the originality and innovative elements of the methods that we
want to use, we start by giving a short description.

The usual tool for counting solutions efficiently is cohomology: the number of solutions is the
number of fixed points of the so-called Frobenius morphism, and is equal to the alternating sum of
the traces of the Frobenius morphism on the cohomology groups. Schoof usesétale cohomology of
degree one with coefficients modulo small prime numbersl, in the form of points of orderl on elliptic
curves. For smallp, thep-adic methods alluded to above usep-adic cohomologies, which are closely
related to de Rham cohomology. Thesep-adic cohomologies are computationally tractable, but lead
to polynomial time algorithms only for finite fields of small characteristic. At present, there are no
good algorithms for computing higher degreeétale cohomology with Frobenius action, and to find
such is an important problem in algorithmic number theory. The proposed research aims to provide
such algorithms, which is a second main objective of this proposal:

a second main objective is to find a polynomial algorithm for computing higher degree
étale cohomology with Frobenius action.

We stress that the aim is to compute not only the dimensions of cohomology spaces, but also the
Frobenius action on them, which means computation of (realizations of) motives.

A natural starting point is then to study the simplest kinds of motives for which there are no poly-
nomial algorithms (yet): rank two motives over the rational numbers, of (pure) weight at least two
(elliptic curves correspond to weight one). Conjecturally (Langlands’s program) such motives corre-
spond to modular forms. In December 2000, Edixhoven gave a talk at the MSRI in Berkeley where he
sketched a novel strategy for treating this case. (For notes and a streaming video of this lecture, please
visit the section “quelques exposés” on Edixhoven’s personal web page.) This strategy also leads to a
third main objective of this proposal:

a third main objective is the computation of the modl Galois representations associated
to modular forms, in time polynomial inl.

For example, this would show that Ramanujan’sτ -function can be evaluated atp in time polynomial
in log p. The strategy consists in a reduction to torsion points on Jacobian varieties (of dimension
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quadratic inl) and a careful distinction between symbolic and numeric parts of the computation. The
method can already be used experimentally, but one still needs a bound on the precision required in
the numerical part. The results that are needed to provide such a bound have an analog in the function
field case, where the classical Grothendieck-Riemann-Roch formula provides a proof. We expect that
the analogous formula in Arakelov theory can be applied successfully, but much work needs to be
done. This test case, already important in itself, should give the right ideas for more general cases.
The generalization to higherétale cohomology groups of small dimension should not be too hard. On
the other hand, treating curves of arbitrary genus still requires new ideas, because the dimension of
the relevant cohomology group is not bounded.

Let us now give more details on the methods to be used, at a level intended for experts in arithmetic
algebraic geometry. For simplicity, we will just discuss the case of the motive corresponding to the
modular form∆. We recall that∆ is the function on the complex upper half planeH given by the
formula:

∆ =
∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24,

whereq is the function sendingz to exp(2πiz). This function∆ is such that∆(dq/q)⊗6 is invariant
for the usual action bySL2(Z) onH by fractional linear transformations. In other words,∆ is a cusp
form of weight12 and level1. As the space of such forms is one-dimensional,∆ is an eigenform for
the Hecke operatorsTn, meaning that theL-function of∆ has the following Euler product expansion:

Lτ (s) =
∑
n≥1

τ(n)n−s =
∏
p

(1− τ(p)p−s + p11p−2s)−1,

wherep ranges over all prime numbers and where the real part ofs is at least13/2. By a theorem of
Deligne (see [3 and 20]),Lτ is theL-function of a pure motiveM∆ of weight11 and rank2 overQ
with good reduction at all primes. More precisely,M∆ is a piece of the dual of the cohomology of de-
gree11 of the10-fold productE10 of the universal elliptic curvef : E → Y over the moduli spaceY
of elliptic curves, and∆ (dq/q)dz1 · · · dz10 generates half of the de Rham realization ofM∆. It fol-
lows that for each prime numberl, there exists a two-dimensionalFl-vector spaceVl with continuous
action by the absolute Galois groupGal(Q/Q), unramified at all primesp 6= l, such that the trace
of Frobenius atp is the image ofτ(p) in Fl. In fact,Vl is just the dual of the modl étale realization
of M∆.

Following Schoof, the idea is now to computeτ(p) modl for sufficiently many small primesl, such
that the productP of thosel is at least4p11/2. Then one knowsτ(p) because one knows it moduloP
and one knows that|τ(p)| ≤ 2p11/2 (Ramanujan’s inequality, proved by Deligne [4]). Analytic
number theory implies that one only needs to take prime numbersl of size at most about6 log p.
Hence the problem of computingτ(p) in time polynomial inlog p is reduced to computingVl with its
Galois action, either ofGal(Q/Q) or of Gal(Fp/Fp), in time polynomial inl.

Now the dualV ∨
l of Vl is a subspace of the degree11 étale cohomology of the11-dimensional

varietyE10 overQ. Elements of such cohomology groups, constructed via injective resolutions, do
not have any direct interpretation suitable for computation. Fortunately, via the morphismE10 → Y ,
V ∨

l also occurs inH1(YQ,Fl), withFl = Sym10 R1 f∗Fl. Hence, at the price of replacing the constant
coefficientsFl on E10 by the non-constant sheafFl on the curveY , one has reduced the problem to
a first degreéetale cohomology group on a curve. The elements ofH1(YQ,Fl) are the isomorphism
classes ofFl-torsors onYQ. One can show that such objects admit a suitable explicit representation
and can be used for computations,once one has solved the equations for finding them.But, as we do
not know how to find these torsors in polynomial time, a second reduction is needed.
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By definition, the sheafR1 f∗Fl becomes an extension ofFl by µ∨l over the coverY1(l) → Y
of degreel2 − 1. This explains thatVl is a subspace ofJ1(l)(Q)[l], whereJ1(l) is the Jacobian
variety of the compactificationX1(l) of Y1(l). This subspace is the intersection of the kernels of the
endomorphismsTq − τ(q) for q prime,q ≤ l2/24. Hence at the cost of replacingY by X1(l), we
have replaced the non-constant sheafFl by Fl. The price we pay is thatX1(l) has genus aboutl2/24,
hence the computations concerning thel-torsion ofJ1(l) will have to be done in polynomial time in
the genus ofX1(l). This seems impossible to do, if one approaches this problem algebraically.

Couveignes has suggested to use numerical analysis and algebraic number theory, via the following
strategy. TheGal(Q/Q)-action onVl defines a finite Galois extensionQ → Kl, with group the image
of Gal(Q/Q) in GL(Vl). All we need to do is to find the minimal polynomialfα over Q of some
generatorα of Kl of reasonable height, since then we find the Frobenius element atp by factoringfα

overFp. To achieve that, it is enough to have a sufficiently good approximationα′ (in the complex
numbers, say) ofα, with respect to the height of the algebraic numberα (there are good algorithms to
computefα fromα′, see [1,§2.7.2]). For example, to know a rational numbera/b with a andb integers
of absolute value at most some numberM , it is enough to know it up to an error of at most1/2M2.
It is important to understand that onlyα′ needs to be known explicitly, together with a bound on the
height ofα.

In order to make Couveignes’s strategy work, we have to explain how we want to chooseα such
that its height is small enough, and how to approximate it. First we choose a non-zero elementx
of Vl, viewingVl as the subspace ofH1(X1(l)(C), Fl) cut out by the Hecke operatorsTq − τ(q) with
q prime,q ≤ l2/24; this is computable in time polynomial inl with say modular symbols algorithms.
Then we note that it suffices to produce a suitable generatorα in the field of definitionQ(x) of x,
when viewingx as an element ofJ1(l)(Q)[l], sinceKl is the Galois closure ofQ(x). The idea is now
to viewx as the class of some divisor onX1(l)Q with the same field of definition asx, and to take for
α the evaluation of some function onX1(l)Q on that divisor. More precisely, one proceeds as follows.
We letg denote the genus andP0 a rational cusp ofX1(l). Then we have diagram:

X1(l)(C)g // // J1(l)(C) Cg/Λ

(Q1, . . . , Qg) � // [Q1 + · · ·+ Qg − gP0]
g∑

i=1

Qi∫
P0

(ω1, . . . , ωg),

where the(ω1, . . . , ωg) is aZ-basis ofH0(X1(l)Z,Ω), and whereΛ is the period lattice of this basis,
i.e., the image ofH1(X1(l)(C), Z) under integration of theωi. Here one chooses theωi such thatΛ
has aZ-basis of reasonably small elements. Nowx is an element ofl−1Λ/Λ ⊂ Cg/Λ, and we want to
choose(Q1, . . . , Qg) such that its image inCg/Λ is x. LetL denote the line bundle onX1(l)C corre-
sponding tox. ThenL(gP0) is a line bundle of degreeg, hence it almost certainly has the property that
H0(X1(l)C,L(gP0)) is of dimension one. (The line bundles of degreeg that do not have this property
form a subset of complex codimension one.) We assume for the moment thatH0(X1(l)C,L(gP0)) is
one-dimensional. Then, up to permutation, there is a uniqueg-tuple(Q1, . . . , Qg) mapping tox, and
we putα := j(Q1) + · · ·+ j(Qg), wherej is the standardj-function onX1(l)Q. Thenα is in Q(x),
and almost certainly a generator. The height of the divisorQ1+· · ·+Qg cannot be too large because it
is equivalent to the pointx, whose height is zero because it is a torsion point. Consequently, the height
of α cannot be large. To approximateα, one can numerically lift the straight line from0 to x in a fun-
damental domain inCg to a path inX1(l)(C)g starting at(P0, . . . , P0). As the map fromX1(l)(C)g
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to J1(l)(C) is étale outside a subset of real codimension at least two, it is almost certainlyétale over
that straight line, which means that the lifting problem can be solved by say Newton’s method.

This method for producing and approximatingα is not completely satisfactory because of the “al-
most certainly” that occurs three times. Also, in the numerical part, the straight line in question
should in fact not get too close to the ramification locus. For this reason, we propose to “randomize”
the method as follows. We choose at randomP1, . . . , Pg in X1(l)(K), corresponding to elliptic curves
lying in one isogeny class, with complex multiplications, for example byQ(i). ThenK is a solvable
Galois extension ofQ. If one chooses thePi reasonably, the degree ofK and the logarithm of discrim-
inant ofK are polynomial inl. We putD := P1 + · · ·+ Pg, which is a divisor onX1(l)K . Now we
may assume thatH0(X1(l)C,L(D)) is one-dimensional. Hence there is a unique effective divisorD′

of degreeg onX1(l)K(x) such thatL ∼= OX1(l)C(D′ −D). Then we putα := j(Q1) + · · ·+ j(Qg),
whereD′ = Q1 + · · · + Qg. In order to approximate(Q1, . . . , Qg) one has to lift the translation
by [P1 + · · · + Pg − gP0] of the straight line from0 to x. The sub-extensionQ(x) of K(x) can be
determined effectively by Galois theory: the Galois group ofKl overQ containsSL2(Fl), whereas
Q → K is solvable. The remaining problem is to bound the height of the divisorD′. As [D′−D] = x,
one expects that the height ofD′ is at most about the height ofD plus that ofx. The height ofD is
under control, because we choose thePi ourselves, and the height ofx is small becausex is torsion.
Arakelov theory will be used to make these height arguments rigorous.

The problem of bounding the height ofD′ in terms of that ofD also exists in the function field
case. We will now show how the Grothendieck-Riemann-Roch formula solves the problem in that
case. LetS be a non-singular irreducible projective curve over an algebraically closed fieldk, and let
π : X → S be a proper smooth family of curves, with a sectionP . Let η be the generic point ofS, let
Lη be a torsion line bundle onXη, andD a horizontal divisor of degreeg (g is the genus ofXη) such
thatH0(Xη,Lη(Dη)) is one-dimensional. Then there exists a unique effective horizontal divisorD′

of degreeg such thatLη is isomorphic toOXη(D′ − D). We letL be the unique extension ofLη

overX such thatP ∗(L) ∼= OS . ThenL is torsion inPic(X), and:

L ∼= OX(D′ −D − π∗E)

for some divisorE on S (E is unique up to rational equivalence). It follows thatD′ is numerically
equivalent toD+π∗E, which means that for every divisorF onX one has the equality of intersection
numbers〈D′, F 〉 = 〈D,F 〉+ 〈π∗E,F 〉. In this geometric case, heights are intersection numbers. Let
M be an ample line bundle onX. Then the height of a divisorF with respect toM is the intersection
number〈F,M〉. We have:

〈D′,M〉 = 〈D,M〉+ 〈π∗E,M〉 = 〈D,M〉+ deg(E) deg(M),

wheredeg(M) is the degree ofM on the fibers ofπ. So we must bounddeg(E) from above. Now
π∗L(D) is an invertibleOS-module. Lets be a non-zero rational section ofπ∗L(D), then we can
take E = −div(s), and views as a global section ofL(D + π∗E), with divisor D′. We have
deg(E) = −deg(π∗L(D)). The Grothendieck-Riemann-Roch theorem forπ says:

deg(π∗L(D))− dimk(R1 f∗L(D)) =
1
2
〈D,D − Ω1

X/S〉+
1
12
〈Ω1

X/S ,Ω1
X/S〉.

If D is a sum of sectionsP1 + · · ·+ Pg, we find:

deg(E) = −dimk(R1 f∗L(D))− 1
2

∑
i6=j

〈Pi, Pj〉 −
1
12
〈Ω1

X/S ,Ω1
X/S〉+

∑
i

〈Pi,Ω1
X/S〉.
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The first three terms of the right hand side of the last identity are less than or equal to zero. The last
term is the sum of the heights of thePi, with respect toΩ1

X/S , hence is not too large.
This computation in the function field case is a strong indication that the arithmetic Riemann-Roch

theorem from Arakelov theory (see [7, 8, 23,and 22]) can be successfully applied to bound the height
of D′ in the number field case. We expect that the number of digits needed in the numerical part of
the computation offα is polynomial inl.

2.c. Innovation
We mention some innovative aspects of our approach.

1. Point counting without restriction on the characteristicp of the finite field.

2. Explicit computation of modl Galois representations associated to modular forms of higher
weight. This should be seen as a first step beyond class field theory into making the Langlands
correspondence available computationally. This also applies to the function field case.

3. Computing higher degreéetale cohomology with its Galois action.

4. The use of numerical analysis together with computer algebra in the context of jacobian varieties
of curves of high genus.

5. The application of Arakelov theory in this context.

2.d. Plan of work

2.d.1. Developments since 2002
Up to this point, this proposal is the same as the one that was submitted, without success, alas, in

2002. Before giving the plan of work let us give an account of the developments since 2002, at a level
intended for experts in arithmetic algebraic geometry.

In the p-adic methods, the most important progress is Lauder’s use of differential equations for
families of varieties, via the Gauss-Manin connection (see [13]). Also, Satoh’s method for elliptic
curves overFq with q = pm has been improved to a running timem2 instead ofm3. For hyperel-
liptic curves of small genus andp = 2, the same running timem2 has been achieved by “arithmetic
geometric mean” methods by Mestre, Lercier and Lubicz (see [16]). Carls’s thesis (Groningen and
Leiden) extends this last method to higher dimension, and arbitraryp. Gerkmann’s thesis (Essen) ex-
tends Kedlaya’s method to more general varieties. These results concerning thep-adic methods have
no consequences, good or bad, for this research proposal.

In 2003 and 2004, Edixhoven and some collaborators worked out part of the plan of work of the
2002 version of this proposal. First of all, Edixhoven extended the height estimate from the case above,
for curves with everywhere good reduction in the function field case, to curves with everywhere stable
reduction over function fields. He did some successful computer calculations for elliptic curves, that
showed how formal integration of power series can be used efficiently for the numerical part. He
showed that in our case we can approximate all Galois conjugates of the algebraic numberα above.
This means that lattice reduction (LLL algorithm) is no longer required to pass from approximations
to exact knowledge. Edixhoven found, by reducing the geometry ofX1(l)modulo l, a divisorD
(supported in the cusps) that satisfies the essential condition that the space of global sections ofL(D)
is one-dimensional. Hence the randomization ofD proposed above is no longer necessary in this
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case. Edixhoven showed, by considering the termR1 f∗L(D), that the numerical work can be done
r-adically for a suitable small prime numberr. In this way, the complexity of the approximation
method is significantly easier to analyze.

Edixhoven and Robin de Jong (a PhD student of van der Geer in Amsterdam) succeeded in applying
the arithmetic Faltings Riemann Roch theorem and the arithmetic Noether formula to get an upper
bound for〈D′ −D,P 〉+ log # R1 f∗L(D) which they can show to be polynomial inl. The Green’s
functions that arise here are controlled by very recent work of Merkl, and, independently, Jorgensen
and Kramer. This control also allows us to pass from bounds on intersection numbers onX1(l) to
bounds for the height of the minimum polynomial ofα. Couveignes is making a serious study of the
complexity of the numerical analysis part. Together, Couveignes, Edixhoven, and de Jong found a
construction of a suitable functionf on X1(l) such thatα := f(Q1) + · · · + f(Qg) is a generator
of Q(x). As a consequence, all the occurrences of the term “almost certainly” in the preceding parts
of this proposal can be replaced by certainties.

2.d.2. Mod l Galois representations associated to modular forms
This part of the project is now in a state where Edixhoven, de Jong, and Couveignes are working

out the details, and writing them up. This will still take some time, but there is no doubt that a joint
article on this part can be finished in 2005. That article will clearly prove that the modl Galois
representations associated to the modular form∆ can be computed in time polynomial inl. The
article will be written in such a way that the subsequent generalization to arbitrary modular forms
only requires some technicalities that do not arise for∆ (for example, if the levelN of the form is
not square free, the semistable models of theX1(Nl) are not explicitly known). This generalization
will be the subject of a second article. Robin de Jong will start as Postdoc 1 (see the budget below) in
Leiden in January 2005.

Johan Bosman started as a PhD student in June 2004. He will explicitly compute the Galois rep-
resentations associated to∆ for as many primesl as possible. From that he will be able to compute
τ(p) for primesp that are much larger than currently possible. His computations should also give an
idea of the real precision needed for the numerical work, which we expect to be much smaller than
the theoretical upper bound that Edixhoven and de Jong will prove. From January 2005 on, Bosman
will be PhD 1 in the budget below.

Once the existence of a polynomial time algorithm is established, it becomes important to study the
running timelm in more detail, and try to get the exponentm to be as small as possible. This involves,
among others, a more detailed study of the Arakelov invariants of modular curves, and possibly also
some variations on the approach. This will be a task for PhD 2 and Postdoc 2. The details will depend
on the candidates for these positions.

2.d.3. The function field case
A subproject that has not yet been mentioned is to apply the same approach to function fields, for

example, in the case of Drinfeld modular curves. In that case, our methods give an algorithm to
compute the two-dimensional representations modulol of absolute Galois groups of function fields
in one variable over finite fields. As one can use ordinary algebraic geometry instead of Arakelov
geometry, this case is easier, and no problems are to be expected. As we now know that the numerical
part can be done at a place of good reduction (as in the number field case), this part should not cause
new problems.

PhD 3 will be assigned to this subproject.
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2.d.4. More general motives, point counting
Once we know how to treat motives associated to modular forms, we will try to treat more general

motives, and do point counting on varieties corresponding to the motives that we can treat. For
example, a long term project will be to try to deal with curves of arbitrary genus, although truly new
ideas will be required here. Another long term project is to try to use the motives that one can treat
for applications to cryptology, just as elliptic curves, but here too, new ideas are required. Postdoc 3
will be selected for this subproject.

2.d.5. Popularizing mathematics
In addition to the description of the proposed research, we want to say a few words on education.

We want to contribute to the existing initiatives (Pythagoras, Stichting Vierkant voor Wiskunde) for
improving the public image of mathematics, and for providing interested students in high schools
and elementary schools with interesting and challenging material. Since August 2003, Edixhoven is
president of the board of Vierkant voor Wiskunde. The Summer camps organized by Vierkant attract
roughly the same number of participants as the total number of first year mathematics students in
all of the Netherlands, which shows how important these initiatives are. Edixhoven also helps with
setting up a Dutch server for WIMS (WWW Interactive Multipurpose Server), a server for Interactive
mathematics (and other things) on the Internet, seehttp://wims.unice.fr/ .

2.d.6 Collaboration
Details on the research groups in mathematics of the host institution (Universiteit Leiden) can be

found at the address:http://www.math.leidenuniv.nl . Of particular interest is the number
theory group, in view of the use of algorithmic algebraic number theory and effective Galois theory
in the project; it is for this research group (in addition to the geometry group) that the results of the
project are the most interesting. We therefore expect a particularly fruitful collaboration between the
future geometry group and the number theory group (the most important one in the Netherlands). The
expertise of the differential equations and the numerical analysis groups can become important for the
analytic part of Arakelov geometry and the numerical part of the project.

Nationally, we expect the following collaborations.

• van der Put and Top in Groningen, for the subproject concerning Drinfeld modular curves.

• Moonen and van der Geer in Amsterdam (Arakelov theory, Shimura varieties, algebraic geom-
etry in general).

• EIDMA (cryptography, error correcting codes).

International collaborations.

• Couveignes (Toulouse), who is interested in the entire project, and has precise ideas about the
numerical part.

• Stein (Harvard), for algorithmic questions on modular symbols.

• Moret-Bailly, Autissier (Rennes), Abbes and Ullmo (Paris), Zhang (New York), for Arakelov
theory related to modular curves.

• Kedlaya (M.I.T.), Lauder (Oxford), Wan (Irvine), Berthelot and Le Stum (Rennes), to keep in
touch with the developments ofp-adic methods; in particular, Edixhoven is still a member of
the Arithmetic Algebraic Geometry TMR Network, attached to Rennes.
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No. 127 (1985), Sociét́e Math́ematique de France, 1990.

24. S. Zhang.Admissible pairing on a curve. Invent. math.112(1993), no. 1, 171–193.
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Cost estimates

3.a. Budget

2005 2006 2007 2008 2009 total

Staff costs (in ke):

Applicant (0.4fte) 52 53 55 57 59 276

Postdoc 1 (1.0 fte) 48 49 97

Postdoc 2 (1.0 fte) 48 49 97

Postdoc 3 (1.0 fte) 48 49 97

PhD 1 (1.0 fte) 35 38 40 42 155

PhD 2 (1.0 fte) 35 38 40 42 155

PhD 3 (1.0 fte) 35 38 40 42 155

programmer (0.2 fte) 6 6 6 6 6 30

Non-staff costs(in ke):

Computers/software 20 5 5 4 4 38

Books/Journals 2 2 2 2 2 10

Foreign visitors 5 5 5 5 5 25

Organization int. workshops 20 20 40

Travel and subsistence 10 10 10 10 10 50

Popularizing mathematics 5 5 5 5 5 25

Total 218 314 303 262 153 1250

3.b. Have you requested any additional grants for this project either from NWO or from any
other institution? No.

13



Curriculum vitae

4.a. Personal details
Title(s), initial(s), first name, surname: Prof. dr. , S.J., Bas, Edixhoven.
Male/female: male.
Date and place of birth: March 12, 1962, Leiden, The Netherlands.
Nationality: Dutch.
Native country parents: Netherlands.

4.b. Master’s (Doctoraal)
University/College of Higher Education: University of Utrecht.
Date: August 1985.
Main subject: Mathematics.

4.c. Doctorate
University/College of Higher Education: University of Utrecht.
Date: June 5, 1989.
Supervisor (Promotor): Prof. dr. F. Oort.
Title of thesis: Stable models of modular curves and applications.

4.d. Work experience since graduating

1. Charles B. Morrey junior Assistant Professor at the university of California at Berkeley, from
July 1989 until July 1991, full time, fixed term.

2. Constantijn en Christiaan Huygens fellow, employed by N.W.O., from July 1991 until October
1992, based at the university of Utrecht, full time, fixed term.

3. Professor at the university of Rennes 1, since October 1992 (promoted to “première classe”
since September 1998), full time, tenured (“en détachement” since September 2002). Super-
vised four PhD. students: Jeroen van Beele (with Murre, PhD. Leiden, 1994), Pierre Parent
(Rennes, 1999, now “maı̂tre de conf́erences” at the university of Bordeaux), Andreı̈ Yafaev
(Rennes, 2000, now lecturer at University College of London), Gabor Wiese (started in Decem-
ber 2001).

4. Professor at the university of Leiden, from September 1, 2002, full time, tenured. PhD. students:
Gabor Wiese followed me to Leiden, Theo van den Bogaart started on September 1, 2002, Johan
Bosman started on June 1, 2004. Assistants: Martin Lübke, “universitair docent”. Postdoc:
Robin de Jong will start on January 1, 2005.

4.e. Man-years of research(since doctorate) 14 years and 9 months.
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4.f. Brief summary of research over last five years
Edixhoven works in arithmetic geometry. Algebraic geometers study geometric properties of so-

lutions of systems of polynomial equations. Classically, the coefficients and solutions were complex
numbers. Number theorists consider integer or rational coefficients and solutions. The goal of arith-
metic geometry is to understand the relations between algebraic geometry and number theory.

Three important notions in arithmetic geometry are “algebraic variety” (abstraction of system of
polynomial equations), “zeta function” and “cohomology”. Zeta functions associated to algebraic va-
rieties are generating functions defined using the numbers of solutions in finite fields. Cohomology
associates vector spaces equipped with certain structures to algebraic varieties. One important aim of
arithmetic geometry is to understand the relations between the values of zeta functions at integers and
properties of the set of rational solutions. Cohomology plays an important role here. Cohomology
also provides representations of Galois groups, which is essential for Langlands’s program (relations
between such representations and “automorphic” representations of matrix groups). The most striking
results obtained in this field are the proof of Weil’s conjectures (Dwork, Grothendieck, Deligne), Falt-
ings’s proof of Mordell’s conjecture, Fontaine’s theory (comparison between certain cohomologies),
Wiles’s proof of Fermat’s Last Theorem, and Lafforgue’s result on Langlands’s conjectures.

Edixhoven’s research fits well in this general picture. The main themes are: modular forms, modular
curves and more general Shimura varieties, Galois representations, Néron models, elliptic curves,
Schoof’s algorithm.

Shimura varieties are algebraic varieties defined by matrix groups, hence directly related to Lang-
lands’s program. For example, the group of2 by 2 matrices gives modular curves, modular forms,
modular parameterizations (and hence arithmetic information) of elliptic curves (Wiles, Kolyvagin,
Kato).

Number 11 of the list of publications is applied, in that article, to arithmetic of elliptic curves.
Coleman, Kaskel and Ribet used article 15 in their study of “torsion packets”. Darmon and Merel used
article 16 for some variants of Fermat’s Last Theorem. Article 44 gives strong results on a conjecture
of Manin. Articles 22 and 24 are other examples of applications of the geometry of modular curves.

Article 13 solves a problem concerning certain Hecke algebras, using motives and Fontaine’s theory.
It eliminates an hypothesis often made in deformation theory of Galois representations, and shows that
Ramanujan’s inequality should be strict.

Articles 14, 18, 20 and 23 solve instances of the André–Oort conjecture on “special points” on
Shimura varieties. Article 20 fills a gap in Wolfart’s work on algebraicity of values of hypergeometric
functions at algebraic numbers. Article 23 is applied by Cornut in his proof of a conjecture by Mazur
on the arithmetic of elliptic curves.

Finally, the article 45 and many of the lectures from 80 on are concerned with computational aspects
of modular forms, and form the start of the proposed research project.

4.g. International activities
Participant of the Research Training Network “Arithmetic Algebraic Geometry” of the European

Community, under the programs “Improving Human Potential and the Socio-Economic Knowledge
Base” and “Training and Mobility of Researchers (and of one of its predecessors: “p-adic methods in
Algebraic Geometry”).

Participant of the Erasmus Mundus Master program ALgebra, Geometry And Number Theory by
the universities of Bordeaux, Leiden and Padova, see
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www.math.u-bordeaux1.fr/ALGANT/ .

See the list of publications for invited lectures at international conferences, and for joint publica-
tions.

Recent invitations.

1. Research Center “Centre de Recerca Matematica Institut d’Estudis Catalans” in Barcelona, Au-
gust 1996.

2. University of Georgia at Athens, one week in February 1997, for a series of four lectures.

3. Miller visiting professor, University of California at Berkeley, March, April and May 1997.

4. Tata institute for fundamental research, Bombay. Three weeks in February 1998.

5. Mathematical Sciences Institute, Madras, one week in February 1998.

6. M.I.T., Boston, one week in January 2000.

7. University of Utrecht, one month: June 20000.

8. Oberwolfach, “Arithmetic Geometry”, one week, August 2000.

9. MSRI, Berkeley, one week in December 2000.

10. Research Center “Centre de Recerca Matematica Institut d’Estudis Catalans” in Barcelona, two
weeks in July 2001, for teaching a course at a Summer School.

11. Lorentz Instituut, University of Leiden, one week in September 2001, and one week in Decem-
ber 2001.

12. McGill University, Montreal, invited lecturer for the CNTA/ACTN meeting, May 2002.

13. Oberwolfach, “Arithmetic and Differential Galois groups”, one week, July 2002.

14. Invited lecturer at the Lenstra Treurfeest, Berkeley, March 2003.

15. American Institute of Mathematics Research Conference Center, Palo Alto, workshop “Future
Directions in Algorithmic Number Theory”, March 2003.

16. Luminy, conference onp-adic and modp representations ofp-adic groups and Iwasawa theory,
one week, June 2003.

17. Rennes, conference “Semaine cohomologique de Rennes”, June 2003.

18. Oberwolfach, workshop “Explicit methods in number theory”, one week, July 2003.

19. Banff, conference “Current trends in arithmetic geometry and number theory”, Banff Interna-
tional Research Center, August 2003.

20. Luminy, conference “Groupes de Galois arithmétiques et diff́erentiels”, one week, March 2004.

21. Miniworkshop “Calcul de représentations Galoisiennes associéesà une forme modulaire” held
in Rennes, one week in May 2004, with Jean-Marc Couveignes and Robin de Jong.
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22. Conference “Shimura varieties, lattices and symmetric spaces”, Graduate School Zürich Berlin,
Ascona, May 2004.

23. University of Essen, Conference on the occasion of Frey’s 60th birthday, June 2004.

24. Oberwolfach, workshop “Arithmetic Algebraic Geometry”, one week, August 2004.

4.h. Other academic activities

Participation in the organization of conferences, etc.

1. Algebraic geometry seminar of the university of Rennes (one session per week), April 1993
until July 1999.

2. Conference on the work of Wiles and Taylor, Lunteren, March 1995.

3. Seminar at the Institut Henri Poincaré on the work of Wiles and Taylor.

4. Conference in the honour of F. Oort’s 60th birthday, Utrecht, June 1995.

5. Special session on modular forms, during the Conference of the Mathematical Societies of the
Netherlands, Belgium, Luxemburg and the U.S.A., Antwerp, May 1996.

6. Summer School on elliptic curves, August 11–29, 1997, ICTP, Trieste, Italy.

7. Instructional conference “Formes modulaires et représentations galoisiennes : une introduc-
tion”, Luminy, November 3–7, 1997.

8. Conference and workshop “Arithmetic Geometry”, Utrecht, June 2000.

9. Cryptography seminar of the university of Rennes and the CELAR (Centre Electronique de
l’Armement), since December 2001.

10. Geometry seminar at the university of Leiden, since October 2002.

11. EIDMA-Stieltjes Graduate course “Mathematics of cryptology”, Lorentz Center, Leiden, one
week, September 2003.

12. Workshop “Mathematics of cryptology”, Lorentz Center in Leiden, one week, September/Octo-
ber 2003.

13. Workshop “On the conjecture of André and Oort: Special points in Shimura varieties”, Lorentz
Center in Leiden, one week, December 2003.

14. Workshop “Algebraic Cycles and Motives”, together with Jan Nagel (Lille) and Chris Peters
(Grenoble), Lorentz Center in Leiden, one week, August/September 2004.

Membership of editorial boards.

1. Compositio Mathematica (editor since 2000, (co)managing editor since 2003).

2. Journal de Th́eorie des Nombres de Bordeaux (1998–2004).
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3. Expositiones Mathematicae (since 2003).

4. Journal of Number Theory (since 2004).

Membership of committees.

1. Wetenschapscommissie Stieltjes Instituut.

2. Program board mathematics for the Lorentz center.

3. Commission de spécialistes (hiring committee of the department of mathematics) of the Uni-
versit́e de Toulouse 2.

4. Committee for the evaluation of the “Laboratoire d’Analyse, Géoḿetrie et Applications”, uni-
versit́e Paris 13, April 2003.

5. Beoordelingscommissie wiskunde, Open competitie N.W.O., vanaf 2003.

6. Lid van het C.J. Kokfonds.

Administrative responsibilities.

1. Co-director (together with X.P. Wang of Nantes) of the “Ecole Doctorale Mathématiques de
l’Ouest” (graduate affairs of the universities of Angers, Brest, Nantes and Rennes), 1996–2000.

2. Member of the “commission des thèses” of the “Ŕeseau Doctoral Ouest Mathématiques” (a
committee that proposes referees for PhD. theses). Until September 2002.

3. Director of the DEA (Dipl̂ome d’Etudes Approfondies) “Mathématiques fondamentales et ap-
plications”, 2000-2001.

4. President of the library committee of the departments of mathematics and computer science in
Leiden.

5. President of the “Opleidings Commissie Wiskunde” at Leiden university, since 2004.

Collaboration with industry.

1. Organization of a small research project (“stage de DEA”, 5 months) on geometric error cor-
recting codes, done at Canon Recherche France (Rennes).

2. Organization of a long term research project on geometric error correcting codes at Canon
Recherche France (Rennes).

3. In the process of establishing a contract with the French Ministry of Defense (CELAR, Rennes).

Re-edition of mathematical texts.

1. Edixhoven has launched a project to have the volumes of Grothendieck’s “Séminaire de Ǵeoḿe-
trie Algébrique” typeset in TeX, by volunteers. (For details, see personal home page.)
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Public relations for and popularization of mathematics.

1. President of the board of “Stichting Vierkant voor Wiskunde”, since August 2003.

2. Coordination of the mathematical part at Leiden of the “nationale wetenschapsdag”, annually,
since October 2003.

4.i. Scholarships and prizes (last five years)

1. Prime d’encadrement doctoral et de recherche, from October 1994 until September 2002, about
4.5ke extra salary, annually.

2. Junior Member of the Institut Universitaire de France, from July 1995 until July 2000, about
15ke for research, annually, plus a reduction of 2/3 of the teaching load.

3. Correspondent of the Dutch Academy of Sciences, from April 2001 until September 2002
(ended automatically after return to the Netherlands), no money involved.

List of publications

Many of the following items can be found on the author’s personal web page.

5. Publications

International (refereed) journals

1. Minimal resolution and stable reduction of X0(N). Annales de l’Institut Fourier, Grenoble,40,
1, 31–67 (1990).

2. L’action de l’algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes
modulaires est “Eisenstein”. Courbes modulaires et courbes de Shimura, Astérisque 196–197,
59–70 (1991).

3. Elliptic curves over the rationals with bad reduction at only one prime. Co-auteurs: A. de Groot
and J. Top. Mathematics of Computation54, 413–419 (1990).

4. On the Manin constants of modular elliptic curves. Arithmetic Algebraic Geometry, Progress
in Mathematics 89 (G. van der Geer, F. Oort, J. Steenbrink editors), 25–39, Birkhäuser (1990).

5. Néron models and tame ramification. Compositio Mathematica81, 291–306 (1992).

6. The weight in Serre’s conjectures on modular forms. Inventiones Mathematicae109, 563–594S
(1992).

7. Arithmetic part of Faltings’s proof. This is Chapter XI of the book “Diophantine approxima-
tion and abelian varieties”, Lecture Notes in Mathematics 1566 (Edixhoven and Evertse, eds.),
Springer-Verlag (1993).
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8. Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur).
Séminaire Bourbaki, exposé 782 (1994). Ast́erisque 227, 209–227 (1995).

9. On the prime-to-p part of the groups of connected components of Néron models. Compositio
Mathematica 97, 29–49 (1995).

10. The p-part of the group of components. With Q. Liu and D. Lorenzini. Journal of Algebraic
Geometry, Volume 5, Number 4, October 1996, 801–813.

11. Specialization of Heegner divisors on jacobians of Shimura curves. Appendix to the articleS
“A rigid analytic Gross-Zagier formula and arithmetic applications” by M. Bertolini and H.
Darmon. Annals of Mathematics 146, 138–147 (1997).

12. Serre’s conjecture. In : Modular Forms and Fermat’s Last Theorem (Gary Cornell, Joseph
Silverman and Glenn Stevens, editors). Springer-Verlag, 1997, 209–242.

13. On the semi-simplicity of the Up operator on modular forms. With R.F. Coleman. Mathematis-
che Annalen 310, 119–127, (1998).

14. Special points on the product of two modular curves. Compositio Mathematica 114, 315–328
(1998).

15. On Néron models, divisors, and modular curves. Journal of the Ramanujan Mathematical Soci-S
ety 13, 157–194 (1998).

16. Sur un résultat d’Imin Chen. With Bart de Smit. Mathematical Research Letters, Volume 7,
Number 2–3, 147–154 (2000).

17. Pull-back components of the space of holomorphic foliations on CP(N), N at least 3. With D.
Cerveau et A. Lins Neto. Journal of Algebraic Geometry 10 (2001), no. 4, 695–711.

18. On the André-Oort conjecture for Hilbert modular surfaces. In “Moduli of abelian varieties”,
Progress in Mathematics 195 (2001), 133–155, Birkhäuser.

19. Rational elliptic curves are modular (after Breuil, Conrad, Diamond and Taylor). Séminaire
Bourbaki, 52̀eme anńee, 1999–2000, exposé 871. Ast́erisque 276, 161–188 (2002).

20. Subvarieties of Shimura varieties. With A. Yafaev. Annals of Mathematics, Volume 157, No. 2,
March 2003, 621–645.

21. Hasse invariant and group cohomology. With C. Khare. Documenta Mathematica 8 (2003),
43–50.

22. The Néron model of J1(p) has connected fibers. With B. Conrad and W. Stein. Documenta
Mathematica 8 (2003), 331–408.

23. Special points on products of modular curves. Accepted for publication in Duke Mathematical
Journal. [arXiv:math.NT/0302138]

24. Comparison of integral structures on spaces of modular forms of weight two, and compu-
tation of spaces of forms mod 2 of weight one, with appendices by Jean-François Mestre
and Gabor Wiese. Accepted for publication in the Journal de Mathématiques de Jussieu.
[arXiv:math.NT/0312019]
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National (refereed) journals

25. Le rôle de la conjecture de Serre dans la démonstration du théorème de Fermat. Gazette des
Mathématiciens, October 1995, 25–41.

Books, or contributions to books

The contributions mentioned here are also mentioned above, under “international refereed journals”
because their contents have been refereed, and are of international character.
Most of the editorial work on the second item (LNM 1566) was done by Edixhoven.

26. On the Manin constants of modular elliptic curves. Arithmetic Algebraic Geometry, Progress
in Mathematics 89 (G. van der Geer, F. Oort, J. Steenbrink editors), 25–39, Birkhäuser (1990).

27. Diophantine approximation and abelian varieties, Lecture Notes in Mathematics 1566 (Edix-
hoven and Evertse, eds.), Springer-Verlag (1993, 2nd printing 1997).

28. Serre’s conjecture. In : Modular Forms and Fermat’s Last Theorem (Gary Cornell, Joseph
Silverman and Glenn Stevens, editors). Springer-Verlag, 1997, 209–242.

29. On the André-Oort conjecture for Hilbert modular surfaces. Moduli of abelian varieties, Pro-
gress in Mathematics 195 (2001), 133–155, Birkhäuser.

Other

Items 31–42 are available from the author’s personal home page.

30. The Polyakov measure and the modular height function. Proceedings of the Arbeitstagung
“Arithmetische Algebraische Geometrie 1987”, Wuppertal (org.: G. Faltings and G. Wüstholz).

31. Stable models of modular curves and applications. Thesis, university of Utrecht, June 1989.

32. Relations entre développements en série de Fourier d’une nouvelle forme. Proceedings of the
conference “Arithḿetique et surfaces algébriques”, Caen, June 11-12, 1993.

33. Algèbre avancée. Syllabus for a third year course in Rennes (in french).

34. Théorie algébrique des nombres. Syllabus for a fourth year course in Rennes (in french).

35. Groupes et algèbres de Lie. Syllabus for a DEA course (5th year) in Rennes (in english).

36. Variétés abéliennes. Syllabus for a DEA course (5th year) in Rennes (in english).

37. Géométrie variable. Syllabus for a DEA course (5th year) in Rennes (in english).

38. Variétés jacobiennes. Syllabus for a DEA course (5th year) in Rennes (in english).

39. The modular curves X0(N). Syllabus for a Summer Course in Trieste, August 1997.

40. Meetkunde/Geometry. Syllabus for a 3rd/4th year course in Leiden, Fall 2002.
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41. Point counting after Kedlaya. Syllabus for the EIDMA-Stieltjes Graduate course “MathematicsS
of Cryptology”, at the Lorentz Center in Leiden, September 2003.

42. Van piramides tot modulaire krommen. Inaugural lecture, Leiden, January 2004, printed ver-
sion, 20 pages. Also: Nieuw Archief voor Wiskunde, June 2004, 98–105.

43. De Rham cohomology. Syllabus, 25 pages, for a 3rd year geometry course in Leiden, Spring
2004.

44. Modular parametrizations at primes of bad reduction. Article in preparation.

45. Computation of mod l Galois representations associated to modular forms. Together with J-M.S
Couveignes and R. de Jong. Article in preparation.

Selection of invited lectures (for a complete list, see the author’s personal web page).

46. The Polyakov measure and the modular height function. Arithmetische Algebraische Geome-
trie, Wuppertal, June 1987.

47. Hecke action on component groups of Néron models of jacobians of modular curves. Abelian
varieties, number theory and physics, Schloss Ringberg, July 1988.

48. The graph method for X0(p2). Algorithmes en th́eorie des nombres, Luminy, September 1988.

49. On the Manin constants of strong Weil curves. Compactification of the moduli space of abelian
varieties, Oberwolfach, May 1989.

50. Néron models of abelian varieties and tame ramification. Queens University (Canada), Jan-
uary 1990.

51. On the weight of the modular form in Serre’s conjectures. Meeting of the Am. Math. Soc., 863,
San Fransisco, January 1991.

52. Sur la mauvaise réduction des paramétrisations modulaires des courbes elliptiques sur Q. Sé-
minaire d’Arithmétique et Ǵeoḿetrie Algebrique, Orsay (France), January 1992.

53. Points rationnels de torsion de courbes elliptiques sur des corps de nombres (d’après Kamienny
et Mazur). Séminaire Bourbaki, Paris, March 1994.

54. Fermat’s Last Theorem. Closing lecture at the annual conference of the Dutch mathematical
society. Leiden, April 1994.

55. The prime-to-p part of the groups of connected components of Néron models. Jourńeesp-
adiques, Strasbourg, November 1994.

56. Les groupes de composantes connexes des modèles de Néron. Séminaire d’arithḿetique et de
géoḿetrie alǵebrique d’Orsay, January 1995.

57. On the Galois representations associated to modular forms. Lowering the level. Two lectures at
the conference on the results of Wiles, Lunteren (Netherlands), March 1995.

58. Ajustement du niveau et du poids. La propriété de Gorenstein pour les algèbres de Hecke. Two
lectures at the “Śeminaire sur les travaux de Wiles”, I.H.P., Paris, April 1995.
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59. Introduction to the arithmetic theory of modular forms. Series of three lectures during an “in-
structional conference” at Trento, June 1995.

60. Lissité, semi-stabilité et altérations, d’après de Jong. Jourńee IUFà l’IHES, October 1995.

61. Groups of connected components of Néron models. Number theory seminars of Cambridge and
of Oxford, October/November 1995.

62. Simplicity of Frobenius eigenvalues in Galois representations associated to modular forms.
Conference at the 50th anniversary of the SMC, Amsterdam, February 1996.

63. Oort’s conjecture for pairs of elliptic curves. Arithmetic Geometry conference, Berlin, March
21–26, 1996.

64. Two results on modular curves. Conference onp-adic methods in algebraic geometry, Platja
d’Aro (Spain), September 23–27, 1997.

65. Points spéciaux sur le produit de deux courbes modulaires. Séminaire de ǵeoḿetrie alǵebrique
et arithḿetique, Orsay, October 22, 1997.

66. On the Manin constants of modular parametrizations of elliptic curves. Series of four lectures
at Athens (Georgia, U.S.A.), February 25-28, 1997.

67. On the semi-simplicity of the Up-operator on modular forms. Number theory seminar, Berkeley,
April 2, 1997.

68. Polynomial relations between j-invariants of elliptic curves. Mathematics colloquium, Berke-
ley, May 1, 1997.

69. On Néron models, divisors, and modular curves. Institut Henri Poincaŕe, June 23, 1997.

70. The modular curves X0(N). Minicourse of 7 hours at the “Summer School on elliptic curves”,
August 11–29, 1997, ICTP, Trieste.

71. Polynomial relations between j-invariants of elliptic curves. Mathematics colloquium, Tata
Institute, Bombay, February 19, 1998.

72. On the semi-simplicity of the Up-operator on modular forms. Mathematics colloquium, Math-
ematical Sciences Institute of Madras, February 27, 1998.

73. On the André-Oort conjecture. Jourńees Arithḿetiques, Rome, July 12–17, 1999.

74. Sur la conjecture d’André-Oort. Séminaire automorphe, January 2000, Paris.

75. Sur la modularité des courbes elliptiques rationnelles. Séminaire Bourbaki, March 2000, Paris.

76. Hecke modules, and suitable deformation problems. Arithmetic Geometry, June 2000, Utrecht.

77. On the André-Oort conjecture. Workshop Arithmetic Geometry, Oberwolfach, July 31, 2000.

78. Subvarieties of Shimura varieties. AMS meeting New York, November 2000.

79. Sous-variétés de variétés de Shimura. Séminaire d’arithḿetique et de ǵeoḿetrie alǵebrique
d’Orsay, November 2000.
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80. On the computation of coefficients of modular forms. Workshop Computational ArithmeticS
Geometry, MSRI, Berkeley, December 2000.

81. Modular forms, Galois representations and local Langlands. Course of 15 hours at the “Centre
de Recerca Matem̀atica”, Barcelona, July 2001.

82. On computing coefficients of modular forms. Conference “L-functions from algebraic geome-S
try”, Lorentz Center, Leiden, September 2001.

83. Computing spaces of modular forms mod 2 of weight one. Miniworkshop on Algebraic Vari-
eties, Rome, January 18–19, 2002.

84. Plenary Lecture at the Seventh Canadian Number Theory Association meeting to take place on
May 19-25, 2002 in Montreal, Quebec (Canada).

85. Modular parametrisations 1, Modular parametrisations 2, Non-triviality of Heegner points 1:
André–Oort conjecture, Non-triviality of Heegner points 2. Ecole d’́et́e de l’Institut de Math́e-
matiques de Jussieu (Paris),la conjecture de Birch et Swinnerton-Dyer, four one hour lectures,
July 2002.

86. Computing etale cohomology with Galois action. Arithmetic and Differential Galois groups,S
Oberwolfach, July 2002.

87. Galois action and complex multiplication. Workshop “Explicit algebraic number theory”, held
at the Lorentz center, University of Leiden, September 2002.

88. Formes modulaires modulo p de poids un et symboles modulaires. Algebraic geometry seminar,
Rennes, October 2002.

89. Counting solutions of systems of equations over finite fields. Colloquium, Groningen, OctoberS
2002.

90. Formes modulaires modulo p de poids un et symboles modulaires. Seminar, Universit́e de
Paris 7, November 2002.

91. Equations for covers of P1. Intercity Number Theory seminar, Nijmegen, November 2002.S

92. On rational points on modular curves, after Pierre Parent. Cohomology of Moduli Spaces,
Amsterdam, December 2002.

93. Counting solutions of systems of equations over finite fields. Colloquium, Amsterdam, JanuaryS
2003.

94. Counting solutions of systems of equations over finite fields. Colloquium, Leiden, January 2003S

95. Counting solutions of systems of equations over finite fields. This weeks discoveries collo-S
quium, Leiden, February 2003.

96. On special ntuples of elliptic curves. Berkeley, Lenstra Treurfeest, invited speaker, March 2003.

97. About point counting over arbitrary finite fields. Palo Alto, Workshop on Future directions inS
algorithmic number theory, invited lecturer, March 2003.
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98. On the computation of the field of definition of torsion points on jacobians. Intercity Seminar-S
ium Getaltheorie, April 2003.

99. A propos des sous-variétés spéciales des variétés de Shimura; la conjecture d’André-Oort. Se-
maine cohomologique de Rennes, June 2003.

100. Computing fields of definition of torsion points. Workshop “Explicit methods in number the-S
ory”, Oberwolfach, July 2003.

101. Point counting on hyperelliptic curves. Three one hour lectures, EIDMA-Stieltjes GraduateS
Course, Lorentz Center, Leiden, September 2003.

102. A possible generalisation of Schoof’s algorithm. Workshop “Mathematics of Cryptology”, Lei-S
den, September/October 2003.

103. Sur le calcul du corps de définition d’un point de torsion d’une jacobienne d’une courbe deS
genre quelconque. Séminaire de Th́eorie des Nombres de Montpellier, October 2003.

104. A simple introduction to special points in Shimura varieties. Colloquium, Utrecht, December
2003.

105. Galois action on special points. Intercity Seminar Number Theory, Utrecht, December 2003.

106. Galois Orbits, Hecke Correspondences, Intersections. Workshop “Special points in Shimura
Varieties”, Lorentz Center, Leiden, December 2003.

107. Van piramides tot modulaire krommen. Inaugural lecture, Leiden, January 2004.

108. Sur le calcul du corps de définition d’un point de torsion d’une jacobienne d’une courbe deS
genre quelconque. Séminaire de cryptographie, Rennes, January 2004.

109. Stacks: geometry. Intercity Seminar Geometry, Leiden, February 2004.

110. Mijn favoriete rekenmachine is gratis. Nationale Wiskunde Dagen, Noordwijkerhout, February
2004.

111. Stacks: sheaves and cohomology. Intercity Seminar Geometry, Utrecht, February 2004.

112. The André-Oort conjecture. Conference on Shimura varieties, lattices and symmetric spaces,
organised by the ETH Z̈urich and the Humboldt University of Berlin. Monte Verità, Ascona,
May 2004.

113. On certain l-torsion points of J1(l). At the conference “From Arithmetic to Cryptology”,S
Essen, July 2004.

114. Computation of mod l Galois representations associated to modular forms. Workshop Arith-S
metic Algebraic Geometry (organisers Faltings, Harder, Katz), Oberwolfach, August 2004.
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