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Introduction

The classical Riemann-Roch problem can be stated as follows in modern language. For
a compact Riemann surface X of genus g and a divisor D on X, how can we calculate
dimH0(X,OX(D))? There is no general answer to this question. Instead, we can show that

dimH0(X,OX(D))− dimH0(X,OX(K −D)) = degD + 1− g,
where K is the cotangent bundle of X and degD is the degree of D. This is the Riemann-
Roch theorem for Riemann surfaces. Invoking Serre duality and writing L = OX(D), we see
that the Riemann-Roch theorem is equivalent to

dimH0(X,L)− dimH1(X,L) =

∫
X

(
c1(K∨)

2
+ c1(L)

)
,

where c1 is the first Chern class and K∨ is the dual of K. The left-hand side of this equation
is the Euler characteristic χ(X,L). Now, one would like to generalize the Riemann-Roch
theorem to compact complex manifolds X of any dimension, i.e., to give a formula for χ(X,L)
when L is a line bundle on X. The general formula was shown by Hirzebruch ([Hirz]): for
any holomorphic vector bundle E on a compact complex manifold X, we have that

χ(X, E) =

∫
X

ch(E) td(X),

where ch(E) is the Chern character of E and td(X) is the Todd class of the tangent bundle
TX of X. Now, the above theorem is known as the Hirzebruch-Riemann-Roch theorem and
could also be interpreted as

some cohomological invariant of E =

∫
X

(some characteristic class of X and E) .

By now, the importance of the Euler characteristic

χ(X,E) =
∑

(−1)i dimH i(X,E)

was noticed.

In proving a Riemann-Roch theorem for smooth projective varieties, Grothendieck took on a
completely different approach. For starters, the base field C was replaced by a field of any
characteristic. Hirzebruch’s analytic methods are thus not applicable. Also, Grothendieck
proved a “relativized version” of the Riemann-Roch theorem which is much more powerful
than Hirzebruch’s theorem. For example, in a review of Grothendieck’s work for Mathematical
Reviews, Bott wrote “Grothendieck has generalized the theorem to the point where not only it
is more generally applicable than Hirzebruch’s version, but it depends on a simpler and more
natural proof”. Moreover, while developing “the” right setting for his theorem, he developed
many new concepts such as K-theory and λ-rings while providing new perspectives for in-
tersection theory and characteristic classes. By “the” right setting, we mean Grothendieck’s
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2 INTRODUCTION

idea to consider all coherent sheaves (i.e., not just the locally free ones) and to replace the
cohomology ring by the Chow ring.

We can explain Grothendieck’s approach by looking a bit closer at Hirzebruch’s theorem. Let
X be a compact complex variety and let f be a morphism from X to a point. We can rewrite
Hirzebruch’s theorem as∑

(−1)i dimRif∗E = f∗ (ch(E) td(X)) ,(1)

where f∗ on the left-hand side is the direct image functor (i.e., global sections) and f∗ on the
right-hand side is the Gysin homomorphism (i.e., integration). Now, let X be a projective
smooth variety over a field k with structure morphism f : X −→ Spec k. Assuming we have
defined “the” right objects, the Riemann-Roch theorem for f should be similar to equation (1).
A proof of such a theorem could then be approached as follows. One starts by embedding
X into a projective space Pn

k via a closed immersion i : X −→ Pn
k . Then, one proves

equation (1) with f replaced by i and combines this with some simple facts about projective
spaces. Grothendieck actually took a much more general approach and considered morphisms
f : X −→ Y of smooth projective varieties. As it turns out, there is not a big difference
between the proof of the above case and this case because f factors into a closed immersion
X −→ Pn

Y and the projection Pn
Y −→ Y . Now, the Grothendieck-Riemann-Roch theorem

can be summarised in the following statement: if f : X −→ Y is a proper morphism of smooth
quasi-projective varieties over a field k, the following diagram

K0(X)
ch · td(X) //

f!
��

A·(X)⊗Z Q

f∗
��

K0(Y )
ch · td(Y ) // A·(Y )⊗Z Q

is commutative. The objects and the maps will be explained in Chapter 1 and 2. We
give examples and applications of the Grothendieck-Riemann-Roch theorem in Chapter 3.
The Grothendieck-Riemann-Roch theorem turns out be of fundamental value in the study
of heights for certain covers of varieties fibered over a curve as we shall see in Section 6 of
Chapter 3.

A ring will always be unitary, associative and commutative unless stated otherwise.

Ik wil graag Bas Edixhoven bedanken. Ik heb met groot genoegen gewerkt aan deze scriptie
waarvan het onderwerp mij werd voorgelegd door hem. Ik voel me ook genoodzaakt hem te
bedanken voor de hulp die hij me heeft geboden vanaf de dag dat ik hem vroeg of ik in Parijs
kon studeren. Uiteraard ben ik ook veel dank verschuldigd aan meneer Murre. Onze lange
gesprekken over wiskunde hebben zeker een grote rol gespeeld in mijn keuze om verder te gaan
in de wiskunde. In het bijzonder hebben ze de beslissing naar Parijs te gaan ook een tikkeltje
zwaarder gemaakt. Je tiens à remercier Professeur Bost d’avoir accepté de me diriger à Paris.
Ces conseils étaient d’une grande aide. Ik wil ook graag Robin de Jong bedanken voor zijn
suggesties en het corrigeren van deze scriptie. This thesis would not have been possible if it
weren’t for the Algant programme. Doing my first year in Paris was one of the most amazing
experiences I have had educationwise. Ik dank Arno voor het beantwoorden van mijn vragen.



CHAPTER 1

Grothendieck’s K0-theory

1. Grothendieck groups

Let C be a full additive subcategory of an abelian category A.

Example 1.1. The category of A-modules is abelian for any ring A. The category of finitely
generated A-modules is a full additive subcategory. It is abelian if and only if A is noetherian.

Let Ob(C) denote the class of objects in C and let Ob(C)/ ∼= be the set of isomorphism classes1.
Let F (C) be the free abelian group on Ob(C)/ ∼=, i.e., an element T ∈ F (C) is a finite formal
sum ∑

nX [X],

where [X] denotes the isomorphism class of X ∈ Ob(C) and nX is an integer.

Definition 1.2. To any sequence

(E) 0 // M ′ // M // M ′′ // 0

in C, which is exact in A, we associate the element Q(E) = [M ]− [M ′]− [M ′′] in F (C). Let
H(C) be the subgroup generated by the elements Q(E), where E is a short exact sequence.
We define the Grothendieck group, denoted by K(C), as the quotient group

K(C) = F (C)/H(C).

• The Grothendieck group K(C) depends onA. Therefore, we will always make explicit
what A is. In case C itself is abelian, we will always take A = C.
• The class of an element α ∈ F (C) in K(C) is denoted by clC(α) or just cl(α). This

gives us a homomorphism cl : F (C) −→ K(C) such that any homomorphism F (C) −→
A of abelian groups which is additive on short exact sequences factors uniquely
through K(C).
• Since C ⊂ A is an additive category, it has finite direct sums and a zero object.

Clearly cl(0) = 0 and cl(M) = cl(M ′) in K0(C) for any two isomorphic objects M
and M ′ of C. By the fact that the sequence

0 // M // M ⊕N // N // 0

is exact in A, the addition in K0(C) is given by cl(M ⊕N) = cl(M) + cl(N).

Example 1.3. Let us give some examples.

1Here we should restrict ourselves to categories C for which Ob(C)/ ∼= is a set. Such categories are called
skeletally small categories.
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4 1. GROTHENDIECK’S K0-THEORY

(1) Let A be a ring and let C denote the (abelian) category of A-modules. To avoid set-
theoretical difficulties, the reader may consider A-modules of bounded cardinality.
For any A-module M , it holds that M ⊕

(⊕
n∈NM

) ∼= ⊕n∈NM . Thus

cl(M) + cl(
⊕
n∈N

M) = cl(
⊕
n∈N

M)

and cl(M) = 0 in K(C). We see that K(C) = 0.
(2) More generally, for any additive category C which admits countable direct sums, we

have that K0(C) = 0. (This is independent of the abelian category A.)
(3) Let A be a principal ideal domain and C denote the (abelian) category of finitely

generated A-modules. By the structure theorem of A-modules, any finitely generated
A-module is isomorphic to the direct sum of a free module and a torsion module,
where the latter is isomorphic to a direct sum of cyclic modules. The rank of a
finitely generated A-module is defined as the rank of its free part. The rank gives
us a surjective map rk : Ob(C)/ ∼=−→ Z which induces a surjective homomorphism
from F (C) to Z. Since the rank is additive on short exact sequences, it induces a
homomorphism K(C) −→ Z. For any nonzero ideal I = (x), we have a short exact
sequence

0 // A
·x // A // A/I // 0

and therefore that cl(A/I) = 0 in K(C). Thus, since the rank of A equals 1, the rank
induces an isomorphism from K(C) to Z.

(4) Let A be a ring and let Cm be the category of finitely generated free A-modules of
rank 0 or rank greater than or equal to some fixed positive integer m. Since it has
finite direct sums and the zero object, it is an additive subcategory of the abelian
category C of finitely generated free A-modules. Assuming A 6= 0, for m ≥ 2, the
kernel of the natural projection Am+1 −→ Am is not an object of Cm. Therefore, Cm
is not an abelian subcategory in this case. Assuming A is a principal ideal domain,
the reasoning above shows that the rank map induces an isomorphism K(Cm) ∼= Z
with generator cl(Am+1) − cl(Am). In particular, the natural inclusion Cm ⊂ C
induces an isomorphism on the level of Grothendieck groups.

(5) Let A be a local ring with residue field k. Let C denote the category of finitely
generated projective A-modules viewed as a full subcategory of the abelian category
of A-modules. By Nakayama’s Lemma, every finitely generated projective A-module
M is isomorphic to a free A-module of rank equal to dimkM ⊗A k. We see that the
rank induces an isomorphism K(C) ∼= Z.

(6) Let C be the category of finite abelian p-groups for some prime number p. The length
of such a group induces an isomorphism K(C) −→ Z.

The above construction of the Grothendieck group coincides with the more general construc-
tion of the Grothendieck group associated to an exact category in [Weibel, Chapter II.7].

2. The Grothendieck group of coherent sheaves

References for the basics of coherent sheaves are [Liu, Chapter 5] and [Har, Chapter II.5].
Although we will precise this always, every scheme will be noetherian.

Let X be a noetherian scheme.



2. THE GROTHENDIECK GROUP OF COHERENT SHEAVES 5

Let Coh(X) denote the category of coherent sheaves on X. It is a full abelian subcategory of
the category of OX -modules. If X = SpecA is affine, the global sections functor Γ(X,−) gives
an equivalence of categories from Coh(X) to the category of finitely generated A-modules.

Its quasi-inverse assigns to each finitely generated A-module M the coherent sheaf M̃ .

Definition 1.4. The Grothendieck group of coherent sheaves of X, denoted by K0(X), is
defined as

K0(X) := K(Coh(X)) = F (Coh(X))/H(Coh(X)).

For a ring A, we write K0(A) = K0(SpecA). By the equivalence of categories, K0(A) is the
Grothendieck group associated to the category of finitely generated A-modules.

Example 1.5. Let K be the function field of P1
k and let η be its generic point. The map

K0(P1
k) −→ Z⊕ Z given by F 7→ (dimK Fη, χ(P1,F)) is an isomorphism.

Example 1.6. Let x be a closed point in X. Then K0({x}) = K0(k(x)) ∼= Z.

For completeness, we state the following well-known Lemma ([BorSer, Proposition 1]).

Lemma 1.7. Let U be an open subset of X and let F be a coherent sheaf on U . Then there
is a coherent sheaf G on X such that G|U ∼= F . Moreover, if there is a coherent sheaf G on X
with F ⊂ G|U , then there is a coherent sheaf F ′ on X which extends F such that F ′ ⊂ G. �

Recall that the support of a coherent sheaf F on X, denoted by SuppF , is the subset of
points x ∈ X such that Fx 6= 0. Since the stalk Fx = 0 if and only if F|U = 0 for some open
neighborhood U of x, the support of F is a closed subset of X. In fact, SuppF is the closed
subscheme defined by the sheaf of ideals Ann F and F is the extension by zero of a coherent
sheaf on V (Ann F).

Lemma 1.8. Let F be a coherent sheaf on X with support S. Then there is a filtration

F = F0 ⊃ F1 ⊃ . . . ⊃ Fn = 0,

where Fi is a coherent sheaf on X with support in S, such that Fi/Fi−1 is an OS-module.

Proof. Let I be the ideal sheaf defining S in X. It suffices to show that InF = 0 for
some integer n ∈ Z. Then the filtration

F = I0F ⊃ IF ⊃ I2F ⊃ . . . ⊃ In−1F ⊃ 0

will be of the desired form. Thus, let x ∈ S and let U = SpecA be an affine open subset of
X containing x. Let I be the ideal of A defining U ∩ S and let M = F(U). Note that M is a
finitely generated A-module. For f ∈ I, let D(f) be the complement of V (f) in SpecA and
note that M ⊗A Af = 0. That is, all elements of M are annihilated by a power of f . Since
M is finitely generated, there is an integer r ∈ Z such that f rM = 0. Therefore, since I is
also finitely generated (A is noetherian), there is an integer s ∈ Z such that IsM = 0. Now,
covering X by a finite number of affine open subsets, we see that InF = 0 for some integer
n ∈ Z. �

Theorem 1.9. (Localization sequence) Let Y ⊂ X be a closed subscheme of (the noe-
therian scheme) X and X\Y = U . There exists a sequence

K0(Y ) // K0(X) // K0(U) // 0

for which the first arrow is induced by extension by zero of sheaves from Y to X and the
second arrow is induced by the restriction of sheaves from X to U . This sequence is exact.
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Proof. It is clear that this sequence exists. (The extension by zero is an exact functor in
this case and so is the restriction of sheaves.) By Lemma 1.7, the map on the right is surjective.
Furthermore, it is clear that the composition of the two maps is zero. Therefore, we have
a natural surjective homomorphism β : A −→ K0(U), where A = K0(X)/im(K0(Y )) is the
cokernel of the first map. To prove the theorem, it suffices to give an inverse γ : K0(U) −→ A
to β.

Firstly, suppose that F is a coherent sheaf on U which extends to a coherent sheaf G on X.
We claim that the image of G in A only depends on F . To prove this we consider another
extension G′ of F and the diagonal embedding

F −→ F ×F = (G × G′)|U .
By definition, the composition with a projection on the first or second factor is given by the
identity morphism F −→ F . By Lemma 1.7, there exists a coherent subsheaf G′′ ⊂ G × G′
such that G′′|U = F . Therefore, there is also a morphism ϕ : G′′ −→ G which induces the
identity on U . The exact sequence corresponding to the morphism ϕ shows that

cl(kerϕ)− cl(cokerϕ) = cl(G′′)− cl(G).

Since Supp kerϕ ∩ U = Supp cokerϕ ∩ U = ∅, we see that Supp kerϕ,Supp cokerϕ ⊂ Y . By
Lemma 1.8, we have that cl(G′′) − cl(G) is in the image of the map K0(Y ) −→ K0(X). We
conclude that G′′ = G in A. Similarly, one can show that G′′ = G′ in A. Therefore, G = G′
in A. Thus, for any extension G of F , we may denote its image in A by γ(F). To finish the
proof, we shall show that the map γ : K0(U) −→ A is well-defined (i.e., the assignment γ is
additive on short exact sequences). To prove this we let

0 // F ′ // F // F ′′ // 0

be a short exact sequence of sheaves on U . By Lemma 1.7, we may choose an extension G of
F to X. Then F ′ extends to a subsheaf G′ of G and F ′′ extends to the quotient sheaf G/G′.
This shows that the map γ is indeed additive on short exact sequence, by the fact that it is
independent of the extension one chooses. �

Corollary 1.10. For any noetherian scheme X, it holds that the restriction homomorphism

K0(X ×Z Spec Z[t]) −→ K0(X ×Z Spec Z[t,
1

t
])

induced by the open immersion Spec Z[t, 1
t ] −→ Spec Z[t] is an isomorphism. In particular,

for any noetherian ring A, we have that K0(A[t]) ∼= K0(A[t, 1
t ]).

Proof. The open immersion Spec Z[t, 1
t ] −→ Spec Z[t] induces an open immersion X ×Z

Spec Z[t, 1
t ] −→ X×ZSpec Z[t] by base change. Note that the closed subscheme X×ZSpec Z =

X is the complement of X ×Z Spec Z[t, 1
t ]. By the exact sequence

K0(X) // K0(X ×Z A1
Z) // K0(X ×Z Spec Z[t, 1

t ])
// 0 ,

it suffices to show that the first homomorphism K0(X) −→ K0(X ×Z A1
Z) is zero. To prove

this, note that we have a short exact sequence of coherent sheaves

0 // p∗F ·t // p∗F // i∗F // 0 .

Here p : A1
X −→ X is the projection and i : X −→ A1

X is the closed immersion (as above). �
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Example 1.11. Let p be a maximal ideal of a principal ideal domain A and let n ≥ 1 be an
integer. Note that A/pnA is a zero-dimensional local noetherian ring. The length induces an
isomorphism K0(A/pn) −→ Z with generator the class of A/p.

Example 1.12. Let n ≥ 1. Let A be a principal ideal domain and let Y ⊂ SpecA[x1, . . . , xn]
be the closed subscheme defined by the ideal I ⊂ A and choosing x1 = x2 = . . . = xn = 0.
There is an exact sequence of abelian groups

K0(A/I) // K0(An
A) // K0(U) // 0 ,

where U = An
A − Y . Let us show that the homomorphism K0(A/I) −→ K0(An

A) is the zero
map. We distinguish two cases.

(1) Suppose that I = 0. We have a short exact sequence of A[x1, . . . , xn]-modules

0 // A[x1] // A[x1] // A // 0 .

This shows that the class of A is zero in K0(An
A). Since K0(A) ∼= Z with generator

(the class of) A, we conclude that K0(A) −→ K0(An
A) is the zero map,

(2) Suppose that I 6= 0. For any nonzero ideal J = xA, we have a short exact sequence
of A-modules

0 // A
·x // A // A/J // 0 .

Therefore, the homomorphism K0(A/I) −→ K0(A) is zero. From the functoriality
of extension by zero, we can conclude that the composition K0(A/I) −→ K0(A) −→
K0(An

A) is zero.

For a morphism f : X −→ Y of schemes, the direct image of a sheaf F on X is denoted by
f∗F . This defines a functor f∗ from the category of sheaves on X to the category of sheaves
on Y .

Example 1.13. For a closed immersion f : X −→ Y , the direct image coincides with the
extension by zero of a sheaf. In particular, the functor f∗ is exact in this case.

Example 1.14. For a field k and morphism f : X −→ Spec k, the push-forward coincides
with the global sections functor f∗ = Γ(X,−). In general, this functor is only left exact. Its
right derived functors in the category of sheaves on X are the cohomology functors H i(X,−).

Recall that f∗ is right adjoint to the inverse image functor f−1. Therefore, it is left exact.
We can form the right derived functors Rif∗ in the category of sheaves on X. These functors
are called the higher direct image functors. It is not hard to see that, for any sheaf F on X,
it holds that Rif∗(F) is the sheaf associated to the presheaf

V 7→ H i(f−1(V ),F|f−1(V ))

on Y . In particular, for any noetherian and finite-dimensional scheme, we have that Rif∗ = 0
when i > dimX.

Example 1.15. Let k be a field and let f : A1
k −→ Spec k be the projection. Then f∗k̃[x]

can be identified with the the k-module k[x] which is clearly not finitely generated. Thus,
the direct image does not preserve coherence necessarily. Note that f is not proper. (Make a
change of basis by taking the product of A1

k over k and note that the image of the hyperbola
xy − 1 is not closed.)
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Example 1.16. Suppose that f is a closed immersion. Then Rif∗ = 0 for i > 0. Furthermore,
since f is a finite morphism, we have that R0f∗F is coherent if F is coherent.

Let f : X −→ Y be a morphism of noetherian schemes. Recall that the derived functors of
f∗ in the category of sheaves on X coincide with the derived functors of f∗ in the category of
OX -modules.

Theorem 1.17. Suppose that f is proper. Let F be a coherent sheaf on X. For any i ≥ 0,
the higher direct image Rif∗F is a coherent sheaf on Y .

Proof. Since the question is local on Y , we may assume Y = SpecA is affine with A a
noetherian ring. Now, let us show that

Rif∗F ∼= ˜H i(X,F)(2)

as sheaves on Y . Firstly, note that this holds for i = 0 by the fact that f∗F is quasi-coherent
on Y . Secondly, since the “tilde” functor ˜ from the category of A-modules to the category
of OY -modules is exact, we see that both sides of (2) are δ-functors from the category of
quasi-coherent sheaves on X to the category of OY -modules. But both sides are effaceable
for i > 0. (Any quasi-coherent sheaf F on X can be embedded in a flasque, quasi-coherent
sheaf.) Thus, there is a unique isomorphism of δ-functors which gives the isomorphism in (2)

by the fact that R0f∗F ∼= ˜Γ(X,F). We conclude that Rif∗F is quasi-coherent. Since the
coherence is a bit more tricky, we will now assume f to be projective. This will suffice for
our applications. The general proof uses Chow’s Lemma ([Har, Chapter II, Exercise 4.10]),
which says that proper morphisms are fairly close to projective morphisms.

By the above, we have to show that H i(X,F) is a finitely generated A-module when f :
X −→ SpecA is projective. There is a closed immersion i : X −→ Pm

A for some integer m.
This allows us to reduce to the case X = Pm

A . Explicit computations in Cech cohomology
show that H i(X,F) is finitely generated for sheaves of the form OX(n), n ∈ Z. The same
holds for direct sums of such sheaves. Now, for a general coherent sheaf F on X, we have a
short exact sequence

0 −→ K −→ E −→ F −→ 0.

Here E is a direct sum of sheaves OX(n) and K is coherent. In fact, there exists an integer
n < 0 such that the twisted sheaf F(−n) is generated by its global sections. Since X is quasi-
compact, we may cover X with a finite number of open affine subsets Ui (i = 1, . . . , d). On
each Ui, we have that F(−n)(Ui) is generated by a finite number of global sections. Therefore,
there exist a finite number of global sections s1, . . . , sr ∈ F(−n)(X) which generate F(−n)
on every open Ui. Therefore there is a surjective morphism OrX −→ F(−n). Tensoring this
with OX(n) gives a surjective morphism OrX(n) −→ F . Its kernel is K by definition. Now,
the long exact sequence of cohomology applied to the above short exact sequence implies the
result by descending induction on i. �

From the previous theorem we get the following facts. For any coherent sheaf F on X, the
element cl(Rif∗F) is well-defined in K0(Y ). Then, assuming X to be also finite-dimensional,
the alternating sum

∑
(−1)icl(Rif∗F) is well-defined in K0(Y ). Note that the long exact

sequence for derived functors shows that the map [F ] 7→
∑

(−1)icl(Rif∗F) is additive on short
exact sequences and therefore induces a homomorphism K0(X) −→ K0(Y ). This morphism
is denoted by f!. By the Leray spectral sequence, we have that g! ◦ f! = (g ◦ f)!.
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We conclude that K0 is a covariant functor from the category of noetherian and finite-
dimensional schemes with proper morphisms to the category of abelian groups. To a morphism
f : X −→ Y one assigns the morphism of abelian groups f! : K0(X) −→ K0(Y ) given by
f!cl(F) =

∑
(−1)icl(Rif∗F).

The proof of the following Proposition illustrates a technique called Dévissage.

Proposition 1.18. The extension by zero K0(Xred) −→ K0(X) is an isomorphism.

Proof. We treat the affine case X = SpecA, where A is noetherian. Let I =
√

0 be the
nilradical of A. Since A is noetherian, there exists a positive integer n such that In = 0. For
any module A-module M , we have a chain of submodules

0 = InM ⊂ In−1M ⊂ . . . ⊂ IM ⊂M

such that IiM/Ii+1M = IiM ⊗A A/I is a module over A/I. We see that

cl(M) = cl(M/IM) + cl(IM/I2M) + . . .+ cl(In−1M)

in K0(A). This implies that the homomorphism K0(A/I) −→ K0(A) is bijective. (In fact,
from the above filtration for M , it is clear that the homomorphism K0(A/I) −→ K0(A) is
surjective. An inverse to this morphism is given by assigning to the class of each A-module
M the element

∑
cl(IiM ⊗A A/I) in K0(A/I). It is easy to see that this is well-defined and

inverse to the homomorphism K0(A/I) −→ K0(A).)

In the general case, the reader may verify that the proof is similar to the proof of Lemma 1.8.
In fact, for any coherent sheaf F on X, we have a chain of subsheaves

F = F0 ⊃ F1 ⊃ . . . ⊃ Fn = 0

such that Fi/Fi−1 is an OXred
-module. To prove this, one covers X with a finite number of

affine open subsets. �

3. The geometry of K0(X)

Let A be a noetherian ring and M a finitely generated A-module. The support of M is the

subset SuppM = Supp M̃ ⊂ SpecA. We already noted that SuppM = V (AnnM), where
AnnM = {a ∈ A | aM = 0} is the annihilator of M in A. The following Theorem (which
can be found in [Ser]) is a bit more precise then Lemma 1.8.

Theorem 1.19. There exists a chain of submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that Mi/Mi−1
∼= A/pi, where pi is a prime ideal of A. �

Let X be a noetherian scheme. The class of a coherent sheaf F in K0(X) is denoted by cl(F).

Definition 1.20. A cycle on X is an element of the free abelian group Z(X) on the closed
integral subschemes of X. That is, an element of Z(X) is a finite formal sum

∑
nV [V ], where

V is a closed integral subscheme of X and nV is an integer.



10 1. GROTHENDIECK’S K0-THEORY

Remark 1.21. For any open subset U ⊂ X with complement Y ⊂ X, we have a split exact
sequence of abelian groups

0 −→ Z(Y ) −→ Z(X) −→ Z(U) −→ 0.

The first map is induced by the inclusion Y ⊂ X and is clearly injective. The second map is
induced by the restriction map [V ] 7→ [V ∩ U ]. Its left-inverse is given by assigning to each
closed integral subscheme V of U its closure V in X. The latter is again an integral subscheme
of X. The exactness in the middle is verified easily. We conclude that Z(X) ∼= Z(Y )⊕Z(U).
In particular, Z(X) = Z(Xred).

The following theorem reveals the geometric nature of K0(X).

Theorem 1.22. The homomorphism Z(X) −→ K0(X) defined by [V ] 7→ cl(OV ) is surjective.

Proof. The affine case goes as follows. If X = SpecA is an affine scheme, the above map
γ : Z(X) −→ K0(A) is given by [V (p)] 7→ cl(A/p). Let M be a finitely generated A-module,
where A is a noetherian ring. By Theorem 1.19, it has a chain of submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that Mi/Mi−1
∼= A/pi, where pi is a prime ideal of A. This implies that

cl(M) = cl(A/pn)+cl(Mn−1) = cl(A/pn)+cl(A/pn−1)+. . .+cl(A/p1) = γ([V (pn)]+. . .+[V (p1)]).

Now, for the general case, let U = SpecA be an open affine in X with complement Y .
The groups Z(Y ) and K0(Y ) are independent of the closed subscheme structure put on Y .
By noetherian induction, we may assume that Z(Y ) −→ K0(Y ) is surjective. We have a
commutative diagram

0 // Z(Y ) //

��

Z(X)

��

// ZU

��

// 0

K0(Y ) // K0(X) // K0(U) // 0

,

where the rows are exact. The homomorphism Z(U) −→ K0(U) is surjective. By a diagram
chase, we conclude that the homomorphism Z(X) −→ K0(X) is surjective. �

Let us briefly return to the affine setting. That is, let M be a finitely generated A-module,
where A is a noetherian ring. For the convenience of the reader, we include the proof of the
following theorem.

Theorem 1.23. The support of M consists of only maximal ideals if and only if M is of finite
length.

Proof. Suppose that M is of finite length and let 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M be
a composition series, i.e., we have that Mi/Mi−1

∼= A/mi with mi a maximal ideal. Then we
have exact sequences

0 // Mi
// Mi+1

// Mi+1/Mi
// 0 .

By induction, we have that

SuppM = ∪ni=1 SuppMi/Mi−1 = ∪i SuppA/mi = {m1, . . . ,mn}.
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Conversely, suppose that SuppM consists of only maximal ideals. We may suppose that
M 6= 0. Then SuppM 6= ∅. Let (x1, . . . , xn) be a minimal set of generators for M and
consider the proper submodule N generated by (x1, . . . , xn−1). It is clear that SuppM =
SuppN ∪ SuppM/N . Therefore, by induction on n, it suffices to show the theorem for M
cyclic. (A composition series for N and M/N gives rise to a composition series for M .) To
prove this, let x ∈ M such that M = Ax. Note that M ∼= A/Ann(x). By the assumption
that SuppM = SuppA/Ann(x) = V (Ann(x)) consists of only maximal ideals, we have
that all prime ideals containing Ann(x) are maximal. This implies that the noetherian ring
A/Ann(x) is zero-dimensional. In particular, A/Ann(x) is artinian. Thus M is of finite
length over A/Ann(x) since it is both noetherian and artinian. But since Ann(x)M = 0, we
have that M is of finite length over A. �

Example 1.24. Let k be a field. Let us show that K0(A) ∼= Z · k[x] ⊕ Z · k[y], where
A = k[x, y]/(xy). We claim that K0(A) is generated by the classes of the A-modules

k[x] = A/(y), k[y] = A/(x), k[x]/(f) = A/(y, f), k[y]/(g) = A/(x, g),

where f ∈ k[x] is an irreducible polynomial and g ∈ k[y] is an irreducible polynomial. Let us
verify this. Take a finitely generated nonzero A-module M . We have precisely two generic
points: ηx and ηy. The residue field of ηx is k(y) and the residue field of ηy is k(x). Let
r = rkM(x) be the rank of M at ηx and let s = rkM(y). Clearly, we have an injective
homomorphism

k[x]r ⊕ k[y]s −→M

whose cokernel N is torsion. Since N is torsion, it has finite support. Therefore, its support
must consist of only maximal ideals. (It can’t contain a generic point. Else it would be
infinite.) Thus, it has a composition series by the above Theorem. As in the proof of Theorem
1.22, this shows that N is a finite sum of the form∑

f irreducible

nf · cl(k[x]/(f)) +
∑

g irreducible

mg · cl(k[y]/(g))

in the Grothendieck group. (In K0(A) write N as the sum of the simple quotients that appear
in its composition series.) This proves the claim. Now, for any nonzero f ∈ k[x], the short
exact sequence of A-modules

0 −→ k[x] −→ k[x] −→ k[x]/(f) −→ 0

shows that the class of k[x]/(f) is zero in K0(A). Similarly, for any nonzero g ∈ k[y], the
class of k[y]/(g) is zero in K0(A). Hence K0(A) is generated by (the classes of) k[x] and k[y].
These are linearly independent over Z. In fact, suppose that a · k[x] + b · k[y] = 0, where
a, b ∈ Z. Take the rank at (y) to see that a = 0. Similarly, take the rank at (x) to see that
b = 0. Thus, we conclude that K0(A) ∼= Z · k[x]⊕ Z · k[y].

We now go back to geometry.

Let X be an algebraic scheme, i.e., a scheme of finite type over a field. In particular, we
have that X is noetherian and finite-dimensional. The free abelian group Z(X) = Z ·(X) =⊕

r∈Z Z
r(X) is graded by codimension. Here Zr(X) denotes the free abelian group on the

closed integral subschemes of codimension r. For a cycle α ∈ Z ·(X), we let α(r) be its
component in Zr(X). Now, for later use, we shall formulate a “graded” version of Theorem
1.22.
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Remark 1.25. If we let Zr(X) denote the free abelian group on the closed integral subschemes
of dimension r, then Zr(X) = Zn−r(X) when X is an n-dimensional separated irreducible
scheme of finite type over a field. If X is not irreducible and separated, these gradings might
not be renumberings of each other.

Example 1.26. Let k be an algebraically closed field and let X = Spec k[t] = A1
k. Then

Z0(X) = Z and Z1(X) = k(t)∗/k∗.

Suppose that X is separated and irreducible.

Remark 1.27. For any irreducible closed subset Y ⊂ X with complement U , the sequence

0 −→ Zr−c(Y ) −→ Zr(X) −→ Zr(U) −→ 0

is split exact. Here c = codim(Y,X) and r ∈ Z.

In general, the Grothendieck group K0(X) is not naturally graded. Instead, it has a topolog-
ical2 filtration

K0(X) = F 0X ⊃ F 1X ⊃ . . . . . . ⊃ F dimXX ⊃ F dimX+1X = 0,

where we define
F iX = 〈cl(F) ∈ K0(X) | codim SuppF ≥ i〉.

Let F be a coherent sheaf on X and let w be a generic point of S. Since the local ring OS,w
is zero-dimensional, the stalk Fw is of finite length over OX,w.

Definition 1.28. For a coherent sheaf F on X, we define the cycle

[F ] :=
∑

W⊂SuppF

(
lengthOX,w Fw

)
[W ] ∈ Z ·(X).

Here the sum runs through all irreducible components W of SuppF with generic point w
which are of codimension 0 in SuppF . For a closed subscheme V of X, we put

[V ] := [OV ] =
∑
W⊂V

(
lengthOV,w OV,w

)
[W ] ∈ Z ·(X).

Also, for any integral subscheme V , this does not conflict with our previous notation for the
class of V in Z(X).

Example 1.29. Let A be a principal ideal domain and X = Spec A. To give a coherent
sheaf on X is to give a finitely generated A-module M . For such an A-module M , there are
irreducible f1, . . . , fr ∈ A such that M ∼= ArkM ⊕

⊕r
i=1M(fi). Here M(f) = A/(fn1)⊕ . . .⊕

A/(fns) for some integers n1, . . . , ns. We can show that

[M ] =

{
rkM · [A] if M is not torsion

(nf11 + . . .+ nf1s1) · [A/f1] + . . .+ (nfr1 + . . .+ nfrsr ) · [A/fr] if M is torsion

The formula is obvious when M is not torsion. In case M is torsion, the formula is clear since
the length of A/fnA over A is n.

Proposition 1.30. For any coherent sheaf F with support of codimension r, it holds that
the image of [F ] under the morphism ZrX −→ F rX/F r+1X equals the image of cl(F) in
F rX/F r+1X. In particular, the homomorphism ZrX −→ F rX/F r+1X is surjective.

2Opposed to having also another filtration which is called the γ-filtration.
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Proof. For any finitely generated A-module M , if p is a minimal prime ideal of SuppM ,
the number of times A/p occurs in a filtration for M (as in the proof of Theorem 1.22) is
precisely the length of Mp over Ap. �

4. The Grothendieck group of vector bundles

Let X be a noetherian scheme. Let Vect(X) denote the category of vector bundles on X. By
abuse of language, a vector bundle on X will be a coherent sheaf on X which is locally free.
A morphism of vector bundles on X is a morphism of OX -modules. For any noetherian affine
scheme X = SpecA, the global sections functor Γ(X,−) gives an equivalence of categories
from Vect(X) to the category of finitely generated projective A-modules.

Example 1.31. Let S and T be P1
k, where k is an algebraically closed field. Let π : S −→ T

be the morphism given by [x : y] 7→ [xn : yn]. Note that π is a finite morphism. Let m ≡ r
mod n, where 0 ≤ r < n. We have that

π∗O(m) = O(bm+ 1

n
c − 1)⊕(n−r−1)

⊕
O(dm+ 1

n
e − 1)⊕(r+1).

To prove this formula, cover S by S1 = Spec k[s] and S2 = Spec k[s−1]. Similarly, cover T
by T1 = Spec k[t] and T2 = Spec k[t−1]. Now, O(m)(S1) is a free k[s]-module of rank 1.
For any basis (e) of O(m)(S1) as a free k[s]-module, we have that (s−2me) is a basis for the
free k[1

s ]-module O(m)(S2). By the definition of π∗, we have that (π∗O(m))(T1) is O(m)(S1)

considered as a k[t]-module. Therefore, it has a basis (e, se, s2e, . . . , sn−1e). Similarly, the

k[1
t ]-module (π∗O(m))(T2) has a basis (s−2me, s−(2m+1)e, . . . , s−(2m+n−1)e). We may order

these bases such that corresponding elements have exponents of s congruent modulo n. The
above formula now follows from some combinatorics. For example, when m = 0, we see that
we get a transition matrix between our bases which is diagonal with entries (1, t−1, . . . , t−1).

The corresponding vector bundle is thus O⊕O(−1)⊕(n−1). When m = 1, we get a transition

matrix (t−1, . . . , t−1, t, t). Therefore π∗O(1) = O(−1)⊕(n−2) ⊕O(1)⊕2.

Note that Vect(X) is a full additive subcategory of the abelian category Coh(X). Therefore,
we may define its Grothendieck group via this embedding.

Definition 1.32. We define the Grothendieck group of vector bundles on X, denoted by
K0(X), as

K0(X) = K(Vect(X)) = F (Vect(X))/H(Vect(X)).

For a ring A, we write K0(A) = K0(SpecA).

The tensor product with respect to OX defines a ringstructure on K0(X) where the identity is
given by the class of OX . In fact, note that any vector bundle is a flat OX -module. Therefore
the subgroup H(Vect(X)) is an ideal of the ring F (Vect(X)). This also shows that K0(X)
becomes a K0(X)-module when multiplication is defined similarly.

Remark 1.33. For any vector bundle E on X, there is a locally constant map rk : X −→ Z
which sends x to the rank of Ex. One can easily check that this defines a homomorphism
K0(X) −→ H0(X,Z). In particular, if X is nonempty, the ring K0(X) is of characteristic
zero. (For a connected scheme, the kernel of the rank morphism rk : K0(X) −→ Z is the
starting point of the so-called γ-filtration for K0(X). See Chapter 2.)
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Example 1.34. Let A be a principal ideal domain. Then the rank morphism K0(A) −→ Z
is an isomorphism of rings.

Example 1.35. Let OK be the ring of integers for a number field K. Then K0(OK) ∼=
Z ⊕ Cl(OK), where Cl(OK) is the ideal class group. In fact, for any projective finitely
generated A-module M , there is a fractional ideal a of A and an integer n ≥ 0 such that M
is isomorphic to a⊕An. Compare this to Proposition 3.1. The ringstructure on Z⊕Cl(A) is
given by (n, a)(m, b) = (nm, nb +ma).

Let f : X −→ Y be a morphism of noetherian schemes. By the adjointness of f∗ and f−1,
there is a natural morphism f−1OY −→ OX . For a coherent sheaf F on Y , the inverse image
of F is denoted by f∗F . Recall that it is defined as f∗F = f−1F ⊗f−1OY OX . For a vector
bundle E , it holds that f∗E is a vector bundle of the same rank. Also, for vector bundles E1

and E2 on Y , it holds that

f∗(E1 ⊗OY E2) = f∗E1 ⊗OX f
∗E2.

Moreover, f∗ takes short exact sequences of vector bundles into exact sequences. Therefore,
f∗ induces a ringmorphism K0(Y ) −→ K0(X) again denoted by f∗. One easily checks that
g∗ ◦ f∗ = (g ◦ f)∗ for morphisms f : X −→ Y and g : Y −→ Z.

We conclude that K0 defines a contravariant functor from the category of noetherian schemes
to the category of rings. To a morphism f : X −→ Y one assigns the morphism of rings
f∗ : K0(Y ) −→ K0(X) given by f∗cl(E) = cl(f∗E).

Example 1.36. Let k be a field and A = k[x, y]/(xy). We have that K0(A) ∼= Z with
generator the class of A. To prove this, let E be a finitely generated projective A-module.
Note that M(x)

∼= Ar(x) and that M(y)
∼= As(y), where r and s are the ranks. Localizing M at

the origin (x, y), we see that r = s. From this it easily follows that K0(A) is isomorphic to Z
under the rank mapping (at any generic point).

5. The homotopy property for K0(X)

Let X be a noetherian scheme. Then K0(X) obeys a certain localization sequence (Theorem
1.9) and it has a set of geometric generators (Theorem 1.22). Also, we have seen that the
extension by zero K0(Xred) −→ K0(X) is an isomorphism. In this section we shall show
that the group K0(X ×Z A1

Z) is naturally isomorphic to K0(X). In particular, it follows that
K0(An

A) is naturally isomorphic to K0(A) for any noetherian ring A. This will allow us to
compute the Grothendieck group of the projective n-space over a field.

Suppose that f : X −→ Y is a flat morphism of noetherian schemes. Then the functor
f∗ : Coh(Y ) −→ Coh(X) is exact. Therefore, it induces a natural homomorphism f ! :
K0(Y ) −→ K0(X). We do not write f∗ for this morphism. (See Remark 1.66.)

Let A be a noetherian ring. The inclusion of rings A ⊂ A[t] is flat and induces by base
change a flat morphism p : X ×A A1

A −→ X for any (noetherian) A-scheme X. This induces
a homomorphism p! : K0(X) −→ K0(X ×A A1

A).

Lemma 1.37. Suppose that A is reduced. Then the pull-back morphism K0(A) −→ K0(A[t])
is surjective.
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Proof. We shall proceed by noetherian induction on SpecA. By the localization theo-
rem, for any a ∈ A, we have a short exact sequence

K0(A/aA) // K0(A) // K0(Aa) // 0 .

Similarly, we have a short exact sequence

K0(A/aA[t]) // K0(A[t]) // K0(Aa[t]) // 0 .

It is easy to see that we have a commutative diagram

K0(A/aA) //

fa
��

K0(A)

��

// K0(Aa)

��

// 0

K0(A/aA[t]) // K0(A[t]) // K0(Aa[t]) // 0,

with exact rows. By the induction hypothesis, for any nonzerodivisor a ∈ A, the homomor-
phism fa is surjective. Since A is reduced, the nonzerodivisors in A form a directed system
S, where a ≤ b if and only if bA ⊂ aA. Since the direct limit of abelian groups is an exact
functor, we have a commutative diagram

lima∈SK0(A/aA) //

f
��

K0(A)

��

// lima∈SK0(Aa)

��

// 0

lima∈SK0(A/aA[t]) // K0(A[t]) // lima∈SK0(Aa[t]) // 0,

where the map f is surjective. Now, the total ring of fractions K = S−1A is a finite product
of fields

∏
i Fi. Also, for any a ∈ S, the natural inclusion Aa ⊂ K is flat and induces a

homomorphism K0(Aa) −→ K0(K). The latter induces a natural isomorphism of abelian

groups lima∈SK0(Aa)
∼ // K0(K) . Since K0(K) =

⊕
iK0(Fi), we have a commutative

diagram

lima∈SK0(A/aA) //

f

��

K0(A)

��

//
⊕

iK0(Fi)

��

// 0

lima∈SK0(A/aA[t]) // K0(A[t]) //
⊕

iK0(Fi[t]) // 0,

where the homomorphism on the right is surjective. By a diagram chase, the homomorphism
K0(A) −→ K0(A[t]) is also surjective. �

Proposition 1.38. The morphism K0(A) −→ K0(A[t]) is surjective.

Proof. Suppose that the morphism K0(A) −→ K0(A[t]) is not surjective. For any ideal
I ⊂ A, we have a commutative diagram

K0(A/I) //

��

K0(A/I[t])

��
K0(A) // K0(A[t]),

where the vertical maps are induced from the extension by zero. Since A is noetherian, among
all ideals I ⊂ A such that K0(A/I) −→ K0(A/I[t]) is not an isomorphism, there is a maximal
one J ⊂ A. Then, the ring B = A/J is such that K0(B/I) −→ K0(B/I[t]) is an isomorphism
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for every nonzero ideal I ⊂ B. By Proposition 1.18, the ring B is reduced. Thus, by the
above Lemma, the map K0(B) −→ K0(B[t]) is an isomorphism. Contradiction. �

Theorem 1.39. (Homotopy) Let X be a noetherian scheme. Then the projection p :
X ×Z A1

Z −→ X induces a bijective homomorphism

p! : K0(X) −→ K0(X ×Z A1
Z).

Proof. Let us show that p! has a left inverse. This will imply that p! is injective. The
projection Z[t] −→ Z given by t 7→ 0 induces a section π0 : X ↪→ X ×A1

Z of p. Dropping the
subscripts, we have an exact sequence

0 // OX×A1 // OX×A1 // OX // 0

of coherent sheaves on X ×A1. Thus, for any sheaf F on X ×A1, it holds that

(Liπ∗0F)OX = ToriOX×A1
(OX ,F) = 0

whenever i ≥ 2. Therefore, the map π!
0 : K0(X ×A1) −→ K0(X) given by

cl(F) 7→ cl(Tor0(OX ,F))− cl(Tor1(OX ,F))

is a well-defined homomorphism. One readily checks that π!
0 ◦ p! = id.

Now, let us show that the map p! is surjective. Let U = SpecA be an affine open subscheme
of X. Then A = OX(U) is noetherian. By applying the localization sequence to Y = X −U ,
we have a commutative diagram

K0(Y ) //

��

K0(X)

p!

��

// K0(A)

��

// 0

K0(Y ×A1) // K0(X ×A1) // K0(A[t]) // 0

with exact rows. Also, the maps on the left and right are surjective by noetherian induction
and Proposition 1.38. By a diagram chase, we may conclude that p! is surjective. �

Remark 1.40. One can deduce from the above theorem that, for any vector bundle E −→ X,
the natural morphism K0(X) −→ K0(E) is an isomorphism. (Here we view E as a scheme.)

Let us give an application of the homotopy property which is useful in proving the Grothendieck-
Riemann-Roch theorem (Theorem 3.6).

Let k be a field and suppose that X and Y are schemes of finite type over k. By base-change,
the projection morphisms X ×k Y −→ Y and X ×k Y −→ X are flat. From the pull-back
construction above, these projections induce homomorphisms K0(X) −→ K0(X ×k Y ) and
K0(Y ) −→ K0(X×kY ) which give a natural homomorphism K0(X)⊗K0(Y ) −→ K0(X×kY ).

Proposition 1.41. For any scheme X of finite type over k, the natural homomorphism

K0(X)⊗K0(Pn
k) −→ K0(X ×k Pn

k)

is surjective.
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Proof. We argue by induction on n. For n = 0, the statement is trivial. By the
localization sequence and the right exactness of K0(X)⊗−, we have a commutative diagram

K0(X)⊗K0(Pn−1
k ) //

f1
��

K0(X)⊗K0(Pn
k) //

f2
��

K0(X)⊗K0(An
k) //

f3
��

0

K0(X ×k Pn−1
k ) // K0(X ×k Pn

k) // K0(X ×k An
k) // 0

with exact rows. By the induction hypothesis, the map f1 is surjective. By Theorem 1.39,
the map f3 is bijective. By a diagram chase, we conclude that f2 is surjective. �

6. Algebraic intermezzo: Koszul complexes, complete intersections and syzygy

Let A be a noetherian ring. For elements x1, . . . , xn in A and E the free A-module of rank
n with basis (e1, . . . , en), we define the Koszul complex KA(x1, . . . , xn) associated to the
sequence (x1, . . . , xn) to be

0 // ΛnE
d // Λn−1E

d // . . . d // Λ1E = E
d // Λ0E = A // 0 .

Here the boundary map d : ΛpE −→ Λp−1E is given by

d(ei1 ∧ . . . ∧ eip) =

p∑
j=1

(−1)j−1xijei1 ∧ . . . ∧ êij ∧ . . . ∧ eip .

The reader may verify that d2 = 0. Note that for any permutation σ of the set {1, . . . , n}, the
Koszul complex KA(x1, . . . , xn) is isomorphic to the Koszul complex KA(xσ(1), . . . , xσ(n)).

Example 1.42. The Koszul complex associated to x1, x2 ∈ A is the complex

0 // A
f // A2

g // A // 0 ,

where f : a 7→ (ax2,−ax1) and g : (a, b) 7→ ax1 + bx2.

Definition 1.43. An element x ∈ A is called regular if the multiplication by x is injective.
A sequence (x1, . . . , xn) of elements x1, . . . , xn ∈ A is said to be a regular sequence if x1 is
regular and the image of xi in A/(x1A+ . . .+ xi−1A) is regular for all i = 2, . . . , n.

Remark 1.44. Any sequence of elements in the zero ring is regular. Suppose that A is not
the zero ring. Then a nonzero element x ∈ A is regular if and only if it is a nonzerodivisor.
(The zero element is a nonzerodivisor.) Furthermore, a sequence (x1, . . . , xn) is regular if and
only if the sequence (x1, . . . , xn, u) is regular for all units u ∈ A.

Examples 1.45. We give some examples.

(1) Suppose that A 6= 0. Then (0, 1) is not a regular sequence in A whereas (1, 0) is.
Thus, regular sequences are not invariant under permutation in general.

(2) The sequence (x1, . . . , xn) is regular in A[x1, . . . , xn]/(1− x1 − . . .− xn).
(3) Linear forms (f1, . . . , fn) in A = k[X1, . . . , Xn] define a regular sequence if and only

if they form a linearly independent set over k.
(4) Let A = k[x, y, z]/(xz − y). The sequence (x, y, z) is not regular in A.
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Theorem 1.46. Let (x1, . . . , xn) be a sequence in A and let I be the ideal generated by it.
Assume I 6= A.

(1) If (x1, . . . , xn) is regular, the augmented Koszul complex

0 // ΛnE
d // Λn−1E

d // . . . d // E
d // A // A/I // 0

is exact.
(2) If A is local and the augmented Koszul complex

0 // ΛnE
d // Λn−1E

d // . . . d // E
d // A // A/I // 0

is exact, the sequence (x1, . . . , xn) is regular.

Proof. See [Lang, Chapter XXI, Theorem 4.6, pp. 856]. �

Example 1.47. Let k be a field. Suppose that A = k[x, y]/(xy) and m = (x, y)A. Let
k = A/m be the corresponding residue field. Consider the infinite resolution of free A-modules

. . . g // A2 h // A2
g // A2 h // A2

g // A2
f // A // k // 0 .

Here
f : (s, t) 7→ sx+ ty, g : (s, t) 7→ (sy, tx) and h : (s, t) 7→ (sx, ty).

It is easy to see that

TorAi (k, k) =

{
k if i = 0
k2 if i > 0

.

To prove this we note that, after tensoring the above resolution with k, the maps become
zero. This shows that k does not have a finite projective resolution of A-modules. Else the
TorAi (k,−) functors would be identically zero for i � 0. In particular, the Koszul complex
does not provide us with a resolution in this case.

Definition 1.48. An ideal I ⊂ A which can be generated by a regular sequence is called a
complete intersection in A. An ideal I ⊂ A for which the localization Ip at any prime ideal
p ⊂ A is a complete intersection in Ap is called a local complete intersection.

Any complete intersection in A is a local complete intersection. (Localization is exact.)

Example 1.49. Let I be a complete intersection in A. Then the class of A/I in K0(A) equals
zero. In fact, consider a Koszul resolution for A/I and use that the alternating sum of the
binomial coefficients is zero.

As the following proposition says, the number of equations defining a complete intersection
in SpecA is precisely its codimension.

Proposition 1.50. Suppose that I is an ideal of A which can be generated by a regular
sequence (x1, . . . , xr). Then ht(I) = r.

Proof. By Krull’s theorem, ht(p) ≤ r. In particular, it holds that ht(I) ≤ r. We shall
show by induction on dimA that ht(p) ≥ r. Therefore, we may assume that the height of
p/x1A is r − 1 in A/x1A. That is, there is a chain of prime ideals

p1 ( p2 ( . . . ( pr = p
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with x1A ⊂ p1. Now, x1 does not belong to any minimal prime ideal. For, suppose that
x1 would belong to a minimal prime ideal. Since minimal prime ideals are associated to A,
we would have that x1 is a zero divisor. But that contradicts the fact that (x1, . . . , xr) is a
regular sequence. Thus, we have that p1 is not a minimal prime ideal. Therefore, there exists
a minimal prime ideal p0 such that p0 ( p1. We conclude that ht(p) ≥ r. �

Suppose that A is a local noetherian ring.

Proposition 1.51. Any minimal set of generators for a complete intersection I in A forms
a regular sequence.

Proof. We may and do assume that I 6= A. Let (x1, . . . , xn) be a regular sequence
generating I. Note that any minimal set of generators for I has precisely n elements. Thus,
suppose that (y1, . . . , yn) is a minimal set of generators for I. Then there exists an invertible
(n× n)-matrix Λ ∈ GLn(A) such that ai =

∑
Λijbj . We see that Λ induces an isomorphism

of complexes KA(x1, . . . , xn) ∼= KA(y1, . . . , yn). By Theorem 1.46, it holds that (y1, . . . , yn)
is a regular sequence. �

Let d = dimA. Recall that A is called regular if d = dimk(m/m
2). Equivalently, the maximal

ideal m can be generated by d elements. Even better, the maximal ideal m of A is a complete
intersection. (Use that a local noetherian regular ring is an integral domain and Proposition
1.50.) By Proposition 1.51, for any system of parameters (x1, . . . , xd) of A, the Koszul complex
KA(x1, . . . , xd) is exact if and only if A is regular.

Lemma 1.52. Suppose that A is a local noetherian ring with residue field k. Let M be a
finitely generated A-module and suppose that TorA1 (k,M) = 0. Then M is free.

Proof. Let (m1, . . . ,mr) be a minimal set of generators for M and consider the exact
sequence

0 // K // Ar
ε // M // 0

where ε : (a1, . . . , am) 7→
∑
aimi. The long exact sequence associated to TorA1 (k,−) gives us

a short exact sequence

0 // k ⊗A K // TorA0 (k,Ar) ∼= kr
ε⊗k// TorA0 (k,M) = k ⊗AM // 0 .

By Nakayama’s Lemma, ε ⊗ k : kr −→ k ⊗A M = M/mM is an isomorphism. Thus, 0 =
k ⊗A K = K/mK. Again by Nakayama’s Lemma, K = 0. We conclude that M is free. �

Theorem 1.53. (Syzygy) Suppose that A is a local noetherian regular ring. Let M be a
finitely generated A-module and let

0 −→ N −→ EdimA−1 −→ . . . −→ E1 −→ E0 −→M −→ 0

be an exact sequence of A-modules where the Ei are free. Then N is free.

Proof. The long exact sequence for the Tor functor shows that

TorA1 (k,N) ∼= TorAdimA+1(k,M).

This is called dimension shifting. Now, the Koszul complex provides us with a resolution for
k = A/m of length d = dimA. Therefore TorA1 (k,N) = TorAd+1(k,M) = 0.Now, apply Lemma
1.52. �
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In the next section we will give various applications of the syzygy theorem.

7. The Cartan homomorphism

Let X be a noetherian scheme. The embedding Vect(X) −→ Coh(X) of categories induces a
natural homomorphism K0(X) −→ K0(X). This is called the Cartan homomorphism.

Example 1.54. Let us give some examples of the Cartan homomorphism.

(1) Let p be a prime number, n ≥ 1 an integer and A = Z/pnZ. The Cartan homomor-
phism Z ∼= K0(A) −→ K0(A) ∼= Z sends 1 to n. (See Examples 1.3 and 1.11).

(2) Let A = k[x, y]/(xy). The Cartan homomorphism Z −→ Z ⊕ Z is given by the
diagonal embedding. (See Example 1.24 and 1.36.)

Lemma 1.55. Suppose that X is regular and finite-dimensional. Let F be a coherent sheaf
and suppose that

0 −→ G −→ Ep −→ . . . −→ E1 −→ E0 −→ F −→ 0(3)

is an exact sequence of coherent sheaves, where Ei is a vector bundle for i = 0, . . . , p. Then G
is also a vector bundle whenever p ≥ dimX − 1.

Proof. Firstly, note that G is coherent. Localize (3) at x ∈ X and apply Theorem 1.53
to conclude that Gx is a finitely generated free OX,x-module when p ≥ dimOX,x − 1. Now,

we simply observe that dimX − 1 ≥ codim({x}, X)− 1 = dimOX,x − 1 for all x ∈ X. �

Remark 1.56. Note that we used the finite dimensionality in an essential way here. Let us
give an example of an infinite-dimensional scheme such that the above theorem fails. Let k
be a field and let A = k × k[t1]× k[t1, t2]× . . .. Consider the exact sequence

0 −→ K −→ A −→ . . . −→ A −→ A −→ k −→ 0.

The map A −→ k is the projection. The second map is the projection A −→ A/k composed
with the inclusion A/k ⊂ A. At each stage, the kernel K is of the form A/(k×k[t1]×k[t1, t2]×
. . .× k[t1, . . . , tn] which is not locally free. Geometrically this corresponds to taking a point,
then adding a line, then adding a plane, etc.

Example 1.57. Let X be a regular projective scheme over a noetherian ring A and let F be
a coherent sheaf on X. Write n = dimX and O = OX . There exists an integer m ∈ Z and a
positive integer r > 0, such that F is a quotient sheaf of

⊕rO(m) = O(m)⊕r. (See the proof
of Theorem 1.17.) Therefore, by Lemma 1.55, we have a resolution of vector bundles

0 −→ En −→ En−1 −→ . . . −→ E1 −→ E0 −→ F −→ 0,

where Ei is a direct sum of line bundles of the form O(m). Thus, the Grothendieck group of
coherent sheaves K0(X) is generated by the classes of the line bundles O(m), where m ∈ Z.
Of course, the same argument applies to K0(X). We see that the Cartan homomorphism
K0(X) −→ K0(X) is surjective.

Example 1.58. We apply the above example to compute K0(Pn
k), where k is a field. Let

X = Pn
k and O = OX . We have an exact sequence of coherent sheaves

0 // O // ⊕n+1O(1) // ⊕(n+1
2 )O(2) // . . . // ⊕n+1O(n) // O(n+ 1) // 0 .
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In fact, this is just a dualized Koszul complex. From this exact sequence, we get two important
facts. Firstly, writing ξ for the class of O(1) in K0(X), we see that (1 − ξ)n+1 = 0. Here
we invoked the ringstructure on K0(X). Furthermore, we see that K0(X) is generated by
(1, ξ, . . . , ξn). We will show that the surjective homomorphism Zn+1 −→ K0(X) given by
(a0, . . . , an) 7→

∑n
i=0 aiξ

i is an isomorphism of abelian groups. To prove this, we proceed in
two steps.

Firstly, note that ξm 6= 0 for 0 ≤ m ≤ n. In fact, for 0 ≤ i ≤ n, the homomorphism
K0(X) −→ Z given by cl(E) 7→ χ(X, E(i)) maps ξi to dimk k[T0, . . . , Tn]i 6= 0. To finish
the proof, it suffices to show that the above surjective homomorphism Zn+1 −→ K0(X) is
injective. In fact, suppose that α =

∑n
i=0 aiξ

i = 0, where (a0, . . . , an) ∈ Zn+1\{0}. Choose i
maximal with ai 6= 0. Then

ai = χ(X,α · ξ−i) = 0.

Contradiction. We conclude that
(1, ξ, . . . , ξn)

is a Z-basis for the abelian group K0(X). Also, the map Z[x]/(1− x)n −→ K0(X) given by
x mod (1− x)n 7→ ξ is an isomorphism of rings with inverse given by

cl(E) 7→
n∑
i=0

χ(X, E(i))xi mod (1− x)n.

Definition 1.59. If every coherent sheaf on X is a quotient of a vector bundle, we shall say
that Coh(X) (or just X) has enough locally frees.

Example 1.60. Suppose that X is noetherian and has an ample invertible sheaf L. Then, for
any coherent sheaf F , there exists an integer m and an epimorphism OmX −→ F ⊗OX L⊗m.
Tensoring both sides with (L∨)⊗m, we see that any coherent sheaf on X is the quotient
of a vector bundle. Thus Coh(X) has enough locally frees. Since a scheme of finite type
over a noetherian ring A is quasi-projective if and only if it has an ample invertible sheaf, a
quasi-projective scheme over A has enough locally frees.

It turns out that the schemes we work with have enough locally frees if and only if they are
semi-separated. Let us make this more precise.

A scheme is called semi-separated if, for every pair of affine open subsets U, V ⊂ X, it holds
that U ∩ V is affine. Note that separated schemes are semi-separated. (Suppose that X
is separated. Then the diagonal morphism ∆ : X −→ X ×Z X is a closed immersion. In
particular, it is affine. Therefore, for any pair of affine open subsets U, V ⊂ X, the intersection
U ∩ V = ∆−1(U × V ) is affine.)

Example 1.61. The affine line over a field with a double origin is semi-separated. This is
simply because any open of the affine line is affine. Similarly, the projective line with a double
origin is semi-separated.

Example 1.62. The affine plane over a field with a double origin is not semi-separated. This
is simply because A2 − {0} is not affine.

Remark 1.63. Suppose that X is a noetherian scheme which has enough locally frees. Then
X is semi-separated ([Tot, Proposition 1.3]). One can show a converse to this. Suppose that
X is a noetherian semi-separated locally Q-factorial scheme. Then X has enough locally
frees ([BrSc, Proposition 1.3]). In particular, a scheme which is smooth over a field has
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enough locally frees if and only if it is semi-separated. Totaro actually shows that a scheme
which is smooth over a field is semi-separated if and only if the Cartan homomorphism
K0(X) −→ K0(X) is surjective. The next theorem settles one implication, whereas Totaro
shows the reverse implication ([Tot, Proposition 8.1]).

Theorem 1.64. Let X be a noetherian finite-dimensional regular scheme which is semi-
separated. Then the Cartan homomorphism K0(X) −→ K0(X) is an isomorphism of groups.

Proof. Let n = dimX. Note that X is Q-factorial. Therefore, every coherent sheaf is a
quotient of a vector bundle. Thus, we can construct a finite resolution of vector bundles by
a standard procedure. In fact, by Lemma 1.55, we have a finite resolution

0 // En // . . . // E0
// F // 0

of vector bundles. Thus, the Cartan homomorphism is surjective. Let E· = En // . . . // E0

denote this resolution. Consider the element γ(E·) =
∑

(−1)icl(Ei) in K0(X). Then γ(E·)
only depends on F . This induces a homomorphism γ : K0(X) −→ K0(X) which is clearly
inverse to the Cartan homomorphism ([BorSer, Lemme 11,12]). �

Example 1.65. Using the structure theorem, we showed that K0(A) ∼= K0(A) ∼= Z for any
principal ideal domain A. Alternatively, the Cartan homomorphism induces an isomorphism
K0(A) ∼= K0(A). Since any finitely generated projective A-module is free, the rank induces
an isomorphism K0(A) ∼= Z.

Let us show why one wants to avoid schemes which are not semi-separated. Let X be the
projective n-space (over a field k) with a double origin. This is a smooth nonseparated scheme
over k. Let 0 be one of the origins of X and let U ∼= Pn be its complement in X.

We have an exact sequence Z −→ K0(X) −→ K0(U) −→ 0 associated to the closed point 0.

We claim that K0(X) ∼= Z ⊕K0(U) ∼= Zn+2. To prove this, note that we have a morphism
K0(U) −→ Z given by the Euler characteristic. The composition K0(X) −→ K0(U) −→ Z
determines a left inverse to Z −→ K0(X). Therefore, the homomorphism K0(X) −→ Z ⊕
K0(U) given by cl(F) 7→ (χ(U,F|U ), cl(F|U )) is an isomorphism of abelian groups. By a
similar argument and induction on m, if X is the projective n-space with m origins, we have
that

K0(X) ∼= Zn+m.

Now, let us determine K0(X). Firstly, suppose that n > 1. Since both origins are of codi-
mension at least 2, we conclude that K0(X) ∼= K0(U) ∼= Zn+1. (In fact, given a vector bundle
E on U = Pn, we can clearly extend it to X by using the same data on the second origin.
Now, this extension is unique up to isomorphism. Assume that F is a vector bundle which
extends E . Let i : U −→ X be the inclusion. Then i∗F = E . By the adjunction of i∗ and i−1,
we have a morphism F −→ i∗E of coherent sheaves on X. The kernel of F −→ i∗E is zero on
U . Therefore, it is a torsion subsheaf of the vector bundle F . But this implies that it is zero.
Thus, we have a short exact sequence

0 −→ F −→ i∗E −→ G −→ 0,

where G is a coherent sheaf on X. The normality of X implies that G∨ = Ext1(OX ,G) = 0.
Thus, dualizing the sequence gives us that F∨ ∼= (i∗E)∨. Since F is a vector bundle, we
conclude that F ∼= (F∨)∨ ∼= (i∗E∨)∨. We see that F is unique up to isomorphism.) Thus, the
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Cartan homomorphism K0(X) −→ K0(X) is not an isomorphism. (By Theorem 1.64, this
implies Thomason’s observation ([ThTr, Exercise 8.6]) that X does not have enough locally
frees. To see this, one can follow the proof of Theorem 1.64 and arrive at a contradiction or
use Totaro’s theorem mentioned above.)

Now, suppose that n = 1. Then K0(X) ∼= Z ⊕ K0(P1). (Here the factor Z should be
interpreted as Pic(P1).) In fact, any vector bundle on P1 extends uniquely to X up to
the choice of a divisor as the above reasoning shows. The Cartan homomorphism is an
isomorphism in this case. Since X is semi-separated, this is consistent with Theorem 1.64.

Let X be a finite-dimensional noetherian semi-separated regular scheme. Since K0(X) has a
ringstructure given by the tensor product, we see that K0(X) inherits a ringstructure from
K0(X) by the Cartan isomorphism. For F and G coherent sheaves on X, this product is
given by

cl(F) · cl(G) =
dimX∑
i=0

(−1)i cl(TorOXi (F ,G)).

This is a direct consequence of the universality and additivity of the Tor functors.

Remark 1.66. To a morphism f : X −→ Y of finite-dimensional noetherian semi-separated
regular schemes one assigns the composition of ringmorphisms

f ! : K0(Y )
∼ // K0(Y )

f∗ // K0(X)
∼ // K0(X)

which is given by f !cl(F) =
∑

(−1)icl
(

TorOYi (OX ,F)
)

. Assuming f : X −→ Y to be proper,

one can ask if f! : K0(X) −→ K0(Y ) is a ringmorphism. The following Proposition shows
that this is not the case in general.

Proposition 1.67. (Projection formula) For x ∈ K0(X) and y ∈ K0(Y ), it holds that

f!(x · f !(y)) = f!(x) · y.

Proof. It suffices to prove the equality for x = cl(F) and y = cl(E), where F is a coherent
sheaf on X and E is a vector bundle on Y . Firstly, we have a natural isomorphism of coherent
sheaves

f∗(f
∗(E ⊗ F) = E ⊗ f∗(F).

(In fact, since the statement is local for Y , we may assume that Y = SpecA is affine and
E = OrY . Then, from the definition of f∗, it follows immediately that f∗F = OrX . The
equation now becomes obvious.) Thus, for any vector bundle E on Y , the functor given by

G 7→ f∗(f
∗(E)⊗ G)

is left exact and its right derived functors coincide with those of the functor

G 7→ E ⊗ f∗G.
Since E is flat, we get the formula

Rif∗(F)⊗OY E = Rif∗(F ⊗OX f
∗E).

This clearly implies the projection formula. �

Corollary 1.68. Suppose that f is an isomorphism. Then f ! : K0(Y ) −→ K0(X) is an
isomorphism of rings with inverse f!. �
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CHAPTER 2

Intersection theory and characteristic classes

1. Proper intersection

Let k be a field. A variety is a separated integral scheme of finite type over k. A subvariety
of a variety is a closed subscheme which is a variety.

Let X be a smooth quasi-projective variety. In particular, we have that X is regular.

Let V (resp. W ) be a closed subscheme of X and let J1 (resp. J2) be the sheaf of ideals
defining V (resp. W ). We let V ∩W be the closed subscheme defined by the sheaf of ideals
J1 + J2. We call V ∩ W the scheme-theoretic intersection of V and W . By definition,
OV ∩W = OX/(J1 + J2). This can be geometrically interpreted as the following.

The set of solutions of the union of two systems of equations is the intersection of the set of
solutions of each of them.

By the canonical identity of A-algebras

A/I ⊗A A/J = A/(I + J),

where I and J are ideals in the ring A, we have that OV ∩W = OV ⊗OX OW . More directly,
the scheme-theoretic intersection of V and W can be defined as the closed subscheme of X
given by V ×X W .

The problem in defining “intersection products” of cycles is to associate an “intersection
multiplicity” iZ(V,W ) to any irreducible component Z of V ∩W whenever V and W intersect
properly. Let us illustrate this by an easy example.

Example 2.1. Suppose that X = A2
k = Spec k[x, y], V = Spec k[x, y]/(y2 − x) and W =

Spec k[x, y]/(x − a), where a ∈ k. Intuitively, the intersection of V and W should consist of
two points. By the above, the intersection is given by

V ∩W = Spec k[x, y]/(y2 − x, x− a).

Clearly, we have that k[x, y]/(y2 − x, x − a) ∼= k[y]/(y2 − a). If a 6= 0 and k is algebraically
closed, the Chinese remainder theorem shows that

V ∩W = Spec k[y]/(y −
√
a)q Spec k[y]/(y +

√
a).

This clearly coincides with our intuition. Even for a = 0, we get that V ∩W = Spec k[y]/(y2)
which we can interpret as a double point. Of course, when k is not algebraically closed, we
also want the multiplicity to be 2. Serre gave a definition for the intersection multiplicity and
proved that it is the correct one. See Definition 2.2.

By [Ser, Chapter V, Paragraph B.6, Theorem 3], we have that codimZ ≤ codimV +codimW
for any irreducible component Z of V ∩W .

25
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Definition 2.2. We say that V and W intersect properly if, for any irreducible component
Z of V ∩W , we have that

codimZ = codimV + codimW.

It is clear that this is a local property. Now, suppose that V and W intersect properly and
let Z be an irreducible component of V ∩W . We define the (local) intersection multiplicity
of V and W along Z, denoted by iZ(V,W ), as

iZ(V,W ) =
∑

(−1)i lengthA(TorAi (A/I,A/J)).

Here A is the local ring OX,z at the generic point z of Z, I is the ideal defining V and J
is the ideal defining W . Moreover, we define the product cycle of V and W , denoted by
[V ] · [W ] ∈ Z ·X, as

[V ] · [W ] =
∑
Z

iZ(V,W )[Z].

Here the sum is over all irreducible components of V ∩W . Similarly, we say that cycles α and
β on X meet properly if their supports intersect properly. In this case, we define the product
cycle of cycles α, β ∈ Z ·(X), denoted by α · β, by linear extension. Also, we sometimes say
that the cycle α · β is defined if α and β meet properly.

It is clear that, if V and W intersect properly, we have that [V ] · [W ] = [W ] · [V ]. More
precisely, we have that iZ(V,W ) = iZ(W,V ) for any irreducible component Z of V ∩ W .
Also, [V ] · [X] = [X] · [V ] = [V ]. Using a spectral sequence argument as explained in [Ser,
Chapter V, Part C.3, pp. 114], we can show that this “product” is associative. This means
that for cycles α, β, γ such that α · β, (α · β) · γ, β · γ and α · (β · γ) are defined, we have that
(α · β) · γ = α · (β · γ). Moreover, we can show that there is a “exterior product formula” and
that in order to calculate the product cycle we may “reduce to the diagonal”. For a more
precise formulation of these properties see [Ser, Chapter V, Paragraph C.3, pp. 114]. We
now come to the following important theorem.

Theorem 2.3. Let Z be an irreducible component of V ∩W , where V and W are subvarieties
of X.

(1) If V and W do not intersect properly at Z, we have that iZ(V,W ) = 0.
(2) If V and W intersect properly at Z, we have that iZ(V,W ) > 0 and that iZ(V,W )

coincides with the “classical intersection multiplicity” in the sense of Weil, Chevalley
and Samuel.

Proof. This is [Ser, Chapter V, Part C, Theorem 1, pp. 112]. There are two key points in
the proof. These are the reduction to the diagonal and the fact that any system of parameters
for a regular local ring A determines a finite free resolution for A as an A⊗k A-algebra by a
Koszul complex. �

Example 2.4. Let P be the origin of A2 = Spec k[x, y]. Let V be the curve in A2 given
by the equation (x2 + y2)2 + 3x2y − y3 = 0 and let W be the curve given by the equation
(x2 + y2)3 − 4x2y2 = 0. Then V and W do not have any common irreducible component,
i.e., they intersect properly. We have that iP (V,W ) = 14. (Use the classical intersection
multiplicity and its well-known properties. See [Ful2, Chapter 3].)



1. PROPER INTERSECTION 27

Let V and W be subvarieties of a smooth quasi-projective variety X.

Suppose that V and W are in general position. That is, for every x ∈ V ∩W there is an
affine open subset U ⊂ X such that J1(U) is generated by a regular sequence (x1, . . . , xr)
and J2(U) is generated by a regular sequence (g1, . . . , gs) with (f1, . . . , fr, g1, . . . , gs) a regular
sequence in OX(U). Note that V and W intersect properly. In fact, by Proposition 1.50, if
A = OX,c is the local ring at a generic point c of V ∩W , we have that codimA/(I+J) = r+s
with I = (f1, . . . , fr) the ideal defining V at x and J = (g1, . . . , gs) the ideal defining W at x.

Proposition 2.5. Let (x1, . . . , xn) be a sequence in a local noetherian ring A and I the ideal
generated by it. Suppose that J is an ideal such that (x1 mod J, . . . , xn mod J) generates
a proper ideal of A/J . Then (x1 mod J, . . . , xn mod J) is a regular sequence in A/J if and
only if

TorAi (A/I,A/J) =

{
A/(I + J) if i = 0

0 if i 6= 0

Proof. Consider the Koszul complexKA(x1, . . . , xn) associated to the sequence (x1, . . . , xn).
Tensoring this with A/J gives us an isomorphism of complexes

KA(x1, . . . , xn)⊗A A/J ∼= KA/J(x1 + J, . . . , xn + J).

The result now follows from Theorem 1.46. �

Corollary 2.6. Suppose that V and W are in general position. Then TorOXi (OV ,OW ) = 0
for all i ≥ 1.

Proof. It suffices to show that, for any x ∈ X, the stalk TorOXi (OV ,OW )x = 0. We may
and do assume that x ∈ V ∩W . Let U be an open affine containing x. Then,(

TorOXi (OV ,OW )
)
x

= Tor
OX,x
i (OV,x,OW,x) = TorAi (A/I,A/J),

where A = OX,x = OU,x and I (resp. J) is the ideal defining V (resp. W ) in U . The result
now follows from the definition of general position and Proposition 2.5. �

Remark 2.7. The previous Proposition shows that

cl(OV )cl(OW ) =
∑

(−1)icl
(

TorOXi (OV ,OW )
)

= cl(OV ⊗OX OW ) = cl(OV ∩W )

in K0(X) if V and W are in general position. Also, we have that

[V ] · [W ] =
∑
Z

iZ(V,W )[Z] =
∑
Z

lengthOV ∩W,z[Z] = [OV ∩W ] = [V ∩W ].

We see that the product in K0-theory coincides with the product cycle (under the homo-
morphism Z ·X −→ K0(X)) and that they both coincide with taking intersections. There is
a very deep relation between K-theory and intersection theory. See Section 4 for a modest
treatment of this.

Example 2.8. Suppose that X is projective over a field k and let d = dimX. Let D be
a nonsingular hyperplane section of X. Then cl(OD)d+1 = 0 in K0(X). In fact, take d
nonsingular hyperplane sections D1, . . . , Dd such that

D ∩D1 ∩ . . . ∩Dd = ∅,
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and such that Di is in general position with the subvariety Di−1 ∩ . . .∩D1 ∩D (i = 2, . . . , d).
Since all hyperplane sections are linearly equivalent, we have that the ideal sheaves of two
hyperplane sections are isomorphic. In particular, we have that cl(ODi) = OD for i = 1, . . . , d.
By the previous theorem, it holds that cl(OD)d+1 = cl(OD∩D1∩...Dd) = 0.

Example 2.9. Let H be a hyperplane in X = Pn
k and let h = cl(OH) in K0(X) ∼= Zn+1.

We claim that (1, h, . . . , hn) forms a basis for the free abelian group K0(X) ∼= Zn+1. Writing
ξ = cl(OX(1)), we showed that (1, ξ, . . . , ξn) forms a Z-basis for K0(X) in Example 1.57.
Taking into account the ringstructure on K0(X), this implies that (1, ξ−1, . . . , ξ−n) is also a
Z-basis for K0(X). The short exact sequence

0 // OX(−1) // OX // OH // 0

implies that ξ−1 = 1− h. Therefore, hi 6= 0 for 0 ≤ i ≤ n. Now, suppose that
∑n

i=0 aih
i = 0.

Choose j minimal with aj 6= 0. By the previous Example, we have that 0 = hn−j ·
∑n

i=0 aih
i =

ajh
j . Contradiction. We conclude that K0(Pn

k) ∼= Z[h]/(hn+1) as a ring.

2. The Chow ring

Let A be a one-dimensional integral domain with fraction field K. For f ∈ K∗, f = a
b with

a, b ∈ R, we put

ordA(f) := lengthA(A/aA)− lengthA(A/bA)

and call it the order of f . For any a, b ∈ A\{0}, we have a short exact sequence

0 −→ A/aA −→ A/abA −→ A/bA −→ 0.

Since lengthA is additive on short exact sequences, we have that ordA : K∗ −→ Z is a
homomorphism.

Example 2.10. For a one-dimensional local noetherian regular ring A, hence a discrete val-
uation ring, the order of f ∈ A coincides with the normalized valuation of f .

Let X be an algebraic scheme, i.e., a scheme of finite type over a field k. A prime divisor on
X is a closed integral subscheme of codimension 1.

Definition 2.11. Suppose that X is integral. For any prime divisor W with generic point
w, we define ordW := ordOX,w to be the order along W .

Let us show that, for any f ∈ K(X)∗, there are only a finite number of prime divisors W
with ordW (f) 6= 0. To prove this, we may assume that X = SpecA is affine and that f is
regular on X, i.e., ordW (f) ≥ 0 for all prime divisors W on X. In particular, ordW (f) 6= 0 if
and only if W is contained in V (f). (Here V (f) is the closed subscheme defined by the ideal
fA.) But since f 6= 0, we have that V (f) is a proper closed subset. Since X is noetherian,
we have that V (f) contains only finitely many closed irreducible subsets of codimension 1 of
U .

Definition 2.12. For any subvariety V of codimension r in X, and any f ∈ K(V )∗, define a
cycle [div(f)] of codimension r + 1 (with support in V ) on X by

[div(f)] =
∑
W

ordW (f)[W ] ∈ Zr+1(X),
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where the sum is over all prime divisors W of V . A cycle α ∈ Zr(X) of codimension r is said
to be rationally equivalent to zero in Zr(X), denoted by α ∼ 0, if there are a finite number
of subvarieties Yi of codimension r − 1 in X, and fi ∈ K(Yi)

∗, such that

α =
∑

[div(fi)]

in Zr(X). Since [div(f−1)] = −[div(f)], the cycles rationally equivalent to zero form a
subgroup Ratr(X) of Zr(X). The group of cycles of codimension r modulo rational equivalence
on X is the factor group

Ar(X) = Zr(X)/Ratr(X).

We call A·(X) =
⊕
Ar(X) the Chow group.

Just as for K0(X), we have push-forward and pull-back maps for the Chow group.

Let f : X −→ Y be a proper morphism of varieties. Let V be a closed subvariety of X with
image W = f(V ). (Recall that a subvariety is a closed subscheme which is a variety.) If
dimW < dimV , we set f∗(V ) = 0. If dimV = dimW , the function field K(V ) is a finite
extension field of K(W ), and we set

f∗(V ) = [K(V ) : K(W )]W.

Extending by linearity defines a homomorphism f∗ of Z(X) to Z(Y ). These homomorphisms
are functorial, as follows from the multiplicativity of degrees of field extension.

Let f : X −→ Y be a flat morphism of relative dimension s. For a closed subscheme V of Y ,
set

f∗[V ] = [f−1(V )].

Here f−1(V ) is the inverse image scheme (a closed subscheme of pure dimension dimV + s)
and [f−1(V )] is its cycle. Extending by linearity defines a homomorphism f∗ of Z(X) to Z(Y )
of degree −n. These homomorphisms are clearly functorial. We can also define the pull-back
f∗[V ] when f is not flat. (Here we use that X is smooth.) See [Ser]. These definitions
coincide for flat morphisms.

Theorem 2.13. Let f : X −→ Y be a morphism of smooth quasi-projective varieties.

(1) Let α be a cycle on X rationally equivalent to zero. Suppose that f is proper. Then
the cycle f∗α is rationally equivalent to zero.

(2) Let α be a cycle of codimension r on Y which is rationally equivalent to zero in
Zr(Y ). Then the cycle f∗α is rationally equivalent to zero in Zr−s(X).

(3) Let α be a cycle on X and let β be a cycle on Y . Suppose that f is proper. Then
f∗(α · f∗β) = f∗α · β whenever both sides are defined.

Proof. See [Ful1, Chapter 1.3, Theorem 1.4], [Ful1, Chapter 1.7, Theorem 1.7] and
[Ser], respectively. �

The following Theorem will allow us to define the product cycle for any two cycles (not
necessarily meeting properly). Its proof can be found in [Chev].

Theorem 2.14. (Chow’s moving lemma) Let V and W be subvarieties of a smooth quasi-
projective variety X. Then the cycle [V ] is rationally equivalent to a cycle α which meets
[W ] properly. �
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Before we make our definition of the Chow ring we need the following Lemma.

Lemma 2.15. Given elements α and β in the Chow ring, let α′ and β′ be cycles representing
them which meet properly (these exist by the Moving Lemma). Then the class in A·(X) of
α′ · β′ is independent of the choice of representatives α′, β′ ∈ Z ·(X) and depends only on α
and β.

Proof. We sketch the proof. Firstly, using the more classical description of rational
equivalence give in [Ful1, Proposition 1.6], it suffices to show the following statement. Let
V ⊂ X ×k P1 be a (s+ 1)-dimensional subvariety dominating P1. Fix closed points a, b ∈ P1

and let Wa (resp. Wb) be the fibre of W −→ P1 above a (resp. b). Now, let V be an r-
dimensional subvariety of X such that V intersects both Wa and Wb properly. Then [V ] · [Wa]
is rationally equivalent to [V ] · [Wb].

Let p : X ×P1 −→ X be the projection. Note that [Wa] = p∗([W ] · [X × {a}]). Similarly, we
have that [Wb] = p∗([W ] · [X × {b}]). Thus, we reduce to showing that

[V ] · p∗([W ] · [X × {a}]) ∼rat [V ] · p∗([W ] · [X × {b}]).

The projection formula implies that

[V ] · p∗([W ] · [X × {a}]) = p∗([V ×P1] · ([W ] · [X × {a}])),

and similar for b. Thus we reduce to showing that

p∗([V ×P1] · ([W ] · [X × {a}])) ∼rat p∗([V ×P1] · ([W ] · [X × {b}])).

Now, we may apply the associativity for the product cycle to conclude that [V ×P1] · ([W ] ·
[X × {a}]) = ([V ×P1] · [W ]) · [X × {a}], and similar for b. Thus we reduce to showing

p∗(([V ×P1] · [W ]) · [X × {a}]) ∼rat p∗(([V ×P1] · [W ]) · [X × {b}])

which is true by [Ful1, Proposition 1.6]. �

The previous Theorem tells us that we can define a product on the Chow group by using
Chow’s Moving Lemma. This product is commutative and associative with unit element [X].

Theorem 2.16. For every smooth quasi-projective variety X, there is a unique contravariant
graded ring structure on A·(X) such that:

(1) It agrees with pull-back of cycles contravariantly.
(2) For any proper morphism f : X −→ Y , we have that f∗ : A·(X) −→ A·(Y ) is

homomorphism. Also, if g : Y −→ Z is another proper morphism, then g∗ ◦ f∗ =
(g ◦ f)∗.

(3) If f : X −→ Y is a proper morphism, and α ∈ A·(X), β ∈ A·(Y ), then we have the
projection formula f∗(α · f∗(β)) = f∗(α) · β.

(4) If α and β are cycles on X, and if ∆ : X −→ X ×X is the diagonal morphism, then
we have the exterior product formula α · β = ∆∗(α× β).

(5) For subvarieties V and W of X which intersect properly, we have that the product
of [V ] and [W ] coincides with the product cycle [V ] · [W ].

(6) It agrees with the product A1(X) × Ar(X) −→ Ar+1(X) induced by intersection
with Cartier divisors. �
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3. Chern classes in the Chow ring

Let X be a smooth quasi-projective variety over a field k. Let Pic(X) be the group of invertible
sheaves on X and let Cl(X) = A1(X) be the divisor class group. Every divisor D on X
determines up to isomorphism an invertible sheaf OX(D) (denoted by L(D) in Hartshorne)
and every invertible sheaf is of this type. This induces an isomorphism Cl(X) −→ Pic(X).
See [Har, Chapter II, Proposition 6.16].

Definition 2.17. For any L ∈ Pic(X), we define the first Chern class of L in Cl(X) by
c1(L) = [D], where [D] ∈ Cl(X) is such that OX(D) = L in Pic(X). Clearly, the homomor-
phism c1 : Pic(X) −→ Cl(X) is inverse to the homomorphism Cl(X) −→ Pic(X) described
above.

Let E be a vector bundle of rank r and let π : P(E) −→ X be the associated projective
bundle. Let O(1) = OP(E)(1) be the canonical invertible sheaf on P(E). Note that the
pull-back π∗ : A(X) −→ A(P(E)) makes A(P(E)) into an A(X)-module.

Example 2.18. Suppose that E = OrX . Then P(E) = Pr
X = Pr

k ×k X. We have already
seen that K0(P(E)) = K0(X) ⊗Z K0(Pr

k) is a free K0(X)-module. If ξ is the class of O(1)
in K0(X), we have seen that K0(Pr

k) is a free abelian group with basis (1, ξ, . . . , ξr). In
particular, K0(P(E)) is a free K0(X)-module with the same basis.

Theorem 2.19. The Chow ring A·(P(E)) is a free A·(X)-module with basis (1, ξ, . . . , ξr),
where ξ = c1(O(1)) ∈ A1(P(E)) ⊂ A·(P(E)).

Proof. We sketch the proof. We have to show that the map ⊕r−1
i=0A

·(X) −→ A·(P(E))

sending (x0, . . . , xr−1) to
∑r−1

i=0 π
∗(xi)ξ

i is an isomorphism. Firstly, note that we have a
“localization sequence” for the Chow ring ([Ful1, Chapter 1, Section 5]). Therefore, by
induction on dimX, we may assume X is affine and E is trivial. Then we have a projective
subbundle i : P1 −→ P(E) of P(E) of rank r − 1 such that P(E)\P1 is an affine bundle over
X. Then we use a (strong) “homotopy property” for the Chow ring as in [Ful1, Chapter
1, Section 8] and the fact that i∗(A(P1)) = A(P(E) · ξ to conclude that ⊕r−1

i=0A
·(X) −→

A·(P(E) is surjective. Now, the injectivity follows from the fact that π(π∗(x) · ξr) = x and
π∗(π

∗(x) · ξi) = 0 for 0 ≤ i < n. To prove this, we may assume that x = [X] and X is a
point. The assertion then follows from the fact that ξn · [P(E)] is represented by any section
of P(E) over X. �

Definition 2.20. There exist unique elements ai ∈ Ai(X) (0 ≤ i ≤ r) such that

ξr − π∗(a1) · ξr−1 + π∗(a2) · ξr−2 − . . .+ (−1)rπ∗(ar) = 0.

We define the i-th Chern class of E , denoted by ci(E) ∈ A(X), as ci(E) = ai for 1 ≤ i ≤ r.
We put c0(E) = 1. Note that ci(E) = 0 for i > r.

Example 2.21. Let E = OX(D) be an invertible sheaf where D is in Cl(X). Then P(E) = X,
O(1) = OX(D) and π is the identity map. Therefore, we have that ξ − π∗(a1) = 0 showing
that c1(E) = [D] as one would expect.

Definition 2.22. We define the Chern polynomial of E , denoted by ct(E), as the element

ct(E) = 1 + c1(E)t+ . . .+ cr(E)tr

in the ring A(X)[t].
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Theorem 2.23. There is a unique theory of Chern classes for X, which assigns to each vector
bundle E on X an i-th Chern class ci(E) ∈ Ai(X) and satisfies the following properties:

C0: It holds that c0(E) = 1.
C1: For an invertible sheaf OX(D), we have that c1(OX(D)) = [D].
C2: For a morphism of smooth quasi-projective varieties f : X −→ Y and any positive

integer i, we have that f∗(ci(E)) = ci(f
∗(E)).

C3: If

0 // E ′ // E // E ′′ // 0

is an exact sequence of vector bundles on X, then

ct(E) = ct(E ′)ct(E ′′)
in A(X)[t].

C4: We have that ci(E) = 0 for i > rk E .
C5: The mapping E 7→ ct(E) can be extended to a homomorphism ct : K0(X) −→

1 +⊕∞i=1A
i(X) · ti.

Proof. This is a theorem of Grothendieck in [Groth, Théorème 1, pp. 144]. Grothendieck
shows that the Chern classes constructed above satisfy these properties. (In our case, C2 and
C3 are the only nontrivial properties to check.) One of the main ingredients in proving this
theorem is the splitting principle stated below. �

Example 2.24. Let f : X −→ Spec k be the structural morphism and let E = OrX be free of
rank r. By C2, for any i ≥ 1, we have that ci(OrX) = f∗ci(k

r) = 0.

The proof of Theorem 2.23 uses in an essential way the so-called Splitting principle for the
Chow ring and E .

Theorem 2.25. (Splitting Principle) Fix a vector bundle E on X of rank r. There exists
a smooth quasi-projective variety X ′ and a morphism π : X ′ −→ X such that π∗ : A(X) −→
A(X ′) is injective, and E ′ = π∗E splits. (That is, it has a filtration E ′ = E ′0 ⊃ E ′1 ⊃ . . . ⊃ E ′r = 0
such that Li = Ei−1/Ei is an invertible sheaf for 1 ≤ i ≤ r.)

Proof. There is nothing to prove when r = 1. Thus, suppose that r > 1. Let π :
P(E) −→ X be the natural projection. By Theorem 2.19, the ringmorphism π∗ is injective.
Now, one can check locally that we have a natural surjective morphism π∗E −→ O(1). Its
kernel E ′ is a vector bundle of rank r − 1. Now, we repeat this construction with the vector
bundle E ′ on P(E) until we reach a line bundle. �

Let π : X ′ −→ X be as in the Splitting Principle. Then

π∗ct(E) = ct(π
∗E) = ct(L1) . . . ct(Lr) =

r∏
i=1

(1 + c1(Li)t) =

r∏
i=1

(1 + αit).

Here αi = c1(Li). Since π∗ is injective, this actually determines ct(E). Thus, let us write

ct(E) =
r∏
i=1

(1 + αit),

where α1, . . . , αr ∈ A(X). Then α1, . . . , αr are called Chern roots of E and this factorization
is regarded as purely formal. Note that ci(E) is the i-th elementary symmetric polynomial in
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α1, . . . , αr. In particular, c1(E) = α1 + . . . + αr and cr(E) = α1 . . . αr. Also, any symmetric
polynomial in Chern roots determines a well-defined polynomial in Chern classes. (By a
well-known theorem on symmetric polynomials, any symmetric poynomial can be expressed
uniquely as a polynomial in the elementary symmetric polynomials.)

Examples 2.26. Let F be another vector bundle of rank s on X and let us write ct(F) =∏s
i=1(1 + βit). We apply the splitting principle to determine the Chern polynomial for dual

bundles, tensor products and exterior powers.

(1) Let us show that ct(E∨) = c−t(E), where E∨ is the dual of E . Firstly, note that
ct(L∨) = c−t(L) for any invertible sheaf L. Also, if E has a filtration with quotients
Li, then E∨ has a filtration with quotients Lr−i.

(2) It holds that

ct(E ⊗OX F) =
∏
i,j

(1 + (αi + βj)t).

This follows from the fact that c1(L1 ⊗OX L2) = c1(L1) + c1(L2) for any invertible
sheaves L1 and L2 combined with the flatness of E (or F).

(3) We have that

ct(Λ
pE) =

∏
1≤i1≤...≤ip≤r

(1 + (αi1 + . . .+ αip)t).

In fact, note that any exact sequence of vector bundles

0 −→ L −→ E −→ E ′ −→ 0

with L a line bundle, induces a short exact sequence

0 −→ Λp−1E ′ ⊗ L −→ ΛpE −→ ΛpE ′ −→ 0.

Note that this also shows that ct(det E) = 1 + c1(E)t. That is, c1(E) = c1(det E).

Note that, for any Chern root α of E , we have a well-defined element exp(α) = 1+α+ 1
2α

2+. . .
in A(X)⊗Z Q.

Definition 2.27. We define the (exponential) Chern character of E as

ch(E) =
r∑
i=1

exp(αi).

Since ch(E) is a symmetric polynomial in the Chern roots, we have that ch(E) is a well-defined
element of A(X)Q := A(X)⊗Z Q. If ci = ci(E), we can show that

ch(E) = r+ c1 +
1

2
(c2

1− c2) +
1

3!
(c3

1− 3c1c2 + 3c3) +
1

4!
(c4

1− 4c2
1c2 + 4c1c3 + 2c2

2− 4c4) + h.o.t..

The ith term is pi
i! , where pi is determined inductively by Newton’s formula

pi − c1pi−1 + c2pi−2 − . . .+ (−1)i−1ci−1p1 + (−1)iici = 0.

The following Proposition follows essentially from Theorem 2.23 and the splitting principle.

Proposition 2.28. There is a homomorphism ch : K0(X) −→ A(X)Q which is uniquely
determined by the following properties.
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(1) For any morphism f : Y −→ X of smooth quasi-projective varieties, it holds that

f∗ ◦ ch = ch ◦f∗.

(2) For any invertible sheaf L on X with c1(L) = [D], it holds that

ch(cl(L)) = ch(L) =
∑
i≥0

1

i!
[D]i.

(3) The homomorphism ch is multiplicative, i.e., a ringmorphism. �

We will now consider the power series

f(x) =
x

1− exp(−x)
∈ Q[[x]].

One can show that

f(x) =
∞∑
j=0

Bj
j!
xj = 1 +

1

2
x+

∞∑
i=1

B2i

(2i)!
x2i,

where Bj is the j-th Bernoulli number.

Definition 2.29. The Todd class of E , denoted by td(E), is defined as

td(E) =
r∏
i=1

(
αi

1− exp(−αi)

)
∈ A·(X)Q.

Remark 2.30. Note that the Todd class of E is invertible in A·(X)Q.

Remark 2.31. Let ci = ci(E). Then the first few terms of the Todd class of E are

td(E) = 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
c1c2 +

1

720
(−c4

1 + 4c2
1c2 + 3c2

2 + c1c3 − c4) + . . . .

Remark 2.32. It holds that
r∑
p=0

(−1)p ch(ΛpE∨) =
r∑
p=0

(−1)p
∑

i1<...<ip

exp(−αi−1 − . . .− αip) =
r∏
i=1

(1− exp(−αi))

= α1 . . . αr

r∏
i=1

(
1− exp(−αi)

αi

)
= cr(E) td(E)−1.

Just as with the Chern character, we have a Whitney sum formula. That is, if

0 // E ′ // E // E ′′ // 0

is an exact sequence of vector bundles on X, we have that td(E) = td(E ′) td(E ′′). In partic-
ular, the Todd class induces a homomorphism td : K0(X) −→ A(X)∗, where A(X)∗ is the
multiplicative group of units in the Chow ring.

Definition 2.33. For any smooth quasi-projective variety X, we define the Todd class of
X, denoted by td(X), as the Todd class of the tangent sheaf TX on X. For a morphism
f : X −→ Y , we define the relative Todd class of f , denoted by td(X/Y ), as td(X/Y ) =
td(X) · (π∗ td(Y ))−1.
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4. Notes on the topological filtration

We already mentioned the similarity between the “product” on Z ·(X) and K0(X) in Remark
2.7, where K0(X) denotes the Grothendieck group of coherent sheaves on X.

Let X be a noetherian scheme. We define the (topological) graded Grothendieck group by

Gr·K0(X) =
⊕dimX

r=0 F rX/F r+1X. Here F rX denotes the subgroup of K0(X) generated by
the classes of sheaves F with codim SuppF ≥ r. By Proposition 1.30, for any r ∈ Z, we
have a surjective homomorphism Zr(X) −→ F rX/F r+1X. One can now prove the following
theorem which is much easier in dimension 1. See Section 1 of Chapter 3.

Theorem 2.34. Let X be a smooth quasi-projective variety over an algebraically closed field
and let γ : Z(X) −→ K0(X) be the surjective homomorphism studied in Chapter 1. We will
write γX for γ if we want to emphasize that this is the homomorphism associated to X.

(1) Suppose that α ∈ Zr(X) and β ∈ Zs(X) meet properly. Then γ(α) · γ(β) ≡ γ(α · β)
mod F r+s+1X.

(2) For any morphism f : Y −→ X of smooth quasi-projective varieties and any cycle
α ∈ Zr(Y ), we have that γX(f∗(α)) ≡ f∗(γY (α)) mod F r+1X.

(3) Suppose that α and β are cycles on X of codimension r which are rationally equiv-
alent. Then γ(α) ≡ γ(β) mod F r+1X.

(4) Let V ⊂ X and W ⊂ X be subvarieties of codimension r and s, respectively. If V
and W intersect properly, we have that cl(OV )·cl(OW ) ≡ cl(OV ∩W ) mod F r+s+1X.

(5) For any r, s ∈ Z, we have that F rX · F sX ⊂ F r+sX.
(6) The surjective ringmorphisms γX : A·(X) −→ Gr·(X) define a natural transforma-

tion of contravariant functors from the category of smooth quasi-projective varieties
to the category of graded rings.

Proof. We sketch the proof given in [Mur]. Firstly, let V ⊂ X and W ⊂ X be subvari-
eties of codimension r and s, respectively. For any i > 0, we have that

codim Supp Tori(OV ,OW ) > r + s.

This clearly implies (1). To prove (2), one may assume f is a closed immersion by considering
the graph of f . Now, by pulling-back, the natural projection X × A1 −→ X induces an
isomorphism of Chow rings A·(X) −→ A·(X ×A1). Combining this with (2), one can show
(3). The remaining properties (4), (5) and (6) can be deduced from (1), (2) and (3). �

Later we shall prove, using the Grothendieck-Riemann-Roch theorem, the following theorem.

Theorem 2.35. The natural transformation γ : A· −→ Gr·K0 becomes a natural isomor-
phism of contravariant functors after we tensor with Q. (Here we restrict to the category of
smooth quasi-projective varieties over an algebraically closed field.) �

Thus, the graded Grothendieck group Gr·K0(X) may serve as a replacement of the Chow ring
if one desires to generalize intersection theory and characteristic classes. (Since we use Chow’s
Moving Lemma in our definition of the product on the Chow ring, our construction only works
for smooth quasi-projective varieties over an algebraically closed field.) Unfortunately, the
topological filtration has two disadvantages:

(1) It carries over to K0(X) only when K0(X) = K0(X).
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(2) It has been conjectured to be compatible with the ringstructure on K0(X), but an
affirmative answer is only known modulo torsion. (See [Gil].) Note that Theorem
2.34 confirms the conjecture for smooth quasi-projective varieties.

We can overcome these difficulties by following Grothendieck and introducing a different
filtration on K0(X). In the following, all schemes will be connected noetherian separated
finite-dimensional schemes.

For any scheme X, there are maps λi : K0(X) −→ K0(X), defined by taking exterior pow-
ers: λi(cl(E)) = cl(ΛiE). These are not group homomorphisms, but rather λi(x + y) =∑i

r=0 λ
r(x)λi−r(y) for any x, y ∈ K0(X). (For a study of this λ-ring structure see [FuLa].)

Definition 2.36. The γ-operations are defined by:

γi : K0(X) −→ K0(X), x 7→ λi(x+ (i− 1)cl(OX)).

Note that γ0(x) = λ0(x− 1) = 1 and γ1(x) = λ1(x) = x, for any x ∈ K0(X). Also, we have

that γi(x + y) =
∑i

r=0 γ
r(x)γi−r(y). (In particular, the γ-operations define another λ-ring

structure on K0(X).) Let rk : K0(X) −→ Z be the rank. We already said that the kernel of
this homomorphism is the starting point of the γ-filtration in Remark 1.33.

Definition 2.37. For i ∈ Z≥0, we define abelian groups F iγX, as opposed to the groups F iX

introduced in the previous Section, as follows. Let F 0
γX = K0(X) and F 1

γX = ker rk. Then,

we require that if x ∈ F 1
γX, we have γi(x) ∈ F iγX and that this be multiplicative. That is,

we require that
F iγX · F jγX ⊂ F i+jγ X.

The groups F iγX define a multiplicative filtration on K0(X) which we call the γ-filtration.

The associated graded group Gr·γ K
0(X) =

⊕
i F

i
γX/F

i+1
γ X is a graded ring. As opposed to

the topological filtration, which we showed to be multiplicative for smooth quasi-projective
varieties, we have manually built in the graded ringstructure in Gr·γ K

0(X). Unfortunately,

it is not clear whether F iγX = 0 for i > dimX. See [Man, Paragraph 9] for a proof of this
when X is regular.

Let E be a vector bundle of rank r on X.

Definition 2.38. For i ≥ 1, we define the i-th (generalized) Chern class of E by

ci(E) = γi(cl(E)− rcl(OX)) mod F iγK
0(X) ∈ Griγ K

0(X).

Thus, for any invertible sheaf L on X, we have that c1(L) = cl(L)− cl(OX) mod F 2K0(X)
and ci(L) = 0 as long as i > 2.

Now, one can define a generalized Chern polynomial as in Section 3 and formulate an analogue
of Theorem 2.23. Having defined a generalized Chern character, we can prove that it induces
an isomorphism K0(X)Q −→ Gr·γ K0(X)⊗Z Q. The proof of the former is less-involved than
the proof of its classical analogue (Theorem 2.35) which uses the Grothendieck-Riemann-Roch
theorem. In fact one constructs an inverse with the aid of the so-called Adams operations.
See [Man, Section 11].



CHAPTER 3

The Grothendieck-Riemann-Roch theorem

1. Riemann-Roch for smooth projective curves

A curve is an integral separated 1-dimensional scheme of finite type over a field.

LetX be a smooth projective curve over an algebraically closed field k. Note that A·(X) = Z⊕
Cl(X), where Cl(X) is the divisor class group of X. The group structure on Z⊕Cl(X) is given
by (n,D) + (m,E) = (n+m,D + E) whereas the multiplication is given by (n,D)(m,E) =
(nm,mD + nE).

We define some natural homomorphisms from K0(X) to Z and Pic(X). The isomorphism
K0(X) ∼= K0(X) will allow us to define these for K0(X).

There is a unique injective ringmorphism i : Z −→ K0(X) with right inverse the ring mor-
phism rk : K0(X) −→ Z which assigns to each vector bundle on X its rank.

We have a homomorphism det : K0(X) −→ Pic(X) which we call the determinant. To a
vector bundle E we associate the class of the element ΛrE , where r = rk(E). As one can easily
show, this induces a map from K0(X) to Pic(X). (In fact, this works for any noetherian
scheme X.)

The map j : Pic(X) −→ K0(X) defined by [L] 7→ cl(L) − cl(OX) is a homomorphism. To
prove this, let L1 and L2 be line bundles on X. Then, it suffices to show that

cl(L1 ⊗ L2) = cl(L1) · cl(L2) = cl(L1) + cl(L2)− cl(OX).

We proceed in two steps. Firstly, suppose that L1 = OX(−D) and that L2 = OX(−E), where
D and E are effective divisors on X. Then

cl(OX(−D)) · cl(OX(−E)) = (cl(OX)− cl(OD)) · (cl(OX)− cl(OE))

= cl(OX)− cl(OD)− cl(OE) + cl(OD)cl(OE)

= cl(OX)− cl(OD)− cl(OE)

= cl(OX(−D)) + cl(OX(−E))− cl(OX).

Here we used that cl(OD) · cl(OE) = 0 (Example 2.8). Note that, for any effective divisor D
on X, we have that

j(OX(D)) = −j(OX(−D).

In fact, note that cl(OX(D)) · cl(OX(−D)) = 1 in K0(X). Therefore, we have that

j(OX(D)) = cl(OX(D))− cl(OX) = (cl(OX(−D)))−1 − cl(OX)

= (cl(OX)− cl(OD))−1 − cl(OX) = cl(OX) + cl(OD)− cl(OX)

= cl(OD)− cl(OX) + cl(OX) = −(cl(OX)− cl(OD)− cl(OX))

= −(cl(OX(−D))− cl(OX)) = −j(OX(−D)).

37
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This shows that, for L1 = OX(D) and L2 = OX(E), we have that

cl(L1 ⊗ L2) = cl(L1) · cl(L2) = cl(L1) + cl(L2)− cl(OX).

In fact, we may write D as a difference D1 −D2 of effective divisors and similarly for E. We
conclude that j is indeed a homomorphism. (We will see that there is a natural isomorphism
K0(X) ∼= Gr·γ K0(X) and that j becomes the first generalized Chern class as in Definition
2.38 under this isomorphism.) Note that det ◦j = idPic(X).

Let us put a graded ringstructure on the abelian group Z⊕Pic(X). We define (n,L1)(m,L2) =
(nm, nL2 +mL1) for (n,L1), (m,L2) ∈ Z⊕Pic(X). (Since F 2

γX = 0, this is just Gr·γ K0(X).)
Since the first Chern class c1 : Pic(X) −→ Cl(X), the homomorphism Z⊕Pic(X) −→ A·(X)
given by (n,L) 7→ (n, c1(L)) is an isomorphism of rings.

Proposition 3.1. We have an isomorphism of rings K0(X) −→ Z ⊕ Pic(X) given by α 7→
(rk(α),detα).

Proof. By the above, this is a ringmorphism. Now, we have a complex of abelian groups

0 // Pic(X)
j // K0(X)

rk // Z // 0 .

Since this complex is left split by det, it suffices to show that this complex is exact. By
Theorem 1.22, we have that α = rk(α) +

∑
P∈X closed nP · cl(OP ) for any α ∈ K0(X). By

the short exact sequence

0 // OX(−P ) // OX // OP // 0

associated to a point P ∈ X, it holds that cl(OP ) = 1 − cl(OX(−P )) = j(OX(−P )∨) =
j(OX(P )). Thus, it holds that

α− rk(α) = j

 ⊗
P∈X closed

OX(P )⊗nP

 .

This shows that ker rk = im j, i.e., the above complex is exact. �

The inverse of the above isomorphism is given by (n, [L]) 7→ n ·cl(L). Furthermore, the Chern
character ch : K0(X) −→ A(X) given by

ch(α) = (rk(α), c1(det(α)) = (rk(α), c1(α))

is an isomorphism of rings.

Let g be the genus of X. Recall that for every D ∈ Cl(X), we have that χ(X,OX(D)) =
degD + 1− g. In fact, since χ(X,OX) = 1− g, it suffices to show that the formula holds for
D if and only if it holds for D+P , where P ∈ Cl(X) is (the class of) some point in X. Now,
we have the exact sequence

0 // OX(−P ) // OX // OP // 0 .

Tensoring this withOX(D+P ) gives us the above formula by the additivity of χ. In particular,
combining this formula with Serre duality gives us that degKX = 2g − 2.

The Todd class of X is given by td(X) = (1,−1
2c1(ωX)) = (1,−1

2KX) in A(X)Q. The degree
on the Chow ring is the function deg : A(X) −→ Z given by deg(n,D) = deg(D), where
degD denotes the degree of a divisor. (More generally, if f : X −→ Spec k is the structural
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morphism, the degree degX = deg on A·(X) is f∗ composed with the natural isomorphism
A(Spec k) = Z.)

Theorem 3.2. (Riemann-Roch) The following diagram of groups

K0(X)
ch·TdX //

χ(X,−)

��

A(X)Q

deg

��
Z // Q

is commutative.

Proof. It suffices to show that, for any vector bundle E of rank r, it holds that

χ(X, E) = deg(ch(E) td(X)) = deg(c1(E))− 1

2
r deg(c1(ωX)).

Since χ(X,OX(D)) = degD+ 1− g for all D ∈ Cl(X), the statement holds for (the class of)
a line bundle L in K0(X). To prove the Riemann-Roch theorem it suffices to do so for the
class of a vector bundle E of rank r > 1. Suppose that we have a short exact sequence

0 −→ L −→ E −→ E ′ −→ 0,

where L is a line bundle and E ′ is a vector bundle of rank r−1. Then, by the additivity of the
Euler characteristic and the Riemann-Roch theorem for line bundles, the theorem follows by
induction on r. Let us show that we always have such a short exact sequence. Choose n� 0
such that E(n) is generated by its global section. Then, since dimX = 1 and rk E(n) > 1,
there is a global section s which is nowhere zero ([Har, Exercise II.8.2]). Note that E(n)/sOX
is a vector bundle of rank r − 1 and that we have a short exact sequence

0 −→ sOX −→ E(n) −→ E(n)/sOX −→ 0.

Now tensor with OX(−n) to get the desired short exact sequence. �

Remark 3.3. As is clear from the definition of the Todd class, we may replace A·(X)Q by

A·(X)⊗Z Z[1
2 ] in the above theorem.

We turn to an interesting application of the above result.

A surface is an integral separated 2-dimensional scheme of finite type over a field. Let X be a
smooth projective surface over k, where k is algebraically closed. Suppose that there is a flat
morphism f : X −→ C, where C is a smooth projective curve over k, such that each fibre is
a smooth projective curve. We say that X is a fibered surface over C. Recall that td(X/C)
is defined as td(X) · (∀∗ td(C))−1 (Definition 2.33).

Corollary 3.4. The following diagram

K0(X)
ch·td(X) //

χ(X,−)

��

A(X)Q

deg

��
Z // Q

is commutative if and only if, for any α ∈ K0(X), we have that

degC c1(f!α) = degX(ch(α) td(X/C)).
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Proof. Firstly, the diagram being commutative amounts to saying that, for any vector
bundle E on X, we have that

χ(X, E) = degX(ch(E) td(X)).

Note that both sides are additive on short exact sequences. Thus, it suffices to show that,
for any vector bundle E on X, we have that degC c1(f!E) = degX(ch(E) td(X/C)) if and only
if χ(X, E) = degX(ch(E) td(X)). By the functoriality of K-theoretic push-forward and the
above Riemann-Roch theorem for C, we have that

χ(X, E) = χ(C, f!E) = rk(f!E) deg(td(C)) + deg c1(f!E).

If η is the generic point of X and Xη is the generic fibre of f , we have that rk f!E = χ(Xη, Eη).
Invoking the Riemann-Roch theorem for the smooth projective curve Xη, the Corollary follows
from

rk f!E = χ(Xη, Eη) = r degXη(td(Xη)) + degXη c1(Eη). �

Remark 3.5. Combining the classical Riemann-Roch theorem for surfaces with Noether’s
formula, one can show that the above diagram commutes ([Har, Example A.4.1.2]). The
equality degC c1(f!α) = degX(ch(α) td(X/C)) is an expression for the degree of the determi-
nant of cohomology det f!α. By the functoriality of push-forward in intersection theory, this
equality can also be written as

degC c1(f!α) = degC(f∗(ch(α) td(X/C)).

We can now make three remarks.

(1) One is tempted to conjecture that the stronger equality of cycle classes

c1(f!α) = f∗(ch(α) td(X/C))(1)

holds in A·(C)Q. This equality holds and follows from the Grothendieck-Riemann-
Roch theorem for f given in the next section.

(2) As it appears, the determinant of cohomology plays an important role in Riemann-
Roch theorems. In fact, in the above situation, we can define a height over C for
covers of X with a fixed branch locus. For a detailed discussion of this see Section
6.

(3) The proof of the above Corollary shows that one can state a similar result for higher-
dimensional varieties fibered over a curve, as long as the “Hirzebruch-Riemann-Roch
theorem” on the fibres is known. More precisely, let f : X −→ C be a flat morphism
of smooth projective varieties. Suppose that dimC = 1. Then the following diagram

K0(X)
ch·td(X) //

χ(X,−)

��

A(X)Q

deg

��
Z // Q

is commutative if and only if, for any α ∈ K0(X), we have that

degC c1(f!α) = degX(ch(α) td(X/C)).
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2. The Grothendieck-Riemann-Roch theorem and some standard examples

Let f : X −→ Y be a proper morphism of smooth quasi-projective varieties over a field k.
We now come to the main theorem of this thesis.

Theorem 3.6. (Grothendieck-Riemann-Roch) The following diagram

K0(X)
ch·td(X) //

f!
��

A(X)Q

f∗
��

K0(Y )
ch·td(Y ) // A(Y )Q

is commutative. �

Proof. We sketch the classical proof ([BorSer]). Firstly, since f is the composition of
a closed immersion i : X −→ Pn

Y and the projection π : Pn
Y −→ Y , we may assume that f is

a closed immersion of a smooth subvariety into a smooth projective variety or that f is the
projection π : Pn

Y −→ Y . The case of a projection π : Pn
Y −→ Y is easy. Firstly, assume

Y = Spec k is a point. Then a direct computation shows that the above diagram commutes.
In general, we have a diagram

K0(Pn
k)⊗K0(Y )

��

(ch · td(Pnk ))⊗(ch · td(Y ))
// A·(Pn

k)Q ⊗A·(Y )Q

��
K0(Pn

Y )
ch·td(PnY )

//

π!
��

A(Pn
Y )Q

π∗
��

K0(Y )
ch·td(Y ) // A(Y )Q

,

where the big rectangle is commutative and the upper square is commutative. One simply
applies Proposition 1.41 to conclude that the lower square is also commutative. Now, one has
reduced to proving the Grothendieck-Riemann-Roch when f is a closed immersion i : Y −→ X
of a smooth subvariety Y into a projective variety X. This is done in four steps. Write
p = codim(Y,X). The first step ([BorSer, Proposition 14]) is formal and settles the theorem
for p = 1 and any element in the image of i! : K0(Y ) −→ K0(X). The second step ([BorSer,
Corollaire 1]) settles the theorem for X = Pn

k and Y a closed point. The reasoning is
by induction on n and uses that K0(Y ) ∼= Z. The main geometric idea is that, given a
hyperplane H in Pn

k , one can find another hyperplane Z in Pn
k and a line D on H, such that

D is in general position with Z ∩H on H and Y = D∩Z ∩H. The computation can then be
compared to Example 2.8. The third step ([BorSer, Corollaire 2]) consists of reducing the
problem to p ≥ dimY + 2. The strategy is to consider the composition

Y
i // X

j // X ×k Pn
k ,

where j : a 7→ (a, t0) and t0 ∈ Pn
k is a fixed closed point. Essentially, by choosing n big

enough, one can apply the previous steps and the Künneth formula ([BorSer, Lemme 16])

to conclude. We come to the fourth and final step. Let f : X̃ −→ X be the blow-up1 of X

1See [Har, Proposition II.7.16, pp. 166] and [Har, Theorem II.8.24, pp. 186].
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along Y and let J be the ideal sheaf defining Y . Let Y ′ ⊂ X̃ be the subscheme defined by the

inverse image ideal sheaf f−1J ·O
X̃

and let j : Y ′ −→ X̃ be the natural closed immersion. By

construction, we have that f ◦j = i◦g. Now, note that X̃ and Y ′ are smooth quasi-projective

varieties and that codim(Ỹ , X̃) = 1. The normal sheaf N
Y ′/X̃ is an invertible sheaf on Y ′

which we shall denote by L. Furthermore, let F be the quotient sheaf g∗NY/X/NY ′/X̃ . Note

that F is a vector bundle of rank p− 1. Let λ−1F∨ denote the element
∑p−1

r=0(−1)rcl(ΛrF∨)
in K0(Y ′). In Remark 2.32 we explained where this comes from. Now, the theorem follows
from a formal computation ([BorSer, Proposition 15]) once we can show the following facts
([BorSer, Lemme 19]):

(1) f∗f
∗ is the identity,

(2) g∗(cp−1(F)) = 1,

(3) f !i!(y) = j!(g
!(y) · λ−1F∨) for any y ∈ K0(Y ),

(4) λ−1F∨ is in the image of j!. �

Remark 3.7. See [Ful1, Theorem 15.2] for a more modern approach to the Grothendieck-
Riemann-Roch theorem. The closed immersion i : Y −→ X is handled differently by a
technique called the deformation to the normal bundle.

Corollary 3.8. (Hirzebruch-Riemann-Roch) For any vector bundle E on a smooth
projective n-dimensional variety X, we have that

χ(X,E) = deg(ch(E) td(X))(n).

In particular, χ(X,OX) = deg(td(X))(n). �

Example 3.9. Suppose that f is an isomorphism. It is not immediately clear that GRR
holds for f , i.e., that the above diagram commutes for f . In fact, by the projection formula,
it holds that f! = (f !)−1. Thus, by the commutativity of f ! with ch, we can conclude that
GRR holds for f .

Example 3.10. For a closed immersion i : Y −→ X of a smooth subvariety Y into a smooth
projective variety X and a vector bundle E on Y , we have that

ch i∗E = i∗(ch E · td(X/Y )−1).(4)

Here td(X/Y ) is the Todd class of the normal sheaf NY/X . It coincides with the inverse of
td(Y/X) (Definition 2.33) by the short exact sequence

0 −→ TY −→ TX ⊗OY −→ NY/X −→ 0.

Example 3.11. Suppose that dimX = 1 and Y = Spec k. Then the Grothendieck-Riemann-
Roch theorem is just Theorem 3.2.

Example 3.12. Suppose that dimX = 2 and Y = Spec k. Then td(X) = 1+ 1
2c1+ 1

12(c2
1+c2),

where we put ci = ci(TX). In particular, χ(X,OX) = 1
12 deg(c2

1 + c2)2. If K = −c1(TX) is the
class of a canonical divisor, we let K ·K denote deg(K ·K)2. If χ = deg(c2)2 is the topological
Euler characteristic, the above reads

χ(X,OX) =
1

12
(K ·K + χ).

By Corollary 3.8, for a vector bundle E of rank r with di = ci(E), we have that

χ(X,E) =
1

2
deg(d2

1 + 2d2 + c1d1) + rχ(X,OX).
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In particular, if D is a divisor on X,

χ(X,OX(D)) =
1

2
(D2 −K ·D) + χ(X,OX).

If D is effective, we have that

χ(X,OD) = −1

2
(D2 −K ·D).

Now, if D is an irreducible curve on X, and pa(D) = dimH1(D,OD) is its arithmetic genus,
then

pa(D) =
1

2
(D2 +K ·D) + 1.

This provides an easy way to compute the arithmetic genus for a curve lying on a surface.

Example 3.13. Suppose that dimX = 3 and Y = Spec k. Then

td(X) = 1 +
1

2
c2 +

1

12
(c2

1 + c2) +
1

24
c1c2,

with ci = ci(TX). For a vector bundle E of rank r on X, with Chern classes di = ci(E), it
holds that

χ(X, E) = deg(
1

6
(d3

1 − 3d1d2 + 3d3) +
1

4
(c1d

2
1 − 2d2) +

1

12
(c2

1 + c2)d1 +
r

24
c1c2)3.

In particular, for a divisor D on X, we have that

χ(X,OX(D)) = deg(
1

6
D3 +

1

4
c1 ·D2 +

1

12
(c2

1 + c2) ·D +
1

24
c1c2)3.

Let us apply this to X = P3
k. Then A(X) = Z[h]/h4Z, where h is the class of a hyperplane.

If E is a vector bundle on X, we write ci(E) = nih
i where ni ∈ Z. Apply the above formula

to see that
1

6
(n3

1 − 3n1n2 + 3n3 + 11n1) ∈ Z.

That is, n3
1 − 3n1n2 + 3n3 + 11n1 is divisible by 6. For example, if r = 2, we have that n1n2

must be even.

Let X be a smooth projective variety. In Section 4 we constructed a functorial surjective
ringmorphism A·(X) −→ Gr·(X) and said that it induces an isomorphism once we tensor
with Q. We will now prove this theorem. Firstly, the following example illustrates the role
played by the Grothendieck-Riemann-Roch theorem.

Example 3.14. Let P ∈ X be a closed point and let f : Y −→ X be the inclusion, where
Y = {P}. Note that Y is smooth. Clearly, td(Y ) = 1 ∈ A(Y ). By the Grothendieck-
Riemann-Roch theorem, if [Y ] ∈ A0(Y ) denotes the class of Y , it holds that

ch(f∗OY ) = f∗([Y ] · f∗ td(X)−1).

Since Aj(X) = 0 for j > dimX and f∗ td(X)−1 = 1 + higher order terms, we conclude that

ch(f∗OY ) = f∗[Y ].

This can be generalized as follows. Let f : Y −→ X be a closed immersion of a smooth
subvariety and let i = codim(Y,X). Let us show that

ch(f∗OY ) = f∗([Y ] + α),
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where [Y ] ∈ A0(Y ) denotes the class of the subvariety Y and α is some element in
⊕

j>iA
j(X)Q.

To prove this, note that [Y ] ∈ AiX and that td(X/Y ) is of the form 1 + higher order terms.
The same reasoning as above then applies. More precisely, we have that

α = [Y ] · td(X/Y )1 + [Y ] · td(X/Y )2 + . . .+ [Y ] · td(X/Y )dimY ∈
⊕
j>i

Aj(Y )Q.

For i ∈ Z, we define ϕi : Ai(X) −→ Gri(X) to be the homomorphism given by ϕ([Z]) = cl(Z)
mod F i+1X whenever Z ⊂ X is a closed subscheme of codimension i.

Lemma 3.15. For any closed immersion f : Y −→ X of codimension i, we have that

ch(cl(OY )) = f∗([Y ] + α),

where α ∈
⊕

j>0A
j(Y )Q. In particular, for any i ∈ Z, we have that ch(F iX) ⊂

⊕
j≥iA

j(X)Q.

Proof. We proceed in two steps.

Step 1: Suppose that Y is smooth. Then this is just Example 3.14.
Step 2: Let U ⊂ X be an open subset such that Y ∩U is regular and s := dimX−U <

dimY ∩ U = dimY = d − i. Put S = X − U and note that codim(S,X) = d − s.
For any j ≥ 0, we have a short exact sequence

Aj−d+s(S) // Aj(X) // Aj(U) // 0 .

(For the exactness see [Ful1, Chapter 1]. We also used this fact in Theorem 2.19.) In
the interesting case j = i, we see that Ai−d+s(S) = 0. Therefore, the homomorphism
Ai(X) −→ Ai(U) is an isomorphism. Recall that this isomorphism is induced by the
intersection of cycles with U . Since we are only considered with cycles of codimension
less or equal to i, we may assume that Y is smooth. Thus, we reduce to Step 1.

The last statement follows from the fact that the morphism ϕi is surjective (Proposition 1.30)
and the fact that f∗ increases the degree by i. �

Theorem 3.16. The Chern character ch : K0(X) −→ A·(X)Q induces an isomorphism of
rings chQ : K0(X)Q −→ A·(X)Q.

Proof. Lemma 3.15 implies that the Chern character factors through Gr·K0(X), i.e., the
map Gr·(ch) : Gr·K0(X) −→ A·(X)Q is a well-defined ringmorphism. Since the composition

Ai(X)
ϕi // GriK0(X)

Gri(ch) // Ai(X)Q

is given by the natural inclusion Ai(X) −→ Ai(X)Q, we see that both ϕi and Gri(ch) induce
bijections after tensoring with Q. This implies that chQ is injective. Since ch is surjective,
we have that chQ is surjective. We conclude that it is an isomorphism of rings. �
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3. The Riemann-Hurwitz formula

Let f : X −→ Y be a finite morphism of smooth projective curves over an algebraically closed
field k. Note that f∗OX is a coherent sheaf by the fact that f is finite. (It is quasi-coherent by
the fact that f is affine.) Furthermore, it is locally free by the fact that X is integral and the
local rings are discrete valuation rings.2 Note that f∗OX is also a sheaf of rings. Therefore, it
is a coherent locally free sheaf of OY -algebras. Now, it is easy to see that the rank of f∗OX ,
as a vector bundle on Y , is precisely deg f . The Grothendieck-Riemann-Roch theorem for f
and OX states that

ch(f∗OX) = f∗(td(X/Y )).

Comparing terms in degree 0, we immediately get that rk f∗OX [Y ] = c0(f∗OX) = f∗(1) =
deg f [Y ] in A·(Y ). That is, we get back that the rank of f∗OX is just the degree of f . Outside
of the branch locus, this is precisely the number of elements in any fibre of f . Now, what
does the Grothendieck-Riemann-Roch theorem give in degree 1? Well, an easy calculation
shows that the Grothendieck-Riemann-Roch theorem gives us

2c1(f∗OX) = deg f ·KY − f∗(KX).(5)

Here KY and KX denote the canonical divisors on Y and X, respectively.

In this section we shall make some remarks on equality (5). We will always assume f to be
separable. In particular, the set of ramification points of f is finite.

We show that equality (5) follows from the following well-known theorem ([Har, Chapter IV,
Prop. 2.3]).

Theorem 3.17. (Riemann-Hurwitz) Let R be the ramification divisor of f . We have that
KX is linearly equivalent to f∗KY +R on X. �

In fact, by the projection formula, we have that f∗KX is linearly equivalent to deg fKY +f∗R
on Y . Thus, in order to prove the above statement, it suffices to show that f∗R is linearly
equivalent to −2c1(f∗OX) on X. But this follows from a local computation as in [Ser2,
Chapter 3.6, Proposition 13]. We conclude that the Grothendieck-Riemann-Roch theorem
for f and OX follows from the Riemann-Hurwitz theorem. We may also conclude that the
Grothendieck-Riemann-Roch theorem implies the (less precise) Riemann-Hurwitz theorem
([Har, Chapter IV, Prop. 2.4]) which relates the degrees of KX and KY via the degree of
the ramification divisor R.

Let us give an example.

Fix an integer n ≥ 1 and let π : X −→ Y be the morphism given by (x : y) 7→ (xn : yn) from
the projective line to itself. In particular, X and Y are isomorphic. Recall that we gave an
explicit expression for π∗O(m) in Example 1.31. We now reprove the much weaker equality
in K0-theory to illustrate that we lose a lot of precise information.

Let P be a point in X and let Q = π(P ). For m ∈ Z, we have that

cl(π∗O(m)) = n+ (m− n+ 1)cl(OQ).(6)

2Actually, for any finite flat morphism f : X −→ Y of noetherian schemes, the coherent sheaf f∗OX is
locally free. Since a finite morphism of smooth projective curves is automatically flat, this also shows that
f∗OX is locally free.
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In fact, note that Riπ∗ = 0 for i > 0. Furthermore, we have that π!(1) = cl(π∗OX) =
n + acl(OQ) for some integer a ∈ Z. This follows from the fact that π∗OX is locally free of
rank n and Example 1.5 (or Proposition 3.1). It is easy to determine a. Namely, we have that
χ(Y, π∗OX) = χ(X,OX) = 1. This implies that a+ n = 1. Now, by the short exact sequence

0 // O(−1) // OX // OP // 0

and the fact that cl(OP )2 = 0, we have that cl(O(m)) = (1 − cl(OP ))−m = 1 + mcl(OP ).
Equation (6) follows from the fact that π∗OP = OQ.

Now, we could also easily verify the Grothendieck-Riemann-Roch theorem for π by going the
other way around via intersection theory. Note that cl(O(m)) = 1 +mcl(OP ). Therefore, we
have that ch(O(m)) = 1 +m[P ]. It is clear that td(Y ) = 1 + [Q] and td(X) = 1 + [P ]. Since
π∗[P ] = [Q], it holds that

td(Y )−1π∗(ch(O(m)) · td(X)) = (1− [Q])(n+ (m+ 1)[Q]) = n+ (m− n+ 1)[Q].

Here we used that [P ]2 = 0 and [Q]2 = 0. This equals

ch(π!O(m)) = n+ (m− n+ 1)[Q].

4. An application to Enriques surfaces

In this section we give an application of the Grothendieck-Riemann-Roch theorem to the
study of “classical” Enriques surfaces. It is based on a computation made in [Pap]. We shall
finish with a short remark on how the result of this Section is applied precisely to the study of
the coarse moduli space of Enriques surfaces. A good reference for the study of these surfaces
is [BHPV].

The base field will be an algebraically closed field k. As usual, a variety is an integral separated
scheme of finite type over k.

Definition 3.18. A smooth projective 2-dimensional variety E is called an3 Enriques surface
if the following three conditions are satisfied:

(1) H1(E,OE) = 0,
(2) H2(E,OE) = 0,
(3) for any canonical divisor K on E, 2K is linearly equivalent to 0 but K itself it not

linearly equivalent to 0.

Furthermore, a family of Enriques surfaces is a flat morphism f : X −→ Y of smooth
projective varieties such that each fibre is an Enriques surface.

Let f : X −→ Y be a family of Enriques surfaces.

Lemma 3.19. The natural map OY −→ R0f∗OX is an isomorphism.

Proof. Note that f is surjective. This follows from the fact that Y is connected and that
f is an open and closed map. Therefore, since X and Y are integral schemes, the natural map
OY −→ R0f∗OX is injective. Now, since R0f∗OX is coherent on Y , we have that R0f∗OX is
a finite OY -algebra. Apply the Stein factorization theorem, together with the fact that the
fibres of f are connected, to conclude that SpecR0f∗OX = Y . The statement follows. �

3For char k = 2 there are “other” Enriques surfaces. Our definition is of the so-called classical Enriques
surfaces.
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Proposition 3.20. We have that Rif∗OX = 0 if i > 0.

Proof. Let F = OX . For any y ∈ Y , let Fy be the coherent sheaf induced on the fibre
Xy. It is the structure sheaf on Xy. By Grauert’s Theorem ([Har, Corollary III.12.9]), for
any i, the coherent sheaf Rif∗F is a vector bundle on Y and, for every y ∈ Y , the natural
map

Rif∗(F)⊗ k(y) −→ H i(Xy,Fy)
is an isomorphism. Since Xy is an Enriques surface, the result follows. �

Note that f is smooth of relative dimension 2. Equivalently, the sheaf of relative differentials
ΩX/Y is a vector bundle of rank 2 on X. In particular, the push-forward f∗ : A(X) −→ A(Y )
lowers the degree by 2. Let Tf be the relative tangent sheaf, i.e., Tf is the kernel of the
surjective morphism TX −→ f∗TY . For any fibre of f , the relative tangent sheaf Tf restricts
to the tangent sheaf of the fibre. That is, for any y ∈ Y with v : Xy −→ X the natural
inclusion, we have that v∗Tf = TXy . For i = 0, 1, 2, . . ., let ci = ci(Tf ) ∈ A(X)Q.

Lemma 3.21. It holds that f∗(c2) = 12 ∈ A0(Y )Q.

Proof. Since Chern classes commute with pull-back, we have that c2 is given by d2 :=
c2(TE) in the generic fibre E = Xη of f . Since all fibres are Enriques surfaces, it holds that
c2(TE) ∈ A2(E)Q is of degree 12. In fact, by Example 3.12, it holds that

1 = χ(E,OE) =
1

12
(KE ·KE + (deg d2)2) =

1

12
(deg d2)2.

Now, we know that f∗(c2) is a cycle in A0(Y ) ∼= Z. That is, f∗(c2) is given by an integer m.
If D is a cycle in the class of c2, this integer m is given by the intersection number D ·E. But
this is precisely 12. �

Let L = Λ2ΩX/Y = det ΩX/Y = ωX/Y . Recall that a line bundle on a scheme X is said to be
torsion if its class in Pic(X) is torsion.

Theorem 3.22. The coherent sheaf R0f∗(L ⊗ L) is a torsion line bundle on Y .

Proof. Let us apply the Grothendieck-Riemann-Roch theorem to f and OX . By the
above, this gives us that td(Y ) = f∗(td(X)). By the projection formula, we have that
f∗(td(Tf )) = 1. The degree 1 part of this equality reads

0 = f∗(td(Tf ))(1) = f∗(td(Tf )(3)) = f∗(
1

24
c1c2) =

1

24
f∗(c1 · c2).

We conclude that f∗(c1 · c2) = 0. Now, we know that c1 = −c1(ΩX/Y ) = −c1(det ΩX/Y ) =
−c1(L). Also, since the fibres are Enriques surfaces, the line bundle L⊗OX L is trivial along
the fibres of f . This implies that L ⊗OX L ∼= f∗(δ) for some line bundle δ on Y . By the
projection formula and Proposition 3.20, we have that

R0f∗(L ⊗OX L) = R0f∗(f
∗(δ)) = R0f∗OX ⊗OY δ = δ.

This shows that R0f∗(L⊗L) is a line bundle on Y . Also, it shows that c1 = −1
2c1(L⊗L) =

−1
2f
∗(c1(δ)). Again, by the projection formula, we have that

0 = −2 · f∗(c1c2) = f∗(f
∗(c1(δ)) · c2) = c1(δ) · f∗(c2) = 12c1(δ).
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We conclude that c1(δ) = 0 in A1(Y )Q. Therefore, the line bundle δ = R0f∗(L ⊗OX L) is
torsion. �

Remark 3.23. Writing K = R0f∗(L ⊗ L), we have that K⊗24 ∼= OY . This requires a more
precise Grothendieck-Riemann-Roch theorem called the Grothendieck-Riemann-Roch theorem
without denominators. See [Pap2] for a modern proof of the latter(in characteristic zero)
based on Hironaka’s resolution of singularities ([Hiro]) and the weak factorization theorem
for birational maps ([AKMW]). One can also find a more general proof in [Ful1, Chapter
15.3] based on the deformation to the normal bundle.

Remark 3.24. The above theorem is used in [Pap] to prove that the coarse moduli space of
complex Enriques surfaces is quasi-affine. Basically, due to the above theorem, a certain line
bundle on the coarse moduli space has a nowhere vanishing “invariant” global section after
tensoring it with itself a sufficient amount of times. The same line bundle can be shown to
be very ample. These facts together can be used to show that the coarse moduli space is
quasi-affine.

5. An application to abelian varieties

Let X be an abelian variety over the field k and let g = dimX. A good reference on abelian
varieties is [GeMo].

Lemma 3.25. Let L be a line bundle on X and let D = c1(L) be its first Chern class in
A1(X). Then Dg

g! is an integer. Furthermore, if L is ample, we have that Dg

g! is positive.

Proof. Apply the Hirzebruch-Riemann-Roch theorem to X and L. Since the tangent
bundle is trivial, the Todd class of X is trivial. Therefore,

χ(X,L) = deg(ch(L))(g).

We conclude that Dg

g! = χ(X,L) is an integer. For the last statement, it suffices to show that

Dg is positive for L very ample. But if L is very ample, we have that Dg = deg(f(X)) > 0,
where f : X −→ Pr is the embedding defined by L such that f∗O(1) = L. �

Let p : X×X −→ X be the projection onto the first coordinate. Similarly, let q : X×X −→ X
be the projection onto the second coordinate. For any line bundle L on X, we define its
Mumford line bundle on X ×X, denoted by Λ, as

Λ := m∗L ⊗ (p∗L)−1 ⊗ (q∗L)−1.

The following theorem is a special case of [Jah, Theorem 1.7].

Theorem 3.26. For any ample line bundle L, we have that

(det q!(Λ⊗ p∗L))−1 =
(
det q!(m

∗L ⊗ (q∗L)−1)
)−1

is an ample line bundle on X.

Proof. We apply the Grothendieck-Riemann-Roch theorem to the projection q : X ×
X −→ X and the element L := m∗L⊗ (q∗L)−1. Since the Todd class of an abelian variety is
trivial, we get that

ch(q!L) = q∗(ch(L)).
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Note that q∗ lowers the degree by g, where g = dimX. Comparing terms in degree 1, this
gives

c1(det q!L) = c1(q!L) = (q∗(ch(L))(1) =

(
q∗

(∑ c1(L)i

i!

))
(1)

=
1

(g + 1)!
q∗(c1(L)g+1).

Substituting back L = m∗L ⊗ (q∗L)−1, we get

c1(det q!(m
∗L ⊗ (q∗L)−1)−1) = −c1(det q!(m

∗L ⊗ (q∗L)−1)) = −
q∗
(
c1(m∗L ⊗ (q∗L)−1)g+1

)
(g + 1)!

.

By properties of the first Chern class, the righthandside of the above equation is given by

−
q∗
(
c1(m∗L ⊗ (q∗L)−1)g+1

)
(g + 1)!

= −
q∗
(
(m∗c1(L)− q∗c1(L))g+1

)
(g + 1)!

.

To simplify the computation, we introduce the isomorphism of abelian varieties s : X×X −→
X × X defined as (x, y) 7→ (x − y, y). We already noted that s∗ is an isomorphism with
inverse s∗. Now, it is easy to see that q ◦ s = q and that ms = p. This allows us to rewrite
q∗
(
m∗c1(L)− q∗c1(L))g+1

)
as

q∗
(
(m∗c1(L)− q∗c1(L))g+1

)
= q∗s∗s

∗ ((m∗c1(L)− q∗c1(L))g+1
)

= (qs)∗
(
(ms)∗c1(L)− (qs)∗(c1(L))g+1

)
= q∗

(
(p∗c1(L)− q∗c1(L))g+1

)
.

Writing out the sum (p∗c1(L)− q∗c1(L))g+1 and applying the projection formula, we see that

q∗
(
(p∗c1(L)− q∗c1(L))g+1

)
= q∗

g+1∑
i=0

(−1)g+1−i
(
g + 1

i

)
p∗(c1(L)i) · q∗(c1(L)g+1−i)

=

g+1∑
i=0

(−1)g+1−i
(
g + 1

i

)
q∗p
∗(c1(L)i) · (c1(L)g+1−i)

= −gq∗ (p∗(c1(Lg)) · c1(L) + q∗(c1(L)g+1)

= −gq∗p∗(c1(L)g) · c1(L).

Here we used that q∗ is of degree −g and the graded ring structure on the Chow ring to see
that the only summand that could give a nonzero contribution under the image of q∗ is the
one with i = d. Now, let D = c1(L) and note that D is an ample divisor on X. Also, by
Lemma 3.25, we have that n = Dg

g! is a positive integer. We may conclude that

c1(det q!(m
∗L ⊗ (q∗L)−1)−1) =

g

(g + 1)!
(c1(L)g) = nD

is ample. �

6. Covers of varieties with fixed branch locus

This section is based on the article [EdJoSc], where one studies branched covers of surfaces.
The goal is to illuminate on how the Grothendieck-Riemann-Roch theorem is applied and
extend some of its results to higher-dimensional varieties.

The base field will be the field of complex numbers C.
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We suppose given the following data.

• A separated smooth integral projective 1-dimensional C-scheme C;
• A separated smooth integral projective C-scheme X;
• A flat morphism h : X −→ C of C-schemes;
• An effective simple normal crossings divisor D on X such that all components are

smooth with multiplicity 1 and intersect transversally;

Let U be the complement of D and let V −→ U be a finite étale morphism. For simplicity,
we will assume V to be connected. By properties of étale morphisms, we have that V is a
smooth variety. Let π : Y −→ X be the normalization of X in the function field of V ([Liu,
Definition 4.1.24]). The variety Y is normal and the morphism π : Y −→ X is finite ([Liu,
Proposition 4.1.25.]). In particular, dimY = dimX. Since C is a Dedekind scheme, we have
that Y is projective and flat over C. More precisely, since the local rings of C are discrete
valuation rings, Y is flat over C. Since Y is finite over X, it is projective (and affine) over X.
Since X is projective over C, we have that Y is also projective over C.

Remark 3.27. Since the topological fundamental group of U is finitely generated, there are
only finitely many V −→ U as above of given degree. See [SGA7, Exposé II, Théorème
2.3.1]. In particular, for a fixed degree, the “height over C of the associated covers Y −→ X”
is bounded. The aim of [EdJoSc] is to give an effective version of this result. We aim at
explaining their result and on how the Grothendieck-Riemann-Roch is of fundamental value
in the study of this problem.

In order to analyse the singularities of Y we will need the following definition.

Definition 3.28. A point y ∈ Y is called a quotient singularity if there exists a nonsingular
variety W and a finite group Γ acting on W such that the quotient W/Γ exists as a variety
and is isomorphic to a neighbourhood of y. One says that a quotient singularity is a cyclic
quotient singularity if Γ can be taken to be a cyclic group. Note that nonsingular points are
quotient singularities.

To understand the situation, we study the local model. The following examples describe
the local behaviour of a covering Y −→ X when X is a smooth projective surface, i.e.,
dimX = dimY = 2. They illustrate some basic properties shared by all associated covers
Y −→ X. These properties will be mentioned below.

Example 3.29. Consider the inclusion of C-algebras

A := C[x2, y2, xy] ⊂ B := C[x, y].

Note that A is the algebra of invariants of an action by the cyclic group G of order 2 on B,
that we describe as follows. Let G = {e, a}, with e the identity element. We define the action
of a on a monomial xiyi by

a · xiyj := (−1)i+jxiyj .

It is easy to show that A is indeed the algebra of invariants BG. Since the extension of
rings C[x2, y2] ⊂ A is integral, we have that the Krull dimension of A equals 2. Since A is
generated by 3 elements, we may describe it as a quotient of C := C[x1, x2, x3]. Namely, we
may describe A as the quotient of C by the ideal

I = (x2
3 − x1x2).
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Since the Jacobian matrix is given by(
−x2 −x1 2x3

)
,

it follows that (x1, x2, x3) ∈ V (I) is singular4 if and only if x1 = x2 = x3 = 0. Consider now
the following map

π : SpecC/I −→ X = SpecB = A2
C, (x1, x2, x3) 7→ (x1, x2).

Then π is a finite map of degree 2 which is unramified outside D ⊂ X, where the divisor D
is the union of the coordinate hyperplanes.

Example 3.30. Consider the action a · xiyj = (−1)ixiyj in the above example. The normal
surface Y = Spec C[x2, y] is smooth in this case.

Example 3.31. Let r > 1 and consider the inclusion of C-algebras

A := C[xr, yr, xy] ⊂ B := C[x, y].

Note that A is the algebra of invariants of an action by the cyclic group G of order r on B,
that we describe as follows. Let a be a generator of G and let ζr be a primitive r-th root of
unity. We define the action of a on a monomial xiyi by

a · xiyj := (ζr)
i−jxiyj .

It is easy to show that A is indeed the algebra of invariants BG. (For r = 2, this is Example
3.29.) We may describe A as the quotient of C = C[x1, x2, x3] by the ideal

I = (xr3 − x1x2).

It follows that (x1, x2, x3) ∈ V (I) is singular5 if and only if x1 = x2 = x3 = 0. Consider now
the following map

π : SpecC/I −→ X = SpecB = A2
C, (x1, x2, x3) 7→ (x1, x2).

Then π is a finite map of degree r which is unramified outside D ⊂ X, where the divisor D
is the union of the coordinate hyperplanes.

Example 3.32. Let the cyclic group G = {e, a, a2} of order 3 act on C[x, y] by

a · xiyj := (ζ3)i+jxiyj .

It is easy to show that A = C[x3, x2y, xy2, y3] is the algebra of invariants. Since A is generated
by 4 elements, we can describe it as a quotient of C := C[x1, x2, x3, x4]. In fact, for I =
(x1x2 − x3x4, x

2
4 − x1x3, x

2
3 − x2x4), we have that the morphism C[x1, x2, x3, x4] −→ A given

by

x1 7→ x3, x2 7→ y3, x3 7→ xy2, x4 7→ x2y

in surjective with kernel I. We have that Y = SpecC/I is singular6 precisely at the point
(0, 0, 0, 0) ∈ SpecC/I. This is easy to see by considering the Jacobian matrix

J =

 x2 x1 −x4 −x3

−x3 0 −x1 2x4

0 −x4 2x3 −x2

 .

4This is called the 1
2
(1, 1) or A2,1 cyclic quotient singularity.

5This is called the 1
r
(1,−1) or Ar,r−1 cyclic quotient singularity.

6This is called the 1
3
(1, 1) or A3,1 cyclic quotient singularity.
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The rank of J equals 0 if and only if x1 = x2 = x3 = x4 = 0. Thus, suppose that the rank
of J equals 1. We will show that x1 = x2 = x3 = x4 = 0. Suppose that the bottom row
is not equal to zero. Then all the other rows are scalar multiples of this row. It then easily
follows that x1 = x2 = x3 = x4 = 0. Thus, we may suppose that the bottom row is zero.
Therefore, we have that x2 = x3 = x4 = 0. Since the rank of J is 1, this forces x1 = 0.
We conclude that Y is singular precisely at the origin. The morphism π : Y −→ A2

C given
by (x1, x2, x3, x4) 7→ (x1, x2) is a finite map of degree 9. If D ⊂ A2

C is the union of the
hyperplanes, we see that π is unramified outside D and that the singularities of Y occur in
the inverse image of the singularities of D.

Example 3.33. This example is similar to the above examples. Since it is hard to find
explicit equations always, we give another approach. Consider the action of the cyclic group
G = {e, a, . . . , ar−1} of r elements on C[x, y] given by a · xiyj = (ζr)

i+jxiyj . The algebra of
invariants is A = C[xr, xr−1y, . . . , xyr−1, yr]. Note that dimA = 2. In fact, the extension
of rings C[u, v] ⊂ A is integral, where u = xr and v = yr. Let Y = SpecA and denote the
morphism associated to the extension of rings C[u, v] ⊂ A by

π : Y −→ Spec C[u, v].

Let D be the union of the hyperplanes in Spec C[u, v]. Let us show that π is unramified
outside the divisor D. In fact, for any 0 ≤ a ≤ n, we have relations uayr−a = (xayr−a)r.
The minimal polynomial of xayr−a over C[u, v] is therefore separable if and only if u 6= 0 and
v 6= 0. Thus, we see that π is unramified outside D. Now, let us show that the singularities of
Y occur in the inverse image of the singular locus of D. Suppose that y is a singular point of
Y mapping to a nonzero point x on D. Consider the action of the group C∗ ×C∗ on C[u, v]
given by u 7→ λ1u and v 7→ λ2v for any (λ1, λ2) ∈ C∗ × C∗. For any (λ1, λ2) ∈ C∗ × C∗,
this induces an automorphism of Spec C[u, v]. Under this action, the orbit of x is infinite. In
particular, the orbit of y is infinite. (Here the action on Y is induced by the action on A.)
Since every element of the orbit of y is again singular, we see that the singular locus of Y
is infinite. But the singular locus of Y is of codimension 2 in X. Therefore, it is finite by
Noether’s normalization lemma. Contradiction. Moreover, note that Y is singular precisely
at the origin. In fact, the singular locus of D is precisely the origin of A2

C. Apply the defining
relations above to see that its fibre under π is precisely the origin7 in Y .

What do we learn from these examples?

(1) The normal variety Y can be singular.
(2) The singularities of Y are isolated and cyclic quotient in the above examples. This

always holds when dimX = 2. We will give an example to show that this is no
longer true if dimX > 2.

(3) In the above examples, the singularities of Y occur in the inverse image of the
singularities of D. This is always true by Theorem 3.34 below.

Now, we return to our general setting. We write Dsing for the singular locus of D and let
n = dimX. The following Proposition generalizes [EdJoSc, Lemma 2.1]. Its proof invokes
the analytic structure on the algebraic variety X. See [SGA1, Exposé XII].

Theorem 3.34. We have the following three facts.

7This is called the 1
r
(1, 1) or Ar,1 cyclic quotient singularity.
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(1) All singularities of Y are (abelian) quotient.
(2) The singularities of Y occur in the inverse image under π of Dsing.
(3) The morphism π−1(D −Dsing) −→ D −Dsing is étale.

Proof. Firstly, if x is a point of X not lying on D, we have that all points in Y mapping
to x are regular. Thus, let x ∈ X be a point lying on D and let y be a point of Y mapping
to x. Locally for the analytic topology we identify a neighbourhood W of x in X with the
poly-disk

{(z1, . . . , zn) ∈ Cn | |z1| < 1, . . . , |zn| < 1},
identifying x with the origin and D locally with the zero set of z1 · . . . · zp, where 1 ≤ p ≤ n
depends on x and D. (The number p is the number of coordinate axes meeting at x. For
example, x is a nonsingular point of D if and only if p = 1.) Let B be the connected
component of π−1(W ) containing y. Then

B − π−1(D) −→W −D

is a connected finite degree topological covering. Therefore, we have that

Γ1 := π∗(π1(B − π−1(D)))

is a subgroup of finite index of π1(W −D). Since W −D is homeomorphic to a product of
n − p open disks with p punctured open disks, we have that π1(W −D) ∼= Zp. Since this is
an abelian group, every covering of W −D is Galois. Let e be the index of the subgroup Γ1

in Zp. Note that Γ2 := eZp is a subgroup of index ep−1 of Γ1. The topological covering

ζ : W −→W, (z1, z2, . . . , zn) 7→ (ze1, z
e
2, . . . , z

e
p, zp+1, . . . , zn)

is of degree ep with fundamental group Γ2. By the Galois correspondence, we have a connected
finite degree connected topological covering η : W −D −→ B − π−1(D) of degree ep−1 and a
commutative diagram

W −D

ζ %%KKKKKKKKKK
η // B − π−1(D)

π
wwppppppppppp

W −D

.

By [SGA1, Expose XII, Théorème 5.4], there is a unique finite covering η : W −→ B which
extends η : W −D −→ B − π−1(D) and which fits into a commutative diagram

W

ζ !!B
BB

BB
BB

B
η // B

π~~}}
}}

}}
}}

W

.

We see that B is the quotient of W under the action of Γ2/Γ1. This shows (1). Now, in order
to show (2) and (3), we suppose that x is a closed point of X lying on D but not on Dsing.
This happens if and only if p = 1. Since π1(W −D) is infinite cylic in this case, we have that
Γ1 = Γ2. Therefore, the covers π and ζ are equivalent and the holomorphic map η : W −→ B
is an isomorphism. Thus, we have that B itself is regular. We deduce that Y is regular above
D −Dsing and that π−1(D −Dsing) −→ D −Dsing is étale. This proves (2) and (3). �
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Remark 3.35. In the above proof, one can show that if p = 2, the point y has an open
neighborhood which is the product of a 2-dimensional cyclic quotient singularity and an open
linear subspace of Cn isomorphic to8 Cn−2. See the proof of [EdJoSc, Lemma 2.2]. In
particular, if dimX = 2, we have that all singularities of Y are cyclic quotient.

The following examples show that Y can have quotient singularities which are not cyclic
quotient if dimX > 2.

Example 3.36. Consider the inclusion of C-algebras

A := C[x2, y2, z2, xyz] ⊂ B := C[x, y, z].

Note that A is the algebra of invariants of an action of the noncyclic group G of order four
on B, that we describe as follows. Let G = {e, a, b, c}, with e the identity element. Then we
define the action of a, b, c on a monomial xiyjzk by

a · xiyjzk = (−1)i+jxiyjzk, b · xiyjzk = (−1)j+kxiyjzk, c · xiyjzk = (−1)k+ixiyjzk.

It is easy to see that A is indeed the algebra of invariants BG. It is clear that we may
identify A with C[x1, x2, x3, x4]/I, where I is the ideal (x2

4 − x1x2x3). The singularities of
SpecA = Spec C[x1, x2, x3, x4]/I consist of the union

{x1 = x2 = x4 = 0} ∪ {x1 = x3 = x4 = 0} ∪ {x2 = x3 = x4 = 0}.
Let Y = SpecA = SpecC/I and consider the morphism

π : Y −→ C3, (x1, x2, x3, x4) 7→ (x1, x2, x3).

Then π is a finite morphism of degree 2, unramified outside the divisor D ⊂ X. Here the
divisor D is the union of the coordinate hyperplanes. Note that the origin is not cyclic
quotient. In view of Remark 3.35, locally around the point (x, 0, 0, 0) with x 6= 0, we have
that Y is isomorphic to the product of the variety {uv = w2} with a linear space U ⊂ C3.

Of course, we can give a similar example in dimension 4.

Example 3.37. Consider the inclusion of C-algebras A := C[x2, y2, z2, w2, xyzw] ⊂ B :=
C[x, y, z, w]. We see that A is the algebra of invariants of an action of the noncyclic group
G of order four on B. It is clear that we may identify A with C[x1, x2, x3, x4, x5]/I, where
I = (x2

5 − x1x2x3x4). The singular locus of SpecA = Spec C[x1, x2, x3, x4]/I is given by the
union of {x1 = x2 = x5 = 0}, {x1 = x3 = x5 = 0}, {x1 = x4 = x5 = 0}, {x2 = x3 =
x5 = 0}, {x2 = x4 = x5 = 0} and {x3 = x4 = x5 = 0}. Now, consider the morphism
π : Y = SpecC/I −→ C4 defined by (x1, x2, x3, x4, x5) 7→ (x1, x2, x3, x4). Then, we have that
π is a finite morphism of degree 2, unramified outside the divisor D ⊂ X. Here the divisor
D is again the union of the coordinate hyperplanes. Again, note that the origin is not cyclic
quotient.

A proper birational surjective morphism Y ′ −→ Y with Y ′ a smooth variety over C is called
a resolution of singularities for Y . By Hironaka’s theorem ([Hiro]), we can always find a
resolution of singularities for Y . Since C is a Dedekind scheme, we have that Y ′ is flat over
C. If dimY = 2, this also implies that Y ′ is projective over C. If dimY > 2 this is no longer
true. In general, we can always arrange Y ′ to be projective over C, but there are resolutions

8Let x and p be as in the above proof. I think one can show that x is a quotient singularity given by a
product of p− 1 cyclic groups.
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ρ : Y ′ −→ Y with Y ′ nonprojective. Let us explain this. Firstly, the algorithms to construct
a resolution of singularities ρ : Y ′ −→ Y show that Y ′ can be obtained as a composition
of blow-ups. Therefore, in this case Y ′ is projective. Unfortunately, when dimY > 2 and
ρ : Y ′ −→ Y is a resolution of singularities for Y , Hironaka proves that we can find a smooth
complete nonprojective variety Y ′′ which dominates and is birational to Y ′. That is, there
are always resolutions for Y which are nonprojective.

Lemma 3.38. For any resolution of singularities ρ : Y ′ −→ Y , it holds that R0ρ∗OY ′ = OY .

Proof. Since the question is local on Y , we may assume that Y = SpecA is affine. Since
ρ is proper, we have that R0ρ∗OY ′ is a coherent sheaf of OY -algebras. Therefore, we have
that the regular ring B := Γ(Y,R0ρ∗OY ′) is a finitely generated A-module. Note that A
and B are integral domains. Therefore, since ρ is surjective, the natural morphism A −→ B
is injective. Since ρ is birational, A and B have the same quotient field. But, since Y is
normal, we have that A is integrally closed. Therefore, we have that A = B. We conclude
that R0ρ∗OY ′ = OY . �

We showed that the singularities of Y are quotient singularities. This is a purely geometric
property of the singularity. It turns out that quotient singularities are rational singularities.
This is a cohomological property defined below.

Definition 3.39. A singularity y ∈ Y is called rational if there exists a neighbourhood U of
y, such that for every resolution of singularities ρ : Y ′ −→ U for U we have Riρ∗OY ′ = 0 for
i > 0.

Every regular point of Y is a rational singularity. Therefore, by the Leray spectral sequence,
it suffices to check the above condition for only one resolution of singularities.

Lemma 3.40. For any resolution of singularities ρ : Y ′ −→ Y , we have that

Riρ∗OY ′ =

{
OY for i = 0
0 for i > 0

.

Proof. Quotient singularities are rational ([Vie, Proposition 1]). �

From Lemma 3.40 and the functoriality of push-forward, we get the following result.

Corollary 3.41. For any resolution of singularities ρ : Y ′ −→ Y , we have that χ(Y ′,OY ′) =
χ(Y,OY ). �

We already noted the importance of the determinant of cohomology in Remark 3.5.

Theorem 3.42. Fix a resolution of singularities ρ : Y ′ −→ Y and write f = h ◦ π ◦ ρ. Then
c1(f!OY ′) equals

f∗(td(Y ′)(n))−h∗(td(X)(n−1)) td(C)(1) deg π−td(C)(1) ·h∗

n−1∑
j=1

ch(π∗OY )(j) td(X)(n−1−j)

 .

Proof. This is the same computation made in [EdJoSc, Section 3]. We apply the
Grothendieck-Riemann-Roch theorem to f and OY ′ in degree 1 and combine this with the
Grothendieck-Riemann-Roch theorem for h and π∗OY . �
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Example 3.43. Suppose that n = 1, i.e., X is a smooth projective curve. In particular, the
flat morphism h : X −→ C is finite. Applying the Grothendieck-Riemann-Roch theorem to
deduce the above formula seems to be overkill in this case. In fact, we can deduce it more
directly as follows. Since Y is normal, it is smooth. Since smooth projective curves are
determined by their function fields, any resolution of singularities ρ : Y ′ −→ Y is actually
an isomorphism. Thus, we have that π : Y −→ X is a finite morphism of smooth projective
curves. The composition f = h◦π is also a finite morphism of smooth projective curves. The
effective divisor D is just a finite set of points on X and degD is just the number of points
on D. Note that π is separable and flat. Let R be the ramification divisor of π : Y −→ X.
Then R =

∑
P∈π−1D(eP − 1)[P ] and

0 ≤ degR =
∑

P∈π−1D

(eP − 1) = deg π degD − degD.

Here we used that, for any Q ∈ X, we have that∑
P 7→Q

eP = deg π.

Now, recall Section 3 and apply the Riemann-Hurwitz theorem to f . This gives us that

2c1(f∗OY ) = deg f ·KC − f∗(KY ).

Apply the Riemann-Hurwitz theorem to π : Y −→ X and rewrite the former as

2c1(f∗OY ) = deg f ·KC − f∗(π∗KX +R).

This implies that

deg det f∗OY =
1

2
(degKC deg h− degKX − degD) deg π +

1

2
degD.

In view of the definition below, we conclude that the “height of π over C” grows linearly in
deg π as a function with coefficients depending only on C,X, h and D.

Definition 3.44. Fix a resolution of singularities ρ : Y ′ −→ Y and write f = h ◦ π ◦ ρ. The
height of π over C, denoted by HC(π) or just H(π), is defined as

H(π) = |deg det(f!OY ′)|.

By Corollary 3.41 and Theorem 3.42, the height is independent of the chosen resolution. In
fact, the Hirzebruch-Riemann-Roch theorem shows that

degC f∗ td(Y ′) = deg td(Y ′) = χ(Y ′,OY ′) = χ(Y,OY ).

Remark 3.45. In the process of defining and studying the height, the Grothendieck-Riemann-
Roch theorem has shown itself to be of fundamental value. We have applied it to the morphism
h : X −→ C, f : Y ′ −→ C and the structural morphism Y ′ −→ Spec C to obtain a well-
defined height (i.e., independent of the resolution) and a useful formula (i.e., Theorem 3.42).

In general, as we mentioned in Remark 3.27, for a fixed degree, the height of π over C is
bounded from above. Our ultimate goal is actually to give a bound for the height of π over C
which is polynomial in deg π and whose coefficients depend only on C,X, h and D. To arrive
at such a result, it suffices to bound the following quantities.

Firstly, one should bound
deg td(Y ′)(n) = χ(Y,OY ).
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Then, one should bound the degree of

td(C)(1) · h∗

n−1∑
j=1

ch(π∗OY )(j) td(X)(n−1−j)

 .(7)

For example, let us show how to bound the terms of (7) which involve only c1(π∗OY ). That
is, let us bound the degree of

td(C)(1) · h∗

n−1∑
j=1

(c1(π∗OY ))j

j!
td(X)(n−1−j)

(8)

polynomially in deg π with coefficients depending only on C,X, h and D.

Write D =
∑

i∈I Di for the decomposition of D in prime components. Define R to be the Weil

divisor, supported on π−1(D), given as follows: let Dij be a component of π−1(D) mapping
onto Di, then the multiplicity of Dij in R is eij−1. Here eij is the ramification index π at the
generic point of Dij . Define B := π∗R. We have that the ideal sheaf of B can be identified with
(detπ∗OY )⊗2. To prove this, we invoke the trace pairing π∗OY ⊗ π∗OY −→ OX . This trace
pairing induces a monomorphism (detπ∗OY )⊗2 ↪→ OX , identifying (detπ∗OY )⊗2 with the
ideal sheaf OX(−B) of B as a local computation shows (e.g., [Ser2, Chapter 3.6, Proposition
13]). We obtain that

c1(π∗OY ) = −1

2
[B]

in A(X)Q. Note that the multiplicity of each Di in B is
∑

j∈Ji(eij − 1)fij , where fij is the
degree of Dij over Di. For a fixed i ∈ I, we have∑

j∈Ji

eijfij = deg π.

For each j = 1, . . . , n− 1, we conclude that each term

td(C)(1) · h∗
(

(c1(π∗OY ))j

j!
td(X)(n−1−j)

)
of the sum in expression (8) is bounded by a polynomial in deg π of degree j with coefficients
depending only on C,X, h and D.

The terms in expression (7) involving higher Chern classes are not so easily dealt with. If
dimX = 2, we see that the only term that remains to bound is td(Y ′)(2).

What about the degree of td(Y ′)(n)? Well, we can show how to do this when n = 2 following
[EdJoSc]. So from now on, we assume that n = 2.

Suppose that dimX = 2. Then the height can be bounded linearly in deg π. That is, one
can show that there is some positive integer c (which depends only on C,X, h,D) such that
H(π) ≤ cdeg π. Although details can be found in [EdJoSc], let us give an idea of how one
can bound the degree of td(Y ′) from above.

Since the height is independent of the resolution, we can choose Y ′ to be the minimal resolution
of Y . (This always exists by [Liu, Proposition 9.3.32] and it is unique up to a unique
isomorphism). Write ci for the degree of ci(TY ′) and note that

deg td(Y ′)(2) =
c2

1 + c2

12
.
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Thus, it suffices to bound c2
1 and c2 from above. Now, by the Bogomolov-Miyaoka-Yau

inequality, we have that c2
1 ≤ 3c2, if X is of general type. If X is not of general type, we

actually have that c2
1 ≤ 9 by Table 10 in Chapter VI of [BHPV]. Therefore, in order to bound

the degree of td(Y ′) from above, it suffices to bound c2 from above. By the Gauss-Bonnet
theorem, we have that c2 equals the topological Euler characteristic e(Y ′). In particular,
it suffices to bound e(Y ′). We have that e(Y ′) = ec(Y ) + s, where ec(Y ) is the compactly
supported Euler characteristic of Y and s is the total number of exceptional components
of Y ′ −→ Y . Thus, we reduce to bounding ec(Y ) and s. To bound ec(Y ), we use that
π−1U −→ U and π−1(D −Dsing) −→ D −Dsing are étale. Then, by [EdJoSc, Lemma 2.4],

ec(Y ) = ec(π
−1U) + ec(π

−1D) = ec(U) deg π + ec(π
−1D −Dsing) + ec(π

−1Dsing).

Now, we have that ec(π
−1Dsing) = #π−1Dsing ≤ #Dsing deg π. Let us explain how to bound

the compactly supported Euler characteristic of π−1(D−Dsing). Consider the prime decompo-
sition of D =

∑
Di as above and write di for the degree of the étale cover π−1(Di−Dsing) −→

Di − Dsing. Consider the degree fij of each component Dij of π−1Di over Di. The bound
follows from

di =
∑
j

fij ≤
∑
j

eijfij = deg π,

where eij is the ramification index π at the generic point of Dij . Thus, it remains to bound
s. This one does by invoking the Hirzebruch-Jung continued fraction associated to a singular
point on Y (which we know is cyclic quotient). This finishes our sketch of how to give a linear
upper bound for deg td(Y ′).

The lower bound for deg td(Y ′) is harder and requires intersection theory on the normal
surface Y .

If dimY = 3 the above argument to bound td(Y ′)(3) from above breaks down for several
reasons. For example, let us try and bound the degree of td(Y ′) from above. Again we write
ci for the degree of ci(TY ′). Then, the degree of td(Y ′) is 1

24c1c2. One could try to give an upper
bound for this by giving an upper bound for c3 (while hoping for some generalized Bogomolov-
Miyaoka-Yau inequality). But this will probably not suffice by ([LeBrun, Theorem A and
Theorem B]). Thus, we suspect it will not be sufficient to bound c3 from above in order to
bound td(Y ′) from above. Furthermore, there is no good notion of minimal resolution when
dimY > 2.

7. Arithmetic curves

We fix a number field K with ring of integers OK .

Definition 3.46. A connected regular scheme X which is projective and flat over SpecOK is
called an arithmetic variety over OK . A 1-dimensional arithmetic variety over OK is called an
arithmetic curve over OK . A 2-dimensional arithmetic variety over OK is called an arithmetic
surface over OK .

Remark 3.47. An arithmetic variety over OK is an arithmetic variety over Z.

Let X = SpecOK . We give an elementary proof of the following Lemma which is usually
shown by invoking Serre’s criterion for affineness.

Lemma 3.48. Any open subset of X is affine.



7. ARITHMETIC CURVES 59

Proof. Clearly, any open subset of X is the complement of a finite set of closed points.
Let D be a finite set of closed points of X with complement U = X−D in X. Considering D
as a finite set of maximal ideals in OK , we can define the ring OK [ 1

D ] to be the elements a in K

which have nonnegative valuation at all the primes outside D. Then SpecOK [ 1
D ] −→ SpecOK

is an open immersion with image U . This can be checked easily on a covering by basic open
affines on which the primes in D become principal. �

Let D be a finite set of maximal ideals in OK . By the above Lemma, we have that U = X−D
is affine and we can write U = SpecOK [ 1

D ]. For any finite étale morphism V −→ U , we have

that V is affine and isomorphic to SpecOL[ 1
D ] if we assume V to be connected with function

field L. The normalization π : Y −→ X of X in L is finite. Since the integral closure of OK
in L is OL, we have that Y = SpecOL. Reversely, any arithmetic curve over OK arises in this
matter. (Apply [Bruin, Proposition 6.1] and the fact that the set of ramification points of a
finite field extension K ⊂ L is finite.) Of course, the degree of π is the degree of the extension
K ⊂ L. As in Section 3, we can interpret this as a Riemann-Roch theorem in degree 0. We
now formulate a Riemann-Roch theorem for π in degree 1.

Example 3.49. Consider the field extension Q ⊂ Q(i). The ring of integers of Q(i) is the
ring of Gaussian integers Z[i]. A prime ideal P of Q(i) is ramified over Q if and only if
P contains the different DQ(i)/Q. In this case, DQ(i)/Q = (2i)Z[i] = (2)Z[i]. We see that
(1 + i)Z[i] is the only prime ideal which ramifies. Its ramification index over Q is 2. There
are precisely four covers of Spec Z ramified at (2):

A point at infinity on X is an embedding σ : K −→ C. For any embedding σ : K −→ C, we
define its conjugate σ : K −→ C as the composition of σ with the complex conjugation on
C. We say that σ ∈ X∞ is real if σ = σ. Clearly, an element σ ∈ X∞ is real if and only if
σ(K) ⊂ R. We let Σ be the set of embeddings σ : K −→ C. Note that #Σ = [K : Q].

We now give some basic definitions and facts.

The group of arithmetic cycles of codimension 1 or Arakelov divisors on X is defined as

Ẑ1(X) = Z1(X)⊕RΣ.

Usually, we will denote elements of Ẑ1(X) by (D, g), where D is a divisor on X and g is an

element of RΣ. We define the map d̂iv : K∗ −→ Ẑ1(X) by

d̂iv(a) = div(a)⊕ (− log |σ(a)|)σ.

Here div(a) denotes the cycle associated to the fractional ideal OK · a. Note that d̂iv is

a homomorphism. We let R̂at
1
(X) be its image. We define the arithmetic Chow group of

codimension 1 to be the quotient group

Â1(X) = Ẑ1(X)/R̂at
1
(X).

Finally, we define the arithmetic Chow group as

Â(X) = Z⊕ Â1(X).
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Let (D, g) be an Arakelov divisor on X = SpecOK . We define its (arithmetic) degree in R,

denoted by d̂eg(D, g), as

d̂eg(D, g) =
∑

p maximal in OK

np log(#OK/p) +
∑
σ∈Σ

log |σ(a)|.

This clearly defines a homomorphism d̂eg : Ẑ1(X) −→ R.

Lemma 3.50. For any a ∈ K∗, the degree of d̂iv(a) equals zero.

Proof. We may assume that a ∈ OK and that a 6= 0. Then

d̂egd̂iv(a) =
∑
p

ordp(a) log(#OK/p)−
∑
σ∈Σ

log |σ(a)|.

It is easy to see that
ordp(a) log(#OK/p) = log(#OK,p/(a)).

Since the OK-module OK/(a) has finite support, one has an isomorphism

OK/(a) ∼=
⊕
p

OK,p/(a).

This implies that ∑
p

ordp(a) log(#OK/p) = log(#OK/(a)) = logN(a),

where N(a) is the norm of the ideal (a) ⊂ OK . We have a short exact sequence

0 // OK
ma // OK // OK/(a) // 0 ,

where ma is the multiplication by a. It is easy to show that #OK/(a) = |det(ma)|. Now,
tensor the above short exact sequence with C over Z. The map induced byma fromOK⊗ZC ∼=
⊕σ∈ΣC to itself is given by the multiplication by σ(a) on the coordinate indexed by σ.
Therefore, we see that det(ma) =

∏
σ∈Σ σ(a). This implies the result. �

We conclude that the degree induces a homomorphism d̂eg : Â1(X) −→ R.

Example 3.51. Suppose that X = Spec Z. Then d̂eg : Â1(X) −→ R is an isomorphism.

A metrised OK-module on X is the data of a finitely generated OK-module M together with
a family (hσ)σ∈Σ of hermitian forms hσ on the complex vector space σ∗M = M ⊗σ C such
that (hσ)σ∈Σ is invariant under conjugation. The former means that, for any σ ∈ Σ and
v, w ∈ σ∗M , we have that

hσ(v, w) = hσ(v, w).

A hermitian vector bundle on X is a metrised OK-module (M, (hσ)σ∈Σ), where M is projec-
tive. A hermitian line bundle on X is a hermitian vector bundle (M, (hσ)σ∈Σ), where M is
of rank 1. The projective finitely generated OK-modules of rank 1 correspond to fractional
ideals. We will write just M for a metrised OK-module when the hermitian form is clear from
the context.

For any hermitian line bundle L on X, we can define its degree d̂egL. One simply takes

a section a section s of L and defines d̂egL to be the degree of the arithmetic cycle with
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multiplicity ordp(s) := ordp(a) at a prime ideal p, where a ∈ K∗ is the unique element such

that s = a · 1. It is easy to see that d̂egL is well-defined, i.e., independent of the section s.
(Use the product formula or a similar reasoning as in Lemma 7.)

A morphism of metrised OK-modules (M,hσ) and (N,h′σ) on X is a morphism of OK-modules
ϕ : M −→ N such that, for any σ ∈ Σ and v ∈ σ∗M , we have that

h′σ(σ∗ϕ(v), σ∗ϕ(v)) = hσ(v, v).

This defines the category Ĉoh(X) of metrised OK-modules. An isomorphism in the category
of metrised OK-modules is called an isometry. It is not hard to see that morphisms of metrised

OK-modules which are bijective are isometries. The category V̂ect(X) of hermitian vector
bundles is a full subcategory.

Let us recall some basic constructions. Let (M, (hσ)σ∈Σ) be a metrised OK-module. Suppose
that N ⊂M is a submodule and that (M ′, (h′σ)σ∈Σ) is another metrised OK-module. In the
following σ will be a point in Σ. The restriction of hσ to σ∗N endows N with a natural struc-
ture of a metrised OK-module. Similarly, the restriction of hσ to the orthogonal complement
of σ∗N makes M/N into a metrised OK-module if we identity this complement with σ∗M/N .
Now, the orthogonal direct sum hσ ⊕ h′σ of hσ and h′σ makes the direct sum M ⊕ N into a
metrised OK-module. Here, for any v, w ∈ σ∗M and v′, w′ ∈M ′, we define

hσ ⊕ h′σ(v ⊕ v′, w ⊕ w′) = hσ(v, w) + h′(v′, w′).

Also, for any v, w ∈ σ∗M and v′, w′ ∈M ′, we define

hσ ⊗ h′σ(v ⊗ v′, w ⊗ w′) = hσ(v, w) · h′(v′, w′).

This makes M ⊗OK M ′ into a metrised OK-module. As an application of this, let E be the
OK-module HomOK (M,M ′) and note that σ∗E = HomC(σ∗M,σM ′) is the tensor product
of σ∗M and σ∗M ′. Therefore, we can make E into a metrised OK-module by endowing it
with this hermitian form on each complex vector space σ∗E. In particular, the dual module
E∨ = HomOK (M,OK) is endowed with a natural structure of metrised OK-module. More
explicitly, if v∨ denotes the element hσ(−, v) in σ∗E∨, where v ∈ σ∗E, we have that

h∨σ (v∨, w∨) = hσ(v, w).

Finally, let p ≥ 0. For any v1 ∧ . . . ∧ vp, w1 ∧ . . . ∧ wp ∈ σ∗ΛpM , we define

Λphσ(v1 ∧ . . . ∧ vp, w1 ∧ . . . ∧ wp) = det(hσ(vi, wj))h
′(v′, w′).

This makes ΛpM into a metrised OK-module. In particular, we can naturally endow the
determinant of M with the structure of a metrised OK-module.

The category Ĉoh(X) is abelian and V̂ect(X) is an additive subcategory of Ĉoh(X).

Let π : Y −→ X be an arithmetic curve over OK of degree n. We already said that we can
write Y = SpecOL, where L is the function field of Y . Endow OL with the trivial metric.
That is, for any τ : L −→ C, define the hermitian form hτ on τ∗OL = C to be the usual
hermitian form on C. Thus, for any v, w ∈ C, we have hτ (v, w) = vw. Now, it is easy
to endow the projective finitely generated OK-module E := π∗OL with the structure of a
hermitian vector bundle. In fact, let σ : K −→ C be an embedding. If τ : L −→ C is an
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embedding such that τ |K = σ, we will write τ |σ. Then, for any σ : K −→ C, we can define a
hermitian form (π∗h)σ on σ∗E as follows. Given v, w ∈ σ∗E, we define

(π∗h)σ(v, w) =
∑
τ |σ

hτ (τ(v), τ(w)) =
n∑
i=1

hτ (vi, wi) =
n∑
i=1

viwi.

Here we use the decomposition σ∗E =
⊕

τ |σ τ
∗OL. To conclude, note that the family of

hermitian forms ((π∗h)σ)σ∈Σ is invariant under conjugation. Since any fractional ideal a of L
can be endowed with the trivial metric described above, the above construction shows that
π∗a can be canonically given the structure of a hermitian vector bundle on X.

Example 3.52. The above construction does not always work. Let n ≥ 1 and let X −→ Y be
the morphism given by x 7→ xn, where X = Y = C. This is clearly a finite morphism. Note
that E = π∗OX is a free OY -module with basis (1, w, . . . , wn−1). Here w is the coordinate on
Y . The trace form E ⊗ E −→ OY maps (f, g) ∈ E × E to tr(f ⊗ g). This is symmetric and
OY -linear. Let z be the coordinate on X. Then, in the basis (1, w, . . . , wn−1), the matrix of
the trace form reads

tr(wi−1wj−1) =


n 0 . . . 0
0 nz
... 0

nz

 .

The determinant of this matrix is

det tr(wi−1wj−1) = ε((1 · n− 1)(2n− 1) . . . (bn− 2

2
c))nn(−1)b

n
2
c−1zn−1.

As an application of this we have the following Lemma.

Lemma 3.53. There is a canonical isomorphism

(detπ∗OL)⊗2 ∼= dL/K

of hermitian line bundles. Here dL/K denotes the discriminant ([Neu, Chapter III.2]).

Proof. Consider the OK-bilinear map on OL given by the trace map. It induces a linear
map τ : det(π∗OL)⊗det(π∗OL) −→ OK given by τ(v1∧ . . .∧vn, w1∧ . . .∧wn) = det(tr(viwj)).
Its image is, by definition, the discriminant dL/K . As a local computation shows, it suffices
to compare the hermitian metrics on both sides.

Let σ : K −→ C be an embedding. By construction, the hermitian form on σ∗E is given
by hσ(v, w) =

∑
τ |σ τ(v)τ(w). The trace form σ∗ tr : σ∗E −→ σ∗OK is given by the map

(zτ ) 7→
∑
zτ . In particular, the linear map σ∗τ is given by

(v1 ∧ . . . ∧ vn)⊗ (w1 ∧ . . . ∧ wn) 7→ det

(∑
τ

vi,τwj,τ

)
= det(vi,τ ) det(wj,σ).

We conclude that σ∗τ is an isometry. �

Since d̂egdL/K equals − logN(dL/K), we have proven the following arithmetic Hurwitz theo-
rem.

Theorem 3.54. One has d̂eg detπ∗OL = −1
2 logN(dL/K). �
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