
Probability measures on metric spaces

Onno van Gaans

These are some loose notes supporting the first sessions of the seminar Stochastic
Evolution Equations organized by Dr. Jan van Neerven at the Delft University
of Technology during Winter 2002/2003. They contain less information than
the common textbooks on the topic of the title. Their purpose is to present a
brief selection of the theory that provides a basis for later study of stochastic
evolution equations in Banach spaces. The notes aim at an audience that feels
more at ease in analysis than in probability theory. The main focus is on
Prokhorov’s theorem, which serves both as an important tool for future use and
as an illustration of techniques that play a role in the theory.

The field of measures on topological spaces has the luxury of several excellent
textbooks. The main source that has been used to prepare these notes is the
book by Parthasarathy [6]. A clear exposition is also available in one of Bour-
baki’s volumes [2] and in [9, Section 3.2]. The theory on the Prokhorov metric
is taken from Billingsley [1]. The additional references for standard facts on
general measure theory and general topology have been Halmos [4] and Kelley
[5].
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The distribution of a random variable in a Banach space X will be a probability
measure on X . When we study limit properties of stochastic processes we will
be faced with convergence of probability measures on X . For certain aspects of
the theory the linear structure of X is irrelevant and the theory of probability
measures on metric spaces supplies some powerful tools. In view of the Banach
space setting that we have in mind, it is not too restrictive to assume separability
and completeness but we should avoid assuming compactness of the metric
space.

1 Borel sets

Let (X, d) be a metric space. The Borel σ-algebra (σ-field) B = B(X) is the
smallest σ-algebra in X that contains all open subsets of X . The elements of B
are called the Borel sets of X .

The metric space (X, d) is called separable if it has a countable dense subset,
that is, there are x1, x2, . . . in X such that {x1, x2, . . .} = X . (A denotes the
closure of A ⊂ X .)

Lemma 1.1. If X is a separable metric space, then B(X) equals the σ-algebra
generated by the open (or closed) balls of X.

Proof. Denote

A := σ-algebra generated by the open (or closed) balls of X.

Clearly, A ⊂ B.
Let D be a countable dense set in X . Let U ⊂ X be open. For x ∈ U take

r > 0, r ∈ Q such that B(x, r) ⊂ U (B(x, r) open or closed ball with center x
and radius r) and take yx ∈ D ∩B(x, r/3). Then x ∈ B(yx, r/2) ⊂ B(x, r). Set
rx := r/2. Then

U =
⋃

{B(yx, rx) : x ∈ U},
which is a countable union. Therefore U ∈ A. Hence B ⊂ A.

Lemma 1.2. Let (X, d) be a separable metric space. Let C ⊂ B be countable.
If C separates closed balls from points in the sense that for every closed ball B
and every x ∈ X \ B there exists C ∈ C such that B ⊂ C and x 6∈ C, then the
σ-algebra generated by C is the Borel σ-algebra.

Proof. Clearly σ(C) ⊂ B, where σ(C) denotes the σ-algebra generated by C. Let
B be a closed ball in X . Then B =

⋂{C ∈ C : B ⊂ C}, which is a countable
intersection and hence a member of σ(C). By the previous lemma we obtain
B ⊂ σ(C).

If f : S → T and AS and AT are σ-algebras in S and T , respectively, then f is
called measurable (w.r.t. AS and AT ) if

f−1(A) = {x ∈ S : f(x) ∈ A} ∈ AS for all A ∈ AT .
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Proposition 1.3. Let (X, d) be a metric space. B(X) is the smallest σ-algebra
with respect to which all (real valued) continuous functions on X are measurable
(w.r.t. B(X) and B(R)).
(See [6, Theorem I.1.7, p. 4].)

2 Borel probability measures

Let (X, d) be a metric space. A finite Borel measure on X is a map µ : B(X) →
[0,∞) such that

µ(∅) = 0, and
A1, A2, . . . ∈ B mutually disjoint =⇒ µ(

⋃∞
i=1 Bi) =

∑∞
i=1 µ(Bi).

µ is called a Borel probabiliy measure if in addition µ(X) = 1.
The following well known continuity properties will be used many times.

Lemma 2.1. Let X be a metric space and µ a finite Borel measure on X. Let
A1, A2, . . . be Borel sets.

(1) If A1 ⊂ A2 ⊂ · · · and A =
⋃∞

i=1Ai, then µ(A) = limn→∞ µ(An).

(2) If A1 ⊃ A2 ⊃ · · · and A =
⋂∞

i=1, then µ(A) = limn→∞ µ(An).

The next observation is important in the proof of Theorems 3.2 and 4.2.

Lemma 2.2. If µ is a finite Borel measure on X and A is a collection of
mutually disjoint Borel sets of X, then at most countably many elements of A
have nonzero µ-measure.

Proof. For m ≥ 1, let Am := {A ∈ A : µ(A) > 1/m}. For any distinct
A1, . . . , Ak ∈ Am we have

µ(X) ≥ µ(

k
⋃

i=1

Ai) = µ(A1) + · · · + µ(Ak) > k/m,

hence Am has at most mµ(X) elements. Thus

{A ∈ A : µ(A) > 0} =

∞
⋃

m=1

Am

is countable.

Example. If µ is a finite Borel measure on R, then µ({t}) = 0 for all except at
most countably many t ∈ R.

Proposition 2.3. Any finite Borel measure on X is regular, that is, for every
B ∈ B

µ(B) = sup{µ(C) : C ⊂ B, C closed} (inner regular)

= inf{µ(U) : U ⊃ B, U open} (outer regular).

3



Proof. Define the collection R by

A ∈ R ⇐⇒ µ(A) = sup{µ(C) : C ⊂ A, Cclosed} and
µ(A) = inf{µ(C) : U ⊃ A, U open}.

We have to show that R contains the Borel sets. step 1: R is a σ-algebra:
∅ ∈ R. Let A ∈ R, let ε > 0. Take C closed and U open with C ⊂ A ⊂ U and
µ(A) < µ(C) + ε, µ(A) > µ(U) − ε. Then U c ⊂ Ac ⊂ Cc, U c is closed, Cc is
open, and

µ(Ac) = µ(X) − µ(A) > µ(X) − µ(C) − ε = µ(Cc) − ε,
µ(Ac) = µ(X) − µ(A) < µ(X) − µ(U) + ε = µ(U c) + ε.

Hence Ac ∈ R.
Let A1, A2, . . . ∈ R and let ε > 0. Take for each i

Ui open , Ci closed with
Ci ⊂ A ⊂ Ui,
µ(Ui) − µ(Ai) < 2−iε, µ(Ai) − µ(Ci) < 2−iε/2.

Then
⋃

i Ci ⊂
⋃

i Ai ⊂
⋃

i Ui and
⋃

i Ui is open, and

µ(
⋃

i

Ui) − µ(
⋃

i

Ai) ≤ µ
(

∞
⋃

i=1

Ui \
∞
⋃

i=1

Ai

)

≤ µ
(

∞
⋃

i=1

(Ui \Ai)
)

≤
∞
∑

i=1

µ(Ui \Ai)

=
∞
∑

i=1

(µ(Ui) − µ(Ai)) <
∞
∑

i=1

2−iε = ε.

Further, µ(
⋃∞

i=1 Ci) = limk→∞ µ(
⋃k

i=1 Ci), hence for some large k, µ(
⋃∞

i=1 Ci)−
µ(

⋃k
i=1 Ci) < ε/2. Then C :=

⋃k
i=1 Ci ⊂

⋃∞
i=1Ai, C is closed, and

µ(

∞
⋃

i=1

Ai) − µ(C) < µ(

∞
⋃

i=1

Ai) − µ(

∞
⋃

i=1

Ci) + ε/2

≤ µ
(

∞
⋃

i=1

Ai \
∞
⋃

i=1

Ci

)

+ ε/2

≤ µ
(

∞
⋃

i=1

(Ai \ Ci)
)

+ ε/2

≤
∞
∑

i=1

µ(Ai \ Ci) + ε/2

=
∞
∑

i=1

(

µ(Ai) − µ(Ci)
)

+ ε/2 ≤ ε/2 + ε/2.
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Hence
⋃∞

i=1Ai ∈ R. Thus R is a σ-algebra.
step2: R contains all open sets: We prove: R contains all closed sets. Let

A ⊂ X be closed. Let Un := {x ∈ X : d(x,A) < 1/n} = {x ∈ X : ∃ a ∈
A with d(a, x) < 1/n}, n = 1, 2, . . .. Then Un is open, U1 ⊃ U2 ⊃ · · ·, and
⋂∞

i=1 Ui = A, as A is closed. Hence µ(A) = limn→∞ µ(Un) = infn µ(Un). So

µ(A) ≤ inf{µ(U) : U ⊃ A, U open} ≤ inf
n
µ(Un) = µ(A).

Hence A ∈ R.
Conclusion: R is a σ-algebra that contains all open sets, so R ⊃ B.

Corollary 2.4. If µ and ν are finite Borel measures on the metric space X and
µ(A) = ν(A) for all closed A (or all open A), then µ = ν.

A finite Borel measure µ on X is called tight if for every ε > 0 there exists a
compact set K ⊂ X such that µ(X \K) < ε, or, equivalently, µ(K) ≥ µ(X)−ε.
A tight finite Borel measure is also called a Radon measure.

Corollary 2.5. If µ is a tight finite Borel measure on the metric space X, then

µ(A) = sup{µ(K) : K ⊂ A, K compact}

for every Borel set A in X.

Proof. Take for every ε > 0 a compact set Kε such that µ(X \Kε) < ε. Then

µ(A ∩Kε) = µ(A \Kc
ε) ≥ µ(A) − µ(Kc

ε) > µ(A) − ε

and

µ(A ∩Kε) = sup{µ(C) : C ⊂ Kε ∩A, C closed}
≤ sup{µ(K) : K ⊂ A, K compact},

because each closed subset contained in a compact set is compact. Combination
completes the proof.

Of course, if (X, d) is a compact metric space, then every finite Borel measure
on X is tight. There is another interesting case. A complete separable metric
space is sometimes called a Polish space.

Theorem 2.6. If (X, d) is a complete separable metric space, then every finite
Borel measure on X is tight.

We need a lemma from topology.

Lemma 2.7. If (X, d) is a complete metric space, then a closed set K in X is
compact if and only if it is totally bounded, that is, for every ε > 0 the set K is
covered by finitely many balls (open or closed) of radius less than or equal to ε.
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Proof. ⇒) Clear: the covering with all ε-balls with centers in K has a finite
subcovering.

⇐) Let (xn)n be a sequence in K. For each m ≥ 1 there are finitely many
1/m-balls that cover K, at least one of which contains xn for infinitely many
n. For m = 1 take a ball B1 with radius ≤ 1 such that N1 := {n : xn ∈ B1}
is infinite, and take n1 ∈ N1. Take a ball B2 with radius ≤ 1/2 such that
N2 := {n > n1 : xn ∈ B2 ∩ B1} is infinite, and take n2 ∈ N2. Take B3, radius
≤ 1/3, N3 := {n > n2 : xn ∈ B3 ∩ B2 ∩ B1} infinite, n3 ∈ N3. And so on.

Thus (xnk
)k is a subsequence of (xn)n and since xnell

∈ Bk for all ` ≥ k,
(xnk

)k is a Cauchy sequence. As X is complete, (xn)n converges in X and as
K is closed, the limit is in K. So (xn)n has a convergent subsequence and K is
compact.

Proof of Theorem 2.6. We have to prove that for every ε > 0 there exists a
compact set K such that µ(X \K) < ε. Let D = {a1, a2, . . .} be a countable
dense subset of X . Then for each δ > 0,

⋃∞
k=1B(ak, δ) = X . Hence µ(X) =

limn→∞ µ(
⋃n

k=1 B(ak, δ)) for all δ > 0. Let ε > 0. Then there is for each m ≥ 1
an nm such that

µ
(

nm
⋃

k=1

B(ak, 1/m)
)

> µ(X) − 2−mε.

Let

K :=

∞
⋂

m=1

nm
⋃

k=1

B(ak, 1/m).

Then K is closed and for each δ > 0,

K ⊂
nm
⋃

k=1

B(ak, 1/m) ⊂
nm
⋃

k=1

B(ak, δ)

if we choose m > 1/δ. So K is compact, by the lemma. Further,

µ(X \K) = µ
(

∞
⋃

m=1

(X \
nm
⋃

k=1

B(ak , 1/m))
)

≤
∞
∑

m=1

µ
(

X \
nm
⋃

k=1

B(ak, 1/m)
)

=

∞
∑

m=1

(

µ(X) − µ(

nm
⋃

k=1

B(ak, 1/m))
)

<

∞
∑

m=1

2−mε = ε.

3 Weak convergence of measures

Let (X, d) be a metric space and denote

Cb(X) := {f : X → R : f is continuous and bounded}.

Each f ∈ Cb(X) is integrable with respect to any finite Borel measure on X .
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Definition 3.1. Let µ, µ1, µ2, . . . be finite Borel measures on X . We say that
(µi)i converges weakly to µ if

∫

fdµi →
∫

fdµ as i→ ∞ for all f ∈ Cb(X).

Notation: µi ⇒ µ. (There is at most one such a limit µ, as follows from the
metrization by the Prokhorov metric, which is discussed in the next section.)

Theorem 3.2. Let (X, d) be a metric space, let µ, µ1, µ2, . . . be Borel probability
measures on X. The following statements are equivalent:

(a) µi ⇒ µ

(b)
∫

gdµi →
∫

gdµ for all g ∈ UCb(X) := {f : X → R : f is uniformly
continuous and bounded}

(c) lim supi→∞ µi(C) ≤ µ(C) for all closed C ⊂ X

(d) lim inf i→∞ µi(U) ≥ µ(U) for all open U ⊂ X

(e) µi(A) → µ(A) for every Borel set A in X with µ(∂A) = 0. (∂A = A\A◦).

Proof. (a)⇒(b) is clear
(b)⇒(c): Let C be a closed set, nonempty. Let Um := {x : d(x,C) < 1/m},

m ≥ 1. (Here d(x,A) := infa∈A d(x, a) if A 6= ∅, and “d(x, ∅) := ∞”.) Then U c
m

is closed and
inf

x∈C,y∈Uc
m

d(x, y) ≥ 1/m.

Hence there is an fm ∈ UCb(X) with 0 ≤ f ≤ 1 on X , fm = 1 on C, and fm = 0

on U c
m. (Indeed, fm(x) :=

d(x,Uc
m)

d(x,Uc
m)+d(x,C) does the job.) Since

µi(C) =

∫

�
Cdµi ≤

∫

fmdµi,

we get by assumption (b)

lim sup
i→∞

µi(C) ≤ lim sup
i→∞

∫

fmdµi =

∫

fmdµ ≤
∫

�
Um
dµ = µ(Um).

Because
⋂∞

m=1 Um = C (since C is closed) we find

µ(C) = lim
m→∞

µ(Um) ≥ lim sup
i→∞

µi(C).

(c)⇒(d): By complements,

lim inf
i→∞

µi(U) = lim inf
i→∞

(

µi(X) − µi(U
c)

)

= 1 − lim sup
i→∞

µi(U
c)

≥ 1 − µ(U c) = µ(X) − µ(U c) = µ(U).

7



(d)⇒(c): Similarly.
(c)+(d)⇒(e): A◦ ⊂ A ⊂ A, A◦ is open and A is closed, so by (c) and (d)

lim supµi(A) ≤ lim supµi(A) ≤ µ(A) = µ(A ∪ ∂A)

≤ µ(A) + µ(∂A) = µ(A),

lim inf µi(A) ≥ lim inf µi(A
◦) ≥ µ(A◦) = µ(A \ ∂A)

≥ µ(A) − µ(∂A) = µ(A),

hence µi(A) → µ(A).
(e)⇒(a): Let g ∈ Cb(X). Idea: we have

∫

fdµi →
∫

fdµ for suitable simple
functions; we want to approximate g to get

∫

gdµi →
∫

gdµ.
Define

ν(E) := µ({x : g(x) ∈ E}) = µ(g−1(E)), E Borel set in R.

Then ν is a finite Borel measure (probability measure) on R and if we take
a < −‖g‖∞, b > ‖g‖∞, then ν(R \ (a, b)) = 0. As ν is finite, there are at most
countably many α with ν({α}) > 0. Hence for ε > 0 there are t0, . . . , tm ∈ R

such that

(i) a = t0 < t1 < · · · < tm = b,
(ii) tj − tj−1 < ε, j = 1, . . . ,m,
(iii) ν({tj}) = 0, i.e., µ({x : g(x) = tj}) = 0, j = 0, . . . ,m.

Take

Aj := {x ∈ X : tj−1 ≤ g(x) < tj} = g−1([tj−1, tj)), j = 1, . . . ,m.

Then Aj ∈ B(X) for all j and X =
⋃m

j=1 Aj . Further,

Aj ⊂ {x : tj−1 ≤ g(x) ≤ tj} (since this set is closed and ⊃ Aj),

A◦
j ⊃ {x : tj−1 < g(x) < tj} (since this set is open and ⊂ Aj),

so

µ(∂Aj) = µ(Aj \A◦
j ) ≤ µ({x : g(x) = tj−1 or g(x) = tj})

= µ({x : g(x) = tj−1}) + µ({x : g(x) = tj}) = 0 + 0.

Hence by (e), µi(Aj) → µ(Aj) as i→ ∞ for j = 1, . . . ,m. Put

h :=

m
∑

j=1

tj−1
�

Aj
,

then h(x) ≤ g(x) ≤ h(x) + ε for all x ∈ X . Hence

|
∫

gdµi −
∫

gdµ| = |
∫

(g − h)dµi +

∫

hdµi −
∫

(g − h)dµ−
∫

hdµ|

≤
∫

|g − h|dµi + |
∫

hdµi −
∫

hdµ| +
∫

|g − h|dµ

≤ εµi(X) + |
m

∑

j=1

tj−1

(

µi(Aj) − µ(Aj)
)

| + εµ(X).
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It follows that lim supi→∞ |
∫

gdµi −
∫

gdµ| ≤ 2ε. Thus
∫

gdµi →
∫

gdµ as
i→ ∞.

Remark. The condition that the measures µ, µ1, µ2, . . . in the above theorem
are probability measures can be weakened to finite Borel measures such that
µi(X) → µ(X) as i → ∞. The same proof can be used with only minor
modifications in the proof of the equivalence (c)⇔(d).

4 The Prokhorov metric

Let (X, d) be a metric space. Denote

P = P(X) := all Borel probability measures on X.

We have defined the notion of weak convergence in P . Define for µ, ν ∈ P

dP (µ, ν) := inf{α > 0 : µ(A) ≤ ν(Aα) + α and ν(A) ≤ µ(Aα) + α ∀A ∈ B(X)},

where
Aα := {x : d(x,A) < α} if A 6= ∅, ∅α := ∅ for all α > 0.

(Here d(x,A) = inf{d(x, a) : a ∈ A}.) The function dP is called the Prokhorov
metric on P (induced by d), which makes sense because of the next theorem. If
X is separable, then convergence in the metric dP is the same as weak conver-
gence in P .

Theorem 4.1. Let (X, d) be a metric space.

(1) dP is a metric on P = P(X).

(2) Let µ, µ1, µ2, . . . ∈ P. Then dP (µi, µ) → 0 implies µi ⇒ µ.

Proof. (1): Any α ≥ 1 is in the set of the defining formula of dP , so the infimum
is well defined. Clearly dP (µ, ν) ≥ 0 and dP (µ, ν) = dP (ν, µ) for all µ, ν ∈ P .

dP (µ, µ) = 0: Let µ ∈ P . For every Borel set A and α > 0, Aα ⊃ A, so
µ(A) ≤ µ(Aα) + α, hence dP (µ, ν) ≤ α, whence dP (µ, µ) = 0.

dP (µ, ν) = 0 ⇒ µ = ν: If dP (µ, ν) = 0, then there is a sequence αn ↓ 0 such
that µ(A) ≤ ν(Aαn

) + αn and ν(A) ≤ µ(Aαn
) + αn for all n. As A =

⋂

nAαn
,

it follows that µ(A) ≤ ν(A) and ν(A) ≤ µ(A). In particular, µ(A) = ν(A) for
all closed sets A and therefore µ = ν (by inner regularity).

Triangle inequality: Let µ, ν, η ∈ P . Let α > 0 be such that

µ(A) ≤ η(Aα) + α, η(A) ≤ µ(Aα) + α for all A ∈ B

and β > 0 such that

ν(A) ≤ η(Aβ) + β, η(A) ≤ ν(Aβ) + β for all A ∈ B.
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Then for A ∈ B:

µ(A) ≤ η(Aα) + α ≤ ν((Aα)β) + α+ β,

ν(A) ≤ η(Aβ) + β ≤ µ((Aβ)α) + β + α.

Now notice that (Aα)β ⊂ Aα+β . (Indeed, x ∈ (Aα)β ⇒ d(x,Aα) < β ⇒
∃ y ∈ Aα : d(x, y) < β, and y ∈ Aα ⇒ ∃ a ∈ A : d(y, a) < α, so that
d(x, a) ≤ d(x, y)+d(y, a) < α+β, and x ∈ Aα+β .) Of course also (Aβ)α ⊂ Aα+β .
Hence for all A ∈ B,

µ(A) ≤ ν(Aα+β) + α+ β,

ν(A) ≤ µ(Aα+β) + α+ β.

Thus, by the definition, dP (µ, ν) ≤ α + β. The infimum over the α under
consideration is dP (µ, η) and the infimum over the β is dP (η, ν). Thus taking
infimum over α and β yields

dP (µ, ν) ≤ dP (µ, η) + dP (η, ν).

The proof of (1) is complete.
(2): Assume that dP (µi, µ) → 0 as i → ∞. Then there are αi ↓ 0 with

µi(A) ≤ µ(Aαi
) + αi and µ(A) ≤ µi(Aαi

) + αi for all A ∈ B. Hence for A ∈ B,

lim sup
i→∞

µi(A) ≤ lim sup
i→∞

(

µ(Aαi
) + αi

)

= lim
i→∞

µ(Aαi
) = µ(A).

In particular, for any closed C ⊂ X , lim supi→∞ µi(C) ≤ µ(C), and therefore
µi ⇒ µ.

Theorem 4.2. If (X, d) is a separable metric space, then for any µ, µ1, µ2, . . . ∈
P(X) one has

µi ⇒ µ if and only if dP (µi, µ) → 0.

For the proof we need a lemma on existence of special coverings with small balls.

Lemma 4.3. Let X be a separable metric space and µ be a finite Borel measure
on X. Then for each δ > 0 there are countably many open (or closed) balls
B1, B2, . . . such that

⋃∞
i=1 Bi = X,

radius of Bi is < δ for all i,
µ(∂Bi) = 0 for all i.

Proof. Let D be a countable dense set in X . Let x ∈ D. Let S(x, r) := {y ∈
X : d(y, x) = r}. Observe that the boundary of the open or closed ball centered
at x and with radius r is contained in S(x, r). Given δ > 0, the collection
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S := {S(x, r) : δ/2 < r < δ} is disjoint and therefore at most countably
many of its members have µ-measure > 0. As S is uncountable, there exists
an r ∈ (δ/2, δ) such that µ(S(x, r)) = 0. In this way we find for each x ∈ D
an open (or closed) ball B(x, r) centered at x with radius r ∈ (δ/2, δ) and
µ(∂B(x, r)) = 0. As D is dense these balls cover X , and as D is countable we
have countably many, say B1, B2, . . ..

Proof of Theorem 4.2. ⇐) already done.
⇒) Let ε > 0. We want to show that there exists an N such that for

every i ≥ N we have dP (µi, µ) ≤ ε, which means that µi(B) ≤ µ(Bε) + ε and
µ(B) ≤ µi(Bε) + ε for all B ∈ B.

Take δ > 0 with δ < ε/3 and take with aid of the previous lemma open balls
B1, B2, . . . with radius < δ/2 such that

⋃∞
j=1 Bj = X and µ(∂Bj) = 0 for all j.

Fix k such that

µ
(

k
⋃

j=1

Bj

)

≥ 1 − δ.

Consider the collection of sets that can be built by combining the ballsB1, . . . , Bk:

A := {
⋃

j∈J

Bj : J ⊂ {1, . . . , k}},

which is a finite collection. We are going to use this collection to approximate
arbitrary Borel sets. For each A ∈ A, ∂A ⊂ ∂B1 ∪ · · · ∪ ∂Bk, so µ(∂A) ≤
µ(∂B1)+ · · ·+µ(∂Bk) = 0. Since µi ⇒ µ, we have µi(A) → µ(A) for all A ∈ A.
Fix N such that

|µi(A) − µ(A)| < δ for all i ≥ N and for all A ∈ A.

Then in particular µi(
⋃k

j=1 Bj) ≥ µ(
⋃k

j=1 Bj) − δ ≥ 1 − 2δ for all i ≥ N .
Let now B ∈ B be given. Take as approximation of B the set

A :=
⋃

{Bj : j ∈ {1, . . . , k} such that Bj ∩ B 6= ∅} ∈ A.

We find

• A ⊂ Bδ = {x : d(x,B) < δ} because the diameter of each Bj is < δ,

• B = [B ∩ ⋃k
j=1 Bj ] ∪ [B ∩ (

⋃k
j=1 Bj)

c] ⊂ A ∪ (
⋃k

j=1 Bj)
c, because B ∩

⋃k
j=1 Bj =

⋃k
j=1(B ∩ Bj) ⊂ A,

• |µi(A) − µ(A)| < δ for all i ≥ N ,

• µ
(

(
⋃k

j=1 Bj)
c
)

≤ δ, µi

(

(
⋃k

j=1 Bj)
c
)

≤ 2δ for all i ≥ N .

11



Hence for every i ≥ N :

µ(B) ≤ µ(A) + µ
(

(

k
⋃

j=1

Bj)
c
)

≤ µ(A) + δ ≤ µi(A) + 2δ

≤ µi(Bδ) + 2δ ≤ µi(Bε) + ε,

µi(B) ≤ µi(A) + µi

(

(
k

⋃

j=1

Bj)
c
)

≤ µi(A) + 2δ ≤ µ(A) + 3δ

≤ µ(Bδ) + 3δ ≤ µ(Bε) + ε.

This is true for every B ∈ B, so dP (µi, µ) ≤ ε for all i ≥ N .

Proposition 4.4. Let (X, d) be a separable metric space. Then P = P(X) with
the Prokhorov metric dP is separable.

Proof. Let D := {a1, a2, . . .} be a countable set in X . Let

M := {α1δa1
+ · · · + αkδak

: α1, . . . , αk ∈ Q ∩ [0, 1],

k
∑

j=1

αj = 1, k = 1, 2, . . .}.

(Here δa denotes the Dirac measure at a ∈ X : δa(A) = 1 if a ∈ A, 0 otherwise.)
Clearly, M ⊂ P and M is countable.

Claim: M is dense in P . Indeed, let µ ∈ P . For eachm ≥ 1,
⋃∞

j=1 B(aj , 1/m) =
X . Take km such that

µ(

km
⋃

j=1

B(aj , 1/m)) ≥ 1 − 1/m.

Modify the balls B(aj , 1/m) into disjoint sets by taking Am
1 := B(a1, 1/m),

Am
j := B(aj , 1/m) \

[
⋃j−1

i=1 B(ai, 1/m)
]

, j = 2, . . . , km. Then Am
1 , . . . , A

m
km

are

disjoint and
⋃j

i=1A
m
i =

⋃j
i=1 B(ai, 1/m) for all j. In particular, µ(

⋃km

j=1 A
m
j ) ≥

1 − 1/m, so
km
∑

j=1

µ(Am
j ) ∈ [1 − 1/m, 1].

We approximate
µ(Am

1 )δa1
+ · · · + µ(Am

km
)δakm

by
µm := αm

1 δa1
+ · · · + αm

km
δakm

,

where we choose αm
j ∈ [0, 1] ∩ Q such that

∑km

j=1 α
m
j = 1 and

km
∑

j=1

|µ(Am
j ) − αm

j | < 2/m.
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(First take βj ∈ [0, 1] ∩ Q with
∑km

j=1 |βj − µ(Am
j )| < 1/2m, then

∑

j βj ∈
[1 − 3/2m, 1 + 1/2m]. Take αj := βj/

∑

i βi ∈ [0, 1] ∩ Q, then
∑

j αj = 1 and
∑km

j=1 |βj − αj | = |1 − 1/
∑

i βi|
∑km

j=1 βj = |∑i βj − 1| ≤ 3/2m, so
∑km

j=1 |αj −
µ(Am

j )| < 1/2m+ 3/2m = 2/m.)
Then for each m, µm ∈ M. To show: µm ⇒ µ. Let g ∈ UCb(X). Then

∣

∣

∣

∫

gdµm −
∫

gdµ
∣

∣

∣
=

∣

∣

∣

km
∑

j=1

αm
j g(aj) −

∫

gdµ
∣

∣

∣

≤
∣

∣

∣

km
∑

j=1

µ(Am
j )g(aj) −

∫

gdµ
∣

∣

∣
+ (2/m) sup

j

|g(aj)|

≤
∣

∣

∣

∫ km
∑

j=1

g(aj)
�

Am
j
dµ−

∫

gdµ
∣

∣

∣
+ (2/m)‖g‖∞

≤
∣

∣

∣

km
∑

j=1

∫

(

g(aj)
�

Am
j
− g

�
Am

j

)

dµ−
∫

g
�

(
Skm

j=1
)cdµ

∣

∣

∣
+ (2/m)‖g‖∞

≤
km
∑

j=1

sup
x∈Am

j

|g(aj) − g(x)|µ(Am
j ) + ‖g‖∞µ

(

(

km
⋃

j=1

Am
j )c

)

+ (2/m)‖g‖∞.

Each Am
j is contained in a ball with radius 1/m around aj . Since g is uniformly

continuous, for every ε > 0 there is a δ > 0 such that |g(y)−g(x)| < ε whenever
|x − y| < δ, so |g(x) − g(aj)| < ε for all x ∈ Am

j for all j. Then for m > 1/δ it
follows from the above computation that

∣

∣

∣

∫

gdµm −
∫

gdµ
∣

∣

∣
≤ ε+ ‖g‖∞(1/m) + (2/m)‖g‖∞.

Hence
∫

gdµm →
∫

gdµ as m→ ∞. Thus, µm ⇒ µ.

Conclusion. If (X, d) is a separable metric space, then so is P(X) with the
induced Prokhorov metric. Moreover, a sequence in P(X) converges in metric
if and only if it converges weakly and to the same limit.

5 Prokhorov’s theorem

Let (X, d) be a metric space and let P(X) be the set of Borel probability mea-
sures on X . Endow P(X) with the Prokhorov metric induced by d.

In the study of limit behavior of stochastic processes one often needs to
know when a sequence of random variables is convergent in distribution or, at
least, has a subsequence that converges in distribution. This comes down to
finding a good description of the sequences in P(X) that have a convergent
subsequence or rather of the relatively compact sets of P(X). Recall that a
subset S of a metric space is called relatively compact if its closure S is compact.
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The following theorem by Yu.V. Prokhorov [7] gives a useful description of the
relatively compact sets of P(X) in case X is separable and complete. Let us
first attach a name to the equivalent condition.

Definition 5.1. A set Γ of Borel probability measures on X is called tight if
for every ε > 0 there exists a compact subset K of X such that

µ(K) ≥ 1 − ε for all µ ∈ Γ.

(Also other names and phrases are in use instead of ‘Γ is tight’: ‘Γ is uniformly
tight’, ‘Γ satisfies Prokhorov’s condition’, ‘Γ is uniformly Radon’, and maybe
more).

Remark. We have shown already: if (X, d) is a complete separable metric space,
then {µ} is tight for each µ ∈ P(X) (see Theorem 2.6).

Theorem 5.2 (Prokhorov). Let (X, d) be a complete separable metric space
and let Γ be a subset of P(X). Then the following two statements are equivalent:

(a) Γ is compact in P(X).

(b) Γ is tight.

Let us first remark here that completeness of X is not needed for the implication
(b)⇒(a). The proof of the theorem is quite involved. We start with the more
straightforward implication (a)⇒(b).

Proof of (a)⇒(b). Claim: If U1, U2, . . . are open sets in X that cover X and if
ε > 0, then there exists a k ≥ 1 such that

µ(

k
⋃

i=1

Ui) > 1 − ε for all µ ∈ Γ.

To prove the claim by contradiction, suppose that for every k ≥ 1 there is a
µk ∈ Γ with µk(

⋃k
i=1 Ui) ≤ 1 − ε. As Γ is compact, there is a µ ∈ Γ and a

subsequence with µkj
⇒ µ. For any n ≥ 1,

⋃n
i=1 Ui is open, so

µ(

n
⋃

i=1

Ui) ≤ lim inf
j→∞

µkj
(

n
⋃

i=1

Ui)

≤ lim inf
j→∞

µkj
(

kj
⋃

i=1

Ui) ≤ 1 − ε.

But
⋃∞

i=1 Ui = X , so µ(
⋃n

i=1 Ui) → µ(X) = 1 as n → ∞, which is a contradic-
tion. Thus the claim is proved.

Now let ε > 0 be given. Take D = {a1, a2, . . .} dense in X . For every m ≥ 1
the open balls B(ai, 1/m), i = 1, 2, . . ., cover X , so by the claim there is a km

such that

µ
(

km
⋃

i=1

B(ai, 1/m)
)

> 1 − ε2−m for all µ ∈ Γ.
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Take

K :=

∞
⋂

m=1

km
⋃

i=1

B(ai, 1/m).

Then K is closed and for each δ > 0 we can take m > 1/δ and obtain K ⊂
⋃km

i=1B(ai, δ), so that K is totally bounded. Hence K is compact, since X is
complete. Moreover, for each µ ∈ Γ

µ(X \K) = µ
(

∞
⋃

m=1

[

km
⋃

i=1

B(ai, 1/m)
]c)

≤
∞
∑

m=1

µ
([

km
⋃

i=1

B(ai, 1/m)
]c)

=

∞
∑

m=1

(

1 − µ
(

km
⋃

i=1

B(ai, 1/m)
))

<

∞
∑

m=1

ε2−m = ε.

Hence Γ is tight.

The proof that condition (b) implies (a) is more difficult. We will follow the
proof from [6], which is based on compactifications and the Riesz representation
theorem. The latter will be discussed in a later section and, accordingly, we
invoke it with almost no explanation here.

Observe that if X is a compact metric space, every set of Borel probability
measures on X is tight, so that in particular P(X) itself is tight. Thus, the
implication (b)⇒(a) entails the assertion that P(X) is compact whenever X is
compact. We choose the latter as an important intermediate step in the proof
of (b)⇒(a).

Proposition 5.3. If (X, d) is a compact metric space, then (P(X), dP ) is a
compact metric space. (Note that any compact metric space is separable.)

Proof. (Revisited in Corollary 6.8.) As X is compact, Cb(X) = C(X) = {f :
X → R : f is continuous}, which is a Banach space under the supremum norm
defined by

‖f‖∞ = sup
x∈X

|f(x)|.

Denote by C(X)′ the Banach dual space of C(X) and consider

Φ := {ϕ ∈ C(X) : ‖ϕ‖ ≤ 1, ϕ(
�
) = 1, ϕ(f) ≥ 0 ∀f ∈ C(X) with f ≥ 0}.

For µ ∈ P(X) define ϕµ(f) :=
∫

fdµ, f ∈ C(X). According to the Riesz
representation theorem, the map T : µ → ϕµ is a bijection from P(X) onto Φ.
Moreover, T is a sequential homeomorphism relative to the weak* topology on
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Φ. By Alaoglu’s theorem, B′ := {ϕ ∈ C(X)′ : ‖ϕ‖ ≤ 1} is weak* compact and
therefore Φ is weak* compact, since Φ is weak* closed in B ′. Hence Φ is weak*
sequentially compact and hence P(X) is compact.

Remark. Also the converse is true: if P(X) is compact then so is X . This comes
from the fact that x 7→ δx is a homeomorphism from X onto {δx : x ∈ X} ⊂
P(X), and {δx : x ∈ X} is closed in P(X). (See Proposition 9.3.)

In the cases that we want to consider, X is typically not compact. We can make
use of the previous proposition by considering a compactification of X .

Lemma 5.4. If (X, d) is a separable metric space, then there exist a compact
metric space (Y, δ) and a map T : X → Y such that T is a homeomorphism
from X onto T (X).

(T is in general not an isometry. If it were, then X complete ⇒ T (X) complete
⇒ T (X) ⊂ Y closed ⇒ T (X) compact, which is not true for, e.g., X = R.)

Proof. Let Y := [0, 1]N = {(ξi)∞i=1 : ξi ∈ [0, 1] ∀i} and

δ(ξ, η) :=

∞
∑

i=1

2−i|ξi − ηi|, ξ, η ∈ Y.

Then δ is a metric on Y , its topology is the topology of coordinatewise conver-
gence, and (Y, δ) is compact.

Let D = {a1, a2, . . .} be dense in X and define

αi(x) := min{d(x, ai), 1}, x ∈ X, i = 1, 2, . . . .

Then for each k, αk : X → [0, 1] is continuous. For x ∈ X define

T (x) := (αi(x))
∞
i=1 ∈ Y.

Claim: for any C ⊂ X closed and x 6∈ C there exist ε > 0 and i such that

αi(x) ≤ ε/3, αi(y) ≥ 2ε/3 for all y ∈ C.

To prove the claim, take ε := min{d(x,C), 1} ∈ (0, 1]. Take i such that
d(ai, x) < ε/3. Then αi(x) ≤ ε/3 and for y ∈ C we have

αi(y) = min{d(y, ai), 1} ≥ min{(d(y, x) − d(x, ai)), 1}
≥ min{(d(x,C) − ε/3), 1}
≥ min{2ε/3, 1} = 2ε/3.

In particular, if x 6= y then there exists an i such that αi(x) 6= αi(y), so T is
injective. Hence T : X → T (X) is a bijection. It remains to show that for (xn)n

and x in X :
xn → x ⇐⇒ T (xn) → T (x).

If xn → x, then αi(xn) → αi(x) for all i, so δ(T (xn), T (x)) → 0 as n→ ∞.
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Conversely, suppose that xn 6→ x. Then there is a subsequence such that
x 6∈ {xn1

, xn2
, . . .}. Then by the claim there is an i such that αi(x) ≤ ε/3

and αi(xnk
) ≥ 2ε/3 for all k, so that αi(xnk

) 6→ αi(x) as k → ∞ and hence
T (xnk

) 6→ T (x).

We can now complete the proof of Prokhorov’s theorem.

Proof of (b)⇒(a). We will show more: If (X, d) is a separable metric space and
Γ ⊂ P(X) is tight, then Γ is compact. Let Γ ⊂ P(X) be tight. First observe
that Γ is tight as well. Indeed, let ε > 0 and let K be a compact subset of X such
that µ(K) ≥ 1− ε for all µ ∈ Γ. Then for every µ ∈ Γ there is a sequence (µn)n

in Γ that converges to µ and then we have µ(K) ≥ lim supn→∞ µn(K) ≥ 1− ε.
Let (µn)n be a sequence in Γ. We have to show that it has a convergent

subsequence. Let (Y, δ) be a compact metric space and T : X → Y be such that
T is a homeomorphism from X onto T (X). For B ∈ B(Y ), T−1(B) is Borel in
X . Define

νn(B) := µn(T−1(B)), B ∈ B(Y ), n = 1, 2, . . . .

Then ν ∈ P(Y ) for all n. As Y is a compact metric space, P(X) is a compact
metric space, hence there is a ν ∈ P(Y ) and a subsequence such that νnk

⇒ ν
in P(Y ). We want to translate ν back to a measure on X . Set Y0 := T (X).

Claim: ν is concentrated on Y0 in the sense that there exists a set E ∈ B(Y )
with E ⊂ Y0 and ν(E) = 1.

If we assume the claim, define

ν0(A) := ν(A ∩ E), A ∈ B(Y0).

(Note: A ∈ B(Y0) ⇒ A ∩ E Borel in E ⇒ A ∩ E Borel in Y , since E is
a Borel subset of Y .) The measure ν0 is a finite Borel measure on Y0 and
ν0(E) = ν(E) = 1. Now we can translate ν0 back to

µ(A) := ν0(T (A)) = ν0((T
−1)−1(A)), A ∈ B(X).

Then µ ∈ P(X). We want to show that µnk
⇒ µ in P(X). Let C be closed

in X . Then T (C) is closed in T (X) = Y0. (T (C) need not be closed in Y .)
Therefore there exists Z ⊂ Y closed with Z ∩ Y0 = T (C). Then C = {x ∈ X :
T (x) ∈ T (C)} = {x ∈ X : T (x) ∈ Z} = T−1(Z), because there are no points in
T (C) outside Y0, and Z ∩ E = T (C) ∩ E. Hence

lim sup
k→∞

µnk
(C) = lim sup

k→∞
νnk

(Z)

≤ ν(Z)

= ν(Z ∩E) + ν(Z ∩ Ec) = ν(T (C) ∩E) + 0

= ν0(T (C)) = µ(C).

So µnk
⇒ µ.
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Finally, to prove the claim we use tightness of Γ. For each m ≥ 1 take Km

compact in X such that µ(Km) ≥ 1 − 1/m for all µ ∈ Γ. Then T (Km) is a
compact subset of Y hence closed in Y , so

ν(T (Km)) ≥ lim sup
k→∞

νnk
(T (Km))

≥ lim sup
k→∞

µnk
(Km) ≥ 1 − 1/m.

Take E :=
⋃∞

m=1Km. Then E ∈ B(Y ) and ν(E) ≥ ν(Km) for all m, so
ν(E) = 1.

Example. Let X = R, µn(A) := n−1λ(A ∩ [0, n]), A ∈ B(R). Here λ denotes
Lebesgue measure on R. Then µn ∈ P(R) for all n. The sequence (µn)n has no
convergent subsequence. Indeed, suppose µnk

⇒ µ, then

µ((−N,N)) ≤ lim inf
n→∞

µn((−N,N))

= lim inf
n→∞

n−1λ([0, N ]) = lim inf
n→∞

N/n = 0,

so µ(R) = supN≥1 µ((−N,N)) = 0. There is leaking mass to infinity; the set
{µn : n = 1, 2, . . .} is not tight.

6 Riesz representation theorem

In the proof of Prokhorov’s theorem we have used the Riesz representation
theorem. It yields a correspondence between functionals on a space of continuous
functions and measures on the underlying set. The standard theorem deals with
compact spaces and will be discussed in this section. The next section derives
via compactification an extension for non-compact spaces.

Let (X, d) be a metric space. For each finite Borel measure µ on X , the map
ϕµ defined by

ϕµ(f) :=

∫

fdµ, f ∈ Cb(X),

is linear from Cb(X) to R and

|ϕµ(f)| ≤
∫

|f |dµ ≤ ‖f‖∞µ(X).

Hence ϕµ ∈ Cb(X)′, where Cb(X)′ denotes the Banach dual space of the Banach
space (Cb(X), ‖ · ‖∞). (Here ‖f‖∞ = supx∈X |f(x)|.) Further, ‖ϕµ‖ ≤ µ(X)
and since ϕµ(

�
) = µ(X) = ‖ � ‖∞µ(X) we have

‖ϕµ‖ = µ(X).

Moreover,
f ≥ 0 =⇒ ϕµ(f) ≥ 0.
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Definition 6.1. A linear map ϕ : Cb(X) → R is called positive if

ϕ(f) ≥ 0 for all f ∈ Cb(X) with f ≥ 0.

(Then f ≤ g ⇒ ϕ(f) ≤ ϕ(g).)

Lemma 6.2. For every positive ϕ ∈ Cb(X)′ one has

‖ϕ‖ = ϕ(
�
).

Proof. Clearly, ϕ(
�
) ≤ ‖ϕ‖ ‖ � ‖∞ = ‖ϕ‖. For f ∈ Cb(X),

−‖f‖∞
� ≤ f ≤ ‖f‖∞

�
,

so
−‖f‖∞ϕ(

�
) ≤ ϕ(f) ≤ ‖f‖∞ϕ(

�
),

so
|ϕ(f)| ≤ ϕ(

�
)‖f‖∞,

hence ‖ϕ‖ ≤ ϕ(
�
).

If X is compact, then Cb(X) = C(X) = {f : X → R : f is continuous} and
every positive bounded linear functional on C(X) is represented by a finite
Borel measure on X . The truth of this statement does not depend on X being
a metric space. In the extension to the non-compact case that we will discuss
in the next section we need the generality of non-metrizable compact Hausdorff
spaces. Formally we have not defined Borel sets, Borel measures, Cb(X), etc.
for topological spaces that are not metrizable. The appropriate definitions are
literally the same and omitted.

Theorem 6.3 (Riesz representation theorem). If (X, d) is a compact Haus-
dorff space and ϕ ∈ C(X)′ is positive and ‖ϕ‖ = 1, then there exists a unique
Borel probability measure µ on X such that

ϕ(f) =

∫

fdµ for all f ∈ C(X).

(See [8, Theorem 2.14, p. 40].)

By obvious scaling, the Riesz representation theorem can be extended to a
correspondence between not necessarily normalized positive bounded functionals
on C(X) and finite Borel measures on X . More than that, there is also a
correspondence of topologies.

Consider the weak* topology on Cb(X)′, which is the coarsest topology such
that the functional ϕ 7→ ϕ(f) on Cb(X)′ is continuous for every f ∈ Cb(X) . A
sequence ϕ1, ϕ2, . . . in Cb(X)′ converges in the weak* topology to ϕ ∈ Cb(X)′

if and only if ϕn(f) → ϕ(f) for all f ∈ Cb(X). The following observation is
immediate.
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Proposition 6.4. Let (X, d) be a compact metric space and let µ, µ1, µ2, . . . be
finite Borel measures on X. Then the following two statemts are equivalent:

(a) µn ⇒ µ, that is,
∫

fdµn →
∫

fdµ for all f ∈ Cb(X).

(b) ϕµn
→ ϕµ in the weak* topology, that is, ϕµn

(f) → ϕµ(f) for all f ∈
Cb(X).

With a suitable notion of nonpositive measure, the representation by a measure
can be extended to every member of Cb(X)′. We include the statements without
proofs.

Definition 6.5. A signed Borel measure on a metric space (X, d) is a map
µ : B(X) → R of the form

µ = µ1 − µ2

where µ1 and µ2 are finite Borel measures on X . This is equivalent to

µ(∅) = 0,
µ is σ-additive,

i.e., A1, A2, . . . ∈ B(X)disjoint =⇒ µ
(

⋃∞
i=1 Ai

)

=
∑∞

i=1 µ(Ai),

supA∈B(X) |µ(A)| <∞.

Theorem 6.6. Let (X, d) be a compact metric space. For a finite Borel measure
µ on X let ϕµ(f) :=

∫

fdµ, f ∈ C(X), and let T be the map µ 7→ ϕµ. Then

(1) T (µ+ ν) = T (µ) + T (ν) and T (cµ) = cT (µ) for all finite Borel measures
µ and ν on X and all c ≥ 0,

(2) T is a sequential homeomorphism from {µ : µ finite Borel measure on X}
onto {ϕ ∈ C(X)′ : ϕ positive} with the weak* topology, and T (P(X)) =
{ϕ ∈ Cb(X)′ : ‖ϕ‖ = 1, ϕ positive},

(3) T extends uniquely to a linear sequential homeomorphism from the signed
Borel measures on X onto C(X)′ with the weak* topology.

Remark. One can show that C(X) is separable if X is compact and metrizable
([5, 7.S(d), p. 245]) and one can derive from the separability of C(X) that {ϕ ∈
C(X)′ : ‖ϕ‖ ≤ 1} is metrizable ([3, Theorem V.5.1, p. 426]). Therefore T in the
above theorem is a homeomorphism and not only a sequential homeomorphism.

We are now in a position to have a closer look at the proof of Proposition 5.3.

Theorem 6.7. Let (X, d) be a metric space. Then

(1) B′ := {ϕ ∈ Cb(X)′ : ‖ϕ‖ ≤ 1} is weak* compact (Alaoglu’s theorem, see
[3, Theorem V.4.2, p. 424]),

(2) {ϕ ∈ Cb(X)′ : ‖ϕ‖ = 1, ϕ is positive} is weak* closed in B ′.
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Proof of (2). For positive ϕ ∈ B′, we have ‖ϕ‖ = 1 ⇔ ϕ(
�
) = 1. Hence

{ϕ ∈ Cb(X)′ : ‖ϕ‖ = 1, ϕ is positive}
= {ϕ ∈ Cb(X)′ : ‖ϕ‖ ≤ 1, ϕ(

�
) = 1, ϕ(f) ≥ 0, ∀f ∈ Cb(X) s.t. f ≥ 0}

= {ϕ ∈ B′ : ϕ(
�
) = 1} ∩

⋂

f∈Cb(X), f≥0

{ϕ ∈ B′ : ϕ(f) ≥ 0}.

Since ϕ 7→ ϕ(f) is weak* continuous for all f ∈ Cb(X), this set is weak* closed
in B′.

Corollary 6.8. If (X, d) is a compact metric space, then (P(X), dP ) is a com-
pact metric space.

Proof. The map T : P(X) → {ϕ ∈ C(X)′ : ‖ϕ‖ = 1, ϕ positive} =: Φ is a
sequential homeomorphism with respect to the weak* topology on Φ. By the
previous theorem, Φ is weak* compact, hence sequentially weak* compact. So
P(X) is sequentially compact. As P(X) is a metric space, P(X) is compact.

7 Riesz representation for non-compact spaces

As we are mainly interested in metric spaces that are not compact, it is natural
for us to study an extension of the Riesz representation theorem to non-compact
spaces. Such an extension can be obtained by means of a compactification of
the space.

The compactification of Lemma 5.4 has the advantage of being metrizable,
but it is not suitable for the present purposes. We have to step outside metric
topology for a moment. We want a connection between the continuous functions
on the compactification and the bounded continuous functions on the original
space. Such a compactification is the famous Stone-Čech compactification.

Theorem 7.1. Let (X, d) be a metric space. There exists a compact Hausdorff
space Y and a map T : X → Y such that

(i) T is a homeomorphism from X onto T (X),

(ii) T (X) is dense in Y ,

(iii) for every f ∈ Cb(X) there exists one and only one g ∈ C(Y ) ‘that extends
f ’, that is, g ◦ T = f .

The pair (Y, T ) of the above theorem is essentially unique and called the Stone-
Čech compactification of X (see [5, 5.24, p. 152–3; 5.P, p. 166]). We will not be
unnecessarily cautious, and view X as a subspace of Y . Then the above theorem
says that every metric space X is a dense subspace of a compact Hausdorff
space Y such that Cb(X) ' C(Y ) under the natural isomorphism of extension
and restriction. From the Riesz representation theorem for compact Hausdorff
spaces we thus have the next conclusion.
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Corollary 7.2. Let (X, d) be a metric space. If ϕ : Cb(X) → R is bounded
linear and positive, then there exists a unique finite Borel measure µ on the
Stone-Čech compactification Y of X such that

ϕ(f) =

∫

fdµ for all f ∈ Cb(X),

where f ∈ C(Y ) denotes the extension of f .

Thus the positive bounded linear functionals on Cb(X) correspond to the finite
Borel measures on the Stone-Čech compactification of X . It is interesting to
know when such a measure is concentrated on X itself. It turns out to be
connected with a stronger continuity property of the functional than mere norm
continuity. The precise statement is in the next theorem, which is an extension of
the Riesz representation theorem for compact spaces (cf. [2, 5.2 Proposition 5, p.
58, and 5.6 Proposition 12, p. 65]. For theory on convergence of nets (generalized
sequences), see [3, I.7, p. 26–31].

Theorem 7.3. Let (X, d) be a metric space and let ϕ ∈ Cb(X)′ be positive.
The following statements are equivalent:

(a) There exists a tight finite Borel measure µ on X such that

ϕ(f) =

∫

fdµ for all f ∈ Cb(X).

(b) For every ε > 0 there exists a compact K ⊂ X such that |ϕ(f)| ≤ ε for all
f ∈ Cb(X) with ‖f‖∞ ≤ 1 and f = 0 on K.

(c) The restriction of ϕ to the unit ball B = {f ∈ Cb(X) : ‖f‖∞ ≤ 1} is
continuous with respect to the topology of uniform convergence on compact
sets.

If (a) holds, then the measure µ is unique.

Proof. The proof of the uniqueness is routine. It also follows from the denseness
theorem in Section 8.

(a)⇒(c): Let (fi)i∈I be a net in B and let f ∈ B be such that fi → f
uniformly on compact sets. Let ε > 0. We want to show that there is an i0 ∈ I
such that |ϕ(fi)−ϕ(f)| < ε for all i ∈ I with i ≥ i0. Since µ is tight, there is a
compact K ⊂ X with µ(X \K) < ε/3. Then fi → f uniformly on K, so there
is an i0 ∈ I such that

|fi − f | < ε/(3µ(K) + 1) on K for all i ≥ i0.

Then for i ≥ i0,

|ϕ(fi) − ϕ(f)| ≤
∫

K

|fi − f |dµ+

∫

X\K

|fi − f |dµ

≤ ε
3µ(K)+1µ(K) + ‖fi − f‖∞µ(X \K)

< ε/3 + 2ε/3 = ε.
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Hence ϕ(fi) → ϕ(f), and ϕ is continuous on B.
(c)⇒(b): Suppose that (b) is not true. Then there exists an ε > 0 such that

for every compact K ⊂ X there is an fK ∈ Cb(X) with ‖fK‖∞ ≤ 1 and fK = 0
on K and such that |ϕ(fK)| > ε. Then (fK)K∈K, where K = {K ⊂ X : K
compact} with inclusion as ordering, is a net in B that converges to zero in the
topology of uniform convergence on compact sets. Indeed, for each compact
K0 ⊂ X , fK = 0 on K0 for all K ⊃ K0. Since |ϕ(fK)| > ε for all K ∈ K, it
follows that ϕ is not continuous on B.

(b)⇒(a): Take for each m ≥ 1 a compact set Km ⊂ X such that |ϕ(f)| ≤
1/m for all f ∈ Cb(X) with ‖f‖∞ ≤ 1 and f = 0 on Km. Let Y be the
Stone-Čech compactification of X . For every g ∈ C(Y ) its restriction to X is
an element of Cb(X) and we can define

ψ(g) := ϕ(g|X ), g ∈ C(Y ).

Then ψ : C(Y ) → R is a bounded linear and positive functional, so by the Riesz
representation theorem there exists a finite Borel measure ν on Y such that

ψ(g) =

∫

gdν for all g ∈ C(Y ).

We want to restrict ν to a measure µ on X that represents ϕ. Therefore we
need that ν has no mass outside X .

Let E :=
⋃

mKm ⊂ X . Since every Km is compact, E is a Borel set in Y .
To show that ν has no mass outside E we exploit the assumption (b) by means
of an approximation of

�
Kc

m
by continuous functions. Let

hm(x) := min{d(x,Km), 1}, x ∈ Y, m ≥ 1.

Then hm ∈ C(Y ), 0 ≤ hm ≤ �
Kc

m
and n

√
hm ↑ �

Kc
m

as n→ ∞, since hm(x) > 0
for every x ∈ Kc

m. Hence by the monotone convergence theorem,

ν(Y \Km) =

∫

�
Kc

m
dν = lim

n→∞

∫

n
√

hmdν

= lim
n→∞

ψ( n
√

hm) = lim
n→∞

ϕ( n
√

hm|X) ≤ 1/m,

by assumption (b). Therefore

ν(Y \E) = ν(

∞
⋂

m=1

Kc
m) = 0.

Define
µ(A) := ν(A ∩ E), A ∈ B(X).

(Notice that A ∈ B(X) ⇒ A ∩ E Borel in E hence Borel in Y .) Then µ is a
finite Borel measure on X . To show that µ represents ϕ, let f ∈ Cb(X) and let
f ∈ C(Y ) be its extension. Since

ν(Y \E) = 0 and µ(X \E) = 0,
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it follows that
∫

fdµ =

∫

f
�

Edµ =

∫

f
�

Edν =

∫

fdν = ψ(f) = ϕ(f).

Finally, notice that µ(X \Km) = ν(E \Km) = ν(Y \Km) ≤ 1/m for all m, so
that µ is tight.

Remark. (1) If X is compact, then every ϕ ∈ Cb(X)′ satisfies condition (c).
Thus we retrieve the Riesz representation theorem for compact metric spaces.

(2) We have shown earlier that if (X, d) is a complete separable metric space,
then each finite Borel measure on X is tight. Hence for such a space condition
(c) is necessary to have representation by any finite Borel measure.

Example. Let X = N, d(x, y) = |x−y|, x, y ∈ X . We will show that there exists
a ϕ ∈ Cb(X)′ that is not represented by a finite Borel measure. Observe that
Cb(X) = `∞(N) and define

ϕ0(x) := lim
k→∞

x(k)

for all x ∈ c := {y ∈ `∞(N) : limk→∞ y(k) exists}. The set c is a closed subspace
of `∞(N) and ϕ0 is a positive bounded linear functional on c. Let

p(x) := max{lim sup
k→∞

x(k), 0}, x ∈ `∞(N).

Then p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ `∞(N), λ ≥ 0.
Further, ϕ0(x) ≤ p(x) for all x ∈ c. Hence by the Hahn-Banach theorem (see
[3, II.3.10, p. 62]) there exists a linear functional ϕ : `∞(N) → R that extends
ϕ0 and such that ϕ(x) ≤ p(x) for all x ∈ `∞(N). Then |ϕ(x)| ≤ |p(x)| ≤ ‖x‖∞
for all x ∈ `∞(N) so ϕ is bounded, and for x ∈ `∞(N) with x ≥ 0 we have
ϕ(x) = −ϕ(−x) ≥ −p(−x) = 0, so ϕ is positive.

Let now
xn :=

�

{n,n+1,...} ∈ c, n = 1, 2, . . . .

Then ϕ(xn) = ϕ0(xn) = 1 for all n, but for any finite Borel measure µ on N we
have

∫

xndµ → 0 as n → ∞, since xn → 0 pointwise and 0 ≤ xn ≤ �
for all n.

Hence ϕ cannot be represented by a finite Borel measure.

8 Integrable functions on metric spaces

Let (X, d) be a metric space and let µ be a finite Borel measure on X . Is Cb(X)
dense in L1(µ)? The answer is positive and we can show more. Let

Lipb(X) := {f : X → R : f is bounded and Lipschitz continuous

with respect to d}.

Lemma 8.1. Let (X, d) be a metric space and let µ be a finite Borel measure
on X.
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(1) For every U ⊂ X open and every ε > 0 there exists an f ∈ Lipb(X) with
0 ≤ f ≤ �

U and
∫

(
�

U − f)dµ < ε.

(2) For every A ∈ B(X) and every ε > 0 there exists an f ∈ Lipb(X) with
∫

|f − �
A|dµ < ε.

Proof. (1): If U = X , take f =
�
. If U ⊂ X is open and U 6= X , let

h(x) := min{d(x, U c), 1}, x ∈ X.

Then h ∈ Lipb(X). Indeed, observe that min{a, c} − min{b, c} ≤ a− b if a ≥ b,
so that

|h(x) − h(y)| ≤ |d(x, U c) − d(y, U c)| ≤ d(x, y),

for all x, y ∈ X . Further, 0 ≤ h ≤ �
U on X and h(x) > 0 for all x ∈ U .

Take a strictly concave Lipschitz continuous function ρ : [0, 1] → [0, 1] with
ρ(0) = 0 and ρ(1) = 1. For instance, ρ(x) = x(2 − x). Denote the iterates of ρ
by ρ1 := ρ, ρn := ρ ◦ ρn−1, n = 2, 3, . . .. For 0 < α < 1,

ρ(α) = ρ((1 − α)0 + α1) > (1 − α)ρ(0) + αρ(1) = α,

so ρn(α) is increasing in n and its limit must be 1. Thus, ρn(0) = 0, ρn(1) = 1
for all n, and ρn(α) ↑ 1 for every 0 < α < 1.

For each n, ρn ◦h ∈ Lipb(X), ρn ◦h ≥ 0, and ρn(h(x)) ↑ �
U (x) for all x ∈ X .

By the monotone convergence theorem we therefore find
∫

(ρn ◦ h)dµ→
∫

�
Udµ as n→ ∞.

So for large n the function f := ρn ◦ h has the desired properties.
(2): With aid of the outer regularity of µ, take U ⊂ X open with A ⊂ U

and µ(U \A) < ε/2. Take, by (1), f ∈ Lipb(X) with
∫

| �
U − f |dµ < ε/2. Then

∫

|f − �
A|dµ < ε.

Theorem 8.2. If (X, d) is a metric space and µ is a finite Borel measure on
X, then Lipb(X) is dense in L1(µ). Consequently, Cb(X) is dense in L1(µ).

Proof. 1. Let A1, . . . , An ∈ B(X) and α1, . . . , αn ∈ R \ {0}, and let ε > 0. Take
for each k ∈ {1, . . . , n} an hk ∈ Lipb(X) with

∫

|hk − �
Ak

|dµ < ε

n|αk|
.

Then
∑n

k=1 αkhk ∈ Lipb(X) and

∫

|
n

∑

k=1

hk −
n

∑

k=1

αk

�
Ak

|dµ ≤
n

∑

k=1

|αk|
∫

|hk − �
Ak

|dµ < ε.

2. Stepfunctions as in 1. are dense in L1(µ).
(See also [2, 5.2 Proposition 3, p. 57].)
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Corollary 8.3. Let (X, d) be a metric space and let µ and ν be finite Borel
measures on X. If

∫

fdµ =

∫

fdν for all f ∈ Lipb(X),

then µ = ν.

9 More properties of the space of probability

measures

Let (X, d) be a metric space, let P(X) be the set of Borel probability measures
on X , and let dP be the Prokhorov metric on P(X) as defined in Section 4.
With aid of Prokhorov’s theorem we can show that (P(X), dP ) is complete if
(X, d) is complete (cf. [7, Lemma 1.4, p. 169]).

Lemma 9.1. Let (X, d) be a complete metric space and let Γ ⊂ P(X). In order
that Γ is tight, it suffices that for every ε, δ > 0 there are a1, . . . , an ∈ X such
that

µ
(

n
⋃

i=1

B(ai, δ)
)

≥ 1 − ε for all µ ∈ Γ.

Proof. Let ε > 0. Assume that for each m ≥ 1 the points am
1 , . . . , a

m
nm

∈ X are
such that

µ
(

nm
⋃

i=1

B(am
i , 1/m)

)

≥ 1 − 2−mε for all µ ∈ Γ.

Take

K :=
∞
⋂

m=1

nm
⋃

i=1

B(am
i , 1/m).

Then K is closed and for a given δ > 0 we can take m > 1/δ and obtain

K ⊂
nm
⋃

i=1

B(am
i , 1/m) ⊂

nm
⋃

i=1

B(am
i , δ).

Hence K is totally bounded and thus compact. Further, for µ ∈ Γ,

µ(K) = lim
M→∞

µ
(

M
⋂

m=1

nm
⋃

i=1

B(am
i , 1/m)

)

= 1 − lim
M→∞

µ
(

M
⋃

i=1

[

nm
⋃

m=1

B(am
i , 1/m)

]c)

≥ 1 − lim
M→∞

M
∑

m=1

µ
([

nm
⋃

i=1

B(am
i , 1/m)

]c)

≥ 1 −
∞
∑

m=1

2−mε = 1 − ε.
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So Γ is tight.

Theorem 9.2. Let (X, d) be a separable metric space. If (X, d) is complete,
then (P(X), dP ) is complete.

Proof. Let (µk)k be a Cauchy sequence in (P(X), dP ). We will show that {µk :
k = 1, 2, . . .} is tight. Take D = {a1, a2, . . .} dense in X . Let ε, δ > 0. Set

γ := min{ε, δ}/2
and fix N such that

dP (µk, µ`) < γ for all k, ` ≥ N.

Then for k, ` ≥ N we have

µk(A) ≤ µ`(Aγ) + γ and µ`(A) ≤ µk(Aγ) + γ for all A ∈ B(X).

Take now n ≥ 1 such that for k ∈ {1, . . . , N}

µk

(

n
⋃

i=1

B(ai, δ/2)
)

≥ 1 − γ.

(Such an n exists because
⋃∞

i=1B(ai, δ/2) = X so that limm→∞ µk(
⋃m

i=1 B(ai, δ/2)) →
1 for each of the finitely many k ∈ {1, . . . , N}.) Observe that

(

n
⋃

i=1

B(ai, δ/2)
)

γ
⊂

n
⋃

i=1

B(ai, δ/2 + γ) ⊂
n
⋃

i=1

B(ai, δ).

Therefore,

µN

(

n
⋃

i=1

B(ai, δ/2)
)

≤ µk

((

n
⋃

i=1

B(ai, δ/2)
)

γ

)

+ γ

≤ µk

(

n
⋃

i=1

B(ai, δ)
)

+ γ

for all k ≥ N . Then

µk

(

n
⋃

i=1

B(ai, δ)
)

≥ 1 − 2γ ≥ 1 − ε for k ≥ N

and

µk

(

n
⋃

i=1

B(ai, δ)
)

≥ µk

(

n
⋃

i=1

B(ai, δ/2)
)

≥ 1 − γ ≥ 1 − ε

for k = 1, . . . , N . By the previous lemma it follows that the set {µk : k =
1, 2, . . .} is tight and therefore relatively compact in P(X) by Prokhorov’s the-
orem. Hence there is a subsequence (µki

)i that converges to some µ ∈ P(X).
As (µk)k is Cauchy it follows that µk ⇒ µ. Thus, (P(X), dP ) is complete.
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Finally, we want to see that completeness of (X, d) is necessary for completeness
of (P(X), dP ). We can derive this by embedding X in P(X). More specifically,
we show that X and the set of Dirac measures ∆ := {δx : x ∈ X} are in a
suitable sense isomorphic. (δx denotes the Dirac measure at x.)

Proposition 9.3. Let (X, d) be a separable metric space. Then:

(1) dP (δx, δy) = min{d(x, y), 1} for every x, y ∈ X,

(2) x 7→ δx is a homeomorphism from X onto ∆ := {δx : x ∈ X} ⊂ P(X),

(3) a sequence (xn)n is Cauchy in (X, d) if and only if (δxn
)n is Cauchy in

(P(X), dP ),

(4) ∆ is closed in P(X).

Proof. (1): From the very definition of dP , dP (µ, ν) ≤ 1 for all µ, ν ∈ P(X).
Let α > d(x, y). Then for each A ∈ B(X),

x ∈ A ⇒ y ∈ Aα and y ∈ A ⇒ x ∈ Aα,

so
δx(A) ≤ δy(Aα) + α, δy(A) ≤ δx(Aα) + α,

and hence dP (δx, δy) ≤ α. Thus, dP (δx, δy) ≤ d(x, y).
Assume dP (δx, δy) < 1 and let dP (δx, δy) < α < 1. Then

δx(A) ≤ δy(Aα) + α and δy(A) ≤ δx(Aα) + α for all A ∈ B(X).

Hence for A = {x} we find

1 ≤ δy(B(x, α)) + α.

As α < 1 it follows that y ∈ B(x, α), so d(x, y) < α. Thus d(x, y) ≤ dP (δx, δy).
(2) and (3) are clear from (1).
(4): Let (xn)n be a sequence in X such that δxn

⇒ µ for some µ ∈ P(X).
We have to show that µ ∈ ∆. Suppose (xn)n has no convergent subsequence.
Then S := {x1, x2, . . .} is closed and so is every subset of S. Hence for every
nonempty subset C of S we have

µ(C) ≥ lim sup
n→∞

δxn
(C) ≥ 1.

This is only possible if S consists of one point, but that yields a contradiction.
Hence there is a subsequence and an x ∈ X such that xnk

→ x. By (2),
δxn

⇒ δx, so µ = δx ∈ ∆.

With aid of the above proposition we can add the ‘only if’ counterparts to
Proposition 5.3 and Theorem 9.2.

Theorem 9.4. Let (X, d) be a separable metric space.
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(1) (X, d) is compact ⇐⇒ (P(X), dP ) is compact.

(2) (X, d) is complete ⇐⇒ (P(X), dP ) is complete.

Remark. There are other metrics on P(X) in use than the Prokhorov metric.
For instance the bounded Lipschitz metric, which is defined by

dBL(µ, ν) := sup{|
∫

fdµ−
∫

fdν| : f ∈ Lipb(X), ‖f‖Lip ≤ 1}, µ, ν ∈ P(X),

where

‖f‖Lip = ‖f‖∞ + sup
x6=y

|f(x) − f(y)|
d(x, y)

, f ∈ Lipb(X).

If (X, d) is separable, then a sequence in P(X) converges weakly if and only if
it converges in the metric dBL. Further, (P(X), dBL) is separable and complete
if (X, d) is separable and complete. (See [10, 1.12, p. 73–74].)
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