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1. THE DUAL ABELIAN VARIETY

Given an elliptic curve (E, O) over a field k, the group (scheme) PicE of line
bundles on E is an interesting object to consider. In fact, the subgroup Pic0

E of
line bundles of degree 0 is already very useful to study E, since for every field
extension K of k, one has an isomorphism

E(K) ∼−→ Pic0
E(K)(1.1)

P 7−→ OE([O]− [P]).

Here, Pic0
E(K) are those line bundles L of degree 0 on E that can be defined over K,

which in the less complicated case of elliptic curves simply means that one of the
divisors whose associated line bundle is isomorphic to L is defined over K.

The isomorphism above can be used define the group law on E. In the other
direction, it gives an interpretation of Pic0

E as a geometric object. One way to gen-
eralize this result is to consider the group Pic0

C for arbitrary curves, which allows
one to construct the geometric object (and abelian variety!) called the Jacobian of
C. In general, however, an isomorphism resembling (1.1) above then only holds if
C(K) is nonempty.

In this section, we will generalize in another direction by considering higher-
dimensional abelian varieties instead of curves of higher genus. So let f : X →
Spec k be an abelian variety. We will construct PicX|k by taking it to be a scheme
representing a certain contravariant functor F , that is, a scheme whose functor of
points is naturally isomorphic to F . The question is what functor F to take. A
logical first guess would be the functor

PX|k : T 7−→ Pic(X×k T),

acting on morphisms by using the pullback of line bundles. However, this defini-
tion cannot work. For example, take X = Spec k to be the trivial abelian variety
over k. Then P = PX|k is defined by P(T) = Pic(T). Let Ui be an open affine
cover of T. If P were respresentable, then any element of P(T) would be deter-
mined by the elements of P(Ui) it induces (”gluing sections”). However, since
the cohomology of affine varieties is trivial, any element of P(T) gives rise to the
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same elements in the P(Ui). Taking T such that Pic(T) is non-trivial, one sees that
PX|k is not representable.

The simplest solution to this quandary is the following.

Definition 1.1. Let X → Spec k be an abelian variety. A rigidified line bundle on
X ×k T is a pair (L, α), where L is a line bundle on X ×k T and α is an isomorphism
OSpec k

∼→ 0∗T L. Here 0T : T ∼= Spec k×k T → X ×k T is the zero section obtained from
the zero element 0 : Spec k→ X by base extension.

A morphism of rigidified line bundles (L1, α1)→ (L2, α2) is a morphism h : L1 → L2
of line bundles such that 0∗T(h) α1 = α2.

We define the contravariant functor P
rig
X|k on k-schemes to sets on objects by

P
rig
X|k(T) = {rigidified line bundles (L, α) on X×k T}/ ∼=

and on morphisms by associating with a k-morphism g : T1 → T2 the map

P
rig
X|k(T2) −→P

rig
X|k(T1)

(L, α) 7−→ (1X × g)∗(L, α)

The following Proposition shows that we can ignore the rigidifications α when,
for example, T = Spec K for K a field:

Proposition 1.2. Let T be a k-scheme. Then the forgetful map

P
rig
X|k(T) −→PX|k(T)

(L, α) 7−→ L

is injective. It is an isomorphism if Pic(T) is trivial.

Proof. Let L be a fixed line bundle on X×k T. Then we have

(L, α1) ∼= (L, α2)

for any two rigidifications α1, α2 of L. This holds as any two rigidifications differ
by an element of OT(T)×, which is contained in (and in fact by properness of fT
equal to) the automorphism group of L. This proves injectivity. If Pic(T) is trivial,
then we can construct an inverse

PX|k(T) −→P
rig
X|k(T)

by sending a line bundle L to the line bundle L⊗ f ∗0∗L−1, canonically rigidified
by OT ∼= 0∗OXT

∼= 0∗L⊗ 0∗L−1 = 0∗L⊗ 0∗ f ∗0∗L−1 ∼= 0∗(L⊗ f ∗0∗L−1). �

Rigidified line bundles are worthy of their name in that they have no automor-
phisms. Indeed, any automorphism h of an (L, α) ∈P

rig
X|k(T) is an element of

Aut(L, L) = H om(L, L)(XT)
×

= OXT (XT)
×

= OT(T)×

where the third equality follows from the fact that the canonical morphism OT →
( fT)∗OXT is an isomorphism by the properness of f . But the demand that 0∗(h) α =
α then forces α to equal 1 ∈ OT(T)×.

The fact that it has no automorphisms means that the functor P
rig
X|k has at least

a decent chance of being representable, and it turns out that it is:
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Theorem 1.3 (Grothendieck-Murre). Let f : X → Spec k be an abelian variety. Then
the functor P

rig
X|k is representable by a smooth group scheme Picrig

X|k over k whose connected
components are proper.

The group structure on Picrig
X|k used in this Theorem is given on points by using

the tensor product of line bundles (and rigidifications). By construction, there
exists a rigidified line bundle (U, αU) (the universal bundle) on X × Picrig

X|k with
the following universal property: if (L, α) is a rigidified line bundle on X ×k T,
then there exists a unique morphism f : T → Picrig

X|k such that (L, α) ∼= (1X ×
f )∗(U, αU).

Definition 1.4. Let X → Spec k be an abelian variety. We define the dual abelian
variety Xt to be the connected component of Picrig

X|k that contains the point corresponding
to the trivial line bundle on X.

Xt is indeed an abelian variety over k. Intuitively, Xt ”bookmarks” all the rigid-
ified line bundles on X that can be deformed into the trivial bundle over a con-
nected base.

The universal property allows us to construct a plethora of maps X → Xt. Take
a line bundle L on X. We have three maps m, p1, p2 from X ×S X to X, given
by multiplication, projection on the first component, and projection on the second
component, respectively. We can then construct the Mumford bundle of L, which is
given by

Λ(L) = m∗L⊗ p∗1 L−1 ⊗ p∗2 L−1.

One checks that this sheaf can be rigidified (formal verification). Choose a rigidi-
fication α of this sheaf. Then since X is connected, there exists a unique map from
X to Xt, traditionally denoted by ϕL, such that

(Λ(L), α) ∼= (1X × ϕL)
∗(U, αU).

The morphism ϕL acts on T-points of X as follows. Let x ∈ X(T): then to see what
ϕL does to it we pull back our isomorphism through 1X × x. Denoting translation
over x by tx, we get

(1X × ϕL(x))∗(U, αU) = (1X × x)∗(1X × ϕL)
∗(U, αU)

∼= (1X × x)∗(Λ(L), α)

∼= (txLT ⊗ L−1
T , α′),

for some rigidification α′. So on points ϕL acts by sending a point x ∈ X(T) to
the class of (txLT ⊗ L−1

T , α′) in Picrig
X|S(T). Using Proposition 1.2, we see that over a

field K, we can remove the rigidification from our considerations, so the action on
T-points admits the less prolix description

x 7−→ txLT ⊗ L−1
T .

By the what we have just seen, ϕL sends 0 ∈ X(k) to 0 ∈ Xt(k). In particular,
using the result mentioned earlier by Marco that any morphism between abelian
varietiess is a composition of a translation and a homomorphism, it is a homo-
morphism of abelian varieties (this also follows from the so-called Theorem of the
Square). We have the following fundamental

Theorem 1.5. Let L be a line bundle on X.
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(i) The homomorphism ϕL above is an isogeny if and only if L is non-degenerate, in
the sense that there are only finitely many x ∈ k such that txL ∼= L, a condition
that is verified in particular (but not only) if L is ample;

(ii) Two line bundles L and M on X give rise to the same homomorphism if and only if
L⊗M−1 ∈ Xt(k) (a property that is independent of the choice of rigidification).

2. DUALITY THEORY

Let f : X → Y be an homomorphism of abelian varieties Spec k. Denote the
Poincaré sheaves for X and Y by (UX , αUX ) and (UY, αUY ), respectively. There
is then a unique morphism f t : Yt → Xt such that we have an isomorphism of
rigidified sheaves

(1X × f t)(UX , αUX )
∼= ( f × 1Yt)∗(UY, αUY ).

The morphism f t is called the dual morphism of f . Let yt denote a point of Yt(T),
and denote the corresponding rigidified line bundle on Y×S T by (Myt , βyt). Then
we have

(1X × f t(yt))∗(UX , αUX ) = (1X × yt)∗(1X × f t)∗(UX , αUX )

∼= (1X × yt)∗( f × 1Yt)∗(UY, αUY )

∼= ( f × 1T)
∗(1Y × yt)∗(UY, αUY )

∼= ( f × 1T)
∗(Myt , βyt).

So on the level of points, the dual morphism simply corresponds to the restriction
of the natural map

P
rig
Y|k(T) −→P

rig
X|k(T)

(M, β) 7−→ ( f × 1T)
∗(M, β)

to Yt(T) ⊆P
rig
Y|k(T). It is a homomorphism, hence maps Yt to Xt.

We now come to duality proper. The restriction of the universal bundle (U, αU)
to X ×k Xt has as part of its data a rigidification of its pullback under 0X × 1Xt :
Spec k ×k Xt → X × Xt. The first hint of the symmetry that is expressed in the
upcoming Theorem is the fact that the pullback under 1X × 0Xt : X ×k Spec k →
X× Xt is trivial as well: this is true by definition of the zero section of Xt.

So by switching the factors and viewing U as a line bundle on Xt, which is also
an abelian variety, we can choose a rigidification of U along the zero section of Xt.
After modifying this chosen rigidification by an element of OSpec k(Spec k)×, we
can ensure that the new and the old rigidification give rise to the same trivialisa-
tions of the pullback of U under 0X × 0Xt : Spec k ×k Spec k → X × Xt. Call the
new rigidification αt

U . Xt has a dual variety Xtt, and there is a universal bundle
(Ut, αUt) living on Xt × Xtt. Hence we obtain a map of varieties κX|k : X → Xtt

which induces an isomorphism

(U, αt
U)
∼= (1× κX|k)

∗(Ut, αUt)

that can be shown to be a homomorphism of abelian varieties.

Theorem 2.1. Let f : X → Spec k be an abelian variety. Then we have:
(i) (Double duality) The κX|k constructed above is an isomorphism;

(ii) (Triple duality) We have κt
X|k = κ−1

Xt |k;

(iii) For any line bundle L on X, we have ϕL = ϕt
LκX|k.
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This Theorem is a formal consequence of faithfully flat descent for line bundles,
which is used to prove the crucial fact that for any f : X → Y one has that Ker( f t)
is isomorphic to the Cartier dual of Ker( f ), but we use it as a black box. For now,
note that it implies that we can ”flip our bookmark”: not only can all line bundles
on X that can be deformed into the trivial bundle be constructed as fibers of U on
X × Xt over points of Xt, but we can also obtain all such line bundles on Xt by
taking fibers over points of X.

From now on, we will identify X and Xtt using κX|k. This means that we are
now able to define a symmetric morphism ϕ : X → Xt as one for which the dual
morphism ϕt : X = Xtt → Xt equals ϕ. Note that the ϕL constructed above are
symmetric by the Theorem. We can now finally define what a polarization is.

Definition 2.2. Let X → Spec k be an abelian variety with dual variety Xt and uni-
versal bundle (U, αU). A polarization of X is a symmetric isogeny ϕ : X 7→ Xt such
that (1, ϕ)∗U|X×Xt is ample. If ϕ has degree 1 (as a map of varieties) then it is called a
principal polarization.

The following Proposition makes this somewhat more explicit.

Proposition 2.3. Let X → Spec k be an abelian variety.
(i) Any ϕL associated with an ample L is a polarization.

(ii) Conversely, let ϕ : X → Xt be a polarization. Then there is some finite extension
K of k such that ϕ × 1K : X ×k K → X ×k K is the isogeny associated to an
ample line bundle L on X×k K.

The motivation to take 2.2 as Definition instead of, say, only allowing ϕL for L
ample on X, is that it is possible that the isogeny ϕL can sometimes be descended
further than the associated line bundle L.

We will now flesh this out for an elliptic curve over a field.

Proposition 2.4. Let (E, O) be an elliptic curve over S = Spec k. Then for any d > 0, E
has a unique polarization of degree d2.

Proof. (Also see [Con04].)
Set E = E×k k, with zero section O. First we have to construct the dual ellip-

tic curve Et, which strangely enough turns out to be E itself. This follows from a
general result on autoduality of Jacobians, but in the special case under consider-
ation, there is a simple proof using Riemann-Roch, which for elliptic curves states
that over any extension field K of k, every degree 0 divisor in E ×k K is linearly
equivalent to a unique divisor of the form [O]− [P], with P ∈ E(K). It proceeds as
follows.

The zero section O : Spec k → E gives rise to a morphism OE : Spec k×k E →
E×k E after extending the base. By abuse of notation, we also denote the divisor
on E×k E that is the image of this section by OE. Denote by ∆ the divisor on E×k E
that is the image of the diagonal map. Now suggestively introduce

U = OE×E([OE]− [∆]).

This sheaf is rigidified along the zero section E×k Spec k→ E×k E (tedious check).
We obtain a map E→ Et from the universal property of of Et. On geometric points,
this map is given by

x 7→ (1E × x)∗U ∼= OE([O]− [x]).

(Note that we ignore the rigidification, as we are allowed to do by Proposition 1.2.)
But as we remarked above, Riemann-Roch implies that this is a bijection from E(k)
to the line bundles of degree 0 on E. Now note that since the degree does not vary
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in a connected family of line bundles, and the degree of the trivial bundle equals
0, this latter set of line bundles has to be the full set of points Et(k). Hence, by
smoothness of the varieties involved, E→ Et is an isomorphism.

Now we determine the possible polarizations on E. As we have seen in the
previous Proposition, over the algebraic closure k of k, any polarization ϕ comes
from an ample line bundle L. So we have to determine ϕL for the L = OE(D)
associated with some divisor D of positive degree d, which by Riemann-Roch is a
finite sum ∑d

i=1 yi of k-rational points yi.
Let x and y be points of E. First note that since t∗x is pulling back under a trans-

lation, one has

t∗x(OE(D)) ∼= OE(t−x(D)).

for any divisor D on E. Also, by the group law on E we have that the divisors
[y] + [−y] + [O] and [y − x] + [x] + [−y] are both hyperplane sections of E after
choosing a Weierstrass equation, hence equivalent to 3[O]. This implies that [y−
x]− [y] is equivalent to [O]− [x], or, using line bundles, that

OE([y− x])⊗OE([y]) ∼= OE([O])⊗OE([x])

Using similar techniques and induction, one shows that

(OE([O])⊗OE([x])
−1)⊗d ∼= OE([O])⊗OE([dx])−1

Putting this together, we get

ϕL(x) = t∗xOE(
d

∑
i=1

[yi])⊗OE(
d

∑
i=1

[yi])
−1

∼=
d⊗

i=1

OE([yi − x])⊗OE([yi])
−1

∼= (OE([O])⊗OE([x])
−1)⊗d

∼= OE([O])⊗OE([dx])−1

∼= OE([O]− [dx]).

So our polarization gives rise to the homomorphism E → E given on geometric
points by x 7→ dx, which is indeed of degree d2 and clearly descends to E. We have
proved the Proposition. �

Question: How does one describe the full scheme Picrig
X|k, along with the univer-

sal bundle on it? Hint: take a disjoint union of Ets and modify (U, αU) slightly on
the new components.

A few more comments are perhaps in order.
(i) Note that Et(k) could be identified with the group of line bundles of de-

gree 0 on E. This is no longer true in higher dimension: in general, the
quotient of Pic(X)(k) by Xt(k) is called the Néron-Severi group, and though
generically it is isomorphic to Z, it can be of arbitrarily high rank.

(ii) We have used that all degree divisors on E are of the form [O] − [P], a
special case of Theorem 1.5. Just to drive home the miraculousness of this
result, note that among curves, this only happens for those of genus 1 with
a rational point: it is certainly far from being true for arbitrary curves C
of higher genus, since even if we suppose that there exists a rational point
0 ∈ C(k), then the map P 7→ [0]− [P] properly embeds C into its Jacobian,
which is of higher dimension than C itself.
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(iii) Finally, the Proposition showed that E always carries a principal polariza-
tion. This is false for more general abelian varieties, as we shall also see
below.

More details for the results in the first two Sections are given in Chapters 2, 6, 7
and 11 of [EMvdG04].

3. THE CASE k = C

Let X be an abelian variety over C. Then the complex group manifold X(C)an

whose underlying set consists of the C-points of X can be identified with a com-
plex torus: that is to say,

X(C)an ∼= V/Λ,

where V is a vector space over C, Λ is a lattice in V (an abelian subgroup Λ ↪→ V
with the property that the induced map Λ ⊗Z R → V is an isomorphism), and
where the group structure on V/Λ is induced by addition on V. As is explained
much more neatly and canonically in Chapter 1 of [Mum08], using this identifica-
tion the group of line bundles on X can be described very explicitly.

A sesquilinear form on V is a map S : V ×V ×C that is C-linear in the first factor
and C-antilinear in the second. This means that for c ∈ C we have

s(cv, w) = cs(v, w) = s(v, cw).

Such a form is called positive definite if S(v, v) > 0 for all v. A Hermitian form on V a
sesquilinear form H that additionally satifies H(v, w) = H(v, z). A pseudo-Riemann
form on V/Λ is an sesquilinear form on V whose imaginary part is Z-valued on
Λ×Λ. A Riemann form is a pseudo-Riemann form that is Hermitian.

A word of warning: some authors insist on positive definiteness in the defini-
tion of a Riemann form, for reasons explained at the end of this section.

Given a Riemann form H, we can form the associated bilinear form and define
an H-character as a function α : Λ→ C1 = Ker(C× Nm→ R×) satisfying

α(λ1 + λ2) = exp (πiImH(λ1, λ2))α(λ1)α(λ2).

Given H, there always exist H-characters for it.
Consider the set of pairs (H, α), where H is an Riemann form on V and α is an

H-character. We can make this set into a group, call it GAH, by taking (0, 1) as the
zero element and defining multiplication by

(H1, α1)(H2, α2) = (H1 + H2, α1α2).

By GAGA, the line bundles on X can be identified with those on X(C)an. We
construct the latter geometrically (that is, as sections of a morphism). Take the
trivial bundle V ×C on V. We have Λ act on the base V by v · λ 7→ v + λ, and on
V ×C by

(v, z) · λ = (v + λ, exp(πH(v, λ) +
1
2

πH(λ, λ))α(λ)z).

This gives a map

(V ×C)/Λ −→ V/Λ

that gives rise to a line bundle on V/Λ that we denote by L(H, α).

Theorem 3.1 (Appell-Humbert). The procedure above gives rise to an isomorphism

GAH
∼−→ Pic(X).

The bundle L(H, α) is ample if and only if H is positive definite.
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This allows us to describe the dual abelian variety. The points over C of this va-
riety should parametrize the invertible sheaves on X that are algebraically equiva-
lent to zero. Using Theorem 3.1, one shows that these are exactly the L(0, α), where
now the α are honest characters Λ→ C1. Now any such character is of the form

λ 7−→ exp(2πiIm(vt(λ))),

where vt is an element of the vector space Vt = Hom
C
(V, C) of antilinear maps

from V to C. Two vt give rise to the same map if and only if their difference is in
the abelian subgroup

Λt = {vt : Im(vt(Λ)) ⊆ Z}.

This subgroup of Vt is in fact a lattice. We have shown that for the complex torus
Vt/Λt, there exists an isomorphism

Vt/Λt −→ Xt(C)

[vt] 7−→ L(0, exp(2πi Im(vt · ))).

One can show that there exists a bundle on V/Λ×Vt/Λt whose fibers over points
of Vt/Λt are exactly the L(0, α). Arguing as in Proposition 2.4, we see that Vt/Λt

is the complex group manifold Xt(C)an associated to the dual abelian variety Xt

of X.
We can now also describe the polarizations of X. Proposition 2.3 tells us that

these all come from ample line bundles on X. Theorem 3.1 states us that up to iso-
morphism, ample bundles are of the form L(H, α) with H positive definite. Again
by Proposition 2.3, two bundles L(H1, α1) and L(H2, α2) give rise to the same po-
larization if and only if L(H1, α1)⊗ L(H2, α2)

−1 = L(0, α) for some α, that is, if and
only if H1 = H2. We get

Proposition 3.2. Let X be an abelian variety over C, and choose an isomorphism of com-
plex group manifolds

X(C)an ∼= V/Λ.

Then the polarizations of X correspond bijectively with the positive definite Hermitian
forms H on V that take integral values on Λ.

Let L = L(H, α). The homomorphism ϕL : X(C) 7→ Xt(C) is then given on the
level of complex tori by

V/Λ −→ Vt/Λt

[v] 7−→ [H(v, )].

The following correspondences relate our results with Definition 2.2 and Theo-
rem 1.5:

map X → Xt ←→ sesquilinear form integral on Λ×Λ
symmetric map ←→ Hermitian form integral on Λ×Λ

non-degenerate line bundle ←→ non-degenerate form
ample line bundle ←→ positive-definite form

We have seen that a polarization on X(C)an = V/Λ gives rise to a positive
definite Hermitian form on V that takes integral values on Λ. The existence of
such a form is a necessary and sufficient condition for a complex torus V/Λ to
be the complex group manifold associated to an abelian variety over X. For com-
plex tori of dimension 1 this condition is always fulfilled. Analyzing this as in
[Mum08], however, one sees that in a Baire-categorical sense, almost all complex
tori of higher dimension are non-algebraic.
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4. A FINITENESS RESULT

Let X → Spec k be an abelian variety over an arbitrary field, and denote End0(X) =
Q⊗ End(X). Let ϕ be a polarization. Then we have a map

End0(X) −→ End0(X)

α 7−→ α† = ϕ−1αt ϕ

that gives an involution called the Rosati involution (with respect to ϕ) on End0(X).
Choose a prime ` different from the characteristic of k, and denote by Tr(α) the
trace of α acting on the Tate module T`X. As Peter mentioned, this a rational
number is independent of `.

One has the following important

Lemma 4.1. The map

End0(X)× End0(X) −→ Q

(α, β) 7−→ Tr(α†β)

is a bilinear pairing with respect to addition on End0(X). This pairing is positive definite.

Definition 4.2. A polarized abelian variety is a pair (X, ϕ), with X → Spec k an
abelian variety and ϕ : X → Xt a polarization.

A morphism of polarized abelian varieties (X1, ϕ1) → (X2, ϕ2) is a homomorphism
of abelian varieties f : X1 → X2 that satisfies ϕ1 = f t ϕ2 f .

Proposition 4.3. A polarized abelian variety has only finitely many automorphisms.

Proof. (Sketch.)
First we analyze the group End(X). This is by definition equal to Hom(X, X).

Let Y be any abelian variety over k, and ` be prime not dividing the characteristic
of k. One has an injection

Hom(X, Y) −→ HomZ`
(T`X, T`Y)

because the points of `-power torsion are dense in X.
Better yet, though not as easy, the induced map

Z` ⊗Hom(X, Y) −→ HomZ`
(T`X, T`Y)

is also injective. Taking two different `, one sees that Hom(X, Y) is a torsion-free
abelian group of finite rank.

If α ∈ End(X) respects ϕ, then α†α = 1 by the very definition of the Rosati
involution. Now Tr(1) = 2g since T`X is of dimension 2g over Z`. So α is in
both in the sublattice End(X) of R⊗ End0(X) and in the subset of R⊗ End0(X)
consisting of those β for which the quadratic form Tr(β†β) equals 2g. Since this
quadratic form is positive definite, this subset is compact: therefore there are only
finitely many possibilities for α. �

Any automorphism of X that fixes the n-torsion subscheme for n ≥ 3 is in fact
the identity: a simple proof of this can be found in [Mil08, Proposition 14.4(b)].

Proposition 4.3 motivates the adage that the correct analogue of an elliptic curve
is not an abelian variety but a polarized abelian variety; only for the latter can a
decent theory of moduli be developed. Another reason is the fact that a curve C
cannot be recovered from its Jacobian (as in the case of elliptic curves) but only
from the Jacobian equipped with a certain natural principal polarization coming
from C.
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