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CHAPTER 1

PRELIMINARIES

1.1. Introduction

Censoring occurs both in industrial life-testing (i.e. investigation
of the distribution of the lifetime of manufactured components or complete
systems) and in medical trials and biological experiments (e.g. on carcin-
ogens). So terms synonymous to a "censored observation" are a "withdrawal",
a "loss", or a "death due to a competing risk"; while an "uncensored obser-
vation" might be a "failure", a "relapse", or a "death from the cause under
study". More detailed examples are given in Section 3.1.

Formally, in all these situations one is interested in the distribution
or distributions of n independent positive random variables Xl,...,X . How-
ever one is only in a position to observe (X1,6 ),...,(X ,8 ) where the 6
are indicator random variables (i.e. take the values zero or one only) such
that dj takes the value 1 if observation j is uncensored, in which case Xj
takes the same value as Xj' On the other hand, if Gj takes the value 0, ob-
iervation Jj is censored and we only know that Xj takes a value larger than
Xj.

In all the situations outlined above, time and random phenomena occur-
ring in time play an essential role. It is our thesis that the same is true
of the mathematics of the situation: in other words, it pays to study the
statistical problems of interest in terms of the theory of stochastic
processes.

This possibility of a new and fruitful application of probability
theory to the statistics of censored data was exploited by 0.0. Aalen in
his thesis, AALEN (1976), and later articles, especially AALEN (1977) and
(1978). In particular he made use of the theory of stochastic integrals as
developed by the Strasbourg school of probabilists (see MEYER (1976) or
JACOD (1979) for recent and complete accounts of the theory) together with

the theory of counting processes developed especially in Berkeley by



various authors such as BREMAUD (1975), DOLIVO (1974), JACOD (1975) and BOEL,
VARAIYA & WONG (1975a, 1975b). A general survey of the theory of counting
processes is given by BREMAUD & JACOD (1977).

We are especially interested in a number of one- and two-sample statis-—
tical methods which lend themselves very nicely to a treatment in this frame-
work. In the first case Xl(""xn are identically distributed with an unknown
distribution function F which one wants to estimate; while in the second
case the Xj's fall into two groups, those in group i being identically dis—
tributed with distribution function Fi (i =1,2), and one wants to test the
null hypothesis F1 = F2. The methods considered are approximate and non-
parametric: more explicitly, they rely on large-sample results, and do not
assume that F, or F1 and F2, belong to some parametric family of distribu-
tions. In general no truly non-parametric (i.e. distribution-free) methods
are possible; at least, not useful ones.

In the first place we consider the product limit estimator of KAPLAN &
MEIER (1958), which plays a role for censored data similar to that of the
empirical distribution function for uncensored data, and the two-sample
test statistics of GEHAN (1965), EFRON (1967) and COX (1972). These test
statistics are generalizations of ones originally developed for very special
types of censored data; the first two being Wilcoxon-type tests while the
last one is of Savage-type. They are the most widely used and applicable
non-parametric two-sample tests for use with censored data.

Our plan of attack is as follows. The present chapter closes with a
summary of notation and conventions which will be used later without comment.
In Chapter 2 we build up an arsenal of results from the theory of stochas-
tic processes in particular concerning stochastic integrals, martingales,
counting processes and weak convergence of processes, and the interrelations
between these subjects. The returns for using such heavy artillery will be
unification and generality. We do not need the full force of many of the
original results and so have striven here for simplicity.

Chapter 3 begins with examples of how censored data can arise (we
restrict attention till Chapter 6 to so-called right censorship) and then
extracts a few key properties of all but one of these examples. A model with
these properties underlies the rest of Chapter 3 and all of Chapters 4 and
5. In Section 3.2 we introduce the product limit estimator and in Section
3.3 the three test statistics in terms of the model for censored observa-
tions which has been established. By way of illustration of the theory of

stochastic integrals, we derive some of the small sample properties of the

-



estimator and the test statistics, the latter being considered as members
of a general class of test statistics K. Of particular interest are Theorem
3.2.1 and Proposition 3.2.1, which give linear bounds on the product limit
estimator analogous to well known results on the empirical distribution
function (see SHORACK & WELLNER (1978) or VAN ZUIJLEN (1978)).

In Chapter 4 we proceed to derive asymptotic results on these statis-
tics. Notations and definitions for this and the following chapter are
summarized on pages 53, 54, 55, 58 and 59. As well as giving general re-
sults on consistency (Section 4.1) against various types of alternatives and
asymptotic normality (Sections 4.2 and 4.3) we specialize to what we call
"the general random censorship model" (Example 4.1.1) in which for each 3,

~

xj = min(xj,Uj), where Ul""'Un are "censoring variables", independent of
one another and of the Xj's, and with arbitrary distributions. We also pay
special attention to the case when U1 = ... = Un = T for some "stopping
rule" T depending on the observations. The results are derived with a uni-
fied approach and at the same time generalize those to be found in the lit-
erature. In particular we do not require any of the distribution functions
concerned to be continuous, and extend test statistics originally proposed
for continuously distributed data for use in the situations where the under-
lying distribution functions are (partially) discrete.

In Chapter 5 we loock at efficiencies when testing against specific
alternatives. We develop some new test statistics, also members of K, which
are specially suited for testing against particular parametric alternatives.
Also we derive test statistics which are consistent when testing against the
mere inequality of two distributions.

Finally in Chapter 6 we sketch a number of extensions to the preceding
theory. In particular we mention more general forms of censorship than the
"right censorship" considered so far, and we pay some attention to the

example in Chapter 3 which was not covered by our general model.

1.2. Notation

The following notations will be used without comment in the sequel.
Let X be a real-valued function on the set of nonnegative real numbers
]R+ = [0,%). If X has finite left hand limits everywhere (we say "X has
left hand limits"), then X_ is the function on I§+ defined by X_(t) = x(t-),

t > 0, and X _(0) = 0. We define X+ similarly when X has finite right hand



limits everywhere, and define X () = %ig X(t) if this exists. If X is
right continuous with left hand limits then AX is the function X - X . If
{Xj: j € J} is some indexed family<>ffunction§; we write X, for (Xj)_, etc.
Suppose Y is a real-valued function on IR which is right continuous
with left hand limits and is of bounded variation on each bounded subinter-
val of ]i+ (we also say "Y is of locally bounded variation"). Moreover
suppose that X is a Lebesgue-measurable real-valued function on IfF such
that fss[O'tJIX(s)lldY(s){ is finite for each t € W' (i.e. "X is locallyl
integrable with respect to Y"). Here the integral is a Lebesgue-Stieltjes
integral with respect to the total variation of Y (which assigns mass [Y(o)]

to the point zero in line with the convention Y(0-) = 0). Then for each t

we define

t

(1.2.1) J Xay = J ' X(s)dy(s),
0 SEEOIt]

and we denote by f XdY the function taking the value (1.2.1) in the point t.

Note that (f Xdy) (0) = X(0)Y(0). We denote by Yc the continuous part of Y;

i.e.

(1.2.2) Y () =Y(t) - ] A¥(s),
(o}
s<t

where the sum is an absolutely convergent sum of at most countably many

nonzero terms.

All the above notations will be extended to stochastic processes in
Section 2.1.

(Q,F,P) will denote a complete probability space and w a generic member
of Q. We write o{-} for the sub-c-algebra of F generated by a family of
random variables and use the symbol V to denote the o-algebra generated by
a union of cg-algebras. Convergence in probability and in distribution are
denoted by +P and +v gespectively. N(u,cz) is the normal distribution with
mean Y and variance o .

The following are some miscellaneous points of notation. X is the
indicator variable for the set A. For typographical convenience our nota-
tion for an indexed set (i.e. specifying a function) is the same as that
for a set itself: we write {X(t): t € [0,%)} for the indexed set
{X(t)}te[O,w)' When dealing with a function of two variables, (t,w) = X(t,w),
we may write X(-,w) for the function of t obtained when w is fixed. Symbols

. . . . -+ . =
s,t,u,v,T are always "time variables" either in R or in Rt = [0,~],



while i,j,m,n,r are "index variables" in IN. The symbols A and V are used
to denote minimum and maximum respectively; and # denotes the number of
©lements in a set. For a real number x, the integral part of x is denoted by

Cx]. The symbol « means "is proportional to". Throughout, we hold to the
Convention 0/0 = 0.



CHAPTER 2

SOME RESULTS FROM THE THEORY OF
STOCHASTIC PROCESSES

2.1. Notation and basic concepts

References for this and the following section are MEYER (1976) or
JACOD (1979).

Let (2,F,P) be a fixed complete probability space. A real stochastic
process X = {X(t): t € [0,%)} is a time-indexed family of real-valued
random variables. X can therefore also be considered as a function on
L0,2) x @ and we accordingly write X(t,w) for the realized value of the
random variable X(t) in the point w € Q. The sample paths or simply paths
of X are the real-valued functions X(*,w) on [0,»). 1f X(t) is integrable
for each t, we write EX for the function t — E(X(t)). We call X itself
integrable if e 55y Elx(t)| is finite; and square integrable if X° is
integrable.

Two processes whose paths are almost surely identical are called
indistinguishable. When we say that a process for example is right contin-
uous, has left hand limits, or is of Ffinite variation, we mean (unless
explicitly stated otherwise) that almost all of the sample paths have this
property. If a process has left hand limits, we can define (up to indis-
tinguishability) a left continuous process X such that X_(+,w) = (X(=,w))_
for almost all w € Q. We similarly define processes X, and AX under the
appropriate conditions, at least up to indistinguishability.

In the same way we can define f Xdy and Yc if almost all the paths of
X and Y have the appropriate properties (see (1.2.1) and (1.2.2)). However
it is not generally true that this defines stochastic processes, for
Ise[o,t]x(s’.)dy(s") (denoted by fg Xdy) and Yc(t,-) are not necessarily
measurable functions on (,F). In the sequel we often apply the condition
that X and Y be measurable brocesses; i.e. as functions of (t,w) € [0,») xQ
they should be measurable with respect to the product o-algebra B ® F, where

B is the Borel o-algebra on [0,®). In particular, processes all of whose



paths are left continuous or all of whose paths are right continuous are
measurable. The process [|dv| is called the variation of Y.

Till now the ideas of "past" and "future" have been absent. To intro-
duce them, we suppose that we are given a family {Ft: t e [0,)} of sub-
o-algebras of the complete o-algebra F such that
(i) {Ft} is increasing: Fs c Ft for all s < t,

(ii) {Ft} is right continuous: Fs = tgs Ft for all s,

(iii) {Ft} is complete: FO contains all P-null sets of F.

Ft is to be interpreted as the collection of all events which can occur at
or before time t. So (i) expresses the fact that as time evolves, new events
may happen. Conditions (ii) and (iii) are technical ones; for us they are
completely harmless (see Appendix 2 for some results on how (ii) and (iii)
may be verified). We define the o-algebras Ft- = sgt Fs and F_ = te[&kw) Ft'

A collection (Q,F,P), {Ft: t € [0,»)} satisfying the above requirements
is called a stochastic basis. For the rest of this section we suppose one
to be given.

We can now define an adapted process X as one such that X(t) is Ft—
measurable for each t. A stopping time T is an i§+—valued random variable
such that {Tst} € Ft for each t. Interpreting T as the time some random
phenomenon occurs, T is a stopping time if at each time instant t one can
determine whether or not the phenomenon has yet occurred. The o-algebra ET'
which can be interpreted as the collection of all events which can take place

at or before time T, is defined by

FT ={ane F: an {7t} € Ft vVt € [0,®)}.

We next introduce three important classes of processes: martingales,
predictable processes, and counting processes. If an adapted process M is
right continuous with left hand limits, is such that M(t) is integrable for

each t, and is such that
EM(t) [Fs) = M(s)

for each s < t, then we call M a martingale. If M is a square integrable
martingale, then %ig M(t) = M(») exists almost surely, and adjoining Fw to
the stochastic basis, M is a square integrable martingale on the time set
Lo0,=].

A predictable process is one measurable with respect to the o-algebra
on [0,») x Q generated by the adapted processes, all of whose paths are

left continuous on (0,%). So in particular the latter processes and Borel functions



of them are predictable; and a deterministic process all of whose paths are
equal to a single Borel measurable function is predictable. If H and K are
predictable and f HAK exists, it too is predictable.

A multivariate counting process N = {Ni: i=1,...,r} is a finite
family of adapted processes Ni such that for almost all w € Q, the paths of
Nl""'Nr are nondecreasing, right continuous, integer-valued functions,
zero at time zero, and with jumps of size +1 only, no two processes jumping
at the same time.

Loosely speaking, a martingale is a process without any systematic
behaviour in the mean: if M is a martingale then for any s, the process
t > M(t) - M(s), t € [s,®), has zero mean given everything that has happened
up to time s. A predictable process is one whose value at time -t is fixed
given whatever has happened up to but not including time t. This is also
true if t is replaced with any stopping time. An r-variate counting process
records the occurrences of r types of random phenomena, which cannot occur
simultaneously.

A final general concept is that of a process having a certain property
locally. This is defined by requiring the existence of a so-called local-
izing sequence of stopping times {Tn: n € N} such that
(i) Tn + ® almost surely as n -+ =,

(ii) For each n, the stopped process t - X{Tn>0}x(tATn) has the required
property.

If X(0) = 0 almost surely, the stopped process above is indistinguish-
able from the process t - X(tATn), which is MEYER's (1976) definition of
stopped process; however our concept of localization is the same. Let us
illustrate this important notion by showing that a univariate counting
process N is locally bounded (a process is bounded if almost all its sample
paths are bounded in absolute value by the same finite value). For let
T, = inf{t: N(t) 2 n} where the infimum of an empty set is assigned the
value +». Since the events {Tnst} and {N(t)2n} differ at most by a null set
and N is adapted, Tn is a stopping time. Also, Tn + « almost surely. Final-
ly, almost all of the paths of X{Tn>O}N(.ATn) are bounded in absolute value
by n.

In future we shall generally identify a process with the equivalence
class of processes from which it is indistinguishable; this should be
particularly borne in mind with statements of equality or unigueness. It
does lead to some anomalies: strictly speaking, only part of the equivalence

class of a predictable or a measurable process has these properties.
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In the theory of stochastic processes and stochastic integrals,
martingales and predictable processes continuously play a complementary
role. One instance of this is the following important result on local
square integrable martingales. Let M1 and M2 be local square integrable
martingales. Then there exists a unique predictable process <M1,M2> whose
variation exists and is locally integrable such that M1M2 - <M1,M2> is a
local martingale, zero at time zero. If M1 = M2, <M1,M2> is in fact non-
decreasing. <M1,M2> is called the predictable covariation process of M

and M2. If M1 and M2 are in fact square integrable martingales, then

1

Mle - <M1,M2> is a martingale on the time interval [0,~]. Note that
<M1,M2> is right continuous with left hand limits, and that <+,+> is sym-

metric and bilinear.

2.2. Stochastic integrals

In Section 2.1 we saw that under reasonable conditions, the integral
of one process with respect to another can be defined in a sensible way
and will have all the properties one can reasonably ask of it, such as
being a stochastic process itself. The question now arises: what properties
of X and Y relative to a given stochastic basis (Q,F,P),{Ft: t e [0,°)}
carry over to the process f Xdy, defined by taking pathwise Lebesgue-Stiel-
tjes integrals of X with respect to Y over the interval [0,t] for each
t € [0,%)? We already saw that if X and Y are predictable and I Xdy
exists, then it is predictable too. It turns out on the other hand that if
X is predictable but Y is a martingale, then subject to some natural condi-
tions f XdY is a martingale.

Here we summarize some of the results on this theme, not in the most
general form (see MEYER (1976) or JACOD (1979)) but suitable for our pur-
poses.

Let M1 and M2 be local square integrable martingales with paths of
locally bounded variation, and let H1 and H2 be predictable and locally
bounded (in particular, H1 and H2 have these properties if they are left

continuous with right hand limits and are adapted). Then f HldM and

1
f szM2 exist and are local square integrable martingales, and their pre-

dictable covariation process satisfies

_r
<[ mjam, [ HyAM,> = ] H H A<M ,M,>.
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(In fact the requirement that Hi be locally bounded can be relaxed to re-
quiring that f HidMi exists and f H§d<Mi,Mi>be locally integrable; however
we will hardly ever need this.) If the localizing sequences of stopping
times associated with Ml’MZ'Hl and H2 are sequences of constants, then the
same holds for the localizing sequences associated with <M1,M >, f HldMl’
etc.; and if the words "local" and "locally" applied to Ml,M2,H1 and H2 can
be dropped altogether, the same applies to <M1,M2>, f HldMI' etc.

We shall make much use of the following corollary of these facts.
Let M1 and M2 be local square integrable martingales with paths of local—.
ly bounded variation, zero at time zero, and let H1 and H2 be locally bound-
ed predictable processes. Suppose the localizing sequences of stopping
times associated with Ml'MZ’ H1 and H2 can be taken to be sequences of con-
stants. Then the processes f HldM1 and f H2dM2 exist and the following

equalities between real-valued functions on [O,w) hold:
(2.2.1) £ Hidm) =0, i=1,2,
(2.2.2) E(f Hyam, IH2dM2> = E(f H H, A<M, M) .

If the words "local" and "locally" can be dropped altogether, and if
f HldM1 and f H2dM2 are also defined in the point «, then the same equali-
ties hold on [0,«].

In fact (2.2.1) also holds more generally. Suppose that M is a local
martingale (not necessarily locally square integrable) with paths of local-
ly bounded variation, and suppose H is a locally bounded predictable pro-
cess. Then f HAM exists and is a local martingale. Now a local martingale
is localized by any sequence of stopping times making its variation local-
ly integrable. So if for all t, E f; lHllaM| < ®, then [ HAM is a martin-
gale. If furthermore M(0) = 0 almost surely, then (2.2.1) holds (dropping

the index i).

2.3. Counting processes

In this section we show how certain local square integrable martingales
are associated with the multivariate counting processes defined in Section
2.1. Recall that these could be interpreted as processes counting the occur—
rences of a finite number of types of mutually exclusive phenomena. As in

Section 2.2 we considerably specialize the general results available; see



12

BREMAUD & JACOD (1977) for a survey of these.

Let (Q,FIP),{Ft= t € [0,2)} be a fixed stochastic basis and
{Ni: i=1,...,r} be an r-variate counting process. By MEYER (1976) Theorem
I.9, there exist right continuous, nondecreasing, predictable processes Ai'

zero at time zero, such that
(2.3.1) Mi =N, - A, i=1,...,r

are local martingales. Ai is called the compensator of Ni (and also its
"dual predictable projection").

The following result shows that, for each i, Mi is in fact a local
square integrable martingale and gives explicit expressions for <Mi,Mj>.
It was proved under the condition that Al""’Ar are continuous by BOEL,
VARAIYA & WONG (1975a); this condition was later removed by ELLIOT (1976),
LIPTSER & SHIRYAYEV (1978) and GILL (1978). We give a short proof based on

an idea of J. VAN SCHUPPEN in Appendix 1.

THEOREM 2.3.1. In the situation specified above, each compensator Ai satis—

fies 0 £ AAi < 1. The Mi's are local square integrable martingales with

(2.3.2) <Mi,Mi> = J (1 - AAi)dAi,

(2.3.3) <Mi,Mj> - J AAidAj i# 73, i,j=1,...,r.
The localizing stopping times may everywhere be taken to be any nondecreas-
ing sequence of stopplngtlmes{T }, T *> ® a.s. as n > ©, such that

E 21 N (T ) < » for each n = 1,2,... (here Ni(m) = sgp N, (£)).

To make use of this result we need to know the processes A We shall

make use of the following theorem, adapted from a theorem of MURALI—RAO
(1969) :

THEOREM 2.3.2. Let N be a univariate counting process and let t € (0,)
satisfy E(N(t)) < =. Define

t =12, n=1,2,..., i=0,1,...,2°
and n

vy= LOEme L - e PP D0 m=12,.
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Then there exists a subsequence of integers {rn}, r =+ ® as n > «, and a

unique random variable U, such that for all bounded random variables X,
E(xu, ) -~ E(xu)
n
as n > ., The compensator A of N satisfies
A(t) = U
almost surely.

Note that if EN(t) = =, one can still apply this theorem to the bound-
ed counting process NA n for each n and take limits; and in the multi-
variate case, the theorem can be applied to each component in turn. Also it
often turns out that the sequence of random variables {Un] is almost sure-
ly convergent as n -+ », so U must be this limit. However the theorem only
supplies us with a random variable U = Ut almost surely equal to A(t). To
construct A, one should note that the facts: A is right continuous, and
A(t) = U_ almost surely for each t, determine A given {Ut: t € [0,%)} up to
indistinguishability.

Many other theorems can be applied to determine the compensators Ai
of a counting process {Ni: i=1,...,r}. For instance, define (Tn’In)’

n=1,2,... by

]

r
inf{t: 'Z N;(t) 2n}, n=1,2,...

(2.3.4) 'I‘n
i=1

and

(2.3.5) I =1i<T <o and AN,(T ) =1,
n n i'"n

otherwise In = 0. So Tn is the time of the n-th jump of {Nl""'Nr}’ and if
Tn < o, In is the index of the component which then jumps.

Suppose also that
(2.3.6) Ft = FO v U{Ni(s): i=1,...,r; s < t}.

(Theorem A.2.1 shows that {Ft} is automatically right continuous in this
case.) Then Proposition 3.1 of JACOD (1975) shows how the processes

Al,...,Ar can be constructed from the conditional distributions of Tn+1
and In+1 given FO’Tl’Il""'Tn’In for each n. Conversely, Al""’Ar in a

sense determine the joint distribution of Tl’Il'TZ'I2"" given FO as we
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shall see presently.

Another theorem by which A, can be determined is DOLIVO (1974) Theorem

i
2.5.1 which shows that in certain circumstances Ai(t) may be identified

with fg Ai(s}ds where

PN, (s+h) - N, (s) = 1| F)-

i

Ai(s) = lim
h+0

This result shows that the compensator of a counting process can be inter-
preted as the integrated or cumulative conditional rate at which it jumps;
it can often be used heuristically to suggest what Ai is. In the discrete
case where Ft = F[t] and N, only jumps at integer time instants, Theorem
2.3.2 can be applied to show that Ai too is constant between time instants,
and that AA,(t) = P(AN;(t) = 1|F ), t =1,2,... . Again A, can be inter-
preted as a cumulative conditional rate for Ni'

A final method for determining Ai is to make use of theorems on
uniqueness and existence of processes with a given "intensity process" Ai,
and then show that the so constructed processes Ni are indeed those one
had in mind. Such theorems are given in BOEL, VARAIYA & WONG (1975b), while
AALEN (1976) Section 5D illustrates this approach.

We now present two theorems showing that the compensators Ai determine
in a sense the probability distribution of the original counting process.

The first one is a simplified version of Theorem 5.1 of JACOD (1975) :

THEOREM 2.3.3. Let N = {Nl""'Nr} be an r-yariate counting process, define
(TpeI)e n=1,2,... by (2.3.4) and (2.3.5), and suppose that {Ft} is given
by (2.3.6). Suppose also that Z§=1 Ni(“) is almost surely finite. Let P' be
another probability measure on (Q,F) such that P and P' agree on FO and are
absolutely continuous with respect to one another on Fm. Suppose Ni has
compensator Ai under P and compensator Ai under P'. Then for each i, Ai and
Ai are almost surely absolutely continuous with respect to one another as

functions on [0,»), and on Fm we have

. ( il (1 —Z.AA}(S)))eXp(- LA! (“))
. d‘I‘In \ ST T, Pl Lt
(1 goom)) .
n:T <e I, ( i (1 —XiAAi(s)))exp(— ziAic(w{>

sd{Tl,Tz,...}

The final theorem of this section states in effect that if the compen-
-ator A of a univariate counting process N is such that for each t, A(t) is

Jetermined by the value of N(s), s < t, then the form of A actually determines
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the probability distribution of the jump times of N. (A multivariate version
of the theorem also holds, but we shall not need it.) A proof is given in

Appendix 3, in which results of JACOD (1975, 1979) are applied.

THEOREM 2.3.4. Let N be a univariate counting process with compensator A,
and define T = inf{t: N(t) 2z n}, n=0,1,... . Suppose that outside of a
null set of Q,

A(t) = A(Tn) + fn(t—Tn;Tl,...,Tn) for all t € (Tn'Tn+1]'

n=20,1,...,

+
where fn (n =0,1,...) is a real measurable function on (]R)n+1 such that

for 0 < t1 < ... < tn' fn(-;tl,...,tn) is nondecreasing, right continuous,
and zero at time zero. Then the joint probability distribution of T1,T
£

PURRE

is uniquely determined by fO’fl’ PYARE

The compensator A of N can be expressed in the form given in Theorem
2.3.4 if for all t

Ft = FO VolN(s): s <t}

and if FO is independent of TysTys-.. (which is trivially the case if FO
contains only P-null sets and their complements). For then by JACOD (1975)
Proposition 3.1 and Theorem A.2.1,

s an(u;tl,...,tn)

£ (S;t ,...,t) = j _ R ’
n 1 n 0 1 Fn(u 'tl""'tn)

where Fn is a regular version of the conditional distribution function of

Tn+1 - Tn given Tl""'Tn'

2.4. A martingale central limit theorem and related results

Suppose that for each n = 1,2,... a stochastic basis is given on which
r local square integrable martingales Z?, i=1,...,r, are defined. Then
for each n, Zn = {Zgz i=1,...,xr} can be considered as a random element of
(000,=)) " where D[0,») is the space of functions on [0,») which are right
continuous with finite left hand limits, endowed with the Skorohod topology

(see STONE (1963), LINDVALL (1973) or VERVAAT (1972)).
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Let A:, i=1,...,r, be nondecreasing continuous functions on [0,®),
zero at time zero. It is well known that a random element z” = {z:: i=1,...,r}
of (D[O,w)f:can be defined with the following properties: the Z:'s,
i=1,...,xr, are independent Gaussian processes with continuous sample paths,
zero at time zero, and have zero means, uncorrelated (hence independent)

-]
increments, and variance functions Ai' i=1,...,x, i.e.
] (=]
(2.4.1) var(Zi(t)) = Ai(t)-

In fact the Z:'s are local square integrable martingales with respect to
the natural stochastic basis (let F: = O{Z:(S): i=1,...,r, s <t} VN,
where N consists of all P-null sets and their complements). We can drop the
word "local" if Az(m) < « for each i. Also

@

@ co Aj_ l=j
(2.4.2) <Z2,.,Z2.> =
] 0 i# 3.
This well known fact has a converse. Suppose processes Z:, i=1,...,r,

are local square integrable martingales with continuous paths such that
(2.4.2) holds for given nondecreasing functions A:, zero at time zero. Then

)
the Zi's are r independent Gaussian processes with independent increments
and of course (2.4.1) holds; see e.g. MEYER (1971).

This result provides the key idea in the proof of a theorem of
REBOLLEDO (1979a), which states that if the jumps of the processes Zz,
i=1,...,r, become small in a certain sense as n + ®, and if
<Z2,Z§>(t) +P <Z:,Z;>(t) as n + « for all i, j and t, then Zn +D Zc° as
n >« in (D[0,»))¥. In other words, if in the limit 2" has the properties
which characterize the distribution of Zw, then z" converges in distribution
to Z .

To make the statement concerning the jumps of Z? more precise, let us
introduce the concept of an e-decomposition of r local square integrable
martingales Zl""'zr' For € > 0 let 2?,...,Ei, gi,...,gi be local square

integrable martingales such that for each i,
(2.4.3) 2, =325 + 2%,
i =i i

(2.4.4) sup lAgi(t)l < ¢ almost surely,
te[0,=)
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(2.4.5) Ei has paths of locally bounded variation, and for each i and j

P(3t ¢ [0,) such that AZ{(t) # O and Az§<t) #0) = 0.

Then we call {E?,...,Zi} the jump part of an e-decomposition of {zl,...,zr}.
Intuitively speaking, {ZT,...,Zi} removes completely all the jumps of
{Zl""'zr} for which any of fhe component jumps is greater in absolute
value than €. As an example, let N be a univariate counting process with
compensator A, let M = N-A, and let H be a locally bounded predictable
process. Define 2 = f HAM and 25 = f HX{IHIZE}dM' Then z° is the jump

part of an e-decomposition of the local square integrable martingale Z.

We now formulate our version of REBOLLEDO's (1979a) Theorem V.I.:

(=]
THEOREM 2.4.1. Let zn, n=1,2,... and Z be defined as above and suppose
that for each ¢ > 0 and each n = 1,2,... an e~decomposition of Zn exists
such that
(2.4.6)  <z°%,20%(t) »_ 0
i i P

as n > «» for each i and t. If also

- Al(e) 1=
(2.4.7) <zl,20 0 -
J 0 i#3

as n » », for all i, j and t, then

(2.4.8) z" D z>

as n -+ « in (D[O,w))r. Furthermore, 1f Z? has paths of locally bounded
variation for all i and n, then

*® s .

Ai(t) i=73j

(2.4.9) T az%(s) 2zl (s) -
s<t * J F Y i#73

as n » « for all i, j and t.

This theorem is also valid with LO,») replaced everywhere by [0,«],
noting that on [0,«] localizing stopping times Tn’ n=1,2,..., should also
©
satisfy P(Tn==w) + 1 as n + «», and that we now also require Ai(m) < o,
i=1,...,r.
In REBOLLEDO (1979a), the theorem is given for the case r = 1 but our
version can be obtained from this one by a straightforward application of

the Cramér-Wold device (see REBOLLEDO (1978) Theorem 3.5 for a similar

[ |
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extension). Also the original theorem requires (2.4.7) to hold for the
canonical e~decomposition, which we prefer not to introduce. However the
proof of REBOLLEDO (1979b) Lemma 5 part 2 shows that it suffices to assume
that any e-decomposition exists such that (2.4.6) holds.

Recently HELLAND (1980) has given more elementary proofs of REBOLLEDO's
theorems, while LIPTSER & SHIRYAYEV (1980) have proved a remarkably general
central limit theorem which contains REBOLLEDO's as a special case. However
in our applications the conditions become essentially equivalent.

The following result of LENGLART (1977) has at first sight nothing to
do with martingale central limit theorems. However it is a major tool in
REBOLLEDO's proof of Theorem 2.4.1, and we shall have repeated occasion
to use it in conjunction with the previous theorem. A fixed stochastic basis

is supposed to be given.

THEOREM 2.4.2. Let X and Y be adapted, right continuous, nonnegative proces-—
ses, and suppose also that Y is nondecreasing, zero at time zero, and
predictable. Suppose that for all almost surely finite stopping times T,
EX(T) < EY(T). Then for any stopping time T and any e,n > O,

P( sup X(s) 2¢g) <
sST,'5<®

2 + P(Y(T) > n).

There are two basic ways in which we will make use of Theorem 2.4.2.
Suppose that N is a univariate counting process with compensator A. Suppose
that EN(») < « so that by Theorem 2.3.1 M = N-A is a square integrable
martingale. Let H be a nonnegative, bounded, predictable process. Then the
conditions of Theorem 2.4.2 are satisfied if we take X = f HAN and Y = f HAA,
because f HAM is a martingale on [0,~] and so for any stopping time T,

T
E IO HAM = 0. Thus for any stopping time T and e,n > 0,

1 \ T .
P(JO HAN 2 s} s 2+ pKJO Hda > n).

mis

On the other hand, let N, A and H be as above, except that H is not neces-

sarily nonnegative. We have
(f mam ? - [ 52a<m,m>

is a martingale on [0,»], and Theorems 2.4.2 and 2.3.1 now yield
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s 2 T
P( sup (J HdM) 2 e) < 2 + P(J H (1 -AA)dA > n)
SET,s<= ¥ () 0
T
<y p(J 5aa > n).
¢ 0

Let us also point out one link between Theorems 2.4.1 and 2.4.2: the latter
can be used to show that condition (2.4.6) implies that for all t € L0,)

and ¢ > O,

—-ne
Z,
sup 12"

[o,t]

5 0 as n + «,
Hence condition (2.4.6) together with (2.4.3) and (2.4.4) can indeed be

. n ..
interpreted as stating that the jumps of Zi disappear as n = =,

We now turn to a very different subject. The Skorohod—Dudiey theorem
(see DUDLEY (1968) Theorem 3, or WICHURA (1970)) can be thought of as
providing a converse to the well known result that an almost surely con-
vergent sequence of random variables also converges in distribution. Because
almost sure convergence is stronger than convergence in distribution, the
theorem often provides a short cut in deriving new convergence in distribu-

tion results from old ones.

THEOREM 2.4.3. Let Zm,Zl,Zz,... be random elements taking values in a
separable metric space such that z" D 7" as n > . Then there exists a
probability space with random elements Zm',z ,ZZ',... defined on it such
that zw' has the same distribution as Z  and Zn' has the same distribution

L] L
as Zn, n=1,2,..., and such that zt > 2% almost surely as n -+ «,

Not surprisingly we shall be applying Theorem 2.4.3 with the separable
metric space in question being D(L0O,u)) or D(L0,ul) for some u e (0,»].
Suppose we have shown that 2z ) 2" on D(I) when I is [0,u) or [0,ul. we
shall of course consider the random elements 2z and Z of D(I) as stochas-
tic processes as t € I varies. Suppose that Z" with probability 1 has
continuous sample paths. Then because convergence in the Skorohod topology
on a closed interval to a continuous limit is equivalent to convergence
in the supremum norm on that interval, Theorem 2.4.3 supplies us with pro-
cesses Zn' and Zw' defined on a single probability space with the same dis-

tributions as zn and Zm respectively, such that

ooy

sup lzn'—z | =0
fo,t]
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almost surely as n + « for all t € I (see VERVAAT (1972) Assumption 1.3.3
and the remarks at the beginning of his Section 1.4).

Note that if 7 is a Gaussian process with expectation zero, indepen-
dent increments, and variance function A®(t) = var(Zoo(t)) = cov(Zm(t) ,Zm(u))
if ¢t £ u, then z” has continuocus paths if and only if Aw is continuous; in

general, ZN only jumps at the jump times of Am.



CHAPTER 3

RIGHT CENSORSHIP
AND STOCHASTIC INTEGRALS

3.1. Background

In this section we derive a property common to a number of important
models for "n censcred observations", where n is considered fixed and the
censorship is really "right censorship™: only in Chapter 6 will we consider
general censorship.

We want to model the situation commonly occurring in medical follow-up
trials, industrial life-testing, biological experimentation, and other
fields, in which one is interested in certain aspects of the distributions
of n independent positive random variables Xl""’xn’ but either deliberate-
ly or accidentally is only in a position to observe certain bivariate random
variables (21,61),...,(§n,6n) where for each j, 0 < ij < Xj and
6j = X{x.=%.}" If 6j takes~the value 1, the j-th observation is uncensored
and the Observed value of Xj is also the realizedealue of Xj. However if
dj = 0, the j-th observation is censored at time Xj’ and one only knows that
xj takes ior would have taken) a value strictly greater than the observed
value of Xj'

One might be interested in comparing the distribution functions of the
Xj‘s in particular subgroups, or in estimating some characteristics of the
distribution functions. However for the time being we do not consider the
purpose of the experiment. We start with a number of examples of different
situations involving different types of censored data, giving them their

traditional names.

EXAMPLE 3.1.1 "(Simple) Type I censorship".

In industrial life-testing, Xl,...,xn are supposed to be n independent and
identically distributed positive random variables, with distribution func-
tion F. Often it is thought that F = Fe, where {Fe: 8 € 0} is some parame-

trized family of distributions. The random variables Xi represent the lengths
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of time that n manufactured components function satisfactorily, each operat-
ing from time zero under fixed working conditions. The components are ob-
served up to a fixed time instant u > 0, at which time not all components
may have "failed". So the data on which e.g. estimation of 6 or testing of
the hypotheses F € {Fe: 6 € 0} is to be based is (ij,sj) =

(XjAu'x{XjSU}) ’
j=1,...,n.

EXAMPLE 3.1.2 "(Simple) Type II censorship”.

In the situation of Example 3.1.1, instead of terminating the experiment

at the fixed time u, it is terminated at the time of the r-th observed
failure for some fixed r < n. So if X < ... = X(n) are the order statis-

(1) _
tics of Xl""’xn' the data consists of (Xj,éj) = (XjAX

() XXy () P
j=1,...,n.

More generally, one might stop the experiment at some random "stopping
time", based on the observed data at that moment. The data is now
(XjAT’X{XjST})' j=1,...,n, where T = T(Xl,...,Xn) is such that X{Tst} is
some function of t and (XjAt’X{x-St})’ j =1,...,n. RAO, SAVAGE & SOBEL
(1960) give some examples of suca censoring schemes in a two-sample situa-—
tion.

This type of censorship is sometimes called "progressive censorship"

but the term is more usually applied to the censorship discussed in Example
3.1.5.

EXAMPLE 3.1.3 "Random censorship", "competing risks".

In a biological experiment, one might observe the lifetimes of n experimental
animals under certain conditions, together with the cause of death, which we
suppose can be one of two types A or B. We are directly interested in the
first of these two types ~ the animals may be divided into r groups accord-
ing to different experimental conditions whose relation with A is to be in-
vestigated - while B comprises various accidental causes not directly relat-
ed to the experiment. Let g, be the lifetime of the j-th animal, and let

Gj =1 or 0 according to whither it died from A or B. We suppose that dif-
ferent animals are independent of one another, and that given that animal j
has survived up to time t, the conditional probability that it dies in the

while for

small time interval [t,t+h] from cause A is approximately aj(t)-h,
B it is approximately Bj(t)-h. Here aj and Sj are continuous functions on

[0,2) called the forces of mortality for A and B; one would suppose that o,

is the same for experimental animals in the same group; Bj might be the same
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for all animals, or it might vary from group to group or even within groups.
In this situation (§j,6.) can easily be shown to have the same distribution
as (XJ U. 'X{X <u. }), where Xj and UJ are independent, with continuous den-
sities aj(t)exp( f a (s)ds) and B (t)exp (- f B (s)ds). If for instance

f: uj(s)ds < e, there is positive probablllty that xj = o_ Here, X. can

be thought of as the lifetime animal j would have had were B, idengically
zero and thus cause B inoperative; while Uj is the conceptuai lifetime of
animal j were aj identically zero.

So a model for this situation could consist of 2n independent positive-
or infinite~valued random variables Xj,U.; j=1,...,n, from which the ob-
served data (gj,ﬁj) = (XjAUj’X{XjSUj}) is generated. Xj's within the same
group will always be supposed to have the same distribution. Removing the
implicit restriction to continuously distributed random variables, if the
Uj's within the same group also have the same distribution this is known
as "the model of random censorship". Our "general random censorship model"
(see Example 4.1.1) will allow the Uj's to have arbitrary distributions.

Note that in general there is an identifiability problem; i.e. dependent
Xj's and Uj's with different marginal distributions can lead to the same
distribution for (XjAUj'X{XjSUj}) (see e.g. PETERSON (1975) and TSIATIS
(1978)) .

On the other hand one might even suppose that the Uj's are not inde-
pendent of one another (e.g. animals, subject to an infectious disease,
sharing a cage). However as long as (Xl,...,xn) is independent of

(Ul,...,Un) this would not lead to problems.

EXAMPLE 3.1.4 "Fixed censorship", "progressive censorship of Type I".
In a clinical trial, patients with a certain complaint entering a hospital

between two fixed dates t1 and t, are immediately given a treatment whose

2
effectiveness is to be investigated at time t2. Suppose that conditional on
the number of patients N=n entering between t1 and t2 and their entrance

times E, = €, y.+-, En = e, € (tl'tz)’ the lengths of time Xl""'xn elapsed

betweenltreaiment time and time of eventual relapse are independent and
identically distributed positive- or infinite-valued random variables. The
aim is to say something about their common sub-distribution function F or
to compare it with that associated with a different set of data pertaining
to a different treatment. At time t2 the available data is (§j,5j)

= (X AuL 'X{X < }), 3 =1,...,n, where \.1:| = t2--ej is the fixed "observa-

tion llmlt" for the j-th patient (actually ul,...,un are also known and some
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statistical methods make use of them as well).

EXAMPLE 3.1.5 "Progressive censorship (of Type II)".

We return now to the industrial set-up described in Examples 3.1.1 and 3.1.3.
Supposing the distribution of the n lifetimes xl""’xn to be continuous,

the observation plan is now, at the time of the first observed failure time
components out of

1
-1 remaining components to

x(l)' to remove from the test a random selection of r
the still operating n- 1. Supposing the n- x,
have lifetimes Y,,...,Y ~1,then.at time Y(l)' the next observed failure

n-r

time, a further i2 componeéts are selected at random from those still on
test and removed. This procedure is carried on till a total of s failures
have been observed, with X, components being withdrawn at the k-th stage,
k=1,...,8 ]o_, (r,#1) = n. We now define Xj = Xj and 8, = 1 if the j-th
component is observed to fail at time Xj' and define xi = Xj and di =0 if
the i-th component is one of those removed at this time instant. The observ-
ed data is equivalentNto (gj,Gj), j =1,...,n. We say that component j is

on test at time t if Xj 2 t, otherwise it has either failed or been removed

at an earlier time instant.

Other terms such as "variable censorship" and "multiple censorship"
occur in the literature, but generally one of the above examples is meant.
All of these examples will be included in the general model of this section.
Clearly various mixtures of these situations can also occur (and will also
be included); for instance, in Example 3.1.4, the patients might also be
subject to some "competing risks" such as accidental death from an un-
related cause, moving away from the district covered by a hospital, or what-
ever. Similarly in Example 3.1.3 there might be "planned withdrawals" of
some of the surviving animals at fixed or random time instants for surgical

investigations.

We next mention one example which will not be covered; we shall give
it some attention in Chapter 6. The essential difference between this
example and the previous ones is that the natural time axis in the new
example does not permit one to consider each lifetime as starting on a
new time axis at time t = 0, and still have cause and effect only working
forwards in time. On the contrary, after this transformation the death or

failure of one object at time t could effect the censoring of another at
time s < t.
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EXAMPLE 3.1.6 "Testing with replacement", "renewal testing".

Suppose that in Example 3.1.1, any component failing before time u is im-
mediately replaced by a new one. So at any time instant up to u, exactly
n components of varying age are on test. At the end of the test a random
number of failures have been observed and there are exactly n censored

observations.

We now state the model which will underlie the rest of this chapter
and the following two chapters. Let (2,F,P) be a complete probability space
on which are defined n independent positive, possibly infinite-valued random
variables Xl""’xn with sub-distribution functions Fl""'Fn defined by
Fj(t) = P(xjst), t—F+[O,w), Fj(m) = P(Xj<m). Define nondecreasing functions
Gj with values in R by

(3.1.1)  G.(t) = J (1 - F (s-)) lar,(s).
J selo,t] J J

Define

(3.1.2) Tj = sup{t: Fj(t) < 1}.

We see that for each j, Fj(Q) = Gj(O) =0, Gj is finite on [O,Tj), and
Gj is constant on [Tj,wj. If Fj(Tj—) < 1 then Gj is bounded on L0,), and
AGj(Tj) = 1 or 0 according to whether Tj < @ or Tj = o, In Lemma 3.2.1 we
shall see that if on the other hand Fj(rj-) = 1, then Gj(t) + Gj(Tj) = ®
as t + Tj. If Fj has a density fj’ then defining the hazard rate Xj =
= fj/(l— Fj) (in Example 3.1.3, Aj = aj), it holds for all t that Gj(t) =
= IS Aj(s)ds. Sc Gj can be called the cumulative hazard or cumulative risk
for the j-th object; see again Lemma 3.2.1.

We next suppose that (gj'fj)’ 3 =~1,...,n, are also defined on (R,F,P)
and satisfy almosE surely 0 < Xj < o, xj < xj, and 6j = X{§'=Xj}. Note that
almost surely Gj(xj) < Gj(xj) < @, We now define stochastic processes Nj'

Jj and Mj, j=1,...,n, by

(3.1.3) Nj(t) = X{gjst,§j=1}'

(3.1-4) Jj(t) = X{ijt}l

~ t
3.1.5 M, (t) = N.(t) - G, (X.At) = N.(t —J J.4G..
( ) J( ) J( ) J( 5 ) 3( ) 03 GJ
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We can now state our key model assumptions:

ASSUMPTION 3.1.1. There exist sub o-algebras Ft of F making

(Q,F,P),{Ft: t € [0,)} a stochastic basis and Nj' Jj and Mj adapted pro-
cesses for each j. Mj is a square integrable martingale for each j and

<M, ,M.> = (1-286,)dG,, <M ,M,,>=0 for all 5 # 5'.
54> IJJ( J) g0 MMy, J#A3

ASSUMPTION 3.1.2. For each t e [0,#), conditional on Feor AN (£) res s AN (E)
IR AN J.t.2

are independent zero-one random variables with expectations Jj (t) AGj (t),
ij=1,...,n.

We shall interpret these assumptions by relating them to the counting
process theory of Section 2.3. It is convenient to consider the adaptedness
requirements of Assumption 3.1.1 apart as a background assumption for both
3.1.1 and 3.1.2.

The adaptedness requirements are equivalent, given the stochastic
Easis (Q,F,P).{Ft: te [0,9}, to requiring that X(%. <t} ij{?('.st} and
ij{iSt} are Ft~measurable for each t and j. In fac%, Assumptions 3.1.1
and 371.2 are satisfied with respect to some stochastic basis if and only

if they are satisfied with respect to the minimal basis defined by setting
for each t

Fo = NV ol <oy 505 o) Ryig s 3 = Loeenimd,
] J J

where N consists of all P-null sets of F and their complements. Whatever
{F t} may be, we are supposing that the §j's are stgpping tj.mes~and that the
events {6j=0} and {62=1} happen at or before time Xj (at time Xj, if {Ft}
is minimal). If the xj's are lifetimes, we are Supposing that all lifetimes
commence at time t = Q.

Given these background assumptions, Assumptions 3.1.1 and 3.1.2 in ef-

fect treat the continuous and the discrete cases respectively. If X. has a

continuous distribution for each j, Assumption 3.1.2 is empty; on the other

hand, if Xj and ;j are integer valued and Ft = F[t] for all t € [0,»), then
Assumption 3.1.2 implies Assumption 3.1.1.

Now by the adaptedness requirements, NJ. is a counting process and

f deGj is predictable (for Jj is clearly predictable, and considered as

a process, Gj is too). So requiring that M, is a martingale is equivalent
to requiring that Nj has compensator f deGj. Thus f deGj can be thought
of as the integrated conditional rate at which Nj jumps. We shall see

bresently that Assumptions 3.1.1 and 3.1.2 are satisfied if there is no
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censoring at all. So we are stating that at time t, given Ft’ if §j >t
then Nj has the same conditional probability of jumping in the small time
interval (t,t+h) as if there had been no censoring. As to what this rate is:
if Fj has a continuous hazard rate Aj' then this conditional probability is
approximately h'Xj(t). On the other hand, given Ft’ if Xj < t, then the
conditional probability of jumping in (t,t+h) is zero.

The requirement that <Mj,Mj> = f (1--AGj)deGj follows directly from
Theorem 2.3.1 and need not have been made separately. If Fl""'Fn are con-
tinuous then {N1,...,Nn} forms a multivariate counting process and the
requirement <Mj,Mj.>= 0 also follows from Theorem 2.3.1. Otherwise it can
be interpreted as a kind of pairwise independence condition, and it can in
fact be derived from the following weaker version of Assumption 3.1.2: for
each t and j # j', conditional on Ft-' ANj(t) and ANj,(t) are independent.

Assumption 3.1.2 itself is very simple to interpret, if we recall that
AGj(t) = P(Xj=t|Xj2t). Note also that Eth ='Xj2t; and §j = t and
6j=1 = xj=t. So we ari stating that given what has happened up to bgt not
including time t, if Xj~< t, then the conditional probabiiity that Xj =t
and 6j = 1 is zero; if Xj Z t, then the probability that Xj = t and Gj =1
is equal to P(Xj=tlxj2t)' Furthermore,Nstill working conditionally on Ft—’
for j's such that Xj 2 t, the events {Xj=t,6j=1} = {Xj=t} are independent.

The next theorem gives an intuitively meaningful condition under which
Assumptions 3.1.1 and 3.1.2 hold; as a corollary it follows that these
assumptions hold in Examples 3.1.1 to 3.1.5 and when there is no censoring.
The proofs of this and the following theorem simplify greatly when the Fj's

are continuous.

THEOREM 3.1.1. Let (Q,F,P),{Ft: t € [0,9)} be a stochastic basis on which

random variables Xj, gj and Gj (j =1,...,n) are defined, satisfying

<X, < < x, 8, = Xov Imost £ h . The X’
0 XJ ®, Xj 3 and j X{X-=X-} almost surely for each jJ e 3 s

are supposed to be independent, with (sub)-distribution functions Fj;
-1
i = - . ~ ~ F -
define Gj f (1 Fj_) dFj Suppose that X{X‘St} and st{X-St} are
measurable for each j and t. If for each t, conditional on £ the Xj’s

with ;j > t are independent of one another, each having the distribution

of Xj given Xj > t, then Assumptions 3.1.1 and 3.1.2 hold.

PROOF. The measurability requirements of Assumption 3.1.1 follow directly

from the measurability requirements of the theorem. Next, let I1 and I2 be

disjoint sets of indices contained in {1,...,n} such that I, is nonempty;

1
17 and define I, = Il\{jo}. Consider the uni-

variate countin rocess N = . AN, - | 1 - AN.)dN; which counts 1
g p S Jg&o 3 Jé&2( 3) ANy whi ounts

let jO be a fixed member of I
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at the single time instant t, if it exists, for which Xj =t and Gj =1 for

all j € I,, provided that for no j € Iy X:j = t and 5 = 1. (An empty

LA
‘product equals 1.) Fix t < « such that Gy {t) < @ and define t m, i i2 7t
i= Ol---12 ;m= 1,2

t+-- . For any m and i< ; define the event Bm by
’
= V4 X et e L 015
Bm,i v « Il’ fj z tm,i and xje ( m,i’ m,i+1 )
0 o~ > .
Vi € I, xj < tm,i or (xj > tm'i and xj m l+1)

We shall approximate the increment of N over the interval (t ,i’tm,i+1
with me ;7 in fact we have

Gr6 e, oy D-xg | <]

LT LR Ky Ko<t )
m, i Jjel m,i

1 ’ J ] m,i+1
+ z x{'i v

#3Ter HHyr¥y T, iRy
+ )

Xy R .
Jety,srer, RyRgoty XgRgete e 5% X0

j'e(tm,l m1+1] X#X 3

Now by the conditions of the theorem,

E(XB “"

m,i m, i

Py, 1e1) " Fyey 1) Py, a00) —Fy (e 3)
= H(Jj(tml) I—P(t ) I 1-J(tm1) 1 - F,(t )
eI, ’ itm,d jeI ! 3%, 1
=J L L L
se{t  _,t 1 jer, 3 Wi V-Fyte 0

: i m, i
m,i’ m,i+l O Jm
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