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Comfort zones

All variables have:

e Finite outcome space [Nice for algebraic geometry]
e Countable outcome space

e Continuous joint density with respect to sigma-finite
product measures [Usually not used rigorously]

e QOutcome spaces are Polish @

Other “convenience” assumptions: Strictly positive joint density
Multivariate normal also allows algebraic geometry approach
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The (semi-)graphoid axioms
of (conditional) independence

1. Symmetry X1lY = Y.UIX

2. Decomposition X1 (V,Z) = X1Y
3. Weak union X1 Y,Z) = X1UY|Z

4. Contraction (XLZ|Y & XLY) = XIU(F,2)

5. Intersection (XLY|Zz& X1Z|Y) = X1 (V,2)

1-5: (with further global conditioning): the graphoid axioms. Phil Dawid (1980).
1-4: ( ... ): the semi-graphoid axioms

So called because of similarity to *graph separation* for subgraphs

of a simple undirected graph: A is separated from B by C




e The intersection axiom (nr 5):
XL1LY|H&XILZ|Y) = X1 (,Z2)
e “New” result:
XA1LY|ZD)&XILZ|Y) < XULXY,Z2)|W
where W:= f(Y) = g(£) for some f, g



e The intersection axiom:
XL1LY|H&XILZ|Y) = X1 (,Z2)
e “New” result:
XA1LY|ZD)&XILZ|Y) < XULXY,Z2)|W

where W:= f(Y) = g(£) for some f, g

e |n particular, we can take W = Law((Y, 2) | X)
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The intersection axiom:
XL1LY|H&XILZ|Y) = X1 (,Z2)
“New” result:
XA1LY|ZD)&XILZ|Y) < XULXY,Z2)|W
where W:= f(Y) = g(£) for some f, g

In particular, we can take W = Law((Y, 2) | X)
If f and g are trivial (constant) we obtain “axiom 5”

Also “new”: Nontrivial f, g exist such that f(Y) = g(Z) a.e. iff A, B exist
with probabillities strictly between 0 and 1 s.1.

P(YeA&ZeB® = 0 = Pr(Ye A& Z € B)

Call such a joint law decomposable
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Comfort zones

e All variables have finite support (Algebraic Geometry)
e All variables have countable support

e All variables have continuous joint probability densities
(many applied statisticians)

e All densities are strictly positive
e All distributions are non-degenerate Gaussian

e All variables take values in Polish spaces (My favourite)

Polish space:
a topological space which can be given a metric making it complete and separable



Please recall

The joint probability distribution of X and Y can be disintegrated into
the marginal distribution of X and

a family of conditional distributions of Y given X = x

The disintegration is unique up to almost everywhere equivalence

Conditional independence of X and Y given Z is just ordinary independence
within each of the joint laws of X and Y conditionalon Z =z

For me, 0/0 = “undefined” and 0 x “undefined” = 0 (probability times number)

e So: conditional distributions do exist if we condition on zero probability
events; they’re just not uniquely defined.

* The non-uniqueness is harmless



Some new notation

I’ll denote by “law(X)” the probability distribution (law) of X, where X is a random variable
which takes values in a space 2. So law(X) is a probability distribution on &

In the finite, discrete case, a “law” is just a vector of real numbers, non-negative, adding
to one.

In the Polish case, the set of probability laws on a given Polish space is itself a Polish
space under, e.g., the Wasserstein metric. Disintegrations exist, Everything is nice.

The family of conditional distributions of X given Y, (law(X | Y = y))y < 4 can be thought of
as a function of y € . In the Polish case, the function is Borel measurable.

As a function of the random variable Y, we can consider it as a random variable, or as a
random vector talking values in an affine space.

By Law(X | Y) I’ll denote that random variable, taking values in the space of probability
laws on X

Note distinction: Law vs. law



Crucial lemma

X1LY | Law(X]|Y)



Lemma: X L Y | Law(X |Y)

Agq = probability simplex, dimension d
capital L = Law(X | Y), a random probability measure

_ Small 7 (“ell”) is a possible realisation
Proof of lemma, discrete case

RecalL X 1L Y|Z < p(x vy, 2) =9 z) h(y, 2)
Thus X 1L Y|L < we can factor p(x, y, ) this way

Given function p(x, y), pickany x e X,y € Y, 0 E A|gx|—1

px,y,0) = pl,y) - 1{€ =p(-,y)/p(y)}
COpY)ILE =p(-,y)/p(y)}
Eval(Z,x) . p()1{Z =p(-,y)/p(y)}

Proof of lemma, Polish case

Similar, but a tiny bit different — we don’t assume existence of joint densities!



Proof of forwards implication
X1Y|Z = Law(X|Y, 2 =Law(X |2
XW1LZ|Y = Law(X|Y, 2 =Law(X|Y)

So we have w(Y, 2) = g(£) = f(Y) =: W for some functions
w, g, f

By our lemma, X 1L (Y, 2) | Law(X | (Y, 2))

We found functions g, f such that g(Z2) = f(Y) and, with W:=
w(Y, 2) =g =fY), XL (y2) | W



Proof of reverse implication

Suppose X 1L (Y, 2) | W where W = g(Z2) = f(Y) for some
functions g, f

By axiom 3, X 1LY | (W 2
SoX 1Y | (@2 2
SoX1IY|Z

Similarly, X1 Z | Y



Sullivant

Uses primary decomposition of toric ideals to come up with a nice
parametrisation of the model “Axiom 5”

Given: finite sets ', %, Z, what is the set of all probability measures on their
product satisfying Axiom 5, and with p(y) > 0, p(z) > 0, for all y, z ?

Answer: pick partitions of %, Z which are in 1-1 correspondence with one
another. Call one of them “Z"”. Pick a positive probability distribution on 7.

Pick indecomposable probability distributions on the products of
corresponding partition elements of % and Z. Pick probability distributions on

2, also corresponding to the preceding, not necessarily all different

Now put them together: in simulation terms: generate r.v. W = we%". Generate
(Y,2) given W =w and independently thereof generate X given W = w.



Polish spaces

Exactly same construction ... just replace “partition” by a
Borel measurable map onto another Polish space

“Corresponding partitions” ... Borel measurable maps
onto same Polish space



Questions

e Does algebraic geometry provide any further “statistical”
insights?

e Can some of you join me to turn all these ideas into a nice
joint paper?

e Could there be a category theoretical meta-theorem?
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