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1. Introduction

Let X be a compact connected complex manifold of dimension d. The cup product

Hd(X, Z)×Hd(X, Z) −→ H2d(X, Z) = Z

is a bilinear form, called the intersection pairing. It is symmetric for d even and anti-symmetric
for d odd. It is non-degenerate in the sense that Hd(X, Z)→ Hd(X, Z)∨ is injective. In the case
of a surface the intersection pairing is compatible with the intersection pairing already defined
on NS(X) ⊂ H2(X, Z).

Let A and A′ be free Z-modules of finite rank, endowed with Hodge structures and bilinear
forms. A Hodge isometry A → A′ is an isomorphism that respects both the Hodge structures
and the bilinear forms.

Theorem 1.1 (Torelli). Two complex K3 surfaces X and X′ are isomorphic if and only if there is a
Hodge isometry H2(X, Z) ∼= H2(X′, Z). �

Remark 1.2. This ‘Torelli theorem’ is not due to Torelli, but to Shapiro–Shafarevich (algebraic
case) and Burns–Rapoport (analytic case). It is named for its analogy to the original Torelli
theorem for curves: two complex curves X and X′ are isomorphic if and only if their Jacobians
Jac X and Jac X′ are isomorphic as polarized abelian varieties.

There is a classical correspondence between polarized abelian varieties and polarized Hod-
ge structures of weight one. In this language, the theorem reads: two complex curves X and X′

are isomorphic if and only if there is a Hodge isometry H1(X, Z) ∼= H1(X′, Z). The analogy
with the Torelli theorem for K3 surfaces shows clearly. �

Remark 1.3. Traditionally, the Torelli theorem for K3 surfaces is proven as follows. First one
proves the theorem for Kummer surfaces, using their description via complex tori. The period
points of marked Kummer surfaces are dense in the period domain Ω (see below). In the
general case one needs to show that certain sequences of isomorphisms of marked K3 surfaces
‘converge’. Details can be found in [1]. We follow the different approach in [3]. �

2. Complex K3 surfaces

The Torelli theorem is really a statement in complex geometry. The proof requires that we
consider more than just algebraic K3 surfaces.

Definition 2.1. A complex K3 surface is a compact connected complex manifold X of dimension
2 with ωX ∼= OX and H1(X,OX) = 0. �

From here on, ‘K3 surface’ shall mean a complex K3 surface in this sense. The main example
is Xan, for X an algebraic K3 surface over C. Not all K3 surfaces are algebraic, i.e. of this form,
but we do not wish to emphasize this. Most properties of algebraic K3 surfaces carry over to
the complex case, and we shall use them freely.
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3. Periods

Remark 3.1. The theory of periods originated in elliptic curves. A marking of a complex elliptic
curve E is a choice of basis α, β for H1(E, Z) with (α, β) = 1. Let ω be a canonical differential.
Then

τ1 =
∫

α
ω, τ2 =

∫
β

ω

span a lattice 〈τ1, τ2〉 ⊂ C, and E ∼= C/〈τ1, τ2〉. In fact τ2/τ1 lies in the upper half plane H, the
period domain. A family E → S of marked complex elliptic curves defines a holomorphic period
map S→H. �

Let Λ be the K3 lattice E8(−1)⊕2 ⊕U⊕3.

Lemma 3.2. Let X be a K3 surface.
I H2(X, Z) ∼= Λ.
I There is a canonical Hodge decomposition H2(X, C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).
I dimC H2,0(X) = 1.
I Any non-zero α ∈ H2,0(X) satisfies (α, α) = 0, (α, ᾱ) > 0, and α ⊥ H1,1(X).

Proof. The first three properties we have already seen in the algebraic case. For complex K3

surfaces the existence of a Hodge decomposition relies on the fact that K3 surfaces are Kähler.
This is a deep theorem [1, IV.3.1]. The last part is left as an exercise. �

We study Hodge structures on Λ as in the lemma. Let

Ω = {x ∈ P(ΛC) : (x, x) = 0, (x, x̄) > 0}
be the period domain of Λ. It is an open subset of the smooth quadric defined by (x, x) = 0. In
particular Ω is naturally a complex manifold of dimension 20.

Lemma 3.3. There is a bijection{ Hodge structures ΛC = Λ2,0 ⊕Λ1,1 ⊕Λ0,2

with dimC Λ2,0 = 1, and (α, α) = 0,
(α, ᾱ) > 0 and α ⊥ Λ1,1 for non-zero α ∈ Λ2,0

}
←→ Ω.

Proof. Given a Hodge structure ΛC = Λ2,0⊕Λ1,1⊕Λ0,2 as in the statement, Λ2,0 defines a point
in Ω. Conversely, a point x ∈ Ω defines a line Λ2,0 ⊂ ΛC. Let Λ1,1 be the complexification of
〈Re α, Im α〉⊥ ⊂ ΛR for any non-zero α ∈ Λ2,0. �

A marking of a K3 surface X is a choice of isometry ϕ : H2(X, Z)→ Λ. Combining lemmas 3.2
and 3.3 yields the period map

τ :
{

marked K3 surfaces/∼=
}
−→ Ω.

In the next section we make this set of marked K3 surfaces into an analytic space such that τ
becomes holomorphic.

Let p : X → S be a proper smooth family of K3 surfaces. The sheaf R2 p∗Z on S has stalk
precisely H2(Xs, Z) at s ∈ S. A marking of the family is a choice of isomorphism ϕ : R2 p∗Z→ Λ
that is fiberwise an isometry. Via τ we get a period map S→ Ω.

Proposition 3.4. The period map S→ Ω is holomorphic.

Proof. See [3, 6.2.3]. �

As a special case, suppose S is simply connected. Choose a distinguished point 0 ∈ S and a
marking ϕ0 : H2(X0, Z) → Λ. Then ϕ0 extends uniquely to a marking R2 p∗Z → Λ. We again
get a holomorphic period map S→ Ω.
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4. Deformation theory

Let X be a K3 surface. A deformation of X is a proper smooth family X → S with a distinguished
point 0 ∈ S and a given isomorphism X0 ∼= X. In fact we are only interested in the germ of the
family around 0. A deformation X → S is universal if any other deformation X ′ → S′ is (on
germs) the pullback of X → S along a unique map S′ → S.

Theorem 4.1 (Kuranishi–Kodaira). Any K3 surface X has a universal deformation X → Def(X).
It is a universal deformation for each of its fibers. The deformation space Def(X) is (the germ of) a
smooth complex manifold of dimension 20.

Proof. See [2]. We just remark that the dimension 20 originates from isomorphisms T0Def(X) =
H1(X, TX) ∼= H1(X, Ω1

X). �

The deformation space Def(X) is simply connected, so given a marking of X we have a period
map Def(X)→ Ω as in proposition 3.4.

Theorem 4.2 (local Torelli). Let (X, ϕ) be a marked K3 surface. The period map Def(X) → Ω is a
local isomorphism on Def(X).

Proof. Since X → Def(X) is a universal deformation for each of its fibers, we only have to verify
that Def(X) → Ω is an isomorphism at the distinguished point 0 ∈ Def(X). Both Def(X) and
Ω have dimension 20, so it suffices to show that the tangent map at 0 is bijective.

We have already seen T0Def(X) = H1(X, TX). The point τ(X, ϕ) ∈ Ω corresponds to a line
Λ2,0 ⊂ ΛC, and we have

Tτ(X,ϕ)Ω = Hom(Λ2,0, (Λ2,0)⊥/Λ2,0) = Hom(Λ2,0, H1(X, Ω1
X))
∼= H1(X, Ω1

X).

It follows from Griffiths transversality [3, 6.2.4] that the tangent map H1(X, TX)→ H1(X, Ω1
X)

is an isomorphism induced by a choice of non-zero α ∈ Λ2,0. �

Now we glue all deformation spaces together. Let M be the moduli functor of marked K3

surfaces, i.e. M(S) is the set of marked proper smooth families of K3 surfaces over S, up to
isomorphism. It has a fine moduli space: there is an analytic space M and a natural bijection
betweenM(S) and M(S) = Hom(S, M).

As a set, let M = {marked K3 surfaces/∼=}. We give it a complex structure as follows.
Let (X, ϕ) be a marked K3 surface. The induced map Def(X) → M is injective by the local
Torelli theorem 4.2. Since the deformation X → Def(X) is universal for each of its fibers, the
complex structures on Def(X) glue into a complex structure on M. By the same argument, the
universal deformations glue together into a universal marked family p : X → M. Now M is
a fine moduli space for M. Applying once more proposition 3.4 we see that the period map
τ : M→ Ω is holomorphic.

Remark 4.3. The moduli space M is a smooth analytic space of dimension 20. It is an espace
étalé over Ω.1 However, it is not Hausdorff [1, VIII.12.2]. This turns out to be an issue in what
follows, so we pass to a ‘Hausdorffification’. �

Proposition 4.4. There is a quotient M → M̃ to a Hausdorff complex manifold M̃ that precisely
identifies inseparable points, such that the period map τ : M→ Ω factors as

M −→ M̃ τ̃−→ Ω.

Proof. See [4]. Note that the existence of such a Hausdorff quotient is not a general fact, and
relies on the moduli interpretation of M. �

1Thanks to Bas Edixhoven for pointing this out.
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5. Twistor lines

Let W ⊂ ΛR be a positive 3-space, i.e. a 3-dimensional subspace on which the bilinear form is
positive definite. Let

LW = P(WC) ∩Ω

be the associated twistor line. It is a smooth quadric in P(WC), hence isomorphic to the complex
projective line. A twistor line is generic if W⊥ ∩Λ = 0.

Proposition 5.1. For any two points x, y ∈ Ω there exists x = x0, . . . , xn = y and generic twistor
lines LW1 , . . . , LWn with xi−1, xi ∈ LWi for i = 1, . . . , n.

Proof. For x ∈ Ω choose α 6= 0 in the associated Λ2,0 ⊂ ΛC, and set P(x) = 〈Re α, Im α〉. It
is an oriented positive plane in ΛR. In fact P is a bijection between Ω and the set of oriented
positive planes in ΛR.

Since Ω is connected, it suffices to show that the equivalence classes of ‘connected’ points
are open. Choose x ∈ Ω and write P(x) = 〈a, b〉. There exists c ∈ ΛR such that the 3-space
W1 = 〈a, b, c〉 is positive; we may take c⊥ ∩ Λ = 0. For x′ ∈ Ω close enough to x, also the
corresponding a′, b′ are close to a, b, and W2 = 〈a, b′, c〉 and W3 = 〈a′, b′, c〉 are still positive
3-spaces. By choice of c, the twistor lines LW1 , LW2 and LW3 are generic. Write x2 = P−1〈a, c〉
and x3 = P−1〈b′, c〉. We have

x, x2 ∈ LW1 , x2, x3 ∈ LW2 , x3, x′ ∈ LW3

and we are done. �

We would like to lift twistor lines along the period map τ : M→ Ω. However, this is problem-
atic by remark 4.3. Instead we use the Hausdorffification M̃ from proposition 4.4.

Theorem 5.2. Let (X, ϕ) be a marked K3 surface and LW ⊂ Ω a generic twistor line containing
τ(X, ϕ). There is a unique commutative diagram

LW

M̃ Ω

i

τ̃

with (X, ϕ) in the image of i.

Proof. The period map τ : M→ Ω is a local isomorphism on M by the local Torelli theorem 4.2.
The same is true for τ̃ : M̃→ Ω. Therefore there is a small open neighborhood of τ(X, ϕ) ∈ LW
that lifts to M̃. Since M̃ is Hausdorff, this lift is unique.

The fact that this lift extends to all of LW is a deep theorem relying on the existence of
hyperkähler structures on K3 surfaces. We omit it. See [3, 7.3.9]. �

Recall that the period map τ : M→ Ω is a local isomorphism on M by the local Torelli theorem
4.2. Now we can say more.

Theorem 5.3. The period map τ̃ : M̃→ Ω is a covering space. The period map τ : M→ Ω is surjective
and generically injective on each connected component of M.
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Proof. Let M0 ⊆ M be a connected component. We show that τ : M0 → Ω is surjective. After
proposition 5.1 it suffices to show that if x, y ∈ Ω lie on a generic twistor line LW , then
x ∈ τ(M0) if and only if y ∈ τ(M0). This follows from theorem 5.2, since M → M̃ preserves
connected components.

To see that τ̃ is a covering space, we use the following criterion. Let π : X → Y be a local
homeomorphism on X between Hausdorff topological manifolds. Then π is a covering space
if and only if for each open ball B ⊆ Y and each connected component C ⊆ π−1(B) we have
π(C) = B In the case of τ̃ this is a ‘local’ version of the surjectivity of the period map, which
can be proven analogously. See [3, 7.4.3] or [4] for details.

Let M̃0 be the connected component of M̃ corresponding to M0. Since M̃0 → Ω is a con-
nected covering space of a simply connected space, it is in fact an isomorphism. Now use that
M0 → M̃0 is generically injective. �

6. Monodromy

Let (X, ϕ) be a marked K3 surface. A proper smooth family X → S of K3 surfaces over a
connected base S, with a distinguished point 0 ∈ S and a given isomorphism X0 ∼= X, induces
a monodromy representation

π1(S, 0) −→ O(Λ).

The monodromy group of X is the subgroup Mon(X) ⊆ O(Λ) generated by the monodromy of
all such families.

Remark 6.1. Up to conjugation, the subgroup Mon(X) ⊆ O(Λ) is independent of (X, ϕ). This
follows from the fact that any two K3 surfaces X, X′ are deformation equivalent: there exists
a proper smooth family X → S of K3 surfaces over a connected base S, such that X and X′

occur as fibers. See [1, VIII.8.6]. �

Proposition 6.2. Mon(X) = O+(Λ).

Proof. See [3, 7.5.5]. �

Proposition 6.3. The moduli space M has two connected components, interchanged by −id ∈ O(Λ).

Proof. As noted in remark 6.1 all K3 surfaces are deformation equivalent. So it suffices to prove
that for any two markings ϕ, ϕ′ on a K3 surface X, precisely one of (X, ϕ′) and (X,−ϕ′) lies in
the connected component of (X, ϕ).

Write ψ = ϕ′ ◦ ϕ−1. The quotient O(Λ)/O+(Λ) is generated by −id, so by proposition 6.2
±ψ lies in Mon(X). Write ±ψ as ψn ◦ . . . ◦ ψ1, with ψi coming from the monodromy represen-
tation of a family Xi → Si. These families yield a path

(X, ϕ) (X, ψ1 ◦ ϕ) . . . (X, ψn ◦ . . . ◦ ψ1 ◦ ϕ) = (X,±ϕ′)

in M, hence (X, ϕ) and (X,±ϕ′) are in the same connected component.
To see that there are really two components, we use theorem 5.3. The element −id acts

nowhere trivially on M but trivially on Ω. To ensure that τ is generically injective on each
connected component of M, there must be two. �

The Kähler cone KX of a K3 surface X is the connected component of{
α ∈ NS(X)R : (α, α) > 0, (α, D) > 0 for every effective divisor D on X

}
containing some Kähler class (hence all). In the algebraic case KX coincides with the ample
cone.
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Theorem 6.4 (Torelli, v2). Let X and X′ be K3 surfaces and ψ : H2(X′, Z) → H2(X, Z) a Hodge
isometry. Then ψ(KX′) = ±KX , and there is a unique isomorphism f : X → X′ inducing ±ψ.

Proof. Choose a marking ϕ on X and set ϕ′ = ψ ◦ ϕ. Then τ(X, ϕ) = τ(X′, ϕ′) = τ(X′,−ϕ′).
There is a unique sign ± such that (X, ϕ) and (X′,±ϕ′) are in the same connected component
M0 ⊂ M. By theorem 5.3, the map M0 → Ω is generically injective, so ‘generically’ we are
done. If (X, ϕ) and (X′,±ϕ′) are not isomorphic, then at least they are inseparable in M. A
closer look at the map M→ M̃ shows that still X ∼= X′.

For the existence of f inducing ±ψ we refer to [3, 7.5.3]. The unicity follows from the fact
that Aut(X)→ O(Λ) is injective. The statement about the Kähler cones is immediate. �
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