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1. Infinite Galois theory

We develop an ‘infinite’ version of Grothendieck’s Galois theory. It was introduced first by
Noohi [3] and slightly modified by Bhatt–Scholze [2].

Definition 1.1. Let C be a category and X ∈ C. A subobject of X is a monomorphism Y → X.
We say that X is connected if it has precisely two isomorphism classes of subobjects. �

Definition 1.2. Let C be a category and F : C → Set a functor. Then C is an infinite Galois
category with fundamental functor F if
I C has colimits and finite limits,
I F preserves colimits and finite limits,
I F is faithful and conservative,
I each X ∈ C is a coproduct of connected objects, and
I Aut F y F(X) is transitive for each connected X ∈ C.

For technical reasons we should also assume that the subcategory of connected objects in C is
essentially small; however, we ignore that. �

Remark 1.3. This is what Bhatt–Scholze call a tame infinite Galois category. �

Example 1.4. Let G be a topological group. Then G-Set with the forgetful functor G-Set→ Set
is an infinite Galois category. �

Let (C, F) be an infinite Galois category. Endow Aut F ⊆ ∏X∈C S(F(X)) with the induced topol-
ogy, where each S(F(X)) is given the compact-open topology. (If F(X) is finite, this coincides
with the discrete topology.) Then Aut F acts continuously on each F(X), so we get a functor
F : C → Aut F-Set.

Theorem 1.5. F is an equivalence.

Proof. Take X ∈ C, and write X = äi∈I Xi with each Xi connected. Then F(X) = äi∈I F(Xi)
and Aut F acts transitively on each F(Xi). In other words, F preserves connected components.
Hence, the subobjects of X correspond bijectively to the subobjects of F (X). Identifying a map
f : X → Y with its graph Γ f : X → X×Y, we see

Hom(X, Y) =
{

subobjects Γ : X → X×Y with πX ◦ Γ = idX
}

=
{

subobjects ∆ : F (X)→ F (X)×F (Y) with πF (X) ◦ ∆ = idF (X)

}
= Hom(F (X),F (Y))

using that F is faithful and conservative. We conclude that F is fully faithful.
Let U ⊆ Aut F be an open subgroup; we show that Aut(F)/U is in the essential image of

F . The topology shows that there are X1, . . . , Xn ∈ C and x1 ∈ F (X1), . . . , xn ∈ F (Xn) such
that U contains the simultaneous stabilizer V ⊆ Aut F of x1, . . . , xn. Let Y be the connected
component of X1 × . . .× Xn with (x1, . . . , xn) ∈ F(Y). Then F (Y) ∼= Aut(F)/V as Aut F-sets.
Being a colimit, the quotient X = Y/(U/V) exists, and F (X) ∼= Aut(F)/U. �
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2. Noohi groups

We shall now classify the type of topological group that arises as Aut F. First recall the classical
situation: let G be a topological group and F : G-FSet → FSet the forgetful functor, then G is
profinite if and only if the natural map G → Aut F is an isomorphism.

Definition 2.1. Let G be a topological group and F : G-Set→ Set the forgetful functor. Then G
is Noohi if the natural map G → Aut F is an isomorphism. �

Example 2.2. Let X be a set. Then S(X) with the compact-open topology is Noohi. To see this,
note that the canonical S(X)-action on X is continuous. We get a projection Aut F → S(X), and
the composition S(X)→ Aut F → S(X) is the identity. So certainly S(X)→ Aut F is injective.

Let U ⊆ S(X) be an open subgroup. There exists a finite subset F ⊆ X whose pointwise
stabilizer SF is contained in U. (These form a basis of open neighborhoods of the identity.) The
natural map S(X) → XF yields an S(X)-equivariant injection S(X)/SF → XF. Now choose
α ∈ Aut F. Its action on X determines its action on XF, hence on S(X)/SF, hence on S(X)/U.
So α is already determined by its action on X, i.e. S(X)→ Aut F is surjective. �

In the classical case, there is also a fully topological characterization: a topological group G is
profinite if and only if G is totally disconnected, compact and Hausdorff. For Noohi groups,
we have the following.

Theorem 2.3 ([2], 7.1.5). A topological group G is Noohi if and only if G is complete and its open
subgroups form a basis of open neighborhoods of 1 ∈ G. �

Here complete means that G is Hausdorff and closed in all its topological supergroups. Equiva-
lently, G is Raı̆kov complete, or complete for its two-sided uniformity. Details can be found in
[1], §3.6; we just remark that any Hausdorff group G has a natural completion G∗, and G ⊆ G∗

is dense.

Lemma 2.4. Let G be a Hausdorff group and U ⊆ G an open subgroup. If U is Noohi, then so is G.

Proof. If the open subgroups of U form a basis of open neighborhoods of 1 ∈ U, they also do
so in G. It remains to prove that G is complete. Let G∗ be its completion. Being Noohi, U is
closed in G. By assumption U ⊆ G is also open, hence G = äg∈G/U gU. Taking closures in G∗,
we get

G∗ = G = ä
g∈G/U

gU = ä
g∈G/U

gU = G,

using again that U is Noohi, hence closed in G∗. �

Locally compact Hausdorff groups are complete. This yields lots of examples of Noohi groups:
discrete groups, profinite groups, local fields, rings of integers in local fields. In another direc-
tion, Z` (endowed with the colimit topology) is Noohi. Indeed, since Z` is abelian, we have
Aut F = limU Z`/U, where the limit is taken over all open subgroups; and the natural map
Z` → limU Z`/U is an isomorphism. By the preceding lemma, also Q` is Noohi.

Theorem 2.5. A topological group G is Noohi if and only if G is isomorphic to Aut F for some infinite
Galois category (C, F).

Proof. If G is Noohi, then G-Set with the forgetful functor F : G-Set→ Set is an infinite Galois
category, and by definition G ∼= Aut F. Conversely, let (C, F) be an infinite Galois category.
Recall that Aut F is a closed subgroup of ∏X∈C S(F(X)). By theorem 2.3 being Noohi is stable
under taking products and closed subgroups, hence Aut F is Noohi. �
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3. The pro-étale fundamental group

Let X be a locally noetherian scheme.

Theorem 3.1 ([2], 7.3.9). For a sheaf F on Xpro-et, the following are equivalent:
I F is locally constant, i.e. there is a pro-étale cover {Ui → X}i∈I with each FUi constant, and
I F is a geometric cover, i.e. F is representable by an étale X-scheme that satisfies the valuative

criterion of properness. �

Recall that Y → X satisfies the valuative criterion of properness if for all discrete valuation rings
R with fraction field K and all solid commutative diagrams

Spec K Y

Spec R X

∃!

there is a unique lift Spec R → Y making the full diagram commute. If Y → X were also of
finite type, then the valuative criterion is equivalent to properness. But we do not assume any
finiteness conditions!

Example 3.2. If X = Spec k for a field k, then it is easily verified that both the locally constant
sheaves and the geometric covers are precisely the sheaves F ∈ Sh(Xpro-et) that are pullbacks
from Sh(Xet) via the morphism of sites Xpro-et → Xet. �

Proof (locally constant⇒ geometric cover). First suppose F is constant. Then certainly F is rep-
resentable by an étale X-scheme that satisfies the valuative criterion of properness; moreover
F is separated. Now if F is locally constant, by fpqc descent F is at least an étale separated
algebraic space over X satisfying the valuative criterion of properness. But algebraic spaces
locally quasi-finite separated over a scheme are representable by schemes. �

We write Cov X ⊆ Sh(Xpro-et) for the full subcategory of geometric covers (equivalently, of
locally constant sheaves).

Now assume X is connected. Choose a geometric point x̄ of X, and let Fx̄ : Cov X → Set be
the fibre functor F 7→ Fx̄. We define (finally) the pro-étale fundamental group.

Definition 3.3. The pro-étale fundamental group of (X, x̄) is πpro-et(X, x̄) = Aut Fx̄. �

Theorem 3.4. The pair (Cov X, Fx̄) is an infinite Galois category.

Proof. We omit the verifications that Cov X has colimits and finite limits, that F commutes with
them, and that F is faithful and conservative.

Let Y/X be a geometric cover. Since Y is locally noetherian, its connected components are
open and closed. The components are geometric covers as well. Suppose Y is connected; we
prove that it is a connected object. Let Z be a subobject. The image of Z in Y is open and stable
under specializations since Z → Y is also a geometric cover. Using again that Y is locally
noetherian, this implies that the image of Z in Y is closed. By connectedness of Y, the image
is either ∅ or Y. In the latter case Z → Y is geometric cover and a homeomorphism, hence an
isomorphism.

We now show that, for Y connected, the action of Aut Fx̄ on Yx̄ is transitive. Let ȳ, ȳ′ be
lifts of x̄ to geometric points of Y. As Y is locally noetherian and connected, there exists a
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‘path’ ȳ = ȳ0, ȳ1, . . . , ȳn = ȳ′ of specializations and generalizations. Let x̄ = x̄0, x̄1, . . . , x̄n = x̄
be the images in X. Choose discrete valuation rings Ri and maps Spec Ri → Y with ȳi−1, ȳi
as special respectively generic fibre or conversely. By the valuative criterion of properness we
obtain isomorphisms of fibre functors

Fx̄ = Fx̄0
∼= Fx̄1

∼= . . . ∼= Fx̄n = Fx̄

hence an automorphism α ∈ Aut Fx̄. By construction α maps ȳ to ȳ′. �

We mention some good properties.

Lemma 3.5 ([2], 7.4.3). The profinite completion π̂pro-et(X, x̄) is πet(X, x̄). �

Lemma 3.6 ([2], 7.4.10). If X is geometrically unibranch, then πpro-et(X, x̄) = πet(X, x̄). �

Classically, representations of πet(X, x̄) contain useful information. For instance, the category
of finite rank locally free Z`-sheaves on X is equivalent to the category of continuous repre-
sentations of πet(X, x̄) in finite rank free Z`-modules. However, the analogue for Q` fails in
general.

Theorem 3.7 ([2], 7.4.7). The category of finite rank locally free Q`-sheaves on X is equivalent to the
category of continuous representations of πpro-et(X, x̄) in finite dimensional Q`-vector spaces. �

The theorem is actually true for any algebraic extension K/Q`, since Q` is a Noohi group.

4. Example: the nodal curve

Let X be the nodal curve, i.e. the projective line with 0 and ∞ glued together transversally. We
have seen its finite étale covers. There is a unique connected degree n finite étale cover Yn → X;
it consists of n copies of P1 where 0 in the ith copy is identified with ∞ in the (i + 1)st copy,
cyclically. We concluded πet(X, x̄) = Ẑ.

There is also an étale cover Y∞ → X, consisting of countably many copies of P1 glued as
before. It is not finite étale, but it is an geometric cover.

Lemma 4.1. Y∞ and Yn, n ≥ 1 are the only connected geometric covers of the nodal curve X.

Proof. Let Y → X be a connected geometric cover. Construct a cartesian diagram

Ỹ P1

Y X.

All geometric covers of P1 are trivial, so Ỹ = äi∈I P1. Let U ⊂ X be the complement of the
node, and V its inverse image in Y. Then we get a cartesian diagram

äi∈I Gm Gm

V U.

But Gm → U is an isomorphism, so V = äi∈I Gm. Choose i ∈ I and consider the point 0 in the
ith copy of P1. It is mapped to the node of X, so is identified in Y with precisely one point ∞ of
some P1 (possibly after application of an automorphism of P1 switching 0 and ∞). Continue
this process. If after n steps we get back at the original P1, then Y = Yn. Otherwise, we have
Y = Y∞. �
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Corollary 4.2. πpro-et(X, x̄) = Z.

Proof. Each geometric cover is a disjoint union of quotients of Y∞. Therefore πpro-et(X, x̄) con-
sists of those permutations of Fx̄(Y) = Yx̄ = Z that commute with all automorphisms of Y/X.
These automorphisms induce translations on Z, and the only permutations commuting with
all translations are the translations themselves. �

Remark 4.3. Intuitively, Y∞ → X is the ‘universal’ cover. We can now make this precise. Let
(X, x̄) be a geometrically pointed connected locally noetherian scheme. Suppose πpro-et(X, x̄)
is discrete. Then the universal cover of X is the geometric cover that corresponds under the
equivalence Cov X → πpro-et(X, x̄)-Set to the set πpro-et(X, x̄) with the regular action. The
automorphism group of the universal cover is clearly isomorphic to πpro-et(X, x̄) �
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