The pro-étale fundamental group

Wouter Zomervrucht, December 16, 2014

1. Infinite Galois theory

We develop an 'infinite' version of Grothendieck's Galois theory. It was introduced first by Noohi [3] and slightly modified by Bhatt–Scholze [2].

Definition 1.1. Let C be a category and $X \in C$. A *subobject* of X is a monomorphism $Y \to X$. We say that X is *connected* if it has precisely two isomorphism classes of subobjects.

Definition 1.2. Let C be a category and $F: C \to Set$ a functor. Then C is an *infinite Galois category* with *fundamental functor F* if

- $ightharpoonup \mathcal{C}$ has colimits and finite limits,
- ► *F* preserves colimits and finite limits,
- ► *F* is faithful and conservative,
- ▶ each $X \in C$ is a coproduct of connected objects, and
- ▶ Aut $F \curvearrowright F(X)$ is transitive for each connected $X \in C$.

For technical reasons we should also assume that the subcategory of connected objects in C is essentially small; however, we ignore that.

Remark 1.3. This is what Bhatt–Scholze call a *tame* infinite Galois category.

Example 1.4. Let *G* be a topological group. Then *G*-Set with the forgetful functor *G*-Set \rightarrow Set is an infinite Galois category.

Let (C, F) be an infinite Galois category. Endow Aut $F \subseteq \prod_{X \in C} S(F(X))$ with the induced topology, where each S(F(X)) is given the compact-open topology. (If F(X) is finite, this coincides with the discrete topology.) Then Aut F acts continuously on each F(X), so we get a functor $F: C \to \operatorname{Aut} F$ -Set.

Theorem 1.5. \mathcal{F} is an equivalence.

Proof. Take $X \in \mathcal{C}$, and write $X = \coprod_{i \in I} X_i$ with each X_i connected. Then $F(X) = \coprod_{i \in I} F(X_i)$ and Aut F acts transitively on each $F(X_i)$. In other words, \mathcal{F} preserves connected components. Hence, the subobjects of X correspond bijectively to the subobjects of $\mathcal{F}(X)$. Identifying a map $f \colon X \to Y$ with its graph $\Gamma_f \colon X \to X \times Y$, we see

$$\begin{aligned} \operatorname{Hom}(X,Y) &= \left\{ \operatorname{subobjects} \, \Gamma \colon X \to X \times Y \, \operatorname{with} \, \pi_X \circ \Gamma = \operatorname{id}_X \right\} \\ &= \left\{ \operatorname{subobjects} \, \Delta \colon \mathcal{F}(X) \to \mathcal{F}(X) \times \mathcal{F}(Y) \, \operatorname{with} \, \pi_{\mathcal{F}(X)} \circ \Delta = \operatorname{id}_{\mathcal{F}(X)} \right\} \\ &= \operatorname{Hom}(\mathcal{F}(X),\mathcal{F}(Y)) \end{aligned}$$

using that F is faithful and conservative. We conclude that F is fully faithful.

Let $U \subseteq \operatorname{Aut} F$ be an open subgroup; we show that $\operatorname{Aut}(F)/U$ is in the essential image of \mathcal{F} . The topology shows that there are $X_1, \ldots, X_n \in \mathcal{C}$ and $x_1 \in \mathcal{F}(X_1), \ldots, x_n \in \mathcal{F}(X_n)$ such that U contains the simultaneous stabilizer $V \subseteq \operatorname{Aut} F$ of x_1, \ldots, x_n . Let Y be the connected component of $X_1 \times \ldots \times X_n$ with $(x_1, \ldots, x_n) \in F(Y)$. Then $\mathcal{F}(Y) \cong \operatorname{Aut}(F)/V$ as $\operatorname{Aut} F$ -sets. Being a colimit, the quotient X = Y/(U/V) exists, and $\mathcal{F}(X) \cong \operatorname{Aut}(F)/U$.

2. Noohi groups

We shall now classify the type of topological group that arises as Aut F. First recall the classical situation: let G be a topological group and F: G-FSet \to FSet the forgetful functor, then G is profinite if and only if the natural map $G \to \operatorname{Aut} F$ is an isomorphism.

Definition 2.1. Let G be a topological group and $F: G\operatorname{-Set} \to \operatorname{Set}$ the forgetful functor. Then G is *Noohi* if the natural map $G \to \operatorname{Aut} F$ is an isomorphism.

Example 2.2. Let X be a set. Then S(X) with the compact-open topology is Noohi. To see this, note that the canonical S(X)-action on X is continuous. We get a projection $\operatorname{Aut} F \to S(X)$, and the composition $S(X) \to \operatorname{Aut} F \to S(X)$ is the identity. So certainly $S(X) \to \operatorname{Aut} F$ is injective.

Let $U \subseteq S(X)$ be an open subgroup. There exists a finite subset $F \subseteq X$ whose pointwise stabilizer S_F is contained in U. (These form a basis of open neighborhoods of the identity.) The natural map $S(X) \to X^F$ yields an S(X)-equivariant injection $S(X)/S_F \to X^F$. Now choose $\alpha \in \operatorname{Aut} F$. Its action on X determines its action on X^F , hence on $S(X)/S_F$, hence on S(X)/U. So α is already determined by its action on X, i.e. $S(X) \to \operatorname{Aut} F$ is surjective.

In the classical case, there is also a fully topological characterization: a topological group *G* is profinite if and only if *G* is totally disconnected, compact and Hausdorff. For Noohi groups, we have the following.

Theorem 2.3 ([2], 7.1.5). A topological group G is Noohi if and only if G is complete and its open subgroups form a basis of open neighborhoods of $1 \in G$.

Here *complete* means that G is Hausdorff and closed in all its topological supergroups. Equivalently, G is Raĭkov complete, or complete for its two-sided uniformity. Details can be found in [1], §3.6; we just remark that any Hausdorff group G has a natural completion G^* , and $G \subseteq G^*$ is dense.

Lemma 2.4. Let G be a Hausdorff group and $U \subseteq G$ an open subgroup. If U is Noohi, then so is G.

Proof. If the open subgroups of U form a basis of open neighborhoods of $1 \in U$, they also do so in G. It remains to prove that G is complete. Let G^* be its completion. Being Noohi, U is closed in G. By assumption $U \subseteq G$ is also open, hence $G = \coprod_{g \in G/U} gU$. Taking closures in G^* , we get

$$G^* = \overline{G} = \coprod_{g \in G/U} \overline{gU} = \coprod_{g \in G/U} gU = G,$$

using again that U is Noohi, hence closed in G^* .

Locally compact Hausdorff groups are complete. This yields lots of examples of Noohi groups: discrete groups, profinite groups, local fields, rings of integers in local fields. In another direction, $\overline{\mathbb{Z}}_{\ell}$ (endowed with the colimit topology) is Noohi. Indeed, since $\overline{\mathbb{Z}}_{\ell}$ is abelian, we have Aut $F = \lim_{U} \overline{\mathbb{Z}}_{\ell}/U$, where the limit is taken over all open subgroups; and the natural map $\overline{\mathbb{Z}}_{\ell} \to \lim_{U} \overline{\mathbb{Z}}_{\ell}/U$ is an isomorphism. By the preceding lemma, also $\overline{\mathbb{Q}}_{\ell}$ is Noohi.

Theorem 2.5. A topological group G is Noohi if and only if G is isomorphic to Aut F for some infinite Galois category (C, F).

Proof. If *G* is Noohi, then *G*-Set with the forgetful functor $F: G\text{-Set} \to \text{Set}$ is an infinite Galois category, and by definition $G \cong \text{Aut } F$. Conversely, let (\mathcal{C}, F) be an infinite Galois category. Recall that Aut F is a closed subgroup of $\prod_{X \in \mathcal{C}} S(F(X))$. By theorem 2.3 being Noohi is stable under taking products and closed subgroups, hence Aut F is Noohi.

3. The pro-étale fundamental group

Let *X* be a locally noetherian scheme.

Theorem 3.1 ([2], 7.3.9). For a sheaf \mathcal{F} on X_{pro-et} , the following are equivalent:

- \blacktriangleright \mathcal{F} is locally constant, i.e. there is a pro-étale cover $\{U_i \to X\}_{i \in I}$ with each \mathcal{F}_{U_i} constant, and
- ► F is a geometric cover, i.e. F is representable by an étale X-scheme that satisfies the valuative criterion of properness. •

Recall that $Y \to X$ satisfies the *valuative criterion of properness* if for all discrete valuation rings R with fraction field K and all solid commutative diagrams

there is a unique lift Spec $R \to Y$ making the full diagram commute. If $Y \to X$ were also of finite type, then the valuative criterion is equivalent to properness. But we do not assume any finiteness conditions!

Example 3.2. If $X = \operatorname{Spec} k$ for a field k, then it is easily verified that both the locally constant sheaves and the geometric covers are precisely the sheaves $\mathcal{F} \in \operatorname{Sh}(X_{\operatorname{pro-et}})$ that are pullbacks from $\operatorname{Sh}(X_{\operatorname{et}})$ via the morphism of sites $X_{\operatorname{pro-et}} \to X_{\operatorname{et}}$.

Proof (locally constant \Rightarrow *geometric cover).* First suppose \mathcal{F} is constant. Then certainly \mathcal{F} is representable by an étale X-scheme that satisfies the valuative criterion of properness; moreover \mathcal{F} is separated. Now if \mathcal{F} is locally constant, by fpqc descent \mathcal{F} is at least an étale separated algebraic space over X satisfying the valuative criterion of properness. But algebraic spaces locally quasi-finite separated over a scheme are representable by schemes.

We write $Cov X \subseteq Sh(X_{pro-et})$ for the full subcategory of geometric covers (equivalently, of locally constant sheaves).

Now assume X is connected. Choose a geometric point \bar{x} of X, and let $F_{\bar{x}}$: Cov $X \to Set$ be the fibre functor $\mathcal{F} \mapsto \mathcal{F}_{\bar{x}}$. We define (finally) the pro-étale fundamental group.

Definition 3.3. The pro-étale fundamental group of
$$(X, \bar{x})$$
 is $\pi^{\text{pro-et}}(X, \bar{x}) = \text{Aut } F_{\bar{x}}$.

Theorem 3.4. The pair (Cov X, $F_{\bar{x}}$) is an infinite Galois category.

Proof. We omit the verifications that Cov *X* has colimits and finite limits, that *F* commutes with them, and that *F* is faithful and conservative.

Let Y/X be a geometric cover. Since Y is locally noetherian, its connected components are open and closed. The components are geometric covers as well. Suppose Y is connected; we prove that it is a connected object. Let Z be a subobject. The image of Z in Y is open and stable under specializations since $Z \to Y$ is also a geometric cover. Using again that Y is locally noetherian, this implies that the image of Z in Y is closed. By connectedness of Y, the image is either \emptyset or Y. In the latter case $Z \to Y$ is geometric cover and a homeomorphism, hence an isomorphism.

We now show that, for Y connected, the action of Aut $F_{\bar{x}}$ on $Y_{\bar{x}}$ is transitive. Let \bar{y}, \bar{y}' be lifts of \bar{x} to geometric points of Y. As Y is locally noetherian and connected, there exists a

'path' $\bar{y} = \bar{y}_0, \bar{y}_1, \dots, \bar{y}_n = \bar{y}'$ of specializations and generalizations. Let $\bar{x} = \bar{x}_0, \bar{x}_1, \dots, \bar{x}_n = \bar{x}$ be the images in X. Choose discrete valuation rings R_i and maps Spec $R_i \to Y$ with \bar{y}_{i-1}, \bar{y}_i as special respectively generic fibre or conversely. By the valuative criterion of properness we obtain isomorphisms of fibre functors

$$F_{\bar{x}} = F_{\bar{x}_0} \cong F_{\bar{x}_1} \cong \ldots \cong F_{\bar{x}_n} = F_{\bar{x}}$$

hence an automorphism $\alpha \in \operatorname{Aut} F_{\bar{x}}$. By construction α maps \bar{y} to \bar{y}' .

We mention some good properties.

Lemma 3.5 ([2], 7.4.3). The profinite completion
$$\hat{\pi}^{\text{pro-et}}(X, \bar{x})$$
 is $\pi^{\text{et}}(X, \bar{x})$.

Lemma 3.6 ([2], 7.4.10). If X is geometrically unibranch, then
$$\pi^{\text{pro-et}}(X, \bar{x}) = \pi^{\text{et}}(X, \bar{x})$$
.

Classically, representations of $\pi^{\text{et}}(X,\bar{x})$ contain useful information. For instance, the category of finite rank locally free \mathbb{Z}_{ℓ} -sheaves on X is equivalent to the category of continuous representations of $\pi^{\text{et}}(X,\bar{x})$ in finite rank free \mathbb{Z}_{ℓ} -modules. However, the analogue for \mathbb{Q}_{ℓ} fails in general.

Theorem 3.7 ([2], 7.4.7). The category of finite rank locally free \mathbb{Q}_{ℓ} -sheaves on X is equivalent to the category of continuous representations of $\pi^{\text{pro-et}}(X, \bar{x})$ in finite dimensional \mathbb{Q}_{ℓ} -vector spaces.

The theorem is actually true for any algebraic extension K/\mathbb{Q}_{ℓ} , since $\overline{\mathbb{Q}}_{\ell}$ is a Noohi group.

4. Example: the nodal curve

Let X be the nodal curve, i.e. the projective line with 0 and ∞ glued together transversally. We have seen its finite étale covers. There is a unique connected degree n finite étale cover $Y_n \to X$; it consists of n copies of \mathbb{P}^1 where 0 in the i^{th} copy is identified with ∞ in the $(i+1)^{\text{st}}$ copy, cyclically. We concluded $\pi^{\text{et}}(X,\bar{x}) = \hat{\mathbb{Z}}$.

There is also an étale cover $Y_{\infty} \to X$, consisting of countably many copies of \mathbb{P}^1 glued as before. It is not finite étale, but it is an geometric cover.

Lemma 4.1. Y_{∞} and Y_n , $n \ge 1$ are the only connected geometric covers of the nodal curve X.

Proof. Let $Y \to X$ be a connected geometric cover. Construct a cartesian diagram

$$\tilde{Y} \longrightarrow \mathbb{P}^1 \\
\downarrow \qquad \qquad \downarrow \\
Y \longrightarrow X.$$

All geometric covers of \mathbb{P}^1 are trivial, so $\tilde{Y} = \coprod_{i \in I} \mathbb{P}^1$. Let $U \subset X$ be the complement of the node, and V its inverse image in Y. Then we get a cartesian diagram

But $G_m \to U$ is an isomorphism, so $V = \coprod_{i \in I} G_m$. Choose $i \in I$ and consider the point 0 in the i^{th} copy of \mathbb{P}^1 . It is mapped to the node of X, so is identified in Y with precisely one point ∞ of some \mathbb{P}^1 (possibly after application of an automorphism of \mathbb{P}^1 switching 0 and ∞). Continue this process. If after n steps we get back at the original \mathbb{P}^1 , then $Y = Y_n$. Otherwise, we have $Y = Y_\infty$.

Corollary 4.2. $\pi^{\text{pro-et}}(X, \bar{x}) = \mathbb{Z}$.

Proof. Each geometric cover is a disjoint union of quotients of Y_{∞} . Therefore $\pi^{\text{pro-et}}(X, \bar{x})$ consists of those permutations of $F_{\bar{x}}(Y) = Y_{\bar{x}} = \mathbb{Z}$ that commute with all automorphisms of Y/X. These automorphisms induce translations on \mathbb{Z} , and the only permutations commuting with all translations are the translations themselves.

Remark 4.3. Intuitively, $Y_{\infty} \to X$ is the 'universal' cover. We can now make this precise. Let (X, \bar{x}) be a geometrically pointed connected locally noetherian scheme. Suppose $\pi^{\text{pro-et}}(X, \bar{x})$ is discrete. Then the *universal cover* of X is the geometric cover that corresponds under the equivalence $\text{Cov } X \to \pi^{\text{pro-et}}(X, \bar{x})$ -Set to the set $\pi^{\text{pro-et}}(X, \bar{x})$ with the regular action. The automorphism group of the universal cover is clearly isomorphic to $\pi^{\text{pro-et}}(X, \bar{x})$

References

- [1] A. Arhangel'skii, M. Tkachenko, *Topological Groups and Related Structures*. Atlantis Studies in Mathematics 1, Atlantis Press, 2008.
- [2] B. Bhatt, P. Scholze, The pro-étale topology for schemes. Preprint, 2013.
- [3] B. Noohi, Fundamental groups of topological stacks with the slice property. Algebraic and Geometric Topology 8, pp. 1333–1370, Mathematical Sciences Publishers, 2008.