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Introduction

Descent is the act of building a ‘global object’ from a collection of ‘local objects’. It is a general-
ization of the topological concept of gluing. For example, if S is a topological space covered by
open subspaces tUiuiPI , then a space X over S may be defined by a collection of spaces Xi over
Ui that are compatible on intersections: the spaces Xi are glued into a space X. The same is
true if ‘topological space’ is replaced by ‘scheme’. We say that the schemes Xi over Ui descend
to a scheme X over S. The process is called topological or Zariski descent of schemes.

What happens if we replace the open immersions Ui Ñ S by more general morphisms?
Substituting fiber products for intersections, we can still ask whether compatible schemes
Xi over Ui descend to a scheme X over S. In this thesis we study the generalization from
topological descent where the maps Ui Ñ S are étale morphisms. Étale descent behaves more
wildly than its topological variant. In some cases schemes descend, in others not.

As the title suggests, we consider étale descent of schemes that are curves over their base
schemes. Here a ‘curve’ means a scheme X over S that is proper, smooth of relative dimension
1, and has geometrically connected fibers. The situation then is twofold. If all schemes Xi over
Ui are curves of genus g, for some fixed non-negative integer g unequal to 1, then these curves
descend to a uniquely unique scheme X over S, and X is a curve of genus g as well. On the
other hand, if Xi is a curve of genus 1 over Ui for all i P I, that conclusion no longer applies:
examples are known of a scheme S, a jointly surjective family of étale morphisms tUi Ñ SuiPI ,
and compatible curves Xi over Ui of genus 1, where the curves do not descend to a scheme
over S. Precise statements are formulated in theorems I and II on page 7.

The positive result for genus other than 1 follows from classical facts on the geometry
of curves. A counterexample in genus 1 was first provided in 1968 by Michel Raynaud [R].
In this thesis we present a new counterexample. Its construction is based upon Raynaud’s
original work, yet different and, hopefully, accessible to a larger audience. Additionally, the
construction in this thesis is more explicit.

In chapter 1 we give a self-contained introduction into descent. The theory is developed in
the general context of sites, as we believe this modern language benefits the intuition. Simulta-
neously we keep track of properties of the étale site in particular. The first chapter closes with
the formulation of our main theorems.

Chapter 2 establishes the proof of theorem I, descent of curves in genus g � 1. It uses
descent of quasi-coherent sheaves, and very ample line bundles on curves. At several technical
points we give only a sketch of the proof.

The last two chapters, which can be read independently from chapter 2, treat descent in
genus 1. In chapter 3 we discuss torsors. Again we work mostly on general sites. Torsors are
key in our construction of non-descending curves of genus 1. The construction itself is detailed
in chapter 4. At the end of that chapter we shortly discuss Raynaud’s counterexample and its
relation to the one presented here.

I would like to thank my advisors Lenny Taelman and Bas Edixhoven for their constant
support and enthusiasm. Last year has been wonderful.

Wouter Zomervrucht

v



vi



Descent 1
1.1. Representable functors

We recall the notion of a representable functor.

Definition 1.1. Let C be a category and X P C an object. The covariant Yoneda functor of X is the
functor hX : C Ñ Set that maps Y to HompX, Yq. Dually, the contravariant Yoneda functor of X is
the functor hX : Cop Ñ Set, Y ÞÑ HompY, Xq.

Definition 1.2. Let C be a category. A functor F : Cop Ñ Set is representable if it is naturally
isomorphic to the contravariant Yoneda functor of some object X P C. In this case, we say that
X represents F .

Lemma 1.3 (Yoneda). Let C be a category. The functors

Cop Ñ FuncpC,Setq, X ÞÑ hX ,
C Ñ FuncpCop,Setq, X ÞÑ hX

are fully faithful.

Proof. By duality it suffices to consider the functor X ÞÑ hX .
Let X and Y be objects of C and α : hX Ñ hY a natural transformation. For all T P C we have

a map αT : HompX, Tq Ñ HompY, Tq. Let f : Y Ñ X be the image of idX under αX . It is easily
verified that α is induced by f , more precisely: we have αTpgq � g � f for all T P C. Moreover,
f is the unique morphism Y Ñ X with this property. So X ÞÑ hX is fully faithful. �

As a corollary to Yoneda’s lemma, a representable functor is represented by a uniquely unique
object.

1.2. Sites

For our study of descent, we generalize the concept of an open covering of a topological space.

Definition 1.4. Let C be a category. A Grothendieck topology on C is a collection of coverings,
each covering being a family of morphisms tUi Ñ SuiPI , such that
� if U Ñ S is an isomorphism, then tU Ñ Su is a covering,
� if tUi Ñ SuiPI is a covering and for all i P I also tVij Ñ UiujPJi is a covering, then the

composition tVij Ñ SuiPI,jPJi is a covering, and
� if tUi Ñ SuiPI is a covering and T Ñ S is a morphism, then the fiber products Ui �S T exist

and the base change tUi �S T Ñ TuiPI is a covering.
A site is a category endowed with a Grothendieck topology.
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We give some examples. The first will serve as a model for the definition. Let X be a topo-
logical space, and Open X the category whose objects are the open subsets of X and whose
morphisms are the inclusions. Fiber products in Open X are just intersections. As usual, let an
open covering be a family tVi Ñ UuiPI where the open subsets Vi together cover U. The open
coverings make Open X into a site.

For another example, let S be a scheme. Let P be a class of morphisms of schemes over
S that contains all isomorphisms and is stable under composition and base change. Let a
covering be a family thi : Vi Ñ UuiPI where each hi is in P and

�
iPI im hi equals U. These

coverings constitute a topology on Sch{S.
In particular, if P is the class of open immersions, we get the Zariski topology on Sch{S

and the (large) Zariski site pSch{SqZar. Its coverings are the jointly surjective families of open
immersions. A more interesting site arises if we let P be the class of étale morphisms. This
topology on Sch{S is the étale topology, and the resulting site the (large) étale site on S, denoted
pSch{Sqét. The étale topology is finer than the Zariski topology: every Zariski covering is étale,
but not every étale covering is Zariski. Most of the work in this thesis concerns the étale site.

There is a generalized concept of sheaves as well.

Definition 1.5. Let C be a site. A sheaf of sets on C is a functor F : Cop Ñ Set such that for every
covering tUi Ñ SuiPI in C the diagram

FpSq
¹
iPI

FpUiq
¹
i,jPI

FpUi �S Ujq

is an equalizer. Here the parallel arrows are induced by the projections Ui �S Uj Ñ Ui and
Ui �S Uj Ñ Uj, respectively.

Definition 1.6. Let C be a site and D a category. A D-valued presheaf on C is a functor Cop Ñ D.
A D-valued sheaf on C is a presheaf F : Cop Ñ D such that hXF is a sheaf of sets for all objects
X P D. A morphism of (pre)sheaves is a natural transformation of functors.

Consider the site Open X, where X is a topological space. A sheaf on Open X is just a sheaf on
X in the usual sense. As before, this example serves as a model for the definition.

In general, the category of D-valued presheaves on a site C is written PShD C, and its full
subcategory of sheaves ShD C. The index D is omitted in the case D � Set. Now suppose that
D is a category with products. Since hX commutes with limits, Yoneda’s lemma 1.3 shows that
a presheaf F : Cop Ñ D is a sheaf if and only if for every covering tUi Ñ SuiPI in C the diagram

FpSq
¹
iPI

FpUiq
¹
i,jPI

FpUi �S Ujq

is an equalizer in D. In particular, sheaves of sets coincide with Set-valued sheaves.
Let S P C be an object. The topology on C induces a topology on the category C{S of objects

over S: its coverings are the families tVi Ñ UuiPI that are coverings in C when we forget the
structure maps to S. If f : T Ñ S is a morphism, there are functors

f� : C{T Ñ C{S, g ÞÑ f � g

and
f�1 : PShD C{S Ñ PShD C{T, F ÞÑ F � f op

� .
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In other words, we can pullback presheaves on C{S to presheaves on C{T. The pullback f�1F
of a presheaf F on C{S to C{T is denoted F |T , and similar for morphisms. The pullback of a
sheaf is necessarily a sheaf.

Suppose that C has fiber products. Pullback of set-valued presheaves then is related to the
base change functor f � : C{S Ñ C{T. Let C{S Ñ PSh C{S and C{T Ñ PSh C{T be the covariant
Yoneda embeddings from lemma 1.3. These constitute the vertical arrows of a diagram

C{S C{T

PSh C{S PSh C{T

f �

f�1

in which the two composite diagonal functors are isomorphic. Consequently, if a (pre)sheaf F
on C{S is representable by an object X over S, then the pullback F |T is a (pre)sheaf on C{T
that is representable by X �S T over T.

We return to the case of schemes. If S is a scheme, then a sheaf on pSch{Sqét is also called
an étale sheaf on S. As an important example, we prove that representable functors on Sch{S
are étale sheaves. This fact is due to Alexander Grothendieck [SGA1, Théorème VIII.5.2].

Lemma 1.7. Let A Ñ B be a faithfully flat ring homomorphism and M an A-module. The diagram

M MbA B MbA BbA B

is an equalizer of A-modules.

Proof. Consider the base change

MbA B MbA BbA B MbA BbA BbA B.δ0 δ1
0

δ1
1

Here δ0 is defined on pure tensors by mb b ÞÑ mb 1b b, and the parallel arrows are given by
δ1

0pmb b1 b b2q � mb b1 b 1b b2 and δ1
1pmb b1 b b2q � mb 1b b1 b b2, respectively. Put

z0 : MbA BbA B Ñ MbA B, mb b1 b b2 ÞÑ mb b1b2,

z1 : MbA BbA BbA B Ñ MbA BbA B, mb b1 b b2 b b3 ÞÑ mb b2 b b1b3.

Define δ1 � δ1
1 � δ1

0 . Then z0δ0 is the identity on M bA B, and δ0z0 � z1δ1 is the identity on
MbA BbA B. Hence the identity on the complex

0 MbA B MbA BbA B MbA BbA BbA Bδ0 δ1

is null-homotopic at M bA B and M bA B bA B. It follows that the complex is exact, and the
base changed diagram is an equalizer. The homomorphism A Ñ B is faithfully flat, so the
original diagram is an equalizer as well. �
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Lemma 1.8. Let S be a scheme, D a category and F : pSch{Sqop Ñ D a functor. Then F is an étale
sheaf if and only if F satisfies the sheaf property for
� Zariski coverings, and
� coverings given by a surjective étale map Spec B Ñ Spec A.

Proof. The ‘only if’ part is obvious. Conversely, assume that F satisfies the sheaf property for
coverings of the stated form. Let tVi Ñ UuiPI be an arbitrary étale covering. We prove that
F satisfies the corresponding sheaf property. Since F satisfies the sheaf property for Zariski
coverings, we can reduce to the case where U � Spec A is an affine scheme. The sheaf property
for tVi Ñ Spec AuiPI is equivalent to the sheaf property for the induced covering tV Ñ Spec Au,
where V is the disjoint union

²
iPI Vi.

Take a Zariski covering tSpec Bj Ñ VujPJ of V by affines. Since Spec A is quasi-compact and
étale morphisms are open, there exists a finite subset J1 � J such that tSpec Bj Ñ Spec AujPJ1 is
a covering. Putting B �±jPJ1 Bj we obtain Spec B �²jPJ1 Spec Bj as J1 is finite.

Let y P FpVq be such that the two pullbacks of y to FpV �A Vq coincide. We have to prove
that there exists a unique x P FpSpec Aq with y � x|V . Let z be the pullback of y to Spec B. The
two pullbacks of z to Spec BbA B coincide. By assumption F satisfies the sheaf property for
the covering tSpec B Ñ Spec Au, so there exists a unique x P FpSpec Aq such that z � x|Spec B.
One easily proves that x|V equals y. �

Theorem 1.9 (Grothendieck). Let S be a scheme and F : pSch{Sqop Ñ Set a functor. If F is repre-
sentable, then F is an étale sheaf.

Proof. Let X be a scheme over S. We apply lemma 1.8 to the Yoneda functor hX .
First let tVi Ñ UuiPI be a Zariski covering. If p fi : Vi Ñ XqiPI is a tuple of morphisms that

coincide on the intersections Vi �U Vj, then there exists a unique morphism f : U Ñ X with
f |Vi � fi for all i P I. Indeed, f arises from gluing the morphisms fi together. This means
precisely that hX satisfies the sheaf property for tVi Ñ UuiPI .

Now let h : Spec B Ñ Spec A be a surjective étale morphism. Let π0, π1 be the projection
maps Spec BbA B Ñ Spec B. We need to show that any morphism f : Spec B Ñ X satisfying
f π0 � f π1 factors uniquely over Spec A. A short argument, using that étale morphisms are
open and hX is a Zariski sheaf, reduces to the case where X � Spec R is affine. In that case we
need to show there is a unique ring homomorphism g� : R Ñ A that makes the diagram

R

A B

B BbA B

f �

f �

g�

h�

h� π�
1

π�
0

commute. Observe that A Ñ B is faithfully flat. The special case M � A of lemma 1.7 states
that h� is the equalizer of π�

0 and π�
1 in A-Mod. Then by definition we have a unique A-module

homomorphism g� as desired. Since h� is injective, the identity h�g� � f � forces g� to be, in
fact, a ring homomorphism. �
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Here is a useful application of the above theorem. Let G be a group. Let F : pSch{Sqop Ñ Set
be the functor that maps a scheme T over S to the set of continuous functions T Ñ G, where
G is endowed with the discrete topology. Then F is representable by the scheme

²
gPG S over

S, hence F is an étale sheaf of sets on S. The group structure on G makes F naturally into a
sheaf of groups. It is called the constant sheaf G.

1.3. Descent of sheaves

Descent problems can be posed in a very general setting, namely, for arbitrary fibered cat-
egories over a site. Here only descent of sheaves is considered. We fix some notation: if
tUi Ñ SuiPI is a covering, then we abbreviate Ui0 �S . . .�S Uin by Ui0 ...in .

Definition 1.10. Let C be a site, U � tUi Ñ SuiPI a covering in C, and D a category. A D-valued
descent datum relative to U consists of
� a D-valued sheaf Fi P ShD C{Ui for all i P I, and
� an isomorphism ϕij : Fi|Uij Ñ Fj|Uij in ShD C{Uij for all i, j P I,

such that the cocycle condition

ϕik|Uijk � ϕjk|Uijk � ϕij|Uijk

holds for all i, j, k P I. A morphism of descent data pFi, ϕijqi,jPI Ñ pGi, ψijqi,jPI is a tuple of mor-
phisms pαi : Fi Ñ GiqiPI such that the diagram

Fi|Uij Gi|Uij

Fj|Uij Gj|Uij

αi|Uij

ϕij ψij

αj|Uij

commutes for all i, j P I.

We give an important example. Let F be a sheaf on C{S. Write Fi � F |Ui and Fij � F |Uij for
the respective pullbacks. Then the sheaves Fi|Uij and Fj|Uij both equal Fij, so pFi, idFijqi,jPI is a
descent datum relative to U . We denote it by F |U .

Let ShD U be the category of D-valued descent data relative to U . The preceding example
defines a functor

desc : ShD C{S Ñ ShD U , F ÞÑ F |U .

A descent datum descends to a sheaf F on C{S if it is isomorphic in ShD U to F |U . We then say
that the descent datum is effective. In many cases, such F exists and is uniquely unique. This
is intuitively clear from the definitions.

Proposition 1.11. Let C be a site, S P C an object, U a covering of S, and D a category. The functor
desc : ShD C{S Ñ ShD U is fully faithful. If D has products and equalizers, then desc is an equivalence
of categories.

Proof. Write U � tUi Ñ SuiPI . We prove that desc is fully faithful. Let F ,G P ShD C{S be sheaves
and set Fi � F |Ui and Gi � G|Ui . Let pαiqiPI be a morphism of descent data F |U Ñ G|U . We

5



need to show that it descends to a unique morphism of sheaves α : F Ñ G. In the case D � Set
this follows from the diagram

F
¹
iPI

FipUi �S �q
¹
i,jPI

FipUij �S �q

G
¹
iPI

GipUi �S �q
¹
i,jPI

GipUij �S �q

α pαiqiPI pαiqi,jPI

whose rows are equalizers in Sh C{S. The diagram commutes in the sense that both subdia-
grams, obtained by a consistent choice from parallel arrows, are commutative. For arbitrary D
apply Yoneda’s lemma 1.3.

Now suppose D has products and equalizers. We prove that desc is essentially surjective.
Let pFi, ϕijqi,jPI be a descent datum in ShD U . For objects T P C{S define FpTq to be the
equalizer in

FpTq
¹
iPI

FipUi �S Tq
¹
i,jPI

FipUij �S Tq.

This makes F into a presheaf on C{S. If the map T Ñ S factors over some Ui, then the gluing
maps ϕij induce an isomorphism FpTq � FipTq. We get compatible isomorphisms F |Ui � Fi
for all i P I. It remains to show that F is a sheaf. For an arbitrary covering tVj Ñ TujPJ in C
consider the diagram

FpTq
¹
jPJ

FpVjq
¹

j0,j1PJ

FpVj0 j1q

¹
iPI

FpUi �S Tq
¹
iPI
jPJ

FpUi �S Vjq
¹
iPI

j0,j1PJ

FpUi �S Vj0 j1q

¹
i0,i1PI

FpUi0i1 �S Tq
¹

i0,i1PI
jPJ

FpUi0i1 �S Vjq
¹

i0,i1PI
j0,j1PJ

FpUi0i1 �S Vj0 j1q.

It commutes in the sense above. Its second and third row are equalizers by the isomorphisms
F |Ui � Fi. The columns are equalizers by construction. Hence, also the first row is an equal-
izer. �

1.4. Descent of schemes

Let S be a scheme. Grothendieck’s theorem 1.9, together with Yoneda’s lemma 1.3, allows us
to view schemes over S as representable sheaves on pSch{SqZar or pSch{Sqét. We have seen in
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proposition 1.11 that sheaves of sets have effective descent. A natural question is: do repre-
sentable sheaves descend to sheaves that are again representable? Or, rephrasing: is ‘descent
of schemes’ effective?

In the case of the Zariski topology, there is a simple, constructive answer.

Proposition 1.12. Let S be a scheme, tUi Ñ SuiPI a Zariski covering of S, and F a sheaf of sets on
pSch{SqZar such that F |Ui is representable for all i P I. Then F is representable.

Proof. For all i P I, fix a scheme Xi over Ui representing F |Ui , and an isomorphism F |Ui � hXi .
There are induced isomorphisms

hXi�Ui
Uij � hXi |Uij � F |Uij � hXj |Uij � hXj�Uj

Uij

of sheaves on Uij. Yoneda’s lemma 1.3 gives isomorphisms Xi �Ui Uij � Xj �Uj Uij satisfying
the cocycle condition. Since the covering is Zariski, Xi �Ui Uij is just an open subscheme of Xi.
So we can glue the schemes Xi along these open subschemes into a scheme X over S. We find
an isomorphism of descent data F |U � hX|U . By proposition 1.11 we have F � hX . �

However, étale descent of schemes may fail. See, for instance, the example given by Donald
Knutson [K, pp. 9–10]. Here we specifically study étale descent of curves.

Definition 1.13. Let S be a scheme and g a non-negative integer. By a curve over S we mean
a scheme X over S that is proper, smooth of relative dimension 1, and has geometrically
connected fibers. If all geometric fibers of X are connected curves of genus g, we also say that
X is a curve of genus g over S.

Theorem I. Let g be a non-negative integer unequal to 1. Let S be a scheme, tUi Ñ SuiPI an étale
covering of S, and F an étale sheaf of sets on S such that F |Ui is representable by a curve of genus g
over Ui for all i P I. Then F is representable by a curve of genus g over S.

Theorem II. There exist a scheme S, an étale covering tUi Ñ SuiPI of S, and an étale sheaf of sets F
on S such that F |Ui is representable by a curve of genus 1 over Ui for all i P I, and such that F is not
representable.

Theorems I and II are the objectives of this thesis. The first is a modern formulation of a
classical result; we give a proof in chapter 2. The last two chapters are dedicated to a new
constructive proof of theorem II. It was first proved by Michel Raynaud [R, Exemple XIII.3.2].
In section 4.3 we compare our construction to that by Raynaud.
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Descent in genus unequal to 1 2
2.1. Descent of quasi-coherent sheaves

In this chapter we show that étale descent of curves of genus g � 1 is effective. An important
ingredient is the fact that quasi-coherent sheaves on schemes descend along étale coverings.
This is quite remarkable: quasi-coherent sheaves are defined to be just Zariski sheaves.

We denote the category of quasi-coherent sheaves on a scheme S by QCoh S. If f : T Ñ S
is a morphism of schemes and F a quasi-coherent sheaf on S, then we write F |T for the
quasi-coherent sheaf f �F on T.

Definition 2.1. Let S be a scheme and U � tUi Ñ SuiPI an étale covering of S. A descent datum
of quasi-coherent sheaves relative to U consists of
� a quasi-coherent sheaf Fi P QCohUi for all i P I, and
� an isomorphism ϕij : Fi|Uij Ñ Fj|Uij in QCohUij for all i, j P I,

such that the cocycle condition

ϕik|Uijk � ϕjk|Uijk � ϕij|Uijk

holds for all i, j, k P I. A morphism of descent data pFi, ϕijqi,jPI Ñ pGi, ψijqi,jPI is a tuple of mor-
phisms pαi : Fi Ñ GiqiPI such that the diagram

Fi|Uij Gi|Uij

Fj|Uij Gj|Uij

αi|Uij

ϕij ψij

αj|Uij

commutes for all i, j P I.

Let QCohU denote the category of descent data of quasi-coherent sheaves relative to U . A
quasi-coherent sheaf F on S induces a descent datum F |U P QCohU . This gives a functor

desc : QCoh S Ñ QCohU , F ÞÑ F |U .

Once more, the next theorem is due to Alexander Grothendieck [SGA1, Théorème VIII.1.1].

Theorem 2.2 (Grothendieck). Let S be a scheme and U an étale covering of S. Then the functor
desc : QCoh S Ñ QCohU is an equivalence of categories.

Proof. Roughly speaking, we have to prove that QCoh is an étale ‘sheaf of categories’. The
correct word is 2-sheaf or stack. The upshot of this analogy is that we can apply lemma 1.8: it
suffices to prove the theorem for Zariski coverings and coverings given by a surjective étale
map Spec B Ñ Spec A. Full details can be found in [V, Definition 4.6, Lemma 4.25].
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The case of Zariski coverings is well-known. Next, consider an étale covering given by
Spec B Ñ Spec A. The theorem reduces to statements in commutative algebra, via the equiva-
lence between QCohpSpec Rq and R-Mod.

The fully faithfulness translates as follows. Let M1 and M2 be A-modules. Suppose that
β : M1 bA B Ñ M2 bA B is a homomorphism of B-modules, such that the two induced maps
M1 bA BbA B Ñ M2 bA BbA B are equal. We have to prove there exists a unique A-module
homomorphism α : M1 Ñ M2 satisfying β � αb idB. In the diagram of A-modules

M1 M1 bA B M1 bA BbA B

M2 M2 bA B M2 bA BbA B

α β βb idB

both subsquares on the right-hand side commute, by the assumption on β. The rows are equal-
izers by lemma 1.7. Hence there exists a unique map α : M1 Ñ M2 that makes the left square
commute. This means precisely β � αb idB.

The essential surjectivity translates to commutative algebra as follows. Let N be a B-module
and ϕ : N bA B Ñ BbA N an isomorphism of BbA B-modules, such that the diagram

N bA BbA B BbA BbA N

BbA N bA B

ϕ02

ϕ01 ϕ12

commutes. Here ϕ01 � ϕ b idB and ϕ12 � idB bϕ, and ϕ02 is obtained from ϕ by inserting
idB on the middle factor B. Then we have to show that there exists an A-module M and a
B-module isomorphism β : MbA B Ñ N that make a commutative square

MbA BbA B N bA B

BbA MbA B BbA N

βb idB

ϕ

idB bβ

where the left vertical arrow is defined on pure tensors by mb b1 b b2 ÞÑ b1 bmb b2.
We have two A-module homomorphisms α1, α2 : N Ñ N bA B, defined by respectively

α1pnq � nb 1 and α2pnq � ϕ�1p1b nq. Let M to be their equalizer. Let β : MbA B Ñ N be the
B-module homomorphism defined by mb b ÞÑ bm. We obtain a diagram of B-modules

MbA B N bA B N bA BbA B

N BbA N BbA BbA N.

β

α1 b idB

α2 b idB
ϕ ϕ02
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Its commutativity, in the sense above, is easily verified. The first row is an equalizer since it
is the base change of an equalizer by the flat map A Ñ B. The second row is an equalizer
by lemma 1.7. Since both ϕ and ϕ02 are isomorphisms, also β must be an isomorphism. The
desired compatibility between β and ϕ follows from the commutativity of the left-hand square
in the last diagram. �

2.2. Projective embeddings

In this section we introduce projective bundles.

Proposition 2.3. Let S be a scheme and A a quasi-coherent commutative graded OS-algebra. There is
a uniquely unique scheme ProjA and map f : ProjA Ñ S, such that for every affine open U � S there
is an isomorphism αU : f�1pUq Ñ ProjApUq over U, and moreover such that if V � U is another
affine open, then the diagram

f�1pVq ProjApVq

f�1pUq ProjApUq

αV

αU

commutes.

Proof. If V � U � S are affine open subschemes, we have a cartesian square

ProjApVq V

ProjApUq U

because A is quasi-coherent. Now let U, V � S be arbitrary affine open subschemes, and write
g : ProjApUq Ñ U and h : ProjApVq Ñ V for the structure morphisms. If W � U X V is
another affine open, the cartesian square above gives canonical isomorphisms

g�1pWq Ñ ProjApWq Ñ h�1pWq.
Varying W, these isomorphisms glue into an isomorphism ϕUV : g�1pU XVq Ñ h�1pU XVq.

For any three affine open U, V, W � S we have the cocycle condition ϕUW � ϕVW � ϕUV on
U XV XW. Hence pProjApUq, ϕUVqU,VPU is a descent datum relative to the Zariski covering
U of S that consists of all affine open subschemes of S. By proposition 1.12 Zariski descent
is effective, so the descent datum descends to a uniquely unique scheme ProjA over S. The
desired properties follow from the construction. �

The scheme ProjA is the relative Proj of A over S.

Definition 2.4. Let S be a scheme and E an OS-module. The symmetric algebra Sym E is the
quotient of the tensor algebra

À
n¥0 Ebn by the ideal generated by local sections xb y� yb x

with x, y P EpUq and U � S open.

The symmetric algebra Sym E is a commutative graded OS-algebra. If E is quasi-coherent, then
so is Sym E [EGA2, Corollaire 1.7.7]. Therefore, we can make the following definition.
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Definition 2.5. Let S be a scheme and E a quasi-coherent sheaf on S. The projective bundle of E
is the scheme PpEq � ProjpSym Eq over S.

For example, let k be a field and V an pn� 1q-dimensional k-vector space. Write S � Spec k and
let E be the quasi-coherent sheaf on S associated to V. Then PpEqpkq is the set of hyperplanes
in V. In fact, PpEq is non-canonically isomorphic to Pn

k .
Projective bundles are the correct context to define projective morphisms: a morphism of

schemes X Ñ S is projective if X is isomorphic over S to a closed subscheme of the projective
bundle PpEq, for some quasi-coherent finite type sheaf E on S. For instance, all closed sub-
schemes of Pn

S are projective over S. Conversely, every projective morphism X Ñ S is Zariski
locally on S of this form.

The construction of projective bundles commutes with base change.

Lemma 2.6. Let S1 Ñ S be a morphism of schemes, E a quasi-coherent sheaf on S, and E 1 the pullback
of E to S1. There is a canonical morphism PpE 1q Ñ PpEq, and the square

PpE 1q S1

PpEq S

is cartesian.

Proof. In fact, both Proj and Sym commute with base change, up to canonical isomorphism
[EGA2, 1.7.5, Proposition 3.5.3]. �

Let S be a scheme and A a quasi-coherent commutative graded OS-algebra. For every affine
open U � S we have the Serre twisting sheaf OProjApUqp1q on ProjApUq. They glue into a
quasi-coherent sheaf on ProjA, denoted again OProjAp1q.
Definition 2.7. Let X Ñ S be a morphism of schemes. A line bundle L on X is very ample over
S if there exists a quasi-coherent sheaf E on S and an immersion i : X Ñ PpEq over S such that
L is isomorphic to i�OPpEqp1q.
Proposition 2.8. Let f : X Ñ S be a quasi-compact morphism of schemes and L a line bundle on X
that is very ample over S. Then E � f�L is quasi-coherent and there exists a canonical immersion
X Ñ PpEq over S. If f is proper, then X Ñ PpEq is a closed immersion.

Proof. See [EGA2, Proposition 4.4.4, Corollaire 5.4.4]. �

If moreover f�L is of finite type, then f is projective, and we obtain an embedding of X in a
projective space. This is the case at least when S is locally noetherian [EGA3, Corollaire 3.2.2]
of when f is of finite presentation [EGA4, Proposition 8.9.1].

2.3. Line bundles on curves

The following property of curves will be essential. Recall from definition 1.13 that curves are
proper, smooth, and have geometrically connected fibers.

Theorem 2.9. Let S be a scheme and g a non-negative integer. Let X be a curve over S of genus g. If L
is a line bundle on X such that on every geometric fiber Xs the pullback Ls has degree at least 2g� 1,
then L is very ample over S.
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Proof. We only sketch the proof. The case S � Spec k with k an algebraically closed field is
classical: see for instance [H, Corollary IV.3.2]. So for every geometric fiber Xs the pullback Ls
is very ample.

Since X Ñ S is of finite presentation, we can reduce to the case where S is locally noetherian
[EGA4, Proposition 8.9.1]. In that case, the proof of [EGA3, Théorème 4.7.1] can be modified to
show that if L is very ample at a geometric fiber, then it is very ample in an open neighborhood
of that fiber. Being very ample over S can be checked on a Zariski covering of S, since the map
X Ñ S is quasi-compact [EGA2, Corollaire 4.4.5]. Hence L is very ample over S. �

Let f : X Ñ S be a curve of genus g. The canonical line bundle ΩX{S on X restricts on every
geometric fiber to a line bundle of degree 2g � 2. Hence, if the genus g is at least 2, then
L � Ωb3

X{S is very ample over S by the preceding theorem. The closed immersion X Ñ Pp f�Lq
from proposition 2.8 is called the tricanonical embedding of X. In genus 0 the dual line bundle
L � Ωb�1

X{S is very ample over S.
We are now ready to prove theorem I.

Proof (Theorem I). Let g be a non-negative integer unequal to 1. Let S be a scheme, tUi Ñ SuiPI
an étale covering of S, and F an étale sheaf of sets on S such that F |Ui is representable by
a curve of genus g over Ui for all i P I. We have to prove that F is representable by a curve
of genus g over S. Again, we can reduce to Zariski coverings and coverings given by an étale
surjection Spec B Ñ Spec A; see [V, Example 4.39, Lemma 4.25] for more details. The Zariski
case is a trivial consequence of proposition 1.12.

Consider a covering of the form tS1 Ñ Su with S and S1 affine. Let F be an étale sheaf of
sets on S such that F |S1 is representable by a curve f 1 : X1 Ñ S1 of genus g. Fix an isomorphism
F |S1 � hX1 of sheaves on S1. As in the proof of proposition 1.12, we obtain an isomorphism of
schemes ϕ : X1 �S S1 Ñ S1 �S X1 over S1 �S S1, satisfying the cocycle condition.

Put L1 � Ωb3
X1{S1 if g is at least 2, and put L1 � Ωb�1

X1{S1 if g equals 0. As discussed above, L1 is
very ample over S1. We write E 1 � f 1�L1. Define I 1 to be the ideal sheaf on PpE 1q corresponding
to the closed immersion of X1 in PpE 1q over S1 from proposition 2.8.

The isomorphism ϕ induces a descent datum of quasi-coherent sheaves pE 1, ψq relative
to tS1 Ñ Su. Applying theorem 2.2, it descends to a quasi-coherent sheaf E on S. The map
PpE 1q Ñ PpEq is an étale covering by lemma 2.6. Now ϕ also induces a descent datum of
quasi-coherent sheaves pI 1, χq relative to tPpE 1q Ñ PpEqu. It descends to a quasi-coherent
sheaf I on PpEq. Finally, the inclusion map I 1 Ñ OPpE 1q descends to a morphism I Ñ OPpEq.

We prove that the latter is injective. Let U � PpEq be an affine open subscheme. The
morphism PpE 1q Ñ PpEq is a base change of S1 Ñ S by the cartesian square in lemma 2.6; in
particular it is faithfully flat and affine. So the inverse image V � PpE 1q of U is also affine.
Write A � OPpEqpUq and B � OPpE 1qpVq. The A-module homomorphism IpUq Ñ A gives rise
to an injective B-module homomorphism I 1pVq Ñ B by the base change A Ñ B. Since A Ñ B
is faithfully flat, also IpUq Ñ A is injective. It follows that the map I Ñ OPpEq is injective.

Hence, I is a quasi-coherent ideal sheaf on PpEq. Let X be the corresponding closed sub-
scheme of PpEq. It is easily verified that X Ñ S is a curve of genus g that represents F . �

In contrast, there is no functorial assignment of very ample line bundles on curves of genus 1.
Therefore, the proof above does not apply. The situation is remedied if we consider curves of
genus 1 endowed with a section, i.e. elliptic curves. The section defines a canonical very ample
line bundle. It follows that étale descent of elliptic curves is effective.
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Torsors 3
3.1. Actions

The first chapter was concerned mainly with the properties of single sheaves. Now we will
study the actions of a sheaf of groups on another sheaf. Before we give the definition, we
introduce a construction. Let C be a site, D a category, and F ,G P ShD C two D-valued sheaves
on C. Let IsompF ,Gq denote the set of sheaf isomorphisms F Ñ G. The functor

IsompF ,Gq : Cop Ñ Set, T ÞÑ IsompF |T ,G|Tq

is a sheaf of sets on C by proposition 1.11. A special case is the sheaf AutF � IsompF ,Fq.
Composition makes AutF into a sheaf of groups on C.

Definition 3.1. Let C be a site and A a sheaf of groups on C. Let D be a category and F a
D-valued sheaf on C. A left action of A on F is a morphism of sheaves A Ñ AutF .

A left action of a sheaf of groups A on a sheaf of sets F may equivalently be defined as a
morphism A�F Ñ F in Sh C, such that for all objects T P C the map ApTq �FpTq Ñ FpTq
is a left action of the group ApTq on the set FpTq. By Yoneda’s lemma 1.3, a left action of A
on a D-valued sheaf F can be given as a collection of left actions A� hXF Ñ hXF for X P D,
contravariantly functorial in X. Often this description is convenient.

Definition 3.2. Let C be a site, A a sheaf of groups on C, and D a category. A D-valued left A-
sheaf is a D-valued sheaf F on C endowed with a left action of A. A morphism of left A-sheaves
F Ñ G is a morphism of sheaves such that for all objects X P D the diagram

A� hXF hXF

A� hXG hXG

commutes.

The category of D-valued left A-sheaves is denoted by A-ShD C. Recall from section 1.3 that
sheaves can be defined ‘locally’ by means of descent data. The same is true of sheaves with a
left action. To be precise, let C be a site and U � tUi Ñ SuiPI a covering in C. Let A be a sheaf
of groups on C{S and write Ai � A|Ui and Aij � A|Uij for the respective pullbacks. Let D be a
category. A D-valued A-descent datum relative to U consists of
� a D-valued left Ai-sheaf Fi P Ai-ShD C{Ui for all i P I, and
� an isomorphism ϕij : Fi|Uij Ñ Fj|Uij in Aij-ShD C{Uij for all i, j P I,

such that the cocycle condition

ϕik|Uijk � ϕjk|Uijk � ϕij|Uijk
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holds for all i, j, k P I. A morphism of A-descent data pFi, ϕijqi,jPI Ñ pGi, ψijqi,jPI is a tuple of
morphisms pαi : Fi Ñ GiqiPI of left Ai-sheaves, such that the diagram

Fi|Uij Gi|Uij

Fj|Uij Gj|Uij

αi|Uij

ϕij ψij

αj|Uij

commutes for all i, j P I. Let A-ShD U be the category of D-valued A-descent data relative to
U . As before, there is a functor desc : A-ShD C{S Ñ A-ShD U .

Proposition 3.3. Let C be a site, S P C an object and U a covering of S. Let A be a sheaf of groups
on C{S and let D be a category. The functor desc : A-ShD C{S Ñ A-ShD U is fully faithful. If D has
products and equalizers, then desc is an equivalence of categories.

Proof. Entirely analogous to the proof of proposition 1.11. �

Of course one similarly defines a right action as a morphism of sheaves Aop Ñ AutF . Here
Aop is the sheaf of groups that sends an object T P C to the opposite group ApTqop. If A is
abelian, then the identity is an isomorphism A Ñ Aop, so left and right actions coincide. In
this case we speak simply of an action.

We conclude this section with some examples. Let F ,G P ShD C be sheaves. There is a
canonical left action of AutF on F . The sheaf IsompF ,Gq has a left action of Aut G and a
right action of AutF . Now suppose that F and G are endowed with a left action of a sheaf
of groups A. Let IsomApF ,Gq denote the set of left A-sheaf isomorphims F Ñ G. Then the
functor

IsomApF ,Gq : Cop Ñ Set, T ÞÑ IsomA|T pF |T ,G|Tq
is a sheaf of sets on C by proposition 3.3. Again we obtain sheaves of groups AutA F and
AutA G, with a right respectively left action on IsomApF ,Gq.

In another direction, let A be a sheaf of groups on C. Write F for its underlying sheaf of
sets. Define a morphism A�F Ñ F in Sh C by

ApTq �FpTq Ñ FpTq, pa, xq ÞÑ ax

for every T P C. This is a left action, called the regular left action of A on itself. It is central in
what follows.

3.2. Torsors and twists

To simplify the discussion, we restrict ourselves to sites with a final object. That condition is
fulfilled by all sites relevant to this thesis, notably pSch{Sqét. We remark however that, with
more care, the theory in this and next section could be formulated in general.

Definition 3.4. Let C be a site with final object S and A a sheaf of groups on C. A left A-torsor
is a left A-sheaf of sets T for which there exists a covering tUi Ñ SuiPI of S such that for all
i P I the left A|Ui -sheaf T |Ui is isomorphic to the regular left A|Ui -sheaf.
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We say that the covering tUi Ñ SuiPI trivializes T , or is a trivialization of T . The torsor T is
trivial if it is trivialized by tidSu.
Proposition 3.5. Let C be a site with final object S and A a sheaf of groups on C. Any morphism of
left A-torsors is an isomorphism.

Proof. Suppose that T1 and T2 are trivial left A-torsors. A morphism α : T1 Ñ T2 gives for all
T P C an ApTq-equivariant map αT : T1pTq Ñ T2pTq, which is necessarily an isomorphism.
Hence α is an isomorphism.

Now let T1 and T2 be arbitrary left A-torsors, trivialized by coverings tUi Ñ SuiPI respec-
tively tVj Ñ SujPJ . Then U � tUi �S Vj Ñ SuiPI,jPJ is a common refinement that trivializes both
torsors. A morphism α : T1 Ñ T2 induces an isomorphism on the corresponding A-descent
data relative to U , because all morphisms between trivial torsors are isomorphisms. By propo-
sition 3.3, α must be an isomorphism itself. �

We introduce twists. Let C be a site with final object S and A a sheaf of groups on C. Let T be
a right A-torsor. Let D be a category and F a D-valued left A-sheaf. Choose a trivialization
U � tUi Ñ SuiPI of T and choose elements ti P T pUiq for all i P I. There are unique aij P ApUijq
such that tj|Uij � aij � ti|Uij . These elements satisfy the cocycle condition aik|Uijk � ajk|Uijk � aij|Uijk

for all i, j, k P I. Identifying them with their image under A Ñ AutF , we get a descent datum
pF |Ui , aijqi,jPI relative to U . If it descends to a sheaf on C, that sheaf is called the twist of F
by T and denoted T bA F . Observe that by proposition 1.11, twists exist at least when D has
products and equalizers, in particular in case D � Set.

Twists can also be defined by a universal property. We avoid this approach since it requires
sheafification, whereas we are already familiar with descent data. One drawback is that we
need the following lemma.

Lemma 3.6. The construction of T bA F is functorial in T and F . In particular the construction is
independent of choices, up to canonical isomorphism.

Proof. Let C, S, A, D and F be as above. Let T1 and T2 be right A-torsors. Choose trivializations
V1 and V2 for T1 and T2, respectively. Let U � tUi Ñ SuiPI be a common refinement of V1 and
V2 as in the proof of proposition 3.5. Any twist construction T1 bA F corresponding to V1
induces a twist construction corresponding to U that produces a canonically isomorphic twist.
The same holds for T2 bA F . So it suffices to consider twist constructions corresponding to the
common trivialization U .

Choose elements si P T1pUiq and ti P T2pUiq for all i P I. Let aij, bij P ApUijq be defined by
sj|Uij � aij � si|Uij and tj|Uij � bij � ti|Uij . Given a morphism α : T1 Ñ T2, we have to produce a
canonical morphism of sheaves T1 bA F Ñ T2 bA F , or equivalently a canonical morphism of
descent data pF |Ui , aijqi,jPI Ñ pF |Ui , bijqi,jPI relative to U . Proceed as follows. Define λi P ApUiq
by tiλi � αpsiq. Then for all i, j P I we have equalities

tj|Uij � λj|Uij � aij � αpsj|Uijq � aij � αpsi|Uijq � ti|Uij � λi|Uij � tj|Uij � bij � λi|Uij

in T2pUijq. This implies the identity λj|Uij � aij � bij � λi|Uij . In other words, the diagram

F |Uij F |Uij

F |Uij F |Uij

λi|Uij

aij bij

λj|Uij
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commutes. This means that pλiqiPI is a morphism of descent data pF |Ui , aijqi,jPI Ñ pF |Ui , bijqi,jPI .
We obtain a morphism T1 bA F Ñ T2 bA F .

Suppose that T3 is a third right A-torsor and β : T2 Ñ T3 a morphism. Without loss of
generality T3 is trivialized by U . Again choose elements ri P T3pUiq for all i P I, and define
µi, νi P ApUiq by riµi � βptiq and riνi � βαpsiq. Then as above, pµiqiPI defines a morphism
T2 bA F Ñ T3 bA F , and pνiqiPI defines a map T1 bA F Ñ T3 bA F . The identity νi � µiλi
now proves that T bA F is functorial in T .

Functoriality in F is immediate since the choices made in the construction are all indepen-
dent from F . �

By construction the pullbacks F |Ui and pT bA Fq|Ui are isomorphic for all i P I. It is in fact
this ‘local isomorphism’ that characterizes twists.

Proposition 3.7. Let C be a site with final object S and U � tUi Ñ SuiPI a covering of S. Let D be
a category. Suppose that F and G are D-valued sheaves on C such that F |Ui is isomorphic to G|Ui for
all i P I. Then IsompF ,Gq is a right AutF -torsor trivialized by U , and G is isomorphic to the twist
IsompF ,Gq bAutF F .

Proof. Fix isomorphisms αi : F |Ui Ñ G|Ui for all i P I. The maps

AutF |T Ñ IsompF |T ,G|Tq, σ ÞÑ αi|T � σ

for objects T P C{Ui constitute an isomorphism AutF |Ui Ñ IsompF |Ui ,G|Uiq of right AutF |Ui -
sheaves. So IsompF ,Gq is a right AutF -torsor trivialized by U .

Let σij P AutF |Uij be given by αj|Uij � σij � αi|Uij . We get a commutative diagram

F |Uij G|Uij

F |Uij G|Uij

αi|Uij

σij id

αj|Uij

hence pαiqiPI is an isomorphism of descent data pF |Ui , σijqi,jPI Ñ G|U . Therefore G is isomorphic
to the twist IsompF ,Gq bAutF F . �

Suppose A is a sheaf of abelian groups acting on F . Then A Ñ AutF actually maps into the
subsheaf AutA F of automorphisms of F as A-sheaf. Let T be an A-torsor. By the functoriality
in lemma 3.6 there is a map AutA F Ñ AutpT bA Fq. Hence the twist T bA F again has a
canonical A-action.

We compute this A-sheaf T bA F in case F is an A-torsor as well. Let U � tUi Ñ SuiPI
be a common trivialization of T and F . As usual, choose ti P T pUiq and take aij P ApUijq
satisfying tj|Uij � aij � ti|Uij . Observe that T |U � pA|Ui , aijqi,jPI as A-descent data relative to U .
Similarly write F |U � pA|Ui , bijqi,jPI . Then the twist T bA F is given by the A-descent datum
pA|Ui , aijbijqi,jPI . We see that T bA F is an A-torsor itself, trivialized by U . In fact, this leads to
a group structure.

Prior to the precise statement, we establish some notation. For a sheaf of abelian groups
A, the set of isomorphism classes of A-torsors is denoted by TorsA. If U is a covering of the
final object S, then TorspU ,Aq denotes the subset of isomorphism classes of A-torsors that are
trivialized by U . From this point onwards, the group structure on an abelian sheaf of groups
is written additively.
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Proposition 3.8. Let C be a site with final object S and A a sheaf of abelian groups on C. The twist
operation bA makes TorsA into an abelian group, with identity element the class of trivial A-torsors.
If U is a covering of S, then TorspU ,Aq � TorsA is a subgroup.

Proof. We first prove that TorspU ,Aq is an abelian group. Let T1 and T2 be A-torsors with
trivialization U � tUi Ñ SuiPI . We have seen that T1 and T2 are given by A-descent data
pA|Ui , aijqi,jPI and pA|Ui , bijqi,jPI for suitable aij, bij P ApUijq. Moreover, the twist T1 bA T2 is
then given by the A-descent datum pA|Ui , aij � bijqi,jPI . Because A is abelian, it immediately
follows that TorspU ,Aq is an abelian group under the operation bA.

Any finite number of A-torsors has a common trivialization. Therefore the preceding argu-
ments also prove that Tors A is an abelian group. Since bA is independent from the choice of
trivialization, TorspU ,Aq � TorsA is a subgroup. �

The inverse of a torsor T in TorsA can also be described directly as follows. There is a canonical
isomorphism A � AutA A, which induces an action of A on IsomApT ,Aq. Under this action,
IsomApT ,Aq is an A-torsor, and the twist IsomApT ,Aq bA T is a trivial torsor.

3.3. Cohomology

The group TorspU ,Aq can be computed as a Čech cohomology group.

Definition 3.9. Let C be a site and U � tUi Ñ SuiPI a covering in C. Let A be a sheaf of abelian
groups on C. Define for n ¥ 0 the abelian group

CnpU ,Aq �
¹

i0,...,inPI

ApUi0 ...inq.

The maps

CnpU ,Aq Ñ Cn�1pU ,Aq, pai0 ...inqi0,...,inPI ÞÑ
� n�1̧

k�0

p�1qkai0 ...îk ...in�1
|Ui0...in�1



i0,...,in�1PI

constitute a cochain complex C
pU ,Aq called the Čech complex of A relative to U . Its cohomol-
ogy, written H
pU ,Aq, is the Čech cohomology of A relative to U .

We have H0pU ,Aq � ApSq by the sheaf property.

Proposition 3.10. Let C be a site with final object S and U a covering of S. Let A be a sheaf of abelian
groups on C. There is a canonical isomorphism H1pU ,Aq � TorspU ,Aq.

Proof. Let Z be the kernel of C1pU ,Aq Ñ C2pU ,Aq and B the image of C0pU ,Aq Ñ C1pU ,Aq.
We construct a map ρ : Z Ñ TorspU ,Aq as follows. Write U � tUi Ñ SuiPI . Elements of Z are
tuples paijqi,jPI with aij P ApUijq for i, j P I, satisfying the cocycle condition

ajk|Uijk � aik|Uijk � aij|Uijk � 0

for all i, j, k P I. Let ρpaijqi,jPI be the isomorphism class of A-torsors corresponding to the
A-descent datum pA|Ui , aijqi,jPI . This makes ρ into a surjective group homomorphism.

17



Suppose paijqi,jPI is in the kernel of ρ, that is, pA|Ui , aijqi,jPI defines a trivial A-torsor. Then
there exist elements bi P ApUiq for i P I such that

A|Uij A|Uij

A|Uij A|Uij

bi|Uij

aij id

bj|Uij

is a commutative square for all i, j P I. In other words, there exist bi P ApUiq satisfying the
identities aij � bi|Uij � bj|Uij . This means precisely that paijqi,jPI is in B. Hence we have ker ρ � B,
and ρ induces an isomorphism Z{B Ñ TorspU ,Aq. �

One can also construct the ‘absolute’ cohomology groups H
pAq that do not depend on a
particular covering, with maps H
pU ,Aq Ñ H
pAq for every covering U . There is a canoni-
cal isomorphism H1pAq � TorsA, compatible with the isomorphisms H1pU ,Aq � TorspU ,Aq.
Consult [G, III.3.6] for more details. Here we do not require this generality.

In the situation of definition 3.9, suppose that I is endowed with a total order  . Define the
abelian groups

Cn
 pU ,Aq �

¹
i0,...,inPI
i0 ... in

ApUi0 ...inq

with obvious maps Cn
 pU ,Aq Ñ Cn�1

  pU ,Aq. Then C

 pU ,Aq is again a cochain complex, called

the small Čech complex of A relative to U . In general its cohomology H
 pU ,Aq is different from
the ‘full’ cohomology H
pU ,Aq. However, on the Zariski site they coincide.

Lemma 3.11. Let S be a scheme and U a Zariski covering of S endowed with a total order  . Let A be
a sheaf of abelian groups on pSch{SqZar. Then H
pU ,Aq is canonically isomorphic to H
 pU ,Aq.
Proof. The single ingredient is the fact that if U Ñ S is an open immersion, then the two
projections U �S U Ñ U coincide and are isomorphisms. A complete proof, however, would
be long and technical. Details can be found in [S, Proposition I.3.2]. �

3.4. Representability of torsors

In this section we return to the étale site pSch{Sqét. In particular, we discuss conditions under
which torsors on pSch{Sqét are representable, or are not representable. We introduce some
terminology.

Definition 3.12. Let C be a category. A group object in C is a functor Cop Ñ Grp such that
the induced functor Cop Ñ Set is representable. A group object is commutative if the functor
Cop Ñ Grp maps into the subcategory Ab � Grp.

Equivalently, a group object is a functor Cop Ñ Grp, together with an object A P C and an
isomorphism from the induced functor Cop Ñ Set to the Yoneda functor hA. A group object in
the category Sch{S is called a group scheme over S.

Definition 3.13. Let S be a scheme. An abelian scheme over S is a proper smooth group scheme
over S with geometrically connected fibers.
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Lemma 3.14. The group scheme structure on abelian schemes is commutative.

Proof. See [MFK, Corollary 6.5]. �

We are interested in group schemes that are curves. Recall from definition 1.13 that we suppose
curves to be proper and smooth with geometrically connected fibers. An elliptic curve over a
scheme S is a curve over S endowed with the structure of a group scheme. From the definitions,
elliptic curves are abelian schemes. Moreover, elliptic curves are necessarily curves of genus 1.

We are now able to state the main result of this section. Its proof is beyond the scope of this
thesis.

Theorem 3.15 (Raynaud). Let S be a local scheme and A an abelian scheme over S. Let T be an étale
A-torsor and U an étale covering of S that trivializes T .
� Suppose S is normal. Then T is representable if and only if the class of T in H1pU , Aq is torsion. In

the representable case, T is represented by a projective scheme over S.
� Suppose S is regular. Then T is representable by a projective scheme over S.

Proof. See [R, Proposition XIII.2.6]. �

The preceding theorem is key in proving theorem II. Indeed, it suggests the following ap-
proach. Suppose we construct an étale torsor T under an elliptic curve E over S, for some
normal local scheme S. Note that S must not be too nice, according to the second part of the
theorem. Suppose moreover that T has infinite order in H1pU , Eq, where U � tUi Ñ SuiPI is a
trivialization of T . Then T is a non-representable sheaf of sets on S. However, for all i P I the
pullback T |Ui is representable by E�S Ui, which is a curve of genus 1 over Ui. Hence, T is an
example of theorem II.

Raynaud’s original proof of theorem II followed this pattern [R, Exemple XIII.3.2]. In the
next chapter we present a new construction, applying the same method. We compare the two
constructions in section 4.3.
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Descent in genus 1 4
4.1. Setup

In this chapter we construct an example of non-effective étale descent of curves of genus 1,
that is, we prove theorem II. The first section is preparatory, establishing the required objects
and their basic properties. Section 4.2 then constructs a non-representable torsor and finishes
the proof.

Definition 4.1. We introduce the following objects:
� k a field of characteristic unequal to 2,
� E0 � Proj krx, y, zs{p f q an elliptic curve in P2

k , where f is an irreducible cubic over k,
� C � Spec krx, y, zs{p f q the affine cone over E0,
� s P C the closed point corresponding to p0, 0, 0q P Cpkq,
� S � SpecOC,s the localization of C at s,
� E � E0 �k S the elliptic curve in P2

S defined by f .

Pictorially, s is the top of the cone C. The scheme S, which is the intersection of all open
neighborhoods of s, will serve as base scheme. It consists of all points of C that contain s in
their closure.

Lemma 4.2. The scheme S is local, normal and non-regular.

Proof. By construction S is local. The cone C is regular at all points except s. In particular, S
is not regular. We apply Serre’s criterion for normality [M, Theorem 23.8] to prove that S is
normal: a locally noetherian connected scheme X is normal if and only if
� X is regular in codimension 1, and
� for every point p P X we have depthOX,p ¥ minp2, dimOX,pq.

Here the depth of a noetherian local ring R is the largest integer n for which there exist elements
a1, . . . , an in the maximal ideal of R such that multiplication by ai is injective on R{pa1, . . . , ai�1q
for i � 1, . . . , n. Our scheme S is noetherian and connected. Its single non-regular point s has
codimension 2, so the first condition is satisfied. Since S is a complete intersection over k we
have depthOS,p � dimOS,p for any point p P S, see [M, Theorem 21.3]. We conclude that S is
normal. �

Definition 4.3. We introduce the following objects:
� u P O�

C,s not a square,
� S1 � SpecOC,sr

?
us,

chosen such that S1 Ñ S is a finite étale covering that splits above s,
� σ the automorphism of S1 over S induced by

?
u ÞÑ �?u,

� s0, s1 P S1 the closed points above s,
� U0 � S1zts1u and U1 � S1zts0u,
� U01 � U0 XU1,

under the further condition that all morphisms U0 Ñ E0 over Spec k are constant.
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We verify that these conditions can be fulfilled; the only choice is in u. Write A � OSpSq and
B � OS1pS1q. First we show that for any choice of u P A� the map S1 Ñ S is a finite étale
covering. As A-modules we have B � A ` A

?
u, which proves that S1 is finite over S. The

presentation B � Arts{pt2 � uq makes A Ñ B standard étale, because char k is not 2 and u is a
unit. Therefore S1 is étale over S. Let p � A be a prime ideal. The corresponding fiber in S1 is
Spec pA{pqrts{pt2 � vq, where v is the image of u in A{p. In particular the fiber is non-empty, so
S1 Ñ S is surjective.

Now put u � 1� x P A�. We claim that it satisfies the conditions in definition 4.3. For one
thing, u is not a square in A, as A is a graded ring and the highest non-zero homogeneous
component of u has the odd degree 1. We have u � 1 modulo the maximal ideal px, y, zq of A.
Hence the fiber of S1 Ñ S above s equals Specpk� kq, consisting of two closed points.

The following lemma helps us prove that all k-morphisms U0 Ñ E0 are constant.

Lemma 4.4. Suppose k is algebraically closed. There is a dense subset of U0 consisting of points p P U0
that contain s0 in their closure and have residue field κppq � kptq.
Proof. Take a, b, c P k with f pa, b, cq � 0 and a � 0. Let

L � Spec krx, y, zs{pbx� ay, cy� bz, az� cxq
be the corresponding line in C. Then L is isomorphic to A1

k , with inclusion i : L Ñ C given by

i� : krx, y, zs{p f q Ñ krλs,

$'&
'%

x ÞÑ aλ,
y ÞÑ bλ,
z ÞÑ cλ.

We deduce L �C S1 � Spec krλspλqrts{pt2 � 1� aλq. Since a is non-zero, 1� aλ is not a square
in krλspλq. Therefore krλspλqrts{pt2 � 1 � aλq is an integral domain. We conclude that L �C S1

is an integral closed subscheme of S1 with function field kptq. Let p be the generic point of
L �C S1. Then p lies in U0, its closure contains s0, and its residue field is kptq. So p has the
desired properties. Since k is algebraically closed, the set of points p P U0 obtained as above
for varying a, b, c is dense in U0. �

Let α : U0 Ñ E0 be a morphism over Spec k. We may assume that k is algebraically closed, after
base change. Let p P U0 be as in lemma 4.4. Its image αppq can not be the generic point of E0,
since there is no map from the function field of E0 to kptq. So the image of p is a closed point
q P E0. Since s0 lies in the closure of p, we also have αps0q � q. Varying p, we see that α maps a
dense subset of U0 to q. The preimage of q is closed, so in fact α is constant. Hence, objects as
in definition 4.3 exist.

Lemma 4.5. The square

S1 \ S1 S1

S1 S

id, σ

id, id

is cartesian.

Proof. Write A � OSpSq and B � OS1pS1q. Then we have an isomorphism BbA B � B� B, and
the claim immediately follows. �
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Next, we construct another elliptic curve Ẽ over S. By a common abuse of notation, write S1

for the Yoneda functor hS1{S : pSch{Sqop Ñ Set. The automorphism sheaf Aut S1 is often called
the Galois group of S1 over S. Observe that Aut S1 is isomorphic to the constant sheaf Z{2Z, as
defined at the end of section 1.2. In particular, Aut S1 is abelian.

The canonical action of Aut S1 on S1 makes S1 into a torsor with trivialization tS1 Ñ Su.
On the other hand, Aut S1 acts, via its identification with the constant sheaf Z{2Z, on E by
multiplication with �1.

Definition 4.6. We define Ẽ � S1 bAut S1 E.

A priori Ẽ is just a sheaf of groups. However, we proved at the end of chapter 2 that Ẽ is
representable by an elliptic curve over S, which we denote again by Ẽ. Here we can actually
describe Ẽ directly. Remark first that, since char k is not 2, after a change of variables we may
assume that E is given by a cubic of the form y2z� x3 � ax2z� bxz2 � cz3.

Proposition 4.7. Suppose that E � P2
S is given by f � y2z� x3 � ax2z� bxz2 � cz3. Then Ẽ is the

elliptic curve in P2
S given by f̃ � uy2z� x3 � ax2z� bxz2 � cz3.

Proof. Lemma 4.5 gives S1pS1 �S S1q � S1pS1q2 and pAut S1qpS1 �S S1q � pAut S1q2. The two pull-
backs of id P S1pS1q to S1pS1 �S S1q differ by pid, σq P pAut S1q2. Hence the twist Ẽ is given by the
descent datum pES1 , pid, σqq relative to tS1 Ñ Su.

Write E1 for the elliptic curve in P2
S defined by f̃ . We prove that E1 is isomorphic to Ẽ. Let

T be a scheme over S. Following the proof of proposition 1.11, ẼpTq consists of precisely those
e P EpS1 �S Tq for which the respective pullbacks pe, eq and pe, σ�eq to EpS1 �S Tq2 differ by the
action of pid, σq. We obtain

ẼpTq �
!

e P EpS1 �S Tq : σ�e � �e
)

.

An element e of EpS1 �S Tq can be given as a line bundle L on S1 �S T together with global
sections r0, r1, r2 P LpS1�S Tq that generate L and satisfy f pr0, r1, r2q � 0. In this description, the
condition σ�e � �e means that the tuple pL, σ�r0, σ�r1, σ�r2q is isomorphic to pL, r0,�r1, r2q.
Equivalently, the tuple pL, r0, r1{

?
u, r2q defines an element d of E1pS1�S Tq invariant under σ�.

The invariance means that d comes from an element of E1pTq.
We have a bijection from ẼpTq to E1pTq. In fact it is a group isomorphism. The isomorphism

is clearly functorial in T, hence Ẽ � E1. �

4.2. A non-torsion torsor

We are about to construct an Ẽ-torsor on S with trivialization U � tU0 Ñ Su. The following
lemma is useful in the computation of H1pU , Ẽq.
Lemma 4.8. There is an isomorphism U0 �S U0 � U0 \U01 under which the projection maps π0, π1
are given by

π0 :

U0 \U01

U0

π1 :

U0 \U01

U0
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where a squiggly arrow denotes application of σ. There is also an isomorphism

U0 �S U0 �S U0 � U0 \U01 \U01 \U01

under which the projection maps π01, π02, π12 are given by

π01 :

U0 \U01 \U01 \U01

U0 \U01

π02 :

U0 \U01 \U01 \U01

U0 \U01

π12 :

U0 \U01 \U01 \U01

U0 \U01.

Proof. The statements are direct consequences of lemma 4.5. �

We can now compute the cohomology group H1pU , Ẽq. Let ẼpU01q� denote the subgroup of
ẼpU01q of elements that are anti-invariant under σ�, that is, elements satisfying σ�e � �e.

Proposition 4.9. The cohomology group H1pU , Ẽq is isomorphic to ẼpU01q�.

Proof. Lemma 4.8 yields

ẼpU0 �S U0q � ẼpU0q � ẼpU01q,
ẼpU0 �S U0 �S U0q � ẼpU0q � ẼpU01q3

with projection maps

π�
0 : ẼpU0q Ñ ẼpU0q � ẼpU01q, e ÞÑ pe, e|U01q,

π�
1 : ẼpU0q Ñ ẼpU0q � ẼpU01q, e ÞÑ pe, σ�e|U01q,

π�
01 : ẼpU0q � ẼpU01q Ñ ẼpU0q � ẼpU01q3, pd, eq ÞÑ pd, d|U01 , e, eq,

π�
02 : ẼpU0q � ẼpU01q Ñ ẼpU0q � ẼpU01q3, pd, eq ÞÑ pd, e, d|U01 , eq,

π�
12 : ẼpU0q � ẼpU01q Ñ ẼpU0q � ẼpU01q3, pd, eq ÞÑ pd, e, σ�e, σ�d|U01q.

We consider the Čech complex C
pU , Ẽq in degrees 0, 1 and 2:

ẼpU0q ẼpU0q � ẼpU01q ẼpU0q � ẼpU01q3.δ0 δ1

Let Z be the kernel of δ1 � π�
12 � π�

02 � π�
01. We find

Z �
!
pd, eq P ẼpU0q � ẼpU01q : d � 0, σ�e � �e

)
� ẼpU01q�.

We claim that δ0 is the zero map. An element e P ẼpU0q maps to p0, σ�e� eq. There are isomor-
phisms ẼpU0q � EpU0q � E0pU0q, so by construction e is constant. In particular, σ�e equals e
and δ0peq � 0. Now H1pU , Ẽq is isomorphic to Z and that concludes the proof. �

At last, we construct an Ẽ-torsor on S. Consider first the tautological element τ0 P EpCztsuq
that maps a point pa, b, cq on Cpkqztp0, 0, 0qu to the point pa : b : cq P Epkq. More precisely, τ0 is
given by the trivial line bundle on Cztsu and the generating global sections x, y, z.
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We have maps EpCztsuq Ñ EpSztsuq Ñ EpU01q Ñ ẼpU01q. The last map comes from the
non-canonical isomorphism E|S1 � Ẽ|S1 and is described in the proof of proposition 4.7. Let
τ P ẼpU01q be the image of τ0 under this composition. It is defined by the trivial line bundle
on U01 and the generating global sections x, y{?u, z. We see that τ is anti-invariant under σ�.

By propositions 3.10 and 4.9, we have an Ẽ-torsor T associated with τ. We can actually
describe T explicitly:

T pTq �
!

e P ẼpU0 �S Tq : σ�e|U01�ST � e|U01�ST � τ|U01�ST

)

for every scheme T over S, with the obvious Ẽ-action.

Proposition 4.10. The Ẽ-torsor T is not representable.

Proof. Multiples of τ are not zero in ẼpU01q�, so T has infinite order in H1pU , Ẽq. Combine this
with theorem 3.15 and lemma 4.2. �

As explained at the end of chapter 3, this concludes the proof of theorem II.

4.3. Raynaud’s construction

The first example of a non-representable étale torsor under an elliptic curve was provided
by Raynaud [R, Exemple XIII.3.2]. Although the details are very different from our exposition
above, the constructions are comparable on a higher level. Raynaud himself provides an outline
for his construction, as follows:
� S a normal noetherian local scheme,
� S1 Ñ S a connected étale covering of degree 2 with two closed points s0, s1 P S1,
� U0 � S1zts1u and U1 � S1zts0u and U01 � U0 XU1,
� E an elliptic curve over S
� E1 � E�S S1 its base change to S1,
� τ1 P E1pU01q with no multiple of τ1 of the form d|U01 � e|U01 with d P E1pU0q, e P E1pU1q,
� T 1 the E1-torsor with Zariski trivialization V 1 � tU0 Ñ S1, U1 Ñ S1u defined by τ1.

Lemma 3.11 states that T 1 is fully defined by τ1. By construction, the class of T 1 in H1pV 1, E1q
is not torsion.

Let A be the Weil restriction of E1 to S. As sheaf, A is defined by ApTq � E1pT�S S1q for every
scheme T over S; in fact, this sheaf A is representable by a 2-dimensional abelian scheme over
S. Similarly let T be the Weil restriction of T 1 to S. It is an A-torsor with étale trivialization
V � tU0 Ñ S, U1 Ñ Su, whose class in H1pV , Aq is not torsion.

Let Ẽ be the twist of E as before. There is an exact sequence of abelian schemes

0 E A Ẽ 0

which induces an exact sequence of cohomology groups

0 H1pV , Eq H1pV , Aq H1pV , Ẽq.

Since H1pV , Aq contains an element of infinite order, either H1pV , Eq or H1pV , Ẽq contains an
element of infinite order. By theorem 3.15, there exists either a non-representable E-torsor or a
non-representable Ẽ-torsor.
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After this outline, Raynaud continues to provide data that satisfy the requirements above.
His techniques are different from our construction, and more involved. However, our construc-
tion can be modified to fit the given outline.

The construction in this thesis has two improvements upon the outline above. First, the
detour via torsors on S1 is omitted; the redundant étale covering V � tU0 Ñ S, U1 Ñ Su is
reduced to U � tU0 Ñ Su. Second, Raynaud proves that there exists a non-representable torsor
under either E or Ẽ. In our construction, we actually obtain a non-representable torsor under
Ẽ, and we write it down explicitly.
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20/24/28/32, 1964–67.
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