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1. Introduction

These notes are based mostly on the preprint [1] by Manjul Bhargava.
Let K be a number field and X/K a smooth proper variety. If X has a K-rational point, then

X also has a point over each completion of K. In other words, X(K) 6= ∅ implies X(AK) 6= ∅.
We say that X satisfies the Hasse principle if the converse implication X(AK) 6= ∅⇒ X(K) 6= ∅
holds. This leads to the following three possibilities.
I X(K) = ∅, X(AK) = ∅: the Hasse principle holds since X is not locally soluble,
I X(K) 6= ∅, X(AK) 6= ∅: the Hasse principle holds since X is soluble,
I X(K) = ∅, X(AK) 6= ∅: the Hasse principle fails.

Example 1.1. The Hasse principle is satisfied for
I Severi–Brauer varieties,
I quadrics in Pn for all n ≥ 1,
I cubics in P1. �

Example 1.2. The Hasse principle fails for
I cubics in P3 (which are degree 3 del Pezzo surfaces),
I cubics in P2,
I degree 4 hyperelliptic curves,
I complete intersections of two quadrics in P3. �

The last three items are models of genus one curves. On the other hand, genus zero curves are
Severi–Brauer varieties and hence do satisfy the Hasse principle. One may thus say that genus
one curves are among the ‘simplest’ counterexamples to the Hasse principle. The earliest such
counterexamples were found in 1940–2 for degree 4 hyperelliptic curves (Lind and Reichardt)
and 1957 for plane cubics (Selmer). Besides isolated cases, more recently entire families of
counterexamples have been constructed [8].

2. Arithmetic statistics

In the light of the preceding section, it is natural to ask how ‘often’ the Hasse principle fails.
Let’s make that question precise. For simplicity we restrict ourselves to the case K = Q.

Let V be the parameter space of ternary cubic forms. It is isomorphic to the affine space
A10. So if R is a ring, V(R) ∼= R10 is the space of ternary cubic forms with coefficients in R. We
also fix a compact subset B ⊆ V(R) that is the closure of an open neighborhood of the origin.
Then for any t > 0 define

N(V, B, t) = #{ f ∈ V(Z) ∩ tB}.

Similarly, if Φ is a property of ternary cubic forms, set

NΦ(V, B, t) = #{ f ∈ V(Z) ∩ tB : Φ holds for f }.

In particular we shall use Nls, Nsol, and Nfail respectively for ternary cubic forms that are
locally soluble, that are soluble, and for which the Hasse principle fails.
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Theorem 2.1 (Bhargava–Cremona–Fisher [2]). One has

lim
t→∞

Nls(V, B, t)
N(V, B, t)

= ∏
p

(
1− p9 − p8 + p6 − p4 + p3 + p2 − 2p + 1

3(p2 + 1)(p4 + 1)(p6 + p3 + 1)

)
≈ 0.97.

Proof (sketch). The given factor for each p is the proportion of ternary cubics over Zp that have a
solution over Qp. It is computed by reduction to finite fields. There is no contribution from the
infinite place as real plane cubics are always soluble. It remains to prove that solubility at the
infinitely many different primes are ‘independent’ events. This is a consequence of Ekedahl’s
sieve. �

Theorem 2.2 (Bhargava [1]). One has

lim inf
t→∞

Nfail(V, B, t)
N(V, B, t)

> 0 and lim inf
t→∞

Nsol(V, B, t)
N(V, B, t)

> 0.
�

Although conjecturally the limits exist and are independent of B, the explicit lower bounds
found by Bhargava do depend on B. For suitably chosen B, Bhargava proves that the Hasse
principle fails for a proportion of at least 28% of all ternary plane cubics.

Theorem 2.2 is conceptually more complicated than theorem 2.1, since the latter concerns
only local behaviour of cubic forms, whereas the former involves global behaviour.

Conjecture 2.3 (Bhargava [1]). One has

lim
t→∞

Nsol(V, B, t)
Nls(V, B, t)

=
1
3

.
�

Combined with theorem 2.1 this would imply that of all cubic forms, 3% is not locally soluble,
1
3 · 97% is soluble, and 2

3 · 97% does not satisfy the Hasse principle.

Remark 2.4. In the above results we allow non-smooth forms. This is not a real issue, however,
since statistically 100% of all ternary cubic forms are smooth. �

Remark 2.5. As in later sections, we focus on plane cubics. Earlier we mentioned two further
models of genus one curves: degree 4 hyperelliptic curves and complete intersections of two
space quadrics. If one replaces V by the parameter space V′ ∼= A5 of binary quartic forms, or
by the parameter space V′′ ∼= A20 of pairs of quaternary quadratic forms, results analogous to
theorems 2.1 and 2.2 hold. The expected ratio in conjecture 2.3 is 1/4 for both V′ and V′′. �

3. Selmer groups

Theorem 2.2 is proved by passing to the jacobians of the genus one curves in question. We first
recall some theory.

Let K be a number field and E/K an elliptic curve. We know from the Mordell–Weil theorem
that E(K) is a finitely generated abelian group. Its rank is an important invariant. A common
approach towards bounding the rank is as follows. The short exact sequence

0 E[n] E E 0n·
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in étale topology induces a commutative diagram in étale cohomology

(3.1)

0 E(K)/nE(K) H1(K, E[n]) H1(K, E)[n] 0

0 E(AK)/nE(AK) H1(AK, E[n]) H1(AK, E)[n] 0

with exact rows.

Definition 3.2. Let Seln(E) = ker(H1(K, E[n])→ H1(AK, E)[n]) be the n-Selmer group of E and
X(E) = ker(H1(K, E)→ H1(AK, E)) the Tate–Shafarevich group of E. �

We obtain a new short exact sequence

0 E(K)/nE(K) Seln(E) X(E)[n] 0.

The Selmer group gives a bound on the rank of E.

Proposition 3.3. If E has rank r, then nr ≤ # Seln(E). �

Restricting to K = Q, we may ask statistical questions as before. Given E/Q there are unique
integers a, b ∈ Z such that E is isomorphic to the elliptic curve Eab : y2 = x3 + ax + b and a, b
are minimal in the sense that for any prime p either p4 - a or p6 - b. Then we say that E has
height ht E = max(|a|3, b2). If ϕ is a real-valued function on the set of (isomorphism classes of)
elliptic curves over Q, then we say that ϕ has average value

avg(ϕ) = lim
h→∞

∑ht E≤h ϕ(E)
∑ht E≤h 1

.

The density of a class of elliptic curves is the average value of its indicator function.

Conjecture 3.4 (Goldfeld–Katz–Sarnak). The average rank of elliptic curves over Q is 1/2. More
precisely, the classes of rank 0 respectively rank 1 elliptic curves both have density 1/2. �

The following result is a major step towards this conjecture.

Theorem 3.5 (Bhargava–Shankar [3, 4, 5, 6]). For elliptic curves over Q,
I the average size of Sel2 is 3,
I the average size of Sel3 is 4,
I the average size of Sel4 is 7,
I the average size of Sel5 is 6. �

Corollary 3.6. One has avg(rk) ≤ 1.05.

Proof. If E/Q has rank r, then 20r − 15 ≤ 5r ≤ # Sel5(E). Since averaging is linear, we get
20 avg(rk)− 15 ≤ avg(# Sel5) = 6, hence avg(rk) ≤ (6 + 15)/20 = 1.05. �

In fact, Bhargava–Shankar [6] prove the sharper bound avg(rk) ≤ 0.885. It follows that the
class of rank 0 elliptic curves has positive density. In the other direction, Bhargava–Skinner [7]
prove that the class of rank 1 elliptic curves has positive density as well.
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4. Selmer elements

As in the previous section, let K be a number field and E/K an elliptic curve.

Definition 4.1. An n-diagram for E is a map of K-varieties C → X that after a finite extension
of K becomes isomorphic to the canonical morphism E → P(L(n · 0)). An n-diagram C → X
is called (locally) soluble if C is. �

Proposition 4.2.
I H1(K, E[n]) = {n-diagrams for E},
I E(K)/nE(K) = {soluble n-diagrams for E},
I Seln(E) = {locally soluble n-diagrams for E}.

Proof. An n-diagram is an étale twist of the trivial diagram E → P(L(n · 0)). Therefore the
first item follows if we prove that E→ P(L(n · 0)) has automorphism group scheme E[n]. But
indeed, an automorphism of E (as variety) is a translation over a rational point P ∈ E. Such a
translation extends to an automorphism of P(L(n · 0)) if and only if n · P ∼ n · 0, which holds
if and only if P ∈ E[n].

The map H1(K, E[n]) → H1(K, E) sends C → X to the E-torsor C. It is trivial if and only if
C is soluble. The second and third item then follow from (3.1). �

If C → X is a locally soluble n-diagram, then X is locally soluble as well. As X is moreover a
Severi–Brauer variety, this implies X ∼= Pn−1. So an n-diagram is a genus one curve with a map
to Pn−1 whose image has degree n. For small n this situation has an arithmetic interpretation.
A 2-diagram is a double cover of P1 ramified in 4 points, that is, a degree 4 hyperelliptic
curve. As such it is given by a binary quartic form. A 3-diagram is a plane cubic, given by a
ternary cubic form. A 4-diagram is a complete intersection of two space quadrics, given by two
quaternary quadratic forms. A 5-diagram is an intersection of the five 4× 4-subpfaffians of a
skewsymmetric 5× 5-matrix of quinary linear forms; it is given by a quintuple of alternating
quinary quadratic forms.

For n ≥ 6 no such description is available. That is the reason why theorem 3.5 is known for
n = 2, 3, 4, and 5 only.

5. Ternary cubic forms

The three models of genus one curves discussed in the introduction correspond to elements of
2-, 3-, and 4-Selmer groups, respectively. In the following we consider only plane cubics and
hence n = 3. Plane cubics are given by a ternary cubic form. The description of a 3-Selmer
element by a ternary cubic form is unique up to linear change in variables.

Let V ∼= A10 be the parameter space of ternary cubic forms. Attached to f ∈ V are poly-
nomial invariants a, b such that the jacobian of f is isomorphic to Eab. Let Vab ⊆ V be the
algebraic subspace of forms with given invariants a, b ∈ Z. We obtain a diagram

Eab(Q)/3Eab(Q) Sel3(Eab)

Vab(Q)sol/PGL3(Q) Vab(Q)ls/PGL3(Q)

where sol and ls indicate subsets of soluble respectively locally soluble forms.
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Proof (of theorem 3.5 for n = 3, sketch). Every PGL3(Q)-orbit of Vab(Q)ls has a representative in
Vab(Z)ls. We need to count the average size of Vab(Z)ls/PGL3(Q).

Let L be a fundamental domain for the action of PGL3(R) on V(R). Let P be a fundamental
domain for the action of PGL3(Z) on PGL3(R). The product F = LP = {lp : l ∈ L, p ∈ P}
is almost a fundamental domain for PGL3(Z) acting on V(R), but the orbit of f ∈ V(R) is
represented [StabPGL3(R)( f ) : StabPGL3(Z)( f )] times. That index takes only a few values, so by
counting with appropriate weights we may pretend that F is a true fundamental domain.

Define the height of a form f with invariants a, b to be ht f = max(|a|3, b2), i.e. the height of
its jacobian. For t > 0 set

Ft = { f ∈ F : ht f ≤ t12}.
Intuitively, the number of integral points in Ft should be roughly the volume of Ft. Unfortu-
nately, that is false! While Ft does have finite volume, it is not bounded but has a cusp lingering
off to infinity. The cusp contains many integral points. To remedy this, call an integral point
f ∈ V(Z) generic if it does not define the identity element of Sel3(E). Using a technical aver-
aging trick, one can show that integral points away from the cusp are typically generic, and
integral points towards the cusp are typically non-generic. It follows that the number of generic
integral points in Ft is roughly equal to vol(Ft).

At this point there are three more issues to be dealt with, all of which are essentially local
in nature: we should replace PGL3(Z)-orbits by PGL3(Q)-orbits, we should restrict to locally
soluble forms, and we should restrict to forms with minimal invariants. These items can be
dealt with by counting with weights w( f ) = ∏p wp( f ), where each wp is given by congruence
conditions at p-powers.

A careful computation now shows that the 3-Selmer groups has 3 non-identity elements on
average, hence avg(# Sel3) = 4. �

6. Solubility of Selmer elements

In this section we deduce theorem 2.2 from theorem 3.5.

Theorem 6.1. Let n = 2, 3, or 4. Of all n-Selmer elements, ordered by the height of their jacobian, a
positive proportion is not soluble.

Proof. The point of the proof is that (by the method in corollary 3.6) the 5-Selmer group gives
a strictly better bound on the average rank of elliptic curves than the n-Selmer group. Indeed,
as 100% of all elliptic curves have trivial rational n-torsion,

avg(#E(Q)/nE(Q)) = avg(nrk E) ≤ avg
( (5rk E − 5)(n2 − n)

20
+ n

)
≤ avg

( (# Sel5(E)− 5)(n2 − n)
20

+ n
)
=

n2 − n
20

+ n.

The proportion of soluble n-Selmer elements, i.e. of n-Selmer elements that lie in the subgroup
#E(Q)/nE(Q), is bounded above by

avg(#E(Q)/nE(Q))

avg(# Seln(E))
≤ (n2 − n)/20 + n

σ(n)
< 1.

�

Clearly also a positive proportion of non-identity n-Selmer elements is not soluble.

Theorem 6.2. Let n = 2, 3, 4, or 5. Of all non-identity n-Selmer elements, ordered by the height of
their jacobian, a positive proportion is soluble.
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Proof. Bhargava–Skinner [7] have shown that a positive proportion of all elliptic curves have
rank at least 1. This implies that avg(nrk E − 1) is strictly positive. Therefore, the desired pro-
portion is at least

avg(#E(Q)/nE(Q)− 1)
avg(# Seln(E)− 1)

≥ avg(nrk E − 1)
σ(n)− 1

> 0.
�

Remark 6.3. Theorems 6.1 and 6.2 do not immediately imply the result of theorem 2.2. There
are two issues to circumvene. First, in the above theorems we have ordered plane cubics by the
height of their jacobian instead of the size of their coefficients. Secondly, many plane cubics
may represent the same 3-Selmer element. �

We recall some notations from section 5. Let V ∼= A10 be the parameter space of ternary cubic
forms. For any a, b ∈ Z there is a bijection Sel3(Eab) = Vab(Z)ls/PGL3(Q). Moreover, we have
constructed a fundamental domain F for the action of PGL3(Z) on V(R). Denoting

Ft = { f ∈ F : ht f ≤ t12}

we proved that the number of generic integral points in Ft is roughly equal to vol(Ft), which
is approximately c1t10 for some constant c1 > 0.

Lemma 6.4. There are about c2t10 elliptic curves of height at most t12, for some constant c2 > 0.

Proof. For the elliptic curve y2 = x3 + ax + b to have height at most t12, one must have |a| ≤ t4

and |b| ≤ t6, which yields o(t4) · o(t6) = o(t10) possibilities. �

Proof (theorem 2.2). As Sel3(E) has 3 non-identity elements on average, there are approximately
3c2t10 non-identity 3-Selmer elements of height at most t12. This is precisely the number of
locally soluble generic integral points in Ft. By theorem 6.1, a positive proportion c3t10 of these
is not soluble.

Now let B ⊆ V(R) be a compact subset that is the closure of an open neighborhood of the
origin. For r → ∞ one has vol(Ft ∩ rB) → vol(Ft). Hence there exists some δ > 0 and r � 0,
independent of t, such that

vol(Ft ∩ rtB)
vol(Ft)

≥ 1− c3/c1 + δ

for all t. That means that Ft ∩ rtB contains at least

(1− c3/c1 + δ)c1t10 = (c1 − c3 + δc1)t10

generic integral points. The total number of generic integral points in Ft is c1t10, of which at
least c3t10 are locally soluble but not soluble. We conclude that Ft ∩ rtB, and in particular rtB,
contains at least δc1t10 locally soluble non-soluble generic integral points. Hence

lim
t→∞

Nfail(V, B, t)
N(V, B, t)

≥ δc1(t/r)10

vol(B)t10 =
δc1

r10 vol(B)
> 0.

The same proof works for the proportion of soluble plane cubics, applying theorem 6.2 instead
of 6.1. �
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