
Fundamental groups
Wouter Zomervrucht, September 28–30, 2015

These are (incomplete) notes for a crash course held at FU Berlin.

1. Motivation

The topological fundamental group
Let X be a connected topological space and x ∈ X a point. A well-known invariant of X is the
fundamental group

π(X, x) :=
{

paths x x in X
}

/'.

It has an alternative description in terms of coverings. A covering of X is a map p : Y → X
such that each point x ∈ X has an open neighborhood U with p−1(U) = U × p−1(x) over U,
considering p−1(x) as a discrete space. We write Cov X for the category of coverings of X. A
covering Y → X is universal if Y is simply connected.

Exercise 1A. Show that any two universal coverings of X are isomorphic. Are they necessarily
uniquely isomorphic? �

Exercise 1B. Let p : Y → X be a covering. Show that π(X, x) has a natural action on the fiber
p−1(x). If p is universal, show that the action extends to one on Y over X and that the map
π(X, x)→ AutX Y is an isomorphism. �

The following is a characterization of π(X, x), assuming X admits a universal covering. That
is true at least when X is locally simply connected, i.e. has a basis of simply connected opens.

Theorem 1.1. Suppose X admits a universal covering. The functor

Fx : Cov X → π(X, x)-Set, p 7→ p−1(x)

is an equivalence. �

We omit the proof.

Exercise 1C. Show that theorem 1.1 characterizes π(X, x) in the following sense: if G and H
are groups such that the categories G-Set and H-Set are equivalent, then G ∼= H. �

The degree of a covering p : Y → X at a point x ∈ X is the cardinality of the fiber p−1(x).
This is locally constant on X, hence by connectedness constant. We call a covering finite if its
degree (at any point) is finite. Consider the category FCov X of finite coverings. Under Fx it
corresponds to the category π(X, x)-FSet of finite π(X, x)-sets.

Theorem 1.2. There is a canonical profinite group π̂(X, x) and an equivalence of categories

Fx : FCov X → π̂(X, x)-FSet, p 7→ p−1(x).

If X admits a universal covering, π̂(X, x) is the profinite completion of π(X, x). �

Note here that actions of topological groups are always assumed continuous.
Although the statement is weaker than in theorem 1.1, no assumption on X is required.

The proof will be given later using Grothendieck’s Galois formalism.

Exercise 1D. Let G be a group and Ĝ its profinite completion. Show that the categories G-FSet
and Ĝ-FSet are isomorphic. �
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The Galois group

Let K be a field and K a separable closure. A well-known invariant of K is the Galois group
Gal(K/K). It may be defined as a profinite group by

Gal(K/K) := lim
L

AutK L

where the limit runs over all intermediate fields K ⊆ L ⊆ K that are finite Galois over K.
The fundamental theorem of Galois theory says that in fact Gal(K/K) = AutK K and that
the intermediate fields of K/K that are finite over K correspond to the open subgroups of
Gal(K/K).

Let us enhance this a bit. A K-algebra A is called finite separable if A ∼= L1 × . . . × Ln for
some finite separable field extensions L1, . . . , Ln of K. Write FSep K for the category of finite
separable K-algebras.

Exercise 1E. Let A be a finite separable K-algebra. Show that HomK(A, K) is a finite set with
a natural action of Gal(K/K). �

Theorem 1.3. The contravariant functor

FK : FSep K → Gal(K/K)-FSet, A 7→ HomK(A, K)

is an anti-equivalence. �

This is easily proven from the fundamental theorem of Galois theory. However, we will see it
later as a consequence of Grothendieck’s Galois formalism.

Exercise 1F. Characterize the finite Gal(K/K)-sets that correspond under FK to fields. �

Exercise 1G. Let L/K be a Galois extension. A finite separable K-algebra A is split over L if
L⊗K A ∼= Ln for some n ∈N. Show that FK induces an anti-equivalence between the categories
of finite separable K-algebras split over L and Gal(L/K)-FSet. �

2. Galois categories

In topology, the fundamental group describes (finite) coverings of a topological space. In field
theory, the Galois group describes finite extensions of a field. There are many similarities
between the constructions: e.g. both arise as an automorphism group, and the choice of base
point has the same function as the choice of separable closure. These examples represent two
extremes of Grothendieck’s Galois theory.

Some category theory
Here is the main definition.

Definition 2.1. A Galois category is pair (C, F) where C is a category and F : C → FSet a functor,
called the fundamental or fiber functor, such that
I C has finite limits and finite colimits,
I F is exact and conservative,
I each map f in C has a factorization f = hg with g an epi- and h a monomorphism, and
I each subobject in C admits a complement. �
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Example 2.2. Let π be a profinite group. We will see that the category π-FSet of finite contin-
uous π-sets, with the forgetful functor Fπ : π-FSet→ FSet, is a Galois category. �

We explain the terminology. Let X : I → C a functor. A limit over X, denoted lim X = limi∈I Xi,
is an object Y ∈ C together with maps fi : Y → Xi satisfying fi = X(ϕ) f j for each map ϕ : j→ i
of I , and universally so: for any other such Z and maps gi : Z → Xi there exists a unique map
h : Z → Y with gi = fih for all i ∈ I .

Xj

Z Y

Xi

X(ϕ)

gj

gi

∃! h

f j

fi

So giving a map Z → lim X is the same as giving maps Z → Xi compatible as above with the
transformations X(ϕ). In formulas,

Hom(Z, lim X) = lim
i∈I

Hom(Z, Xi).

Conversely, a colimit over X is a universal object colim X together with maps fi : Xi → colim X
satisfying fi = f jX(ϕ) for each map ϕ : i→ j of I . It satisfies

Hom(colim X, Z) = lim
i∈Iop

Hom(Xi, Z).

Limits and colimits are uniquely unique, if they exist.
We say I is cofiltered if for all i, i′ ∈ I there exist j ∈ I and maps j → i, j → i′, and for

all maps ϕ, ϕ′ : j → i in I there exists a map ψ : k → j with ϕψ = ϕ′ψ. Cofiltered limits are
particularly well-behaved. For instance, if I is cofiltered and X : I → Set a functor such that all
transition maps X(ϕ) are surjective, the projections lim X → Xi are surjective as well. Dually,
if I is filtered and all transition maps are injective, then so are the coprojections Xi → colim X.

A subcategory I : J ↪→ I is initial if for all i ∈ I there exists a map j→ i with j ∈ J and for
all maps ϕ : j → i and ϕ′ : j′ → i in I with j, j′ ∈ J there exist maps ψ : k → j and ψ′ : k → j′

in J with ψϕ = ψ′ϕ′. In this case it is easily verified that lim X = lim XI. Dually, if I : J ↪→ I
is final one has colim X = colim XI.

A (co)limit X : I → C is finite if I has finitely many objects and morphisms. Certain types
of finite limits are of special interest: the final object (case I = ∅), equalizers (case I = {•⇒ •}),
and fiber products (case I = {• → • ← •}). The dual colimits are the initial object, coequalizers
and pushouts. One can show that a category has all finite limits if and only if it has a final
object and all fiber products. Dually a category has all finite colimits if and only if it has an
initial object and all pushouts.

Exercise 2A. Show that π-FSet has all finite limits and finite colimits. �

A functor F : C → D is left exact if it commutes with finite limits, i.e. for any finite I and
X : I → C one has F(lim X) = lim FX. It is right exact if it commutes with finite colimits and
exact if it commutes with both. This is the case precisely if F preserves the final and inital
object, commutes with fiber products, and commutes with pushouts.
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A functor F : C → D is conservative or reflects isomorphisms if for each map f of C, if F( f ) is an
isomorphism then so is f . (The converse always holds.) In case of an exact conservative functor,
something more is true: F also reflects (co)limits, i.e. Y = lim X if and only if F(Y) = lim FX
and analogously for colimits.

Exercise 2B. Show that the forgetful functor Fπ : π-FSet→ FSet is exact and conservative. �

A map f : Y → X is a monomorphism if f g = f h implies g = h for all g, h : Z → Y. Equivalently,
the diagonal Y → Y ×X Y is an isomorphism. So if F : C → D is exact and conservative, f is a
monomorphism if and only if F( f ) is. The dual notion is an epimorphism.

A subobject of X ∈ C is a monomorphism Y → X. If two subobjects are isomorphic, they
are uniquely isomorphic and we consider them the same subobject. A complement of Y → X is
a second subobject Z → X such that the natural map Y t Z → X is an isomorphism.

Exercise 2C. Finish the proof that (π-FSet, Fπ) is a Galois category. �

Functors also live in categories: the functor category Func(C,D) whose arrows are the natural
transformations. So any functor F : C → D has an automorphism group Aut F. Note that
an automorphism of F consists of permutations αX of F(X) for all X ∈ C, such that for all
f : X → Y one has a commutative diagram

F(X) F(X)

F(Y) F(Y).

αX

F( f ) F( f )

αY

Lemma 2.3. Let F : C → FSet be a functor. Then Aut F is canonically a profinite group.

Proof. Let S(P) be the permutation group of a set P. As explained above, we have

Aut F ⊆ ∏
X∈C

S(F(X)).

Endow each group S(F(X)) with the discrete topology. The product ∏X∈C S(F(X)) is profinite.
We claim that Aut F is a closed subgroup, hence profinite as well. But indeed Aut F is the
intersection of the subsets {(αX)X∈C : F( f )αY = αZF( f )} over all f : Y → Z, and those subsets
are closed. �

Exercise 2D. Show that the sets {α ∈ Aut F : αX = 1} ranging over X ∈ C form a basis of open
neighborhoods of 1 ∈ Aut F. �

Exercise 2E. Let Fπ : π-FSet→ FSet be the forgetful functor. Show that Aut Fπ = π. �

Exercise 2F. Let G be any discrete or topological group. Show that (G-FSet, FG) is a Galois
category. Show that Aut FG is the profinite completion of G. �

The Galois correspondence

For each X ∈ C we have a projection map Aut F → S(F(X)). This action of Aut F on F(X) is
continuous and functorial, so F extends to a functor F : C → Aut F-FSet. The main result of
Grothendieck’s Galois theory is that F is a ‘Galois correspondence’ between C and Aut F-FSet.
One may call Aut F the Galois or fundamental group of C.
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Theorem 2.4. Let (C, F) be a Galois category. The functor F : C → Aut F-FSet is an equivalence.

Proof. We proceed in several steps. To begin with, an object X ∈ C is connected if it has precisely
two subobjects. If Y → X is a subobject other than the initial object and X, it has a complement
Z → X and F(X) = F(Y) t F(Z) with F(Y), F(Z) 6= ∅. By induction to #F(X) we see that X is
a coproduct of connected subobjects. This decomposition in connected components is unique up
to ordering, and the subobjects of X are coproducts of connected components.

Let C be connected and c ∈ F(C). For any X ∈ C the map

(∗) Hom(C, X)→ F(X), f 7→ F( f )(c)

is injective. Indeed, if F( f )(c) = F(g)(c), then the equalizer B of f and g (the largest subobject
B→ C on which f and g coincide) has c ∈ F(B). By connectedness, B = C and f = g.

In particular Aut C ⊆ Hom(C, C) is finite. If G ⊆ Aut C is a subgroup, the quotient C/G is
the coequalizer of all σ ∈ G, hence exists. We say C is Galois if C is connected and C/Aut C is the
final object. Equivalently, Aut C acts transitively on F(C). As #Aut C ≤ #F(C) by connectedness,
for Galois objects we have #Aut C = #F(C) and the Aut C-action on F(C) is free as well.

Take X ∈ C. We set D := ∏x∈F(X) X and c := idF(X) ∈ F(D) = ∏x∈F(X) F(X). Let C → D be
the connected component with c ∈ F(C). For x ∈ F(X) let fx : C → X be the projection on the
x’th factor. Then F( fx)(c) = x, hence (∗) is bijective for these C, c and X. We claim moreover
that C is Galois. Let c′ ∈ F(C). Then Hom(C, X) → F(X), f 7→ F( f )(c′) is an injection of
equipotent finite sets, hence surjective. As Hom(C, X) = { fx : x ∈ F(X)}, this means that
c′ ∈ ∏x∈F(X) F(X) is a permutation. Let σ be the induced automorphism of D by permuting
the factors. It sends c to c′ and C to a connected component C′ → D. We have c′ ∈ F(C)∩ F(C′)
so C = C′ and σ restricts to an automorphism of C. We proved that for any X there exists a
Galois object C and c ∈ F(C) such that (∗) is a bijection.

If X is connected, something more is true. Firstly, the right action of Aut C on Hom(C, X)
is transitive. Indeed, take f , g : C → X. From the existence of epi-mono-factorizations and
connectedness of X we find that F( f ) is surjective. Choose d ∈ F(C) with F( f )(d) = F(g)(c).
Choose σ ∈ Aut C with F(σ)(c) = d. Then F( f σ)(c) = F(g)(c) hence f σ = g.

Now fix a map f : C → X and define G := {σ ∈ Aut C : f σ = f }. We claim that the
induced map f : C/G → X is an isomorphism. It suffices to show that F( f ) : F(C)/G → F(X)
is a bijection. The latter is certainly surjective because F( f ) is. Since G acts freely on F(C) we
have #(F(C)/G) = #F(C)/#G = [Aut C : G]. On the other hand Hom(C, X) has a transitive
action by Aut C with stabilizer G, so #F(X) = #Hom(C, X) = [Aut C : G] as well; hence F( f ) is
injective. We see that any connected object is a finite quotient of a Galois object.

Let I be the category of pairs (C, c) where C ∈ C is Galois and c ∈ F(C); a morphism
(C, c) → (D, d) is a map f : C → D with F( f )(c) = d. If such a map exists, it is unique by (∗).
For (C, c), (D, d) ∈ I there exist a map f : E → C × D and e ∈ F(E) with E a Galois object
and F( f )(e) = (c, d). By projection we find maps (E, e) → (C, c) and (E, e) → (D, d) so I is
cofiltered. We consider the colimit of Iop → FSet, (C, c) 7→ Hom(C, X). For f : (C, c) → (D, d)
the diagram

Hom(D, X)

F(X)

Hom(C, X)

f ∗

commutes, so we have a natural map colim(C,c)∈Iop Hom(C, X) → F(X). As the colimit is
filtered, this map is injective. Using once more the construction of Galois objects above, we see

5



it is surjective as well. Then functoriality in X says

F = colim
(C,c)∈Iop

Hom(C,−).

We say that F is prorepresentable by the prosystem lim(C,c)∈I C. However, be aware that the limit
does not necessarily exist in C.

Let f : (C, c) → (D, d) be in I . Since F(D) is a free transitive Aut D-set, for σ ∈ Aut C
there is a unique τ ∈ Aut D with F(τ)(d) = F( f σ)(c) and hence τ f = f σ. We get a homo-
morphism Aut C → Aut D. It is surjective by transitivity of Aut C acting on Hom(C, D). For
α ∈ Aut F let σ ∈ Aut C be the unique element satisfying F(σ)(c) = αC(c). We obtain a group
homomorphism Aut F → Aut C. The diagram

Aut C

Aut F

Aut D

f∗

commutes, yielding Aut F → lim(C,c)∈I Aut C. Any α ∈ Aut F is determined by its action on
F(C) for C Galois. Therefore Aut F is a closed subgroup of ∏(C,c)∈I S(F(C)). The compatibility
condition to be in Aut F coincides with that to be in lim(C,c)∈I Aut C, hence

Aut F = lim
(C,c)∈I

Aut C

as profinite groups. Note that all projections Aut F → Aut C are surjective because the limit is
cofiltered with surjective transition maps.

Since both F and the forgetful functor Aut F-FSet → FSet are exact and conservative, the
same holds for F . Furthermore F preserves connectedness. Indeed, let X ∈ C be connected.
Write X = C/G for some Galois C and G ⊆ Aut C. Then we have F (X) = F (C)/G = Aut C/G.
Since Aut F → Aut C is surjective, Aut C/G is a transitive Aut F-set, so F (X) is connected.

At last we get to the theorem statement. We show that F is essentially surjective, i.e. that
any finite Aut F-set P is of the form F (X) for some X ∈ C. We may assume P is transitive.
Then P ∼= Aut C/G for some Galois object C and G ⊆ Aut C. As before we have P ∼= F (C/G).

We prove F is fully faithful, i.e. for X, Y ∈ C the map Hom(X, Y) → Hom(F (X),F (Y)) is
a bijection. It is certainly injective by reflection of equalizers. So it suffices to show both sides
are equipotent. Since F preserves connected components, one may reduce to the case where
X and Y are connected. Write X = C/G and Y = C/H for some (C, c) ∈ I and G, H ⊆ Aut C.
For f : X → Y there exists σ ∈ Aut C such that [F(σ)(c)] = F( f )([c]) in F(C)/H, and then
f = σ. The coset Hσ is well-defined and σ ∈ Aut C descends to a map X → Y if and only
if G ⊆ σ−1Hσ. Thus #Hom(X, Y) = #{Hσ : G ⊆ σ−1Hσ}. That coincides with the number of
Aut C-maps Aut C/G → Aut C/H so we are done. �

The Galois correspondence does not really depend on the fundamental functor. This is analo-
gous to the fact that the fundamental group of a topological space does not really depend on
the choice of base point, and that the Galois group of a field does not really depend on the
choice of a separable closure.
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Theorem 2.5. Let C be a category and F, F′ : C → FSet two functors such that (C, F) and (C, F′) are
Galois categories. Then F ∼= F′ and in particular Aut F ∼= Aut F′.

Consequently, if π-FSet is equivalent to π′-FSet then π ∼= π′.

Proof. Let I be as before and I ′ the same for F′. For each Galois object C ∈ C choose one
element c ∈ F(C) and one element c′ ∈ F′(C). Let J ⊆ I and J ′ ⊆ I ′ be the corresponding full
subcategories. We consider f : (C, c) → (D, d) in J with corresponding objects (C, c′), (D, d′)
in J ′. There is an automorphism τ ∈ Aut D satisfying F′(τ f )(c′) = d′, yielding a morphism
τ f : (C, c′)→ (D, d′) in J ′. So morphisms f in J correspond to morphisms f ′ in J ′.

For σ ∈ Aut C there is a unique τ ∈ Aut D with f ′σ = τ f . This map Aut C → Aut D is sur-
jective by transitivity of Aut C acting on Hom(C, D). Hence the cofiltered limit lim(C,c)∈J Aut C
is non-empty and there exists a system (αC)C ∈ ∏(C,c)∈I Aut C satisfying f ′αC = αD f for all
f : (C, c)→ (D, d) in J corresponding to f ′ in J ′. Then we have

F = colim
(C,c)∈J op

Hom(C,−) ∼= colim
(C,c′)∈J ′op

Hom(C,−) = F′

where the middle isomorphism is induced by α and the outer identifications hold because
J ⊆ I and J ′ ⊆ I ′ are initial subcategories. �

Theorem 2.6. Let (C, F) and (C ′, F′) be Galois categories and let G : C → C ′ be such that F = F′G.
There is a natural map g : Aut F′ → Aut F such that

C C ′

Aut F-FSet Aut F′-FSet

G

F F ′

g∗

commutes up to 2-isomorphism.

Proof. Define g by sending α′ ∈ Aut F′ to the element α ∈ Aut F satisfying αX = α′G(X) in
S(F(X)) = S(F′G(X)). It is a continuous homomorphism by exercise 2D and has the desired
property by construction. �

Topological coverings
As a first application we prove theorem 1.2. In the newly-developed terminology it says that
for any connected topological space X and x ∈ X the pair (FCov X, Fx) is a Galois category.
Here is the technical ingredient.

Lemma 2.7. Let p : Y → X, q : Z → X be finite coverings and f : Y → Z a covering map. Each x ∈ X
has an open neighborhood U above which Y and Z are trivial and such that

p−1(U) q−1(U)

U × p−1(x) U × q−1(x)

f

idU× f

commutes. �
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Exercise 2G. Prove this. �

The empty covering ∅→ X and the trivial covering X → X are initial respectively final objects
in FCov X. For covering maps f : Y →W, g : Z →W we claim that

Y×W Z =
{
(y, z) ∈ Y× Z : f (y) = g(z)

}
is the fiber product in FCov X. It is the fiber product in Top so it suffices to show that it is a
finite covering of X. That question is local on X, hence we can reduce to the situation in the
lemma, where it is clear. Similarly one sees that for coverings maps f : W → Y, g : W → Z the
pushout is given by

Y tW Z = (Y t Z)/∼
with ∼ the equivalence relation generated by f (w) ∼ g(w) for w ∈W. Hence FCov X has finite
limits and finite colimits.

Exercise 2H. Using the constructions above, show that Fx is exact. �

Let f : Y → Z be a covering map and suppose Fx( f ) is bijective. If Fu( f ) is bijective for some
u ∈ X, then by the lemma Fv( f ) is bijective for all v in an open neighborhood of u. Therefore
{u ∈ X : Fu( f ) bijective} is open in X. By the same argument its complement is open. As X
is connected, Fx( f ) being bijective implies that Fu( f ) is bijective for all u ∈ X, hence that f is
bijective. As coverings are open, f is an isomorphism. So Fx is conservative.

As Fx is exact and conservative, f is a mono- or epimorphism if and only if Fx( f ) is.
Reasoning as above, Fx( f ) is injective or surjective if and only if f is; so the monomorphisms
of FCov X are the injections and the epimorphisms the surjections. A last application of lemma
2.7 shows that for any covering map f : Y → Z the image im f ⊆ Z is open and closed,
hence a finite covering of X. Then Y → im f → Z is an epi-mono-factorization. If f itself is
a monomorphism, then Z \ im f is also a finite covering of X and acts as a complement. This
proves the first part of theorem 1.2.

Exercise 2I. Deduce the second part of theorem 1.2 from theorem 2.5. �

Exercise 2J. Let Y be a second connected topological space, y ∈ Y a point, and f : X → Y a
continuous map sending x to y. Show that there is a natural map f∗ : π̂(X, x)→ π̂(Y, y). �

Exercise 2K. Show that π̂(X, x) is trivial if X is irreducible. �

3. The étale fundamental group

Transferring the topological example to the algebraic setting, one has to determine the correct
notion of ‘finite coverings’. These turn out to be the finite étale morphisms. We will show that
the category of finite étale schemes over a scheme X, together with a suitable fiber functor, is
a Galois category. The associated Galois group will be the étale fundamental group of X.

Finite étale morphisms
Let’s begin with a short discussion of (finite) étale morphisms. All schemes are tacitly assumed
locally noetherian. That is not necessary but simplifies some technical details.

Definition 3.1. A morphism of schemes p : Y → X is flat if for all y ∈ Y the local ring map
OX,p(y) → OY,y is flat. A morphism of schemes p : Y → X is unramified if it is locally of finite
type and for all y ∈ Y the map OX,p(y)/mp(y) → OY,y/mp(y)OY,y is a finite separable extension
of fields. A morphism of schemes is étale if it is flat and unramified. �
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For who knows what it means, étale is equivalent to smooth of relative dimension 0. From the
definitions it is clear that being étale is stable under composition, stable under base change,
and local on the domain and codomain.

Recall that a scheme map Y → X is finite if for all affine open U ⊆ X the inverse image
V ⊆ Y is also affine and OY(V) is a finitely generated OX(U)-module.

Example 3.2. Let K be a field. A map Y → Spec K is étale if and only if it is unramified and
if and only if Y is a disjoint union of schemes of the form Spec L where L is a finite separable
field extension of K. It is finite étale if the disjoint union is finite. �

Example 3.3. Let A be a ring and f ∈ A[t] a monic non-constant polynomial. The morphism
Spec A[t]/( f )→ Spec A is finite. It is étale if and only if the discriminant ∆( f ) is a unit in A.�

An important property of finite étale morphisms is that they satisfy ‘faithfully flat descent’.
We omit the proof.

Lemma 3.4. Let A→ A′ be a faithfully flat ring homomorphism. A map Y → Spec A is finite, flat, or
unramified if and only if the base change Y×A A′ → Spec A′ is. �

Let A be a ring and B an A-algebra that is free of finite rank as A-module. The trace TrB/A(b)
of b ∈ B over A is the trace of the A-linear map B→ B, c 7→ cb.

Proposition 3.5. A morphism Y → X is finite étale if and only if every x ∈ X has an affine open
neighborhood U ⊆ X whose inverse image V ⊆ Y is affine as well such that, writing A := OX(U) and
B := OY(V), the A-module B is free of finite rank and the map

B→ HomA(B, A), b 7→
(
c 7→ TrB/A(bc)

)
is an isomorphism of A-modules.

Proof. A morphism p : Y → X is locally free if every x ∈ X has an affine open neighborhood
U ⊆ X whose inverse image V ⊆ Y is affine with OY(V) is a free OX(U)-module. Since free
modules are flat, finite locally free morphisms are finite flat. Conversely suppose p is finite
flat, take U ⊆ X affine open with inverse image V ⊆ Y and set A := OX(U) and B := OY(V).
For all p ∈ Spec A the Ap-module Bp is finitely generated and flat over a local ring, hence free.
As X is locally noetherian this implies that p is finite locally free.

It remains to prove that for any ring A and A-algebra B that is free of finite rank as module,
B satisfies the stated trace condition if and only if Spec B→ Spec A is unramified. First suppose
that A is an algebraically closed field. If Spec B → Spec A is unramified, then B = ∏n

i=1 A for
some n ∈ N and the trace condition holds. Conversely, assume the trace condition. If b ∈ B is
nilpotent, multiplication by bc is nilpotent for any c ∈ B hence c 7→ TrB/A(bc) is zero. Therefore
B has no non-zero nilpotents. But any finite-dimensional algebra over a field is a finite product
of local rings with nilpotent maximal ideals, so B is a finite product of fields. Each field is finite
over the algebraically closed field A so B = ∏n

i=1 A and Spec B→ Spec A is unramified.
Now suppose A is an arbitrary field. Let A′ be an algebraic closure and write B′ := A′⊗A B.

The map t : B→ HomA(B, A) is an isomorphism if and only if A′ ⊗A t is. Since the square

B B′

A A′

TrB/A TrB′/A′
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commutes, A′ ⊗A t coincides with the trace map t′ for A′ → B′. In combination with lemma
3.4 we see that t is an isomorphism if and only if Spec B→ Spec A is unramified.

Let A be any ring. The map Spec B→ Spec A is unramified if and only if for all p ∈ Spec A
the base change to the field κ(p) := Ap/pp is. Also t : B → HomA(B, A) is an isomorphism
if and only if all its base changes κ(p) ⊗A t are. These base changes are the trace maps for
κ(p)→ κ(p)⊗A B, so we are done by the previous paragraph. �

Take care: for arbitrary affine open U ⊆ X with inverse image V ⊆ Y the OX(U)-module
OY(V) is finitely generated, but in general not free; instead it is projective. We avoid the work
required to state a suitable trace condition for projective algebras.

The degree of Y at x ∈ X is degY/X(x) := rkA B where A and B are as in the proposition.
This is well-defined. The map degY/X : X →N is locally constant. In particular, for n ∈N the
set {x ∈ X : degY/X(x) = n} is open and closed.

Definition 3.6. A morphism Y → X is trivial if Y is a disjoint union of copies of X. It is totally
split if each x ∈ X has an open neighborhood U ⊆ X above which Y is trivial. �

Proposition 3.7. A morphism Y → X is finite étale if and only if there exists a finite étale surjection
X′ → X such that the base change Y×X X′ → X′ is finite totally split. �

Proof. If Y×X X′ → X′ is finite totally split, then it is finite étale. Applying lemma 3.4 to affine
opens of X we see that Y → X is finite étale as well.

Suppose Y → X is finite étale. Since the sets {x ∈ X : degY/X(x) = n} are open and closed
we reduce to the case where degY/X has a constant value n. We proceed by induction to n. If
degY/X = 0 then Y → X is already finite totally split and we are done. Take n > 0. We will
show below that the diagonal Y → Y ×X Y is an open and closed immersion, so we can write
Y ×X Y = Y t Z. The projections Y ×X Y → Y are finite étale of degree n. As idY has degree
1 it follows that Z → Y is finite étale of degree n− 1. By induction there exists a finite étale
surjection Y′ → Y for which Z×Y Y′ → Y′ is finite totally split. The composition Y′ → Y → X
is a finite étale surjection with the desired property.

It remains to prove that for finite étale maps Y → X the diagonal Y → Y×X Y is open and
closed. This is a local question so we may suppose that X = Spec A and Y = Spec B where B is
a finite rank free A-module satisfying the trace condition in proposition 3.5. Then C := B⊗A B
is a finite rank free B-module satisfying the same trace condition. Let e ∈ C be the element
that corresponds under C → HomB(C, B) to the multiplication map m : C → B, b⊗ c 7→ bc. Fix
b ∈ C. For all c ∈ C one computes

TrC/B(ebc) = m(bc) = m(b)m(c) = m(b)TrC/B(ec) = TrC/B(m(b)ec)

so by the trace condition eb = m(b)e. In particular we have e ker m = 0. The diagram

0 ker m C B 0

0 ker m C B 0

0

m

·e ·m(e)

m

is commutative with split exact rows hence one has m(e) = TrC/B(e) = m(1) = 1. The identity
eb = m(b)e proves e is an idempotent. Therefore the map B ⊕ ker m → C, (b, c) 7→ be + c is
a multiplicative isomorphism of B-modules. Because B and C have identity elements, so does
ker m and we find C = B× ker m as B-algebras. �
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The fundamental theorem
Let X be a connected locally noetherian scheme and denote by FEt X the category of finite
étale schemes over X. Let x be a geometric point of X, i.e. a map Spec K → X where K is a
separably closed field. We define

Fx : FEt X → FSet, Y 7→ Y×X x

where we note that Y×X x is a finite étale K-scheme, hence just a finite set.

Theorem 3.8. The pair (FEt X, Fx) is a Galois category. �

Definition 3.9. The étale or algebraic fundamental group of (X, x) is πet(X, x) := Aut Fx. �

The following two exercises explain how theorem 3.8 generalizes Galois theory.

Exercise 3A. Show that Spec is an anti-equivalence FSep K → FEt K. Give a geometric descrip-
tion of the finite étale K-schemes that correspond to finite separable field extensions. �

Exercise 3B. Show that theorem 1.3 is the special case X = Spec K of theorem 3.8. �

The proof that (FEt X, Fx) is a Galois category mirrors closely the proof for topological spaces.
Here is the algebraic analogue of lemma 2.7.

Lemma 3.10. Let Y → X, Z → X be finite totally split and f : Y → Z a covering map. Each x ∈ X
has an open neighborhood U above which Y and Z are trivial and such that

YU ZU

U ×Yx U × Zx

f

idU× f

commutes. �

Exercise 3C. Prove this. �

Exercise 3D. Show that if Y → X and Z → X are finite étale and f : Y → Z is a covering map,
then f is finite étale as well. �

The empty covering ∅→ X and the trivial covering X → X are initial respectively final objects
in FEt X. For covering maps f : Y → W and g : Z → W also Y ×W Z is finite étale over X so it
is the fiber product in FEt X.

Constructing pushouts is more complicated. Let f : W → Y, g : W → Z be covering maps.
We construct the pushout Y tW Z in the case X is affine; then it exists for general X by gluing.
Write A := OX(X), B := OY(Y), C := OZ(Z), and D := OW(W). The ring

B×D C :=
{
(b, c) ∈ B× C : f #(b) = g#(c)

}
is the fiber product of f # and g# in A-Alg. By duality Spec(B×D C) is the pushout of f and g
in the category of affine schemes over X. We have to show that it is finite étale.

There exists a finite étale surjection X′ → X such that, with obvious notation, Y′, Z′ and
W ′ are totally split over X′. If Y′, Z′ and W ′ are trivial over X′ and f ′, g′ are as in lemma
3.10, then Spec(B′ ×D′ C′) is trivial over X′ as well. But locally on X′ this is the case, so in
general Spec(B′ ×D′ C′) is finite totally split over X′. Since one has B′ ×D′ C′ = A′ ⊗A (B×D C)
it follows that Spec(B×D C) is finite étale over X. We conclude that FEt X has finite limits and
finite colimits.
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Exercise 3E. Show that Fx is exact. �

Next we classify the mono- and epimorphisms of FEt X. Take a covering map Y → Z. Let
U ⊆ X be affine open with inverse images V ⊆ Y, W ⊆ Z and write A := OX(U), B := OY(V)
and C := OZ(W). If Y → Z is a monomorphism, the diagonal Y → Y×Z Y is an isomorphism,
hence B ⊗C B ∼= B. By local rank considerations this implies that for any z ∈ Z the degree
degY/Z(z) is either 0 or 1. We find Z = Z0 t Y with Z0 = {z ∈ Z : degY/Z(z) = 0}, so
Y → Z is an open and closed immersion. Conversely any open and closed immersion is a
monomorphism. Moreover, we see that subobjects in FEt X admit complements.

For any covering map Y → Z we have Z = Z0 tZ1 with Z0 := {z ∈ Z : degY/Z(z) = 0} and
Z1 := {z ∈ Z : degY/Z(z) > 0}. The two morphisms Z0 t Z1 ⇒ Z0 t Z0 t Z1 coincide after
precomposition with Y → Z. If Y → Z is an epimorphism, they must coincide themselves.
This is true only if Z0 = ∅, i.e. if Y → Z is surjective. Conversely assume Y → Z is surjective.
Restrict to the affine setting with notation as before. For each p ∈ Spec C the Cp-module Bp is
free of rank degB/C(p) ≥ 1 by surjectivity of Y → Z, so Cp → Bp is injective. It follows that
C → B is injective and that the diagonal C → C×B C is an isomorphism. Globally we find that
the codiagonal Z tY Z → Z is an isomorphism hence Y → Z is an epimorphism.

Exercise 3F. Show that each map in FEt X has factors into an epi- and a monomorphism. �

Exercise 3G. Let Y → X, Z → X be finite étale morphisms. Show that a covering map Y → Z
is a monomorphism in FEt X if and only if degY/Z(z) ≤ 1 for all z ∈ Z, and an epimorphism
if and only if degY/Z(z) ≥ 1 for all z ∈ Z. �

Exercise 3H. Show that a morphism in FEt X is an isomorphism if and only if it is both a
monomorphism and an epimorphism. �

It remains to prove that the fiber functor Fx is conservative. Let f : Y → Z be a covering map
and factor f = hg with g : Y →W an epimorphism and h : W → Z a monomorphism. Since Fx
is exact, Fx(g) is surjective and Fx(h) and is injective. So if Fx( f ) is a bijection, both Fx(g) and
Fx(h) are bijections. Writing Z = Z0 tW we get degZ0/X(x) = #Fx(Z0) = 0. By connectedness
of X the degree of Z0 → X is 0 everywhere so Z0 = ∅ and h is an isomorphism. On the other
hand, choose a finite étale surjection X′ → X such that Y′ := Y ×X X′ and W ′ := W ×X X′

are totally split over X′. Let x′ be a geometric point of X′ lying over x. Then Fx′(g′) is still
a bijection. As in the topological case, lemma 3.10 shows that Fu′(g′) is a bijection for all
geometric points u′ of X′ and therefore that g′ is an isomorphism. Since degree is stable under
base change, g is finite étale of constant degree 1, hence an isomorphism as well. The same
follows for f . This concludes the proof of theorem 3.8.

Exercise 3I. Let Y be a second connected locally noetherian scheme, y : Spec L→ Y a geomet-
ric point, and f : X → Y, f : Spec K → Spec L morphisms such that the diagram

Spec K Spec L

X Y

f

x y
f

commutes. Show that there is a natural map f∗ : πet(X, x)→ πet(Y, y). �

Exercise 3J. Let L/K be a field extension, L a separable closure of L, and K the separable
closure of K in L. Show that there is a natural map Gal(L/L)→ Gal(K/K) and that it is given
by restricting the action of σ ∈ Gal(L/L) to K. �
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