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1. Topology

Let X be a connected topological space. Let x ∈ X be a point. An important invariant of (X, x)
is the (topological) fundamental group

π(X, x) :=
{

loops x x in X
}

/'.

It can also be described in terms of covers. A cover of X is a map p : Y → X such that every
point x ∈ X has an open neighborhood U ⊆ X with p−1(U) ∼= U × p−1(x) as spaces over
U (endowing p−1(x) with the discrete topology). A cover Y → X is universal if Y is simply
connected. In this case π(X, x) = AutX Y.

Theorem 1.1. Suppose X admits a universal cover. Then the functor

Cov X → π(X, x)-Set, p 7→ p−1(x)

is an equivalence. �

Theorem 1.2. There is a profinite group π, unique up to isomorphism, such that

FCov X ≈ π-FSet.

If X admits a universal cover, then π is isomorphic to the profinite completion π̂(X, x). �

All data in this theorem can be made functorial in (X, x).

Example 1.3. The circle S1 has fundamental group π(S1, x) = Z. It has the universal cover
R → S1, t 7→ exp 2πit, with automorphism group generated by the shift t 7→ t + 1. In the set-
ting of theorem 1.2, suppose A is a transitive finite Ẑ-set. Then A ∼= Z/nZ, and it corresponds
to the finite cover R/nZ→ S1, t 7→ exp 2πit. �

2. Algebraic geometry

Let X be a connected scheme. Let x ∈ X be a point. The topological fundamental group π(X, x)
is not a useful invariant, due to the Zariski topology. As usual, the correct notion of a covering
in algebraic geometry is an étale map. Then theorem 1.2 has the following analogue.

Theorem 2.1. There is a profinite group π, unique up to isomorphism, such that

FEt X ≈ π-FSet. �

Given a geometric point x of X, we can define π and the equivalence functorially in (X, x). It
is the étale fundamental group πet(X, x).

Often πet(X, x) is the desired analogue of the topological fundamental group. This can be
seen for instance in the complex case: if X is a connected complex variety and x a closed point,
then πet(X, x) = π̂(Xan, x).
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Example 2.2. Let X be the complex projective line with 0 and ∞ identified. Its analytification is
the Riemann sphere S2 with two points identified, hence π(Xan, x) = Z. We get πet(X, x) = Ẑ.
In the setting of theorem 2.1, suppose A ∼= Z/nZ is a transitive finite Ẑ-set. It corresponds to
the finite étale X-scheme consisting of n copies of P1, where 0 in the ith copy is identified with
∞ in the (i + 1)st copy, cyclically. �

Remark 2.3. In the preceding example, there is a natural ‘universal’ étale X-scheme, with
automorphism group Z. It would be nice if one could actually detect this. This ‘defect’ is
repaired by the pro-étale fundamental group, to be introduced next week. �

3. Galois theory

The formalism behind theorems 1.2 and 2.1 is a type of Galois theory. It is used to classify
categories of the form π-FSet for some profinite group π.

Definition 3.1. Let C be a category and F : C → FSet a functor. Then C is a Galois category with
fundamental functor F if
I C has finite limits and colimits,
I any map f : X → Y in C can be written as f = m ◦ e with e an epimorphism and m a

monomorphism onto a direct summand of Y, and
I F is exact and conservative. �

Example 3.2. Let π be a profinite group. Then π-FSet with the forgetful functor π-FSet→ FSet
is a Galois category. (We will see that, up to equivalence, this is the only example.) �

Let (C, F) be a Galois category. Consider the automorphism group Aut F. Endowing each finite
permutation group S(F(X)) with the discrete topology, the subgroup Aut F ⊆ ∏X∈C S(F(X))
is closed. In fact Aut F is profinite. The action of Aut F on each F(X) is continuous. So we get
a functor C → Aut F-FSet.

Theorem 3.3. Let (C, F) be a Galois category.
I The functor C → Aut F-FSet is an equivalence.
I Let π be a profinite group. If F factors over an equivalence C → π-FSet, then π = Aut F. �

Moreover, the group Aut F does not really depend on F.

Theorem 3.4. Let C be a category.
I If F, F′ : C → FSet both make C into a Galois category, then F ∼= F′.
I Let π, π′ be profinite groups. If C is equivalent to both π-FSet and π′-FSet, then π ∼= π′. �

4. Applications

From the preceding theory we can easily prove theorems 1.2 and 2.1. For the first, let (X, x)
be a pointed connected topological space. We define the fiber functor Fx : FCov X → FSet,
p 7→ p−1(x).

Lemma 4.1. Let X be a topological space. Let p : Y → X and q : Z → X be finite coverings, and
f : Y → Z a morphism of coverings. Then each x ∈ X has an open neighborhood U ⊆ X where p and
q are trivial, such that f is of the form idU × α : U × p−1(U)→ U × q−1(U) above U. �

Theorem 4.2. The pair (FCov X, Fx) is a Galois category. �
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In the algebraic geometry setting, we do essentially the same. Let (X, x) be a geometrically
pointed connected scheme. Let Fx be the fiber functor FEt X → FEt x → FSet.

Theorem 4.3. The pair (FEt X, Fx) is a Galois category. �

It is a good exercise to prove this theorem in the case X = Spec k, where k is a field. Observe
that then πet(X, x) = Gal(ksep/k). This illustrates the terminology ‘Galois theory’.
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