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Let X be a connected scheme. The étale fundamental group
πet(X) is an important invariant. It classifies finite étale covers.

Example
Take for X the nodal curve P1/{0 ∼ ∞} over C. Its (connected)
covers are of the form

We have πet(X) = Ẑ.
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Example
Take for X the nodal curve P1/{0 ∼ ∞} over C. Its (connected)
covers are of the form

We have πet(X) = Ẑ.

The étale fundamental group is profinite and satisfies

FCov(X) ≈ πet(X)-FSet.
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The pro-étale fundamental group πproet(X) classifies geometric
covers: étale maps that have the valuative criterion of
properness.

Example
Now there is also an infinite connected cover

. . . . . .

We have πproet(X) = Z.
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Example
Now there is also an infinite connected cover

. . . . . .

We have πproet(X) = Z.

The pro-étale fundamental group is . . . and satisfies

Cov(X) ≈ πproet(X)-Set.
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Theorem (Bhatt–Scholze)
Assume X is connected and locally noetherian. Continuous
representations πproet(X)→ GLn(Ql) are the same as Ql-local
systems on X.

Example
For the nodal curve a local system is given by an element of
GLn(Ql) that determines gluing at the node. The theorem is
false for the compact group πet(X).
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Example
If G is a topological group, then (G-FSet, forget) is a profinite
Galois category.

A profinite Galois category is a category C equipped with a
functor F : C → FSet such that

I C has finite limits and finite colimits,
I F preserves finite limits and finite colimits,
I F is conservative,
I C is generated under finite colimits by connected objects.

Its fundamental group is π(C, F) := Aut(F).
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A profinite Galois category is a category C equipped with a
functor F : C → FSet such that

I C has finite limits and finite colimits,
I F preserves finite limits and finite colimits,
I F is conservative,
I C is generated under finite colimits by connected objects.

Its fundamental group is π(C, F) := Aut(F).

Theorem
The functor F lifts to an equivalence F : C → π(C, F)-FSet.
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Example
If G is a topological group, then (G-Set, forget) is an infinite
Galois category.

An infinite Galois category is a category C equipped with a
functor F : C → Set such that

I C has finite limits and all colimits,
I F preserves finite limits and all colimits,
I F is conservative,
I C is generated under colimits by connected objects.

Its fundamental group is π(C, F) := Aut(F).
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An infinite Galois category is a category C equipped with a
functor F : C → Set such that

I C has finite limits and all colimits,
I F preserves finite limits and all colimits,
I F is conservative,
I C is generated under colimits by connected objects.

Its fundamental group is π(C, F) := Aut(F).

Theorem
If (C, F) is tame, then F lifts to an equivalence F : C → π(C, F)-Set.
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Example
Let (Gi)i∈I be a cofiltered system of groups with surjective
transition maps. Then

(C, F) :=
(
colim
i∈Iop

(Gi-Set), forget
)

is an infinite Galois category with fundamental group

π(C, F) = lim
i∈I

Gi.

But that limit can be trivial even if the Gi are not!

; (C, F) is not tame
; F : C → π(C, F)-Set is not an equivalence
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Example
Let (C, F) and (C, G) be infinite Galois categories.

Set
C

Set

F

G

Is F ∼= G?

Solution: work with a better category of spaces.

Replace topological spaces by locales.
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locales
=

topology without points
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A frame is a partially ordered set L such that
I L has arbitrary suprema, or joins,

∨
a∈A a,

I L has finite infima, or meets,
∧

b∈B b,
I L satisfies the distributive law

(
∨

a∈A
a) ∧ b =

∨
a∈A

(a∧ b)

for all A ⊆ L and b ∈ L.
In particular L has a minimum 0 and a maximum 1.

A frame homomorphism is a function L→ M that preserves all
joins and finite meets.
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A locale is the dual of a frame:

Loc := Frmop.

The underlying frame of a locale X is denoted O(X).

Example
If X is a topological space, O(X) is a frame. Let Xloc be the
locale with O(Xloc) = O(X). This makes a functor

Top Loc.loc
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Example
The localic point is the locale ∗ with frame {0, 1}.

Let X be a locale.
I A point of X is a morphism ∗ → X.
I The spectrum of X is the set |X| := HomLoc(∗, X). It comes

equipped with a natural topology.

This makes a functor

Loc Top.
|−|
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Theorem (Stone duality)
There is an adjunction

Top Loc
loc

⊥

|−|

that restricts to an equivalence{
sober spaces

} {
spatial locales

}
.
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Example
If G is a localic group, then (G-Set, forget) is an infinite Galois
category.

The problem in topology was inadequacy of limits.

Theorem
If Y = limi∈I Xi is a cofiltered limit of locales with epimorphic
transition maps, then the projections Y→ Xi are epimorphic as well.
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Let X and Y be sets.
We make a locale of functions denoted `Hom(X, Y).

The set Hom(X, Y) usually has the compact-open topology with
open subbase 〈x|y〉 := {f ∈ Hom(X, Y) : f (x) = y}.

The locale `Hom(X, Y) has opens 〈x|y〉 for x ∈ X and y ∈ Y,
such that

I 〈x|y1〉 ∧ 〈x|y2〉 = 0 for all x ∈ X and y1 6= y2,
I
∨

y∈Y〈x|y〉 = 1 for all x ∈ X.
We define `Hom(X, Y) to be universal for these properties.
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The locale `Hom(X, Y) has opens 〈x|y〉 for x ∈ X and y ∈ Y,
such that

I 〈x|y1〉 ∧ 〈x|y2〉 = 0 for all x ∈ X and y1 6= y2,
I
∨

y∈Y〈x|y〉 = 1 for all x ∈ X.
We define `Hom(X, Y) to be universal for these properties.

Example
A point of `Hom(X, Y) is a morphism ∗ → `Hom(X, Y), so a
function h : X× Y→ {0, 1}. The subset S = h−1(1) satisfies

I (x, y1) and (x, y2) are not both in S if y1 6= y2,
I for all x ∈ X there is y ∈ Y with (x, y) ∈ S.

So S defines a function X→ Y.
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Define `Isom(X, Y) to be the universal locale with opens 〈x|y〉
for x ∈ X and y ∈ Y, such that

I 〈x|y1〉 ∧ 〈x|y2〉 = 0 for all x ∈ X and y1 6= y2,
I
∨

y∈Y〈x|y〉 = 1 for all x ∈ X,
I 〈x1|y〉 ∧ 〈x2|y〉 = 0 for all x1 6= x2 and y ∈ Y,
I
∨

x∈X〈x|y〉 = 1 for all y ∈ Y.

Theorem
If X and Y are infinite, then `Isom(X, Y) is non-trivial.
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Let (C, F) be an infinite Galois category.

One introduces the localic fundamental group

π`(C, F) := `Aut(F)

similar to the constructions before.

Theorem (Joyal–Tierney, Moerdijk, Dubuc)

The functor F lifts to an equivalence F : C → π`(C, F)-Set.
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Theorem
Let (C, F) and (C, G) be infinite Galois categories.

Set

C
Set

F

G

The locale `Isom(F, G) is a π`(C, G)-π`(C, F)-bitorsor.
It is trivial if and only if F ∼= G.
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