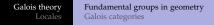
Infinite Galois theory and localic groups

Wouter Zomervrucht

Diamant symposium, November 30, 2018

Universiteit Leiden & Freie Universität Berlin



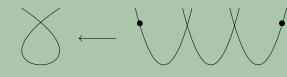
Let *X* be a connected scheme. The *étale fundamental group* $\pi^{\text{et}}(X)$ is an important invariant. It classifies finite étale covers.

Example

Take for X the nodal curve $\mathbb{P}^1/\{o \sim \infty\}$ over \mathbb{C} . Its (connected) covers are of the form

We have $\pi^{\text{et}}(X) = \widehat{\mathbb{Z}}$.

Take for X the nodal curve $\mathbb{P}^1/\{o \sim \infty\}$ over \mathbb{C} . Its (connected) covers are of the form

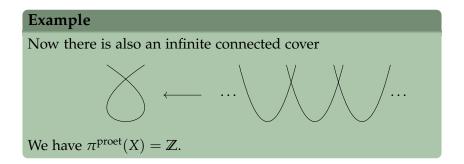


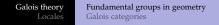
We have $\pi^{\text{et}}(X) = \widehat{\mathbb{Z}}$.

The étale fundamental group is profinite and satisfies

 $FCov(X) \approx \pi^{et}(X)$ -FSet.

The *pro-étale fundamental group* $\pi^{\text{proet}}(X)$ classifies *geometric covers*: étale maps that have the valuative criterion of properness.





Now there is also an infinite connected cover

We have $\pi^{\text{proet}}(X) = \mathbb{Z}$.

The pro-étale fundamental group is ... and satisfies

 $Cov(X) \approx \pi^{proet}(X)$ -Set.

Theorem (Bhatt-Scholze)

Assume X is connected and locally noetherian. Continuous representations $\pi^{\text{proet}}(X) \to \operatorname{GL}_n(\mathbb{Q}_l)$ are the same as \mathbb{Q}_l -local systems on X.

Example

For the nodal curve a local system is given by an element of $GL_n(\mathbb{Q}_l)$ that determines gluing at the node. The theorem is false for the compact group $\pi^{\text{et}}(X)$.

If *G* is a topological group, then (*G*-FSet, forget) is a profinite Galois category.

A *profinite Galois category* is a category C equipped with a functor $F: C \to FSet$ such that

- ► *C* has finite limits and finite colimits,
- ► *F* preserves finite limits and finite colimits,
- ► *F* is conservative,
- C is generated under finite colimits by connected objects.

Its fundamental group is $\pi(\mathcal{C}, F) := \operatorname{Aut}(F)$.

A *profinite Galois category* is a category C equipped with a functor $F: C \to FSet$ such that

- ► *C* has finite limits and finite colimits,
- ► *F* preserves finite limits and finite colimits,
- ► *F* is conservative,
- \blacktriangleright C is generated under finite colimits by connected objects.

Its fundamental group is $\pi(\mathcal{C}, F) := \operatorname{Aut}(F)$.

Theorem

The functor F lifts to an equivalence \overline{F} : $C \to \pi(C, F)$ -FSet.

If G is a topological group, then (*G*-Set, forget) is an infinite Galois category.

An *infinite Galois category* is a category C equipped with a functor $F: C \rightarrow$ Set such that

- ▶ *C* has finite limits and all colimits,
- ► *F* preserves finite limits and all colimits,
- ► *F* is conservative,
- C is generated under colimits by connected objects.

Its *fundamental group* is $\pi(\mathcal{C}, F) := \operatorname{Aut}(F)$.

An *infinite Galois category* is a category C equipped with a functor $F: C \rightarrow$ Set such that

- ► *C* has finite limits and all colimits,
- ► *F* preserves finite limits and all colimits,
- ► *F* is conservative,
- ► *C* is generated under colimits by connected objects.

Its fundamental group is $\pi(\mathcal{C}, F) := \operatorname{Aut}(F)$.

Theorem

If (\mathcal{C}, F) *is tame, then* F *lifts to an equivalence* $\overline{F} \colon \mathcal{C} \to \pi(\mathcal{C}, F)$ -Set.

Let $(G_i)_{i \in \mathcal{I}}$ be a cofiltered system of groups with surjective transition maps. Then

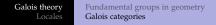
$$(\mathcal{C}, F) := \left(\operatorname{colim}_{i \in \mathcal{I}^{\operatorname{op}}} (G_i \operatorname{-Set}), \operatorname{forget} \right)$$

is an infinite Galois category with fundamental group

$$\pi(\mathcal{C},F)=\lim_{i\in\mathcal{I}}G_i.$$

But that limit can be trivial even if the G_i are not!

 $\begin{array}{l} \rightsquigarrow \quad (\mathcal{C},F) \text{ is not tame} \\ \rightsquigarrow \quad \overline{F} \colon \mathcal{C} \to \pi(\mathcal{C},F) \text{-Set is not an equivalence} \end{array}$



Let (\mathcal{C}, F) and (\mathcal{C}, G) be infinite Galois categories.

Is $F \cong G$?

Solution: work with a better category of spaces.

Replace **topological spaces** by **locales**.

Galois theory Background Locales Locales of functions

locales = topology without points

A *frame* is a partially ordered set *L* such that

- *L* has arbitrary suprema, or *joins*, $\bigvee_{a \in A} a$,
- *L* has finite infima, or *meets*, $\bigwedge_{b \in B} b$,
- *L* satisfies the distributive law

$$(\bigvee_{a\in A}a)\wedge b=\bigvee_{a\in A}(a\wedge b)$$

for all $A \subseteq L$ and $b \in L$.

In particular *L* has a minimum **o** and a maximum **1**.

A *frame homomorphism* is a function $L \rightarrow M$ that preserves all joins and finite meets.

A *locale* is the dual of a frame:

 $Loc := Frm^{op}$.

The underlying frame of a locale *X* is denoted O(X).

Example

If X is a topological space, $\mathcal{O}(X)$ is a frame. Let X_{loc} be the locale with $\mathcal{O}(X_{\text{loc}}) = \mathcal{O}(X)$. This makes a functor

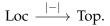
Top
$$\xrightarrow{\text{loc}}$$
 Loc.

The *localic point* is the locale * with frame $\{0, 1\}$.

Let *X* be a locale.

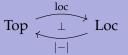
- A *point* of *X* is a morphism $* \to X$.
- ► The *spectrum* of X is the set |X| := Hom_{Loc}(*, X). It comes equipped with a natural topology.

This makes a functor



Theorem (Stone duality)

There is an adjunction



that restricts to an equivalence

$$\{\text{sober spaces}\} \longleftrightarrow \{\text{spatial locales}\}.$$

If *G* is a localic group, then (*G*-Set, forget) is an infinite Galois category.

The problem in topology was inadequacy of limits.

Theorem

If $Y = \lim_{i \in \mathcal{I}} X_i$ is a cofiltered limit of locales with epimorphic transition maps, then the projections $Y \to X_i$ are epimorphic as well.

Let *X* and *Y* be sets. We make a *locale of functions* denoted $\ell \text{Hom}(X, Y)$.

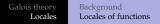
The set Hom(*X*, *Y*) usually has the *compact-open* topology with open subbase $\langle x|y \rangle := \{f \in \text{Hom}(X, Y) : f(x) = y\}.$

The locale ℓ Hom(*X*, *Y*) has opens $\langle x | y \rangle$ for $x \in X$ and $y \in Y$, such that

•
$$\langle x|y_1 \rangle \land \langle x|y_2 \rangle = \mathbf{0}$$
 for all $x \in X$ and $y_1 \neq y_2$,

•
$$\bigvee_{y \in Y} \langle x | y \rangle = \mathbf{1}$$
 for all $x \in X$.

We define ℓ Hom(*X*, *Y*) to be **universal** for these properties.



The locale ℓ Hom(X, Y) has opens $\langle x | y \rangle$ for $x \in X$ and $y \in Y$, such that

•
$$\langle x|y_1 \rangle \land \langle x|y_2 \rangle = \mathbf{0}$$
 for all $x \in X$ and $y_1 \neq y_2$,

•
$$\bigvee_{y \in Y} \langle x | y \rangle = \mathbf{1}$$
 for all $x \in X$.

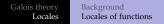
We define $\ell Hom(X, Y)$ to be **universal** for these properties.

Example

A point of ℓ Hom(X, Y) is a morphism $* \to \ell$ Hom(X, Y), so a function $h: X \times Y \to \{\mathbf{0}, \mathbf{1}\}$. The subset $S = h^{-1}(\mathbf{1})$ satisfies

- (x, y_1) and (x, y_2) are not both in *S* if $y_1 \neq y_2$,
- for all $x \in X$ there is $y \in Y$ with $(x, y) \in S$.

So *S* defines a function $X \to Y$.



Define $\ell \text{Isom}(X, Y)$ to be the universal locale with opens $\langle x | y \rangle$ for $x \in X$ and $y \in Y$, such that

• $\langle x|y_1 \rangle \wedge \langle x|y_2 \rangle = \mathbf{0}$ for all $x \in X$ and $y_1 \neq y_2$,

•
$$\bigvee_{y \in Y} \langle x | y \rangle = \mathbf{1}$$
 for all $x \in X$,

•
$$\langle x_1 | y \rangle \land \langle x_2 | y \rangle = \mathbf{0}$$
 for all $x_1 \neq x_2$ and $y \in Y$,

•
$$\bigvee_{x \in X} \langle x | y \rangle = \mathbf{1}$$
 for all $y \in Y$.

Theorem

If X and Y are infinite, then $\ell \text{Isom}(X, Y)$ is non-trivial.

Let (\mathcal{C}, F) be an infinite Galois category.

One introduces the localic fundamental group

 $\pi^{\ell}(\mathcal{C},F):=\ell \mathrm{Aut}(F)$

similar to the constructions before.

Theorem (Joyal–Tierney, Moerdijk, Dubuc)

The functor F lifts to an equivalence \overline{F} : $\mathcal{C} \to \pi^{\ell}(\mathcal{C}, F)$ -Set.

Theorem

Let (C, F) and (C, G) be infinite Galois categories.

The locale ℓ Isom(*F*, *G*) is a $\pi^{\ell}(\mathcal{C}, G)$ - $\pi^{\ell}(\mathcal{C}, F)$ -bitorsor. It is trivial if and only if $F \cong G$.