Bhargava's cube law and cohomology

Wouter Zomervrucht

Diamant symposium, May 27, 2016

Berlin Mathematical School

Universiteit Leiden \& Freie Universität Berlin
235. Si forma $A X X+2 B X Y+C Y Y \ldots$ F transit in productum e duabus formis $a x x+$ $\underline{a} b x y+c y y \ldots f$, et $a^{\prime} x^{\prime} x^{\prime}+2 b^{\prime} x^{\prime} y^{\prime}+c^{\prime} y^{\prime} y$ $\cdots f^{\prime}$ per substitutionem talem $X=p x x^{\prime}+p^{\prime} x y^{s}$ $+p^{\prime \prime} y x^{\prime}+p^{\prime \prime \prime} y y^{\prime}, \quad Y=q x x^{\prime}+q^{\prime} x y^{\prime}+q^{\prime \prime} y x^{\prime}$ $+q^{\prime \prime \prime} y y^{\prime}$ (quod breuitatis causa in sequentibus semper ita exprimemus: $\quad \mathrm{Si} F$ transit in $f f$ per substitutionem $\left.p, p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime} ; q, q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}{ }^{*}\right)$), dicemus simpliciter, formam F transformabilem esse in ff^{\prime}; si insuper haec transformatio ita est comparata, vt sex numeri $p q^{\prime}-q p^{\prime} s p q^{\prime \prime}-q p^{\prime \prime}$, $p q^{\prime \prime \prime}-q p^{\prime \prime \prime}, p^{\prime} q^{H}-q^{\prime} p^{\prime \prime}, p^{\prime} q^{\prime \prime \prime}-q^{\prime} p^{\prime \prime \prime}, p^{\prime \prime} q^{\prime \prime}$ - $q^{i t} p^{i 4}$ diussorem communem non habeant: formam F e formis $f ; f^{\prime}$ compositam vocabimus.

- Carl Friedrich Gauss (1801) binary quadratic forms
- Peter Gustav Lejeune Dirichlet (1839) quadratic class groups
- Manjul Bhargava (2004) higher composition laws

- Carl Friedrich Gauss (1801) binary quadratic forms
- Peter Gustav Lejeune Dirichlet (1839) quadratic class groups
- Manjul Bhargava (2004) higher composition laws

- Carl Friedrich Gauss (1801) binary quadratic forms
- Peter Gustav Lejeune Dirichlet (1839) quadratic class groups
- Manjul Bhargava (2004) higher composition laws

A binary quadratic form is an expression

$$
q=a x^{2}+b x y+c y^{2}, \quad a, b, c \in \mathbb{Z}
$$

It is primitive if $\operatorname{gcd}(a, b, c)=1$.
The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on binary quadratic forms by variable substitution. The discriminant

$$
\Delta q=b^{2}-4 a c
$$

is invariant under this action.

Let $D \equiv 0,1 \bmod 4$. We define

$Q_{D}(\mathbb{Z})=\{$ primitive binary quadratic forms of discriminant $D\}$.

Theorem (Gauss)

For any two $q_{1}, q_{2} \in Q_{D}(\mathbb{Z})$ there exists a third $q \in Q_{D}(\mathbb{Z})$ and forms $u, v \in \mathbb{Z}\left[x_{1}, y_{1}, x_{2}, y_{2}\right]_{1,1}$ such that

$$
q_{1}\left(x_{1}, y_{1}\right) \cdot q_{2}\left(x_{2}, y_{2}\right)=q(u, v) .
$$

This makes $Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z})$ into a finite abelian group.

Theorem (Gauss)

For any two $q_{1}, q_{2} \in Q_{D}(\mathbb{Z})$ there exists a third $q \in Q_{D}(\mathbb{Z})$ and forms $u, v \in \mathbb{Z}\left[x_{1}, y_{1}, x_{2}, y_{2}\right]_{1,1}$ such that

$$
q_{1}\left(x_{1}, y_{1}\right) \cdot q_{2}\left(x_{2}, y_{2}\right)=q(u, v)
$$

This makes $Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z})$ into a finite abelian group.

Example

Suppose $D \equiv 0 \bmod 4$. Then

- $\left[x^{2}-\frac{D}{4} y^{2}\right]=0$,
- $\left[a x^{2}+b x y+c y^{2}\right]^{-1}=\left[a x^{2}-b x y+c y^{2}\right]$.

Let \mathcal{O}_{D} be the unique quadratic order of discriminant D.

Example

Suppose $D \neq 1$ is squarefree. Then $\mathcal{O}_{D}=\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]$ is the maximal order in $\mathbf{Q}(\sqrt{D})$.

The class group of \mathcal{O}_{D} is

$$
\mathrm{Cl}\left(\mathcal{O}_{D}\right)=\frac{\{\text { invertible fractional ideals }\}}{\{\text { invertible principal ideals }\}}
$$

There is also a narrow or oriented class group $\mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right)$ which fits into a short exact sequence

$$
1 \longrightarrow\{ \pm 1\} / \mathrm{N}\left(\mathcal{O}_{D}^{\times}\right) \longrightarrow \mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right) \longrightarrow \mathrm{Cl}\left(\mathcal{O}_{D}\right) \longrightarrow 1 .
$$

Example

If D is negative, $\mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right)=\{ \pm 1\} \times \mathrm{Cl}\left(\mathcal{O}_{D}\right)$.

Theorem (Dirichlet)

$$
Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z}) \cong \mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right) .
$$

Roughly, $\left[a x^{2}+b x y+c y^{2}\right]$ corresponds to $\left[\mathbb{Z} \oplus \frac{-b+\sqrt{D}}{2 a} \mathbb{Z}\right]$.

Example

If D is negative, $\mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right)=\{ \pm 1\} \times \mathrm{Cl}\left(\mathcal{O}_{D}\right)$. The subgroup
$\mathrm{Cl}\left(\mathcal{O}_{D}\right) \subset \mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right)$ corresponds to positive definite forms.

A cube is a $2 \times 2 \times 2$-matrix of integers

The group $G(\mathbb{Z})=\operatorname{SL}_{2}(\mathbb{Z}) \times \operatorname{SL}_{2}(\mathbb{Z}) \times \operatorname{SL}_{2}(\mathbb{Z})$ acts on cubes. For instance, the first factor acts by

$$
(\square, \square)\binom{\alpha \beta}{\gamma \delta}=(\alpha \square+\gamma \square, \beta \square+\delta \square)
$$

A cube is a $2 \times 2 \times 2$-matrix of integers

The group $G(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) \times \mathrm{SL}_{2}(\mathbb{Z}) \times \mathrm{SL}_{2}(\mathbb{Z})$ acts on cubes.
For instance, the first factor acts by

$$
(\square, \square)\left(\begin{array}{c}
\alpha \\
\gamma \\
\gamma
\end{array}\right)=(\alpha \square+\gamma \square, \beta \square+\delta \square) .
$$

Associated to a cube w are three binary quadratic forms $q_{1}(w), q_{2}(w), q_{3}(w)$. For instance,

$$
q_{1}(\square, \square)=\operatorname{det}\left(\square x_{1}+\square y_{1}\right) .
$$

The discriminants satisfy

$$
\Delta q_{1}(w)=\Delta q_{2}(w)=\Delta q_{3}(w)
$$

and this number is the discriminant Δw of the cube.

A cube w is projective if $q_{1}(w), q_{2}(w), q_{3}(w)$ are primitive. We define $W_{D}(\mathbb{Z})=\{$ projective cubes of discriminant $D\}$.

Theorem (Bhargava)

For any cube $w \in W_{D}(\mathbb{Z})$ the identity

$$
\left[q_{1}(w)\right]+\left[q_{2}(w)\right]+\left[q_{3}(w)\right]=0
$$

holds in $Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z})$. Conversely, if

$$
\left[q_{1}\right]+\left[q_{2}\right]+\left[q_{3}\right]=0
$$

holds in $Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z})$, there is a cube $w \in W_{D}(\mathbb{Z})$ satisfying $q_{1}(w)=q_{1}, q_{2}(w)=q_{2}$, and $q_{3}(w)=q_{3}$.

Theorem (Bhargava)

There is a unique group law on $W_{D}(\mathbb{Z}) / G(\mathbb{Z})$ such that the maps

$$
q_{1}, q_{2}, q_{3}: W_{D}(\mathbb{Z}) / G(\mathbb{Z}) \longrightarrow Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z})
$$

are group homomorphisms.

Theorem (Bhargava)
 $W_{n}(\mathbb{Z}) / G(\mathbb{Z}) \simeq \mathrm{Cl}^{+}\left(O_{n}\right) \times \mathrm{Cl}\left(O_{D}\right)$

Theorem (Bhargava)

There is a unique group law on $W_{D}(\mathbb{Z}) / G(\mathbb{Z})$ such that the maps

$$
q_{1}, q_{2}, q_{3}: W_{D}(\mathbb{Z}) / G(\mathbb{Z}) \longrightarrow Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z})
$$

are group homomorphisms.

Theorem (Bhargava)

$W_{D}(\mathbb{Z}) / G(\mathbb{Z}) \cong \mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right) \times \mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right)$.

Goal: explain class groups geometrically.

- group scheme SL_{2} acting on $Q_{D} \subset \mathbb{A}^{3}$
- group scheme $G=\mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ acting on $W_{D} \subset \mathbb{A}^{8}$

We use arithmetic invariant theory and flat cohomology.

Example

Let SL_{2} act on $\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$. On global sections we retrieve the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\mathcal{O}(2)\left(\mathbb{P}^{1}\right)=\mathbb{Z}[x, y]_{2}$.

Let G act on $\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,1,1)\right)$. On global sections we get an action of $G(\mathbb{Z})$ on

Identifying cubes with $1,1,1$-forms, this is the action above.

Example

Let SL_{2} act on $\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$. On global sections we retrieve the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\mathcal{O}(2)\left(\mathbb{P}^{1}\right)=\mathbb{Z}[x, y]_{2}$.

Let G act on $\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,1,1)\right)$. On global sections we get an action of $G(\mathbb{Z})$ on

$$
\mathcal{O}(1,1,1)\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\mathbb{Z}\left[x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right]_{1,1,1}
$$

Identifying cubes with 1,1 , 1 -forms, this is the action above.

Let G act on $\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,1,1)\right)$. On global sections we get an action of $G(\mathbb{Z})$ on

$$
\mathcal{O}(1,1,1)\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\mathbb{Z}\left[x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right]_{1,1,1} .
$$

Identifying cubes with $1,1,1$-forms, this is the action above.

Example

Let $w \in W_{D}(\mathbb{Z})$ be a cube. The fibers of

$$
\mathrm{Z}(w) \xrightarrow{\pi_{1}} \mathbb{P}^{1}
$$

are degenerate precisely above $\mathrm{Z}\left(q_{1}(w)\right)$.

Principle of transitive actions

Let \mathcal{C} / S be a site with final object S. Let G be a sheaf of groups acting transitively on a sheaf of sets X. Let $x \in X(S)$ be a global section and $H \subseteq G$ the stabilizer of x.

The short exact sequence of sheaves of pointed sets

$$
1 \longrightarrow H \longrightarrow G \xrightarrow{\cdot x} X \longrightarrow 1
$$

induces a longer exact sequence

$$
1 \longrightarrow H(S) \longrightarrow G(S) \longrightarrow X(S) \xrightarrow{\delta} \mathrm{H}^{1}(S, H) \longrightarrow \mathrm{H}^{1}(S, G)
$$

where $\delta(y)$ is the transporter $G_{y, x}$.

Principle of transitive actions

Let \mathcal{C} / S be a site with final object S. Let G be a sheaf of groups acting transitively on a sheaf of sets X. Let $x \in X(S)$ be a global section and $H \subseteq G$ the stabilizer of x.

If moreover

- H is abelian,
- $\mathrm{H}^{1}(S, G)=1$,
then $G(S) \backslash X(S)$ has a $\mathrm{H}^{1}(S, H)$-torsor structure independent of the choice of x.

Let \mathbb{T}_{D} be the norm one unit group with respect to $\mathbb{Z} \rightarrow \mathcal{O}_{D}$. That is, if $\mathcal{O}_{D}=\mathbb{Z}[\tau] /\left(\tau^{2}-b \tau+c\right)$, then

$$
\begin{aligned}
\mathbb{T}_{D} & =\{(u, v): \mathrm{N}(u+v \tau)=1\} \\
& =\left\{(u, v): u^{2}+b u v+c v^{2}=1\right\} .
\end{aligned}
$$

One has $\mathrm{H}_{\mathrm{fppf}}^{1}\left(\mathbb{Z}, \mathbb{T}_{D}\right)=\mathrm{Cl}^{+}\left(\mathcal{O}_{D}\right)$.

If $H \subset \mathrm{SL}_{2}$ is the stabilizer of $x^{2}+b x y+c y^{2}$ in $Q_{D}(\mathbb{Z})$, then

$$
H^{b} \cong \mathbb{T}_{D}
$$

Here H^{\dagger} is the scheme-theoretic closure of the generic fiber.

Theorem

The set $Q_{D}(\mathbb{Z}) / \mathrm{SL}_{2}(\mathbb{Z})$ is canonically a torsor under $\mathrm{H}_{\mathrm{fppf}}^{1}\left(\mathbb{Z}, \mathbb{T}_{D}\right)$.
The same is true if we replace \mathbb{Z} by any Dedekind domain of characteristic not 2 .

What is the stabilizer $H \subset G$ of a cube $w \in W_{D}(\mathbb{Z})$?

Generically, the projection

$$
\mathrm{Z}(w) \xrightarrow{\pi_{23}} \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

is a blowup in two points. So $\mathrm{Z}(w)$ is a degree 6 del Pezzo surface. It contains a hexagon of six -1-curves.

We find

$$
H^{b} \cong \operatorname{ker}\left(\mathbb{T}_{D} \times \mathbb{T}_{D} \times \mathbb{T}_{D} \xrightarrow{\bullet} \mathbb{T}_{D}\right)
$$

Theorem

The set $W_{D}(\mathbb{Z}) / G(\mathbb{Z})$ is canonically a torsor under $\mathrm{H}_{\mathrm{fppf}}^{1}\left(\mathbb{Z}, \mathbb{T}_{D}\right)^{2}$.
The same is true if we replace \mathbb{Z} by any Dedekind domain of characteristic not 2.

