
Bhargava’s cube law and cohomology

Wouter Zomervrucht

Diamant symposium, May 27, 2016

Universiteit Leiden & Freie Universität Berlin



Gauss composition
Bhargava’s cube law

Geometry and cohomology

History
Binary quadratic forms
Class groups

Wouter Zomervrucht Bhargava’s cube law and cohomology 2/22



Gauss composition
Bhargava’s cube law

Geometry and cohomology

History
Binary quadratic forms
Class groups

I Carl Friedrich Gauss (1801)
binary quadratic forms

I Peter Gustav Lejeune Dirichlet (1839)
quadratic class groups

I Manjul Bhargava (2004)
higher composition laws

Wouter Zomervrucht Bhargava’s cube law and cohomology 3/22



Gauss composition
Bhargava’s cube law

Geometry and cohomology

History
Binary quadratic forms
Class groups

I Carl Friedrich Gauss (1801)
binary quadratic forms

I Peter Gustav Lejeune Dirichlet (1839)
quadratic class groups

I Manjul Bhargava (2004)
higher composition laws

Wouter Zomervrucht Bhargava’s cube law and cohomology 3/22



Gauss composition
Bhargava’s cube law

Geometry and cohomology

History
Binary quadratic forms
Class groups

I Carl Friedrich Gauss (1801)
binary quadratic forms

I Peter Gustav Lejeune Dirichlet (1839)
quadratic class groups

I Manjul Bhargava (2004)
higher composition laws

Wouter Zomervrucht Bhargava’s cube law and cohomology 3/22



Gauss composition
Bhargava’s cube law

Geometry and cohomology

History
Binary quadratic forms
Class groups

A binary quadratic form is an expression

q = ax2 + bxy + cy2, a, b, c ∈ Z.

It is primitive if gcd(a, b, c) = 1.

The group SL2(Z) acts on binary quadratic forms by variable
substitution. The discriminant

∆q = b2 − 4ac

is invariant under this action.
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Let D ≡ 0, 1 mod 4. We define

QD(Z) = {primitive binary quadratic forms of discriminant D}.

Theorem (Gauss)
For any two q1, q2 ∈ QD(Z) there exists a third q ∈ QD(Z) and
forms u, v ∈ Z[x1, y1, x2, y2]1,1 such that

q1(x1, y1) · q2(x2, y2) = q(u, v).

This makes QD(Z)/SL2(Z) into a finite abelian group.
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Theorem (Gauss)
For any two q1, q2 ∈ QD(Z) there exists a third q ∈ QD(Z) and
forms u, v ∈ Z[x1, y1, x2, y2]1,1 such that

q1(x1, y1) · q2(x2, y2) = q(u, v).

This makes QD(Z)/SL2(Z) into a finite abelian group.

Example
Suppose D ≡ 0 mod 4. Then
I [x2 − D

4
y2] = 0,

I [ax2 + bxy + cy2]−1 = [ax2 − bxy + cy2].
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Let OD be the unique quadratic order of discriminant D.

Example

Suppose D 6= 1 is squarefree. Then OD = Z[ 1+
√

D
2

] is the
maximal order in Q(

√
D).

The class group of OD is

Cl(OD) =
{invertible fractional ideals}
{invertible principal ideals} .
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There is also a narrow or oriented class group Cl+(OD) which fits
into a short exact sequence

1 −→ {±1}/N(O×D ) −→ Cl+(OD) −→ Cl(OD) −→ 1.

Example

If D is negative, Cl+(OD) = {±1} ×Cl(OD).
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Theorem (Dirichlet)
QD(Z)/SL2(Z) ∼= Cl+(OD).

Roughly, [ax2 + bxy + cy2] corresponds to [Z⊕ −b+
√

D
2a Z].

Example

If D is negative, Cl+(OD) = {±1} ×Cl(OD). The subgroup
Cl(OD) ⊂ Cl+(OD) corresponds to positive definite forms.
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A cube is a 2× 2× 2-matrix of integers

• •

• •

• •

• •

The group G(Z) = SL2(Z)× SL2(Z)× SL2(Z) acts on cubes.
For instance, the first factor acts by

(�,�)
( α β

γ δ

)
= (α�+ γ�, β�+ δ�).
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Associated to a cube w are three binary quadratic forms
q1(w), q2(w), q3(w). For instance,

q1(�,�) = det(�x1 +�y1).

The discriminants satisfy

∆q1(w) = ∆q2(w) = ∆q3(w)

and this number is the discriminant ∆w of the cube.

A cube w is projective if q1(w), q2(w), q3(w) are primitive. We
define WD(Z) = {projective cubes of discriminant D}.
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Theorem (Bhargava)
For any cube w ∈ WD(Z) the identity

[q1(w)] + [q2(w)] + [q3(w)] = 0

holds in QD(Z)/SL2(Z). Conversely, if

[q1] + [q2] + [q3] = 0

holds in QD(Z)/SL2(Z), there is a cube w ∈ WD(Z) satisfying
q1(w) = q1, q2(w) = q2, and q3(w) = q3.
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Theorem (Bhargava)
There is a unique group law on WD(Z)/G(Z) such that the maps

q1, q2, q3 : WD(Z)/G(Z) −→ QD(Z)/SL2(Z)

are group homomorphisms.

Theorem (Bhargava)

WD(Z)/G(Z) ∼= Cl+(OD)×Cl+(OD).
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Goal: explain class groups geometrically.

I group scheme SL2 acting on QD ⊂ A3

I group scheme G = SL2× SL2× SL2 acting on WD ⊂ A8

We use arithmetic invariant theory and flat cohomology.
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Example
Let SL2 act on (P1,O(1)). On global sections we retrieve the
action of SL2(Z) on O(2)(P1) = Z[x, y]2.

Let G act on (P1 ×P1 ×P1,O(1, 1, 1)). On global sections we
get an action of G(Z) on

O(1, 1, 1)(P1 ×P1 ×P1) = Z[x1, y1, x2, y2, x3, y3]1,1,1.

Identifying cubes with 1, 1, 1-forms, this is the action above.
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Let G act on (P1 ×P1 ×P1,O(1, 1, 1)). On global sections we
get an action of G(Z) on

O(1, 1, 1)(P1 ×P1 ×P1) = Z[x1, y1, x2, y2, x3, y3]1,1,1.

Identifying cubes with 1, 1, 1-forms, this is the action above.

Example
Let w ∈ WD(Z) be a cube. The fibers of

Z(w)
π1−−→ P1

are degenerate precisely above Z(q1(w)).
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Principle of transitive actions
Let C/S be a site with final object S. Let G be a sheaf of groups
acting transitively on a sheaf of sets X. Let x ∈ X(S) be a global
section and H ⊆ G the stabilizer of x.

The short exact sequence of sheaves of pointed sets

1 −→ H −→ G ·x−→ X −→ 1

induces a longer exact sequence

1 −→ H(S) −→ G(S) −→ X(S) δ−→ H1(S, H) −→ H1(S, G)

where δ(y) is the transporter Gy,x.
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Principle of transitive actions
Let C/S be a site with final object S. Let G be a sheaf of groups
acting transitively on a sheaf of sets X. Let x ∈ X(S) be a global
section and H ⊆ G the stabilizer of x.

If moreover
I H is abelian,
I H1(S, G) = 1,

then G(S) /X(S) has a H1(S, H)-torsor structure independent
of the choice of x.
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Let TD be the norm one unit group with respect to Z→ OD.
That is, if OD = Z[τ]/(τ2 − bτ + c), then

TD = {(u, v) : N(u + vτ) = 1}
= {(u, v) : u2 + buv + cv2 = 1}.

One has H1

fppf(Z, TD) = Cl+(OD).
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If H ⊂ SL2 is the stabilizer of x2 + bxy + cy2 in QD(Z), then

H[ ∼= TD.

Here H[ is the scheme-theoretic closure of the generic fiber.

Theorem
The set QD(Z)/SL2(Z) is canonically a torsor under H1

fppf(Z, TD).

The same is true if we replace Z by any Dedekind domain of
characteristic not 2.
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What is the stabilizer H ⊂ G of a cube w ∈ WD(Z)?

Generically, the projection

Z(w)
π23−−→ P1 ×P1

is a blowup in two points. So Z(w) is
a degree 6 del Pezzo surface. It contains
a hexagon of six −1-curves.
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We find
H[ ∼= ker

(
TD ×TD ×TD

·−→ TD
)
.

Theorem
The set WD(Z)/G(Z) is canonically a torsor under H1

fppf(Z, TD)
2.

The same is true if we replace Z by any Dedekind domain of
characteristic not 2.
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