# Bhargava's cube law and cohomology

# Wouter Zomervrucht

Diamant symposium, May 27, 2016







Universiteit Leiden & Freie Universität Berlin

History Binary quadratic forms Class groups

235. Si forma  $AXX + 2BXY + CYY \dots$ F transit in productum e duabus formis axx + $abxy + cyy \dots f$ , et a'x'x' + ab'x'y' + c'y'y $\dots$  f per substitutionem talem X = pxx' + p'xy'+ p''yx' + p'''yy', Y = qxx' + q'xy' + q'yx'+  $q^{\mu\nu}\gamma^{\mu}$  (quod breuitatis causa in sequentibus semper ita exprimemus: Si F transit in ff. per substitutionem p, p', p'', p'''; q, q', q'', q'' \*) ). dicemus simpliciter, formam F transformabilent esse in ff'; si insuper haec transformatio ita est comparata, vt sex numeri pq' - qp', pq" - qp", pq''' - qp''', p'q'' - q'p'', p'q''' - q'p'', p''q''' - q"p" divisorem communem non habeant: formam  $F \in \text{formis } f$ , f' compositant vocabimus.

History Binary quadratic forms Class groups



- Carl Friedrich Gauss (1801) binary quadratic forms
- Peter Gustav Lejeune Dirichlet (1839) quadratic class groups
- Manjul Bhargava (2004) higher composition laws

History Binary quadratic forms Class groups



 Carl Friedrich Gauss (1801) binary quadratic forms

- Peter Gustav Lejeune Dirichlet (1839) quadratic class groups
- Manjul Bhargava (2004) higher composition laws

History Binary quadratic forms Class groups



- Carl Friedrich Gauss (1801) binary quadratic forms
- Peter Gustav Lejeune Dirichlet (1839) quadratic class groups
- Manjul Bhargava (2004) higher composition laws

 Gauss composition
 History

 Bhargava's cube law
 Binary quadratic forms

 Geometry and cohomology
 Class groups

A *binary quadratic form* is an expression

$$q = ax^2 + bxy + cy^2$$
,  $a, b, c \in \mathbb{Z}$ .

It is *primitive* if gcd(a, b, c) = 1.

The group  $SL_2(\mathbb{Z})$  acts on binary quadratic forms by variable substitution. The *discriminant* 

$$\Delta q = b^2 - 4ac$$

is invariant under this action.

History Binary quadratic forms Class groups

# Let $D \equiv 0, 1 \mod 4$ . We define

 $Q_D(\mathbb{Z}) = \{ \text{primitive binary quadratic forms of discriminant } D \}.$ 

## Theorem (Gauss)

For any two  $q_1, q_2 \in Q_D(\mathbb{Z})$  there exists a third  $q \in Q_D(\mathbb{Z})$  and forms  $u, v \in \mathbb{Z}[x_1, y_1, x_2, y_2]_{1,1}$  such that

$$q_1(x_1, y_1) \cdot q_2(x_2, y_2) = q(u, v).$$

*This makes*  $Q_D(\mathbb{Z})/SL_2(\mathbb{Z})$  *into a finite abelian group.* 

 Gauss composition
 History

 Bhargava's cube law
 Binary quadratic forms

 Geometry and cohomology
 Class groups

# Theorem (Gauss)

For any two  $q_1, q_2 \in Q_D(\mathbb{Z})$  there exists a third  $q \in Q_D(\mathbb{Z})$  and forms  $u, v \in \mathbb{Z}[x_1, y_1, x_2, y_2]_{1,1}$  such that

$$q_1(x_1, y_1) \cdot q_2(x_2, y_2) = q(u, v).$$

*This makes*  $Q_D(\mathbb{Z})/SL_2(\mathbb{Z})$  *into a finite abelian group.* 

### Example

Suppose  $D \equiv 0 \mod 4$ . Then

$$\blacktriangleright \left[x^2 - \frac{D}{4}y^2\right] = 0,$$

• 
$$[ax^2 + bxy + cy^2]^{-1} = [ax^2 - bxy + cy^2]$$

Gauss compositionHistoryBhargava's cube lawBinary quadratic formsGeometry and cohomologyClass groups

Let  $\mathcal{O}_D$  be the unique *quadratic order* of discriminant *D*.

# Example

Suppose  $D \neq 1$  is squarefree. Then  $\mathcal{O}_D = \mathbb{Z}[\frac{1+\sqrt{D}}{2}]$  is the maximal order in  $\mathbb{Q}(\sqrt{D})$ .

The *class group* of  $\mathcal{O}_D$  is

$$Cl(\mathcal{O}_D) = \frac{\{\text{invertible fractional ideals}\}}{\{\text{invertible principal ideals}\}}.$$

Gauss compositionHistoryBhargava's cube lawBinary quadratic formsGeometry and cohomologyClass groups

There is also a *narrow* or *oriented class group*  $Cl^+(\mathcal{O}_D)$  which fits into a short exact sequence

$$\mathbf{1} \longrightarrow \{\pm \mathbf{1}\}/\mathrm{N}(\mathcal{O}_D^{\times}) \longrightarrow \mathrm{Cl}^+(\mathcal{O}_D) \longrightarrow \mathrm{Cl}(\mathcal{O}_D) \longrightarrow \mathbf{1}.$$

## Example

If *D* is negative,  $\operatorname{Cl}^+(\mathcal{O}_D) = \{\pm 1\} \times \operatorname{Cl}(\mathcal{O}_D)$ .

Gauss compositionHistoryBhargava's cube lawBinary quadratic formsGeometry and cohomologyClass groups

# **Theorem (Dirichlet)**

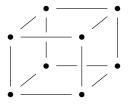
 $Q_D(\mathbb{Z})/\mathrm{SL}_2(\mathbb{Z})\cong \mathrm{Cl}^+(\mathcal{O}_D).$ 

Roughly, 
$$[ax^2 + bxy + cy^2]$$
 corresponds to  $[\mathbb{Z} \oplus \frac{-b + \sqrt{D}}{2a}\mathbb{Z}]$ .

#### Example

If *D* is negative,  $Cl^+(\mathcal{O}_D) = \{\pm 1\} \times Cl(\mathcal{O}_D)$ . The subgroup  $Cl(\mathcal{O}_D) \subset Cl^+(\mathcal{O}_D)$  corresponds to *positive definite* forms.

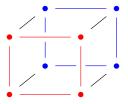
#### A *cube* is a $2 \times 2 \times 2$ -matrix of integers



The group  $G(\mathbb{Z}) = SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z})$  acts on cubes. For instance, the first factor acts by

$$(\Box, \Box) \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = (\alpha \Box + \gamma \Box, \beta \Box + \delta \Box).$$

A *cube* is a  $2 \times 2 \times 2$ -matrix of integers



The group  $G(\mathbb{Z}) = SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z})$  acts on cubes. For instance, the first factor acts by

$$(\Box,\Box)\left(\begin{smallmatrix} \alpha & \beta \\ \gamma & \delta \end{smallmatrix}\right) = (\alpha\Box + \gamma\Box, \beta\Box + \delta\Box).$$

Gauss composition Cubes of integers Bhargava's cube law The cube law Geometry and cohomology Objective

Associated to a cube *w* are three binary quadratic forms  $q_1(w), q_2(w), q_3(w)$ . For instance,

$$q_1(\Box, \Box) = \det(\Box x_1 + \Box y_1).$$

The discriminants satisfy

$$\Delta q_1(w) = \Delta q_2(w) = \Delta q_3(w)$$

and this number is the *discriminant*  $\Delta w$  of the cube.

A cube *w* is *projective* if  $q_1(w), q_2(w), q_3(w)$  are primitive. We define  $W_D(\mathbb{Z}) = \{ \text{projective cubes of discriminant } D \}.$ 

Gauss composition Cubes of integers Bhargava's cube law Geometry and cohomology Objective

### Theorem (Bhargava)

For any cube  $w \in W_D(\mathbb{Z})$  the identity

 $[q_1(w)] + [q_2(w)] + [q_3(w)] = 0$ 

holds in  $Q_D(\mathbb{Z})/SL_2(\mathbb{Z})$ . Conversely, if

 $[q_1] + [q_2] + [q_3] = 0$ 

holds in  $Q_D(\mathbb{Z})/SL_2(\mathbb{Z})$ , there is a cube  $w \in W_D(\mathbb{Z})$  satisfying  $q_1(w) = q_1, q_2(w) = q_2$ , and  $q_3(w) = q_3$ .

Gauss composition Cubes of integers Bhargava's cube law The cube law Geometry and cohomology Objective

# **Theorem (Bhargava)**

*There is a unique group law on*  $W_D(\mathbb{Z})/G(\mathbb{Z})$  *such that the maps* 

$$q_1, q_2, q_3 \colon W_D(\mathbb{Z}) / G(\mathbb{Z}) \longrightarrow Q_D(\mathbb{Z}) / SL_2(\mathbb{Z})$$

are group homomorphisms.

**Theorem (Bhargava)**  $W_D(\mathbb{Z})/G(\mathbb{Z}) \cong \operatorname{Cl}^+(\mathcal{O}_D) \times \operatorname{Cl}^+(\mathcal{O}_D).$  Gauss composition Cubes of integers Bhargava's cube law The cube law Geometry and cohomology Objective

### Theorem (Bhargava)

*There is a unique group law on*  $W_D(\mathbb{Z})/G(\mathbb{Z})$  *such that the maps* 

$$q_1, q_2, q_3 \colon W_D(\mathbb{Z}) / G(\mathbb{Z}) \longrightarrow Q_D(\mathbb{Z}) / \mathrm{SL}_2(\mathbb{Z})$$

are group homomorphisms.

#### Theorem (Bhargava)

 $W_D(\mathbb{Z})/G(\mathbb{Z}) \cong \mathrm{Cl}^+(\mathcal{O}_D) \times \mathrm{Cl}^+(\mathcal{O}_D).$ 

Goal: explain class groups geometrically.

- group scheme  $SL_2$  acting on  $Q_D \subset \mathbb{A}^3$
- ▶ group scheme  $G = SL_2 \times SL_2 \times SL_2$  acting on  $W_D \subset \mathbb{A}^8$

We use arithmetic invariant theory and flat cohomology.

 Gauss composition
 Geometric forms and cubes

 Bhargava's cube law
 Deranged homological algebra

 Geometry and cohomology
 Results

## Example

Let  $SL_2$  act on  $(\mathbb{P}^1, \mathcal{O}(1))$ . On global sections we retrieve the action of  $SL_2(\mathbb{Z})$  on  $\mathcal{O}(2)(\mathbb{P}^1) = \mathbb{Z}[x, y]_2$ .

Let G act on  $(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1, 1, 1))$ . On global sections we get an action of  $G(\mathbb{Z})$  on

 $\mathcal{O}(\mathbf{1},\mathbf{1},\mathbf{1})(\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1)=\mathbb{Z}[x_1,y_1,x_2,y_2,x_3,y_3]_{\mathbf{1},\mathbf{1},\mathbf{1}}.$ 

Identifying cubes with 1, 1, 1-forms, this is the action above.

 Gauss composition
 Geometric forms and cubes

 Bhargava's cube law
 Deranged homological algebra

 Geometry and cohomology
 Results

#### Example

Let  $SL_2$  act on  $(\mathbb{P}^1, \mathcal{O}(1))$ . On global sections we retrieve the action of  $SL_2(\mathbb{Z})$  on  $\mathcal{O}(2)(\mathbb{P}^1) = \mathbb{Z}[x, y]_2$ .

Let *G* act on  $(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1, 1, 1))$ . On global sections we get an action of  $G(\mathbb{Z})$  on

$$\mathcal{O}(1,1,1)(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{Z}[x_1, y_1, x_2, y_2, x_3, y_3]_{1,1,1}.$$

Identifying cubes with 1, 1, 1-forms, this is the action above.

Gauss compositionGeometric forms and cubesBhargava's cube lawDeranged homological algebraGeometry and cohomologyResults

Let *G* act on  $(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1, 1, 1))$ . On global sections we get an action of  $G(\mathbb{Z})$  on

$$\mathcal{O}(1,1,1)(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{Z}[x_1, y_1, x_2, y_2, x_3, y_3]_{1,1,1}.$$

Identifying cubes with 1, 1, 1-forms, this is the action above.

### Example

Let  $w \in W_D(\mathbb{Z})$  be a cube. The fibers of

$$\mathbf{Z}(w) \xrightarrow{\pi_{\mathbf{1}}} \mathbb{P}^{\mathbf{1}}$$

are degenerate precisely above  $Z(q_1(w))$ .

Geometric forms and cubes Deranged homological algebra Results

# Principle of transitive actions

Let C/S be a site with final object *S*. Let *G* be a sheaf of groups acting *transitively* on a sheaf of sets *X*. Let  $x \in X(S)$  be a global section and  $H \subseteq G$  the stabilizer of *x*.

The short exact sequence of sheaves of pointed sets

$$\mathbf{1} \longrightarrow H \longrightarrow G \xrightarrow{\cdot x} X \longrightarrow \mathbf{1}$$

induces a longer exact sequence

$$\mathbf{1} \longrightarrow H(S) \longrightarrow G(S) \longrightarrow X(S) \stackrel{\delta}{\longrightarrow} \mathrm{H}^{\mathbf{1}}(S,H) \longrightarrow \mathrm{H}^{\mathbf{1}}(S,G)$$

where  $\delta(y)$  is the transporter  $G_{y,x}$ .

# **Principle of transitive actions**

Let C/S be a site with final object *S*. Let *G* be a sheaf of groups acting *transitively* on a sheaf of sets *X*. Let  $x \in X(S)$  be a global section and  $H \subseteq G$  the stabilizer of *x*.

If moreover

- ► *H* is abelian,
- ▶  $\mathrm{H}^{1}(S,G) = \mathbf{1},$

then  $G(S) \setminus X(S)$  has a H<sup>1</sup>(*S*,*H*)-torsor structure independent of the choice of *x*.

Let  $\mathbb{T}_D$  be the *norm one unit group* with respect to  $\mathbb{Z} \to \mathcal{O}_D$ . That is, if  $\mathcal{O}_D = \mathbb{Z}[\tau]/(\tau^2 - b\tau + c)$ , then

$$\mathbb{T}_D = \{ (u, v) : N(u + v\tau) = \mathbf{1} \} \\ = \{ (u, v) : u^2 + buv + cv^2 = \mathbf{1} \}.$$

One has  $\mathrm{H}^{1}_{\mathrm{fppf}}(\mathbb{Z},\mathbb{T}_{D}) = \mathrm{Cl}^{+}(\mathcal{O}_{D}).$ 

| Gauss composition       | Geometric forms and cubes    |
|-------------------------|------------------------------|
| Bhargava's cube law     | Deranged homological algebra |
| Geometry and cohomology | Results                      |

If  $H \subset SL_2$  is the stabilizer of  $x^2 + bxy + cy^2$  in  $Q_D(\mathbb{Z})$ , then

 $H^{\flat} \cong \mathbb{T}_D.$ 

Here  $H^{\flat}$  is the scheme-theoretic closure of the generic fiber.

#### Theorem

The set  $Q_D(\mathbb{Z})/SL_2(\mathbb{Z})$  is canonically a torsor under  $H^1_{fopf}(\mathbb{Z}, \mathbb{T}_D)$ .

The same is true if we replace  $\mathbb{Z}$  by any Dedekind domain of characteristic not 2.

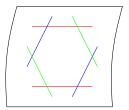
Gauss composition Geometric forms and cubes Bhargava's cube law Deranged homological algebr Geometry and cohomology Results

What is the stabilizer  $H \subset G$  of a cube  $w \in W_D(\mathbb{Z})$ ?

Generically, the projection

 $\mathbf{Z}(w) \xrightarrow{\pi_{23}} \mathbb{P}^1 \times \mathbb{P}^1$ 

is a blowup in two points. So Z(w) is a *degree* 6 *del Pezzo surface*. It contains a hexagon of six -1-curves.



| Gauss composition       | Geometric forms and cubes    |
|-------------------------|------------------------------|
| Bhargava's cube law     | Deranged homological algebra |
| Geometry and cohomology | Results                      |

### We find

$$H^{\flat} \cong \ker \left( \mathbb{T}_D \times \mathbb{T}_D \times \mathbb{T}_D \xrightarrow{\cdot} \mathbb{T}_D \right).$$

#### Theorem

*The set*  $W_D(\mathbb{Z})/G(\mathbb{Z})$  *is canonically a torsor under*  $H^1_{\text{fppf}}(\mathbb{Z}, \mathbb{T}_D)^2$ *.* 

The same is true if we replace  $\mathbb{Z}$  by any Dedekind domain of characteristic not 2.