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Overview

The main reference is [1], from which we cover sections 2–4. For a different point of view on
cones also consult sections 2–3 from [5].

First we introduce cones, extended cones, cone complexes, and generalized cone complexes.
We recall some facts about the moduli stack Mg,n of stable algebraic curves and its stratifi-
cation. Then we analogously describe the coarse moduli space Mtrop

g,n of stable tropical curves
with its stratification. It has the structure of a generalized extended cone complex. The strati-
fications of Mg,n and Mtrop

g,n are, in a certain sense, dual to each other. We shall see later that
Mtrop

g,n is actually the skeleton of the Berkovich analytificationMan
g,n.

1. Cones

Definition 1.1. A rational polyhedral cone with integral structure, or simply a cone, is a topological
space σ together with a finitely generated subgroup M ⊆ HomTop(σ, R) such that the image
of σ→ HomGrp(M, R) is a finite intersection of Q-linear closed halfspaces through 0 that does
not contain a line through 0. �

A cone (σ, M) satisfies dim σ = rk M, in other words, σ is not contained in a proper linear
subspace of HomGrp(M, R). We will usually suppress M from the notation.

Example 1.2. Let N be a finite rank free abelian group and σ ⊆ NR a finite intersection of
Q-linear closed halfspaces through 0 that does not contain a line through 0. Suppose that σ is
not contained in a proper linear subspace of NR. Then (σ, N∨) is a cone; all cones arise in this
manner. Our alternative approach emphasizes the space σ and not the ambient space NR. �

Definition 1.3. A morphism of cones σ → σ′ is a continuous map such that the induced map
HomTop(σ

′, R)→ HomTop(σ, R) sends M′ to M. �

If u ∈ M is non-negative on σ, then τ = {v ∈ σ : u(v) = 0} is a face of σ. It inherits the structure
of a cone, and the inclusion τ → σ is a morphism of cones. A cone morphism isomorphic to
such a morphism is called a face map. In particular, automorphisms of cones are face maps.

2. Extended cones

Let σ be a cone. We define the dual cone

σ∨ =
{

u ∈ MR : u(v) ≥ 0 for all v ∈ σ
}

and set Sσ = σ∨ ∩M. Then Sσ is a monoid under addition and one can canonically identify
σ = HomMon(Sσ, R≥0).
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Definition 2.1. The extended cone of σ is σ = HomMon(Sσ, R≥0), where R≥0 = R≥0 t {∞}. �

The extended cone is compact and σ ⊆ σ is dense open. Here is a suggestive picture.

σ σ∨ σ

The picture shows that σ should have more faces than σ. Let’s make that precise. For faces
τ′ ⊆ τ of σ we define

F(τ, τ′) =

{
v ∈ σ :

u vanishes on τ′⇐⇒ u(v) 6= ∞
u vanishes on τ =⇒ u(v) = 0

for all u ∈ Sσ

}
.

It may be identified with the quotient cone τ/τ′. Its closure F(τ, τ′) in σ is the extended cone
τ/τ′. We call F(τ, τ′) a face of σ. There are two kinds of faces:
I if τ′ = 0, then F(τ, 0) = τ and we call F(τ, 0) = τ an extended face;
I if τ′ 6= 0, then F(τ, τ′) does not intersect σ and we call F(τ, τ′) a face at infinity.

Example 2.2. We compute a small example. Let x, y be the coordinate functions on R2. Then
σ = R2

≥0 with M = Zx ⊕Zy forms a cone. The dual cone is σ∨ = R≥0x ⊕R≥0y and thus
Sσ = Nx ⊕Ny. A monoid homomorphism v : Sσ → R≥0 is uniquely defined by the images
v(x), v(y) ∈ R≥0. The identification σ = HomMon(Sσ, R≥0) has (a, b) ∈ σ corresponding to the
unique monoid homomorphism v with v(x) = a and v(y) = b. An element v ∈ σ is again given
by the images v(x), v(y), but this time they take values in R≥0. We conclude that σ = R≥0

2.

σ σ∨

(0, ∞)

(∞, 0)

(∞, ∞)

σ

If τ ⊆ σ is the face given by y = 0, then F(τ, τ) is the point (∞, 0) and F(σ, τ) is the one-
dimensional face at infinity where x = ∞. �

Definition 2.3. A morphism of extended cones σ→ σ′ is a continuous map that restricts to a cone
morphism σ→ F(τ, τ′) for some faces τ′ ⊆ τ of σ′. �
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Each morphism of cones σ → σ′ induces a morphism of extended cones σ → σ′. For instance,
if τ → σ is a face map, we call τ → σ an extended face map. On the other hand, the inclusion
of a face at infinity is a morphism of extended cones that does not come from a morphism of
cones.

3. Cone complexes

Definition 3.1. A cone complex is a topological space Σ, together with finitely many closed
subsets σ1, . . . , σn ⊆ Σ each equipped with the structure of a cone, such that
I Σ = σ1 ∪ . . . ∪ σn,
I each face of σi occurs as a unique σj, and
I the intersection σi ∩ σj is a union of faces of both σi and σj.

A morphism of cone complexes Σ → Σ′ is a continuous map such that for each cone σ of Σ there
is a cone σ′ of Σ′ such that the map restricts to a morphism of cones σ→ σ′. �

Definition 3.2. An extended cone complex is a topological space Σ, together with finitely many
closed subsets σ1, . . . , σn ⊆ Σ each equipped with the structure of an extended cone, such that
I Σ = σ1 ∪ . . . ∪ σn,
I each extended face of σi occurs as a unique σj, and
I the intersection σi ∩ σj is a union of extended faces of both σi and σj.

A morphism of extended cone complexes Σ→ Σ′ is a continuous map such that for each extended
cone σ of Σ there is an extended cone σ′ of Σ′ such that the map restricts to a morphism of
extended cones σ→ σ′. �

Informally, a cone complex is the result of gluing cones along faces. Note that in the extended
case we only glue along extended faces, not along faces at infinity.

Cone complexes differ from the fans of toric geometry in two important aspects. Firstly,
fans come with an embedding into an ambient space; cone complexes do not. Moreover, two
cones in a fan intersect in precisely one face, whereas we allow the cones in a cone complex to
intersect in a union of faces.

Example 3.3. Let Σ be the cone complex obtained by gluing two copies of R2
≥0 along the

boundary R≥0 × {0} ∪ {0} ×R≥0. Then Σ cannot be realized as a fan. �

The relative interior σ◦ of a cone σ is its interior as a subset of HomGrp(M, R). Equivalently,
σ◦ = σ \ ⋃τ(σ τ is the complement in σ of its proper faces. For extended cones we similarly
define σ◦ = σ \⋃τ(σ τ as the complement of its proper extended faces.

Proposition 3.4. If Σ = σ1 ∪ . . .∪ σn is a cone complex, then Σ = σ◦1 t . . .t σ◦n . If Σ = σ1 ∪ . . .∪ σn
is an extended cone complex, then Σ = σ◦1 t . . . t σ◦n. �

4. Generalized cone complexes

A more categorical point of view says that, equivalently, a cone complex is a topological space
presented as a colimit Σ = colimi∈I σi over cones and face maps, where I is a finite partially
ordered set. A natural generalization is the following.
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Definition 4.1. A generalized cone complex is a topological space Σ together with a presentation
Σ = colimi∈I σi as a colimit over cones and face maps, where I is a finite diagram. A morphism
of generalized cone complexes Σ → Σ′ is a continuous map such that for every cone σ of Σ there
is a cone σ′ of Σ′ and a morphism of cones σ→ σ′ that makes the diagram

σ σ′

Σ Σ′

commute. �

Definition 4.2. A generalized extended cone complex is a topological space Σ together with a
presentation Σ = colimi∈I σi as a colimit over extended cones and extended face maps, where I
is a finite diagram. A morphism of generalized extended cone complexes Σ→ Σ′ is a continuous map
such that for every extended cone σ of Σ there is an extended cone σ′ of Σ′ and a morphism
of extended cones σ→ σ′ that makes the diagram

σ σ′

Σ Σ′

commute. �

We emphasize that the transition maps in the colimit as required to be face maps. As mentioned
before, automorphisms of cones are face maps.

Remark 4.3. There is an obvious functor from (generalized) cone complexes to (generalized)
extended cone complexes, sending a cone σ to the extended cone σ. This functor is faithful and
essentially surjective. However, it is not an equivalence: not all morphisms of extended cones
come from morphisms of cones. �

The diagram I in the presentation of a generalized cone complex may fail to be a partially
ordered set in essentially two ways. On the one hand, I can contain parallel arrows. This
means that one is allowed to identify multiple faces of one cone. For instance, we can glue the
faces R≥0 × {0} and {0} ×R≥0 of the cone R2

≥0 along each other (see the picture on the left).
It follows that the map σ→ Σ is not injective in general.

On the other hand, I can contain loops. That means we may take quotients by automorphisms.
For instance, consider R2

≥0 modulo the automorphism (a, b) 7→ (b, a). Visually this is the effect
of folding R2

≥0 onto itself along the line x = y (see the picture on the right). This example
shows that σ→ Σ is not even injective on the relative interior σ◦.
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We would nevertheless like to formulate an analogon of proposition 3.4. Clearly such a
statement has to be more subtle! Say a presentation Σ = colimi∈I σi is reduced if
I every face map τ → σi is isomorphic to a transition map σj → σi,
I finite compositions of transition maps are transition maps, and
I if two transition maps σj → σi and σk → σi are isomorphic as maps to σi, then j = k and

the (unique) isomorphism σj → σk over σi is a transition map.
The second condition includes the existence of identity maps, hence the third condition implies
that all transition isomorphisms are automorphisms. In the first condition we cannot require
unicity, or all automorphisms would be trivial.

Proposition 4.4. Every generalized (extended) cone complex admits a reduced presentation. Further-
more, if Σ = colimi∈I σi is in reduced presentation, then Σ =

⊔
i∈I Gi /σ◦i and Σ =

⊔
i∈I Gi /σ◦i , where

Gi ⊆ Aut σi is the subgroup of automorphisms in the diagram.

Proof. We prove the second part.1 As a colimit of topological spaces (or sets), we have

Σ =

(⊔
i∈I

σi

)
/∼

where ∼ is the equivalence relation generated by (j, y) ∼ (i, t(y)) for transition maps t : σj → σi
and y ∈ σj. The canonical map

⊔
i∈I σ◦i → Σ is surjective; we claim that if (i, x) and (j, y) have

the same image in Σ, then i = j and there is a diagram automorphism of σi that sends x to y.
Indeed, in this situation there are indices i = i0, . . . , in = j, elements x = x0, . . . , xn = y

with xk ∈ σik , and pointed transition maps

σi0 σi2 σin−1

σi1 σi3 σin

t1 t2 t3 . . . tn

(Because the diagram has identities, the order of up and down arrows is irrelevant.) Since x, y
lie in the interiors of σi, σj, we are done if n ≤ 1. Otherwise we can make a shorter diagram as
follows. Let σm → σi2 be a diagram face map with x2 ∈ σ◦m. As σm → σi1 is isomorphic to t1,
we have m = i0 and there is a transition map σi0 → σi2 over σi1 sending x0 to x2. Now we can
shorten the diagram by removing indices i1 and i2. �

The above discussion explains that generalized cone complexes are not cone complexes in the
obvious way. Yet there is a way to view them as such; we sketch it here. Associated with a cone
σ is its canonical barycentric subdivision B(σ). It is a cone complex on the topological space σ,
with the property that automorphisms of σ permute the cones in B(σ), but do not act on the
cones themselves.

Therefore, if Σ = colimi∈I σi, then B(Σ) = colimi∈I B(σi) is actually a (non-generalized)
cone complex with underlying topological space Σ. The identity map Σ → B(Σ) is a mor-
phism of generalized cone complexes. The construction extends to generalized extended cone
complexes; details can be found in [2]. We conclude with just an example.

1The literature contains various versions of this statement. Unfortunately, I have found none with a proof, and even
worse, none that are correct. Therefore I felt compelled to include a proof in these notes.
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Example 4.5. Consider σ = R2
≥0. Its barycentric subdivision B(σ) adds a one-dimensional face

{(a, a) : a ∈ R≥0} and correspondingly splits the two-dimensional face of σ into two parts.
There is a unique non-trivial automorphism α of σ, given by (a, b) 7→ (b, a). We see that α

interchanges the two cones of B(σ), and B(α /σ) is a single cone as depicted.

σ

α

B(σ)

α

B(α /σ)

�

5. Graphs

In this section we collect some formal definitions concerning graphs.

Definition 5.1. A weighted graph with legs, or simply a graph, is a tuple G = (V, E, L, h) where
I V is a finite set of nodes,
I E is a finite set of edges equipped with incidence functions E⇒ V,
I L is a finite ordered list l1, . . . , ln of nodes, called legs or ends, and
I h : V →N is a weight function on the nodes.

We call (V, E) the underlying graph of G. �

Edges are undirected; parallel edges and loops are allowed. The legs are usually interpreted
as edges attached to only one node and trailing off to infinity.

We omit the definition of isomorphisms of graphs except for one remark: edges should be
considered as coupled pairs of half-edges, so that for each loop in G there exists a non-trivial
automorphism of G that changes the ‘direction’ of the loop.

Definition 5.2. A graph G is stable if the underlying graph (V, E) is connected, each vertex of
weight 0 has valence at least 3, and each vertex of weight 1 has valence at least 1. �

Definition 5.3. The genus of a graph G is g(G) = h1(V, E) + ∑v∈V h(v). �

Here h1(V, E) is the first Betti number of the underlying graph (V, E), equal to #E − #V + C
with C the number of connected components.

Definition 5.4. Let G be a graph and e ∈ E an edge between vertices v and w. The edge
contraction of e in G is the graph obtained by removing the edge e, replacing v and w by a single
new vertex, and giving the new vertex weight either h(v) + h(w) if v 6= w, or h(v) + 1 if v = w.
A contraction of G is a graph isomorphic to the result of a sequence of edge contractions. �

Each automorphism of G is a way to view G as a contraction of itself. More generally, contrac-
tions of stable graphs are stable, and all contractions of G have the same genus g(G).
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6. Moduli of algebraic curves

This section serves as reference only, so details are omitted. They can be found for instance in
chapter XII of [3]. Throughout, we work over a fixed algebraically closed field k.

Definition 6.1. A pointed nodal curve is a proper curve C/k with at most ordinary nodal sin-
gularities, plus an ordered list of distinct smooth points p1, . . . , pn ∈ C(k). A stable curve is a
pointed nodal curve that is connected and has finite automorphism group. �

Associated with a pointed nodal curve (C, p1, . . . , pn) is a graph G = (V, E, L, h), called the
dual graph, as follows:
I V is the set of irreducible components of C,
I E is the set of nodes of C, with each node of C incident to the components it lies on,
I L is the list of components on which the marked points lie, and
I h(v) is the geometric genus of the component v.

It is well-known that G encodes many properties of (C, p1, . . . , pn).

Theorem 6.2. Let (C, p1, . . . , pn) be a pointed nodal curve with dual graph G. Then (C, p1, . . . , pn)

is stable if and only if G is stable. The arithmetic genus g(C) of C is equal to g(G). �

Fix natural numbers g, n ≥ 0 such that 2g− 2 + n is positive.
LetMg,n be the moduli stack of n-pointed genus g stable curves. It is proper and smooth.

The substackMg,n of smooth curves is open. (The condition on (g, n) ensures thatMg,n is not
empty.) The embeddingMg,n ⊆Mg,n is toroidal, hence defines a stratification ofMg,n.

The strata are as follows. Let G be any stable graph with n legs and genus g. Then the
substack of curves with dual graph isomorphic to G is a locally closed stratum MG. We find
Mg,n =

⊔
GMG. The codimension ofMG inMg,n is the number of edges in G. In particular,

Mg,n is the unique stratum of maximal dimension 3g− 3 + n. The stratum MG is contained
in the closure ofMG′ if and only if G′ is a contraction of G. In order words, by contracting the
dual graph we pass to larger strata ofMg,n.

7. Moduli of tropical curves

Definition 7.1. A tropical curve is a graph G = (V, E, L, h) equipped with a length function
` : E → R>0. Similarly, an extended tropical curve is a graph G = (V, E, L, h) equipped with a
length function ` : E→ R>0, where R>0 = R>0 t {∞}. �

We leave isomorphisms of (extended) tropical curves to be defined by the reader.
As before, we fix natural numbers g, n ≥ 0 such that the quantity 2g − 2 + n is positive.

Let Mtrop
g,n and Mtrop

g,n be the sets of isomorphism classes of n-pointed genus g stable tropical
curves, respectively n-pointed genus g stable extended tropical curves. They come with natural
structures of generalized (extended) cone complexes, to be introduced below.

Definition 7.2. The complexes Mtrop
g,n and Mtrop

g,n are called the coarse moduli spaces of n-pointed
genus g stable (extended) tropical curves. �
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Remark 7.3. The name ‘coarse moduli space’ is justified as follows. With some care one defines
families of tropical curves over cones. This leads to the notion of a moduli stackMtrop

g,n . It admits
a coarse moduli space, which indeed is Mtrop

g,n . Details are in [4]. For us it suffices to view Mtrop
g,n

as a set with some extra structure. �

Let G be a stable graph with n legs and genus g. Set σG = RE
≥0, where E is the set of edges in G.

The relative interior σ◦G parametrizes tropical curves endowed with an isomorphism from their
graph to G. The extended relative interior σ◦G parametrizes extended tropical curves with such
an identification. This identification is unique up to automorphisms of G, hence the quotients

Mtrop
G = Aut(G) /σ◦G and Mtrop

G = Aut(G) /σ◦G

parametrize (extended) tropical curves whose graph is isomorphic to G.
Now let G′ be a contraction of G. Passing from G to G′ corresponds to letting some edge

lengths go to 0. As such we can identify σG′ with a face of σG. Recall that graph automorphisms
are contractions as well. We conclude that

Mtrop
g,n = colim

G
σG and Mtrop

g,n = colim
G

σG

where the colimits are over the diagram of graphs and contractions. The obvious partitions
Mtrop

g,n =
⊔

G Mtrop
G and Mtrop

g,n =
⊔

G Mtrop
G are a special case of proposition 4.4.

Remark 7.4. The stratification of Mtrop
g,n is dual to that of Mg,n, in the following sense. While

the stratum Mtrop
G ⊆ Mtrop

g,n has dimension #E, the corresponding stratum MG ⊆ Mg,n has
codimension #E. Moreover, when G′ is a contraction of G, the stratum Mtrop

G′ lies in the closure
of Mtrop

G , whereasMG is in the closure ofMG′ . �
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